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Abstract

This thesis investigates timing analysis and optimization issues in synchronous circuitry. The major

thrust of our work is a collection of provably correct and e�cient algorithms that perform a variety of

architectural-level operations on level-clocked circuitry, that is, circuitry that employs a multiphase

clocking scheme and level-clocked storage elements. We implemented several of these algorithms in

Tim, a timing package for two-phase, level-clocked circuitry. Using Tim we empirically compared

the performance and the storage element requirements of edge-triggered and equivalent level-clocked

implementations of synchronous circuitry. Our research contributes towards a better understanding

of the complex timing issues involved in level-clocking and provides the enabling technology for

bringing level-clocking into the mainstream of circuit design.

We begin by describing algorithms for optimizing edge-triggered circuitry in Chapter 1. This

kind of circuitry is particularly popular among designers, because of its intuitive operation and ease

of implementation. Our work in this area focuses on optimization by retiming, an architectural

transformation that speeds up circuits by relocating their storage elements. A highlight of our

research is an O(V 1=2
E lg V )-time algorithm for retiming unit-delay circuitry for maximum speed.

This is the asymptotically fastest algorithm known to date for the problem.

In Chapter 2 we move on to investigate timing in a general class of level-clocked circuitry.

The operation of this circuitry is much more complex and di�cult to understand than that of

edge-triggered circuitry. We �rst describe polynomial-time algorithms that analyze the timing of

level-clocked circuitry. Speci�cally, we give algorithms that verify the proper timing of a circuit by a

given clocking scheme and analyze the sensitivity of its timing to changes in the propagation delays

of its components. We also describe a polynomial-time algorithm for clock tuning, an optimization

that speeds up level-clocked circuits by adjusting the parameters of their clocking schemes. We

extend retiming to encompass level-clocked circuitry, and we describe polynomial-time algorithms

that perform retiming or simultaneous retiming and tuning. We also present a polynomial-time

retiming algorithm that minimizes the number of storage elements in level-clocked circuitry without

degrading its performance. Major results of our research in this area are an O(V E + V
2 lg V )-time

algorithm for retiming with symmetric clocking schemes and an O(V E + V
2 lgV )-time algorithm

for analyzing the sensitivity of a circuit's timing.

Chapter 3 describes Tim, a versatile and e�cient design automation tool for two-phase, level-

clocked circuitry that is based on our timing analysis and optimization algorithms. Tim has been

implemented using the C programming language and has been integrated into the SIS tools from

Berkeley. Our software runs on a workstation under the UNIX environment, and it is available over

the Internet by ftp.

We employed Tim to empirically compare edge-triggered and functionally equivalent level-

clocked implementations of synchronous circuitry in terms of speed and number of storage ele-

ments. Our results, which are presented in Chapter 4, show that although two-phase, level-clocked

circuitry has the theoretical potential to operate faster than conventional edge-triggered circuitry,

edge-triggered circuitry can often perform just as well. These empirical results indicate the special

circumstances, however, in which level clocking has an advantage. Moreover, our empirical results
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also indicate another advantage of optimized level-clocked designs: they contain substantially fewer

storage elements than edge-triggered designs that operate at the same speed.

Keywords: timing analysis, timing optimization, retiming, computer-aided design, VLSI design,

digital systems, synchronous circuitry, multiphase circuitry, level-clocked circuitry, graph algorithms,

combinatorial optimization.

Thesis Supervisor: Charles E. Leiserson

Title: Professor of Computer Science and Engineering
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Introduction

For several years now, VLSI designers have been routinely implementing synchronous dig-
ital systems with clocked storage elements that are synchronized by the falling edge of a
single clocking waveform. The operation of this edge-triggered circuitry is quite simple and
intuitive, and it can be described in just two sentences. When the clocking waveform falls,
each storage element instantaneously samples its input and asserts that value at its output
for the remainder of the clock cycle. The circuit operates correctly if the time between
every two consecutive falling edges is long enough to allow for all signals to propagate along
every combinational path in the circuit. Due to its simplicity, edge-triggered circuitry has
become particularly popular among both circuit designers and CAD tool designers.

An alternative method to implement synchronous systems is to employ a multiphase
clocking scheme and to use level-clocked latches as storage elements. In this so-called level-

clocked circuitry, a latch operates like a tra�c light. While the clocking waveform is high,
the latch is transparent and allows data to 
ow through unimpeded. When the clocking
waveform falls, however, the latch samples its input signal and asserts it at its output for the
remainder of the clock cycle. The signals that 
ow through a latch during its transparent
phase can initiate the computation of the next combinational stage before the beginning of
the next clock cycle, a phenomenon known as cycle stealing. Thus, level-clocked circuitry
has the theoretical potential to operate faster than edge-triggered circuitry, and it is often
employed in high-performance designs. Unfortunately, cycle stealing perplexes the operation
of level-clocked circuitry, because data can ripple through several stages of storage elements
before their propagation is complete. As a result, the design of level-clocked circuitry is
notoriously di�cult, and there are almost no automation tools available to facilitate this
task.

In this thesis we present the enabling technology that will bring level-clocking into the
mainstream of circuit design. Speci�cally, we describe a collection of provably correct and
e�cient algorithms for analyzing and optimizing the timing of level-clocked circuitry. We
implemented several of our algorithms in a software package called Tim, and we used our
tool to empirically compare edge-triggered and functionally equivalent level-clocked designs.
We believe that the results of our research provide VLSI designers with the tools and the
intuition required to design level-clocked circuitry with the same degree of con�dence, ease,
and e�ciency that is customary for edge-triggered designs.

9



10 INTRODUCTION

Motivation and Related Work

Since the early years of integrated digital systems, timing analysis and timing optimization
had been identi�ed as two of the most important problems in the design and implementation
of synchronous circuitry. The development of sophisticated timing analysis tools for edge-
triggered systems had already started in the early 70s, several years before the advent of
VLSI design [17]. One of the best known programs for analyzing circuitry that employed
edge-triggered latches was SCALD [34].

Level-clocked latches and multiphase clocks became commonplace with the arrival of
VLSI. The �rst timing analysis programs that accounted for level-clocked latches were TV
and CRYSTAL which appeared in the early 80s [23, 40]. These systems, however, were
hampered by the fact that they could not handle signals that cross phases. Agrawal made
an important contribution with his timing analysis program which accounted for signals
that cross phases but not for signals that cross clock cycles [1]. In the mid 80s, Szymanski
presented the timing analysis program LEADOUT which could handle signals that cross
phases as well as signals that cross clock cycles [54]. A few years later, Ishii and Leiserson
presented a formal timing analysis for a general class of level-clocked circuitry, and they
proved that their algorithms run in polynomial time [20]. In their analysis, each block of
combinational logic was assumed to have a minimum propagation delay equal to zero and
a maximum propagation delay that was independent of the block's functionality.

The �rst procedures for optimizing the timing of level-clocked circuitry by selecting
appropriate parameters for their clocking waveforms appeared in the late 80s [6, 57]. A
mathematical framework for timing analysis and optimal selection of clocking parameters
was presented by Sakallah, Mudge and Olukotun [51]. In this work, each block of combina-
tional logic was assumed to have a nonzero minimum propagation delay and a nonzero max-
imum propagation delay that were independent of the block's functionality. The retiming
optimization, a circuit transformation that has been extensively studied for edge-triggered
circuitry [28, 29, 31, 45], was investigated in the context of single-phase, level-clocked cir-
cuitry by Shenoy, Brayton and Sangiovanni-Vincentelli [52]. In all these papers, the authors
described iterative approximation or successive relaxation schemes to solve the problems.
The proposed schemes, however, were not guaranteed to run in polynomial time.

In this thesis we present a rigorous investigation of timing in level-clocked circuitry.
Assuming the same delay model as the one in [20], we describe provably correct and provably
e�cient algorithms for analyzing and optimizing the timing of a general class of level-
clocked circuitry that employs multiphase clocking schemes. We believe that our work will
transform the design of level-clocked circuitry into a substantially easier and more reliable
task. Our timing analysis algorithms extend beyond simple timing veri�cation by providing
information about the timing slack of the combinational logic blocks in the circuit. These
are the �rst polynomial-time algorithms presented for analyzing the timing sensitivity of
level-clocked circuitry. Moreover, our timing optimization algorithms do not only select
the optimal parameters for the clocking waveforms of a level-clocked circuit, but they also
improve its performance by retiming, that is, by relocating its latches without changing its
functionality. Retiming has been already investigated in edge-triggered circuitry [28, 29, 31,
45] and in single-phase, level-clocked cicuitry [52]. Our algorithms are the �rst, however, to
extend retiming to level-clocked circuitry with multiple clocking waveforms.
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Our work extends beyond the borders of theory. We implemented several of our algo-
rithms in Tim, a timing package for two-phase, level-clocked circuitry. We have used Tim to
empirically compare edge-triggered and functionally equivalent level-clocked designs. Our
experiments demonstrate speci�c circuit characteristics that allow level-clocking to achieve
its speed potential. They also show that level-clocking leads to circuits with fewer stor-
age elements in high-performance designs. Despite the large amount of work in the area,
our contribution is the �rst attempt to empirically quantify the performance di�erences of
edge-triggering and two-phase clocking. We believe that our results will prove particularly
useful to designers of custom integrated circuitry.

Independently of our work, Lockyear and Ebeling have presented retiming algorithms
for multiphase, level-clocked circuitry in [32]. The general retiming algorithm in that paper
has the same computational complexity as the one we present in this thesis. We present
an asymptotically more e�cient algorithm, however, when the clocking waveforms are sym-
metric. Some retiming heuristics were also presented in [3], but their correctness and com-
putational complexity was not analyzed.

Recently, Szymanski and Shenoy presented a provably correct algorithm for timing ver-
i�cation that has the same computational complexity as the one we present in this thesis
and assumes a more general delay model in which the blocks of combinational logic have
nonzero minimum propagation delays [55]. An e�cient algorithm for selecting the param-
eters of the optimal clocking waveforms in this more general model appeared in [56]. An
e�cient retiming algorithm for this model, however, is not known yet.

Overview of the Thesis

This thesis is organized in four chapters. Parts of the material in each chapter have appeared
in conferences during the last three years. Other parts have been submitted for publication.

Optimizing Edge-Triggered Circuitry

In Chapter 1 we investigate algorithms for optimizing edge-triggered circuitry. Early ver-
sions of this work appeared in [42, 43].

An edge-triggered circuit comprises blocks of combinational logic that perform functions
and edge-triggered latches (also called registers) that implement storage elements. Such a
circuit is a simple implementation of the semisystolic model of computation that can be
used to design parallel algorithms. In this chapter, we give tight bounds on the minimum
clock period that can be achieved by retiming an edge-triggered circuit. Our bounds are
independent of the size of the circuit; they are expressed in terms of the maximum ratio of
the total delay over the total register count around any cycle in the circuit graph and in terms
of the maximum propagation delay dmax of the combinational logic blocks. Moreover, our
bounds characterize exactly the minimum clock period that can be achieved by retiming a
unit-delay circuit, that is, a circuit in which all combinational logic blocks have propagation
delay of one unit.

We also present more e�cient algorithms for several important problems related to
retiming. Speci�cally, we give an O(V 1=2E lg V )-time algorithm for retiming unit-delay
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circuits with the minimum possible clock period. This is the asymptotically fastest al-
gorithm known to date for this problem, and its e�ciency stems from our exact charac-
terization of the minimum clock period for unit-delay circuits. For the general case, in
which circuits also include combinational logic blocks with non-unit delays, we describe an
O(V E lg dmax)-time algorithm for retiming with minimum clock period. We also describe an
O(V 1=2E lg2(V dmax))-time algorithm for retiming with a clock period that does not exceed
the optimal by more than an additive factor of dmax�1. Finally, we give an O(E lg dmax)-time
algorithm for pipelining combinational circuits with the minimum possible clock period.

Analyzing and Optimizing Level-Clocked Circuitry

In Chapter 2 we present our algorithms for analyzing and optimizing the timing of level-
clocked circuitry. Earlier versions of this work appeared in [21, 22, 44, 46, 47, 48].

A level-clocked circuit comprises blocks of combinational logic that perform functions
and level-clocked latches that implement storage elements. In this chapter we describe algo-
rithms that verify whether a circuit is properly timed by a given clocking scheme and analyze
the sensitivity of the circuit's timing to changes in the propagation delays of its components.
We also investigate two strategies for reducing the clock period of a level-clocked circuit:
clock tuning, which adjusts the waveforms that clock the circuit, and retiming, which relo-
cates circuit latches. These methods can be used to convert a circuit with edge-triggered
latches into a faster level-clocked one.

The algorithms in this chapter are presented in terms of two-phase, level-clocked cir-
cuitry. At the end of the chapter we extend our algorithms to encompass a general class
of level-clocked circuitry with multiple phases. We model a two-phase circuit as a graph
G = hV;Ei whose vertex set V is a collection of combinational logic blocks, and whose edge
set E is a set of interconnections. Each interconnection passes through zero or more latches,
where each latch is clocked by one of two periodic, nonoverlapping waveforms, or phases.

We give e�cient polynomial-time algorithms for problems involving the timing analysis
and optimization of two-phase circuitry. Included are algorithms for

� veri�cation of proper timing: O(V E) time.

� noncritical sensitivity analysis for a single combinational block: O(V E) time.

� noncritical sensitivity analysis for all combinational blocks: O(V E + V 2 lg V ) time.

� critical sensitivity analysis for a single combinational block: O(V E) time.

� minimization of clock period by clock tuning: O(V E) time.

� retiming to achieve a given clock period when the phases are symmetric:
O(V E + V 2 lg V ) time.

� retiming to achieve a given clock period when either the duty cycle (high time) of one
phase or the ratio of the phases' duty cycles is �xed: O(V 3) time.

By characterizing the set of possible clock periods under any retiming of the circuit, we
are able to obtain polynomial-time algorithms for clock period minimization by:

� retiming and tuning when the duty cycles of the two phases are required to be equal:
O(V 2E) time.
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� retiming and tuning when either the duty cycle of one phase is �xed or the ratio of
the phases' duty cycles is �xed: O(V 2E + V 3 lg V ) time.

� simultaneous retiming and clock tuning with no conditions on the duty cycles of the
two phases: O(V 11) time.

Unfortunately, this last algorithm is not practical. For these problems, however, we present
fully polynomial-time approximation schemes for clock period minimization within any
given relative error � > 0. Speci�cally, we give an

� O((V E + V 2 lg V ) lg(V=�))-time algorithm for retiming and tuning when the duty
cycles of the two phases are required to be equal.

� O(V 3 lg(V=�))-time algorithm for retiming and tuning when either the duty cycle of
one phase is �xed or the ratio of the phases' duty cycles is �xed.

� O(V 3(1=�) lg(1=�)+(V E+V 2 lg V ) lg(V=�))-time algorithm for simultaneous retiming
and clock tuning with no conditions on the duty cycles of the two phases.

The �rst two of these approximation algorithms can be used to obtain the optimum clock
period in the special case where all propagation delays are integers.

At the end of this chapter, we generalize most of the results for two-phase clocking
schemes to simple multiphase clocking disciplines, including ones with overlapping phases.
Typically, the algorithms to verify and optimize the timing of k-phase circuitry are at most
a factor of k slower than the corresponding algorithms for two-phase circuitry. Sensitivity
analysis for all combinational blocks and retiming with symmetric phases, however, can still
be performed in asymptotically the same number of steps as for two-phase circuitry.

Tim: A Timing Package for Level-Clocked Circuitry

In Chapter 3 we describe Tim, a versatile and e�cient tool for verifying and optimizing
the timing of two-phase, level-clocked circuitry. An earlier version of this work appeared in
[48].

Tim is based on the algorithms that we present in Chapter 2 and performs a wide variety
of functions such as timing veri�cation, sensitivity analysis, clock tuning, retiming and clock
tuning for maximum speed of operation, and retiming for minimum number of latches. In
Tim we have extended our algorithms to handle nonideal latches. All latches are assumed
to have equal propagation delays, equal setup times and equal hold times. Moreover, the
implementation of our retiming algorithms does not relocate the input/output latches, thus
preserving the input/output phases and the total latency of the circuit.

The entire software package has been developed using the C programming language
in a UNIX environment. The system has been integrated in the SIS tools from Berkeley,
and it is available over the Internet by ftp 1. On a SPARCstation 2 with 64MB of main
memory, each of Tim's timing analysis functions requires a couple of minutes for a circuit
with approximately 1,500 gates. The retiming functions are slower, however, and they
require approximately 35 minutes for a circuit of the same size. Tim's retiming algorithms
operate on a dense graph representation of the problem. Almost half of the time required

1Copies of Tim can be obtained by sending a request to marios@lcs.mit.edu.
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by its retiming operations is spent on constructing this graph. We believe that the practical
performance of some of the retiming algorithms will be substantially improved by adjusting
them to operate on a sparse graph representation.

Edge-Triggering vs. Level-Clocking

In Chapter 4 we present an empirical comparison of edge-triggered and two-phase, level-
clocked circuitry in terms of speed and storage elements requirements. An earlier version
of this work appeared in [47].

Level-clocked circuitry that employs a two-phase, nonoverlapping clocking scheme has
the theoretical potential to operate up to twice as fast as edge-triggered circuitry. Using
Tim, we have run experiments that demonstrate, however, that edge-triggering is often just
as fast as two-phase clocking, and that the speed potential of two-phase clocking is generally
not obtained except when the delay between any two consecutive latches is roughly uniform
and close to the maximum combinational block delay. Moreover, our experiments show
that asymmetrical clocking of a two-phase circuit often does not provide any speedup over
optimal symmetric clocking schemes.

Level-clocking can lead to substantial reductions in the number of storage elements in
a circuit, however. Our experiments show that for edge-triggered circuitry that has been
retimed to operate with the minimum possible clock period, by replacing each edge-triggered
latch by a pair of level-clocked latches and subsequently retiming the resulting two-phase
circuit, the number of storage elements can be reduced by up to 38% without increasing
the clock period of the �nal design or a�ecting its input/output speci�cation. Reductions
of greater than 25% were achieved for more than one third of the circuits we tested.

We ran our tests on MCNC benchmark circuits, AT&T communication circuits, and
custom circuitry designed for MIT's Alewife machine.



Chapter 1

Optimizing Edge-Triggered

Circuitry

1.1 Introduction

This chapter describes algorithms for optimizing edge-triggered circuitry, that is, syn-

chronous circuits built of functional elements and globally clocked registers. Retiming,

which was introduced in [27, 28, 29] and treated in [31], is a well-known design automation

technique which transforms a given edge-triggered circuit into a faster circuit, that is, one

with a shorter clock period, by relocating the registers of the given circuit while preserv-

ing its functionality. In this chapter we further investigate retiming and provide results of

theoretical as well as practical interest. Speci�cally, we give tight bounds on the minimum

clock period that can be achieved by retiming a circuit in terms of the maximum delay-to-

register ratio of the cycles in the circuit graph and the maximum propagation delay of the

combinational logic blocks in the circuit. These bounds do not depend on the size of the

circuit and characterize exactly the minimum clock period that can be achieved by retiming

a unit-delay circuit. We exploit these bounds to obtain asymptotically improved algorithms

for several important problems related to retiming. A highlight of the research presented in

this chapter is the asymptotically fastest algorithm known to date for retiming unit-delay

circuitry.

We model a synchronous circuit according to [27, 28, 29] by a circuit graph G =

hV;E; d; wi. A vertex v 2 V corresponds to a functional element of the circuit, and an

edge u
e
! v 2 E corresponds to a wire between the functional elements u and v. The inte-

ger edge-weight w(e) is the number of registers on the directed edge e. The vertex-weight

d(v) is the propagation delay of the signals through the functional element v. For simplicity,

and without any loss of generality, we assume that vertex-weights are also integers. This

assumption is justi�ed by the fact that digital computers represent data with only a �nite

number of bits. Figure 1-1(a) illustrates a synchronous circuit with unit-delay functional

elements.

Intuitively, the circuit operates as follows. Between any two consecutive clock ticks,

signals propagate along wires and ripple concurrently through the functional elements. By

the end of a clock period all signals must have settled in the registers of the circuit. Although

15
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Figure 1-1: (a) A synchronous circuitG with unit-delay functional elements. The vertices represent

functional elements, the edges represent wires, and the rectangles represent registers. The integers

next to the edges indicate number of registers. The clock period of the circuit is 4 units of time

(path FABG). (b) A retiming of G. The integer assignment is indicated next to the vertices. The

clock period of this circuit is 2 units of time.

the functional elements of the circuit operate in parallel, some signals may require more

time to settle than others, because they experience longer propagation delays along their

paths. The clock period �(G) of the system is de�ned naturally as the propagation delay of

the longest register-free path in the circuit, which is well-de�ned for synchronous circuits

in which every directed cycle contains at least one register. For example, the clock period

of the unit-delay circuit in Figure 1-1(a) is 4 units of time (path FABG).

A retiming r of G is an assignment r : V ! Z, such that w(e) + r(u) � r(v) � 0.

Given r, we transform the circuit by removing r(v) registers from every edge coming into

v, and adding r(v) registers to every edge going out of v. This results to a retimed circuit

Gr = hV;E; d; wri, with wr(e) = w(e) + r(u) � r(v) � 0 for every edge u
e
! v 2 E. In

Figure 1-1(b) we have retimed the circuit of Figure 1-1(a) so that the resulting circuit has

clock period 2 units of time. Note that the total number of registers around any cycle in

the circuit remains invariant after retiming.

The delay-to-register ratio of a directed cycle in a circuit is de�ned as the ratio of the

total propagation delay around the cycle over the total number of registers in the cycle. For

example, the delay-to-register ratio of the directed cycle ABCDEF in Figure 1-1 is 6=6 = 1.

Observe that the delay-to-register ratio of any cycle is the same in the original circuit G

and in the retimed circuit Gr, since both the total delay and the number of registers around

any cycle remain invariant after retiming. This observation suggests a relation between the

minimum clock period that we can achieve by retimingG and the maximum delay-to-register

ratio in G. Let us illustrate this relation by means of our example circuit in Figure 1-1.

Consider the cycle ABGF with delay-to-register ratio 4=2 = 2, which is themaximum among

the three directed cycles in G. It is not possible to distribute the registers around ABGF

in a way that achieves a clock period shorter than the average delay per register in ABGF,

since the delay-to-register ratio around any cycle in Gr remains invariant. Therefore, G

cannot be retimed to achieve a clock period smaller than 2, the delay-to-register ratio of

ABGF, and the circuit in Figure 1-1(b) has achieved its minimum possible clock period.

In this chapter we prove that rounding up the maximum delay-to-register ratio in any
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circuit yields a lower bound on the minimum clock period that we can achieve by retiming

the circuit. Moreover, we show that there always exists a retiming that comes within an

additive factor of d
max

� 1 away from the lower bound, where d
max

denotes the maximum

among the propagation delays of the functional elements in the circuit. As a special case of

these general bounds we have that the maximum delay-to-register ratio in any unit-delay

circuit characterizes exactly the minimum clock period achievable by retiming. (The result

for the special case of unit-delay circuitry has been claimed independently in [8].) Our

tight bounds yield asymptotically more e�cient algorithms for several important problems

related to retiming, such as minimum clock-period retiming, retiming for approximately

minimum clock-period, and minimum clock-period pipelining.

The remainder of this chapter is structured as follows. In Section 1.2 we give some back-

ground material on retiming and its relation with the single-source shortest-paths problem.

In Section 1.3 we state and prove the tight bounds on the minimum clock period �
min

(G)

that can be achieved by retiming a circuit G.

In Section 1.4, we give an O(V 1=2E lg V )-time algorithm that retimes any unit-delay

circuit to achieve the minimum possible clock period �
min

(G). This result improves the

O(V E lg V ) bound from [31]. Our algorithm is based on the exact characterization of

�
min

(G) as well as on scaling algorithms for �nding single-source shortest-paths and the

minimum cycle-mean in a graph [12, 39].

In Section 1.5, we present algorithms for the general case, in which circuits include

combinational logic blocks of non-unit delay. Speci�cally, Subsection 1.5.1 describes an

O(V E lg d
max

)-time algorithm for minimum clock period retiming. This algorithm performs

a preprocessing step for computing the maximum delay-to-register ratio in the circuit, fol-

lowed by a binary search of d
max

possible clock periods. Assuming that the maximum

propagation delay d
max

of the circuit components grows subpolynomially with the size

of the circuit, our algorithm is asymptotically more e�cient than the previously known

schemes [31]. Subsection 1.5.2 presents an O(V 1=2E lg2(V d
max

))-time procedure for retim-

ing a circuit with a clock period that does not exceed the minimum by more than an additive

factor of d
max

� 1.

In Section 1.6 we extend our characterization of the minimum clock period to encompass

combinational circuits, that is, circuits with no directed cycles in their graphs. We show how

to pipeline any combinational circuit in O(E lg d
max

) steps in order to achieve a speci�ed

latency with the minimum possible clock period. This result improves the O(V E lg V )

bound that can be obtained by applying the general algorithms from [31], and it is optimal

within a constant multiplicative factor for circuitry with unit-delay functional elements.

1.2 Retiming and Shortest Paths

In this section we de�ne some notation and terminology needed in this chapter. We for-

mulate retiming according to [31] as a set of di�erence constraints, and we introduce the

notion of the constraint graph. Finally, we exhibit the relation between retiming and the

existence of single-source shortest-paths in the constraint graph.

Given a circuit graph G = hV;E; d; wi, we de�ne the path weight w(p) for any path
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p = v
0

e0
! v

1

e1
! : : :

ek�1
! vk in the circuit as the sum of the edge-weights of the path:

w(p) =
k�1X
i=0

w(ei):

We also de�ne the path delay d(p) as the sum of the delays of the vertices in the path:

d(p) =
kX

i=0

d(vi):

A retiming of a circuit G with gain r is an integer-valued vertex-labeling r : V ! Z.

The retiming r speci�es a transformation of the original circuit in which registers are added

and removed so as to change the original circuit G into a new circuit Gr = hV;E; d; wri

with clock period �(Gr). The edge-weighting wr is de�ned for an edge u
e
! v of Gr by the

equation

wr(e) = w(e) + r(u)� r(v):

The following theorem characterizes the conditions under which we can �nd a retiming that

produces a circuit with clock period no greater than a given constant.

Theorem 1 ([31]) Let G = hV;E; d; wi be a synchronous circuit, let c be an arbitrary

positive real number, and let r be a function from V to the integers. Then, r is a legal

retiming of G such that �(Gr) � c if and only if

r(v)� r(u) � w(e) (1.1)

for every edge u
e
! v in G, and

r(v)� r(u) �W (u; v)� 1 (1.2)

for all vertices u; v 2 V such that D(u; v) > c, where

W (u; v) = min
n
w(p) : u

p
; v

o
;

D(u; v) = max
n
d(p) : u

p
; v and w(p) =W (u; v)

o
:

2

Inequality (1.1) guarantees that the number of registers on every edge u
e
! v of the retimed

circuit Gr is nonnegative. Inequality (1.2) enforces the clock period constraint: every simple

path u
p
! v with delay d(p) > c will have at least one register in the retimed circuit Gr.

There are potentially O(V 2) inequalities of the form (1.2), one for each pair of vertices in

G, and they can be computed in O(V E + V 2 lg V ) steps [31].

The constraints (1.1) and (1.2) in Theorem 1 are linear inequalities involving only dif-

ferences of the unknowns r(v). Therefore, the retiming problem can be expressed in the

following general form.

Problem DC (Di�erence Constraints) Let L be a set of m linear constraints of the form

x(v)� x(u) � t(u; v) (L)
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on the n unknowns x(1); x(2); : : : ; x(n), where t(u; v) are given integer constants. Determine

a set of integer feasible values for the unknowns x(u) or determine that no such set exists. 2

The following theorem is classic in the �eld of combinatorial optimization [25, 41], and

provides a method for solving Problem DC.

Theorem 2 Let L be a set of di�erence constraints, and let Ĝ = (V̂ ; Ê; t̂) be the directed,

edge-weighted, constraint graph constructed from L in the following way:

V̂ = fu : x(u) is an unknown of Lg;

Ê = fu! v : x(v)� x(u) � t(u; v) is a constraint in Lg;

t̂(u; v) = t(u; v); for every edge u! v in Ê:

Then, Problem DC is feasible if and only if there exists no directed cycle C 2 Ĝ with edge-

weight t̂(C) < 0. Moreover, let every vertex v 2 V̂ be reachable from a vertex s 2 V̂ by a

path s ; v in Ĝ. If there exists a solution r to the shortest-paths problem in Ĝ from the

source s, that is, if r(v) = minft̂(p) : s
p
! v 2 Ĝg for every vertex v 2 V̂ , then r is also a

solution for the constraint set L, such that x(v)�x(s) is maximized for every vertex v 2 V̂ .

We denote byGc = hV;Ec; wci the constraint graph that corresponds to Inequalities (1.1)
and (1.2) for a given c. Theorem 2 implies that a retimed circuit with clock period no

greater than c can be computed in O(V 3) steps by applying the O(V E)-time shortest-

paths algorithm by Bellman and Ford [25, page 74] on the dense constraint graph Gc. An

asymptotically faster algorithm which runs in O(V E) time appears in [31].

1.3 Characterization of Minimum Clock Period �min(G)

1.3.1 Bounds on �
min

(G)

In this section we characterize the minimum clock period �min(G) that can be obtained by

retiming a given circuit G = hV;E; d; wi in terms of the maximum delay-to-register ratio

of the cycles in the circuit graph G and the maximum propagation delay of the circuit

components.

First, we give some de�nitions that will allow us to state and prove our results formally.

We de�ne the delay-to-register ratio R(C) of a cycle C = v0
e0! v1

e1! : : :
ek�2
! vk�1

ek�1
! v0 in

the circuit G as follows:

R(C) =

X
v2C

d(v)

X
e2C

w(e)
:

We denote by C�(G) the directed cycle in G with maximum delay-to-register ratio. By

de�nition, R(C�(G)) � R(C) for every cycle C 2 G. Finally, we denote by �min(G) the

smallest possible clock period that we can achieve by retiming G:

�min(G) = minf�(Gr) : r is a retiming of Gg:

Our �rst theorem bounds the range of the minimum clock period of a circuit.
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p i

C*
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0
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Figure 1-2: Path pi used in the proof of the lower bound. Note that only the �rst and the last

edge in the path have non-zero register count.

Theorem 3 Let G = hV;E; d; wi be a synchronous circuit with maximum delay-to-register

ratio R(C�(G)), and let �min(G) be the minimum clock period we can obtain by retiming G.

Then

dR(C�(G))e � �min(G) � dR(C�(G))e+ dmax � 1;

where dmax = maxfd(v) : v 2 V g:

The proofs of the lower and the upper bound are given in Sections 1.3.2 and 1.3.3 respec-

tively. Observe that both the upper and the lower bound are independent of the number of

vertices and the number of edges in the circuit.

For unit-delay circuits, the bounds in Theorem 3 yield an exact characterization of the

minimum clock period.

Corollary 4 Let G = hV;E; 1; wi be a unit-delay synchronous circuit with maximum delay-

to-register ratio R(C�(G)), and let �min(G) be the minimum clock period we can obtain by

retiming G. Then

dR(C�(G))e = �min(G):

Proof. Follows directly from Theorem 3 for dmax = 1. 2

As we shall see in Section 1.4, this property of unit-delay circuits allows us to derive asymp-

totically more e�cient schemes for their optimization.

1.3.2 Lower Bound

In this section we prove the lower bound of Theorem 3. Speci�cally, we prove the following

lemma.

Lemma 5 Let G = hV;E; d; wi be a synchronous circuit with maximum delay-to-register

ratio R(C�(G)), and let �min(G) be the minimum clock period we can obtain by retiming G.

Then

dR(C�(G))e � �min(G):
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Proof. Assume that we have retimed G in such a way that it achieves the minimum possible

clock period �min(G). Let C
� be the cycle with maximum delay-to-register ratio in G (see

Figure 1-2), and let N = fe 2 C� : wr(e) > 0g. Now, consider a path pi = vi
0

ei
0! vi

1

ei
1!

: : :
ei
l�2

! vil�1
ei
l�1

! vil in C�, such that ei
0
; eil�1 2 N and eij =2 N; for j = 1; 2; : : : ; l � 2. Observe

that only the �rst and the last edge in the path pi have registers on them. Now, by de�nition

of the clock period, the register-free part of pi satis�es

l�1X
j=1

d(vij) � �min(G):

There are jN j paths around C� that have the form of pi. By summing up the jN j
corresponding inequalities for �min(G), we obtainX

v2C�

d(v) � �min(G) � jN j

� �min(G) �

 X
e2C�

wr(e)

!

� �min(G) �

 X
e2C�

w(e)

!
;

since wr(e) = w(e)+ r(u)� r(v) for every edge u
e
! v, and the sum

P
e2C� wr(e) telescopes.

Since the propagation delays are integers, �min(G) must also be an integer, and therefore

2
66666

X
v2C�

d(v)

X
e2C�

w(e)

3
77777
� �min(G):

The lemma follows directly from the de�nition of R(C�(G)). 2

1.3.3 Upper Bound

In this section we prove the upper bound of Theorem 3. Our proof uses properties of the

constraint graph Gc that was introduced in Section 1.2, and Lemma 6, whose correctness

follows directly from Theorem 2 and the de�nition of the constraint graph.

Lemma 6 Given a circuit G = hV;E; d; wi and a real number c, there exists a retiming r

of G such that �(Gr) � c if and only if the constraint graph Gc has no negative edge-weight

cycles. 2

We proceed with the proof of the upper bound.

Lemma 7 Let G = hV;E; d; wi be a synchronous circuit with maximum delay-to-register

ratio R(C�(G)), and let �min(G) be the minimum clock period we can obtain by retiming G.

Then

�min(G) � dR(C�(G))e+ dmax � 1:
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C-

(a) (b)
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321w(e )+w(e )+w(e )-1

w(e )2

w(e )1

Figure 1-3: (a) The cycle C� in Gc. The solid lines indicate edges in S. For simplicity, we

have not indicated the registers on these edges. The broken lines indicate edges in S0. (b) After

the introduction of the edges in S00 that correspond to the edges in S0, the solid cycle has edges

exclusively in G and its delay-to-register ratio is greater than R(C�(G)).

