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Abstract

Cellular automata (CA) are fully discrete, spatially-distributed dynamical systems
which can serve as an alternative framework for mathematical descriptions of physical

systems. Furthermore, they constitute intrinsically parallel models of computation
which can be e�ciently realized with special-purpose cellular automata machines.
The basic objective of this thesis is to determine techniques for using CA to model
physical phenomena and to develop the associated mathematics. Results may take the
form of simulations and calculations as well as proofs, and applications are suggested
throughout.

We begin by describing the structure, origins, and modeling categories of CA. A
general method for incorporating dissipation in a reversible CA rule is suggested by a
model of a lattice gas in the presence of an external potential well. Statistical forces
are generated by coupling the gas to a low temperature heat bath. The equilibrium
state of the coupled system is analyzed using the principle of maximum entropy. Con-

tinuous symmetries are important in �eld theory, whereas CA describe discrete �elds.
However, a novel CA rule for relativistic di�usion based on a random walk shows

how Lorentz invariance can arise in a lattice model. Simple CA models based on the

dynamics of abstract atoms are often capable of capturing the universal behaviors of
complex systems. Consequently, parallel lattice Monte Carlo simulations of abstract

polymers were devised to respect the steric constraints on polymer dynamics. The
resulting double space algorithm is very e�cient and correctly captures the static and

dynamic scaling behavior characteristic of all polymers. Random numbers are impor-
tant in stochastic computer simulations; for example, those that use the Metropolis

algorithm. A technique for tuning random bits is presented to enable e�cient uti-

lization of randomness, especially in CA machines. Interesting areas for future CA

research include network simulation, long-range forces, and the dynamics of solids.

Basic elements of a calculus for CA are proposed including a discrete representation
of one-forms and an analog of integration. Eventually, it may be the case that physi-
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cists will be able to formulate cellular automata rules in a manner analogous to how

they now derive di�erential equations.

Thesis Supervisor: Tommaso To�oli

Title: Principal Research Scientist

4



Acknowledgements

The most remarkable thing about MIT is the people one meets here, and it is with

great pleasure that I now have the opportunity to thank those who have helped me,

directly or indirectly, to complete my graduate studies with a Ph.D. First, I would like

to thank my thesis advisor, Tommaso To�oli, for taking me as a student and for giving

me �nancial support and the freedom to work on whatever I wanted. I would also like

to thank my thesis committee members Professors Edmund Bertschinger and Felix

Villars for the time they spent in meetings and reading my handouts. Professor Villars

showed a keen interest in understanding my work by asking questions, suggesting

references, arranging contacts with other faculty members, and providing detailed

feedback on my writing. I deeply appreciate the personal interest he took in me and

my scienti�c development. Professor George Koster, who must have the hardest job

in the physics department, helped me with numerous administrative matters.

The Information Mechanics Group in the Laboratory for Computer Science has
been a refuge for me, and its members have been a primary source of strength. Special
thanks is due to Norman Margolus who has always been eager to help whenever I
had a problem. He and Carol Collura have made me feel at home here by treating me
like family. Norm also blazed the thesis trail for me and my fellow graduate students

in the group: Joe Hrgov�ci�c, Mike Biafore, Milan Shah, David Harnanan, and Raissa
D'Souza. Being here gave me the opportunity to interact with a parade of visiting
scientists: Charles Bennett, G�erard Vichniac, Bastien Chopard, Je� Yepez, PierLuigi
Pierini, Bob Fisch, Attilia Zumpano, Fred Commoner, Vincenzo D'Andrea, Leonid
Khal�n, Asher Perez, Andreas Califano, Luca de Alfaro, and Pablo Tamayo. I also

had the chance to get to know several bright undergraduate students who worked
for the group including Rebecca Frankel, Ruben Agin, Jason Quick, Sasha Wood,
Conan Dailey, Jan Maessen, and Debbie Fuchs. Finally, I was able to learn from an
eclectic group of engineering sta�: Tom Cloney, David Zaig, Tom Durgavich, Ken
Streeter, Doug Faust, and Harris Gilliam. My gratitude goes out to the entire group
for making my time here interesting and enjoyable as well as educational.

I would like to express my appreciation to several members of the support sta�:
Peggy Berkovitz, Barbara Lobbregt, and Kim Wainwright in physics; Be Hubbard,

Joanne Talbot, Anna Pham, David Jones, William Ang, Nick Papadakis, and Scott

Blomquist in LCS. Besides generally improving the quality of life, they are the ones
who are really responsible for running things and have helped me in countless ways.

I am indebted to Professor Yaneer Bar-Yam of Boston University for giving me
some exposure to the greater physics community. He was the driving force behind the

work on polymers (chapter 5) which led to several papers and conference presenta-
tions. The collaboration also gave me the opportunity to work with Yitzhak Rabin,

a polymer theorist from Israel, as well as with Boris Ostrovsky and others in the

polymer center at Boston University. Yaneer has also shown me uncommon strength

and kindness which I can only hope to pick up.

My �rst years at MIT were ones of great academic isolation, and I would have
dropped out long ago if it were not for the fellowship of friends that I got to know at

the Thursday night co�ee hour in Ashdown House|it was an hour that would often

5



go on for many. The original gang from my �rst term included Eugene Gath, John

Baez, Monty McGovern, Bob Holt, Brian Oki, Robin Vaughan, Glen Kissel, Richard

Sproat, and Dan Heinzen. Later years included David Stanley, Arnout Eikeboom,

Rich Koch, Vipul Bhushan, Erik Meyer, and most recently, Nate Osgood and Lily

Lee from outside Ashdown. I thank you for the intellectual sustenance and fond

memories you have given me. Co�ee hour was initiated by housemasters Bob and

Carol Hulsizer, and I have probably logged 2000 hours in the dining room that now

bears their name. Many thanks to them and the new housemasters, Beth and Vernon

Ingram, for holding this and other social activities which have made Ashdown House

such an enjoyable place to live.

Finally, I owe my deepest gratitude to my family for their continual love, support,

and encouragement. I dedicate this thesis to them.

Support was provided in part by the National Science Foundation, grant no.
8618002-IRI, in part by DARPA, grant no. N00014-89-J-1988, and in part by ARPA,
grant no. N00014-93-1-0660.

6



To Mom, Dad, Sarah, David, and Pamela

7



8



Contents

1 Cellular Automata Methods in Mathematical Physics 15

2 Cellular Automata as Models of Nature 19

2.1 The Structure of Cellular Automata : : : : : : : : : : : : : : : : : : : 19

2.2 A Brief History of Cellular Automata : : : : : : : : : : : : : : : : : : 24

2.3 A Taxonomy of Cellular Automata : : : : : : : : : : : : : : : : : : : 26

2.3.1 Chaotic Rules : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

2.3.2 Voting Rules : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

2.3.3 Reversible Rules : : : : : : : : : : : : : : : : : : : : : : : : : 33

2.3.4 Lattice Gases : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

2.3.5 Material Transport : : : : : : : : : : : : : : : : : : : : : : : : 38

2.3.6 Excitable Media : : : : : : : : : : : : : : : : : : : : : : : : : : 40

2.3.7 Conventional Computation : : : : : : : : : : : : : : : : : : : : 43

3 Reversibility, Dissipation, and Statistical Forces 47

3.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

3.1.1 Reversibility and the Second Law of Thermodynamics : : : : : 47

3.1.2 Potential Energy and Statistical Forces : : : : : : : : : : : : : 48

3.1.3 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

3.2 A CA Model of Potentials and Forces : : : : : : : : : : : : : : : : : : 51

3.2.1 Description of the Model : : : : : : : : : : : : : : : : : : : : : 51

3.2.2 Basic Statistical Analysis : : : : : : : : : : : : : : : : : : : : : 56

3.2.3 A Numerical Example : : : : : : : : : : : : : : : : : : : : : : 60

9



3.3 CAM-6 Implementation of the Model : : : : : : : : : : : : : : : : : : 61

3.3.1 CAM-6 Architecture : : : : : : : : : : : : : : : : : : : : : : : 62

3.3.2 Description of the Rule : : : : : : : : : : : : : : : : : : : : : : 65

3.3.3 Generalization of the Rule : : : : : : : : : : : : : : : : : : : : 69

3.4 The Maximum Entropy State : : : : : : : : : : : : : : : : : : : : : : 71

3.4.1 Broken Ergodicity : : : : : : : : : : : : : : : : : : : : : : : : : 72

3.4.2 Finite Size E�ects : : : : : : : : : : : : : : : : : : : : : : : : : 75

3.4.3 Revised Statistical Analysis : : : : : : : : : : : : : : : : : : : 76

3.5 Results of Simulation : : : : : : : : : : : : : : : : : : : : : : : : : : : 79

3.6 Applications and Extensions : : : : : : : : : : : : : : : : : : : : : : : 81

3.6.1 Microelectronic Devices : : : : : : : : : : : : : : : : : : : : : 81

3.6.2 Self-organization : : : : : : : : : : : : : : : : : : : : : : : : : 82

3.6.3 Heat Baths and Random Numbers : : : : : : : : : : : : : : : 85

3.6.4 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86

3.7 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88

4 Lorentz Invariance in Cellular Automata 91

4.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 91

4.1.1 Relativity and Physical Law : : : : : : : : : : : : : : : : : : : 91

4.1.2 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92

4.2 A Model of Relativistic Di�usion : : : : : : : : : : : : : : : : : : : : 94

4.3 Theory and Experiment : : : : : : : : : : : : : : : : : : : : : : : : : 98

4.3.1 Analytic Solution : : : : : : : : : : : : : : : : : : : : : : : : : 98

4.3.2 CAM Simulation : : : : : : : : : : : : : : : : : : : : : : : : : 99

4.4 Extensions and Discussion : : : : : : : : : : : : : : : : : : : : : : : : 103

4.5 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 106

5 Modeling Polymers with Cellular Automata 109

5.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 109

5.1.1 Atoms, the Behavior of Matter, and Cellular Automata : : : : 109

5.1.2 Monte Carlo Methods, Polymer Physics, and Scaling : : : : : 111

10



5.1.3 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 112

5.2 CA Models of Abstract Polymers : : : : : : : : : : : : : : : : : : : : 113

5.2.1 General Algorithms : : : : : : : : : : : : : : : : : : : : : : : : 115

5.2.2 The Double Space Algorithm : : : : : : : : : : : : : : : : : : 118

5.2.3 Comparison with the Bond Fluctuation Method : : : : : : : : 122

5.3 Results of Test Simulations : : : : : : : : : : : : : : : : : : : : : : : : 124

5.4 Applications : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 130

5.4.1 Polymer Melts, Solutions, and Gels : : : : : : : : : : : : : : : 131

5.4.2 Pulsed Field Gel Electrophoresis : : : : : : : : : : : : : : : : : 134

5.5 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 138

6 Future Prospects for Physical Modeling with Cellular Automata 141

6.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 141

6.2 Network Modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : 141

6.3 The Problem of Forces and Gravitation : : : : : : : : : : : : : : : : : 145

6.4 The Dynamics of Solids : : : : : : : : : : : : : : : : : : : : : : : : : : 148

6.4.1 Statement of the Problem : : : : : : : : : : : : : : : : : : : : 149

6.4.2 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 150

6.4.3 Implications and Applications : : : : : : : : : : : : : : : : : : 152

7 Conclusions 155

A A Microcanocial Heat Bath 157

A.1 Probabilities and Statistics : : : : : : : : : : : : : : : : : : : : : : : : 157