Proof. The proof is by contradiction of the fact that R(C�(G)) is the maximum delay-

to-register ratio in G. Let us assume that there does not exist a retiming r, such that

�(Gr) � dR(C�(G))e+ dmax � 1. Equivalently, according to Lemma 6, we assume that for

c = dR(C�(G))e + dmax � 1 there exists a negative edge-weight cycle C� in the constraint

graph Gc = (V;E[E0; wc) (see Figure 1-3(a)), where E
0 denotes the edges of Gc introduced

due to Inequality (1.2). We can partition the edges of C� into C� = S [ S0, where S � E

and S0 � E0. Since the edge-weights wc(e) are integral, we haveX
e2S

wc(e) +
X
e2S0

wc(e) � �1: (1.3)

Now, Inequality (1.2) implies that every edge u
e
! v in E0 with weight wc(e) =W (u; v)� 1

corresponds to a path u
p
! v in E with weight wc(p) = W (u; v) and delay d(p) > c. Let

S00 = fv1 ! v2 : u ! v 2 S0 corresponds to path p 2 G; v1 ! v2 2 pg (see Figure 1-3(b)).

Then, using Inequality (1.3) we obtain

X
e2S

w(e) +
X
e2S00

w(e) =
X
e2S

w(e) +
X
e2S00

w(e)� jS0j+ jS0j

=
X
e2S

w(e) +
X
e2S0

wc(e) + jS0j

=
X
e2S

wc(e) +
X
e2S0

wc(e) + jS0j

� jS0j � 1:

Note that jS0j � 2, because otherwise the cycle S [ S00 would have no registers, which

contradicts the fact that G is synchronous. Now, for the delay-to-register ratio of the cycle
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UD-Retiming(G)

1 for each edge e 2 E

do w0(e) minfw(e); jV jg

2 �min(G
0) 

2
66666
max
C2G0

jCjX
e2C

w0(e)

3
77777

� �min(G
0) = dR(C�(G0))e

3 for each vertex v 2 V

do r(v) dlength of single-source shortest-path s; v in G0 � 1=�min(G
0)e

4 for each edge u
e
! v 2 E

do wr(e) w(e) + r(u)� r(v)

Figure 1-4: Algorithm UD-Retiming for optimal retiming of unit-delay circuitry. Given a unit-

delay circuit G = hV;E; 1; wi, this algorithm determines a retimed circuit Gr with minimum clock

period.

S [ S00 in G we have:
P

u
e

!v2S
d(u) +

P
u

e

!v2S00
d(u)P

u
e

!v2S
w(e) +

P
u

e

!v2S00
w(e)

�

P
u

e

!v2S
d(u) +

P
u

e

!v2S00
d(u)

jS0j � 1

�

P
u

e

!v2S00
d(u)

jS0j � 1

>
jS0j(c + 1� dmax)

jS0j � 1

�
jS0j

jS0j � 1
R(C�(G)):

Since jS0j=(jS0j�1) > 1, we conclude that there exists a cycle in G with delay-to-register

ratio greater than the maximum delay-to-register ratio R(C�(G)), which is a contradiction.

Therefore, Gc has no negative edge-weight cycles and, according to Lemma 6, there exists

a retiming r of G such that �(Gr) � dR(C
�(G))e + dmax � 1. Consequently �min(G) �

dR(C�(G))e+ dmax � 1. 2

1.4 Optimal Retiming of Unit-Delay Circuitry

In this section we describe an e�cient algorithm for optimal retiming of edge-triggered

circuitry in the special case where all combinational logic blocks have unit propagation

delays. Speci�cally, we give an O(V 1=2E lg V )-time procedure for the following problem:

Given a unit-delay edge-triggered circuit G = hV;E; 1; wi, determine a retiming r such that

�(Gr) = �min(G).

Our Algorithm UD-Retiming for optimal retiming of unit-delay circuitry is illustrated

in Figure 1-4. The basic idea behind it is the construction of a circuit G0 = hV;E; 1; w0i

with small edge-weights w0(e), such that r is a retiming of G0 with clock period �(G0

r) if

and only if r is a retiming of G with clock period �(Gr) = �(G0

r). Optimal retimings of G
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can be computed more e�ciently on G0 using procedures that scale the small edge-weights

w0(e).

In order to prove the correctness of Algorithm UD-Retiming, we must show that the

optimal clock period �min(G) equals the optimal clock period �min(G
0) computed in Step 2

of the algorithm. This equality is a special case of the following general theorem.

Theorem 8 Let G = hV;E; d; wi be an edge-triggered circuit, and let G0 = hV;E; d; w0i be

the edge-triggered circuit with w0(e) = minfw(e); jV jdmaxg for every edge u
e
! v 2 E. Let

R(C�(G)) and R(C�(G0)) be the maximum delay-to-register ratios of G and G0 respectively.

Then

dR(C�(G))e = dR(C�(G0))e :

Proof. In order to prove the theorem, we �rst argue that the maximumR(C(G)) is obtained

for a simple cycle in G. Indeed, if for any non-simple cycle C = C1[C2 with R(C1) � R(C2)

we have R(C) > R(C1), then a straightforward calculation shows that R(C1) < R(C2) which

contradicts our assumption about R(C1) and R(C2).

Now, we show that every simple cycle C 2 G must satisfy

2
66666

X
v2C

d(v)

X
e2C

w(e)

3
77777
=

2
66666

X
v2C

d(v)

X
e2C

w0(e)

3
77777
: (1.4)

If w(e) � jV jdmax for every e 2 C, then w(e) = w0(e) for every e 2 C and equation (1.4)

holds. If w(e) > jV jdmax for some edge e 2 C, then w0(e) = jV jdmax. Since jCj � jV j, we

have 2
66666

X
v2C

d(v)

X
e2C

w(e)

3
77777
=

2
66666

X
v2C

d(v)

X
e2C

w0(e)

3
77777
= 1:

Therefore, equation (1.4) holds again. 2

For unit-delay circuitry, it follows that �min(G) equals �min(G
0).

Corollary 9 Let G = hV;E; 1; wi be a unit-delay circuit, and let G0 = hV;E; 1; w0i be the

unit-delay circuit with w0(e) = minfw(e); jV jg for every edge u
e
! v 2 E. Let �min(G)

and �min(G
0) be the minimum clock periods that can be achieved by retiming G and G0

respectively. Then

�min(G) = �min(G
0):

Proof. Follows directly from Corollary 4 and Theorem 8 for dmax = 1. 2

Step 3 of AlgorithmUD-Retiming computes an optimal retiming of G0, since a retiming

that achieves a given clock period c can be computed for any unit-delay circuit G by

rounding-up the shortest-paths lengths in the graph G� 1=c = (V;E;w � 1=c) with edge-

weight w(e) � 1=c for each edge e 2 E [31]. Now, since w0(e) � w(e) for every edge

e 2 E, a retiming of G0 with clock period �(G0

r) is also a retiming of G with clock period

�(Gr) = �(G0

r). Therefore, Step 4 correctly computes an optimally retimed Gr.
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Opt-Retiming(G)

1 for each edge u
e
! v 2 E

do w0(e) minfw(e); jV jdmaxg

2 Binary search [1; jV jdmax] for smallest integer n, � n = dR(C�(G0))e

such that G0 � d=n has no negative edge-weight cycles.

3 Binary search [n; n+ dmax � 1] for smallest integer period

that can be achieved by a retiming r of G.

4 for each edge u
e
! v 2 E

do wr(e) w(e) + r(u)� r(v)

Figure 1-5: Algorithm Opt-Retiming for optimal retiming of edge-triggered circuitry. Given an

edge-triggered circuit G = hV;E; d; wi, this algorithm determines a retimed circuit Gr with minimum

clock period.

Algorithm UD-Retiming terminates in O(V 1=2E lg V ) time. Steps 1 and 4 can be com-

puted in O(E) time. In Step 2, since every functional element in G0 has unit delays, we

have R(C�(G0)) = 1=mcm(G0), where

mcm(G0) = min
C2G0

X
C2G0

w0(e)

jCj

is known as the minimum cycle-mean of G0. Ahuja and Orlin [39] have presented an al-

gorithm for computing the minimum cycle-mean of a graph in O(V 1=2E lg(VW )) steps,

where W is the maximum edge-weight in the graph.1 Since w0(e) � jV j for every edge

e 2 E, we can use this algorithm in Step 2 to compute �min(G
0) in O(V 1=2E lg V ) time.

The shortest-paths lengths in Step 3 can also be computed in O(V 1=2E lg V ) time, using an

O(V 1=2E lg(V W ))-time algorithm for shortest-paths by Gabow and Tarjan [12]. Thus, the

total running time of Algorithm UD-Retiming is O(E)+O(V 1=2E lg V )+O(V 1=2E lg V )+

O(E) = O(V 1=2E lg V ).

1.5 Retiming of Circuitry that Includes Non-Unit Delays

1.5.1 Optimal Retiming

In this section we describe an O(V E lg dmax)-time algorithm for the optimal retiming prob-

lem in its general form: Given an edge-triggered circuit G = hV;E; d; wi, determine a re-

timing r such that �(Gr) = �min(G). An O(V E lg V )-time algorithm that binary searches

the O(V 2)-size set of all possible clock periods for the minimum feasible one appears in [31].

Our procedure binary searches an interval with only dmax possible clock periods, and it is

more e�cient than that in [31], assuming that dmax grows subpolynomially with respect to

the number of functional elements in the circuit.

1
This W should not be confused with W (u;v) in Theorem 1.



26 CHAPTER 1. OPTIMIZING EDGE-TRIGGERED CIRCUITRY

Approx-Retiming(G)

1 for each edge u
e
! v 2 E

do w0(e) minfw(e); jV jdmaxg

2 Binary search [1; jV jdmax] for smallest integer n, � n = dR(C�(G0))e

such that G0 � d=n has no negative edge-weight cycles.

3 for each vertex v 2 V

do r(v) dlength of single-source shortest-path s; v in G0 � d=ne

4 for each edge u
e
! v 2 E

do wr(e) w(e) + r(u)� r(v)

Figure 1-6: Algorithm Approx-Retiming for retiming with approximately minimum clock pe-

riod. Given an edge-triggered circuit G = hV;E; d; wi, this algorithm determines a retimed circuit

Gr with clock period �(Gr) � �min(G) + dmax � 1.

Our Algorithm Opt-Retiming is illustrated in Figure 1-5. In Steps 1 and 2, the al-

gorithm computes the maximum delay-to-registers ratio dR(C�(G0))e of the circuit G0 =

hV;E; d; w0i with w0(e) � jV jdmax. This ratio equals the smallest integer n in the in-

terval [1; jV jdmax] of possible ratios that does not induce negative edge-weight cycles in

the graph G0 � d=n = (V;E;w0 � d=n) with edge-weight w0(e) � d(v)=n for each edge

u
e
! v 2 E [25]. Step 3 of the algorithm binary searches the integers in the interval

[dR(C�(G0))e ; dR(C�(G0))e + dmax � 1] for the minimum achievable clock period �min(G).

Theorems 3 and 8 and the integrality of the propagation delays guarantee that �min(G) is

an integer in this interval. The retiming r that corresponds to �min(G) is used in Step 4 to

compute an optimally retimed Gr.

Algorithm Opt-Retiming runs in O(V E lg dmax) time. Step 1 completes in O(E) time.

Negative-weight cycles in Step 2 can be detected by solving a single-source shortest-paths

problem on the edge-weighted graph G0 � d=n [25]. Gabow and Tarjan have given an

O(V 1=2E lg2(VW ))-time algorithm for the single-source shortest-paths problem, where W

is the maximum edge-weight in the graph [12]. Thus, the binary search in Step 2 can

be performed in O(V 1=2E lg2(V dmax)) time, since w0(e) � jV jdmax for every edge e 2 E.

Step 3 utilizes the O(V E) retiming algorithm by Leiserson and Saxe [31] to test whether

a potential clock period is feasible. Thus, a retiming that achieves �min(G) is computed

in O(V E lg dmax) time, and the optimally retimed circuit is computed in Step 4 in O(E)

time. The overall running time is O(E) +O(V 1=2E lg2(V dmax)) +O(V E lg dmax) +O(E) =

O(V E lg dmax).

1.5.2 Approximately Optimal Retiming

In this section we give an O(V 1=2E lg
2
(V dmax))-time algorithm for retiming of a circuit so

that its clock period is approximately minimized. Speci�cally, we consider the following

problem: Given an edge-triggered circuit G = hV;E; d; wi determine a retiming r such that

�(Gr) � �min(G) + dmax � 1.

Our Algorithm Approx-Retiming for retiming with approximately minimum clock

period is illustrated in Figure 1-6. The �rst two steps of the algorithm are the same as

those in Algorithm Opt-Retiming. In Step 3, a retiming r is obtained simply by rounding-
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up the shortest-paths lengths in the graph G0 � d=n = (V;E;w0 � d=n) with edge-weights

w0(e) � d(v)=n for each edge u
e
! v 2 E, where n = dR(C�(G0))e. The following theorem

shows that the period �(Gr) of the retimed circuit Gr does not exceed �min(G) by more

than dmax � 1.

Theorem 10 Let G = hV;E; d; wi be a circuit graph with maximum delay-to-register ratio

R(C�(G)) and let �min(G) be the minimum clock period we can obtain by retiming G. Let

G0 = hV;E; d; w0i be the circuit with w0(e) = minfw(e); jV jdmaxg for every edge u
e
! v 2 E.

Moreover, let n = dR(C�(G0))e, and let l be the solution of a single-source shortest-paths

problem on the graph G0 � d=n = (V;E;w0 � d=n) with edge-weight w0(e)� d(v)=n for each

edge u
e
! v 2 E. Then, the assignment r(v) = dl(v)e for each vertex v 2 V is a retiming of

G such that

�(Gr) � �min(G) + dmax � 1:

Proof. Before we proceed with the proof, we note that G0�d=n has no negative edge-weight

cycles, since n = dR(C�(G0))e. Therefore, the shortest-paths lengths l(v) in G0 � d=n are

well-de�ned. Now, in order to prove that r(v) = dl(v)e is a legal retiming of G with clock

period �(Gr) � �min(G) + dmax� 1, we must show that wr(e) = w(e) + r(u)� r(v) � 0 for

every edge u
e
! v 2 Gr, and that every path p 2 Gr with delay d(p) > �min(G) + dmax � 1

has at least one register.

First, we prove that the assignment r(v) = dl(v)e for each vertex v 2 V satis�es wr(e) �

0 for every edge e in the retimed circuit Gr. Since l is a single-source shortest-paths solution

on (V;E;w0�d=n), we have l(v) � l(u)+w0(e)�d(v)=n for every edge u
e
! v in E. Therefore

dl(v)e � dl(u)e � dl(v)� l(u)e

� dw0(e)� d(v)=ne

� w0(e)

� w(e);

since dxe � dye � dx� ye for every real x; y, and since w(e) is an integer. It follows that

wr(e) = w(e) + dl(u)e � dl(v)e � 0.

Now, we show that the assignment r(v) = dl(v)e for each vertex v 2 V satis�es the clock

period constraint. Consider any path p = u0
e0
! u1

e1
! : : :

ek�2
! uk�1

ek�1
! uk in the retimed

circuit Gr with delay
Pk

i=0 d(ui) > �min(G) + dmax � 1. For this path we have

l(uk)� l(u0) �
k�1X
i=0

�
w0(ei)�

d(ui+1)

n

�

=

 
k�1X
i=0

w0(ei)

!
�

 
kX

i=0

d(ui)

n

!
+

d(u0)

n

�

 
k�1X
i=0

w0(ei)

!
�

�min(G) + dmax

n
+
d(u0)

n

�

 
k�1X
i=0

w0(ei)

!
�

�min(G)

n
�
dmax � d(u0)

n
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�

 
k�1X
i=0

w0(ei)

!
� 1;

since �min(G) � dR(C
�(G0))e from Theorems 3 and 8, and since dmax � d(u0) by de�nition.

Therefore, the number wr(p) of registers along the path p in the retimed circuit satis�es

k�1X
i=0

wr(ei) =
k�1X
i=0

(w(ei) + r(u0)� r(uk))

=

 
k�1X
i=0

w(ei)

!
+ dl(u0)e � dl(uk)e

�

 
k�1X
i=0

w(ei)

!
� dl(uk)� l(u0)e

�

 
k�1X
i=0

w(ei)

!
�

& 
k�1X
i=0

w0(ei)

!
� 1

'

�

 
k�1X
i=0

w(ei)

!
�

& 
k�1X
i=0

w(ei)

!
� 1

'

= 1:

The last inequality implies that there exists at least one register along p, and therefore the

clock period constraint is met. 2

Algorithm Approx-Retiming terminates in O(V 1=2E lg2(V dmax)) time. Step 1 com-

pletes in O(E) time. Steps 2 and 3 complete in O(V 1=2E lg2(V dmax)) time, since nega-

tive edge-weight cycles can be detected in O(V 1=2E lg(V dmax)) time using the single-source

shortest-paths algorithm by Gabow and Tarjan [12]. Step 4 terminates in O(E) time, and

thus the total running time is O(V 1=2E lg
2
(V dmax)).

1.6 Optimal Pipelining of Combinational Circuitry

In this section, we describe an O(E lg dmax) algorithm for the problem of pipelining com-

binational circuitry with the minimum possible clock period. Our result improves the

O(V E lg V ) bound that can be obtained by applying the general retiming algorithm from [31],

and it is optimal within a constant multiplicative factor for unit-delay circuitry. In contrast

to the algorithm in [31] that computes all possible clock periods, our algorithm exploits

the special structure of a combinational circuit to identify an interval of dmax integers that

contains the optimal period.

In a combinational circuit the graph is acyclic and has an input interface vin and an

output interface vout. Initially, the circuit is assumed to have no registers. By retiming a

combinational circuit G we add registers to the circuit in such a way that the retimed circuit

Gr achieves a shorter clock period at the cost of introducing a latency of r(vin)�r(vout) clock

ticks for the signals to propagate from the input interface vin to the output interface vout.

The problem ofminimum clock period pipelining is de�ned as follows: Given a combinational

circuit G = hV;E; d; 0i and a positive integer l, determine a retiming r such that Gr is a
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MPP(G; l)

1 Compute the delay � of the longest path p� in G from vin to vout.

2 Use Algorithm MLP to binary search
hl

�

l+1

m
;
l
�

l+1

m
+ dmax

i
for the minimum integer

period achievable with latency at most l.

Figure 1-7: Algorithm MPP for minimum period pipelining. Given a combinational circuit G =

hV;E; d; 0i with input interface vin and output interface vout, and a positive integer l, this algorithm

determines a retiming r such that Gr is a pipelined combinational circuit with latency l and minimum

clock period.

pipelined combinational circuit with latency at most l and with minimum clock period.

Our Algorithm MPP for minimum clock period pipelining of combinational circuitry

is illustrated in Figure 1-7. Step 1 of the algorithm computes the delay � of the longest

path vin ; vout in O(E) steps by traversing the vertices of G in topological sort order [5].

Step 2 binary searches an interval of dmax + 1 integers for the minimum achievable clock

period �min(G). In each iteration of the search, the O(E)-time Algorithm MLP generates

a pipelined circuit that achieves the clock period under consideration with the minimum

possible latency. The search ends when the shortest period that can be achieved with

latency at most l has been identi�ed. Thus, Algorithm MPP terminates in O(E lg dmax)

steps.

The correctness of Algorithm MPP follows directly from Theorem 11 that bounds the

minimum achievable clock period �min(G) and the correctness of Algorithm MLP for min-

imum latency pipelining. First, we prove the bounds on �min(G). The proof relies on the

constraint graph Gc, which in this case has been augmented by an edge vout ! vin of weight

l in order to account for the desired latency of the circuit.

Theorem 11 Let G = hV;E; d; 0i be a combinational circuit with input interface vin and

output interface vout. Let � be the delay of the path p� =
�

!vinvout in G with the longest

propagation delay, and let l be a positive integer. Then the minimum clock period �min(G)

for any pipelined version of G with latency l satis�es:�
�

l + 1

�
� �min(G) �

�
�

l + 1

�
+ dmax;

where dmax = maxfd(v) : v 2 V g.

Proof. According to Theorem 1, every retiming r that yields a pipelined version of the

original circuit with clock-period at most c must satisfy

r(v)� r(u) � 0 (1.5)

for every edge u! v in E, and

r(v)� r(u) � �1 (1.6)

for all vertices u; v 2 V connected by a path p 2 G with delay d(p) > c. In addition, it



30 CHAPTER 1. OPTIMIZING EDGE-TRIGGERED CIRCUITRY

must satisfy a latency constraint

r(vin)� r(vout) � l; (1.7)

where l is an upper bound on the latency of the pipelined circuit. Inequalities (1.5), (1.6),

and (1.7) induce a constraint graph Gc that is described in the statement of Theorem 2.

Note that Inequality (1.7)) introduces an edge vout
el
! vin in Gc with weight wc(el) = l, and

that el is included in every cycle in Gc.

First, we derive the lower bound on �min(G). Let r be a retiming of the circuit with

latency l and clock period �min(G). Adding up the delays of the l + 1 register-free parts

along the path p� yields � � �min(G)(l + 1). It follows that �min(G) � d�=(l + 1)e, since

the propagation delay d(v) is an integer for every vertex v 2 V .

We establish the upper bound on �min(G) by proving that d�=(l + 1)e+dmax is a feasible

clock period. According to Lemma 6, it su�ces to show that Gc has no negative edge-weight

cycles for c = d�=(l + 1)e + dmax. The only negative-weight edges of Gc have weight �1.

The maximum number of such edges in any path from vin to vout is�
�� 1

(d�=(l + 1)e + dmax)� dmax

�
=

�
�� 1

d�=(l + 1)e

�

�

�
�� 1

�=(l + 1)

�

=

�
l + 1�

l + 1

�

�
� l;

since l + 1 > 0. Every cycle in Gc must use el with wc(el) = l, and therefore the last

inequality implies that Gc has no negative edge-weight cycles. 2

Algorithm MPP employs a subroutine for pipelining a combinational circuit to achieve

a speci�ed period c using the minimum possible number of stages in the pipeline. In

mathematical terms, this subroutine computes a solution r for Inequalities (1.5) and (1.6),

such that the latency r(vin) � r(vout) is minimized. According to Theorem 2, a solution r

is given by the lengths of the single-source shortest-paths in the possibly dense constraint

graph Gc = hV;Ec; wci that is induced by Inequalities (1.5) and (1.6).

AlgorithmMLP, which is described in Figure 1-8, �nds a minimum latency pipelining of

a combinational circuit by a single sweep over its circuit graph G. The intuitive idea behind

the algorithm is to visit the vertices of G while keeping track of the longest propagation

delay �(v) along any combinational path u
p
; v in G up to the currently visited vertex

v. New registers are inserted greedily: whenever �(v) exceeds the desired clock period c, a

pipeline stage is introduced. Algorithm MLP terminates in O(E) steps, since each edge is

examined twice, and as we prove in the following lemma it returns a correct answer.

Lemma 12 The assignment r computed by Algorithm MLP is a solution to the single-

source shortest-paths problem on the constraint graph Gc de�ned by Inequalities (1.5) and (1.6).

Proof. We prove that r(v) gives the length of the shortest path vin ; v in the constraint

graph Gc = (V;Ec; wc), and that �(v) gives the maximum propagation delay among all
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MLP(G; c)

1 for each vertex v 2 V

2 do r(v) 0

3 �(v)  d(v)

4 for each vertex v 2 V in topological sort order

5 do for each edge u! v 2 E

6 do if �(u) + d(v) > c

7 then r(v) minfr(v); r(u) � 1g

8 else r(v) minfr(v); r(u)g

9 for each edge u! v 2 E

10 do if r(v) = r(u)

11 then �(v) maxf�(v); �(u) + d(v)g

Figure 1-8: Algorithm MLP for minimum latency pipelining. Given a combinational circuit G =

hV;E; d; 0i and a desired clock period c, this algorithm determines a pipelined combinational circuit

Gr with clock period �(Gr) � c and minimum latency.

paths u ; v in G with r(u) = r(v). The proof is by induction on the number of vertices

that have been visited by the algorithm.

For the basis, the input interface vin is visited, and we have r(vin) = 0 and �(vin) = d(v)

after initialization. Therefore, the lemma holds.

For the inductive step, vertex v is visited after all preceding vertices u have been visited.

We assume that

r(u) = minfwc(p) : vin
p
; u 2 Gcg;

and

�(u) = maxfd(p) : u0 2 V; u0
p
; u 2 G; r(u0) = r(u)g

for every vertex u preceding v in the topological order. Lines 5-8 perform a relaxation over

all edges u! v in E and set

r(v) = minffr(u)� 1 : �(u) + d(v) > c; u! v 2 Eg [ fr(u) : �(u) + d(v) � c; u! v 2 Egg

= minfwc(p) : vin
p
; v 2 Gcg;

since �(u) + d(v) > c implies that there exists an edge u0
e
! v 2 Ec such that r(u0) = r(u)

and wc(e) = �1. Lines 9-11 set

�(v) = d(v) + maxf�(u) : u! v 2 E; r(u) = r(v)g

= maxfd(p) : u0 2 V; u0
p
; v 2 G; r(u0) = r(v)g;

and therefore the lemma holds. 2
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1.7 Conclusion

In this chapter we presented tight bounds on the minimum clock period that can be achieved

by retiming an edge-triggered circuit. We expressed these bounds in terms of the maximum

delay-to-register ratio around the cycles in the circuit and the maximum propagation delay

dmax of the combinational logic blocks in the circuit. Using these bounds, we characterized

exactly the minimum clock period that can be achieved by retiming unit-delay circuits, and

we designed improved algorithms for several problems related to retiming. Speci�cally, we

presented an O(V 1=2E lg V )-time algorithm for optimal retiming of unit-delay circuits. This

is the asymptotically fastest algorithm known to date for this problem. For circuits that

also include combinational logic blocks with non-unit delays, we gave an O(V E lg dmax)-time

algorithm for optimal retiming and an O(V 1=2E lg
2
(V dmax))-time algorithm for retiming

with a clock period that does not exceed the optimal by more than dmax � 1. Finally, we

gave an O(E lg dmax)-time algorithm for optimal pipelining of combinational circuitry.

An interesting open problem is the design of an algorithm for optimal retiming of circuits

that include non-unit delay combinational logic blocks whose running time matches that of

Algorithm UD-Retiming for optimal retiming of unit-delay circuits.



Chapter 2

Analyzing and Optimizing

Level-Clocked Circuitry

2.1 Introduction

A VLSI designer often has the choice of whether to use level-clocked latches or the more

conventional edge-triggered latches to implement clocked storage elements in his circuit. An

edge-triggered latch directly supports the abstraction of a storage element that is synchro-

nized by the ticking of a clock. When the clocking waveform rises (i.e., the clock ticks), an

edge-triggered latch instantaneously samples its input and asserts that value on its output.

A level-clocked latch operates somewhat di�erently. While the clock input to a level-

clocked latch is low, the latch output maintains its value from the most recent time that

the clock was high. While the clock is high, however, the input 
ows unimpeded to the

output, unsynchronized with either edge of the clock. In order to avoid problems with race

conditions, it is common for level-clocked circuits to adopt clocking disciplines which involve

multiple clock waveforms, or \phases".

In a two-phase clocking scheme [35], two clocking waveforms, or phases, denoted �0 and

�1, are employed, as is shown in Figure 2-1. Formally, we denote a two-phase clocking

scheme by a 4-tuple � = h�0; 
0; �1; 
1i of strictly positive real numbers. In this context, �0

denotes the duty cycle of the �rst phase, i.e., the length of time during which the phase is

high, while 
0 denotes the gap of the �rst phase, i.e., the amount of time between a falling

edge of the �rst phase and the next rising edge of the second phase, which generally must

be long enough to overcome various engineering constraints, such as setup and hold times,

the nonzero durations required for clock signals to rise and fall, and clock skew [14, 58]. The

duty cycle and gap of the second phase are, similarly, denoted by �1 and 
1, respectively.

The ratio � = �1=�0 is the duty ratio of the clocking scheme. We overload the symbol � to

denote the sum

� = �0 + 
0 + �1 + 
1; (2.1)

Parts of this chapter represent joint research with Alex Ishii and Charles Leiserson.
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which is the period of the clocking scheme � = h�0; 
0; �1; 
1i. We also overload �i to

denote both phase i and its corresponding duty cycle, and 
i to denote both gap i and its

corresponding duration. Observe, that since the values 
0 and 
1 are strictly greater than

0, phases �0 and �1 are nonoverlapping (not simultaneously high).

In this chapter we give an e�cient algorithm to verify the proper timing of circuits that

employ two-phase clocking schemes, and we present several other algorithms for optimizing

their clock periods. Since an edge-triggered latch can be implemented by two back-to-

back level-clocked latches [14] our algorithms also provide an automatic way to take edge-

triggered circuits and transform them into faster level-clocked ones. At the end of this

chapter, we generalize most of our algorithms to level-clocked circuits that employ more

than two clock phases.

We model a circuit as an edge-weighted, vertex-weighted multigraph G = hV;Ei in

which V is a collection of combinational logic elements with associated propagation delays

and E is the set of interconnections, each of which passes through zero or more latches.

Each latch is clocked either by �0 or �1. A general framework for the timing veri�cation of

level-clocked circuits appears in [19, 20].

An example of a two-phase, level-clocked circuit is shown in Figure 2-2(a). The integers

in the vertices signify propagation delays. For simplicity, let us assume that in the �gure,

we have 
0 = 
1 = 0. (In our mathematical development, we shall assume that the gaps


0 and 
1 are strictly positive, as is consistent with engineering situations, and because the

assumption of 0 gaps can raise some subtle, but tedious and largely irrelevant, di�culties.)

If the two phases �0 and �1 have equal duty cycles, then the circuit cannot be clocked with

a clock period shorter than 36 units of time, since the path DEA has propagation delay

54, and intuitively, a datum has at most 3/2 clock periods to propagate from the latch

preceding D to the latch succeeding A.

The �rst problem that we consider in this chapter is the timing veri�cation problem for

two-phase circuits. We give an O(V E)-time algorithm that veri�es whether a level-clocked

circuit is properly timed by a given two-phase clocking scheme. This result improves the

O(E2) bound obtained when the general algorithm from [20] is applied to the special case

of two-phase, level-clocked circuits. (The bound in [20] is also O(V E), but the circuit

model used in that paper represented both functional elements and latches as vertices,

and interconnections between them as edges. Translating to the model presented here

yields the O(E2) bound. The algorithm in [20] applies to more general circuits and timing

φ
0

φ
1

γ
0

γ
1

π

Figure 2-1: A two-phase, nonoverlapping clocking scheme � = h�0; 
0; �1; 
1i.
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Figure 2-2: An illustration of the various techniques for optimizing two-phase, level-clocked cir-

cuits. Part (a) of the �gure shows a simple level-clocked circuit. When the duty cycles of the phases

�0 and �1 are equal, as is shown in part (e) of the �gure, the clock period of circuit (a) cannot be

made smaller than 36. By tuning the clocking scheme of circuit (a) to have a duty ratio of 4:7, as

shown in part (f), a clock period of 33 can be achieved. Part (b) of the �gure shows a retimed ver-

sion of circuit (a). When clocked with the symmetric clocking scheme shown in part (g), circuit (b)

achieves a clock period of 31, which is optimal for symmetric clocking schemes under any retiming.

The optimal combination of retiming and tuning for circuit (a) is shown in part (c). When clocked

with the waveforms in part (h), which have a duty ratio of 3:2, circuit (c) achieves a clock period

of 30, which is the optimal for any combination of clocking scheme and retiming. Part (d) shows a

typical level-clocked implementation of an edge-triggered circuit which is equivalent under retiming

to the other circuits. Each pair of level-clocked latches in the circuit implements an edge-triggered

latch. This edge-triggered circuit has a clock period of 36, which is the best that can be obtained

by any retiming that is edge triggered.
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methodologies than the ones considered here, however.)

In addition to timing veri�cation, we consider a collection of timing analysis problems for

two-phase circuits. The algorithms we provide identify the critical paths of the circuit and

provide information on the sensitivity of the circuit's timing to changes in the propagation

delays of its combinational logic blocks. For the clocking scheme in Figure 2-2(e), for

example, the path DEA in the circuit of Figure 2-2(a) is critical. The propagation delay of

B can increase by 12, however, without violating the circuit's proper timing by the clocking

scheme in Figure 2-2(e). We give an O(V E)-time algorithm for the noncritical sensitivity

analysis problem in which we wish to compute by how much we can increase the propagation

delay of any given block of combinational logic without a�ecting the proper timing of the

circuit by a given clocking scheme. We also give an O(V E + V 2 lg V )-time algorithm that

solves this problem for all combinational logic blocks in the circuit. Another problem we

investigate is the critical sensitivity analysis problem for combinational logic blocks that

lie on critical paths. We present an O(V E)-time algorithm that computes the minimum

decrease in the propagation delay of any critical block that is required to remove it from

the critical path.

Our next result deals with modifying, or \tuning", the clocking scheme of a circuit|

that is, providing the circuit with new clocking waveforms. The two clocking schemes in

Figures 2-2(e) and 2-2(f), for example, illustrate tuning. Observe, that the circuit shown

in Figure 2-2(a) is properly timed by either clocking scheme, but the �rst clocking scheme

has a period of 36, while the second has a clock period of 33. The notion of clock tuning

encompasses more than a simple increase in the frequency of the clock. In particular,

clock tuning allows also for the adjustment of the duty ratio of the clocking scheme. In

the example of Figure 2-2(a), the circuit cannot be properly timed by any clocking scheme

whose period is less than 33, since the delay of the path CDEA is 66 and must be distributed

over at most two full clock periods. The clocking scheme shown in Figure 2-2(f) is thus an

optimal tuning for the circuit in Figure 2-2(a).

The tuning problem for two-phase circuits is the problem of adjusting the phases of

a clocking scheme so as to clock a given two-phase circuit as quickly as possible. We

assume that the gaps 
0 and 
1 must be kept �xed and only the duty cycles of the phases

can be adjusted. We give an O(V E)-time algorithm to solve the tuning problem. Previous

algorithms for tuning have either addressed other types of clocking methodologies [9, 49, 57],

or been uncharacterized with respect to worst-case running time [6, 51].

Another way to optimize a circuit is by retiming: a method for relocating latches within

the circuit without a�ecting the functionality of the circuit. Retiming has been well studied

in the context of edge-triggered circuits [28, 29, 31, 33, 45] and has been the subject of

study in the context of single-phase, level-clocked circuits [52]. We extend the retiming

technique to encompass the optimization of two-phase, level-clocked circuits. We consider

three problems related to retiming.

The retiming problem for two-phase circuits asks whether, for a given two-phase circuit

G and clocking scheme �, the circuit G can be retimed to be properly timed by �. As an

example, consider the circuit in Figure 2-2(a). If we retime the circuit to be properly timed

by the clocking scheme in Figure 2-2(g), we obtain the circuit in Figure 2-2(b). We provide

an algorithm to solve the retiming problem that runs in O(V 3) time.

The retiming problem with symmetric clocking schemes is the common special case of
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the retiming problem in which the two phases of the clocking scheme are identical and 180

degrees out of phase. Such a symmetric clocking scheme, which in general has the form

� = h�; 
; �; 
i, is shown in Figure 2-2(g). We provide an algorithm that solves the retiming

problem for symmetric clocking schemes in O(V E + V 2 lg V ) time.

The retiming problem for minimum latch count asks for a retiming of a given circuit G

that achieves a given symmetric clocking scheme � with the minimum number of latches.

We describe an algorithm that solves this problem in O(V 3 lg V ) time.

We consider three problems related to both retiming and tuning. The �rst is a general

optimization problem, and the other two are progressively more specialized.

The retiming and tuning problem asks how a circuit can be retimed and its clock simul-

taneously tuned to achieve the minimum clock period over all possible clocking schemes.

For example, the optimal retiming of the circuit in Figure 2-2(a) yields the circuit in Fig-

ure 2-2(c) with the clocking scheme in Figure 2-2(h). We provide an e�cient approximation

algorithm for this general tuning and retiming problem. For any given relative error � > 0,

the approximation algorithm runs in O(V 3(1=�) lg(1=�) + (V E+V 2 lg V ) lg(V=�)) time and

produces a retimed circuit that is properly timed by a clocking scheme whose period is at

most (1 + �) times the optimal. We also provide an O(V 11)-time algorithm that solves the

general tuning and retiming problem exactly.

The retiming and �xed-duty-ratio tuning problem is the special case of the retiming and

tuning problem where we ask how a circuit can be retimed and its clock tuned to achieve

the minimum clock period over all clocking schemes that have a given duty ratio. We

give an algorithm that, for any given relative error � > 0, runs in O(V 3 lg(V=�)) time.

This algorithm can be adapted to solve the retiming and �xed-duty-cycle tuning problem in

which the duty cycle of one of the two phases of the clock is given and the other can be

adjusted. We also give an O(V 2E + V 3 lg V )-time algorithm that solves the retiming and

�xed-duty-ratio tuning problem exactly.

When we require the two phases of the clocking scheme to be symmetric, we have a

special case of the retiming and �xed-duty-ratio tuning problem that we call the retiming

and symmetric tuning problem. For example, the optimal retiming of the circuit in Figure 2-

2(a) with respect to symmetric clocking schemes yields the circuit in Figure 2-2(b) with the

clocking scheme in Figure 2-2(g). We give an approximation scheme for the retiming and

symmetric tuning problem that runs in O((V E+V 2 lg V ) lg(V=�)) time for any relative error

� > 0. We also give an exact algorithm for the retiming and symmetric tuning problem that

runs in O(V 2E) time.

Our optimization techniques can be used not only to facilitate the design of level-clocked

circuits, but also to convert edge-triggered circuits into faster level-clocked circuits. The

basis for the conversion is the fact that an edge-triggered latch can be implemented by

a pair of level-sensitive latches. In Figure 2-2(d) we illustrate the typical level-clocked

implementation of an edge-triggered circuit. This circuit has a clock-period of 36, but the

algorithms presented in this chapter can automatically produce the optimal level-clocked

circuit in Figure 2-2(c), which, with the clocking scheme in Figure 2-2(h), is timed properly

with a clock period of 30. As testimony to the additional power gained by level-clocking,

observe that no edge-triggered retiming of the circuit from Figure 2-2(d) improves upon its

period of 36.

Most of the algorithms described in this chapter have been implemented in Tim, a
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software package for two-phase, level-clocked circuitry that we describe in Chapter 3 [48].

We have already used Tim to compare empirically two-phase, level-clocked circuits and

edge-triggered circuits in terms of speed and number of storage elements [47]. Tim provides

interactive feedback to designers. For example, rather than simply reporting the minimum

clock period of a circuit, it performs a \sensitivity analysis" that reports the extent to which

noncritical propagation delays can be increased without a�ecting the clock period.

The remainder of this chapter is organized as follows.

Section 2.2 describes necessary and su�cient conditions for a two-phase, level-clocked

circuit to be properly timed. Section 2.3 then simpli�es these conditions and uses them in

an O(V E)-time algorithm that solves the timing veri�cation problem. These conditions are

also used by the sensitivity analysis algorithms that we present in Section 2.4. Speci�cally,

we present an O(V E)-time algorithm that solves the noncritical sensitivity analysis prob-

lem for a single combinational block, and an O(V E + V 2 lg V )-time algorithm that solves

the noncritical analysis problem for all combinational blocks. We also give an algorithm

that solves the critical analysis problem for a single combinational block in O(V E) time.

By viewing the simpli�ed necessary and su�cient conditions as a two-dimensional linear

program, Section 2.5 shows how the tuning problem can be solved in O(V E) time.

Sections 2.6 and 2.7 describe how to solve the retiming problem for symmetric and

general clocking schemes, respectively. The O(V E+V 2 lg V )-time algorithm for symmetric

clocking schemes is based on reducing the retiming problem to an e�ciently solvable mixed-

integer linear program. The O(V 3)-time algorithm for the general case uses a technique

we call integer monotonic programming . Both algorithms also determine when the given

clocking scheme cannot be achieved by any retiming. Section 2.8 presents an O(V 3 lg V )-

time algorithm that solves the retiming problem for minimum latch count.

Section 2.9 presents approximation algorithms for the three problems related to retim-

ing and tuning. Speci�cally, we give an O((V E + V 2 lg V ) lg(V=�))-time algorithm for the

retiming and symmetric tuning problem, and an O(V 3 lg(V=�))-time algorithm for the re-

timing and �xed-duty-ratio tuning problem, that achieve the optimal clock period to within

any given relative error � > 0. These two algorithms can also be used to obtain the exact

optimum in the special case where all propagation delays are integers. For the general

retiming and tuning problem, we give an O(V 3(1=�) lg(1=�) + (V E+ V 2 lg V ) lg(V=�))-time

approximation algorithm.

Although we solve the three problems related to both retiming and tuning with e�cient

approximation algorithms, we have also discovered polynomial-time optimal algorithms for

them. In Section 2.10 we describe an algorithm that solves the retiming and symmetric

tuning problem optimally inO(V 2E) time, the retiming and �xed-duty-ratio tuning problem

optimally in O(V 2E+V 3 lg V ) time, and the general retiming and tuning problem optimally

in O(V 11) time. These results are based on a characterization of the feasible clock periods

of retimed level-clocked circuits.

Section 2.11 extends many of our techniques to circuits that employ more than two

phases. The algorithms for k-phase circuits are generally at most a factor of k slower than

the corresponding algorithms for two-phase circuits. Section 2.12 concludes by discussing

how our algorithms can be generalized to handle design issues that arise in practice. Ap-

pendix A.1 provides a proof that the conditions we give for the proper timing of a two-phase,

level-clocked circuit are correct.
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In independent work, Lockyear and Ebeling [32] have also obtained algorithms for re-

timing multiphase, level-clocked circuits. Their results include a polynomial-time algorithm

for the symmetric retiming problem. They use this algorithm as a subroutine to solve the

retiming and symmetric tuning problem. They also determine a set of constraints for the

retiming problem, and they describe a Bellman-Ford-like algorithm for solving the con-

straints. Algorithms for retiming single-phase, level-clocked circuitry have appeared in [52].

Retiming heuristics were given in [3].

Early versions of our work appear in [21, 46].

2.2 Constraints for Proper Timing

In this section we give necessary and su�cient conditions for a two-phase, level-clocked

circuit to be properly timed by a given clocking scheme. The section begins with a formal

de�nition of the set of level-clocked circuits to which our results can be applied. We then

precisely characterize the timing constraints that need to be satis�ed by a properly timed

circuit. These constraints are based on the general formulation from [20], but they are

substantially simpler due to the additional structure inherent in two-phase, level-clocked

circuits.

Since we represent circuits in terms of graphs, we �rst de�ne some graph notations. For

a directed graph G = hV;Ei, we denote an edge e from a vertex u to a vertex v by u
e
! v.

If the edge name is unnecessary, we sometimes omit it. A path p from u to v is denoted

by u
p
; v. A path contains both its endpoints u and v. We shall use both edge and vertex

weights. For an edge-weight function w and path p, the weight w(p) is just the weight of p's

constituent edges. For a vertex weight d, the weight d(p) is the weight of the p's constituent

vertices, including the weights of its endpoints. A cycle is a path that begins and ends with

the same vertex v. For a vertex weight d, the weight d(c) of a cycle c includes the weight

of each vertex on the cycle only once.

We formally represent a two-phase, level-clocked circuit as a directed multigraph G =

hV;E; d; w; �i, where V is a collection of functional elements, E is the set of interconnections

between functional elements, the (propagation) delay function d is a mapping from V to the

nonnegative real numbers, the edge-weight function w is a mapping form E to the integers,

and � : V ! f0; 1g is an assignment of a phase to each functional element. For a two-phase

circuit G to be well formed, we require

WF1. w(e) � 0 for all e 2 E;

WF2. w(c) > 0 for every cycle c 2 G;

WF3. for every edge u
e
! v 2 E,

w(e) � �(u) + �(v) � 0 (mod 2) :

(The weight of a cycle|or a path|is just the sum of the weights of its constituent edges.)

In our circuit model, a vertex v 2 V corresponds to a functional element whose maximum

propagation delay is equal to d(v) and whose minimum propagation delay is zero. Level-

clocked latches are not represented explicitly but rather, are represented implicitly by the
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Figure 2-3: The rise-to-fall time for the path A; E is �0 +2(
0 + �1 + 
1 + �0) = �0 + 2�. The

rise-to-fall time for the path B ; C is �1 + 
1 + �0. Each of the squiggly lines in the top part of

the �gure represents a path of zero or greater combinational delay.

weights w(e) of edges u
e
! v 2 E. A value w(e) = 0 indicates that a direct connection exists

between the output of the functional element represented by u and an input of the functional

element represented by v. A value w(e) > 0 indicates that the connection between the two

functional elements consists of w(e) level-clocked latches connected in series.

The requirement that w(c) > 0 precludes us from considering circuits with unclocked

state. Since we represent latches implicitly in terms of weights on edges between functional

edges, the phase that clocks a given latch in the circuit modeled byG is determined implicitly

as well. If the phase of a vertex v is �(v), it means that ��(v) clocks the last latch on any

edge that ends at v. Condition WF3|which by induction generalizes to

WF3
0
. for every path u

p
; v,

w(p) � �(u) + �(v) � 0 (mod 2)

|ensures that the latches on any path alternate between �0 and �1. Since any cycle c is

also a path, its weight must be even, in addition to being positive. Hence, every cycle c

in a two-phase circuit must contain at least two latches|one controlled by each of the two

phases.

We now turn to the issue of proper timing. Intuitively, a level-clocked circuit is properly

timed if whenever a latch holds a value (its clock input is low), it holds the same value as in

an identical circuit in which all functional elements have zero propagation delay. This notion

of proper timing is \structural", in the sense that we require that a circuit operate correctly

regardless of the functions computed by the functional elements. This requirement avoids

potential di�culties with computational intractability. The semantics of proper timing are

studied in [19]. Ishii and Leiserson [20] give a set of \�-constraints" that serve as necessary

and su�cient conditions for the proper timing of a general class of level-clocked circuits.

For two-phase circuits, this general formulation reduces to a much simpler set of necessary

and su�cient conditions.

The conditions for proper timing of a circuit G = hV;E; d; w; �i are based on considering

the operation of G when all propagation delays are 0. Let � be any path, not necessarily
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simple, from a latch A to a latch B in the circuit that G represents. The rise-to-fall time

�(�) of a path � is the time it would take in the circuit for the e�ect of a rising edge of A's

phase to propagate along � and be stored in B by the falling edge of B's phase. For example,

the rise-to-fall time of path A; E in Figure 2-3 is �0+2(
0+�1+
1+�0) = �0+2�. The

rise-to-fall time of path B ; C is �1 + 
1 + �0. The following proposition uses rise-to-fall

times to give conditions for the proper timing of a circuit. Its proof is given in Appendix A.1.

Proposition 13 A two-phase, level-clocked circuit is properly timed if and only if for all

latches A and B in the circuit, the propagation delay along any path from A to B is no

greater than the rise-to-fall time of the path. 2

Given Proposition 13, we can formulate a set of conditions for the proper timing of a

two-phase, level-clocked circuit. Speci�cally, we have the following lemma.

Lemma 14 Let G = hV;E; d; w; �i be a circuit that employs a clocking scheme � =

h�0; 
0; �1; 
1i. Then G is properly timed by � if and only if for every path u
p

; v in

G, we have

d(p) � �

�
1 + w(p)

2

�
+ �1��(v) (2.2)

if �(u) 6= �(v), and

d(p) � �

�
2 + w(p)

2

�
� 
1��(v) (2.3)

if �(u) = �(v).

Proof. In order to prove the theorem, we shall make the straightforward extension of our

graph notation from our simple model, in which latches are represented implicitly by edge

weights, to the underlying circuit, in which latches are represented explicitly.

()) The necessity of Inequalities (2.2) and (2.3) follows from Proposition 13. Consider

any path u
p

; v in G, and extend it at both ends to produce a path � = A; u
p

; v ; B in

the circuit modeled by G, where A and B are latches and the subpaths A; u and v ; B

are latch free. Thus, A is clocked by ��(u) and B is clocked by �1��(v). By de�nition, the

number of latches on the path � is w(p) + 2, and the total propagation delay along � is

d(�) � d(p). A case analysis now yields the desired result.

If �(u) 6= �(v), then A and B are both clocked by phase ��(u) = �1��(v) and w(p) is an

odd number. Thus, the e�ect of a rising edge on A's clock input takes (1+w(p))=2 periods

to reach B, plus an additional ��(u) for the time until the falling edge on B's clock input.

Hence, we have

�(�) = �

�
1 +w(p)

2

�
+ ��(u)

= �

�
1 +w(p)

2

�
+ �1��(v) : (2.4)

The propagation delay along � is at least d(p), since � contains p as a subpath. Hence, by

Proposition 13, if the circuit is properly timed, we have d(p) � �(�) and the constraint (2.2)

holds.
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If �(u) = �(v), then latch A is clocked by phase ��(u), latch B is clocked by �1��(u),

and w(p) is an even number. Thus, the e�ect of a rising edge on A's clock input takes

(2 + w(p))=2 periods to reach B, minus the gap 
1��(v) following the falling edge on B's

clock input. Hence, we have

�(�) = �

�
2 + w(p)

2

�
� 
1��(v) : (2.5)

The propagation delay along � is at least d(p), since � contains p as a subpath. Hence, by

Proposition 13, if the circuit is properly timed, we have d(p) � �(�) and Inequality (2.3)

holds.

(() To prove the su�ciency of Inequalities (2.2) and (2.3), assume that the circuit is

not properly timed. Then Proposition 13 implies that there exists a latch-to-latch path

A
�

; B in the circuit with propagation delay greater than �(�). Without loss of generality,

� has the minimum rise-to-fall time of any such path, and hence, latch A is directly followed

by a functional element u and latch B is directly preceded by a functional element v. Thus,

� = A ! u
p

; v ! B, and we have d(p) > �(�). Using a case analysis similar to the

one to prove necessity, we can conclude that either Inequality (2.2) or Inequality (2.3) is

violated. 2

The reader should note that the lemma requires that all paths in the circuit be consid-

ered, not just simple ones.

2.3 Verifying Proper Circuit Timing

In this section we consider the veri�cation problem for two-phase, level-clocked circuits:

Given a two-phase, level-clocked circuit G = hV;E; d; w; �i and a clocking scheme � =

h�0; 
0; �1; 
1i, determine whether G is properly timed by �. Figure 2-4 gives an O(V E)-

time algorithm TV for the timing veri�cation problem. This bound improves the O(E2)

bound that one obtains by applying the general veri�cation algorithm in [20] to two-phase

circuits. We analyze the running time of Algorithm TV and then prove its correctness.

We �rst prove a bound on the running time of Algorithm TV.

Lemma 15 Algorithm TV terminates in O(V E) time.

Proof. The circuit transformation of Step 1 can be computed in O(E) time. We can

implement Step 2 to run in O(V E) time as follows. First, we compute in O(E) time a

topological sort [5, Section 23.4] of all edges e 2 E with w(e) = 0. We then execute a

doubly nested loop, where the outer loop is indexed by i, and the inner loop is indexed

by each e 2 E consistent with the topological sort order if w(e) = 0 and in any order if

w(e) > 0. Within the doubly nested loop, we maintain D(v; i) as a running maximum of the

right-hand side of the equation in Step 2 for each v, where u
e

! v. The order of execution

guarantees that all right-hand side terms are computed before they are used. Since i takes

on O(V ) values and e takes on jEj values, the entire doubly nested loop runs in O(V E)

time. Step 3 checks O(V 2) constraints in O(V 2) time. Finally, Step 4 can be performed in

O(V E) time using the Bellman-Ford algorithm [5, Section 25.3]. Thus, the total running

time of Algorithm TV is O(V E). 2
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TV(G;�)

1. Modify G by replacing w(e) on each edge e 2 E with (w(e) mod 2) + 2 if w(e) � 4.
2. Compute D(v; i) for all v 2 V and i = 0; 1; 2; : : : ; 3 jV j � 3 from the recurrence

D(v; i) = d(v) + max
n
D(u; i� w(e)) : u

e

! v and i � w(e)
o
:

3. Check the following constraints for each vertex v 2 V and i = 0; 1; : : : ; 3 jV j � 3:

D(v; i) � �

�
1 + i

2

�
+ �1��(v) if i is odd;

D(v; i) � �

�
2 + i

2

�
� 
1��(v) if i is even.

If any constraint is violated, then return no.
4. If the graph G with weight w(e)� 2d(u)=� on each edge u

e

! v has a negative-weight

cycle, then return no; otherwise, return yes.

Figure 2-4: Pseudocode for Algorithm TV, which tests whether a circuit G = hV;E; d; w; �i is

properly timed under a clocking scheme � = h�0; 
0; �1; 
1i. The algorithm returns yes if the circuit

is properly timed and no otherwise.

We prove the correctness of Algorithm TV in three lemmas.

We �rst show that the transformation of G in Step 1 yields a new circuit G0 with at

most 3 latches per wire and such that G is properly timed if and only if G0 is properly

timed. The new circuit G0 does not in general compute the same function as G. The reason

for performing the transformation is that it allows us to use an upper bound of 3 jV j � 3

on index i in Steps 2 and 3. Without this transformation, the algorithm could be made to

work by letting i range as high as the number of latches on the longest simple path in the

circuit. Performing this transformation results in a more e�cient veri�cation algorithm.

Lemma 16 Let G = hV;E; d; w; �i be a circuit, let ê 2 E be an edge with w(ê) � 4, and

let G0 = hV;E; d; w0; �i be the circuit obtained by replacing the w(e) latches on each edge

e 2 E with w0(e) latches, where

w0(e) =

(
w(e)� 2 if e = ê ;

w(e) if otherwise :

Then for any clocking scheme � = h�0; 
0; �1; 
1i, G is properly timed by � if and only if G0

is properly timed by �.

Proof. To begin, we argue that G0 is a well-formed two-phase circuit satisfying Conditions

WF1, WF2, and WF3. First, we have w0(ê) � 0, since w(e) � 4. Second, the weight of any

cycle remains positive because w(ê) > 0. Finally, Condition WF3 continues to hold because

w(ê) � w(e) (mod 2) :

(() We now show that if G0 is properly timed by �, then so is G. Assume G0 is properly

timed. By Lemma 14, Inequalities (2.2) and (2.3) hold for the weight function w0. But since
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w(e) � w0(e) for all e 2 E, the right-hand sides of these inequalities remain the same or

are larger for the weight function w. Since the left-hand sides are the same, the inequalities

must hold for circuit G.

()) To prove the converse, we �rst prove the following claim. Let p = u1

p1

; v1
e

! u2

p2

;

v2 be a path in a circuit that goes through an edge e 2 E such that w(e) � 2, and suppose

that p1 and p2 both satisfy Inequalities (2.2) and (2.3). Then, we claim that p satis�es both

inequalities.

The proof of the claim is a case analysis that depends on all possible assignments of

phases to u1; v1; u2, and v2. Let us consider, for example, the situation where �(u1) =

�(u2) = �(v2) = 0 and �(v1) = 1; the other cases are similar. From Lemma 14, we have

d(p1) �

�
2 + w(p1)

2

�
� � 
1 ;

d(p2) �

�
1 + w(p2)

2

�
� + �1 :

Adding these inequalities and using the fact that w(e) � 2, we obtain

d(p) = d(p1) + d(p2)

�

�
w(p1) + w(p2) + 3

2

�
� + �1 � 
1

�

�
w(p1) + w(e) + w(p2) + 1

2

�
� + �1 � 
1

�

�
1 + w(p)

2

�
� + �1 ;

thus proving the claim.

Suppose, now, that G is properly timed by �, but that G0 is not. Then there must exist

a path in G0 that violates Inequality (2.2) or Inequality (2.3) with respect to the weight

function w0 but not with respect to the weight function w. Let p be such a path with

the fewest edges. Path p must pass through edge ê, since otherwise the inequalities for

w and w0 are identical. But then, since w0(ê) � 2, the claim we have just proved applies

to p. Consequently, a subpath of p must violate one of the two inequalities with respect

to w0, which contradicts the supposition that p is the shortest such path. This contradiction

completes the proof. 2

Corollary 17 Let G = hV;E; d; w; �i be a circuit, and let G0 = hV;E; d; w0; �i be the circuit

obtained by replacing the w(e) latches on each edge e 2 E with w0(e) � 3 latches, where

w0(e) =

(
w(e) if w(e) � 3 ;

(w(e) mod 2) + 2 if w(e) � 4 :

Then for any clocking scheme � = h�0; 
0; �1; 
1i, G is properly timed by � if and only if G0

is properly timed by �.

Proof. For any edge e 2 V for which w(e) � 4, we have (w(e) mod 2) + 2 = w(e) � 2c,

where c is the largest integer such that w(e) � 2c � 2. Thus, by Lemma 16, we can apply
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the transformation described in the lemma c times to reduce the number of latches on any

given edge e for which w(e) � 4 to (w(e) mod 2) + 2 � 3. Moreover, we can do the same

for all such edges. 2

The following lemma is used to justify Steps 2 and 3 of Algorithm TV. It shows that

the in�nitely many path constraints (2.2) and (2.3) describing the conditions for proper

circuit timing are equivalent to a �nite set of inequalities corresponding to simple paths

and simple cycles in the circuit. The cycle inequalities motivate the computation of the

maximum delay-to-latch ratio R(G) in the algorithm, while the path inequalities motivate

the computation of the various D(v; i) values.

Lemma 18 Let G = hV;E; d; w; �i be a circuit that employs a clocking scheme � =

h�0; 
0; �1; 
1i. Then G is properly timed by � if and only if for every simple path u
p

; v,

we have

d(p) � �

�
1 +w(p)

2

�
+ �1��(v) ; (2.6)

if �(u) 6= �(v), and

d(p) � �

�
2 + w(p)

2

�
� 
1��(v) ; (2.7)

if �(u) = �(v); and for every simple cycle c, we have

d(p) � �

�
w(c)

2

�
: (2.8)

Proof. We show that the inequalities given in Lemma 14 are equivalent to Inequalities (2.6),

(2.7), and (2.8).

Suppose �rst that these three inequalities follow from Inequalities (2.2) and (2.3) from

Lemma 14. Since any simple path is a path, Inequalities (2.6) and (2.7) follow immediately

from Inequalities (2.2) and (2.3). Now, suppose that the remaining Inequality (2.8) is

violated for some cycle c. Let u
e

! v be an edge on c, and consider a path that goes from u

to v along e and then k times around the cycle c, �nally ending at v, for some k > 0. Assume

that �(u) 6= �(v); the situation when �(u) = �(v) is similar. Then by Inequality (2.2), we

have

d(u) + k � d(c) + d(v) � �

�
1 + w(e) + k � w(c)

2

�
+ �1��(v) :

Rewriting this inequality, we obtain

k

�
d(c)� �

w(c)

2

�
� �

�
1 + w(e)

2

�
+ �1��(v) � d(u)� d(v) : (2.9)

But, since Inequality (2.8) is violated for c, we have d(c) > �(w(c)=2), which means that

the left-hand side of Inequality (2.9) can be made to exceed the right-hand side by choosing

k su�ciently large. This contradiction proves that Inequality (2.8) holds.

We now prove that Inequalities (2.6), (2.7), and (2.8) imply Inequalities (2.2) and (2.3).

Suppose Inequalities (2.6), (2.7), and (2.8) hold, and let u
p

; v be a path with the minimum

number of edges that violates Inequality (2.2). (The proof for Inequality (2.3) is similar.)
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Thus, we have

d(p) > �

�
1 + w(p)

2

�
+ �1��(v) :

The path p cannot be simple, because then it would violate Inequality (2.6) or Inequality

(2.7), and thus it must contain a simple cycle c.

Consider the path p0 derived from p by removing the cycle c. The propagation delay of

p0 is d(p0) = d(p) � d(c), and the number of latches on p0 is w(p0) = w(p) � w(c). Using

Inequality (2.8), we have

d(p0) = d(p)� d(c)

> �

�
1 + w(p)

2

�
+ �1��(v) � d(c)

� �

�
1 + w(p)

2

�
+ �1��(v) � �

�
w(c)

2

�

= �

�
1 + w(p) � w(c)

2

�
+ �1��(v)

= �

�
1 + w(p0)

2

�
+ �1��(v) :

Thus, p0 also violates Inequality (2.2), and p0 has fewer edges than p, contradicting the

minimality of p. 2

Lemma 18 shows that the in�nitely many constraints of Lemma 14 can be summarized

by a �nite set of constraints, but in general, the number of these constraints can still be

exponential in the size (number of vertices and edges) of the circuit. The path delays D(v; i)

computed in Step 2 of Algorithm TV allow us to further reduce the number of constraints

to O(V 2), as is shown by the following lemma.

Lemma 19 Let G = hV;E; d; w; �i be a circuit that employs a clocking scheme � =

h�0; 
0; �1; 
1i, and let W be an upper bound on the maximum number of latches on any

simple path in G. For v 2 V and i = 0; 1; : : : ;W , let

D(v; i) = maxfd(p) : u
p

; v and w(p) = ig : (2.10)

Then G is properly timed by � if and only if for every vertex v 2 V and i = 0; 1; : : : ;W , we

have

D(v; i) � �

�
1 + i

2

�
+ �1��(v) (2.11)

if i is odd, and

D(v; i) � �

�
2 + i

2

�
� 
1��(v) (2.12)

if i is even; and for every simple cycle c, Inequality (2.8)

d(c) � �

�
w(c)

2

�

holds.
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Proof. ()) First, we assume that G is properly timed and show that Inequalities (2.11),

(2.12), and (2.8) are satis�ed. If i is odd, then by Condition WF30, we have �(u) 6= �(v);

and thus by Inequality (2.2), we have

D(v; i) = d(p)

� �

�
1 + w(p)

2

�
+ �1��(v)

= �

�
1 + i

2

�
+ �1��(v) ;

and hence Inequality (2.11) holds. Similarly, if i is even, we can prove that Inequality (2.12)

holds. The statement of Lemma 18 states that Inequality (2.8) holds, and thus all three

inequalities are satis�ed.

(() To show the other direction of the lemma, assume that Inequalities (2.11), (2.12),

and (2.8) are satis�ed. We must prove that G is properly timed. Let u
p

; v be any simple

path in G with w(p) latches. By the de�nition (2.10), we have d(p) � D(v; w(p)) = D(v; i)

for some i � W , since p is simple. If �(u) 6= �(v), then by Condition WF30, the value i is

odd, which means

d(p) � D(v; i)

� �

�
1 + i

2

�
+ �1��(v)

= �

�
1 + w(p)

2

�
+ �1��(v) ;

and hence Inequality (2.6) holds. Similarly, if �(u) = �(v), we can conclude that Inequal-

ity (2.7) holds. Since Inequality (2.8) holds by assumption, by Lemma 18, G is properly

timed by �. 2

We are now able to prove the correctness of Algorithm TV.

Theorem 20 Algorithm TV solves the timing veri�cation problem for a two-phase, level-

clocked circuit G = hV;E; d; w; �i and a clocking scheme � = h�0; 
0; �1; 
1i in O(V E)

time.

Proof. Corollary 17 shows that it su�ces to verify the circuit as modi�ed by Step 1 of

Algorithm TV. Moreover, the transformation results in at most 3 latches per edge of the

circuit, and hence, the number of latches on any simple path in the circuit is at most

3 jV j � 3. A simple inductive argument shows that the recurrence in Step 2 computes the

values D(v; i) as de�ned by Equation (2.10), if we choose W = 3 jV j � 3.

The remainder of the algorithm tests whether the constraints for proper timing from

Lemma 19 are satis�ed. Inequalities (2.11) and (2.12) are checked directly by Step 3.

Inequality (2.8) is checked indirectly by Step 4, which can be seen as follows. Sum the edge

weights around a cycle. If the cycle has a negative weight, then Inequality (2.8) is violated.

Conversely, if there is no negative-weight cycle, then every cycle in the graph satis�es the

inequality.

The running time bound follows from Lemma 15. 2
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NCSA(G;�; u)

1 Compute single-source shortest-paths lengths l(v) from source u on graph G with

edge-length w0(e) = bw(e)=2c � + (w(e) mod 2)
�

�(x) + �1��(x)

�
� d(y) for each edge x

e
! y 2 E.

2 Compute single-destination shortest-paths lengths l0(v) to sink u on graph G with

edge-length w0(e) = bw(e)=2c � + (w(e) mod 2)
�

�(x) + �1��(x)

�
� d(y) for each edge x

e
! y 2 E.

3 �(u) min
n
l(v) +w0(e) : v

e
! u 2 E

o
4 �(u) = min

�
�(u);minv2V

�
��(v) � d(v) + l0(v)

	
+minv2V

�
l(v) + 
�(v) + �1��(v)

		
5 if �(u) < 0

6 then return fail

7 else return �(u).

Figure 2-5: Algorithm NCSA for the noncritical sensitivity analysis problem. The algorithm

takes as input a two-phase circuit G, a clocking scheme �, and a vertex u. It produces as output the

maximum increase �(u) in the delay d(u) that will not a�ect the proper timing of G by the clocking

scheme �.

2.4 Sensitivity Analysis

In this section we consider two sensitivity analysis problems for two-phase, level-clocked

circuits. This analysis identi�es timing bottlenecks in the circuit as well as parts of the

circuit that have potential for further optimization.

The �rst problem we consider is the noncritical sensitivity analysis problem: Given a

two-phase, level-clocked circuit G = hV;E; d; w; �i and a clocking scheme � = h�0; 
0; �1; 
1i

such that G is properly timed by �, determine for any given combinational block u 2 V the

maximum possible increase �(u) in its propagation delay d(u) such that G is still properly

timed by �.

The second problem we consider is the critical sensitivity analysis problem: Given a

two-phase level-clocked circuit G = hV;E; d; w; �i and a clocking scheme � = h�0; 
0; �1; 
1i,

determine for any given combinational block u 2 V the minimum possible �(u) such that

G is properly timed by � when the propagation delay d(u) decreases by �(u).

2.4.1 Noncritical Sensitivity Analysis

In this section we present two algorithms for the noncritical sensitivity analysis problem.

The �rst algorithm solves this problem for a single combinational block in the circuit in

O(V E) time. The second algorithm solves the noncritical sensitivity analysis problem for

all combinational blocks in the circuit in O(V E + V 2 lg V ) time.

Algorithm NCSA, shown in Figure 2-5, solves the noncritical sensitivity analysis prob-

lem for a single combinational block u 2 V in O(V E) time. The algorithm computes the

maximum increase �(u) in the propagation delay d(v) such that Inequalities (2.6), (2.7),

and (2.8) that describe a properly timed circuit are not violated. The slack of Inequal-

ity (2.8) is computed in Step 3 after a single-source shortest-paths computation with source

v and a single-destination shortest-paths computation with sink v on the graph G with edge-

length w0(e) = bw(e)=2c �+ (w(e) mod 2)
�

�(x) + �1��(x)

�
� d(y) for each edge x

e
! y 2 E.

This edge-length accounts automatically for the slack between the rise-to-fall time and the
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propagation delay along any path. The slack of Inequalities (2.6) and (2.7) is computed in

Step 4. In this step, the algorithm computes the simple path p through u with minimum

�(p) � d(p), where �(p) is the rise-to-fall time of p. The algorithm returns the maximum

value �(u) � 0, such that for d(u)  d(u) + �(u), the circuit G is still properly timed by

the given �. If �(u) is negative, then G is not properly timed by �, and in this case the

algorithm fails.

The following lemma proves a bound on the running of Algorithm NCSA.

Lemma 21 Algorithm NCSA terminates in O(V E) time.

Proof. The single-source shortest-paths problem in Step 1 and the single-destination shortest-

paths problem in Step 2 can be solved in O(V E) time using the Bellman-Ford algorithm [5].

The minimization in Step 3 requires O(V ) time, and the minimization in Step 4 requires

O(V 2) time. Therefore, the total running time of the algorithm is O(V E). 2

The following lemma proves the correctness of Algorithm NCSA.