A.1.1 Derivation of Probabilities : : : : : : : : : : : : : : : : : : : : 158

A.1.2 Alternate Derivation : : : : : : : : : : : : : : : : : : : : : : : 160

A.2 Measuring and Setting the Temperature : : : : : : : : : : : : : : : : 162

A.3 Additional Thermodynamics : : : : : : : : : : : : : : : : : : : : : : : 164

B Broken Ergodicity and Finite Size E�ects 167

B.1 Fluctuations and Initial Conserved Currents : : : : : : : : : : : : : : 167

B.2 Corrections to the Entropy : : : : : : : : : : : : : : : : : : : : : : : : 169

11



B.3 Statistics of the Coupled System : : : : : : : : : : : : : : : : : : : : : 172

C Canonical Stochastic Weights 175

C.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 175

C.2 Functions of Boolean Random Variables : : : : : : : : : : : : : : : : 176

C.2.1 The Case of Arbitrary Weights : : : : : : : : : : : : : : : : : 177

C.2.2 The Canonical Weights : : : : : : : : : : : : : : : : : : : : : : 178

C.2.3 Proof of Uniqueness : : : : : : : : : : : : : : : : : : : : : : : 182

C.3 Application in CAM-8 : : : : : : : : : : : : : : : : : : : : : : : : : : 183

C.4 Discussion and Extensions : : : : : : : : : : : : : : : : : : : : : : : : 184

D Di�erential Analysis of a Relativistic Di�usion Law 191

D.1 Elementary Di�erential Geometry, Notation,

and Conventions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 192

D.1.1 Scalar, Vector, and Tensor Fields : : : : : : : : : : : : : : : : 192

D.1.2 Metric Geometry : : : : : : : : : : : : : : : : : : : : : : : : : 198

D.1.3 Minkowski Space : : : : : : : : : : : : : : : : : : : : : : : : : 200

D.2 Conformal Invariance : : : : : : : : : : : : : : : : : : : : : : : : : : : 203

D.2.1 Conformal Transformations : : : : : : : : : : : : : : : : : : : 203

D.2.2 The Conformal Group : : : : : : : : : : : : : : : : : : : : : : 206

D.3 Analytic Solution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 209

E Basic Polymer Scaling Laws 215

E.1 Radius of Gyration : : : : : : : : : : : : : : : : : : : : : : : : : : : : 216

E.2 Rouse Relaxation Time : : : : : : : : : : : : : : : : : : : : : : : : : : 219

F Di�erential Forms for Cellular Automata 221

F.1 Cellular Automata Representations of Physical Fields : : : : : : : : : 221

F.2 Scalars and One-Forms : : : : : : : : : : : : : : : : : : : : : : : : : : 222

F.3 Integration : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 224

F.3.1 Area : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 225

F.3.2 Winding Number : : : : : : : : : : : : : : : : : : : : : : : : : 225

12



F.3.3 Perimeter : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 228

Bibliography 233

13



14



Chapter 1

Cellular Automata Methods in

Mathematical Physics

The objective of this thesis is to explore and develop the potential of cellular au-

tomata as mathematical tools for physical modeling. Cellular automata (CA) have a

number of features that make them attractive for simulating and studying physical

processes. In addition to having computational advantages, they also o�er a precise

framework for mathematical analysis. The development proceeds by constructing and

then analyzing CA models that resemble a particular physical situation or that illus-

trate some physical principle. This in turn leads to a variety of subjects of interest for

mathematical physics. The paragraphs below serve as a preview of the major points

of this work.

The term cellular automata refers to an intrinsically parallel model of computation

that consists of a regular latticework of identical processors that compute in lockstep

while exchanging information with nearby processors. Chapter 2 discusses CA in

more detail, gives some examples, and reviews some of the ways they have been used.

Cellular automata started as mathematical constructs which were not necessarily

intended to run on actual computers. However, CA can be e�ciently implemented as

computer hardware in the form of cellular automata machines, and these machines

have sparked a renewed interest in CA as modeling tools. Unfortunately, much of

the resulting development in this direction has been limited to \demos" of potential
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application areas, and many of the resulting models have been left wanting supporting

analysis. This thesis is an e�ort to improve the situation by putting the �eld on a

more methodical, mathematical tack.

A problem that comes up in many contexts when designing CA rules for physical

modeling is the question of how to introduce forces among the constituent parts of

a system under consideration. This problem is exacerbated if one wants to obtain

an added measure of faithfulness to real physical laws by making the dynamics re-

versible. The model presented in chapter 3 gives a technique for generating statistical

forces which are derived from an external potential energy function. In the process,

it clari�es the how and why of dissipation in the face of microscopic reversibility.

The chapter also serves as a paradigm for modeling in statistical mechanics and ther-

modynamics using cellular automata machines and shows how one has control over

all aspects of a problem|from conception and implementation, through theory and

experiment, to application and generalization. Finally, the compact representation of

the potential energy function that is used gives one way to represent a physical �eld

and brings up the general problem of representing arbitrary �elds.

Many �eld theories are characterized by symmetries under one or more Lie groups,

and it is a problem to reconcile the continuum with the discrete nature of CA. At the

�nest level, a CA cannot re
ect the continuous symmetries of a conventional physical

law because of the digital degrees of freedom and the inhomogeneous, anisotropic

nature of a lattice. Therefore, the desired symmetry must either arise as a suitable

limit of a simple process or emerge as a collective behavior of an underlying complex

dynamics. The maximum speed of propagation of information in CA suggests a con-

nection with relativity, and chapter 4 shows how a CA model of di�usion can display

Lorentz invariance despite having a preferred frame of reference. Kinetic theory can

be used to derive the properties of lattice gases, and a basic Boltzmann transport

argument leads to a manifestly covariant di�erential equation for the limiting contin-

uum case. The exact solution of this di�erential equation compares favorably with a

CA simulation, and other interesting mathematical properties can be derived as well.

One of the most important areas of application of high-performance computation
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is that of molecular dynamics, and polymers are arguably the most important kinds of

molecules. However, it has proven di�cult to devise a Monte Carlo updating scheme

that can be run on a parallel computer, while at the same time, CA are inherently

parallel. Hence, it is desirable to �nd CA algorithms for simulating polymers, and

this is the starting point for chapter 5. The resulting parallel lattice Monte Carlo

polymer dynamics should be of widespread interest in �elds ranging from biology and

chemical engineering to condensed matter theory. In addition to the theory of scaling,

there are a number of mathematical topics which are related to this area such as the

study of the geometry and topology of structures in complex 
uids. Another is the

generation and utilization of random numbers which is important, for example, in

the control of chemical reaction rates. Many modi�cations to the basic method are

possible and a model of pulsed �eld gel electrophoresis is given as an application.

The results obtained herein still represent the early stages of development of CA

as general-purpose mathematical modeling tools, and chapter 6 discusses the future

prospects along with some outstanding problems. Cellular automata may be applied

to any system that has an extended space and that can be given a dynamics, and

this includes a very broad class of problems indeed! Each problem requires signi�cant

creativity, and the search for solutions will inevitably generate new mathematical

concepts and techniques of interest to physicists. Additional topics suggested here

are the simulation of computer networks as well as the problems of long-range forces

and the dynamics of solids. Besides research on speci�c basic and applied problems,

many mathematical questions remain along with supporting work to be done on

hardware and software.

The bulk of this document is devoted to describing a variety of results related to

modeling with CA, while chapter 7 summarizes the main contributions and draws

some conclusions as sketched below. The appendices are e�ectively supplementary

chapters containing details which are somewhat outside the main line of development,

although they should be considered an integral part of the work. They primarily

consist of calculations and proofs, but the accompanying discussions are important

as well.
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Inventing CA models serves to answer the question of what CA are naturally ca-

pable of doing and how, but it is during the process of development that the best|the

unanticipated|discoveries are made. The simplicity of CA means that one is forced

to capture essential phenomenology in abstract form, and this makes for an interest-

ing way to �nd out what features of a system are really important. In the course of

presenting a number of modeling techniques, this thesis exempli�es a methodology

for generating new topics in mathematical physics. And in addition to giving results

on previously unsolved problems, it identi�es related research problems which range

in di�culty from straightforward to hard to impossible. This in turn encourages con-

tinued progress in the �eld. In conclusion, CA have a great deal of unused potential

as mathematical modeling tools for physics; furthermore, they will see more and more

applications in the study of complex dynamical systems across many disciplines.
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Chapter 2

Cellular Automata as Models of

Nature

This chapter introduces cellular automata (CA) and reviews some of the ways they

have been used to model nature. The �rst section describes the basic format of CA,

along with some possible variations. Next, the origins and history of CA are brie
y

summarized, continuing through to current trends. The last section gives a series of

prior applications which illustrate a wide range of phenomena, techniques, concepts,

and principles. The examples are organized into categories, and special features are

pointed out for each model.