Lemma 22 Let G = hV;E; d; w; �i be a two-phase, level-clocked circuit, and let � =

h�0; 
0; �1; 
1i be a clocking scheme such that G is properly timed by �. Then, for any

given combinational block u 2 V , Algorithm NCSA correctly determines the maximum

possible increase in its propagation delay d(u) such that G is still properly timed by �.

Proof. According to Lemma 18, the circuit G is properly timed by � if and only if In-

equalities (2.6), (2.7), and (2.8) are satis�ed. We will show that these inequalities are still

satis�ed when d(u) increases by the value �(u) that is computed by Algorithm NCSA. We

will also show that some of these inequalities is violated for greater values of �(u).

First, let us consider Inequality (2.8). Increasing d(u) can only violate Inequality (2.8)

for simple cycles that go through vertex u. From Step 3 we have

�(u) = min
n
l(v) +w0(e) : v

e
! u 2 E

o
= min

n
w0(e) : u

c
; u 2 E

o

= min

8<
:
X

x
e

!y2c

�
bw(e)=2c � + (w(e) mod 2)

�

�(x) + �1��(x)

�
� d(y)

�
: u

c
; u 2 E

9=
;

= min

8<
:(
1 + �0)

0
@ X

x
e

!y2c

w0(e)

1
A+ (
0 + �1)

0
@ X

x
e

!y2c

w1(e)

1
A�X

x2c

d(x) : u
c
; u 2 E

9=
;

= min
n
(
1 + �0)w(c)=2 + (
0 + �1)w(c)=2 � d(c) : u

c
; u 2 E

o
= min

n
(
1 + �0 + 
0 + �1)w(c)=2 � d(c) : u

c
; u 2 E

o

where w0(e) and w1(e) denote the number of latches for each edge e 2 E that are clocked

on �0 and �1, respectively. From the last inequality, using Equation (2.1), we infer that

�(u) = min
n
�w(c)=2 � d(c) : u

c
; u 2 E

o
:

Therefore, this value of �(u) is the maximumby which we can increase d(u) without violating

Inequality (2.8).
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AllNCSA(G;�)

1 Compute all-pairs shortest-paths lengths l(u; v) for each pair u; v 2 V , on graph G

with edge-length w0(e) = bw(e)=2c � + (w(e) mod 2)
�

�(u) + �1��(u)

�
� d(v)

for every edge u
e
! v 2 E.

2 for each u 2 V

3 do �(u) = min
n
l(u; v) + w0(e) : v

e
! u 2 E

o
4 for each u 2 V

5 do �(u) = min
�
�(u);minv2V

�
��(v) � d(v) + l(v; u)

	
+minv2V

�
l(u; v) + 
�(v) + �1��(v)

		
6 for each u 2 V

7 do if �(u) � 0

8 then return �(u)

9 else return fail

Figure 2-6: Algorithm AllNCSA which solves the noncritical sensitivity analysis problem for

all combinational blocks in a circuit G. The algorithm takes as input a two-phase circuit G and

a clocking scheme �. It produces as output the maximum increase �(u) in the delay d(u) of each

combinational block u 2 V such that the proper timing of G by the clocking scheme � is not a�ected.

Now, let us consider Inequalities (2.6) and (2.7). In Step 4 the algorithm computes a

value �(u) such that

�(u) � min

(
��(x) � d(x) +

X
e2p

w0(e) +
X
e2q

w0(e) + 
�(y) + �1��(y) : x
p
; u; u

q
; y; x; y 2 V

)

= min
n
�(r)� d(r) : x

r
; y; u 2 r; and x; y 2 V

o
:

Therefore, if we increase d(u) by this value of �(u) we do not violate any of the Inequalities

(2.6) and (2.7). Moreover, this is the maximum value of �(u) that does not violate these

inequalities, because it satis�es the one that corresponds to the path r with equality. 2

Algorithm AllNCSA, shown in Figure 2-6, solves the noncritical sensitivity analysis

problem for all combinational blocks u 2 V in O(V E + V 2 lg V ) time. This algorithm

simply solves an all-pairs shortest-paths problem on G with edge-lengths chosen in a way

that accounts automatically for the path or the cycle with the minimum slack.

In the following two lemmas, we prove the correctness of Algorithm AllNCSA and a

bound on its running time.

Lemma 23 Let G = hV;E; d; w; �i be a two-phase, level-clocked circuit, and let � =

h�0; 
0; �1; 
1i be a clocking scheme such that G is properly timed by �. Then, for each

combinational block u 2 V , Algorithm AllNCSA correctly determines the maximum pos-

sible increase in its propagation delay d(u) such that G is still properly timed by �.

Proof. For every u 2 V , we repeat the proof of Lemma 22. 2

Lemma 24 Algorithm AllNCSA terminates in O(V E + V 2 lg V ) time.

Proof. The all-pairs shortest-paths computation in Step 1 can be performed in O(V E +
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CSA(G;�; u)

1 if TV(G;�) =yes

2 then return 0

3 dinit(u) d(u)

4 d(u) 0

5 if TV(G;�) =no

6 then return \G cannot be properly timed just by reducing d(u)"

7 else (.u) NCSA(G;�; u)

8 �(u) dinit(u)� d(u)

9 return �(u)

Figure 2-7: Algorithm CSA for the critical sensitivity analysis problem. The algorithm takes as

input a circuit G, a clocking scheme �, and a vertex u. It produces as output the minimum �(u)

such that G is properly timed by � if we decrease the propagation delay d(u) by �(u).

V 2 lg V ) time using Johnson's algorithm [5]. The minimizations in Steps 2 and 4 require

O(V 2) time. Therefore, Algorithm AllNCSA terminates in O(V E + V 2 lg V ) time. 2

Note that either Algorithm NCSA or Algorithm AllNCSA can be used to detect

combinational blocks that lie on critical paths or critical cycles for the given clocking scheme

�. For each critical block u, the value �(u) computed by these algorithms is simply zero.

Moreover, Algorithm AllNCSA can detect if the circuit G is not properly timed by the

given clocking scheme �. If the clocking scheme � does not satisfy the timing constraints

around some simple cycle, then the shortest-paths computation in Step 1 detects a negative

edge-weight cycle and the algorithm fails. If the clocking scheme � does not satisfy the

timing constraints along some path, then �(u) is negative, and the algorithm fails again.

2.4.2 Critical Sensitivity Analysis

Algorithm CSA, shown in Figure 2-7, solves the critical sensitivity analysis problem

for a single combinational block u 2 V . The algorithm returns 0 if G is properly timed

by the given clocking scheme �. Otherwise, it saves the original propagation delay d(u)

in the variable dinit(u) and computes the maximum nonnegative d(u) that will not a�ect

the proper timing of G by the clocking scheme �. The di�erence between the original

propagation delay of u and its new propagation delay gives �(u). It is straightforward to

verify the correctness of Algorithm CSA. The algorithm terminates in O(V E) steps, since

Algorithm NCSA runs in O(V E) time.

2.5 Period minimization by clock tuning

In this section, we address the tuning problem: Given a two-phase, level-clocked circuit

G = hV;E; d; w; �i and gaps 
0 and 
1, compute a clocking scheme �� = h��0; 
0; �
�

1; 
1i with

minimum period such that G is properly timed by ��. We show that two-dimensional linear

programming can be used to solve this problem in O(V E) time.

The basic idea behind the period minimization algorithm is to view �, �0, and �1 as
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π

φ0

π∗

φ0
∗

Figure 2-8: The tuning problem as a two-dimensoinal linear program in the (�0; �) plane. The

lines with negative slope describe constraints on paths u; v with �(u) = 0 an �(v) = 1. The lines

with positive slope correspond to constraints on paths u ; v with �(u) = 1 and �(v) = 0. The

horizontal lines describe constraints on paths with �(u) = �(v), and the lower bound on the clock

period due to the constraints on cycles. The shaded area is the set of feasible points for the linear

program. The circuit G is properly timed by every clocking scheme that corresponds to a point in

the shaded area.

variables. By Equation (2.1), we have �1 = � � 
0 � 
1 � �0, and thus, the constraints

de�ned in Lemma 19 can be viewed as inequalities in the two variables � and �0. In fact,

they form a linear program in which the objective is to minimize �. This program can

be described by a set of lines in the (�0; �) plane, as shown in Figure 2-8. We distinguish

three kinds of lines corresponding to Inequalities (2.11), (2.12), and (2.8). The next three

lemmas show how to e�ciently derive each of the three sets of linear constraints that form

the linear program.

Lemma 25 In O(V E) time, the constraints de�ned by Inequality (2.11) can be reduced to

an equivalent set of O(V ) linear inequalities in the variables � and �0.

Proof. The constraints de�ned by Inequality (2.11) depend on both � and �0. We can

separate these constraints into two sets depending on the value of �(v). If �(v) = 1, then

the inequality becomes

� �
D(v; i)� �0

(i+ 1)=2
; (2.13)

which de�nes a half-plane of feasible (�0; �) points for each �xed i. If �(v) = 0, the

inequality becomes

� �
D(v; i) + 
0 + 
1 + �0

(3 + i)=2
; (2.14)

which once again de�nes a half-plane of feasible (�0; �) points for each �xed i, since 
0 and


1 are constants (see Figure 2-8). Each inequality holds for each v 2 V and for each odd i

in the range 1 � i � 3 jV j � 3. The O(V 2) constraints de�ned by Inequality (2.11) can be
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determined in O(V E) time by computing the values D(v; i), as in Step 2 of Algorithm TV.

These constraints can be reduced in O(V 2) time to an equivalent set of O(V ) constraints by

selecting, for each odd i in the range 1 � i � 3 jV j � 3, the particular constraint for which

D(v; i) is maximized. The total running time is O(V E) +O(V 2) = O(V E). 2

Lemma 26 In O(V E) time, the constraints de�ned by Inequality (2.12) can be reduced to

a single lower bound on the clock period �.

Proof. The constraints de�ned by Inequality (2.12) can be rewritten as

� �
D(v; i) + 
1��(v)

(i+ 2)=2
; (2.15)

for even i. Each of these constraints depends on � but not on �0 (see Figure 2-8). Conse-

quently, these constraints together determine a single lower bound on � which is independent

of the duty cycle of either phase. After computing the values of D(v; i) in O(V E) time, this

bound on � can be determined by simply �nding the maximum of the O(V 2) right-hand

sides of Inequality (2.15). 2

The third of our lemmas focuses on Inequality (2.8). As in Lemma 26, we can compute

a single lower bound on the clock period � which is independent of the duty cycles. This

lower bound can be found by solving a \tramp steamer" problem.

The tramp steamer problem (also known as the minimum cost-to-time ratio cycle prob-

lem) was formulated in [7] as follows. Let G = hV;E; s; ti be a directed graph in which each

edge u
e
! v 2 E has an integer cost s(e) and an integer transit time t(e), such that for any

cycle c in G, we have
P

e2c t(e) > 0. For any cycle c in G, de�ne the cost-to-time ratio of

the cycle by

R(c) =

P
e2c s(e)P
e2c t(e)

:

The problem is to �nd

R(G) = minfR(c) : c is a cycle in Gg ;

which is the minimum such ratio over all cycles in the graph. If t(e) � 0 for all e 2 E, then

the algorithm from [16] can solve the tramp steamer problem in O(TE) time, where

T =
X
u2V

maxft(e) : u
e
! v 2 Eg :

The following lemma relates the constraints determined by Inequality (2.8) to the tramp

steamer problem.

Lemma 27 In O(V E) time, the constraints de�ned by Inequality (2.8) can be reduced to a

single lower bound on the clock period �.

Proof. Given the circuit G = (V;E; d; w; �), de�ne ~G = hV;E; s; ti to be the graph obtained

by assigning to each edge u
e
! v 2 E a cost s(e) = �d(u) and a transit time t(e) = w(e).

Then we claim Inequality (2.8) is satis�ed if and only if

� � �2R( ~G) ; (2.16)
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where R( ~G) is the minimum cost-to-time ratio of any cycle in ~G.

We �rst prove that Inequality (2.8) implies Inequality (2.16). Let c be the cycle in
~G with minimum cost-to-time ratio, that is, R(c) = R( ~G). By Inequality (2.8), we have

d(c) � �(w(c)=2), and hence

� �
2d(c)

w(c)

= 2

P
u2c d(u)P
e2cw(e)

= 2

P
e2c�s(e)P
e2c t(e)

= �2R( ~G) :

The proof for the other direction of the claim is similar.

Using the algorithm for the tramp steamer problem given in [16], the cycle constraints

can be checked in O(V E) time. In order to obtain this running time, we must guarantee

that the transit time of any path with jV j edges is O(V ). Indeed, this requirement is met,

since from Corollary 17 the number of latches on any edge can be reduced to at most 3. 2

The following theorem combines Lemmas (25), (26), and (27) to solve the tuning problem

for two-phase circuits.

Theorem 28 The tuning problem can be solved for a two-phase, level-clocked circuit G =

hV;E; d; w; �i and gaps 
0 and 
1 in O(V E) time.

Proof. By Lemma 19, any clock period � must satisfy Inequalities (2.11), (2.12), and (2.8),

which, by Lemmas (25), (26), and (27), reduce to Inequalities (2.13), (2.14), (2.15), and (2.16),

which are linear in �0 and �. We additionally must ensure that only valid clocking schemes

are considered, which we can do by adding the constraints �0 � 0 and �1 = ��
0�
1��0 �

0. Thus, all the constraints can be phrased as linear inequalities in �0 and �, as is shown

in Figure 2-8.

By linear programming theory [41], the optimal clock period �� can be obtained at

a point (��0; �
�) corresponding to the intersection of these O(V ) constraints. Megiddo's

algorithm [37] can solve such a two-dimensional linear program in O(V ) time. Alternatively,

one can �rst compute the O(V 2) intersections among Inequalities (2.13) and (2.14), �0 � 0,

and ��
0�
1��0 � 0 (the nonhorizontal constraints). Then, let (�00; �
0) be the intersection

point of maximum � value, and let �00 be the greatest lower bound on � derived from the

remaining (horizontal) inequalities. The optimal period is �� = max f�0; �00g, since (�00; �
0)

is above every nonhorizontal line, and all linear inequalities constrain � from below. A

feasible phase corresponding to �� is ��0 = �00. In either case, the overall running time is

O(V E). 2

2.6 Retiming with Symmetric Clocking Schemes

In this section, we present an O(V E+V 2 lg V )-time algorithm for the retiming problem with

symmetric clocking schemes: Given a two-phase, level-clocked circuit G = hV;E; d; w; �i and
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a symmetric clocking scheme � = h�; 
; �; 
i, compute a retiming of G which is properly

timed by �, or else determine that no such retiming exists. Like several previous retiming

algorithms [29, 52], our algorithm casts retiming for a symmetric clocking scheme as a

mixed-integer linear program.

The retiming transformation relocates the latches in a circuit G without changing the

functionality of the circuit. Given an integer r(v) for each vertex v 2 V , we retime the

circuit G by removing r(v) latches from each output wire of v and inserting r(v) latches to

each input wire of v. The variable r(v) is called the lag of vertex v, because it counts by how

many phases we delay the output of v's computation when we retime G. After retiming,

we obtain a retimed circuit Gr = hV;E; d; wr; �ri, where

wr(e) = w(e) + r(v)� r(u) (2.17)

for every edge u
e
! v 2 E, and

�r(v) =

(
�(v) if r(v) is even ;

1� �(v) if r(v) is odd ;

for every vertex v 2 V . To ensure that Gr is a well-formed two-phase circuit, we require

that all edge weights in Gr are nonnegative, which is equivalent to the condition that

w(e) + r(v)� r(u) � 0 (2.18)

for every edge u
e
! v 2 E. We need not check any other conditions for Gr to be well formed,

since retiming does not change the weight of a cycle, which means that all cycles retain the

positive weight they had in G, and one can verify that Condition WF3 holds over all edges

in Gr.

Given a two-phase, level-clocked circuit G = hV;E; d; w; �i and a symmetric clocking

scheme � = h�; 
; �; 
i, the problem of retiming with symmetric clocking schemes is to

compute a retiming function r such that Gr is a well-formed circuit which is properly timed

by �, or to determine that no such retiming exists. The following lemma gives a set of

necessary and su�cient constraints that such a retiming r must satisfy.

Lemma 29 Let G = hV;E; d; w; �i be a two-phase, level-clocked circuit, let � = h�; 
; �; 
i

be a symmetric clocking scheme, and let r : V ! Z be a retiming function. Then, the

retimed circuit Gr is properly timed by � if and only if

r(u)� r(v) � w(e) (2.19)

holds for every edge u
e
! v 2 E, and

r(u)� r(v) �
X

i
e

!j2p

�
w(e) �

2

�
d(j)

�
+

�
2�

2

�
(d(u) + 
)

�
(2.20)

for every path u
p
; v in Gr.

Proof. ()) Let Gr be properly timed by �. Since all edge weights in Gr are nonnegative, we

have wr � 0, which by Equation (2.17) implies Inequality (2.19). By Lemma 14, Inequalities
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(2.2) and (2.3) must also hold, but both reduce to

d(p) � �

�
wr(p)

2

�
+ � � 
 ;

since the clocking scheme � is symmetric with period � = 2�+ 2
. Let us consider a path

u
p
; v. Using the fact that wr(p) = w(p) + r(v) � r(u), which can be proved by induction

from Equation (2.17), we obtain

d(p) � �

�
wr(p)

2

�
+ � � 


= �

�
w(p) + r(v)� r(u)

2

�
+ � � 
 ;

which can be rewritten as

r(u)� r(v) � w(p) �
2

�
d(p) +

�
2�

2


�

�

=
X

i
e

!j2p

�
w(e)�

2

�
d(j)

�
�

2

�
d(u) +

�
2�

2


�

�

=
X

i
e

!j2p

�
w(e)�

2

�
d(j)

�
+

�
2�

2

�
(d(u) + 
)

�
:

Therefore, Inequality (2.20) holds.

(() All of the implications in the proof of the forward direction can be reversed. 2

Lemma 29 provides necessary and su�cient conditions that a retiming r must satisfy

such that Gr is a well-formed circuit which is properly timed by a clocking scheme �. Unfor-

tunately, there are an in�nite number of constraints in the set speci�ed by Inequality (2.20).

The following theorem shows that the number of constraints can be reduced to O(V +E).

Lemma 30 Let G = hV;E; d; w; �i be a two-phase, level-clocked circuit, and let � =

h�; 
; �; 
i be a symmetric clocking scheme. Then there exists a retiming r : V ! Z of

G such that Gr is properly timed by � if and only if there exists an assignment of a real

value R(v) and an integer value r(v) to each vertex v 2 V such that the following conditions

are satis�ed:

r(u)� r(v) � w(e) for all u
e
! v 2 E, (2.21)

R(v)� r(v) � 0 for all v 2 V , (2.22)

R(u)�R(v) � w(e)�
2

�
d(v) for all u

e
! v 2 E, (2.23)

r(u)�R(u) � 2�
2

�
(d(u) + 
) for all u 2 V . (2.24)

Proof. (() From Lemma 29 it su�ces to show that Inequalities (2.21), (2.22), (2.23),

and (2.24) imply Inequalities (2.19) and (2.20). Inequality (2.19) is immediately satis�ed,

since by Inequality (2.21) we have r(u) � r(v) � w(e) for all u
e
! v 2 E. To prove
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Inequality (2.20), consider a path u
p
; v. Inequality (2.23) holds for every edge on p, and

if we sum all these inequalities, we obtain

R(u)�R(v) �
X

i
e

!j2p

�
w(e)�

2

�
d(j)

�
;

since the left-hand side telescopes. Adding this inequality to Inequalities (2.22) and (2.24)

yields Inequality (2.20).

()) By Lemma 29 we need only show that if r is an assignment of integers to the

vertices in V that satis�es Inequalities (2.19) and (2.20), then we can �nd an assignment

R of reals to the vertices in V such that r and R satisfy Inequalities (2.21), (2.22), (2.23),

and (2.24). Inequality (2.18) directly implies Inequality (2.21). We construct an auxiliary

graph to determine R and show that the remaining three inequalities are satis�ed.

De�ne the auxiliary graph H = (VH ; EH ; wH) by

VH = V [ ftg

EH = E [ fu! t : u 2 V g [ ft! u : u 2 V g

wH(e) =

8><
>:

r(v) for all v
e
! t 2 EH ;

w(e) � 2

�
d(v) for all u

e
! v 2 E ;

�r(u) + 2� 2

�
(d(u) + 
) for all t

e
! u 2 EH ;

where t is an additional vertex not in V . De�ne R(v) for all v 2 VH as the length of

a shortest (least-weight) path in H from v to t, which is well-de�ned if H contains no

negative-weight cycles [5, Chapter 25], a fact that we shall prove shortly.

Assuming that H contains no negative-weight cycles, we can prove Inequalities (2.22),

(2.23), and (2.24) by relying on the following basic inequality of shortest paths [5, Chap-

ter 25]:

R(u) � R(v) + wH(e) (2.25)

for every edge u
e
! v in EH . To prove Inequality (2.22), we consider Inequality (2.25) with

wH(e) = r(u) for all edges u
e
! t:

R(u) � R(t) + r(u)

� r(u) ;

since the shortest path from t to itself has length R(t) = 0. Inequalities (2.23) and (2.24)

follow from similar reasoning by considering Inequality (2.25) with the other two classes of

edge weights.

It remains to show that H contains no negative-weight cycles. Suppose, for the sake

of contradiction, that u
c
; u is a negative-weight cycle in H that contains the minimum

number of edges among all negative-weight cycles in H. The cycle c visits t at most once,

since otherwise, c would contain a negative-weight subcyle with fewer edges. We consider

the cases t 2 c and t 62 c separately.

If t is a vertex in c, we can break the cycle c into three parts: c = t
e1! u

p
; v

e2! t, where
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p does not visit t. Breaking the weight of c into its constituent parts, we obtain

wH(c) = wH(e1) + wH(p) + wH(e2)

=

�
�r(u) + 2�

2

�
(d(u) + 
)

�
+
X

i
e

!j2p

�
w(e) �

2

�
d(j)

�
+ r(v)

< 0 ;

which, by moving r(u) and r(v) to the right-hand side of the strict inequality, directly

contradicts Inequality (2.20).

If t is not a vertex in c, we consider a path p that consists of k > 0 repetitions of

the cycle c, and which starts and ends at some vertex u on c. Since wH(c) < 0, we can

make wH(p) = k � wH(c) as negative as we wish by picking k su�ciently large. From

Inequality (2.20), we obtain

0 = r(u)� r(u)

�
X

i
e

!j2p

�
w(e)�

2

�
d(j)

�
+

�
2�

2

�
(d(u) + 
)

�

= wH(p) +

�
2�

2

�
(d(u) + 
)

�

= k � wH(c) +

�
2�

2

�
(d(u) + 
)

�
< 0 ;

by picking k > � (2� (2=�)(d(u) + 
)) =wH(c). This contradiction completes the proof. 2

The set of constraints de�ned in Lemma 30 form a mixed-integer linear programming

problem. Although mixed-integer linear programming is in general NP-hard [13], the sim-

ple form of the constraints in the lemma allows the problem to be solved e�ciently. In

particular, Inequalities (2.21), (2.22), (2.23), and (2.24) constitute a mixed-integer linear

programming problem of the following form.

Problem MI Let H = (V; VI ; E; a) be an edge-weighted, directed graph, where V =

f1; 2; : : : ; ng is the vertex set, VI (the \integer" vertices) is a subset of V , the edge set

E is a subset of V �V , and for each edge (i; j) 2 E the edge weight a(i; j) is a real number.

Find a vector x = (x1; x2; : : : ; xn) satisfying the constraints that

xi � xj � a(i; j)

for all (i; j) 2 E, and that xi 2 Z for all i 2 VI , or determine that no feasible vector

exists. 2

Problem MI can be solved in O(V E+V 2 lg V ) time by applying Algorithm MILP from [30].

Thus, we obtain the following theorem.

Theorem 31 The retiming problem with symmetric schemes can be solved for a two-phase,

level-clocked circuit G = hV;E; d; w; �i and a symmetric clocking scheme � = h�; 
; �; 
i in

O(V E + V 2 lg V ) time.
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RwSCS(G;�)

1 Generate Inequalities (2.21), (2.22), (2.23), and (2.24) from G and �.

2 Apply Algorithm MILP on Inequalities (2.21), (2.22), (2.23), and (2.24) to compute a retiming r.

3 if all constraints are satis�ed

4 then return r

5 else fail

Figure 2-9: Algorithm RwSCS for retiming with symmetric clocking schemes. The algorithm

takes as input a two-phase, level-clocked circuit G = (V;E; d; w; �) and a symmetric clocking scheme

� = h�; 
; �; 
i. It produces as output a retiming r such that Gr is properly timed by �, or else it

determines that no such retiming is possible.

Proof. Algorithm RwSCS in Figure 2-9 solves the retiming problem with symmetric phases.

It simply applies Algorithm MILP from [30] to the constraints in Lemma 30. Since jVH j =

jV j+ 1 and jEH j = O(V +E), the running time of RwSCS is O(V E + V 2 lg V ). 2

2.7 Retiming with General Clocking Schemes

In this section, we study the retiming problem: Given a circuit G = hV;E; d; w; �i and a

clocking scheme � = h�0; 
0; �1; 
1i, compute a retiming function r such that Gr is a well-

formed circuit which is properly timed by �, or else determine that no such retiming exists.

First, we make a short digression in order to introduce integer monotonic programming , a

problem related to integer linear programming in which both sides of the inequalitites are

monotone, but not necessarily linear, functions of the unknowns. We consider a simple case

of integer monotonic programming in which each left-hand side is a function of a single

unknown and show that problems of this nature admit a unique minimum solution x. We

describe a generic procedure for �nding x. We then cast the retiming problem in the form of

a simple integer monotonic programming problem and use the generic procedure to obtain

an O(V 3)-time algorithm for the retiming problem.

The integer monotonic programming problem is de�ned as follows.

De�nition Let S be a set of constraints over the unknowns x1; x2; : : : ; xn, in which the kth

constraint has the form

fk(x1; x2; : : : ; xn) � gk(x1; x2; : : : ; xn) ;

where the functions fk and gk are monotonically increasing with respect to each xi, for

j = 1; 2; : : : ; n. The integer monotonic programming problem is to �nd a vector x = hx1; x2;

: : : ; xni of integers satisfying S, or determine that no feasible vector exists. An integer

monotonic programming problem is simple if each fk is a function of a single unknown;

thus, the kth constraint has the simpler form

fk(xi) � gk(x1; x2; : : : ; xn) :

2
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Based on the monotonicity of fk and gk, we can argue that if a simple integer monotonic

program has a solution over the nonnegative integers, then it has a unique \minimum

solution".

Lemma 32 Let x = hx1; x2; : : : ; xni and x0 = hx01; x
0

2; : : : ; x
0

ni be two solutions to some

simple integer monotonic program, and let x00i = minfxi; x
0

ig for all i = 1; 2; : : : ; n. Then,

x00 = hx001 ; x
00

2 ; : : : ; x
00

ni is also a solution.

Proof. Consider the constraint fk(xi) � gk(x1; x2; : : : ; xn) in the simple integer monotonic

program. Assume, without loss of generality, that x00i = xi. It follows that

fk(x
00

i ) = fk(xi)

� gk(x1; x2; : : : ; xn)

� gk(x
00

1 ; x
00

2 ; : : : ; x
00

n);

since gk is monotonically increasing with respect to all its arguments. Therefore, x00 is also

a solution to the monotonic program. 2

Corollary 33 For any simple integer monotonic program having a solution in which xi � 0

for i = 1; 2; : : : ; n, there exists a unique minimum solution hx1; x2; : : : ; xni which is min-

imum in the sense that for all other solutions hx1; x2; : : : ; xni, we have xi � xi for i =

1; 2; : : : ; n.

Proof. The proof follows from Lemma 32 and the nonnegativity of the xi. 2

If a simple integer monotonic programming problem has a solution over the nonnega-

tive integers, the relaxation procedure MonoRelax in Figure 2-10 can �nd the minimum

solution. After initializing the xi, the procedure performs a sequence of relaxations over

the set of constraints. Each relaxation step (lines 4{5) consists of determining a constraint

fk(xi) � gk(x1; x2; : : : ; xn) which is violated and then incrementing xi. If there is a solu-

tion, the running time is proportional to
Pn

i=1 xi multiplied by the time it takes to �nd

a violated constraint. If there is no solution, however, the procedure runs forever. Later

in this section, we shall present a procedure based on MonoRelax to solve the retiming

problem. This new procedure always terminates, however, because for the special case of

the retiming problem we can prove that whenever the unknowns xi exceed an upper bound,

then the problem has no solution. The following theorem proves that MonoRelax �nds

the minimum solution when a solution exists.

Theorem 34 Let S be the set of constraints in a simple integer monotonic programming

problem over the unknowns x1; x2; : : : ; xn, and suppose S has a solution. Then, MonoRe-

lax �nds the minimum solution x1; x2; : : : ; xn.

Proof. We �rst show that after each iteration the invariant xi � xi holds for i = 1; 2; : : : ; n.

The invariant initially holds, since xi = 0 for every i. Consider an iteration of the pro-

cedure in which a constraint fk(xi) � gk(x1; x2; : : : ; xn) is violated, which means fk(xi) <

gk(x1; x2; : : : ; xn). Since no constraints are violated for the minimum solution x, and since
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MonoRelax(S)

1 for i 1 to n

2 do xi  0

3 while there exists an unsatis�ed constraint in S

4 do pick an unsatis�ed constraint fk(xi) � gk(x1; x2; : : : ; xn)

5 xi  xi + 1

6 return hx1; x2; : : : ; xni

Figure 2-10: Procedure MonoRelax for solving a simple integer monotonic program S over

unknowns x1; x2; : : : ; xn. The procedure returns a solution if and only if the constraints in S can be

satis�ed. Otherwise, it runs forever.

gk is monotonic and xi � xi, we have

fk(xi) � gk(x1; x2; : : : ; xn)

� gk(x1; x2; : : : ; xn)

> fk(xi) :

But since fk is monotonic, fk(xi) > fk(xi) implies that xi > xi. Thus, after incrementing xi,

the invariant xi � xi continues to hold.

To complete the correctness proof, observe that when all constraints are satis�ed, we

obtain a solution x, which, by Corollary 33 and the fact that xi � xi, is equal to x. More-

over, we must eventually achieve this unique minimum solution, because exactly
Pn

i=1 xi
relaxations can occur, since each relaxation increases

Pn

i=1 xi by exactly 1. 2

We now turn to the retiming problem with general two-phase clocking schemes. Recall

that given a circuit G = hV;E; d; w; �i and a clocking scheme � = h�0; 
0; �1; 
1i, we wish to

compute a retiming function r such that Gr is a well-formed circuit which is properly timed

by �, or else determine that no such retiming exists. When � is not symmetric, Inequalities

(2.2) and (2.3) cannot be simpli�ed as in the retiming problem with symmetric clocking

schemes. Nevertheless, we can cast the retiming problem as a simple integer monotonic pro-

gramming problem. The following lemma gives a set of necessary and su�cient conditions

that such a retiming r must satisfy.

Lemma 35 Let G = hV;E; d; w; �i be a two-phase, level-clocked circuit, let � = h�0; 
0; �1; 
1i

be a clocking scheme, and let r : V ! Z be a retiming function. Then, the retimed circuit

Gr is properly timed by � if and only if for every edge u
e
! v 2 E, we have

r(u)� r(v) � w(e) ; (2.26)

and for every path u
p
; v, we have

d(p) � �

�
1 + w(p)

2

�
+ ��(u)

+�

�
r(v)

2

�
+ (r(v) mod 2)

�

�(u) + �1��(u)

�
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��

�
r(u)

2

�
� (r(u) mod 2)

�
��(u) + 
�(u)

�
; (2.27)

if �(u) 6= �(v), and

d(p) � �

�
2 + w(p)

2

�
� 
1��(u)

+�

�
r(v)

2

�
+ (r(v) mod 2)

�

1��(u) + ��(u)

�
��

�
r(u)

2

�
� (r(u) mod 2)

�
��(u) + 
�(u)

�
; (2.28)

if �(u) = �(v).

Proof. ()) Let Gr be a well-formed circuit that is properly timed by �. Since Gr is

well formed, all edge-weights wr in Gr must satisfy wr � 0, which by Equation (2.17)

implies Inequality (2.26). Since Gr is properly timed by �, Inequalities (2.2) and (2.3) from

Lemma 14 must hold. We prove that Inequalities (2.27) and (2.28) follow from Inequalities

(2.2) and (2.3).

The proof is a case analysis that depends on examining all possible assignments of

original phases to u and v and all possible parities of r(u) and r(v) for a path u
p
; v in Gr.

Let us consider, for example, a path u
p
; v, where �(u) 6= �(v). Let r be a retiming with

even r(u) and odd r(v); the other cases are similar. In this case, �r(u) = �(u), and �r(v) =

1��(v). Using Inequality (2.3) in Lemma 14 and the fact that wr(p) = w(p)+ r(v)� r(u),

we obtain

d(p) � �

�
2 + wr(p)

2

�
� 
1��r(v)

= �

�
2 + w(p) + r(v)� r(u)

2

�
� 
�(v):

Since �(u) 6= �(v), we have 
�(v) = ����(u)�
�(u)���(v) by Equation (2.1), and therefore

d(p) � �

�
2 + w(p) + r(v)� r(u)

2

�
+ ��(u) + 
�(u) + ��(v) � �

= �

�
2 + w(p) + r(v)� r(u)

2

�
+ ��(u) + 
�(u) + �1��(u) � �

= �

�
2 + w(p) + r(v)� r(u)

2
� 1

�
+ ��(u) + 
�(u) + �1��(u)

= �

�
1 + w(p) + (r(v)� 1)� r(u)

2

�
+ ��(u) + 
�(u) + �1��(u)

= �

�
1 + w(p)

2

�
+ ��(u)

+�

�
r(v)� 1

2

�
+ 
�(u) + �1��(u)

��

�
r(u)

2

�
:
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Using the fact that r(v) mod 2 = 1 and r(u) mod 2 = 0, we obtain

d(p) � �

�
1 + w(p)

2

�
+ ��(u)

+�

�
r(v)

2

�
+ (r(v) mod 2)

�

�(u) + �1��(u)

�
��

�
r(u)

2

�
� (r(u) mod 2)

�
��(u) + 
�(u)

�
;

thus proving Inequality (2.27).

(() All the implications in the proof of the forward direction can be reversed. 2

Inequalities (2.27) and (2.28) can be intuitively understood in terms of rise-to-fall times.

As we saw in the proof of Lemma 35, Inequality (2.27) follows from Inequality (2.2), which

holds for every path u
p
; v in G with �(u) 6= �(v). The �rst line on the right-hand-side

of Inequality (2.27) is just the initial allowance of time along p. The second line gives the

net allowance of time added to the path p due to the latches that are shifted onto or o�

p through v. The term br(v)=2c � counts the number of whole periods that are shifted

through v, and the other term accounts for the e�ect of shifting fractional periods. By

shifting onto p a single latch through the last vertex v in the path, we have a net allowance

of 
�(u)+�1��(u), since the new latch on the boundary of p is clocked on �1��(u). Similarly,

by shifting o� p a single latch through v, the net allowance is �
1��(u) � ��(u), since the

��(u)-latch that used to be on the boundary of p is no longer there. Finally, the third line

on the right-hand-side of Inequality (2.27) gives the net allowance of time added to the

path p due to the latches that are shifted onto or o� of p through u. The interpretation of

Inequality (2.28) is analogous.

Although Lemma 35 provides necessary and su�cient conditions that a retiming must

satisfy, the set speci�ed by Inequalities (2.26), (2.27), and (2.28) contains an in�nite number

of constraints. The following lemma shows that of this in�nite number, all but O(V 2) are

redundant.

Lemma 36 Let G = hV;E; d; w; �i be a two-phase, level-clocked circuit, let � = h�0; 
0; �1; 
1i

be a clocking scheme, and let r : V ! Z be a retiming function. Moreover, let p be the short-

est (least-weight) path from u to v in the graph G0 = hV;E;w0i with edge-weight function

w0(e) = �w(e)=2 � d(j) for each edge i
e
! j in E. Then, the retimed circuit Gr is properly

timed by � if and only if for every edge u
e
! v 2 E, Inequality (2.26)

r(u)� r(v) � w(e)

holds, and for every pair of vertices u; v 2 V , we have

d(p) � �

�
1 + w(p)

2

�
+ ��(u)

+�

�
r(v)

2

�
+ (r(v) mod 2)

�

�(u) + �1��(u)

�
��

�
r(u)

2

�
� (r(u) mod 2)

�
��(u) + 
�(u)

�
; (2.29)
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if �(u) 6= �(v), and

d(p) � �

�
2 + w(p)

2

�
� 
1��(u)

+�

�
r(v)

2

�
+ (r(v) mod 2)

�

1��(u) + ��(u)

�
��

�
r(u)

2

�
� (r(u) mod 2)

�
��(u) + 
�(u)

�
; (2.30)

if �(u) = �(v).

Proof. We prove that Inequality (2.29) holds if and only if Inequality (2.27) holds. Inequal-

ity (2.27), which must hold for every path u
p
; v in G, can be rewritten

�

�
r(u)

2

�
+ (r(u) mod 2)

�
��(u) + 
�(u)

�
� �

�
r(v)

2

�
� (r(v) mod 2)

�

�(u) + �1��(u)

�
�

�

2

� �

�
w(p)

2

�
� d(p)

=
X

i
e

!j2p

�
�
w(e)

2
� d(j)

�
� d(u) : (2.31)

Among all paths from u to v, the tightest constraint is generated by the path p that

minimizes the sum on the right-hand side of Inequality (2.31). This path is the shortest

(least-weight) path from u to v in G0. Therefore, Inequality (2.29) holds exactly when

Inequality (2.27) holds. The proof for Inequality (2.30) is similar. 2

The next lemma shows that the retiming problem can be reduced to the simple integer

monotonic programming problem.

Lemma 37 The retiming problem for a two-phase, level-clocked circuit G = hV;E; d; w; �i

and a clocking scheme � = h�0; 
0; �1; 
1i can be reduced to the simple integer monotonic

programming problem.

Proof. The retiming problem for G and � is described by Inequalities (2.26), (2.29),

and (2.30). In order to prove the lemma, we must show that each of these inequalities

can be written in the form f(r(v)) � g(r(u)), where f and g are monotonic functions.

For every edge u
e
! v 2 E, Inequality (2.26) can be written as

r(v) + w(e) � r(u) ;

which has the desired form, since both sides of the inequality are monotonic.

Let us concentrate, now, on Inequality (2.29). The analysis for Inequality (2.30) is

similar. Inequality (2.29) can be written in the form f(r(v)) � g(r(u)) by letting

f(r(v)) = �

�
r(v)

2

�
+ (r(v) mod 2)

�

�(u) + �1��(u)

�
+ �

�
1 + w(p)

2

�
� d(p) + ��(u) ;

g(r(u)) = �

�
r(u)

2

�
+ (r(u) mod 2)

�
��(u) + 
�(u)

�
:
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Retime(G;�)

1 Q fconstraints from Lemma 36 of the form \f(r(v)) � g(r(u))"g

2 for every vertex v 2 V

3 do r(v) 0

4 while Q 6= ;

5 do remove a constraint \f(r(v)) � g(r(u))" from Q

6 if f(r(v)) < g(r(u))

7 then repeat r(v) r(v) + 1

8 if r(v) > 3jV j � 1

9 then fail

10 until f(r(v)) � g(r(u))

11 Q Q [ fall constraints with r(v) on the right-hand sideg

12 return r

Figure 2-11: An algorithm which, given a two-phase circuit G = (V;E; d; w; �) and a clocking

scheme � = h�0; 
0; �1; 
1i, determines a retiming of G that is properly timed by �, or determines

that no such retiming is possible.

We demonstrate that f is monotonically increasing with respect to its argument r(v) by

showing that the di�erence f(r(v) + 1) � f(r(v)) is positive for every r(v). The proof for

the monotonicity of g with respect to r(u) is similar.

f(r(v) + 1)� f(r(v)) = �

�
r(v) + 1

2

�
+ ((r(v) + 1) mod 2)

�

�(u) + �1��(u)

�
��

�
r(v)

2

�
� (r(v) mod 2)

�

�(u) + �1��(u)

�
� �

��
r(v) + 1

2

�
�

�
r(v)

2

��
� (r(v) mod 2)

�

�(u) + �1��(u)

�
= � (r(v) mod 2)� (r(v) mod 2)

�

�(u) + �1��(u)

�
= (r(v) mod 2)

�
� � 
�(u) � �1��(u)

�
> 0;

since b(r(v) + 1)=2c � br(v)=2c = (r(v) mod 2) and � > 
�(u) + �1��(u). 2

Figure 2-11 gives the pseudocode for Algorithm Retime which solves the retiming prob-

lem for a given two-phase, level-clocked circuit G and a clocking scheme �. Algorithm Re-

time operates in essentially the same way as procedure MonoRelax. The only di�erence

is that Algorithm Retime can detect if the retiming problem has no solution, in which case

it returns that the problem is infeasible. We now prove a bound on the running time of

Algorithm Retime, and then we shall prove its correctness.

Lemma 38 Algorithm Retime can be implemented to terminate in O(V 3) time.

Proof. To compute the constraints in line 1 of the algorithm, we need to compute the

shortest-paths between every pair of vertices in G. This computation can be performed in

O(V E+V 2 lg V ) time using Johnson's algorithm for all-pairs shortest-paths [5, Section 26.3].
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To implement the set Q , we can use a FIFO queue and a 
ag for each constraint that

indicates whether the constraint is in the queue.

For every constraint f(r(v)) � g(r(u)) 2 Q , the functions f(r(v)) and g(r(u)) can

be computed in O(1) time, and since we have jV j variables, the body of the while loop

(line 4{line 11) can be completed in O(V ) time. Since the repeat loop in line 7 always

increments some previously incremented variable r(v), and since no variable r(v) becomes

greater than 3 jV j, line 7 is executed O(V 2) times. Therefore, the total running time of

Algorithm Retime is O(V 3). 2

In order to show that Algorithm Retime terminates with the right answer, it su�ces

to prove that if the retiming problem is feasible, then there exists a minimum solution r in

which r(v) � 3jV j � 1 for all v 2 V , and that Algorithm Retime computes that solution.

In the following two lemmas, we prove that these conditions are met.

Lemma 39 Suppose that the retiming problem de�ned by Inequalities (2.26), (2.27), and (2.28)

has a solution. Then there exists a solution r such that 0 � r(v) � 3jV j � 1 for all v 2 V .

Proof. We �rst show that under the conditions of the lemma, there exists a nonnegative

solution. Let r be a solution that satis�es Inequalities (2.26), (2.27), and (2.28). Then, for

any integer c, the function r0(v) = r(v) + 2c for all v 2 V , also satis�es these constraints,

which can be seen by direct substitution into the three inequalities. Thus, if there is a

solution to the retiming problem, by picking c large enough, we can �nd a nonnegative one.

Since there exists a nonnegative solution, there exists a nonnegative solution r which is

minimum in the sense that for any other nonnegative solution r, we have r(v) � r(v) for

all v 2 V . We shall show that r(v) � 3jV j � 1 for all v 2 V .

Assume now, for the purpose of contradiction, that there exists a vertex t 2 V such

that r(t) � 3jV j. Under this assumption, we shall show that there exists a solution r0 to

Inequalities (2.26), (2.27), and (2.28) which is smaller than r, thereby contradicting the

minimality of r.

De�ne the set Vt � V to include t and all vertices that can reach t in Gr using only

those edges u
e
! v for which r(v) � r(u) � 3. Let p be an arbitrary simple path from a

vertex x 2 Vt to t. Summing the inequalities r(v)� r(u) � 3 for every edge u
e
! v along p,

we obtain

r(t)� r(x) �
X

u
e

!v2p

3

� 3 (jV j � 1)

since the sum telescopes and a simple path has at most jV j � 1 edges. By assumption,

r(t) � 3jV j, and hence, r(x) � 3. Thus, all vertices in Vt are retimed by at least 3 in the

minimal retiming r.

Let us de�ne a new function r0 by the equation

r0(v) =

(
r(v) if v 2 V � Vt ;

r(v) � 2 if v 2 Vt .
(2.32)

The function r0 is nonnegative, because r(v) � 0 for all v 2 V � Vt and r(v) � 3 for all
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v 2 Vt. Moreover, r0 is nowhere larger than r, and it is strictly smaller because t 2 Vt implies

r0(t) < r(t). Thus, if we can show that r0 satis�es Inequalities (2.26), (2.29), and (2.30), we

obtain the contradiction we desire.

Let us compare the circuits Gr0 and Gr. For an edge u
e
! v, we have three possible

situations:

� wr0(e) = wr(e) if u; v 2 Vt or u; v 2 V � Vt;
� wr0(e) = wr(e) + 2 if u 2 Vt and v 2 V � Vt;
� wr0(e) = wr(e)� 2 if u 2 V � Vt and v 2 Vt.

Observe that in the third case, wr0(e) � 0, since the de�nition of Vt implies that r(v)�r(u) �

4, and thus,

wr(e) = w(e) + r(v)� r(u)

� w(e) + 4

� 4 :

Thus, r0 is a legal retiming.

We wish to show that if Gr is properly timed by a clocking scheme �, then so is Gr0 . The

circuit Gr0 di�ers from Gr by the addition of 2 latches on some edges and the subtraction

of 2 latches on some other edges that have at least 4 latches on them in Gr. By Lemma 16,

the 2-latch subtraction does not a�ect proper timing. Adding a pair of latches on an edge

does not a�ect Condition WF3 (clock phases alternate along paths), and by Lemma 14,

increasing the number of latches on a path cannot violate proper timing. Thus, Gr0 is

properly timed by �.

Thus, by Lemma 35, Inequalities (2.26), (2.29), and (2.30) hold for r0, which contradicts

the minimality of r and completes the proof. 2

We conclude this section with the following theorem.

Theorem 40 The retiming problem can be solved for a two-phase, level-clocked circuit

G = hV;E; d; w; �i and a clocking scheme � = h�0; 
0; �1; 
1i in O(V 3) time.

Proof. From the invariant in the proof of Theorem 34 we have that r(v) � r(v) for all

v 2 V , at every point during the execution of Algorithm Retime. Since r(v) � 3 jV j � 1,

according to Lemma 39, we conclude that whenever a variable r(v) exceeds 3 jV j�1 during

Algorithm Retime, the monotonic program must be infeasible. It follows that Algorithm

Retime computes the minimum retiming r or correctly discerns that no solution exists.

The running time of Algorithm Retime follows from Lemma 38. 2

2.8 Retiming for Minimum Latch Count

In this section we consider the retiming problem for minimum latch count: Given a two-

phase circuit G = hV;E; d; w; �i and a symmetric clocking scheme � = h�; 
; �; 
i, we wish

to compute a retimed circuit Gr that is properly timed by � and uses the minimum number

of latches. We show that this problem can be solved in O(V 3 lg V ) time by reducing it to

the dual of an uncapacitated minimum-cost 
ow problem.



68 CHAPTER 2. ANALYZING AND OPTIMIZING LEVEL-CLOCKED CIRCUITRY

The following lemma gives necessary and su�cient conditions for a retiming Gr to have

the minimum number of latches.

Lemma 41 Let G = hV;E; d; wi be a two-phase circuit, let � = h�; 
; �; 
i be a symmetric

clocking scheme, and let r : V ! Z be a retiming function. Then, the retimed circuit Gr

achieves � with the minimum number of latches under any other retiming if and only if the

assignment r minimizes the expression

X
v2V

(indegree(v)� outdegree(v)) r(v)

subject to constraint (2.19)

r(u)� r(v) � w(e)

for every edge u
e
! v 2 E, and constraint (2.20)

r(u)� r(v) �
X

i
e

!j2p

�
w(e) �

2

�
d(j)

�
+

�
2�

2

�
(d(u) + 
)

�

for every path u
p
; v in G.

Proof. According to Lemma 29, the circuit Gr is properly timed by � if and only if the

two sets of constraints in the statement of the lemma are satis�ed. Moreover, the number

of latches in Gr is given by the expression

X
e2E

wr(e) =
X
e2E

w(e) +
X
e2E

(r(v) � r(u))

=
X
e2E

w(e) +
X
v2V

(indegree(v)� outdegree(v)) r(v) :

Therefore, the lemma holds. 2

We can now prove the following theorem.

Theorem 42 The retiming problem for minimum latch count can be solved in O(V 3 lg V )

time.

Proof. The retiming problem for minimum latch count is reduced to the dual of an un-

capacitated minimum-cost 
ow problem [41] on the graph de�ned by Inequalities (2.19)

and (2.20). The cost of each edge equals the right-hand side of the corresponding inequal-

ity. The demand/supply of each vertex v equals the di�erence between the number of edges

coming into v and the number of edges coming out of v. We can use a scaling algorithm

by Orlin to solve this problem that runs in O(V 3 lgU) steps, where U is the maximum

demand/supply. In our retiming problem, we have U � jV j, and therefore, the algorithm

runs in O(V 3 lg V ) time. 2

We can give polynomial-time algorithms for several other retiming problems for mini-

mum latch count. If every fanout wire of each gate in the circuit has the same output, then

it can be shown that retiming for minimum number of latches with maximal latch-sharing

can be solved in O(V 3) time [50]. This algorithm is more e�cient than the algorithm for

the general problem, because it solves a minimum-cost 
ow problem on a graph with unit
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demands and supplies. If the objective is to achieve the minimum clock period with the

minimum number of latches, we can �nd a retiming in O(V 2E + V 3 lg2 V ) time. First, we

compute a set of O(V 3) possible clock periods using the O(V 2E)-time Algorithm PiFDR,

and then we binary search this set for the minimum feasible clock period.

2.9 Approximation Schemes for Minimum-Period Retiming

In this section we present \fully polynomial-time approximation schemes" for three problems

related to both retiming and tuning. A fully polynomial-time approximation scheme [5] is an

optimization algorithm that takes, in addition to its other input parameters, a parameter

� > 0 specifying a relative error. The algorithm must produce an answer that is within

(1+ �) of the optimal answer for the problem and must run in time polynomial in the input

and in 1=�.

The �rst problem we consider is retiming and �xed-duty-ratio tuning: Given a two-

phase, level-clocked circuit G = hV;E; d; w; �i, a real number � � 0, and gaps 
0 and 
1, we

wish to compute a retiming function r and a clocking scheme � = h�0; 
0; �1; 
1i, such that

Gr is properly timed by �, and � has the minimum period among all clocking schemes of

duty-ratio � that can be achieved by retiming the circuit G. We give an O(V 3 lg(V=�))-time

algorithm that, for any given relative error � > 0, computes a retiming r and a clocking

scheme � with duty ratio �, such that Gr is properly timed by �, and the period of � is

at most (1 + �) times the optimal period. The same algorithm can be used to solve the

retiming and �xed-duty-cycle tuning problem, in which instead of the duty-ratio � we are

given one of the phases �0 or �1.

The second problem we consider is retiming and symmetric tuning: Given a two-phase,

level-clocked circuit G = hV;E; d; w; �i and gap 
, compute a retiming function r and a

symmetric clocking scheme � = h�; 
; �; 
i, such that Gr is properly timed by �, and � has

the minimum period among all symmetric clocking schemes with gap 
 that can be achieved

by retiming G. This problem is a special case of the retiming and �xed-duty-ratio tuning

problem, and the same basic algorithm can be applied to yield a retiming r and a clocking

scheme � with period at most (1 + �) times the optimal period, for any given relative error

� > 0. In this case, the algorithm terminates in O((V E + V 2 lg V ) lg(V=�)) steps.

Finally, we consider the general retiming and tuning problem: Given a two-phase, level-

clocked circuit G = hV;E; d; w; �i and gaps 
0 and 
1, we compute a retiming function r and

a clocking scheme � = h�0; 
0; �1; 
1i, such that Gr is properly timed by �, and � has the

minimum period among all clocking schemes that can be achieved by retiming G. We give

an O(V 3(1=�) lg(1=�) + (V E + V 2 lg V ) lg(V=�))-time algorithm that, for any given relative

error � > 0, computes a retiming r and a clocking scheme � with period at most (1 + �)

times the optimal period.

2.9.1 Retiming and Fixed Duty-Ratio Tuning

Algorithm R&FDRT, given in Figure 2-12, approximately solves the retiming and �xed

duty-ratio tuning problem using a binary search over a space of possible clock periods. Since

the problem requires that only �xed duty-ratio clocking schemes be considered, each possible

clock period corresponds to a unique clocking scheme. The algorithm checks whether this
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R&FDRT(G; �; 
0; 
1; �)

1 dmax  maxv2V d(v)

2 �+  jV jdmax + 
0 + 
1
3 �0  (�+ � 
0 � 
1)=(1 + �)

4 ��  
0 + 
1
5 while �+ � �� > �dmax
6 do �  (�+ + ��)=2

7 �0
0
 (� � 
0 � 
1)=(1 + �)

8 if Retime(G; h�0
0
; 
0; ��

0

0
; 
1i) 6= fail

9 then �+  �

10 �0  �0
0

11 else ��  �

12 r  Retime(G; h�0; 
0; ��0; 
1i)

13 return � and r

Figure 2-12: Algorithm R&FDRT, which solves the retiming and �xed duty-ratio tuning problem.

The algorithm takes as input a two-phase circuitG = (V;E; d; w; �), a duty ratio �, gap widths 
0; 
1,

and a relative error � > 0. It computes a retimed circuit Gr and a period � such that Gr is properly

timed by a clocking scheme whose period is �, whose gap widths are 
0; 
1, and whose duty ratio is

�. The period � is guaranteed to be at most (1 + �) times the period of any clocking scheme that

can be achieved by G under retiming and whose duty ratio is �.

clocking scheme is achievable using Algorithm Retime from Section 2.7. Binary search can

be employed because if a given clock period is achievable, every greater clock period is also

achievable.

Algorithm R&FDRT binary searches over a range of clock periods that is guaranteed

to include the minimum clock period ��. As a lower bound on ��, the algorithm uses


0 + 
1, which follows from Equation (2.1). As an upper bound, the algorithm uses the

value jV j dmax + 
0 + 
1, where dmax is the maximum delay of any individual functional

element. To see that a clock period of jV j dmax + 
0 + 
1 is always achievable for any

duty ratio, we consider the inequalities in Lemma 18. For each inequality, we choose the

largest left-hand side|at most jV j dmax|and the smallest right-hand side|w(p) = 1 in

Inequality (2.6), and w(p) = 0 in Inequality (2.7), and w(c) = 2 in Inequality (2.8). With

the value � = jV j dmax + 
0 + 
1, the inequalities are all satis�ed.

It remains to show that the search terminates when it has isolated a su�ciently accurate

approximation � of the true minimum ��. The algorithm maintains that approximation �

and the optimal clock period �� both fall within an interval [��; �+]. The search terminates

when �+ � �� � � dmax, at which point we have

� � �+

� �� + � dmax

� �� + � dmax

� �� + � ��

� (1 + �)��:
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R&ST(G; 
; �)

1 dmax  maxv2V d(v)

2 �+  jV jdmax + 2


3 �0  �+=2� 


4 ��  2


5 while �+ � �� > �dmax
6 do �  (�+ + ��)=2

7 �0
0
 �=2� 


8 if RwSCS(G; h�0
0
; 
; �0

0
; 
i) 6= fail

9 then �+  �

10 �0  �0
0

11 else ��  �

12 r  RwSCS(G; h�0; 
; �0; 
i)

13 return � and r

Figure 2-13: Algorithm R&ST, which solves the retiming and symmetric tuning problem. The

algorithm takes as input a two-phase circuit G = (V;E; d; w; �), a gap width 
, and a relative

error � > 0. It computes a retimed circuit Gr and a period � such that Gr is properly timed by a

symmetric clocking scheme whose period is � and whose gap widths are both 
. The period � is

guaranteed to be at most (1 + �) times the period of any symmetric clocking scheme that can be

achieved by retiming G.

Algorithm R&FDRT runs in O(V 3 lg(V=�)) time, as can be seen by the following anal-

ysis. Lines 1{4 require only O(V ) time. Each execution of the while loop (lines 5{11)

is dominated by the O(V 3)-time call to Retime. The while loop is executed O(lg(V=�))

times, since the range between the initial upper and lower bounds on � is jV j dmax, and we

continue the search until the range is � dmax, dividing the range by 2 in every iteration.

Algorithm R&FDRT can be adjusted to �nd an exact solution when the propagation

delays of the combinational elements are integers. Speci�cally, the retiming and �xed-duty-

ratio tuning problem can be solved exactly in O(V 3 lg(V dmax=�)) time, where

� = min

�
1

3 jV j � 1
;


0

2(3 jV j � 1)2
;


1

2(3 jV j � 1)2

�
:

Using the integrality of the delays, it is straightforward to show that the clock period of

any two clocking schemes de�ned by Inequalities (2.11) and (2.12) must di�er by at least �.

The proof relies on the fact that the optimal clocking scheme is de�ned by the intersection

of Equation (2.1) with one of the lines de�ned by Inequalities (2.11), (2.12), and (2.8).

2.9.2 Retiming and Symmetric Tuning

The retiming and symmetric tuning problem is a special case of the retiming and

�xed duty-ratio problem, and therefore, it can be solved with Algorithm R&FDRT in

O(V 3 lg(V=�)) time. We can solve this special case in O((V E+V 2 lg V ) lg(V=�)) time using

Algorithm R&ST shown in Figure 2-13.

The new algorithm R&ST(G; 
; �), takes as arguments the circuit G, a value 
 for the
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gaps between the two phases, and a relative error �. It is essentially identical to Algorithm

R&FDRT, except that the calls to Algorithm Retime are replaced by calls to Algorithm

RwSCS. Since retiming with symmetric clocking schemes can be accomplished in O(V E+

V 2 lg V ) time, the same analysis as for Algorithm R&FDRT yields a running time of

O((V E + V 2 lg V ) lg(V=�)) for Algorithm R&ST.

Algorithm R&ST can be adjusted to �nd an exact solution when the propagation delays

of the combinational elements are integers. Speci�cally, the retiming and symmetric tuning

problem can be solved exactly in O((V E + V 2 lg V ) lg(V dmax=�)) time, where

� = min

�
1

3 jV j � 1
;


0

2(3 jV j � 1)2
;


1

2(3 jV j � 1)2

�
:

The proof relies on the integrality of the delays and the fact that the optimal clocking scheme

is given by the intersection of Equation (2.1) with one of the lines de�ned by Inequalities

(2.11), (2.12), and (2.8).

2.9.3 Retiming and Tuning

We now describe a polynomial-time approximation scheme for the general retiming and

tuning problem. Algorithm GR&T, shown in Figure 2-14, computes a retimed circuit Gr

and a clocking scheme � such that Gr is properly timed by � and the period of � is at most

(1 + �) times the minimum clock period �� that can be achieved by any retiming Gr. The

algorithm runs in O(V 3(1=�) lg(1=�) + (V E + V 2 lg V ) lg(V=�)) time.

Algorithm GR&T proceeds as follows. In the beginning, it employs Algorithm R&ST

to compute a symmetric clocking scheme �+ whose period is an upper bound on ��. Specif-

ically, �+ satis�es ��s � �+ � (1 + �)��s , where �
�

s is the period of the shortest symmetric

clocking scheme with gaps 
 = max f
0; 
1g that can be achieved by a retimed circuit Gr.

Subsequently, Algorithm GR&T computes a lower bound �� on the optimal clock pe-

riod ��. The bounds �+ and �� are then updated in the body of the outer while loop

(lines 7{22), as long as they di�er by more than the constant � computed in line 6. Each

time through the loop, the algorithm searches for a retiming r such that Gr is properly

timed by a clocking scheme of period � = (�+ + ��)=2. This search is conducted in the

inner while loop (lines 11{19), which considers clocking schemes of period � with �0 as-

suming values in increments of 3� from the interval (0; � � 
0� 
1). If a retimed circuit Gr

is properly timed by one of these clocking schemes, then the upper bound �+ assumes the

value � (lines 16{19). If no retiming of period � exists among the sampled values for �0,

however, then the lower bound �� is increased to � (lines 20{22).

The linear search for �0 in increments of 3� (lines 11{19) is a key part of Algorithm

GR&T. The following lemma, which is illustrated in Figure 2-15, is used in the correctness

proof of Algorithm GR&T. The lemma considers a feasible clocking scheme for a circuit.

If the clock period is lengthened by an amount �, the lemma shows that there is a range

of width 3� of values for �0 such that proper timing is una�ected.

Lemma 43 Let G = hV;E; d; w; �i be a circuit, and let �0 = h�00; 
0; �
0

1; 
1i be a clocking

scheme such that G is properly timed by �0. Then, for any � � 0 and �0 in the range

�00 �� � �0 � �00 + 2� such that 0 < �0 < � � 
0 � 
1, the circuit G is properly timed by

the clocking scheme � = h�0; 
0; �1; 
1i, where � = �0 +� and �1 = � � 
0 � 
1 � �0.
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GR&T(G; 
0; 
1; �)

1 dmax  maxv2V d(v)

2 
  maxf
0; 
1g

3 �+  period of clocking scheme returned by R&ST(G; 
; �)

4 �+0  duty cycle of phase 0 in clocking scheme returned by R&ST(G; 
; �)

5 ��  max f�+=2(1 + �); 
0 + 
1g

6 �  ���=2

7 while �+ � �� > �

8 do �  (�+ + ��)=2

9 �0  min f2�; (� � 
0 � 
1) =2g � 3�

10 feasible  false

11 while (� � 
0 � 
1)� �0 > � and feasible = false

12 do � Begin linear search over �0 for feasible (�0; �).

13 �0  minf�0 + 3�; � � 
0 � 
1 � �g

14 �1  � � 
0 � 
1 � �0
15 if Retime(G; h�0; 
0; �1; 
1i) 6= fail

16 then � Found feasible (�0; �).

17 feasible  true

18 �+  �

19 �+0  �0
20 if feasible=false

21 then � � is not feasible for any �0.

22 ��  �

23 �+1  �+ � 
0 � 
1 � �+0
24 r  Retime(G; h�+0 ; 
0; �

+

1 ; 
1i)

25 return h�+0 ; 
0; �
+

1 ; 
1i and r

Figure 2-14: Algorithm GR&T for solving the general retiming and tuning problem. The algo-

rithm takes as input a two-phase circuit G, gap widths 
0 and 
1, and a relative error � > 0. It

computes a retimed circuit Gr and a clocking scheme � such that Gr is properly timed by � and

the period of � is less than (1 + �) times the period of any clocking scheme that can be achieved by

retiming G.

Proof. Since G is properly timed by �0, it satis�es Inequalities (2.2) and (2.3) in Lemma 14

for the clocking scheme �0. In order to prove that G is properly timed by �, we shall show

that G also satis�es the constraints in Lemma 14 for the clocking scheme �.

Inequality (2.2) implies that for every path u
p
; v in Gr with �(u) 6= �(v) and �(u) = 0,

we must have

d(p) � �0
�
1 + w(p)

2

�
+ �0

0

= �

�
1 + w(p)

2

�
� (� � �0)

�
1 + w(p)

2

�
+ �00

� �

�
1 + w(p)

2

�
��+ �00
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Figure 2-15: Illustration of the importance of Lemma 25 for the linear search in AlgorithmGR&T.

The white rectangles denote the points of the (�0; �)-plane that are visited during the linear search

with a speci�ed �. If a circuit G is properly timed by a clocking scheme h�00; 
0; �
0

1; 
1i, then it is

properly timed by every clocking scheme in the shaded area. The line with slope �1 is the steepest

among the constraints for �0 on paths u; v with �(u) = 0 and �(v) = 1. The line with slope 1=2 is

the steepest among the constraints for �0 on paths u; v with �(u) = 1 and �(v) = 0. If �0 � �� �,

then at least one of the white rectangles lies in the shaded area, and the circuit G is properly timed

at that point.

� �

�
1 + w(p)

2

�
+ �0 ;

since � � �0, w(p) � 1, and �00�� � �0. When �(u) = 1, we can show in a similar way and

using the inequality �0 � �0
0
+2� that G still satis�es the path constraints for �. Therefore,

G satis�es Inequality (2.2) for �.

The constraints described by Inequality (2.3) depend on the length of the clock period

and not on the duty cycles of the particular phases. By increasing the clock period from �0

to � these constraints are still satis�ed.

Since G satis�es Inequalities (2.2) and (2.3) for �, Lemma 14 implies that it is properly

timed by �. 2

Now, we can prove the correctness of Algorithm GR&T.

Lemma 44 AlgorithmGR&T computes a solution to the general retiming and tuning prob-

lem whose relative error is at most �.
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Proof. Algorithm GR&T maintains two invariants during its execution. We shall use

these invariants to show that Algorithm GR&T returns a clocking scheme � such that � �

(1 + �)��, where �� is the minimum clock period that can be achieved by any retiming Gr.

The �rst property that remains invariant during the execution of Algorithm GR&T

is that there exists a retimed circuit Gr that is properly timed by �+ = h�+0 ; 
0; �
+

1 ; 
1i.

Initially, the clocking scheme �+ is essentially the symmetric scheme returned by Algorithm

R&ST, except that one of the gaps may be smaller. Shortening a gap does not a�ect the

proper timing of Gr, however, as long as the clock period remains the same. Subsequently,

the parameters of the clocking scheme �+ are updated in lines 18{19, in which case the

algorithm has found a retiming r such that Gr is properly timed by the new clocking

scheme. Therefore, the invariant is maintained throughout the execution of the algorithm.

The second property that remains invariant during the execution of Algorithm GR&T

is that �� � ��+�. Initially, �� assumes the value max f�+=2(1 + �); 
0 + 
1g, where �
+ is

the period of the optimal symmetric clocking scheme within a relative error �. We can show

that this value is a lower bound for �� as follows. The term 
0 + 
1 is a lower bound for

�� by de�nition of the clock period. For the term �+=2(1 + �), if we let ��s be the period of

the optimal symmetric clocking scheme with gaps 
 = max f
0; 
1g, then since we initially

have �+ � ��s(1 + �), it follows that

�+=2(1 + �) � ��s(1 + �)=2(1 + �)

� ��s=2 :

Moreover, we have

��s=2 � �� ;

since if ��s=2 > ��, then by extending the shorter gap and the shorter duty cycle in ��

to become equal to the longer gap and duty cycle respectively, we would obtain a feasible

symmetric clocking scheme with period at most 2�� < ��s , thus contradicting the optimality

of ��s . Therefore, we initially have �� � �� � �� + �, and the invariant holds. During the

execution of the algorithm, �� is updated in line 22 whenever the linear search yields

no retimed circuit Gr that achieves a clock period � = (�+ + ��)=2. The linear search is

performed in increments of 3�, and if it fails to �nd any feasible point, Lemma 43 guarantees

that any feasible clocking scheme has period at least ���. Consequently, the optimal clock

period �� must satisfy �� � � � �, and since � > ��, it follows that �� + � � ��, and the

invariant still holds.

The boundary conditions of the linear search are established in lines 9 and 13 of the

code. The duty cycle �0 is initialized to a value such that the predicate in line 11 is always

satis�ed and the inner loop is executed at least once. In the �rst iteration of the inner loop,

we have 0 < �0 � 2� and �1 > 0. The linear search proceeds in increments of 3�, and it

continues until �0 attains a value such that (� � 
0 � 
1)� � � �0 < � � 
0 � 
1.

The Algorithm GR&T terminates when �+��� � � and returns a clock period � that

satis�es

� � �+

� �� + �
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� �� + 2�

� �� + ���

� (1 + �)�� :

Therefore, Algorithm GR&T returns a clocking scheme whose period is within a relative

error of � of the optimal period. 2

Theorem 45 Algorithm GR&T can solve the general retiming and tuning problem for a

two-phase, level-clocked circuit G = hV;E; d; w; �i with relative error � in O(V 3(1=�) lg(1=�)+

(V E + V 2 lg V ) lg(V=�)) time.

Proof. The correctness of Algorithm GR&T follows from Lemma 44. It remains to show

that it terminates in O(V 3(1=�) lg(1=�) + (V E + V 2 lg V ) lg(V=�)) steps.