2.1 The Structure of Cellular Automata

Cellular automata can be described in several ways. The description which is perhaps

most useful for physics is to think of a CA as an entirely discrete version of a physical

�eld. Space, time, �eld variables, and even the dynamical laws can be completely

formulated in terms of operations on a �nite set of symbols. The points (or cells)

of the space consist of the vertices of a regular, �nite-dimensional lattice which may

extend to in�nity, though in practice, periodic boundary conditions are often assumed.

Time progresses in �nite steps and is the same at all points in space. Each point

has dynamical state variables which range over a �nite number of values. The time

19



evolution of each variable is governed by a local, deterministic dynamical law (usually

called a rule): the value of a cell at the next time step depends on the current state

of a �nite number of \nearby" cells called the neighborhood. Finally, the rule acts on

all points simultaneously in parallel and is the same throughout space for all times.

Another way to describe CA is to build on the mathematical terminology of dy-

namical systems theory and give a more formal de�nition in terms of sets and map-

pings between them. For example, the state of an in�nite two-dimensional CA on a

Cartesian lattice can be de�ned as a function, S : Z�Z ! s, where Z denotes the set

of integers, and s is a �nite set of cell states. Mathematical de�nitions can be used to

capture with precision the meaning of intuitive terms such as \space" and \rule" as

well as important properties such as symmetry and reversibility. While such formu-

lations are useful for giving rigorous proofs of things like ergodicity and equivalences

between de�nitions, they will not be used here in favor of the physical notion of CA.

Formalization of physical results can always be carried out later by those so inclined.

The �nal way to describe CA is within their original context of the theory of (auto-

mated) computation. Theoretical computing devices can be grouped into equivalence

classes known as models of computation, and the elements of these classes are called

automata. Perhaps the simplest kind of automaton one can consider is a �nite state

machine or �nite automaton. Finite automata have inputs, outputs, a �nite amount

of state (or memory), and feedback from output to input; furthermore, the state

changes in some well-regulated way, such as in response to a clock (see �gure 2-1).

The output depends on the current state, and the next state depends on the inputs as

well as the current state.1 A cellular automaton, then, is a regular array of identical

�nite automata whose inputs are taken from the outputs of neighboring automata.

CA have the advantage over other models of computation in that they are parallel,

much as is the physical world. In this sense, they are better than serial models for

describing processes which have independent but simultaneous activities occurring

throughout a physical space.

1
Virtually any physical device one wishes to consider (e.g., take any appliance) can be viewed as

having a similar structure: inputs, outputs, and internal state. Computers are special in that these
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clock

inputs outputs

feedback

finite state
 variables

Figure 2-1: A block diagram of a general �nite automaton. The �nite state variables

change on the ticks of the clock in response to the inputs. The state of the automaton

determines the outputs, some of which are fed back around to the input. Automata

having this format constitute the cells of a cellular automaton.

New cellular models of computation may be obtained by relaxing the constraints

on the basic CA format described above. Many variations are possible, and indeed,

such variations are useful in designing CA for speci�c modeling purposes. For ex-

ample, one of the simplest ways to generalize the CA paradigm would be to allow

di�erent rules at each cell. Newcomers to CA often want to replace the �nite state

variables in each cell with variables that may require an unbounded or in�nite amount

of information to represent exactly, e.g., true integers or real numbers. Continuous

variables would also open up the possibility of continuous time evolution in terms of

di�erential equations. While allowing arbitrary �eld variables may be desirable for the

most direct attempts to model physics, it violates the \�nitary" spirit of CA|and is

impossible to achieve in an actual digital simulation in any case. In practice, the most

common CA variation utilizes temporally periodic changes in the dynamical rule or

in the lattice. In these cases, it is often useful to depict the system with a spacetime

diagram (see �gure 2-2), where time increases downward for typographical reasons.

Such cyclic rules are useful for making a single complex rule out of several simpler

ones, which in turn is advantageous for both conceptual and computational reasons.

Another generalization that turns out to be very powerful is to allow nondeterminis-

tic or stochastic dynamics. This is usually done by introducing random variables as

three media consist, in essence, of pure information.
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Figure 2-2: Spacetime schematics of one-dimensional CA showing six cells over four

time steps. Arrows indicate causal links in the dynamics of each automaton. (a) Com-

pletely uniform CA format wherein the dynamical rule for any cell depends on itself

and its nearest neighbors. (b) A partitioning CA format wherein the rule for the cells

varies in time and space. Alternating pairs of cells only depend on the pair itself.

inputs to the transition function, but could also be accomplished by letting a random

interval of time pass between each update of a cell.

It turns out that some of the variations given above do not, in fact, yield new

models of computation because they can be embedded (or simulated) in the usual

CA format by de�ning a suitable rule and possibly requiring special initial conditions.

In the case of rules that vary from site to site, it is a simple matter to add an extra

variable to each cell that speci�es which of several rules to use. If these secondary

variables have a cyclic dynamics, they e�ectively implement periodic changes in the

primary rule. These techniques can be combined to generate any regular spacetime

pattern in the lattice or in the CA rule. A cyclic rule can also be embedded with-

out using extra variables by composing the individual simple steps into a single step

of a more complex CA. Similarly, at any given moment in time, spatially periodic

structures in the lattice can be composed into unit cells of an ordinary Cartesian

lattice. These spatial and temporal patterns can be grouped into unit cells in space-

time in order to make the rule and the lattice time-invariant (see �gure 2-3). By

adding an extra dimension to a CA it would be even be possible to simulate true

integer-valued states, though the simulation time would increase as the lengths of the

integers grew, and consequently, the integer variables would no longer evolve simul-

taneously. Finally, real-valued and stochastic CA can be simulated approximately

by using 
oating point numbers and pseudorandom number generators respectively.
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Figure 2-3: Spacetime diagrams showing how a partitioning CA format (left) can

be embedded in a uniform CA format (right). The embedding is accomplished by

grouping pairs of cells into single cells and composing pairs of time steps into single

time steps.

The equivalences described here are important because they form the beginnings of

CA modeling techniques.

The concepts introduced above can be illustrated with a simple, familiar example.

Figure 2-4 shows a portion of a spacetime diagram of a one-dimensional CA that

generates Pascal's triangle. Here the cells are shown as boxes, and the number in a

cell denotes its state. Successive rows show individual time steps and illustrate how a

lattice may alternate between steps. All the cells are initialized to 0, except for a 1 in

a single cell. The lattice boundaries (not shown) could be periodic, �xed, or extended

to in�nity. The dynamical rule adds the numbers in two adjacent cells to create the

value in the new intervening cell on the next time step. The binomial coe�cients are

thus automatically generated in a purely local, uniform, and deterministicmanner. In

a suitable large-scale limit, the values in the cells approach a Gaussian distribution.

The pattern resembles the propagator for the one-dimensional di�usion equation and

could form the basis of a physical model. Unfortunately, the growth is exponential,

and as it stands, the rule cannot be carried out inde�nitely because the cells have a

limited amount of state. The description of the rule must be modi�ed to give only

allowed states, depending on the application. One possibility would be to have the

cells saturate at some maximum value, but in �gure 2-4, the rule has been modi�ed

to be addition modulo 100. This is apparent in the last two rows, where the rule

merely drops the high digits and keeps the last two. This dynamics is an example of

a linear rule which means that any two solutions can be superimposed by addition
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Figure 2-4: A spacetime diagram showing the cells of a one-dimensional CA that
generates Pascal's triangle. The automaton starts out with a single 1 in a background
of 0's, and thereafter, each cell is the sum (mod 100) of the two cells above it. The
last two rows show the e�ect of truncating the high digits.

(mod 100) to give another solution. The only other rules in this thesis that are truly

linear are those that also show di�usive behavior, though a few nonlinear rules will

exhibit some semblance of linearity.

2.2 A Brief History of Cellular Automata

John von Neumann was a central �gure in the theory and development of automated

computing machines, so it is not surprising that he did the earliest work on CA as

such. Originally, CA were introduced around 1950 (at the suggestion of Slanislaw

Ulam) in order to provide a simple model of self-reproducing automata [94]. The

successful (and profound) aim of this research was to show that certain essential

features of biology can be captured in computational form. Much of von Neumann's

work was completed and extended by Burks [9]. This line of CA research was followed

through the 60's by related studies on construction, adaptation, and optimization as

well as by investigations on the purely mathematical properties of CA.

A burst of CA activity occurred in the 70's with the introduction of John Conway's

game of \life" [33, 34]. Life was motivated as a simple model of an ecology containing
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cells which live and die according to a few simple rules. This most familiar example

of a CA displays rich patterns of activity and is capable of supporting many intricate

structures (see �gure 2-7). In addition to its delightful behavior, the popularity of

this model was driven in part by the increasing availability of computers, but the

computers of the day fell well short of what was to come.

The next wave of CA research|and the most relevant one for purposes of this

thesis|was the application of CA to physics, and in particular, showing how es-

sential features of physics can be captured in computational form. Interest in this

subject was spawned largely by Tommaso To�oli [84] and Edward Fredkin. Steven

Wolfram was responsible for capturing the wider interest of the physics community

with a series of papers in the 80's [99], while others were applying CA to a variety

of problems in other �elds [27, 38]. An important technological development during

this time was the introduction of special hardware in the form of cellular automata

machines [89] and massively parallel computers. These investigations set the stage

for the development of lattice gases [32, 55], which have become a separate area of

research in themselves [24, 25].

In addition to lattice gases, one of the largest areas of current interest in CA in-

volves studies in complexity [66, 97]. CA constitute a powerful paradigm for pattern

formation and self-organization, and nowhere is this more pronounced than in the

study of arti�cial life [52, 53]. Given the promising excursions into physics, mathe-

matics, and computer science, it is interesting that CA research should keep coming

back to the topic of life. No doubt this is partly because of CA's visually captivat-

ing, \lifelike" behavior, but also because of peoples' interest in \playing God" by

simulating life processes.
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2.3 A Taxonomy of Cellular Automata

This section presents a series of exemplary CA rules which serve as a primer on the

use and capabilities of CA as modeling tools.2 They are intended to build up the

reader's intuition for the behavior of CA, and to provide a framework for thinking

about modeling with CA. No doubt he or she will start to have questions and ideas

of his or her own upon seeing these examples. Each rule will only be described to the

extent needed for understanding the basic ideas and signi�cant features of the model.

Most of the examples are discussed in greater depth in reference [89].