Lines 1{4 of the algorithm complete in (V E + V 2 lg V ) lg(V=�)) time. The external

while loop (lines 7{22) performs a binary search in the interval [��; �+]. The resolution of

the search is � = ���=2, and therefore, the number of potential periods is

�+ � ��

���=2
�

�+ � (
0 + 
1)

((�+ � 
0 � 
1)=2(1 + �))(�=2)

=
4(1 + �)

�
= O (1=�) :

Thus, the binary search causes lines 7{22 to be executed O(lg(1=�)) times. The internal

while loop (lines 11{19) performs a linear search in the interval (0; (� � 
0 � 
1)=2) in

increments of 3�. In this case, the number of points checked is at most

(� � 
0 � 
1)=2

3((�+ � 
0 � 
1)=2(1 + �))(�=2)
=

4

3

�
1 + �

�

�
:

Therefore, for each �, lines 11{19 are executed O(1=�) times. Line 15 terminates in O(V 3)

time, and therefore, each iteration of lines 7{22 in Algorithm GR&T requires O(V 3(1=�))

time. Combining the time bounds, we conclude that Algorithm GR&T terminates in

O(V 3(1=�) lg(1=�) + (V E + V 2 lg V ) lg(V=�)) time. 2

The practical e�ciency of Algorithm GR&T can be improved by updating � in the

then clause of line 22 immediately after �� has been updated with its new value. As ��

increases, the resolution � of the linear search decreases, and thus, fewer points are checked.

The worst-case running time of the algorithm does not change, however. Although the linear

search is ine�cient, we do not know how to replace it by a more e�cient binary search.

The reason for this di�culty is that whenever a particular clock period is not achievable for

a speci�c �0, we do not know how to tell whether the duty cycle of phase 0 should become

shorter or longer.
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PolyR&FDRT(G; �; 
0; 
1)

1 Use Algorithm PiFDR to compute the set �(�) of possible periods.

2 Sort the elements in �(�).

3 Use Algorithm Retime to binary search the elements of �(�) for the minimum period �

that can be achieved by a retiming r.

4 return � and r.

Figure 2-16: Algorithm PolyR&FDRT for the retiming and �xed-duty-ratio tuning problem.

The algorithm takes as input a circuit G = hV;E; d; w; �i, a duty ratio �, and two gap widths 
0 and


1. It computes a retimed circuit Gr and a period � such that Gr is properly timed by a clocking

scheme whose period is �, whose gap widths are 
0; 
1, and whose duty ratio is �. The period �

is guaranteed to be the minimum period over all clocking schemes that can be achieved by G after

retiming and tuning with �xed duty-ratio �.

2.10 Polynomial-Time Algorithms for Minimum-Period Re-

timing

In this section we present polynomial-time algorithms for three minimum-period retiming

problems. We have already investigated these three problems in Section 2.9, but the algo-

rithms we described in that section were fully polynomial-time approximation schemes. The

polynomial-time algorithms in this section compute exact solutions to these problems. We

�rst give an O(V 2E + V 3 lg V )-time algorithm for the retiming and �xed-duty-ratio tuning

problem. We adapt this algorithm to solve the retiming and symmetric tuning problem

in O(V 2E) time. Finally, we give an O(V 11)-time algorithm for the general retiming and

tuning problem. This algorithm is interesting only from a theoretical perspective, however,

because the degree of the polynomial in its running time renders it impractical for large

circuits.

2.10.1 Retiming and Fixed-Duty-Ratio Tuning

Algorithm PolyR&FDRT, shown in Figure 2-16, solves the retiming and �xed-duty-

ratio tuning problem by binary searching a set �(�) of O(V 3) possible clock periods. The

set �(�) is guaranteed to contain the minimum clock period that can be achieved by G

after retiming and tuning with �xed duty-ratio �. Step 1 computes �(�) using Algorithm

PiFDR which is described in Subsection 2.10.5. Step 2 sorts the elements in �(�), and

Step 3 performs a binary search over the potential periods in order to identify the optimal.

The binary search of �(�) is possible, because if a clock period � cannot be achieved by

retiming, then no clock period �0 < � can be achieved, for a �xed duty-ratio �. Algorithm

Retime is used as a subroutine in the search to test whether a potential clock period can

be achieved by retiming.

Algorithm PolyR&FDRT runs in O(V 2E+V 3 lg V ) time. The computation of �(�) by

Algorithm PiFDR can be performed in O(V 2E) time, as it is shown in Subsection 2.10.5.

The O(V 3) elements of �(�) can be sorted in O(V 3 lg V ) time. The binary search takes

O(V 3 lg V ) time, since Algorithm Retime runs in O(V 3) time. Therefore, Algorithm

PolyR&FDRT terminates in O(V 2E + V 3 lg V ) steps.
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PolyR&ST(G; 
)

1 Use Algorithm PiFDR to compute the set �(�) of possible periods.

2 Use Algorithm RwSCS to perform a median-based binary search of the elements in �(�)

for the minimum period � that can be achieved by a retiming r.

3 return � and r.

Figure 2-17: Algorithm PolyR&ST for the retiming and symmetric tuning problem. The algo-

rithm takes as input a circuit G = hV;E; d; w; �i and a gap width 
. It computes a retimed circuit

Gr and a period � such that Gr is properly timed by a symmetric clocking scheme whose period

is �, and whose gap widths are 
. The period � is guaranteed to be the minimum period over all

symmetric clocking schemes that can be achieved by G under retiming.

2.10.2 Retiming and Symmetric Tuning

The retiming and symmetric tuning problem is a special case of the retiming and �xed-

duty-ratio problem in which only symmetric clocking schemes are considered. This problem

can be solved in O(V 2E) time using Algorithm PolyR&ST shown in Figure 2-17.

Algorithm PolyR&ST takes as arguments the circuit G and a value 
 for the gaps

between the two phases. The computation of the set �(�) in Step 1 is identical to the

computation in Step 1 of Algorithm PolyR&FDRT. In Step 2, Algorithm RwSCS is used

as a subroutine to binary search �(�) for the minimum period that can be achieved by

retiming G. Contrary to Algorithm PolyR&FDRT, however, the elements of �(�) are not

sorted, because the O(V 3 lg V ) time required to sort its O(V 3) elements would not allow us

to achieve the O(V 2E) running time. Instead, the binary search is performed by computing

the median of the periods still under consideration at each iteration of the search.

Algorithm PolyR&ST runs in O(V 2E) time. The computation of �(�) in Step 1

requires O(V 2E) time. Each iteration of the binary search in Step 2 requires O(V E +

V 2 lg V ) time. Since the median of a set of n elements can be found in O(n) time [2, 10,

18], and since the binary search halves the number of periods under consideration at each

iteration, Step 2 completes in

O(lg V )X
i=0

�
O

�
V 3

2i

�
+O(V E + V 2 lg V )

�
= O(V 3 + (V E + V 2 lg V ) lg V )

= O(V 3 + V E lg V )

steps. Therefore, Algorithm PolyR&ST terminates in O(V 2E) + O(V 3 + V E lg V ) =

O(V 2E) time.

2.10.3 Retiming and Tuning

Algorithm PolyR&T, shown in Figure 2-18, solves the retiming and tuning problem

using a linear search over a space � of possible duty-cycle/period pairs. Step 1 employs

Algorithm Pi to compute a set � of O(V 8) pairs (�0; �) that is guaranteed to contain a

pair corresponding to an optimal clocking scheme that can be achieved by retiming G.

Algorithm Pi is described in Subsection 2.10.4. Step 3 performs a linear search over the
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PolyR&T(G; 
0; 
1)

1 Use Algorithm Pi to compute the set � of possible (�0; �) pairs.

2 Use Algorithm Retime to search the elements in � for the minimum period �

that can be achieved by a retiming r.

3 return � and r.

Figure 2-18: Algorithm PolyR&T for the retiming and tuning problem. The algorithm takes as

input a circuit G = hV;E; d; w; �i and gap widths 
0; 
1. It computes a retimed circuit Gr and a

period � such that Gr is properly timed by a clocking scheme whose period is �, and whose gap

widths are 
0; 
1. The period � is guaranteed to be the minimum period over all clocking schemes

that can be achieved by G under retiming.

elements of � in order to identify the optimal. Algorithm Retime is used as a subroutine

in the search to test whether a potential clocking scheme can be achieved by retiming. Even

though this linear search is ine�cient, we do not know of a way to replace it by a binary

search, beacause if a period � is not achievable we do not know how to tell whether �0

should be made longer or shorter.

Algorithm PolyR&T runs in O(V 11) time. The computation of � by Algorithm Pi can

be performed in O(V 8) time, as it is shown in Subsection 2.10.4. The linear search takes

O(V 11) time, since Algorithm Retime runs in O(V 3) time, and there are O(V 8) elements

in �. Therefore, Algorithm PolyR&T terminates in O(V 11) steps.

2.10.4 Possible Periods for Retiming and Tuning

In this section we describe Algorithm Pi that constructs the set � of pairs (�0; �) that is used

by Algorithm PolyR&T. We �rst explain the derivation of � based on the conditions for

proper timing that must hold for every retiming of the original circuit G. Then, we describe

the operation of Algorithm Pi, and we argue that it terminates in O(V 8) time. Finally, we

prove its correctness by showing that the pair (�0; �) corresponding to the minimum-period

clocking scheme that can be achieved by retiming G is included among the O(V 8) elements

of �.

The construction of � is based on Lemma 18 which states that a given two-phase, level-

clocked circuit G is properly timed by a given clocking scheme � if and only if Inequalities

(2.6), (2.7), and (2.8) hold. The set � is obtained by considering the Inequalities (2.6), (2.7),

and (2.8) for every possible retiming of G. The intersections of the lines de�ned by all these

inequalities are guaranteed to include all optimal pairs (�0; �). This approach is similar to

the approach taken for the clock tuning problem. There are two di�erences, however. First,

the number of intersections increases when tuning is combined with retiming, because the

relocation of latches introduces new constraints. Second, the intersections formed between

constraints that correspond to di�erent retimings are redundant. Every optimal point that

can be achieved for some retiming, however, is included in �.

Algorithm Pi is shown in Figure 2-19. For every constraint that is signi�cant for the

proper timing of some retiming of G, the set C holds its corresponding line on the (�0; �)

plane. In Step 2 the set C is augmented by the single lower bound on � that holds for every

retiming of G and is given in Inequality (2.16). Step 3 is similar to Step 2 in Algorithm TV.
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Pi(G; 
0; 
1)

1. Initialize C to be the empty set of lines on the (�0; �)-plane.
2. Augment C by the line corresponding to the single lower bound on the clock period �

that is de�ned in Lemma 27.
3. For each u 2 V , compute DD(u; v; i) for all v 2 V and i = 0; 1; : : : ; 3 jV j � 3, from

the recurrence

DD(u; v; i) = d(v) + max
n
DD(u; x; i� w(e)) : x

e
! v and i � w(e)

o
:

4. For each u; v 2 V , and for 0 � i � 6 jV j � 2; 0 � i+ l � 3 jV j � 3; j = 0; 1, augment C

by the line corresponding to the following constraint:

� �
DD(u; v; i) � �j

(1 + i+ l)=2
if i+ l is odd;

� �
DD(u; v; i) � 
j

(2 + i+ l)=2
if i+ l is even.

5. Return � = f(�0; �) : (�0; �) is an intersection between two lines in Cg.

Figure 2-19: Algorithm Pi takes a circuit G, and two gap widths 
0 and 
1. The algorithm runs in

O(V 8) time and computes a set � of O(V 8) pairs (�0; �) that include the minimum-period clocking

scheme that can be achieved by retiming G.

First, we compute a topological sort of all edges e 2 E with w(e) = 0. We then execute

a triply nested loop that computes the longest propagation delay between every pair of

vertices u; v 2 V , for paths with up to 3jV j � 3 latches. The outer loop is indexed by u,

the middle loop is indexed by i, and the inner loop is indexed by each e 2 E consistent

with the topological sort order if w(e) = 0 and in any order if w(e) > 0. Step 4 computes

O(V 2) constraints for each pair of vertices u; v 2 V . Finally, Step 5 computes and returns

the O(V 8) intersections among the O(V 4) constraints.

We now prove a bound on the running time of Algorithm Pi.

Lemma 46 Algorithm Pi terminates in O(V 8) time.

Proof. The initialization of Step 1 is computed in O(1) time. Step 2 terminates in O(V E)

time according to Lemma 27. In Step 3, the topological sort requires O(E) time. In the

triply nested loop, u takes on O(V ) values, i takes on O(V ) values, and e takes on O(E)

values. Thus, the total number of steps for Step 3 is O(V 2E). Step 4 requires O(V 4) time.

Finally, the O(V 8) intersections in Step 5 are computed in O(V 8) time. Thus, the total

running time of Algorithm Pi is O(V 8). 2

We prove the correctness of Algorithm Pi in two lemmas.

Lemma 47 Let G = hV;E; d; w; �i be a two-phase, level-clocked circuit. Then Inequal-

ity (2.8) can be reduced to a single constraint that holds for any retimed circuit Gr.

Proof. According to Lemma 27, the constraints de�ned by Inequality (2.8) can be reduced

to the single lower bound given by Inequality (2.16), for any given retiming of the original

circuit G. Moreover, these constraints remain unaltered for every retiming of G, because
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retiming does not change the propagation delay or the number of latches around any cycle

in the circuit. Therefore, Inequality (2.8) can be reduced to a single constraint that holds

for any retiming of G. 2

Lemma 48 Let G = hV;E; d; w; �i be a two-phase, level-clocked circuit. Then Inequalities

(2.6) and (2.7) lead to O(V 4) constraints that are signi�cant for the proper timing of any

retimed circuit Gr.

Proof. We shall �rst prove the lemma for Inequality (2.6). Consider a �xed retiming Gr

of the original circuit G and a pair of vertices u; v 2 V with �r(u) = 0 and �r(v) = 1; the

situation with �r(u) = 1 and �r(v) = 0 is similar. Inequality (2.6) applies in this case, and

for every simple path u
p
; v in Gr, we have

d(p) � �

�
1 + w(p) + r(v)� r(u)

2

�
+ �0 : (2.33)

For a �xed w(p), there may exist an exponential number of such constraints, since the

number of simple paths u
p
; v with initially w(p) latches on them may be exponential. We

can reduce these exponentially many constraints down to a single constraint by considering

the simple path u
q
; v with the longest delay. Therefore, all simple paths u

p
; v in Gr with

w(p) = i must satisfy the single tightest constraint

DD(u; v; i) � �

�
1 + w(p) + r(v)� r(u)

2

�
+ �0 ; (2.34)

where the longest path delay DD(u; v; i) is de�ned as

DD(u; v; i) = max fd(p) : p is a path from u to v, and w(p) = ig ; (2.35)

for every pair of vertices u; v 2 V . Note that the longest propagation delay DD(u; v; i)

is computed over all paths u
p
; v in Gr with w(p) = i, instead of just over the simple

paths between the two vertices. We use this de�nition of DD(u; v; i) for e�cieny reasons:

computing DD(u; v; i) as de�ned requires O(V 2E) steps, whereas computing DD(u; v; i)

over simple paths is an intractable problem, since even �nding a simple path with any given

number of edges is intractable [13]. It is straightforward to verify, however, that no incorrect

or redundant constraints are generated when DD(u; v; i) is de�ned as in Equation (2.35).

If DD(u; v; i) is attained for a simple path, then Inequality (2.34) is one of the constraints

de�ned by Inequality (2.33). If DD(u; v; i) is attained for a path p that is not simple,

however, then we can show that Inequality (2.34) can be also derived from a set of simple

paths and simple cycles. Let p consist of a simple path u
p0

; v and simple cycles c1; : : : ; cn,

for some n. If the circuit is properly timed, then from Inequality (2.6) we have

d(p0) � �

�
1 + w(p0) + r(v)� r(u)

2

�
+ �0 ;
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and from Inequality (2.8) we have

d(ci) � �

�
w(ci)

2

�
;

for i = 1; : : : ; n. Inequality (2.34) follows immediately by adding these inequalities by parts,

and therefore, it is not a redundant or incorrect constraint.

We now show that for a given pair of vertices u; v 2 V there are O(V 2) constraints that

determine the clock period for any retiming of the original circuit and for any initial number

of latches on any path u ; v. According to Corollary 17, every simple path with more

than 3jV j� 3 latches does not determine the clock period of a two-phase circuit. Moreover,

Lemma 39 states that for every circuit G that can be retimed to achieve a speci�c clock

period, there exists a minimum retiming r that assigns integers in the interval [0; 3jV j � 1].

Therefore, every path with more than 6jV j � 2 latches initially can be ignored, and every

retiming that leaves more than 3jV j � 3 latches on a path can be ignored. Thus, after

rearranging, for each pair of vertices u; v 2 V we are left with the O(V 2) constraints

� �
DD(u; v; i)� �0

(1 + i+ r(v)� r(u))=2
; (2.36)

where 0 � i � 6 jV j � 2, 0 � i+ r(v) � r(u) � 3 jV j � 3, and i+ r(v) � r(u) is odd. Since

there are O(V 2) such pairs, we have a total of O(V 4) constraints.

The constraints corresponding to Inequality (2.7) can be handled in a similar way. For

each pair of vertices u; v 2 V with �r(u) = �r(v) = 0, we have the O(V ) constraints

� � max
i

DD(u; v; i)� 
1

(2 + i+ r(v)� r(u))=2
; (2.37)

where 0 � i � 6 jV j � 2, 0 � i+ r(v) � r(u) � 3 jV j � 3, and i+ r(v) � r(u) is even. The

situation with �r(u) = �r(v) = 1 is similar. Since there are O(V 2) such pairs, we have a

total of O(V 3) constraints. Therefore, the total number of constraints for the proper timing

of any retimed circuit Gr is O(V
4). 2

Thus, we obtain the following theorem.

Theorem 49 In O(V 8) time, Algorithm Pi correctly computes a set � of O(V 8) pairs

(�0; �) that includes the minimum-period clocking schemes that can be achieved by a retiming

of G.

Proof. The running time of the algorithm follows directly from Lemma 46. The correctness

of the algorithm follows directly from Lemmas 47 and 48. 2

2.10.5 Possible Periods for Retiming and Fixed-Duty-Ratio Tuning

In this section we describe the O(V 2E)-time Algorithm PiFDR that is employed by

Algorithms PolyR&FDRT and PolyR&ST to compute the set �(�). This set has O(V 3)

elements which include the minimum clock period that can be achieved by retiming G and

simultaneously tuning its clocking scheme with a �xed duty-ratio �. We show that when the

duty-ratio is �xed, there are at most O(V 3) constraints that determine the clock period of
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PiFDR(G; �; 
0; 
1)

1. Initialize �(�) to be the empty set.
2. Augment �(�) by the single lower bound on the clock period � that is de�ned in

Lemma 27.
3. For each u; v 2 V compute

imin(u; v) = min
n
w(p) : u

p
; v in G

o
:

4. For each u 2 V , compute DD(u; v; i) for all v 2 V and i = 0; 1; : : : ; 3 jV j � 3, from

the recurrence

DD(u; v; i) = d(v) + max
n
DD(u; x; i� w(e)) : x

e
! v and i � w(e)

o
:

5. Use Algorithm OddCount for each u; v 2 V and for j = 0; 1, to augment �(�) by

the lower bound on the clock period � that is de�ned by the following constraint:

� � max
i

(��j + 1)DD(u; v; i) + 
0 + 
1

(��j + 1)(1 + i+ l)=2 + 1
;

where �imin(u; v) � l � 3 jV j � 1; imin(u; v) � i � 3 jV j � 3� l; and i+ l is odd.
6. Use Algorithm EvenCount for each u; v 2 V and for j = 0; 1, to augment �(�) by

the lower bound on the clock period � that is de�ned by the following constraint:

� � max
i

DD(u; v; i) � 
j

(2 + i+ l)=2
;

where �imin(u; v) � l � 3 jV j � 1; imin(u; v) � i � 3 jV j � 3� l; and i+ l is even.
7. Return �(�).

Figure 2-20: Algorithm PiFDR takes a circuit G, a duty-ratio �, and two gap widths 
0 and 
1.

The algorithm runs in O(V 2E) time and computes a set �(�) of O(V 3) pairs (�0; �) that describe

clocking schemes with duty-ratio �. The set �(�) includes the minimum-period clocking scheme

with duty-ratio � that can be achieved by retiming G.

any retiming of G. We then show how to compute the clock periods corresponding to these

constraints in O(V 3) time, and we argue that Algorithm PiFDR terminates in O(V 2E)

steps.

Algorithm PiFDR, shown in Figure 2-20, relies on the observation that in retiming and

�xed-duty-ratio tuning the optimal clocking scheme is determined by the intersection on

the (�0; �)-plane of Equation (2.1)

� = �0 + 
0 + �1 + 
1

= (1 + �)�0 + 
0 + 
1

with one of the lines de�ned by Inequalities (2.6), (2.7), and (2.8). Step 2 computes in

O(V E) time the single intersection of Equation (2.1) with the line de�ned by Inequal-

ity (2.8). For every pair of vertices u; v 2 G, Step 3 computes the latch count imin(u; v) of

the path u
p
; v in G with the fewest latches. The maximum propagation delays DD(u; v; i)
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are computed in Step 4 for every pair of vertices u; v 2 V and for i = 0; 2; : : : ; 3 jV j � 3.

Step 5 computes O(V 3) intersections of Equation (2.1) with the lines de�ned by Inequal-

ity (2.6). For each of the O(V 2) pairs u; v 2 V , this step employs the O(V )-time Algorithm

OddCount, shown in Figure 2-21, to compute O(V ) clock periods that are generated when

every path from u to v has an odd number of latches after retiming. Algorithm OddCount

is invoked twice in this step, once for each possible phase of u after retiming. Step 6 is sim-

ilar to Step 5. In this step, Algorithm EvenCount is employed to compute O(V 3) clock

periods from Inequality (2.7) and for paths with an even number of latches after retiming.

The operation of Algorithm EvenCount is almost identical to that of Algorithm Odd-

Count, the only di�erence being that Algorithm EvenCount operates with respect to

Inequality (2.7) instead of Inequality (2.6).

The correctness of Algorithm PiFDR is proved in the following lemma.

Lemma 50 Let G = hV;E; d; w; �i be a two-phase, level-clocked circuit. Then Inequalities

(2.6), (2.7), and (2.8) lead to O(V 3) constraints that are signi�cant for the proper timing

of any retimed circuit Gr with a clocking scheme of �xed duty-ratio �.

Proof. We shall prove the lemma for Inequality (2.6). The proof for Inequalities (2.7)

and (2.8) is similar. Consider a retiming Gr of G and pair of vertices u; v 2 V with

�r(u) = 0 and �r(v) = 1. Inequality (2.6) applies in this case. Following the same steps as

in the proof of Lemma 48, we are left with the O(V 2) constraints

� �
DD(u; v; i)� �0

(1 + i+ r(v)� r(u))=2
; (2.38)

where 0 � i � 6 jV j � 2, 0 � i+ r(v) � r(u) � 3 jV j � 3, and i+ r(v) � r(u) is odd. From

Equation (2.1) and the de�nition of the duty-ratio � we have

�0 = � � 
0 � �1 � 
1

= � � 
0 � ��0 � 
1

=
� � 
0 � 
1

�+ 1
:

Thus, substitution of �0 in Inequality (2.38) yields

� �
(�+ 1)DD (u; v; i) + 
0 + 
1

(�+ 1)(1 + i+ r(v)� r(u))=2 + 1
;

where �imin(u; v) � r(v) � r(u) � 3 jV j � 1, imin(u; v) � i � 3 jV j � 3 � (r(v)� r(u)), and

i+ r(v)� r(u) is odd. Therefore, for any �xed l = r(v)� r(u) in the interval �imin(u; v) �

l � 3 jV j � 1, there is a single constraint

� � max
i

(�+ 1)DD (u; v; i) + 
0 + 
1

(�+ 1)(1 + i+ l)=2 + 1
;

where i ranges over all integers such that imin(u; v) � i � 3 jV j � 3 � l, and i + l is odd.

Therefore, there are O(V ) potential periods corresponding to the pair of vertices u; v 2 V .

Since there are O(V 2) such pairs, the total number of constraints is O(V 3). 2
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OddCount(G;u; v; j;DD; 
0; 
1; imin(u; v))

1 Initialize S and S0 to contain the line � = 0.

2 for i = imin(u; v) to 3 jV j � 3

3 do �i(l) =
(��j+1)DD(u;v;i)+
0+
1

(��j+1)(1+i+l)=2+1

4 if imin(u; v) mod 2 = 0 � computation for odd values of l

5 then b imin(u; v)

6 else b imin(u; v) � 1

7 for i = 3 jV j � 3 downto imin(u; v) with even i

8 do if �i(�b) � Stop(�b)

9 then while �i(l) \ Stop(l) � Stop(l) \ Stop�1(l) and S 6=Empty

10 do Pop(S)

11 Push(�i; S)

12 if imin(u; v) mod 2 = 1 � computation for even values of l

13 then b imin(u; v)

14 else b imin(u; v) � 1

15 for i = 3 jV j � 3 downto imin(u; v) with odd i

16 do if �i(�b) � S0

top(�b)

17 then while �i(l) \ S
0

top(l) � S0

top(l) \ S
0

top�1(l) and S0
6=Empty

18 do Pop(S0)

19 Push(�i; S
0)

20 return S and S0.

Figure 2-21: Algorithm OddCount takes a circuit G, a function DD , gap widths 
0 and 
1, a

pair of vertices u and v, the phase of u after retiming, and the minimum initial latch count of any

path from u to v in G. The algorithm runs in O(V ) time and computes the subset of �(�) that is

generated by an odd number of latches on any path between u and v after retiming.

The O(V )-time Algorithm OddCount that is employed by Algorithm PiFDR to com-

pute the clock periods due to odd latch counts after retiming is shown in Figure 2-21. This

algorithm computes the boundary curves of the region on the (l; �) plane that is de�ned

by the maximization in Step 5 of Algorithm PiFDR. The boundary curves are functions of

the variable l, and they are returned in two stacks S and S0. Stack S contains the curves

for odd values of l, and stack S0 contains the curves for even values of l. We shall describe

the computation of S in lines 4{11; the computation of S0 in lines 12{19 is similar. The for

statement of lines 7{11 scans the curves that correspond to even values i. The scan starts

from the maximum value of i and proceeds towards its minimum value. In the beginning

of the iteration for curve �i, the boundary curves among �3jV j�3; : : : ; �i�1 are already on

S. While �i lies above the leftmost vertex of the region that is de�ned by the curves on S,

then the top of S is popped. As soon as �i creates a new vertex on the left of the current

leftmost vertex, then �i is pushed onto S. These conditions are checked by comparing the

�-coordinates of intersections between �i and elements of the stack. The �-coordinates are

determined by the \ operator in the following way. When two curves intersect for l in the in-

terval �imin(u; v) � l � 3 jV j�3, the operator \ returns the �-coordinate of the intersection.

By convention, if two curves intersect for l outside the interval �imin(u; v) � l � 3 jV j � 3,
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or if Stop�1(l) in line 9 is empty, then the operator \ returns the values �1 and 0, respec-

tively. During the computation of S, we can keep track of the values of l that correspond

to vertices of the region de�ned by S. Thus, the maximum in Step 5 of Algorithm PiFDR

can be found in O(1) time, for every value of l, once S and S0 are known.

The following lemma shows that Algorithm OddCount runs in linear time.

Lemma 51 Algorithm OddCount terminates in O(V ) time.

Proof. The time required to compute and compare intersection points is O(1), as is the

time required to push and pop S. Each curve �i is pushed onto S or S0 at most once.

Curves popped from S or S0 are discarded, so each curve �i is popped from S or S0 at most

once. Thus, the total time needed to process each curve is O(1), and since there are O(V )

curves, the total running time of Algorithm OddCount is O(V ). 2

The following lemma is used to prove the correctness of Algorithm OddCount.

Lemma 52 Consider the for loop in lines 7{11 of Algorithm OddCount. After each

iteration of this loop with an even value i0, the stack S contains all curves �k such that for

every odd l in the interval �imin(u; v) � l � 3 jV j � 1 and for some even k in the interval

i0 � k � 3 jV j � 3, we have

�k(l) = max
i

�i(l) ;

where i ranges over all even values in the interval i0 � i � 3 jV j � 3.

Proof. The proof is by induction on the number of iterations. The base case for i0 =

2 b(3 jV j � 3) =2c holds, since �i(l) > 0 for all i; l in their corresponding intervals.

For the inductive step, we assume that the lemma holds for all values i > i0, and we

prove that it also holds for i0. Consider the curve �i0(l), and let �t(l) be the curve on the

top of S.

If �i0(�b) < �t(�b), where b = 2 bimin(u; v)=2c, then the algorithm does not push �i0

onto S. We will show that in this case we have �i0(l) < �t(l) for all l � �b, and therefore

the lemma holds. Since t > i0, the de�nitions of �i0(l) and �t(l) and the inequality �i0(�b) <

�t(�b) imply, after some algebraic manipulation, that

� b >
(��j + 1) (DD(u; v; t)i=2 �DD(u; v; i)t=2) + (
0 + 
1)(i=2� t=2)

(��j + 1)2 (DD(u; v; i)�DD(u; v; t)) =2
�

2

(��j + 1)
� 1 :

(2.39)

The curves �i0(l) and �t(l), however, have a single intersection (li0;t; �i0;t), where li0;t equals

the right-hand side of Inequality (2.39), and thus, we have �b > li0;t. Since �i0(l) and

�t(l) are continuous for l � �b, we conclude from the inequality �i0(�b) < �t(�b) that

�i0(l) < �t(l) for all l � �b.

Now, let us consider the situation where �i0(�b) � �t(�b). While the condition of the

while statement in line 9 of the algorithm holds, the stack S is popped. We distinguish the

following two cases:

li0;t < �b or li0;t � 3 jV j � 1. In this case, we have �i0(l) � �t(l) for all l in the interval

�b � l � 3 jV j�1, by the continuity of �i0(l) and �t(l) (see Figure 2-22(a)). Therefore,

�t(l) is not a boundary curve when �i0(l) is also considered, and it can be discarded

without violating the lemma.
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Figure 2-22: Parts (a) and (b) illustrate the situations in which the curve �i0 (l) lies above the

curve �t(l) on the top of the stack S, resulting into popping �t(l) o� of S. In part (a), the curves

�i0(l) and �t(l) intersect outside the interval [�b; 3 jV j� 3], whereas in Part (b) they intersect inside

the interval. Part (c) illustrates the situation in which the curve �i0(l) is pushed onto the stack S.

�b � li0;t � 3 jV j � 1. In this case we have �i0(l) � �t(l) for all l in the interval �b � l � li0;t.

Since �t(l) � �t0(l) for �b � l � lt;t0 , where lt;t0 is the l-coordinate of the intersection

between �t(l) and the curve �t0(l) below the top of the stack S (see Figure 2-22(b)),

by the monotonicity and continuity of �t(l) and �t0(l) we have lt;t0 � li0;t. Therefore,

�t(l) is not a boundary curve when �i0(l) is taken into consideration, and it can be

discarded without violating the lemma.

The curve �i0(l) is pushed onto the stack S the �rst time the condition of the while state-

ment is not satis�ed. In this case we have �i0(l) � �t(l) for all �b � l � li0;t, and therefore

the lemma holds (see Figure 2-22(c)). 2

Corollary 53 When Algorithm OddCount terminates, the stack S contains all curves �k
such that for every odd l in the interval �imin(u; v) � l � 3 jV j � 1 and for some even k in

the interval imin(u; v) � k � 3 jV j � 3, we have

�k(l) = max
i
�i(l) ;

where i ranges over all even values in the interval imin(u; v) � i � 3 jV j � 3. Similarly, the

stack S0 contains all curves �k such that for every even l in the interval �imin(u; v) � l �

3 jV j � 1 and for some odd k in the interval imin(u; v) � k � 3 jV j � 3, we have

�k(l) = max
i
�i(l) ;

where i ranges over all odd values in the interval imin(u; v) � i � 3 jV j � 3.

Proof. The proof for S follows directly from Lemma 52 for i0 = imin(u; v). The proof for S
0

is similar. 2

Thus, we obtain the following theorem.
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Theorem 54 In O(V 2E) time, Algorithm PiFDR correctly computes a set �(�) of O(V 3)

real numbers � that includes the period of the optimal clocking scheme with duty-ratio � that

can be achieved by a retiming of G.

Proof. The initialization are performed in O(1) time. Step 2 performs a tramp-steamer

computation and terminates in O(V E) time. Step 4 can be performed in O(V 2E) time.

According to Lemma 51, Step 5 terminates in O(V 3) time, since there are O(V 2) pairs

u; v 2 V . Therefore, the total running time of Algorithm PiFDR is O(V 2E) time.

The correctness of the algorithm follows directly from Lemma 50 and Corollary 53. 2

2.11 Multiphase clocking

Many of the results for two-phase clocking can be generalized to multiphase clocking disci-

plines. In this section, we sketch the formal framework for multiphase clocking and how the

various two-phase algorithms for timing veri�cation and optimization can be generalized.

We derive a veri�cation algorithm for k-phase clocking schemes that runs inO(kV E) time on

a \simple" k-phase circuit with jV j combinational elements and jEj interconnections. Clock

tuning for simple k-phase circuits can be performed, but our best algorithms to date require

general linear programming. The algorithms for retiming to achieve a given clocking scheme

can be generalized to run in O(V E+V 2 lg V ) time when the given clocking scheme is sym-

metric, and in O(kV 3) time when the given clocking scheme is not symmetric. The retiming

and symmetric tuning problem can be approximately solved in O((V E+V 2 lg V ) lg(kV=�))

time, where � is the relative error of the approximation. The retiming and �xed-duty-ratio

tuning problem can be approximately solved in O(kV 3 lg(kV=�)) time. The approxima-

tion scheme for the simultaneous clock tuning and retiming of two-phase circuits can also

be generalized, but the resulting polynomial running time is impractically large. Some of

the results in this section are similar to results obtained independently by Lockyear and

Ebeling [32].

We de�ne a k-phase clocking scheme to be a 2k-tuple � = h�0; 
0; �1; 
1; : : : ; �k�1; 
k�1i

of real numbers that satis�es the following constraints:

CS1. � =
Pk�1

i=0 (�i + 
i);

CS2. 0 < �i < � for i = 0; 1; : : : ; k � 1;

CS3. �i + 
i > 0 for i = 0; 1; : : : ; k � 1;

CS4. 
i + �i+1 > 0 for i = 0; 1; : : : ; k � 1;

CS5. �i + 
i + �i+1 < �, for i = 0; 1; : : : ; k � 1;

where we assume here and henceforth that addition in subscripts is performed modulo k.

In this formulation, we allow overlapping phases, that is, the 
i \gaps" can be negative.

Condition CS3 says that phases rise in order from 0 to k� 1, and Condition CS4 says that

they fall in order. For the simple k-phase circuits we consider, Conditions CS3 and CS4

are not both strictly necessary. One can show that if phases rise in one order, there is no

advantage to having them fall in another order. Condition CS5 guarantees that at least one

of the k phases is down at any point in time; for two-phase circuitry, this constraint reduces

to 
i > 0 for i = 0; 1. We say a simple k-phase clocking scheme is symmetric if �i = � and


i = 
 for all some constants � and 
 and all i = 0; 1; : : : ; k � 1.
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A simple k-phase circuit has the following properties:

MC1. It employs a simple k-phase clocking scheme.

MC2. It contains no latch-free cycles.

MC3. Any purely combinational path that begins with a latch controlled by some �i ends

with a latch controlled by �i+1.

We denote such a simple k-phase circuit by G = hV;E; d; w; �i, where � now maps each

vertex to a number in f0; 1; : : : ; k � 1g corresponding to the input phase of the vertex.

Condition MC3 ensures that the latches on any path are clocked in order by the phases in

the clocking scheme.

We now summarize the generalizations of our algorithms for two-phase circuits to simple

k-phase circuits.

Clock period constraints. Inequalities (2.2) and (2.3), which provide necessary and

su�cient conditions for the proper timing of two-phase circuits, generalize straightforwardly

to multiphase circuits. Let G = hV;E; d; w; �i be a simple k-phase circuit that employs a

clocking scheme � = h�0; 
0; �1; 
1; : : : ; �k�1; 
k�1i. Then G is properly timed if and only if,

for every path u
p
; v in G,

d(p) � �

�
w(p) + 1

k

�
+  (�(u); �(v)) ; (2.40)

where  (i; j) = �i + 
i + �i+1 + � � � + 
j + �j+1.

Timing veri�cation. To check whether a simple multiphase circuit is properly timed by

a simple k-phase clocking scheme, we can use the constraints de�ned by Inequality (2.40) to

derive a set of cyclic constraints identical to those described by Inequality (2.8), except with

k in the denominator instead of 2. These cyclic constraints can be checked in O(V E) time

as in Step 4 of Algorithm Verify. If the cyclic constraints are met, the path constraints

(2.40) need only be satis�ed by simple paths. The D(v; i) values in Algorithm Verify must

now be computed for i = 0; 1; : : : ; (2k � 1)jV j, and the entire veri�cation algorithm runs in

O(kV E) time.

Sensitivity analysis. The sensitivity analysis algorithms that we presented for two-phase

circuitry can be extended for k-phase clocking schemes. For a single gate, noncritical sensi-

tivity analysis can be performed in O(kV E) time, since the D(v; i) and D0(v; i) values must

now be computed for i = 0; 1; : : : ; (2k � 1)jV j. For all gates, noncritical sensitivity analysis

can still be performed in O(V E+V 2 lg V ) time with appropriate choice of the edge-lengths

for the all-pairs shortest-paths algorithm. Critical sensitivity analysis can be performed in

O(kV E) time for a single gate.

Clock tuning. Clock tuning for simple multiphase circuits can be performed in much

the same way as for two-phase circuits, but the problem no longer succumbs to a simple,

two-dimensional linear program. Linear programming still su�ces to solve the problem,

however. Each �i becomes a variable in a linear program, which can be solved with standard
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techniques [41]. If the number of phases is assumed to be �xed, then the problem can

be solved in O(kV 2) steps, that is, in a number of steps proportional to the number of

constraints for proper timing [36]. Certain special cases can be handled without resorting to

general linear programming. For example, a circuit with a three-phase, nonoverlapping clock

can be tuned in O(V E) time using the three-dimensional linear programming algorithm of

Megiddo [37].

Retiming with symmetric clocking schemes. When clock phases are symmetric,

simple k-phase circuits can be retimed to achieve a given clock period in O(V E + V 2 lg V )

time, independent of k. The constraints that must be solved are a natural analog of the

two-phase constraints described by Inequalities (2.21), (2.22), (2.23), and (2.24):

r(u)� r(v) � w(e) for all u
e
! v 2 E

R(v)� r(v) � 0 for all v 2 V

R(u)�R(v) � w(e) � k

�
d(v) for all u

e
! v 2 E

r(v)�R(v) �
k

�
(�� d(v)) + 1 for all v 2 V :

As with the two-phase constraints, these constraints can be solved using the algorithm

MILP from [30].

Retiming (with arbitrary clocking schemes). Even when clock phases are not sym-

metric, we can retime to achieve a given simple k-phase clocking scheme in O(kV 3) time.

For simple multiphase circuits, inequalities analogous to Inequalities (2.29) and (2.30) can

be formulated as simple summations. In particular, Inequality (2.40) can be rewritten as

�(v)+r(v)X
i=�(v)

(
i + �i+1)�
�

�(v) + ��(v)+1

�
+ �

�
w(p) + 1

k

�
+  (�(u); �(v)) � d(p)

�

�(u)�1+r(u)X
i=�(u)�1

(�i + 
i)�
�
��(u)�1 + 
�(u)�1

�
(2.41)

for any retimed circuit. These constraints can be solved using integer monotonic pro-

gramming. By maintaining the two summations dynamically, the claimed running time of

O(kV 3) can be obtained, where the additional factor of k stems from the fact that some

r(v) can now be as high as O(kV ).

Retiming for minimum latch count. For k-phase, symmetric clocking schemes, we

can prove that this problem amounts to computing an assignment r : V ! Z such that

X
v2V

(indegree(v)� outdegree(v)) r(v)

is minimized, subject to

r(u)� r(v) � w(e)
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for every edge u
e
! v 2 E, and

r(u)� r(v) �

�
w(p) �

k

�
(d(p)� �) + 1

�

for every path u
p
; v in G. This problem is still the dual of an uncapacitated minimum-cost


ow problem, and it can be solved in O(V 3 lg V ) time.

Retiming for minimum clock period. The algorithms for retiming a simple k-phase

circuit to achieve a given clocking scheme can be used to obtain fully polynomial-time

approximation schemes for several problems related to retiming for minimum clock period.

Speci�cally, using binary search in the clock period domain as described in Section 2.9,

we can solve the retiming and symmetric tuning problem in O((V E + V 2 lg V ) lg(kV=�))

time with relative error �. Similarly, we can solve the retiming and �xed-duty-ratio tuning

problem in O(kV 3 lg(kV=�)) time. A straightforward generalization of the linear search

scheme in Section 2.9 yields a fully polynomial-time approximation scheme for the general

retiming and tuning problem for simple k-phase circuits. The running time of this algorithm

contains a factor ��k, however, which can be prohibitively large for a small relative error �.

2.12 Conclusion

Our algorithms for verifying and optimizing level-clocked circuits have their limitations.

For example, as is the case with most work on retiming, it is hard to incorporate data-

dependent propagation delays in the framework without making most of the interesting

questions NP-hard. Several issues, however, are amenable to e�cient algorithmic solutions.

We address some of these issues in this section. We �rst discuss how to cope in our ideal

model with nonideal clocking waveforms. We then show how to adjust our approximation

algorithms in order to compute exact solutions to the various retiming and tuning problems.

We move on to describe the incorporation in our model of precharged gates, nonuniform

propagation delays, and nonzero minimum propagation delays. We conclude by discussing

generalizations of our algorithms to handle gated clocks and nonsimple multiphase clocking

disciplines.

A phenomenon that arises in practice is that clock phases are never truly square waves;

the waveform rises or falls over an interval of time. To cope with this e�ect in our ideal

model, one can ensure that the gaps between clock phases are su�ciently large that consec-

utive latches clocked on opposite phases are not high simultaneously. Similarly, the e�ect

of clock skew can be handled by adjusting the gap widths.

The fully polynomial-time approximation schemes in Section 2.9 can be adjusted to �nd

an exact solution when the propagation delays of the combinational elements are integers.

Speci�cally, the retiming and symmetric tuning problem can be solved exactly in O((V E+

V 2 lg V ) lg(V dmax=�)) time, where

� = min

�
1

3 jV j � 1
;


0

2(3 jV j � 1)2
;


1

2(3 jV j � 1)2

�
:

Similarly, the retiming and �xed-duty-ratio problem can be solved exactly inO(V 3 lg(V dmax=�))
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time.

An important extension of our work is the incorporation of precharged gates, nonuniform

propagation delays, and nonzero minimum propagation delays to our circuit model. With

precharged gates, retiming and clock tuning still have e�cient algorithmic solutions, but

there are many subtleties that arise in the formulation of the constraints. The incorpora-

tion of functional elements where the propagation delay may di�er for di�erent input-output

pairs (the \nonuniform propagation delay" model from [31]) changes the time complexities

of our algorithms, but the essential algorithms remain unchanged. When minimum prop-

agation delays (sometimes called \contamination" delays) are incorporated in the model,

the output of a functional element does not become invalid until some speci�ed minimum

amount of time after an input changes. A polynomial-time algorithm for the timing veri-

�cation problem when minimum propagation delays are included in the circuit model has

appeared in [56]. A polynomial-time algorithm for the clock tuning problem with minimum

propagation delays has appeared in [53]. We believe that many of our optimization algo-

rithms can be generalized to handle such circuits in polynomial time. This is a topic of

current research.

Two generalizations of our work which seem more problematic are the handling of gated

clocks and nonsimple multiphase clocking disciplines. When logic circuits involve the clock

signals themselves (so-called gated clocks), it is possible to show, in the general case, that

many timing veri�cation and optimization problems are NP-hard. Nevertheless, we suspect

that by making conservative assumptions regarding the behavior of such circuits, many of

these problems become tractable. Nonsimple multiphase circuits also exhibit many sub-

tleties. A path in such circuits may pass through latches in an arbitrary order, rather than

the canonical order assumed in a simple multiphase circuit. Though the proper timing of

such circuits can be veri�ed using the analysis and algorithms from [20], the timing opti-

mization of such circuits is possibly more complex. Whether these problems have e�cient

solutions is a topic for further research.



Chapter 3

Tim: A Timing Package for

Level-Clocked Circuitry

3.1 Introduction

In this chapter we describe Tim, a new timing package we have developed for circuitry that

employs a nonoverlapping two-phase clocking scheme. Tim's features include optimizations

for retiming and sensitivity analysis as well as more conventional operations such as veri-

�cation of proper timing and optimal tuning of clocking schemes. The entire package has

been written using the C programming language, and it has been integrated into the SIS

tools from Berkeley. Copies of the software have been available over the Internet since June

1993 and can be obtained by sending a request to marios@lcs.mit.edu.

Several tools have been developed for analyzing the timing of circuitry that contains

level-clocked latches [1, 4, 6, 23, 40, 51, 54]. These tools perform timing veri�cation and

enable the user to minimize the overall clock period by tuning various parameters of the

clocking schemes. Our tool provides the designer with two additional features: retiming and

sensitivity analysis. Moreover, the algorithms in Tim are based on the algorithms described

in Chapter 2, and thus they are provably correct and run in polynomial time.

Tim has been applied on a variety of circuits that have been obtained from academic and

industrial sources. The results from the application of our tool are presented in Chapter 4.

This chapter is organized as follows. Section 3.2 gives an overview of the system, and

Section 3.3 presents Tim's circuit model which extends the ideal model that we assumed in

Chapter 2. Section 3.4 describes the algorithms that we implemented in Tim and the new

constraints for the extended model. Section 3.5 concludes this chapter by discussing the

performance of our implementation.

Parts of this chapter represent joint research with Keith Randall.
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3.2 System Overview

Tim provides the following classes of operations for circuitry that employs nonoverlapping

two-phase clocking schemes:

Timing veri�cation: Given a two-phase circuit and a clocking scheme, Tim veri�es

whether the circuit is properly timed.

Sensitivity analysis: Given a two-phase circuit that is properly timed by a given clocking

scheme, Tim can identify for each gate the maximum increase in its propagation delay that

will not a�ect proper timing of the circuit by the given clocking scheme. Moreover, given a

feasible clocking scheme �, Tim can identify for each critical gate in the circuit the minimum

decrease in its propagation delay that will remove that gate from the critical path.

Clock tuning: Given a two-phase circuit, Tim computes a nonoverlapping two-phase

clocking scheme so that the given circuit operates at maximum speed.

Retiming for speed: Given a two-phase circuit and a clocking scheme, Tim computes a

retiming of the given circuit that is properly timed by the given clocking scheme. When the

circuit is not bound to a speci�c clocking scheme, Tim can perform retiming in conjunction

with simultaneous clock tuning, so that the resulting circuit operates at maximum speed.

Tim is able to perform retiming and clock tuning optimally both for clocking schemes with

�xed duty-ratio and for clocking schemes with unrestricted duty-ratio.

Retiming for minimum latch count: Given a two-phase circuit and a symmetric clock-

ing scheme, Tim can compute a retimed circuit with minimum latch count that is properly

timed by the given clocking scheme.

3.3 Circuit Model

Tim manipulates circuits that employ a nonoverlapping two-phase clocking scheme � =

h�0; 
0; �1; 
1i with clock period � = �0+
0+�1+
1. The gaps 
0 and 
1 between the two

phases handle engineering considerations such as setup and hold times of the latches, clock

skew, and nonideal clocking waveforms.

The circuit model employed by Tim is based on the one described in Chapter 2.

A two-phase, level-clocked circuit is modeled as a vertex-weighted, edge-weighted graph

G = hV;E; d; w; �i. The vertices in V represent blocks of combinational logic, and the

edges in E represent wires. The nonnegative, real vertex-weight d(v) denotes the maximum

propagation delay of the signals through the block represented by v. The minimum propa-

gation delay (contamination delay) of every block is assumed to be zero. The nonnegative,

integer edge-weight w(e) denotes the number of latches on the wire represented by e. Each

latch is clocked by one of the two phases of �. Whenever the clock input of a latch is

asserted, the latch becomes transparent and data ripple through. Along any path in G,

latches are clocked on alternate phases, and around any directed cycle in G there are at
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least two latches. The function � : V ! f0; 1g denotes for each vertex v the phase that

clocks all latches that can reach v along a purely combinational path.

In Tim we have extended our ideal model from Chapter 2 to include non-ideal latches:

All latches in Tim are assumed to have equal propagation delays, equal setup times and

equal hold times. (The equality restriction is not necessary for the algorithms that perform

timing veri�cation, clock tuning and sensitivity analysis. The proofs for the correctness and

the running time of the retiming algorithms, however, rely on the assumption that all latches

have identical delay characterisitics.) Each latch has two delay parameters associated with

it. The �rst parameter, which we denote by dout, gives the time between the rising edge of

the phase that clocks the latch and the moment that data appear at the latch output. The

second parameter, which we denote by dthru, gives the propagation delay of data through

the latch when the clocking phase is already high at the time that data arrive at the latch

input. Setup and hold times are embedded in the gaps 
0 and 
1 of the clocking scheme �.

Given an intended clocking scheme �0 = h�0

0
; 
0

0
; �0

1
; 
0

1
i, our algorithms operate on the ideal

model assuming a clocking scheme � = h�0

0
�S; 
0

0
+S; �0

1
�S; 
0

1
+Si, where S is the setup

time of a latch. In order to avoid data contamination due to zero minimum propagation

delays, the gaps 
0

0
and 
0

1
are required to exceed the hold time H of a latch.

Another phenomenon that arises in practice is that clock phases are never truly square

waves; the waveform rises or falls over an interval of time. To cope with this e�ect in Tim,

one can ensure that the gaps between clock phases are su�ciently large that consecutive

latches clocked on opposite phases are not high simultaneously. Similarly, the e�ect of clock

skew can be handled by adjusting the gap widths.

3.4 System Operation

In this section we describe the algorithms implemented in Tim. We �rst describe the

shortest-paths algorithms that we implemented. We then describe the operations of our

tool. For each of these operations, the user may use a technology library to determine the

propagation delays of the gates, or he can specify all gates to have unit propagation delays.

Shortest-paths computations are repeatedly employed in almost all functions of Tim.

We have implemented two single-source shortest-paths algorithms. The �rst is an algorithm

by Bellman and Ford that runs in O(V E) time and solves the shortest-paths problem on

graphs with real edge-weights [5]. We use this algorithm before all-pairs shortest-paths

computations in order to compute graphs with identical shortest-paths and nonnegative

edge-weights, because shortest-paths can be computed more e�ciently on such graphs.

The second shortest-paths algorithm that we have implemented is Dijkstra's algorithm

for graphs with nonnegative edge-weights [5]. The running time of this algorithm depends

on the implementation of the priority queue it employs. We tried three priority queues. The

�rst one was a simple array, in which case the theoretical running time of the algorithm is

O(V 2). We used this implementation in the beginning until we debugged our programs. The

array was soon a limiting factor in the performance of our tool, and so we implemented two

additional data structures: a Fibonacci heap [11] that yields an O(E+V lg V ) running time,

and a binary heap that yields an O(E lg V ) running time. Our binary heap implementation

was faster than the Fibonacci heap implementation, most likely because circuit graphs are

sparse and the overhead of a Fibonacci heap is too high.
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3.4.1 Veri�cation of Proper Timing

The timing veri�cation operation in Tim is a direct implementation of Algorithm TV that is

described in Section 2.3 and runs in O(V E) time. In our implementation, we have adapted

Inequalities (2.11), (2.12), and (2.8) to take into account the propagation delays of the

latches. Speci�cally, for v 2 V and i = 0; 1; : : : ; 3 jV j � 3, we check the constraints

dout + i � dthru +D(v; i) � �

�
1 + i

2

�
+ �1��(v)

if i is odd, and

dout + i � dthru +D(v; i) � �

�
2 + i

2

�
� 
1��(v)

if i is even; and for every simple cycle c

d(c) + w(c) � dthru � �

�
w(c)

2

�
:

3.4.2 Sensitivity Analysis

The current version of Tim performs both noncritical and critical sensitivity analysis.

The noncritical sensitivity analysis is performed for all gates in the circuit, and it is

a direct implementation of Algorithm AllNCSA. The asymptotic running time of our

implementation, however, isO(V E lg V ) time, because we employ a binary heap as a priority

queue.

The critical sensitivity analysis in Tim is not a direct implementation of Algorithm

CSA. Given a circuit G and a feasible clocking scheme �, Tim runs Algorithm AllNCSA

to identify the critical gates in the circuit, that is, the gates with zero slack. Then, for each

critical gate u, Tim sets d(u) = 0 and runs Algorithm NCSA(G;�0; u), where the clocking

scheme �0 is computed by tuning the clock of G when d(u) = 0. The user can restrict the

clocking scheme �0 to have the same duty-ratio as the clocking scheme �. Alternatively, he

may choose to use a �0 that is computed by clock tuning over all possible duty-ratios. Our

implementation of Algorithm NCSA is based on the O(V E)-time shortest-paths algorithm

by Bellman and Ford. Thus, the critical sensitivity analysis operation in Tim runs in a total

of O(V E lg V + cV E) steps, where c denotes the number of critical gates for the clocking

scheme �.

3.4.3 Clock Tuning

Tim can perform clock tuning with either �xed or unconstrained duty-ratio. Our imple-

mentation is based directly on the algorithm described in Section 2.5 and terminates in

O(V E) time. The clock tuning algorithm in Tim computes the O(V 2) values D(v; i) and

then solves a linear program in two dimensions in order to determine the optimal point of

the ensuing constraints.
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3.4.4 Retiming for Speed

Included amongTim's features are algorithms for the retiming problem and fully-polynomial

approximation algorithms for the various retiming and tuning problems. The basic subrou-

tine of all these algorithms is Algorithm Retime which operates on the constraints (2.26),

(2.27) and (2.28). In our implementation, we have adapted these constraints to account for

the propagation delays of the latches. Speci�cally, Tim computes a retiming such that for

every edge u
e
! v 2 E, we have

r(u)� r(v) � w(e) ;

and for every path u
p
; v, we have

dout + (w(p) + r(v)� r(u)) � dthru + d(p) � �

�
1 + w(p)

2

�
+ ��(u)

+�

�
r(v)

2

�
+ (r(v) mod 2)

�

�(u) + �1��(u)

�

��

�
r(u)

2

�
� (r(u) mod 2)

�
��(u) + 
�(u)

�
;

if �(u) 6= �(v), and

dout + (w(p) + r(v)� r(u)) � dthru + d(p) � �

�
2 + w(p)

2

�
� 
1��(u)

+�

�
r(v)

2

�
+ (r(v) mod 2)

�

1��(u) + ��(u)

�

��

�
r(u)

2

�
� (r(u) mod 2)

�
��(u) + 
�(u)

�
;

if �(u) = �(v). It is straightforward to verify that these constraints can be brought into

the form f(r(v)) � g(r(u)), where f and g are monotonic functions. Using a binary heap

as a priority queue, Tim generates the retiming constraints in O(V E lg V ) time by an all-

pairs shortest-paths computation. Therefore, our implementation of Algorithm Retime

terminates in O(V 3 + V E lg V ) steps.

Retiming in Tim does not relocate I/O latches. This constraint can be easily enforced

by introducing the pair of inequalities

r(u)� r(v) � 0

r(u)� r(v) � 0

for every pair of vertices u; v 2 V such that u
e
! v and there exists an I/O latch on the

wire e.

3.4.5 Retiming for Minimum Latch Count

Tim's retiming algorithm for minimum latch count is an implementation of Orlin's capacity

scaling algorithm for computing minimum-cost 
ows [38], and it terminates in O(V 3) steps.
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Our implementation works on a modi�ed circuit graph that takes into account latch sharing.

The construction of this graph is identical to the construction presented in [31] for retiming

of edge-triggered circuitry. Tim takes into account the propagation delays of the latches by

�nding a solution to the constraint

r(u)� r(v) � w(e)

for every edge u
e
! v in G, and

dout + (w(p) + r(v)� r(u)) � dthru + d(p) � �(w(p) + r(v)� r(u))=2 + � � 


for every path u
p
; v in G. It is straightforward to verify that these constraints can be

rewritten in a form that is the dual of an uncapacitated minimum-cost 
ow problem. As

with retiming for speed, retiming for minimum latch-count does not relocate I/O latches.

3.5 System Performance

Our primary concern during Tim's implementation was to achieve correct functionality.

Speed, although important, was a secondary concern. Nevertheless, Tim operates reason-

ably fast on reasonably large inputs. We have used extensively the current version of Tim

on a Sun SPARCstation 2 with 64MB of main memory. For circuits with 1,500 gates after

technology mapping, the timing analysis and clock tuning operations typically require a

couple of minutes. The retiming operations, however, require approximately 35 minutes.

For large inputs, our tool is almost always slowed down because of paging. The adverse

e�ect of paging on the running time of our algorithms is particularly evident when retiming,

due to the O(V 2) space requirements of the retiming algorithms.

There are several straightforward ways to speed up Tim's retiming operations. The

practical e�ciency of the latch count minimization algorithm will possibly improve by using

a simplex-based algorithm to solve the minimum-cost 
ow problem. Even though simplex-

based algorithms for minimum-cost 
ow are not guaranteed to run in polynomial time, they

have been shown to perform particularly well in practice [15].

Another operation in Tim with potential for easy improvement is retiming with sym-

metric clocking schemes. The current implementation of Tim employs the general retiming

algorithm Retime even when the clocking schemes are symmetric. We believe that the

practical e�ciency of this operation can be substantially improved by implementing Algo-

rithm RwSCS that runs on a sparse graph representation of the problem.



Chapter 4

Edge-Triggering vs. Level-Clocking

4.1 Introduction

Level-clocking is becoming an increasingly popular alternative to edge-triggering as a clock-

ing methodology for high-performance designs. Proponents of level-clocking argue that

level-clocked circuitry can provide more 
exibility in meeting a speci�c clock period and

that it has the theoretical potential to operate faster than the more conventional edge-

triggered circuitry. These arguments are based on the fact that in level-clocked circuitry

computations are allowed to extend beyond a single clock period during the transparent

phase of the level-clocked latches, in constrast to edge-triggered circuitry, in which compu-

tations along every path must complete within a clock period. Advocates of edge-triggering,

on the other hand, present simplicity and implementation ease as major advantages of edge-

triggering, since edge-triggered latches directly support the abstraction of a storage element

that is synchronized by the ticking of a clock. They also refer to the existence of powerful

design tools as another major incentive for designing circuitry with edge-triggered latches.

These arguments in support of edge-triggering and level-clocking are either theoretical or

nonquanti�able. We wanted to make an empirical study of the two clocking methodologies.

For this purpose, we have used Tim to run experiments that compare edge-triggered imple-

mentations of synchronous circuitry and corresponding level-clocked implementations that

employ a two-phase, nonoverlapping clocking scheme. Our empirical comparison focused

on two speci�c quantitative measures: speed and number of storage elements. We urge the

reader not to interpret our results in a narrow quantitative manner, however, since our tool

may have introduced round-o� errors. The reader should rather focus on the qualitative

conclusions that can be drawn from our comparison.

Our speedup experiments show that edge-triggered circuitry often operates just as fast

as two-phase circuitry, despite the theoretical advantage of two-phase clocking, and that the

speed potential of two-phase clocking is generally obtained only when the combinational

delay between any two consecutive latches is roughly uniform and close to the maximum

Parts of this chapter represent joint research with Keith Randall.
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gate delay. Our experiments also show that two-phase clocking leads to greater speedups

when all gate delays in the circuit are roughly equal. Our experimentation with clock

tuning suggests that asymmetric clocking schemes provide little or no speedup over optimal

clocking schemes.

With respect to the number of storage elements, however, our experiments demonstrate

that two-phase clocking can lead to substantial reductions in aggressive edge-triggered de-

signs that operate at maximum speed. For two of our test circuits, we obtained reductions

of 38%; for more than one third of our circuits, we obtained reductions of 25%; and for

more than half of our circuits, reductions exceeded 18%. For low-performance designs that

operate below their speed potential, however, our experiments show that two-phase clocking

does not reduce the number of storage elements.

How can edge-triggering and two-phase clocking be fairly compared on an empirical

basis? First, a fair experiment should compare competing circuit implementations that

have the same functionality. It would be meaningless to compare two circuits that compute

di�erent functions. Second, a fair experiment should compare competing circuit implemen-

tations based solely on di�erences due to their storage elements. It would be unfair to

compare two circuits which di�er in their combinational elements, for example, because

such a comparison would not depend only on the clocking methodology employed.

We did not have the resources to embark on designing pairs of competing circuits for

various applications. We settled, therefore, on the strategy of taking edge-triggered circuits

and using our timing tool Tim to produce equivalent two-phase circuits. We could have done

the reverse, converting two-phase circuits to edge-triggered ones, but since edge-triggered

designs are more popular, we were able to obtain several interesting edge-triggered circuits.

(We hope to also obtain interesting level-clocked designs and remedy this situation before

the full paper is published.)

We produced a two-phase circuit from an edge-triggered one by following a two-step

procedure. The �rst step of this procedure was to replace each edge-triggered latch by a

pair of back-to-back level-clocked latches that are clocked by a two-phase, nonoverlapping

clocking scheme, as shown in Figure 4-1. (In fact, it is common in VLSI to implement

edge-triggered latches by a pair of back-to-back level-clocked latches [14, 58].) The two-

phase circuit that results after this conversion has the same clock period and the same

number of storage elements as the original edge-triggered circuit, assuming that each edge-

triggered latch counts as two level-clocked latches. Moreover, the placement of its latches

is dictated by the original edge-triggered design, and the potential of two-phase clocking

due to alternate placements of the latches in the circuit is not revealed. Thus, we needed

φ φ
0

φ
1

φ
φ

1

φ
0

Figure 4-1: Replacement of an edge-triggered latch by a pair of level-clocked latches. The edge-

triggered latch is clocked by a single clock �, and the two level-clocked latches are clocked on the

phases �0; �1 of a two-phase, nonoverlapping clocking scheme.
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Figure 4-2: This �gure illustrates retiming of a gate with lag 1. In this case, one storage element

is removed from each output wire of the gate, and one storage element is inserted at each input wire

of the gate. The total number of storage elements is reduced by 1. The critical paths in the circuit

may also change as a result of the relocation of the storage elements.

a method to relocate storage elements and explore the space of possible placements in the

circuit without changing its functionality or its I/O speci�cation.

The second step of the procedure was to use the \retiming" transformation to relocate

the storage elements of the two-phase circuit that resulted from the �rst step. Retiming

relocates storage elements in both edge-triggered and level-clocked circuitry without chang-

ing its functionality [28, 29, 31]. In addition, retiming is a \universal" transformation for

speeding up circuits, in the sense that any other functionality-preserving transformation

that did better than retiming would depend on the functionality of the gates in the circuit

[29]. Figure 4-2 illustrates the retiming operation for a gate in a circuit. Observe that

retiming can change the clock period as well as the number of storage elements in a circuit.

Our experimental procedure compared an optimal edge-triggered implementation that

we obtained from an original edge-triggered circuit with an optimal two-phase implementa-

tion of the corresponding two-phase circuit. The use of an optimal edge-triggered implemen-

tation as a reference point was essential to ensure that we did not penalize edge-triggering

due to suboptimalities in the original edge-triggered circuit that depended on the placement

of the storage elements by the circuit designer and were not intrinsic to edge-triggering.

We performed two kinds of experiments. The �rst kind of experiments compared edge-

triggered and two-phase circuits with respect to speed. Our basic experimental approach was

the following. First, we retimed a given edge-triggered implementation for maximum speed.

Then, by using retiming in conjunction with tuning of the clocking schemes, we obtained the

fastest possible implementation of the corresponding two-phase circuit, and we compared

the speed of the two optimal implementations. The second kind of experiments compared

edge-triggered and two-phase circuits with respect to their number of storage elements,

when operating at some speci�ed clock period. We �rst retimed a given edge-triggered

implementation without changing its I/O speci�cation, in order to achieve the speci�ed

clock period with the minimum number of edge-triggered latches. We then retimed the

corresponding two-phase circuit without changing its I/O speci�cation, in order to achieve

the same clock period with the minimum number of latches. We compared the number

of storage elements in the two optimal implementations, under the reasonable assumption

that each edge-triggered latch counts as two level-clocked latches.

Timing veri�cation and optimization of synchronous circuitry has been the subject of

extensive study [3, 6, 17, 20, 21, 23, 28, 31, 32, 34, 51, 52, 54, 56, 57]. The concept of

replacing each edge-triggered latch by a pair of back-to-back level-clocked latches, and then

using retiming for speed optimization has been mentioned in [3, 21, 32]. The potential of

level-clocking for reducing the number of storage elements has been mentioned in [32]. The
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idea of using latches instead of edge-triggered latches has been also used in [55]. Retiming for

speed has been studied in the context of single-phase level-clocked circuits in [52]. Despite

the large amount of work in this area, our contribution is (we believe) the �rst attempt to

quantify empirically the performance di�erences of edge-triggering and two-phase clocking.

The remainder of this chapter has three sections. Section 4.2 describes our experimen-

tal methodology and reports our results on the relative speed of the two implementation

approaches. In Section 4.3 we present our experimental results on latch-minimization.

Section 4.4 concludes with a discussion of our results and directions for further research.

Appendix A.2 presents an upper bound on the relative speedup that can be achieved by

two-phase clocking over edge-triggering and explains intuitively how two circuit character-

istics, the maximum gate delay dmax and the maximum delay-to-register ratio R of the

circuit, determine the speedups that can be achieved by two-phase clocking.

4.2 Speedup Experiments

In this section, we present our investigation of edge-triggering and two-phase clocking with

respect to speed. First, we brie
y refer to our tools and test circuits. We move on to

describe and motivate our experimental methodology, and then we discuss our results.

Our experiments were performed using Tim. Our test circuits were MCNC benchmark

circuits and AT&T communication circuits, all of which were originally designed with edge-

triggered latches. The largest among these circuits had 290 gates.

4.2.1 Experimental Methodology

In our speedup experiments we employed the following three optimizations:

OP1 Retiming of edge-triggered circuitry for maximum speed of operation (minimum clock

period).

OP2 Retiming of two-phase circuitry for maximum speed of operation with a symmetric

clocking scheme.

OP3 Retiming and simultaneous clock tuning of two-phase circuitry for maximum speed of

operation.

Using these three optimizations, we initially performed experiments SP1 and SP2.

SP1 We compared the speed of each original edge-triggered circuit that was optimized

using OP1 with the speed of the corresponding two-phase circuit that was optimized

using OP2.

SP2 We compared the speed of each original edge-triggered circuit that was optimized

using OP1 with the speed of the corresponding two-phase circuit that was optimized

using OP3.

The goal of our experimentation was not only to investigate whether two-phase clocking

could speed-up the particular edge-triggered circuits in our test suite. We also wanted to

determine speci�c design characteristics that may lead to faster two-phase circuits. To
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that e�ect, we performed experiments SP3 and SP4 on altered versions of our original test

circuits that were obtained by modifying them in two ways.

The �rst modi�cation changed the number of storage elements in the original circuits by

pipelining, a transformation that increases the latency of a computation without decreasing

its throughput. A degree-P pipelining of each circuit was obtained by multiplying the

original number of latches on each wire of the circuit by the integer P . The purpose of this

transformation was to investigate which of the two implementation approaches is favored

more when the number of storage elements is increased.

The second modi�cation changed the gate delays of the original circuits. For each circuit

G, we created four additional circuits Gi for i = 0:8; 0:6; 0:4; 0:2. Each Gi was topologically

identical to G, but its gate delays di were modi�ed. For each circuit Gi, each gate delay

di(v) was set equal to di(v), where d(v) was the original delay assigned to v. For each gate

in a circuit G, this original delay was the worst-case propagation delay between an input

pin and an output pin of the gate, based on the technology library that was used with the

circuit. Thus, for smaller values of the exponent i, the gate delays in the circuits Gi became

increasingly uniform. The objective of this modi�cation was to see how uniformity of gate

delays a�ects the speed of the two implementations.