The examples have been grouped into seven modeling categories which cover a

range of applications, and each section illustrates a de�nite dynamical theme. Per-

haps a more rigorous way to classify CA rules is by what type of neighborhood they

use and whether they are reversible or irreversible. It also turns out that the afore-

mentioned modeling categories are partially resolved by this scheme. CA rules that

have a standard neighborhood format (i.e., the same for every cell in space) are useful

for models in which activity in one cell excites or inhibits activity in a neighboring

cell, whereas partitioning neighborhood formats are useful for models that have to-

kens that move as conserved particles. Reversible rules try to represent nature at a

\fundamental" level, whereas irreversible rules try to represent nature at a coarser

level. These distinctions should become apparent in the sections below.

All of the �gures below show CA con�gurations taken from actual simulations

performed on CAM-6, a programmable cellular automata machine developed by the

Information Mechanics Group [59, 60]. Each con�guration lies on a 256�256 grid

with periodic boundary conditions, and the values of the cells are indicated by various

shades of gray (0 is shown as white, and higher numbers are progressively darker).

CAM-6 updates this state space 60 times per second while generating a real-time

video display of the dynamics. Unfortunately it isn't possible watch the dynamics in

2
All of these rules were either invented or extended by members of the Information Mechanics

Group in the MIT Laboratory for Computer Science. This group has played a central role in the

recent spread of interest in CA as modeling tools and in the development of cellular automata

machines.
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print, so two subsequent frames are often shown to give a feeling for how the systems

evolve. A pair of frames may alternatively represent di�erent rule parameters or initial

conditions. The CA in question are all two dimensional unless otherwise noted.

2.3.1 Chaotic Rules

Many CA rules display a seemingly random behavior which may be regarded as

chaotic. In fact, almost any rule chosen at random falls into this category. A conse-

quence of this fact is that in order to model some particular natural phenomenon, one

must adopt some methods or learning strategies to explicitly design CA rules, since

most rules will not be of any special interest to the modeler. One design technique

that is used over and over again is to run two or more rules in parallel spaces and

couple them together. This technique in turn makes it possible to put chaotic rules

to good use after all since they can be used to provide a noise source to another rule,

though the quality of the resulting random numbers is a matter for further research.

The rules described in this section use a standard CA format called the von Neu-

mann neighborhood which can be pictured as follows: q . The von Neumann neigh-

borhood of the cell marked with the dot includes itself and its nearest neighbors.

Note that the neighborhoods of nearby cells will overlap. Given a neighborhood, a

CA rule can be speci�ed in a tabular form called a lookup table which lists the new

value of a cell for every possible assignment of the current values in its neighborhood.

Thus, the number of entries in a lookup table must be kn, where k is the number of

states per cell, and n is the number of cells in the neighborhood.

Figure 2-5 shows the behavior of a typical (i.e., random) rule that uses the von

Neumann neighborhood (n = 5) and has one bit per cell (k = 2). The lookup

table therefore consists of 25 = 32 bits. For this example, the table was created

by generating a 32-bit random number: 2209261910 (written here in base 10). The

initial condition is a 96�96 square of 50% randomness in which each cell has been

independently initialized to 1 with a probability of 50% (0 otherwise). The resulting
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(a) (b)

Figure 2-5: Typical behavior of a rule whose lookup table has been chosen at random.
Starting from a block of randomness (a), the static spreads at almost the maximum
possible speed (b).

disturbance expands at nearly the speed of light,3 and after 100 steps, it can be seen

wrapping around the space. Note that the disturbance does not propagate to the

right, which means that the rule doesn't depend on the left neighbor if there is a

background of 0's. Furthermore, the interior of the expanding disturbance appears

to be just as random as the initial square. As a �nal comment, it can be veri�ed by

�nding a state with two predecessors that this CA is indeed irreversible, as are most

CA.

Reversible rules can also display chaotic behavior, and in some sense, they must.

The initial state of a system constitutes a certain amount of disorder, and since the

dynamics is reversible, the information about this initial state must be \remembered"

throughout the evolution. However, if the dynamics is nontrivial and there are not

too many conservation laws, this information will get folded in with itself many times

and the apparent disorder will increase. In other words, the entropy will increase,

and there is a \second law of thermodynamics" at work.4 Figure 2-6 shows how

3
The causal nature of CA implies that a cell can only be e�ected by perturbations in its neighbor-

hood on a single time step. The speed of light is a term commonly used to refer to the corresponding

maximum speed of information 
ow.

4
The notion of entropy being used here will be discussed in more detail in the next chapter.
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(a) (b)

Figure 2-6: Typical behavior of a simple, symmetrical, reversible rule. Starting from
a small, isolated, solid block (not shown), waves propagate outward and interfere with
each other nonlinearly as they wrap around the space several times (a). After twice

the time, the waves continue to become noiser and longer in wavelength (b).

this folding takes place and how the disorder typically increases in the context of

a simple, nonlinear, reversible (second-order) rule. Initially, the system contained a

solid 16�16 square (whose outline is still visible) in an empty background: obviously,

a highly ordered state. Waves start to emanate from the central block, and after 1200

steps, the nonlinear interactions have created several noisy patches. After another

1200 steps, the picture appears even noiser, though certain features persist. The

resulting bands of gray shift outward every step, and constitute superluminal phase

waves (or beats) stemming from correlated information which has spread throughout

the system.

2.3.2 Voting Rules

The dynamics of many CA can be described as a voting process where a cell tends

to take on the values of its neighbors, or in some circumstances, opposing values [93].

Voting rules are characteristically irreversible because the information in a cell is

often erased without contributing to another cell, and irreversibility is equivalent to

destroying information. In practice, it is usually pretty clear when a rule is irreversible

29



because frozen or organized states appear when there were none to begin with, and

this means there must have been a many-to-one mapping of states. As we shall see,

voting rules are examples of pattern-forming rules.

The �rst two examples in this section use a standard CA format called the Moore

neighborhood which consists of a cell along with its nearest and next nearest neigh-

bors: q . As before, the dot marks the cell which depends on the neighborhood,

and the neighborhoods of nearby cells will overlap. The third example uses the other

standard format, the von Neumann neighborhood.

We begin our survey of CA models with the most well-known example which is

Conway's game of life. It was originally motivated as an abstract model of birth and

death processes and is very reminiscent of cells in a Petri dish. While not strictly a

voting rule, it is similar in that it depends on the total count of living cells surrounding

a site (here, 1 indicates a living cell, and 0 indicates a dead cell or empty site). If an

empty site has exactly 3 living neighbors, there is a birth. If a living cell has fewer than

2 or more than 4 living neighbors, it dies of loneliness or overcrowding respectively.

All other cases remain unchanged. Figure 2-7(a) shows the default CAM-6 pattern of

50% randomness which is used as a standard in many of the examples below. Starting

from this initial condition for 300 steps (with a trace of the activity taken for the last

100 steps) yields �gure 2-7(b). The result is a number of stable structures, oscillating

\blinkers," propagating \gliders," and still other areas churning with activity. It

has been shown that this rule is already su�ciently complex to simulate any digital

computation [4].

Figure 2-8 shows the behavior of some true voting rules with simple yes (1)/no (0)

voting. Pattern (a) is the result of a simulation where each cell votes to go along with

a simple majority (5 out of 9) of its neighbors. Starting from the standard random

con�guration and running for 35 steps gives a stable pattern of voters. At this point

the rule is modi�ed so that the outcome is inverted in the case of 4 or 5 votes. This has

the e�ect of destabilizing the boundaries and e�ectively generating a surface tension.

Figure 2-8(b) compares the system 200 and 400 steps after the rule is changed and

shows how the boundaries anneal according to their curvature. The self-similar scaling
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Figure 2-7: Conway's game of life. The initial condition (a) is the standard pattern
of randomness used in many of the examples below. After a few hundred steps (b),
complex structures have spontaneously formed. The shaded areas indicate regions of
the most recent activity.

of the patterns is evident.

The �nal example of a voting rule is also our �rst example of a stochastic CA.

The rule is for each cell to take on the value of one of its four nearest neighbors at

random. Two bits from a chaotic CA (not shown) are used to pick the direction,

and two bits of state specify one of four values in a cell. Since the new value of a

cell always comes from a neighbor, the system actually decouples into two separate

systems in a checkerboard fashion. Figure 2-9 shows how this dynamics evolves from

a standard random pattern. After 1000 steps, the clustering of cell values is well

underway, and after 10000 steps, even larger domains have developed. The domains

typically grow according to power laws, � � t�=2 where � � 1, and in an in�nite space,

they would eventually become distributed over all size scales [18]. This rule has also

been suggested as a model of genetic drift, where each cell represents an individual,

and the value in the cell represents one of four possible genotypes [50].
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Figure 2-8: Deterministic voting rules. Starting from the standard random pattern,
simple majority voting quickly leads to stable voting blocks (a). By having the voters
vacillate in close elections, the boundaries are destabilized and contract as if under
surface tension (b). The shaded areas indicate former boundaries.

(a) (b)

Figure 2-9: A random voting rule with four candidates. Starting from a random mix

of the four possible cell values, each cell votes to go along with one of its four nearest

neighbors at random. After 1000 rounds of voting (a), distinct voting blocks are

visible. After 10000 rounds (b), some regions have grown at the expense of others.
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2.3.3 Reversible Rules

This section discusses a class of reversible CA that are based on second order rules,

i.e., the next state depends on two consecutive time steps instead of only one. They

use standard neighborhood formats, but the dynamical laws are all of the form st+1 =

f(fsgt)� st�1, where st denotes the state of a cell at time t, f(fsgt) is any function

of the cells in its neighborhood at time t, and subtraction is taken modulo an integer.

Clearly this is reversible because st�1 = f(fstg) � st+1 (in fact, it is time-reversal

invariant). The example of a reversible chaotic rule in section 2.3.1 was also of this

form, but the examples given here are more well-behaved due to the presence of

special conservation laws. Another class of reversible rules based on partitioning

neighborhoods will be discussed in the next section.