Using the three optimizations on the modi�ed circuits we performed experiments SP3

and SP4.

SP3 On each circuit Gi for i = 1:0; 0:8; 0:6; 0:4; 0:2, we applied the following procedure for

P = 1; 2; : : : ; 6. We optimized the edge-triggered circuit using OP1, and we compared

its speed with its corresponding two-phase circuit that was optimized using OP2.

SP4 On each circuit Gi for i = 1:0; 0:8; 0:6; 0:4; 0:2, we applied the following procedure for

P = 1; 2; : : : ; 6. We optimized the edge-triggered circuit using OP1, and we compared

its speed with its corresponding two-phase circuit that was optimized using OP3.

Note that for i = 1:0 and P = 1, experiments SP3 and SP4 were identical to experiments

SP1 and SP2, respectively.

4.2.2 Experimental Results

Remarkably, our initial experiments SP1 and SP2 indicated that two-phase clocking was

no better than edge-triggering for any of our test circuits. The application of the three

optimizations OP1, OP2, and OP3 on the original circuits, with gate delays assigned by their

corresponding libraries, showed no speedup by switching to two-phase clocking. Although

this result was surprising and unexpected, it could not have been a mere coincidence. Our

subsequent empirical investigation with experiments SP3 and SP4 led us to the conclusion

that there are two important circuit characteristics that determine the relative speed of the

two implementation approaches: the maximum gate delay dmax and the maximum delay-

to-register ratio R, which is de�ned as the maximum ratio of total delay over total latch

count around the cycles in the edge-triggered circuit.

Our experimental results for SP3 are illustrated in the plots of Figure 4-3. Each plot

gives data for an original test circuit G1:0 and its four delay-modi�ed versions Gi for i =

0:8; 0:6; 0:4; 0:2. For each of the �ve delay con�gurations of a test circuit and for degrees of

pipelining up to 6, each plot gives two numbers: the speedup flc=fet achieved by two-phase
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clocking over edge-triggering, and the ratio dmax=R, where dmax is the maximum gate delay

and R is the maximum delay-to-register ratio of the circuit. For each circuit Gi, the value

of the ratio dmax=R closest to 1 is boldfaced.

As is apparent from the graphs, for almost every delay con�guration, the maximum

speedup is achieved when the ratio dmax=R is closest to 1. In the �ve con�gurations of

mult16a, for example, as the ratio dmax=R increases from small values and approaches 1

from below, the speedup constantly increases. When the ratio exceeds 1, the speedup

soon drops down to 1. A similar pattern is revealed for almost all of our test circuits.

This phenomenon can be justi�ed as follows. The maximum delay-to-register ratio R is

a lower bound on the clock period of both the edge-triggered and the level-clocked circuit

[21, 43]. Consequently, the longest combinational delay in the circuits is at least R under any

transformation that does not change the number of latches around the cycles in the circuit.

Retiming distributes the latches, however, so that combinational path delays are roughly

equal across the circuit and close to the critical ratio R. When R becomes comparable to

the maximum gate delay dmax, then the longest combinational delay also tends to approach

dmax, and then the potential of two-phase clocking becomes apparent. Intuitively, when

R approaches dmax, level-clocking evens out di�erences among path delays more e�ectively

than edge-triggering by letting the computations ripple through the transparent latches.

Let us examine more closely some characteristic graphs in Figure 4-3. Our initially

surprising results from experiments SP1 and SP2 can be explained by looking at the ratios

dmax=R of the original circuits, which correspond to P = 1 and i = 1:0. For every such

circuit, the ratio dmax=R is smaller than 0:67. The only exceptions are mult16b, ampseq2,

and ampseq1. mult16b has a ratio greater than 1, and consequently, it is already heavily

pipelined. For higher degrees of pipelining, mult16b does not become any faster, which

leads us to the conclusion that the original design of mult16b takes full advantage of any

existing speed potential. The situation with ampseq2 is similar. The original design has

already no margin for improvement, and for higher degrees of pipelining there are su�ciently

many storage elements for edge-triggering to be as fast as two-phase clocking. The situation

with ampseq1 is somewhat di�erent. The ratio dmax=R is close to 1, but there is still room

for improvement, since without any pipelining, that is, for P = 1, all versions of ampseq1

become faster by level-clocking.

Another conclusion that we can draw from the plots in Figure 4-3 is that two-phase

clocking leads to greater speedups when the gate delays are more uniform. For every test

circuit, peak speedups increase as the exponent i decreases, that is, as the gate delays

become more uniform. This observation suggests that standard-cell designs in which gate

delays are roughly equal are likely to bene�t from two-phase clocking.

The data shown in Figure 4-3 are the results of experiment SP3, in which the two-phase

circuits were clocked by symmetric clocking schemes. We also performed experiment SP4

that combines retiming with tuning of the clocking schemes. In all cases, however, OP3

did not provide any speedup greater than 2% over OP2. Thus, our experiments suggest

that clocking with asymmetrical schemes often does not provide any speed advantage over

symmetric schemes.
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Figure 4-3: Results of experiment SP3 on the MCNC benchmark and the AT&T circuits. Each

plot corresponds to a test circuit. The �rst row of the horizontal axis gives the pipelining degree P .

Each of the next �ve rows corresponds to a circuit Gi for i = 0:2; 0:4; 0:6; 0:8; 1:0, and it gives the

ratio dmax=R for each pipelining degree. In each row, the ratio dmax=R closest to 1 is boldfaced. The

vertical axis gives the speedup flc=fet obtained for a speci�c i and a speci�c P . The clock frequency

fet was obtained by applying OP1. The clock frequency flc was obtained by applying OP2. For

almost every test circuit, maximum speedups are achieved when the ratio dmax=R is closest to 1, or

equivalently, when R is closest to dmax. Greater peak speedups are achieved as we move from G1:0

to G0:2, that is, as the gate delays become roughly equal across the entire circuit. The results of

experiment SP4 have no signi�cant di�erences from the results in this �gure.
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4.3 Latch Count Minimization Experiments

In this section we present our experimental comparison of edge-triggering and two-phase

clocking in terms of the number of storage elements required by each implementation ap-

proach. We �rst describe our methodology, and then we present and discuss our experi-

mental results.

4.3.1 Experimental Methodology

In our experiments, we employed retiming in order to minimize the number of storage

elements in the circuits. We retimed both the original edge-triggered circuits and their

corresponding two-phase circuits in order to achieve a given clock period with the minimum

number of storage elements. In both cases, the retiming transformation was applied without

relocating the I/O storage elements of the circuits, and thus the I/O speci�cation remained

unchanged.

We compared the two implementations of each circuit by performing experiments LM1

and LM2.

LM1 We retimed the original edge-triggered circuit, in order to achieve the minimum period

possible with the minimum number of edge-triggered latches. Then, we retimed the

corresponding two-phase circuit in order to achieve the same period with the minimum

number of level-clocked latches. We compared the number of level-clocked latches in

the two optimal circuits, where each edge-triggered latch counted as two level-clocked

latches.

LM2 We retimed the original edge-triggered circuit, in order to achieve its original clock

period speci�cation with the minimum number of edge-triggered latches. Then, we

retimed the corresponding two-phase circuit, in order to achieve the same period with

the minimum number of level-clocked latches. We compared the number of level-

clocked latches in the two optimal circuits, where each edge-triggered latch counted

as two level-clocked latches.

The motivation behind these two experiments was to investigate the impact of two-phase

clocking on the number of storage elements under di�erent conditions of operation. Exper-

iment LM1 was aimed at the typical situation, where speed is the primary concern, and

edge-triggered circuits are con�gured to operate at the maximum of their potential. It is

often the case, however, that the clock period is dictated by external system considerations

and cannot be changed easily. To that e�ect, we also performed experiment LM2, which

compares the number of storage elements in the two implementations when the clock period

equals that of the original edge-triggered circuit.

We performed our experiments using Tim. The latch count minimization algorithms in

Tim run in polynomial time and take into account maximal sharing of storage elements.

We ran our tests on MCNC benchmark circuits, AT&T communication circuits and custom

circuitry designed for MIT's Alewife machine. The largest among these circuits had 340

gates.
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Circuit clock period min count in edge-triggered min count in two-phase reduction

mult16a 15.465 62 51 18%

s344 20.946 46 34 26%

s349 20.945 46 34 26%

s382 11.567 68 42 38%

s386 22.999 12 12 0%

s400 11.759 64 42 34%

s510 18.740 16 14 12%

s641 95.464 38 38 0%

s820 31.993 10 10 0%

ampseq1 11.773 86 74 14%

ampseq3 9.700 174 152 13%

ampseq4 15.004 98 76 22%

DRAM-ctl 8.692 52 32 38%

Figure 4-4: Results of experiment LM1. In this experiment, each edge-triggered circuit and its

corresponding two-phase circuit operate at the minimum clock period that can be achieved by

retiming the original edge-triggered circuit. For each circuit, the table gives its operating period, the

minimum number of level-clocked latches in the edge-triggered implementation after retiming (this

number equals twice the number of edge-triggered latches in the circuit), the minimum number of

level-clocked latches in the two-phase, level-clocked implementation after retiming, and the reduction

in the number of storage elements with respect to edge-triggering.

Circuit clock period min count in edge-triggered min count in two-phase

mult16a 66.987 32 32

s344 28.579 30 30

s349 28.579 30 30

s382 28.962 32 32

s386 22.999 12 12

s400 19.272 32 32

s510 20.369 12 12

s641 95.464 38 38

s820 31.993 10 10

ampseq1 17.041 70 70

ampseq3 12.041 144 141

ampseq4 23.087 64 64

DRAM-ctl 8.794 32 32

Figure 4-5: Results of experiment LM2. In this experiment, each edge-triggered circuit and its

corresponding two-phase circuit are clocked at the original clock period speci�cation of the edge-

triggered circuit. For each circuit, the table gives its operating period, the minimum number of

level-clocked latches in the edge-triggered implementation after retiming (this number equals twice

the number of edge-triggered latches in the circuit), and the minimum number of level-clocked latches

in the two-phase implementation after retiming. Note that the level-clocked latch count decreases

only for ampseq3.
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4.3.2 Experimental Results

Our experimental results for the two sets of experiments are shown in Figures 4-4 and 4-5.

There is a striking di�erence betwen these two sets of results. When the operating period

is the minimum clock period that can be achieved by retiming the original edge-triggered

circuit, then two-phase clocking leads to substantial reductions in the number of storage

elements. When the operating period is that speci�ed for the original circuit, however, there

are almost no gains in the number of storage elements when we switch from edge-triggering

to two-phase clocking.

In the experimental results of Figure 4-4 the greatest reductions were achieved for two

controller circuits. The number of level-clocked latches in both s382 and the DRAM con-

troller DRAM-ctl of the Alewife machine was reduced by 38%. Substantial reductions were

also achieved for the multiplier circuits mult16a, s344, s349, for the controller circuit s400,

as well as for the communication circuits ampseq1, ampseq3, and ampseq4. The two circuits

s641 and s820 for which the number of storage elements did not decrease by two-phase

clocking were PLD's.

Figure 4-5 shows that for all circuits except ampseq3, there was no reduction in the

number of storage elements when the circuits were operating at the clock period speci�ca-

tion of the original circuit. This seemingly negative result can be explained by comparing

the clock periods of the original and the optimally retimed designs. In most cases, the

original circuits operate substantially slower than the optimally retimed circuits. Most no-

tably, the original mult16a is almost four times slower than its minimum-period retimed

version. When the original clock period speci�cation is so far from the minimum achievable,

the placement of the storage elements in the edge-triggered circuit is as 
exible as in the

two-phase implementation, and thus no additional reductions are achieved by two-phase

clocking. In the optimally retimed edge-triggered circuits, however, the minimum number

of storage elements increases substantially, as it can be veri�ed by comparing the columns

in Figures 4-4 and 4-5 that give the latch counts in the edge-triggered designs. Two-phase

clocking can decrease this number without degrading circuit performance. In fact, as it is

evident from the columns in Figures 4-4 and 4-5 that give the latch counts in the level-

clocked designs, the number of level-clocked latches in more than half of the aggressive

two-phase implementations is not more than 15% higher than the number of level-clocked

latches in the low-performance implementations.

4.4 Conclusion

In this chapter we presented an empirical comparison of edge-triggering and two-phase

level-clocking in terms of speed and number of storage elements. Our methodology was

independent of the functionality of the circuit and compared the two design approaches

based solely on the e�ects of the storage elements in each one of them.

In our speedup experiments, edge-triggering was often as fast as two-phase level-clocking,

except when the average propagation delay between any two consecutive latches was roughly

uniform over the entire circuit and equal to the maximum gate delay, in which case the

potential of two-phase clocking was generally obtained. Our experimental results suggest

that circuits designed with standard cells of uniform delay bene�t more from two-phase
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clocking. Moreover, our experiments indicate that symmetric clocking schemes seem to

perform as well as tuned clocking schemes.

In terms of number of storage elements, two-phase level-clocking led to substantial

reductions when the target clock period was set aggressively to the minimum that could be

achieved by retiming the original edge-triggered circuit.

We urge the reader not to interpret our results in a narrow quantitative way, since

our tool may have introduced round-o� errors. There are two qualitative conclusions that

should be drawn from our timing experiments, though. First, under our assumed timing

model, one should not expect to achieve automatic speedups simply by switching from

edge-triggering to level-clocking and then by retiming for maximum speed. Second, when

the clock period of the designs is determined by the constraints around cycles rather than

the constraints along paths, level-clocking can automatically achieve greater speedups with

respect to edge-triggering, because it can accommodate more e�ectively whatever little slack

there is for the computations along paths. Edge-triggering doesn't have this 
exibility.

We believe that a more extensive experimentation is essential to obtain more conclusive

results regarding the relative merits of the two clocking methodologies. First, it is necessary

to experiment with a wider variety of circuits. Some recent results that we obtained with

proprietary circuits from Digital Equipment Corporation are in accord with the results we

presented in this chapter. Those circuits, however, were no bigger than our benchmark cir-

cuits. We believe it is important to experiment with larger circuits. It is also importnat to

experiment with circuits that were originally designed as two-phase circuits. Another inter-

esting question that should be further investigated involves asymmetric clocking schemes.

What design methodology would really favor the use of asymmetric clocking schemes? Can

asymmetric clocking schemes decrease the number of storage elements even further than

symmetric ones? We believe that the best way to answer these questions and address many

other practical concerns regarding level-clocking is to implement actual circuits using our

tool and explore the existing possibilities in practice.



Directions for Further Research

There are many interesting, important and fruitful research directions in the area of timing

analysis and optimization of synchronous systems. Some of these directions lead to problems

that are direct extensions of the work presented in this thesis. Others lead to new and

unexplored terrain. In this chapter we will discuss some of these more challenging directions.

A rich and largely unexplored �eld is the area of algorithms for interactive analysis

of circuit timing. Tim incorporates some elements of interactive analysis by means of its

sensitivity analysis functions. Can we o�er similar functions for retiming? Given that it

may not always be possible to retime every part of a circuit, are there e�cient algorithms

that would allow us to identify the parts of a circuit that are most promising to retime? Are

there e�cient schemes that would allow us to break a big design into smaller parts, retime

each of these parts separately, and then combine them again in a single faster design?

Algorithms that perform these tasks will have enormous impact on the development of

high-level interactive tools for the design of large circuits.

Several important issues need to be resolved before retiming becomes a widely used

timing optimization technique. We believe that veri�cation and modeling are the two most

crucial among these issues. Veri�cation is used extensively at every stage of circuit design.

Retiming changes the circuit architecture, and the retimed circuits must be veri�ed once

again. The challenging task in this case is to compute for a speci�c set of circuit inputs, the

new values that must be stored in the latches at any time during the circuit's operation. It

is not clear how to perform this computation, when retiming moves latches across logic that

can generate the same output with di�erent input vectors. Modeling is another important

issue with retiming. The delay model that is used in the retiming literature assigns a �xed

worst-case propagation delay to each logic gate. As latches are relocated, however, the loads

of the logic gates change, and consequently their propagation delays change. These changes

are not accounted for in the model. Proponents of retiming argue that one could always

size the latch transistors to maintain the same delay characteristics in the circuit. But

this solution may not be applicable in designs with standard cells that can only use latches

from a �xed pool. It is essential, therefore, to investigate retiming using more realistic delay

models and to identify properties in these models that can lead to e�cient, polynomial-time

algorithms.

Two topics that have not been explored yet in the context of multiphase circuits are

power dissipation and clock skew optimization. It is possible to retime edge-triggered cir-

cuitry in a way that reduces its power dissipation. Since there are more latches available

in corresponding multiphase circuitry, retiming may be more e�ective for such circuitry.

Note that for multiphase circuitry, the argument about increased power dissipation due to
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multiple clock lines is not always an issue, because we can generate a multiphase clock-

ing scheme by distributing a single clock and then inverting the clocking waveform locally

to generate the desired waveforms. Clock skew optimization remains a di�cult problem

even for conventional edge-triggered circuits with a single clock. Naturally, the problem is

more pronounced in multiphase circuits. At the same time, however, multiphase circuits

o�er more ways to tolerate clock skew than conventional edge-triggered circuits. Since the

successful implementation of high-performance systems depends heavily on the accurate

timing, we believe it is important to investigate the potential of multiphase clocking in this

direction.

Another important issue that remains unresolved in timing is the smooth and e�cient

transition between di�erent levels of abstraction. As circuits increase in size and density,

it is essential to develop high-level tools that will harness the ensuing complexity. At the

same time, however, it is essential to have e�cient and reliable low-level tools, such as a

transistor-level timing analyzer and optimizer for level-clocked circuits. When both high-

level and low-level tools are combined, the designer must be able to move freely across

the di�erent levels of abstraction. What are good models that simplify problems without

sacri�cing accuracy? How could a designer zoom in and out between the di�erent levels of

abstraction in order to examine design choices more closely? Where should one draw the

line between the di�erent abstractions? How could one provide e�ectively the additional

computational power required for supporting solutions to these problems? The signi�-

cance of these questions is not restricted to timing. These questions are fundamental in

computer-aided design, and their answer requires a concerted e�ort from researchers who

are knowledgeable both in computational issues and in circuit design issues.



Appendix A

A.1 Constraints for Proper Timing

In this appendix we prove Proposition 13, the fundamental premise of the algorithms in this

thesis. The proof relies on [20], and a complete understanding of the proof requires famil-

iarity with the material in that paper. For convenience, however, we give a brief description

of the notions of \computational expansions," \proper timing," and \�-constraints" that

are the basis of the proof.

In this appendix, we adopt the circuit representation of [20]. In that representation, a

circuit is a graph G = hV;Ei, where each vertex v 2 V represents either a functional element

or a level-clocked latch, and each functional element and level-clocked latch is represented

by a distinct element of V . Edges in E represent only direct component-to-component

interconnections and have no weights associated with them. Though each element of V

continues to have associated with it a propagation delay (equal to zero for latches) and a

phase (the controlling clock for latches), the functions d and � are not explicitly included

as part of the graph G.

The computational expansion GCX of a circuit G = hV;Ei is a circuit that performs the

same computation as G, but in a \combinational" fashion. Construction of GCX essentially

requires making multiple copies of the components in G and connecting them together in

such a way that for every change in the output of some component in G, there exists a

distinct copy of the component, in the computational expansion, which computes the new

value of the output. Those familiar with optimizing compilers may �nd it helpful to think

of the computational expansion as an \unrolling" of the cycles, or \loops," in a level-clocked

circuit. We generally denote by vt a copy of v 2 V that exists due to a change in the output

of v, that is caused by a clock transition that occurs at time t. The results of [20] are based

on the observation that there exists a strong correlation between the operation of G and

the operation of the corresponding computational expansion GCX.

The computational expansion of a two-phase, level-clocked circuit is de�ned as the circuit

GCX = hVCX; ECXi, where

VCX =
�
vt : v 2 V and either ��(v) rises at time t; or t = �1

	
ECX = fut ! vt0 : u! v 2 E;ut; vt0 2 VCX; t � t0; and no clock rises during (t; t0)g ;

and the delays of the components are de�ned in the natural fashion. The de�nition presumes

that there exists a \start-time" t0 before which all clock waveforms maintain a constant

115
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value, and thus, the circuit is essentially \idle" over the interval (�1; t0). The existence

of a copy v�1 for each v 2 V re
ects the assumption that the circuit is initialized at time

�1 into a well-de�ned \ground" state before it begins to compute. Furthermore, each

vt 2 VCX has associated with it an up-time of t and a down-time of t+��(v). This de�nition

of GCX di�ers from the de�nition that appears in [20]. The two de�nitions are equivalent

for two-phase circuits, however, as we show later in Lemma 56.

Intuitively, a level-clocked circuit is properly timed if whenever a latch holds a value (i.e.,

whenever its clock input is Low), it holds the same value it would in an identical circuit

in which all functional elements have zero propagation delay. Ishii and Leiserson [20] show

that a level-clocked circuit is properly timed if and only if its computational expansion is

properly timed. Moreover, they show that if, for any latch-to-latch path (possibly itself

containing several latches) in the computational expansion, the di�erence between the up-

time associated with the starting latch and the down-time associated with the ending latch

is shorter than the propagation delay between the two latches, then the expansion is not

properly timed. Conversely, they show that if, for all paths between latches in the compu-

tational expansion, the propagation time does not exceed this \up-to-down" time, then the

circuit is properly timed (see Theorem 4.1 of [20]). The in�nite set of linear inequalities

that compare up-to-down times with propagation delays is called the set of �-constraints

for the circuit. Formally, the set of �-constraints for a two-phase, level-clocked circuit G

can be de�ned as

� = fd(�) � t00 � t : vt0 has down-time t00,ut has up-time t, and

� is a path in GCX from ut to vt0g;

where d(�) equals the total propagation delay of all components in the path �.

We can now prove the following lemma.

Lemma 55 Let ut and vt0 be latches in the computational expansion GCX of a two-phase,

level-clocked circuit G. Moreover, let � = v0; v1; : : : ; vk be a path from ut to vt0 in GCX,

and let �0 = v0
0
; v0

1
; : : : ; v0k be a path from u to v in G such that for i = 0; 1; : : : ; k, if

vi = wt000 2 GCX then v0i = w 2 V . Then the following statements hold.

(i) The up-to-down time t00 � t satis�es

t00 � t =

8>><
>>:

�
�
l(�0

)�1

2

�
+ ��(u) if �(u) = �(v),

�
�
l(�0

)

2

�
� 
1��(u) if �(u) 6= �(v);

(A.1)

where l(�0) denotes the number of latches in the path �0.

(ii) The �-constraint d(�) � t00 � t holds if and only if

d(�0) �

8>><
>>:

�
�
l(�0

)�1

2

�
+ ��(u) if �(u) = �(v),

�
�
l(�0

)

2

�
� 
1��(u) if �(u) 6= �(v).

(A.2)
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Proof. First, we show that statement (i) holds by induction on the number of latches l(�).

Let us consider the basis of the induction for l(�) = 2. In this case we have �(v0) 6= �(vk).

By de�nition of the fall-time t00 we obtain

t00 = t0 + ��(vk)

= t0 + ��(v0

k
) ; (A.3)

since �(vk) = �(v0k). By de�nition of GCX we have

t0 = t+ (��(v0) + 
�(v0))

= t+ (��(v0

0
) + 
�(v0

0
)) ; (A.4)

since �(v0) = �(v0
0
). Thus, by substitution of Equations (A.3) and (A.4), and the de�nition

of a two-phase clocking scheme, we obtain

t00 � t =
�
t0 + ��(v0

k
)

�
� t

=
�
t+ ��(v0

0
) + 
�(v0

0
)

�
+ ��(v0

k
) � t

= ��(v0

0
) + 
�(v0

0
) + ��(v0

k
)

= ��(v0

0
) + 
�(v0

0
) + �1��(v0

0
)

= � � 
1��(v0

0
) ;

and, since l(�) = l(�0), Equation (A.1) is satis�ed. The base case for l(�) = 3 can be shown

similarly. For the inductive step, we assume that the lemma holds for all paths � such that

l(�) < m, and in a way similar to the base case we can show that Equation (A.1) holds for

all � such that l(�) = m.

Statement (ii) follows immediately from Equation (A.1) and the fact that d(�0) = d(�)

by construction of �0. 2

Assuming that the de�nition of GCX speci�es a proper computational expansion, the

proposition now follows immediately.

Proposition 1 A two-phase, level-clocked circuit is properly timed if and only if for all

latches A and B in the circuit, the propagation delay d(p) along any path p from A to B is

no greater than the rise-to-fall time �(p) of the path.

Proof. Since there is a one-to-one correspondence between circuit components in a two-

phase, level-clocked circuit and vertices in the graph representation from [20], and �(p) is

exactly equal to the value denoted by the expression \t00 � t" in Lemma 55, the proposition

follows from Lemma 55 and Theorem 4.1 from [20]. 2

All that remains to be shown is that the de�nition of GCX is, in fact, equivalent to the

de�nition of the computational expansion that appears in [20].

Unlike the simpli�ed de�nition presented above, the de�nition of GCX from [20] makes

reference to a base-step function bB that maps pairs (v; k), where v 2 V and k = �1; 0; 1; 2; : : :,

to the integers [�1; 0; 1; 2; : : :]. The integer argument k and the integer result are indexes

into the in�nite sequence of maximal time intervals over which the clocks of the circuit

maintain a constant value. For example, in a two-phase, nonoverlapping clocking scheme,
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the index �1 corresponds by convention to the interval (�1; t0), the index 0 corresponds

to the �rst high-pulse of �0, the index 1 corresponds to the �rst gap after the high-pulse of

�0, the index 2 corresponds to the �rst high-pulse of �1, and so forth. Each such maximal

time interval is called a step. Intuitively, if bB(v; i) = i, then the clock transition at the

beginning of the ith step directly causes a change in the value output by v. If bB(v; i) < i,

then the value output by v changes because of a clock transition that occured at a step

earlier than i. Given a circuit G = hV;Ei, the computational expansion [20] is de�ned to

be hVCX; ECXi, where

VCX = fvk : v 2 V and bB(v; k) = kg,

ECX = ful ! vk : u! v 2 E; bB(u; k) = l, and bB(v; k) = k; g,

and

bB(v; k) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

max(u;v)2E bB(u; k) if k 6= �1, and v is a functional element;

bB(v; k � 1) if k 6= �1, and v is a latch whose clock is

Low during step k;

bB(v; k � 1) if k 6= �1, u! v 2 E, v is a latch whose

clock is High during step k, and
bB(v; k � 1) � bB(u; k);

k if k 6= �1, u! v 2 E, v is a latch whose

clock is High during step k, and
bB(v; k � 1) < bB(u; k);

k if k 6= �1, and v is a latch whose clock is

High during step k and Low during steps

�1 through k � 1;

�1 if k = �1.

The de�nition is somewhat complex, due to the fact that the de�nition from [20] applies

to a more general class of circuits. The following lemma shows, however, that for two-

phase, level-clocked circuits, this de�nition is equivalent to the de�nition presented in the

beginning of this appendix.

Lemma 56 Let G = hV;Ei be a two-phase, level-clocked circuit that employs a clocking

scheme � = h�0; 
0; �1; 
1i, and let GCX be its computational expansion with base-step-

function bB. Then, the following statements hold.

(i) For every vertex v 2 V , we have bB(v; k) = k if and only if either the input phase of

v makes a Low-to-High transition at the start of the step denoted by k or the step

denoted by k is (�1; t0).

(ii) For every edge u ! v 2 E, if bB(v; k) = k, then 0 � bB(v; k) � bB(u; k) � 2, that is,

step bB(u; k) never preceeds step bB(v; k), and no clock rises between steps bB(u; k) and
bB(v; k).
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Proof. We �rst show that statement (i) holds.

()) The proof is a straightforward case analysis on the possible values of k, and it is

based on the de�nition of bB and the fact that the two phases in � are not overlapping.

For k = �1, the last branch in the de�nition of bB speci�es that bB(v;�1) = �1 for all

v 2 V , which by convention denotes the interval (�1; t0).

For k > �1, we consider latches and functional elements separately. If v is a latch,
bB(u; k) = k only if either the fourth or the �fth branch in the de�nition of bB apply. In both

cases, the phase that controls v must be High. Since �0 and �1 are nonoverlapping, we

conclude that the controlling phase is Low during step k � 1, and thus, it makes a Low-

to-High transition at step k. If v is a functional element, we can always �nd a latch v0

that leads to v along a latch-free path, since there are no latch-free cycles in the circuit. In

this case, the �rst branch in the de�nition of bB applies for every functional element on the

path, and we obtain bB(v0; k) = bB(v; k). Thus, the problem reduces to the case bB(v0; k) = k,

where v0 is a latch, and statement (i) holds in the forward direction.

(() The proof of the backward direction is by induction on the number of steps k. For

simplicity, we give the proof only for latches. As in the forward direction, the proof for

functional elements is a straightforward reduction to the proof for latches.

The basis of the induction for k = �1 follows from the last branch of bB's de�nition.
The basis for k � 3 follows from the �fth branch of bB's de�nition.

For the inductive step, consider k � 4, and let v be a latch whose input phase is �0.

(The case for �1 is similar.) According to the de�nition of the base-step function, the value
bB(v; k) depends on bB(v; k � 1) and bB(u; k), where u ! v is an edge in G. The phase

�0 is Low during steps k � 1 through k � 3, since �0 and �1 are not overlapping, and �0
rises at the start of step k. By the second branch in the de�nition of bB, it follows that
bB(v; k � 1) = bB(v; k � 2) = bB(v; k � 3) = bB(v; k � 4). By the inductive hypothesis, the

lemma holds for all integers smaller than k, and thus, bB(v; k � 4) = k� 4, since �0 rises at

the start of step k � 4. Moreover, since the input phase of u must be �1, we infer using a

similar reasoning that bB(u; k) = bB(u; k � 1) = bB(u; k � 2) = k � 2. Since k � 4 < k � 2,

the fourth branch of the de�nition applies, and it follows that bB(v; k) = k. Therefore,

statement (i) also holds in the backward direction.

Now, we show that statement (ii) holds.

In order to show that bB(u; k) � bB(v; k), it su�ces to prove that bB(u; i) � i, for every

vertex u 2 V and for every integer i � �1. This proof is a straightforward induction on i

that directly applies the de�nition of bB.
In order to show that bB(v; k) � bB(u; k)+2, we consider functional elements and latches

separately. If v is a functional element, then bB(u; k) = bB(v; k), and the inequality holds.

If v is a latch, then the clocking input of u is Low, since bB(v; k) = k implies that the

clocking input of v is High, and the two phases are nonoverlapping. If u is a latch, then
bB(u; k) = bB(u; k� 1) = bB(u; k� 2) from the second branch in the de�nition of bB. (If u is a

functional element, then these equalities still hold by virtue of the �rst branch in bB and the

fact that there are no latch-free cycles in the circuit.) Statement (i) and the fact that the

clocking input of u rises at k� 2 yield bB(u; k� 2) = k� 2. Thus, the inequality is satis�ed

with equality in this case, and therefore, statement (ii) holds. 2
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A.2 Upper Bound on Relative Speedup

In this section we prove an upper bound on the relative speedup that can be achieved

by two-phase level-clocking over edge-triggering. This bound is expressed in terms of the

maximum gate delay dmax and the maximum delay-to-register ratio R around the cycles of

the edge-triggered circuit.

The following two theorems give bounds on the clock period that can be achieved by

retiming and tuning. The �rst theorem is a restatement of Theorem 3 which provides a

lower and an upper bound for retiming edge-triggered circuitry. The only di�erence between

the two statements is on the left-hand side of the theorem's inequality which now includes

the obvious lower bound dmax on the clock period of the circuit.

Theorem 57 ([45]) Let Get = hV;E; d; wi be an edge-triggered circuit, with delay d(v) for

each gate v 2 V and w(e) latches on each wire e 2 E. Let

R = max
C2Get

P
v2C d(v)P
e2C w(e)

be the maximum ratio of total delay over total number of edge-triggered latches in the circuit

Get. Moreover, let dmax denote the maximum gate delay in Get, and let �min(Get) denote

the minimum clock period that we can obtain by retiming Get. Then

maxfdmax; Rg � �min(Get) � R+ dmax : 2

The second theorem provides a lower bound for retiming and tuning two-phase circuitry.

Theorem 58 ([21]) Let Glc = hV;E; d; wi be a two-phase circuit, with delay d(v) for each

gate v 2 V and w(e) latches on each wire e 2 E. Let

S = 2 � max
C2Glc

P
v2C d(v)P
e2C w(e)

be the maximum ratio of delay over number of latches around the cycles in Glc. Then the

minimum clock period �min(Glc) we can obtain by retiming and tuning Glc satis�es

maxfdmax; Sg � �min(Glc) : 2

Note that for a given edge-triggered circuit and its corresponding two-phase, level-clocked

implementation that is obtained by replacing each edge-triggered latch with a pair of level-

clocked latches, the lower bounds R and S are equal.

We use the bounds in Theorems 57 and 58 to prove the following upper bound on the

speedup that can be achieved by switching from edge-triggering to level-clocking.

Lemma 59 Let Get be an edge-triggered circuit, and let Glc be a two-phase circuit that

is obtained by replacing each edge-triggered latch in Get by a pair of level-clocked latches.

Let �min(Get) be the minimum clock period that we can achieve by retiming Get, and let

�min(Glc) be the minimum clock period that we can achieve by retiming Glc and simultane-

ously tuning its clocking scheme. Then

�min(Get)

�min(Glc)
�

R+ dmax

maxfR; dmaxg
: 2
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The ratio (R+ dmax) =maxfR; dmaxg can be used as a predictor of the speedup that may be

achieved by two-phase clocking. The simple intuition behind this heuristic is that for greater

values of the upper bound we have more space for improvement. There is no guarantee,

however, on the actual improvement, since we have no lower bounds. The upper bound in

maximized for R = dmax. As we see in the experimental results of Section 4.2, it is when R

approaches dmax that two-phase clocking becomes faster than edge-triggering.
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