Figure 2-10 shows the behavior of a one-dimensional, second-order reversible rule

with a neighborhood �ve cells wide. This particular rule has a (positive) conserved

energy which is given by the number of di�erences between the current and past values

of neighboring cells. The dynamics supports a wide variety of propagating structures

which spread from regions of disorder into regions of order. Any deterministic CA on

a �nite space must eventually enter a cycle because it will eventually run out of new

states. If in addition the rule is reversible, the system must eventually return to its

initial state because each state can only have one predecessor. Usually the recurrence

time is astronomical because there are so many variables and few conservation laws,

but for the speci�c system shown in �gure 2-10, the period is a mere 40926 steps.

Cellular automata are well-suited for doing dynamical simulations of Ising mod-

els [19, 20, 93], where each cell contains one spin (1 = up, �1 = down). Many

variations are possible, and �gure 2-11 shows one such model that is a reversible,

second-order CA which conserves the usual Ising Hamiltonian,

H = �J
X
<i;j>

sisj; (2.1)

where J is a coupling constant, and < � � � > indicates a sum over nearest neighbors.

The second-order dynamics uses a so-called \checkerboard" updating scheme, where

33



Figure 2-10: A spacetime diagram of a one-dimensional, second-order rule in which
conservation laws keep the system from exploding into chaos. Several kinds of prop-

agating \particles," \bound states," and interactions are apparent.

the the black and red squares represent even and odd time steps respectively, so only

half of the cells can change on any one step. The easiest way to describe the rule on

one sublattice is to say that a spin is 
ipped if and only if it conserves energy, i.e., it

has exactly two neighbors with spin up and two with spin down. The initial condition

is a pattern of 8% randomness, which makes the value of H near the critical value.

The spins can only start 
ipping where two dots are close enough to be in the von

Neumann neighborhood of another cell, but after 10000 steps, fairly large patches of

the minority phase have evolved. A separate irreversible dynamics records a history

of the evolution (shown as shaded areas).

The energy in the Ising model above resides entirely in the boundaries between the

phases, and it 
ows as a locally conserved quantity. It is not surprising then, that it is

possible to describe the dynamics in terms of an equivalent (nonlinear) dynamics on

the corresponding bond-energy variables. These energy variables form closed loops

around the magnetic domains, and as long as the loops don't touch|and thereby

interact nonlinearly|they happen to obey the one-dimensional wave equation in the

plane of the CA. This wave behavior is captured in a modi�ed form by the second-

order, reversible CA in �gure 2-12. The initial condition consists of of several normal

34



(a) (b)

Figure 2-11: A reversible, microcanonical simulation of an Ising model. The initial
state has 8% of the spins up at random giving the system a near-critical energy (a).
After roughly one relaxation time, the spins have aligned to form some fairly large

magnetic domains (b). The shaded areas mark all the sites where the domains have
been.

modes and two pulses traveling to the right on a pair of strings. All of the kinks in

the strings travel right or left at one cell per time step, and therefore the frequency of

oscillation of the normal modes is given by � = 1=�. The rule also supports open and

closed boundary conditions, so the pulses may or may not be inverted upon re
ection

depending on the impedance. This rule is especially interesting in that it contains

a linear dynamics in a nonlinear rule and illustrates how a �eld amplitude can be

represented by the positions of particles in the plane of the CA.

2.3.4 Lattice Gases

The most important CA for physics, and those of the greatest current interest, are

the lattice gases. Their primary characteristic is that they have distinct, conserved

particles, and in most cases of interest, the particles have a conserved momentum.

Lattice gases are characteristically reversible, though sometimes strict reversibility

is violated in practice. The Ising bond-energy variable dynamics alluded to above,

as well as many other CA, can be thought of as non-momentum conserving lattices
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(a) (b)

Figure 2-12: A reversible, two-dimensional rule which simulates the one-dimensional
wave equation in the plane of the CA. An initial condition showing normal modes
as well as localized pulses (a). After 138 steps, the modes are out of phase, and the

pulses have undergone re
ection (b).

gases.5 However, for our purposes, lattice gases will be reversible and momentum

conserving unless stated otherwise.

The rules in this section (and in the following section) use a partitioning CA

format called the Margolus neighborhood:
q q

q q . In this case, all of the cells in the

neighborhood depend on all of the others, and distinct neighborhoods don't overlap,

i.e., they partition the space. This is very important because it makes it easy to

make reversible rules which conserve particle number. One merely has to enforce

reversibility and particle conservation on a single partition and these constraints will

also hold globally. The cells in di�erent partitions are coupled together by redrawing

the partitions between steps (see for example, �gures 2-2(b) and 3-4). Thus, the

dynamical laws in a partitioning CA depend on both space and time.

The simplest example of a nontrivial lattice gas that one can imagine is the HPP

lattice gas which contains identical, single-speed particles moving on a Cartesian

lattice. The only interactions are head-on, binary collisions in which particles are

de
ected through 90�. Note that this is a highly nonlinear interaction (consider

5
In fact, the term lattice gas originally referred to the energy variables of the Ising model.
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(a) (b)

Figure 2-13: A primitive lattice gas (HPP) which exhibits several interesting phe-
nomena. A wave impinging on a region of high index of refraction (a). The wave
undergoes re
ection as well as refraction (b).

the particles separately). One result of this (reversible) dynamics is to damp out

inhomogeneities in the gas, and this dissipation can be viewed as an inevitable increase

of entropy. Unfortunately, isotropic 
uid 
ow is spoiled by spurious conservation laws

such as the conserved momentum along each and every coordinate line. However, the

speed of sound is a constant, 1=
p
2, independent of direction.

Figure 2-13 shows an implementation of the HPP model including an interesting

modi�cation. Here, the particles move diagonally, and horizontal and vertical \soli-

ton" waves can propagate without dissipation at a speed of 1=
p
2. These waves are

maintained as a result of a moving invariant in which the number of particles along

a moving line is conserved. The shaded area marks a region where the HPP rule

operates only half the time. This e�ectively makes a lens with an index of refraction

of n = 2, and there is an associated impedance mismatch. When the wave hits the

lens, both a re
ected and refracted wave result.

A better lattice gas (FHP) is obtained by switching to a triangular lattice and

adding three-body collisions. This breaks the spurious conservation laws and gives

a fully isotropic viscosity tensor. In the appropriate limit, one correctly recovers the

incompressible Navier-Stokes equations. It is di�cult to demonstrate hydrodynamic
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Figure 2-14: A sophisticated lattice gas (FHP) which supports realistic hydrodynam-
ics. An initial condition with a vacuum surrounded by gas in equilibrium (a). The
resulting rarefaction moves away at the speed of sound (b). The asymmetry is due
to the embedding of the triangular lattice in a square one.

e�ects on CAM-6, but sound waves can be readily observed. Figure 2-14 shows an

equilibrated gas with a 48�48 square removed. The speed of sound is again 1=
p
2

in all directions, and after 100 steps, the disturbance has traveled approximately 71

lattice spacings. The wave appears elliptical because the triangular lattice has been

stretched by a factor of
p
2 along the diagonal in order to �t it into the Cartesian

space of the machine.

2.3.5 Material Transport

Complex phenomena often involve the dissipative transport of large amounts of par-

ticulate matter (such as molecules, ions, sand, or even living organisms); furthermore,

CA are well-suited to modeling the movement and deposition of particles and the sub-

sequent growth of patterns. This section gives two examples of CA which are abstract

models of such transport phenomena. The models are similar to lattice gases in that

they have conserved particles, but they di�er in that they are characteristically irre-

versible and don't have a conserved momentum. In order to conserve particles, it is

again useful to use partitioning neighborhoods.

38



(a) (b)

Figure 2-15: A stylized model of packing sand. Shortly after starting from a near-
critical density con�guration, most of the material has stabilized except for a single
expanding cave-in (a). Eventually, the collapse envelopes the entire system and leaves

large caverns within densely packed material (b).

The detailed growth of materials depends on the mode of transport of the raw ma-

terials. One such mode would be directed ballistic motion which occurs, for example,

in deposition by molecular-beam epitaxy. Consideration of the action of gravity leads

to abstract models for the packing of particulate material as shown in �gure 2-15.

The rule has been designed so that particles slide down steep slopes and fall straight

down when there are no particles on either side. The result of this dynamics is the

annealing of small voids and the formation of large ones. Eventually the system set-

tles into a situation where a ceiling extends across the entire space. This model also

exhibits some interesting \critical" phenomena. If the initial condition is denser than

about 69%, the system rapidly settles down to a spongy state. If the initial density

is less than about 13%, all of the particles end up falling continuously.

Another important mode of transport of small particles is di�usion. Figure 2-16

shows a model of di�usion limited aggregation in which randomly di�using particles

stick to a growing dendritic cluster. The cluster starts out with a single seed, and the

initial density of di�using particles is adjustable. The cluster in 2-16(a) took 10000

steps to grow in a gas with an initial density of 6%. However, with an initial density

of 17%, the cluster in 2-16(b) formed in only 1000 steps. Fractal patterns such as
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(a) (b)

Figure 2-16: A simulation of di�usion limited aggregation. Di�using particles pref-
erentially stick to the tips of a growing dendritic cluster (a). With a higher density
of random walkers, the growth is more rapid and the cluster has a higher fractal

dimension (b).

these are actually fairly commonly in dissipative CA models. While new abstract

physical mechanisms would have to be constructed, the visual appearance of these

patterns suggests the possibility of making CA models of crystal formation, electrical

discharge, and erosion.

2.3.6 Excitable Media

A characteristic feature of a broad class of CA models is the existence of attractive,

excitable states in which a cell is ready to \�re" in response to some external stimulus.

Once a cell �res, it starts to make its way back to an excitable state again. The

triggering stimulus is derived from a standard CA neighborhood, and the dynamics

is characteristically irreversible. Such rules are similar to the voting rules in that the

cells tend to follow the behavior of their neighbors, but they are di�erent in that the

excitations do not persist. Rather, the cells must be restored to their rest state during

a recovery period. The examples given here di�er from each other in the recovery

mechanism and in the form of the stimulus. Like many of the irreversible CA above,

they form patterns, but unlike the ones above, the patterns must oscillate. Many
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(a) (b)

Figure 2-17: A model of neural activity in which cells must undergo a refractory
period after being stimulated to �re. Starting from the standard random pattern, the
system quickly settles down to a low density of complex, propagating excitations (a).

After only 100 more steps, the pattern has completely changed (b).

models of excitable media are biological in nature, and even the game of life could

perhaps be moved to this category.

The best example of excitable media found in nature is undoubtedly brain tissue,

since very subtle stimuli can result in profound patterns of activity. At the risk of

drastically oversimplifying the real situation, neural cells have the property that they

�re as a result of activity in neighboring cells, and then they must rest for a short

time before they can �re again. This behavior can be readily captured in a simple

CA. A cell in the resting phase �res if there are exactly two active cells (out of 8) in

its neighborhood. A cell which has just �red must wait at least one step before it can

�re again. Figure 2-17 shows the behavior of this rule 100 and 200 steps after starting

from the standard random pattern. The system changes rapidly and often has brief

blooms of activity, though the overall level 
uctuates between about two and three

percent. This rule was speci�cally designed to prevent stationary structures, and it

is notable for the variety of complex patterns it produces.

Many physically interesting systems consist of a spatially-distributed array or �eld

of coupled oscillators. A visually striking instance of such a situation is given by the

oscillatory Zhabotinsky redox reaction, in which a solution cycles through a series of

41



(a) (b)

Figure 2-18: A model of oscillatory chemical reactions. When enough reactants are
in the neighborhood of a cell, the next product in the cycle is formed. With a low
reaction threshold, the resulting patterns are small, and the oscillations fall into a

short cycle (a). A non-monotonic threshold creates large patterns which continually
change (b).

chemical species in a de�nite order. Since there must be enough reactants present

to go from one species to the next, the oscillators try to become phase locked by

waiting for their neighbors. In a small reaction vessel, the solution will oscillate

synchronously, but in a large vessel, some regions may be out of phase with the rest;

furthermore, there may be topological constraints which prevent the whole system

from ever becoming synchronized. Figure 2-18 shows two CA simulations of this

phenomenon with di�erent reaction thresholds. The resulting spiral patterns are a

splendid example of self-organization. Similar phase locked oscillations can also be

observed in �re
ies, certain marine animals, and groups of people clapping.

The �nal example of an excitable CA is a stochastic predator-prey model. The fact

that there are tens-of-thousands of degrees of freedom arranged in a two-dimensional

space means that the behavior cannot be captured by a simple pair of equations.

The prey reproduce at random into empty neighboring cells, while the predators

reproduce into neighboring cells that contain prey. Restoration of the empty cells is

accomplished by having the predators randomly die o� at a constant rate. Figure 2-19

shows the behavior of this dynamics for two di�erent death rates. Variations on this
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(a) (b)

Figure 2-19: Predator-prey simulations. The prey reproduces at random into empty
areas, while the predators 
ourish behind the waves of prey (a). Death among the
predators occurs at random at a constant rate. With a higher death rate, there are

more places for the prey to live (b).

rule could possibly be used to model grass �res, epidemics, and electrical activity in

the heart.

2.3.7 Conventional Computation

In addition to computational modeling, CA can be used to compute in a more gen-

eral sense. For example, they are well-suited to certain computing tasks in vision and

image processing. Running algorithms that have a local, parallel description is an

important area of application for CA, but the main point of this section is to demon-

strate that CA are capable of performing universal computation. In other words,

CA can be programmed to simulate any digital computer. Universal computers must

be able to transport and combine information at will, and for CA, this means gain-

ing control over propagating structures and interactions. Partitioning neighborhoods

give us the necessary control. Finally, computation is characteristically an irreversible

process, though complex calculations can be done reversibly as well.

Modern digital circuits are written on to silicon chips, and in a similar manner

one can write circuits into the state space of a CA. With the right dynamical rule,
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(a) (b)

Figure 2-20: Digital circuit simulations. (a) An irreversible rule showing a universal
set of logic components along with an example of a counting circuit. (b) A reversible
permutation generator built using the billiard-ball model.

the CA will behave in exact correspondence with the physical chip. Figure 2-20(a)

shows a pair of circuits which can be used with a special irreversible digital logic rule.

The upper circuit shows all of the components necessary to simulate an arbitrary

digital circuit: wires, signals, fanouts, clocks, crossovers, and gates and not gates.

An example of what these components can do is given in the lower circuit which is a

serial adder that has been wired up to act as a counter.

Figure 2-20(b) shows a circuit in the so-called billiard ball model, which is an

example of a reversible, non-momentumconserving lattice gas. Pairs of point particles

travel through empty space (the lines merely mark where the particles have traveled)

and e�ectively act like �nite-sized billiard balls during collisions with re
ectors and

other pairs of particles. Collisions between balls serve to modulate two signals and

can be used as logic gates. This rule can be used to simulate an arbitrary reversible

digital circuit.

With these computational rules, we have reached the opposite end of a spectrum

of CA models in comparison to the chaotic rules. In regard to the classi�cations

developed above, both kinds can be either reversible or irreversible. A di�erence

which is somewhat incidental but also with signi�cance is that the chaotic rules use the
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standard CA neighborhood format while the computational rules use the partitioning

format. However, the main way that they di�er is in that information is channeled

in the computational rules while in the chaotic rules it is not. This �ne control over

information makes it possible to design highly complex yet structured systems such

as computers and, hopefully, models of arbitrary natural processes.

The examples above show that CA are capable of modeling many aspects of nature

including those of special interest to physics. However, these and similar models could

use further simulation and data analysis coupled with more in-depth analytical work.

Furthermore, there is a need to develop and codify the techniques involved as well

as to apply them to speci�c external problems. These considerations form a basic

motivation for the subject of this thesis. Consequently, the following chapters present

new CA models of particular interest to physics while analyzing their behaviors and

addressing the general problem of developing novel mathematical methods.
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Chapter 3

Reversibility, Dissipation, and

Statistical Forces

3.1 Introduction

3.1.1 Reversibility and the Second Law of Thermodynamics

An oft cited property of the physical world is that of time-reversal invariance. This

means that any physical process run in reverse would be a possible evolution of

another process.1 In any event, the fundamental laws of physics are (as far as we

know) reversible|that is, the equations of motion could theoretically be integrated

backwards from �nal conditions to initial conditions|and the concept of reversibility

has even been elevated to the status of a principle to which new dynamical theories

must conform.

We are interested in capturing as many principles of physics in our CA models

as possible, and therefore, we strive to construct CA dynamics which are reversible.

In other words, the dynamics should map the states of the system in a one-to-one

and onto manner [90]. In addition, we would like the inverse mapping to also be

a local CA rule and to resemble the forward rule as much as possible. One way to

1
The validity of this statement requires a suitable time-reversal transformation on all the variables

in the system and neglects the break in this symmetry which may accompany known CP violation.
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think about reversibility from an information mechanical viewpoint is that the system

always contains the same information: it is only transformed (or scrambled) into new

forms throughout the computation. In the case of invertible CA running on digital

computing machines, this interpretation of reversibility is very direct. If the inverse

rule is known, then we have complete control over the dynamics and can explicitly

run the system backwards at will.

An important consequence of reversibility is the \second law of thermodynamics."

Without quibbling over caveats, it states that in any transformation of a closed,

reversible system, the entropy must increase or stay the same. The notion of entropy

used here will be discussed at greater length below, but for now it su�ces to think of

it as a measure of the disorder of the system. The intuitive reason for the tendency

for increasing disorder is that there are vastly more disordered states than ordered

ones so that the fraction of time spent in disordered states is likely to be greater.

Reversibility is important here because it prevents a many to one mapping of states;

otherwise, the system could preferentially evolve towards the relatively few ordered

states.

Another important consequence of reversibility is that it helps prevent spurious

dynamical e�ects due to frozen degrees of freedom. What can happen in an irreversible

rule is that certain features of the system become locked in and arti�cially restrict

the dynamics. This cannot happen under a reversible dynamics because there are

no attractive �xed points. In fact, a reversible dynamics on a �nite set of states

will always return the system, eventually, to its initial condition. This recurrence is

stronger than the Poincar�e recurrence theorem in classical mechanics because it will

return exactly to its starting point, not only approximately.

3.1.2 Potential Energy and Statistical Forces

One of the most fundamental concepts of physics is energy. Its interest lies in the fact

that it is conserved, it takes on many forms interchangeably, and that it plays the

role of the generator of dynamics. Considerations of energy transport and exchange

thoroughly pervade almost every aspect of physics. Thus, many of our CA formula-
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tions of physical systems will be designed to re
ect properties and e�ects conferred

by energy.

Perhaps the most basic expression of energy is that of potential energy. Potentials

are often used to describe the statics of physical systems, and they express the essential

physics in both the Lagrangian and Hamiltonian formulations of dynamics. Potentials

act on a system by generating forces which in turn alter the movement of particles.

Ultimately, these forces arise from interactions of particles with other particles in the

system, but we can simplify the situation further and consider the case of externally

imposed scalar potentials on individual particles. The more general case will be

reconsidered in chapter 6.

A single, classical particle in a potential well would follow some de�nite orbit,

while many such particles would distribute themselves according to a Boltzmann

distribution. At present, we do not know how to have individual particles follow non-

trivial, smooth trajectories in a cellular space. However, the advantages of parallelism

inherent in CA are best suited to many-body systems, so we choose to develop some

of the statistical properties of a gas of particles in the potential instead. Situations

such as this arise, for example, in the case of an atmosphere in a gravitational �eld

or an electron gas in a Coulomb potential.

The physical phenomenon that we wish to capture then, is the microscopically

reversible concentration of a gas in the bottom of a potential well. Note however, that

for a gas consisting of particles on a lattice, this implies a decrease in the entropy,

and herein lies a paradox. How is it possible to have increasing order in a system in

which entropy must increase, and in particular, within the closed environment of a

bounded CA array? How can we have a reversible dynamics which conserves energy

and information while still exhibiting dissipation? Dissipation in this context refers

to the loss of detailed information about the dynamical history of the system, and in

the case of particles falling down a potential gradient, the concomitant loss of energy.

Thus, we would like to �nd a simple reversible mechanism with which one can model

a gas settling into a potential well, and in the process, discover the essential features

of dissipation in reversible systems.
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The solution to the paradox involves invoking statistical forces. In other words,

we actually use the second law of thermodynamics to our advantage by arranging

the system so that an increase in entropy brings about the very behavior that we

seek. This requires coupling the system to another having low entropy so that the

joint system is far from equilibrium. The approach to equilibrium is manifested as

a statistical force: particles are \pushed" by an overwhelming probability to move

to the lower potential. The force continues until the transition probabilities match

and equilibrium is restored. Throughout the process, the overall dynamics remains

strictly deterministic and reversible, and the total entropy increases.

3.1.3 Overview

This chapter presents a CA simulation that explicitly demonstrates dissipative in-

teractions in the context of a microscopically reversible dynamics. This is done by

introducing a representation of an external scalar potential which in turn can e�ec-

tively generate forces. Hence, it gives one approach to solving the problem of how

to include forces in CA models of physical systems. The model incorporates conser-

vation of energy and particles, and by virtue of reversibility, it also can be said to

conserve information. The dynamics allows us to follow the process of dissipation

in detail and to examine the associated statistical phenomena. Moreover, the model

suggests a general technique for turning certain irreversible physical processes into

reversible ones.

The rest of the chapter is organized as follows:

Section 3.2 presents a CA model of a gas in the presence of an external potential

well. The model provides a very clean demonstration of some key ideas in statisti-

cal mechanics and thermodynamics. A simpli�ed analysis is presented which intro-

duces counterparts of entropy, temperature, occupation number, and Fermi statistics,

among others. The analysis also serves as a point of departure for a further discussion

of microcanonical randomness.

Section 3.3 gives the details of the implementation of the algorithm on CAM-6.

While the details themselves are not unique, they are illustrative of the techniques
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which can be employed when developing physical models for CA. Details of the imple-

mentation lead to practical considerations for the design and programming of cellular

automata machines, and could have important consequences for the design of future

hardware and software.

The deviation of the simpli�ed analysis from the results of a trial run of the

system indicates the presence of additional conserved quantities which invalidate a

na��ve application of the ergodic hypothesis. Section 3.4 reveals these quantities and

the analysis is revised to take broken ergodicity and �nite size e�ects into account.

Section 3.5 presents the statistical results of a long run of the system and com-

pares them to the theory of section 3.4. Together, these sections demonstrate the

interplay of theory and experiment that is readily possible when using cellular au-

tomata machines. Precise measurements of the system agree closely with the revised

calculations.

Section 3.6 indicates some of the ways that the model can be modi�ed, extended,

or improved. Possible applications of the method are given for a number of problems.

Some of the implications for modeling with CA are discussed along with issues per-

taining to mechanistic interpretations of physics. Finally, a number of open problems

are outlined.

3.2 A CA Model of Potentials and Forces

3.2.1 Description of the Model

Any CA which has some form of particle conservation may be referred to as a lattice

gas. The most common examples are simulations of physical substances, though

one can imagine examples from �elds ranging from biology to economics. A bit in

a lattice gas usually represents a single particle state of motion, including position

and velocity. Each of these states may contain either zero or one particle, so an

exclusion principle is automatically built in. In addition to this basic lattice gas

format, other properties such as reversibility or energy/momentum conservation may
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also be imposed. The problem when designing a lattice gas is to specify a rule that

yields the desired phenomena while maintaining the constraints. For example, in

hydrodynamic applications, one is often interested in choosing collision rules which

minimize viscosity [24, 25]. However in this case, the goal is just to demonstrate a

reversible dynamics which generates a statistical force corresponding to an external

scalar potential.

The speci�c CA model treated in this chapter consists of a pair of two dimensional

lattice gases that are coupled via interaction with a potential well. The former will

be thought of as the system proper (consisting of featureless particles), and the latter

will be the heat bath (consisting of energy tokens). The tokens are sometimes called

demons following Creutz, who originated the general idea of introducing additional

degrees of freedom to enable microcanonical Monte Carlo simulation [19, 20]. The

particles and the energy tokens move from cell to cell under an appropriate CA rule

as described below.

The lattice gases can be viewed as residing in parallel spaces (0 and 1), and the

system logically consists of three regions (AB, C, and D) as shown in �gure 3-1(a).2

The circle indicates the boundary of the potential well where the coupling of the

lattice gases takes place. By de�nition, a particle in the central region (C) has zero

potential, a particle in the exterior region (AB) has unit potential, and the demons

(D) represent unit energy. The particles are conserved while the demons are created

and destroyed to conserve the total energy when particles cross the boundary.

The dynamics should be nontrivial and have the following properties, but it need

not be otherwise restricted. First and foremost, it must be reversible. Second, the

gas particles are to be conserved between regions AB and C. Third, the total energy,

consisting of the number of particles outside the well plus the number of demons,

should be conserved. Finally, the key part of the rule is that a particle will be

permitted to cross the boundary of the potential well only if it can exchange energy

with the heat bath appropriately: a particle falling into the well must release one unit

of energy in the form of a demon, and a particle leaving the well must absorb a demon.

2
The �rst region will later be subdivided into two regions, A and B; hence, the notation, AB.
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Figure 3-1: (a) A system comprised of a lattice gas on plane 0 coupled to a heat bath
of energy demons (D) on plane 1. The gas particles feel a potential which is low in
the central region (C) and high in the outer region (AB). (b) The initial state of the

lattice gas in plane 0 has an occupation number of 25%.

There are other choices of properties that create a similar e�ect (see section 3.6), but

this one will illustrate the point.

Given only these assumptions on the dynamics, what can we say about the evolu-

tion of the system? According to the second law of thermodynamics, the total entropy

of an isolated, reversible system such as ours must, in general increase or stay the

same. In fact, it will (again, in general) increase unless there are conservation laws

which prevent it from doing so. The notion of entropy used here is discussed next

and is consistent with Jaynes' Principle of Maximum Entropy [45]. The entropy so

de�ned will prove useful for calculating the average number of particles in the various

regions of the space.

A measure of entropy can only properly be applied to an ensemble, or probability

distribution over states, rather than to a single con�guration. However, a speci�c

con�guration of the system de�nes an ensemble by the set of all microstates that are

consistent with our coarse-grained, or macroscopic, knowledge of that con�guration.

Macroscopic knowledge may be obtained by measurement and includes the conserved
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quantities, but may also include things like particle densities or currents in various

regions of the space. The distinction between a state and the ensemble it de�nes

will usually blurred because we do not know|and generally are not interested in

knowing|all the details of the system. Hence, the entropy of a state will be taken to

be the logarithm of the number of states in the corresponding ensemble.

The particular initial con�guration of the particle system used in this chapter is

shown in �gure 3-1(b). The gas has a uniform density of 25%, which means that

each cell has been assigned a particle with an independent probability of 1/4. Note

that this implies that there is no correlation whatsoever between one cell and the

next. The gas considered by itself is thus in a state of maximum entropy and is

consequently at in�nite temperature. On the other hand, the heat bath is initially

cleared of demons, leaving it in its (unique) lowest possible energy state. This is a

minimum (equal to zero in this case) entropy state, and by analogy with the third law

of thermodynamics, the heat bath is considered to be at absolute zero. Therefore,

the entire system is in a comparatively low entropy state, far from equilibrium, and

the dynamics will serve to increase the entropy subject to the constraints.

What is the mechanism by which the entropy increases, and how is the increase

manifested? Given the above constraints and a lack of �ne-grained, or microscopic,

knowledge about the system, we can and should assume an e�ectively ergodic dy-

namics under which the system wanders through its con�guration space subject only

to conservation laws. Most of the states have a higher entropy than does the initial

con�guration, so the entropy will most likely increase. Similarly, most of the states

have more particles in the well than does the initial con�guration, so the particles

are biased to 
ow into the well. This bias is the statistical force which is derived

from interaction with the potential well. The force will act to drive the system to a

maximum entropy state|that is, one for which all accessible states (subject to any

constraints) are equally likely.

The response of the gas under a speci�c dynamics satisfying the above conditions

is shown in �gure 3-2, while the energy released into the heat bath is shown in �gure 3-

3. The particular dynamics used will be described in detail in section 3.3, though the
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(a) (b)

Figure 3-2: Particle con�gurations taken from a simulation of a lattice gas in a
potential well. (a) Nonequilibrium transient near the beginning of the simulation
showing the particles falling into the potential well. (b) Equilibrium con�guration of

the lattice gas.

behavior is quite generic. After 100 steps (a), we see that the density of the gas in

the well has increased while a surrounding rarefaction has been left behind. Energy

tokens are being created at the boundary of the well as the particles fall in. After

10,000 steps, the system has reached an equilibrium state (b), where the gas is once

again uniform in regions AB and C, and the heat bath has come to a uniform, nonzero

temperature.

In order to get a better feel for the mechanism underlying this behavior, it is use-

ful to augment the demonstration and qualitative arguments above with quantitative

calculations. The calculations can be compared with the results of simulations to

increase our con�dence in the predictive power of CA methods and to elicit further

properties of the model. A computer simulation of a discrete system makes it pos-

sible to follow the complete time dependence of all the degrees of freedom, but we

are seldom interested in such detail. Rather, we are primarily interested in knowing

the macroscopic quantities which result from averaging over the microscopic informa-

tion. The non-equilibrium evolution depends on the particular dynamics whereas the

equilibrium situation does not (to lowest order), so only the later will be analyzed.
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(a) (b)

Figure 3-3: Heat bath corresponding to �gure 3-2. (a) Nonequilibrium transient show-
ing the release of heat energy in the form of demons. (b) Equilibrium con�guration
of the heat bath.

3.2.2 Basic Statistical Analysis

The equilibrium situation can be analyzed through combinatorial methods. We pri-

marily seek to obtain the expected number of particles in the three regions. The

analysis will illustrate in a conceptually clear context several of the most important

ideas in statistical mechanics. These include entropy, temperature, Fermi statistics,

and the increase of entropy in the face of microscopic reversibility. It will also bring

out some of the conceptual di�culties encountered in its justi�cation.

The basic plan for calculations such as this is to �nd the maximum entropy ensem-

ble subject to the constraints and then to determine the expectation values assumed

by the dynamical variables. The calculated ensemble averages can be compared to

time averages taken from a computer simulation. After a su�ciently long relaxation

period, the experimental samples of the system should be representative of the whole

ensemble. The di�erences between theory and experiment will re
ect a number of ap-

proximations in the calculation as well as incorrect assumptions about the ergodicity

of the system and how measurements are made.

In order to extract some meaningful information out of the mass of details, it

is useful to adopt a description in terms of macroscopic dynamical variables. Let
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Nx and nx denote the number of cells and the number of particles respectively in

region x. Also de�ne the density (which can also be thought of as a probability or an

occupation number) �x = nx=Nx. The complement, �x = 1 � �x, will also be useful.

The total number of particles nT and the total energy ET are conserved and satisfy

the constraints,

nT = nAB + nC and ET = nAB + nD: (3.1)

The above description can only approximately capture the maximum entropy dis-

tribution because it replaces actual particle numbers (which are not constant) with

single averages (i.e., it ignores 
uctuations). Furthermore, the occupation numbers

in the cells in any given region are correlated and cannot, strictly speaking, be rep-

resented by independent, identically distributed random variables as we are doing.

The di�erences become negligible in the thermodynamic limit, but it does a�ect the

results in �nite systems as we shall see in section 3.4.

With these caveats in mind, we can proceed to work towards the maximumentropy

solution. The number of accessible states with the given occupation numbers is


 =

 
NAB

nAB

! 
NC

nC

! 
ND

nD

!
; (3.2)

and the entropy is given by

S = ln


�= NAB lnNAB � nAB lnnAB � (NAB � nAB) ln(NAB � nAB)

+NC lnNC � nC lnnC � (NC � nC) ln(NC � nC)

+ND lnND � nD lnnD � (ND � nD) ln(ND � nD)

= NAB(��AB ln �AB � �AB ln �AB) +NC(��C ln �C � �C ln �C)

+ND(��D ln �D � �D ln �D): (3.3)

The �nal expression above is just the sum over the Shannon information function for

each cell times the number of cells of that type [75].
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The entropy of the equilibrium ensemble will assume the maximum value subject

to the constraints (3.1). To �nd this extremum, introduce Lagrange multipliers � and

�, and de�ne the auxiliary function

f = S + �(nT �NAB�AB �NC�C) + �(ET �NAB�AB �ND�D): (3.4)

The Lagrange multipliers will give us measure of temperature T and chemical poten-

tial �, where T = 1=� and � = ���.

Di�erentiating f with respect to �, �, �AB, �C , and �D and setting the results to

zero returns the constraint equations (3.1) along with

�NAB ln
�AB

�AB
� �NAB � �NAB = 0; (3.5)

�NC ln
�C

�C
� �NC = 0; (3.6)

�ND ln
�D

�D
� �ND = 0: (3.7)

Solving for the densities gives

�AB =
1

1 + e�(1��)
; (3.8)

�C =
1

1 + e�(��)
; (3.9)

�D =
1

1 + e�
: (3.10)

These are just the occupation numbers for particles obeying Fermi statistics. Note

that they turned out to be intensive quantities since we assumed the thermodynamic

limit.

Equations (3.1) and (3.8){(3.10) constitute �ve equations in �ve unknowns, but

the later three can be combined to eliminate � and � to give

�AB�C�D = �C�D�AB: (3.11)

This equation can be rewritten in terms of the numbers of particles in the three
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regions as follows:

nAB(NC � nC)(ND � nD) = nCnD(NAB � nAB): (3.12)

This equation along with (3.1) gives three equations in three unknowns which is useful

for solving for the particle numbers directly. The interaction of particles in the cells on

the boundary of the potential can be described by the reaction AB *) C+D, and for

the reaction to proceed in either direction, there must be a vacancy for each product

species. Therefore, in equilibrium, equation (3.11) can be interpreted as saying that

the probability of a particle falling into the well must equal the probability of a

particle leaving the well.

The microcanonical heat bath technique illustrated in this section can be gen-

eralized and used in conjunction with any reversible CA having a locally de�ned,

conserved energy. We just need to arrange it so that the subsystems are free to ex-

change energy but that the dynamics are not otherwise constrained. In this case, the

number of states factors into the numbers of states in each subsystem, and the en-

tropies add. The characteristics of the heat bath are then independent of the system

to which it is coupled since it attains its own maximum entropy state subject only

to the amount of energy it contains. As far as the primary system is concerned, the

heat bath is characterized only by its propensity to absorb and release energy. This

is re
ected in the last equation above where the density of the demons is determined

entirely by the inverse temperature �.

An analysis similar to the one above can thus be carried out for any heat bath

considered in isolation and having a given energy (or equivalently, a given temper-

ature). Appendix A develops the statistical mechanics and thermodynamics of one

such microcanonical heat bath which holds up to four units of energy per cell. In

addition to being useful for generating statistical forces, these heat baths act as ther-

mal substrates for the primary system and can be used for measuring and setting the

temperature. This can be done, for example, to maintain a constant temperature,

as in a chemical reaction vessel, or to follow a particular annealing schedule in a
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simulated annealing algorithm. The appendix discusses these and other issues.

3.2.3 A Numerical Example

The version of this experiment that comes with the CAM-6 distribution software [59,

60] can be run under repeatable conditions by re-initializing the random number

generator. The speci�c numerical values given in the rest of this chapter correspond

to this case.

CAM-6 has a total of NT = N �N = 65536 cells with N = 256. The parameters

NAB = 52896, NC = 12640, and ND = 65536 give the total number of cells available

for particles outside the well, in the center of the well, and in the heat bath respec-

tively. The particle density is uniformly initialized to 25% which gives approximately

NT=4 = 16384 particles and NAB=4 = 13224 units of energy. The actual initial values

of these conserved quantities are nT = 16191 and ET = 13063. Since there are no

demons to start with (nD = 0), the initial particle counts in regions AB and C are

nAB = 13063 and nC = 3128 respectively.

Solving equations (3.1) and (3.12) gives the theoretical equilibriumdensities, while

the experimental time averages can be found in section 3.5. The results are summa-

rized in table 3.1. Note that the theoretical and experimental values di�er by about

2.7 particles. This discrepancy is resolved by the theory of section 3.4.

It is also illuminating to look at the entropies of the components of the system as

calculated from the theoretical values using equation (3.3). As expected, the entropy

of the gas goes down while that of the demons goes up. However, the change in

the total entropy, Sf � Si = 11874, is positive as required by the second law of

thermodynamics. Furthermore, the counting procedure that we used to calculate S

implies that the �nal state is

eSf�Si � 105156 (3.13)

times as likely as the initial state! In other words, for every state that \looks like"

�gure 3-1(b), there are approximately 105156 states that \look like" �gure 3-2(b)

60



x T AB C D

Nx 65536 52896 12640 65536

nx (initial) 16191 13063 3128 0

nx (basic theory) 16191 7795.73 8395.27 5267.27

nx (experiment) 16191 7798.44 8392.56 5264.56

Sx (initial) 36640 36640 0

Sx (�nal, theory) 48514 30185 18329

Table 3.1: A table showing the number of cells, the number of particles, and the

entropy in various regions of the potential-well system. The initial counts as well as

theoretical and experimental results are given.

(taken together with �gure 3-3(b)).3 This numerical example should make it perfectly

obvious why the entropy as de�ned here is likely to increase or stay the same in a

reversible CA. Similarly, since the �nal state has the highest entropy consistent with

the constraints, the origin of the statistical force should also be clear.

3.3 CAM-6 Implementation of the Model

In order to test hypotheses about a proposed CA mechanism, it is useful to write a

rule and run it. At this point, a cellular automata machine becomes a great asset.

Having the ability to watch a real-time display of the dynamical behavior of a system

greatly increases one's intuition about the processes involved. Furthermore, having

an e�cient simulation opens the possibility of doing quantitative mathematical ex-

periments and developing additional properties of the model. These paradigmatic

aspects of doing physics with CA are well illustrated by the present example.

Thus the model described in the previous section was implemented on CAM-6,

and here we cover the details of the implementation.4 While some of these details

could be considered artifacts of the limits on hardware resources with which one

has to work, they could also say something about computation in other physical

3
Recall that we are considering two states to be equivalent for counting purposes if they are in

the same ensemble of states de�ned by the macroscopic quantities.

4
The author would like to thank Bruce Smith for helping with this implementation.
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situations. Going through the exercise of programming such a rule is also useful for

thinking about ways of describing computation (parallel or otherwise). This interplay

between hardware, software, and the design of dynamical laws is an interesting facet

of this line of research.

This section is not strictly necessary for understanding the other sections and

can be skipped or referred to as needed. It is included for completeness and to

illustrate characteristic problems encountered and solutions devised when writing a

CA rule. The techniques are analogous to the detailed constructions contained in

a mathematical proof. Finally, it will serve as a primer on programming cellular

automata machines for those who have not been exposed to them before.

3.3.1 CAM-6 Architecture

The CAM-6 cellular automata machine is a programmable, special-purpose computer

dedicated to running CA simulations. The hardware consists of about one hundred or-

dinary integrated circuits and �ts into a single slot of an IBM-PC compatible personal

computer [83]. The machine is controlled and programmed in the FORTH language

which runs on the PC [10]. For the range of computations for which CAM-6 is best

suited, it is possible to obtain supercomputer performance for roughly 1/10000th the

cost.

The circuitry of any computer (including cellular automata machines) can be

divided into two categories: data and control. The data circuits \do the work" (e.g.,

add two numbers), while the control circuits \decide what to do." The dividing

line between these two functions is sometimes fuzzy, but it is precisely the ability to

control computers with data (i.e., with a program) that makes them so remarkable.

While the control circuits of a computer are essential to its operation, it is the 
ow of

the data that really concerns us. Consequently, the data paths common to all cellular

automata machines are (1) a cellular state space or memory, (2) a processing unit,

and (3) a feed from the memory to the processor (and back). The speci�cs of these

units in CAM-6 are described in turn below.

The state space of CAM-6 consists of a 256�256 array of cells with periodic
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boundary conditions. Each cell is comprised of four bits, numbered 0{3. It is often

convenient to think of this state space as four planes of 256�256 bits each. Planes 0

and 1 are collectively known as CAM-A, and similarly, planes 2 and 3 are known

as CAM-B. The distinction between A and B is made because the two halves have

limited interaction, and this in turn constrains how we assign our dynamical variables

to the di�erent planes.

The processor of CAM-6 replaces the data in each cell with a function of the

bits in the neighboring cells. This is accomplished with two lookup tables (one for

CAM-A and one for CAM-B), each with 212 = 4096 four-bit words. Each table can

be programmed to generate an arbitrary two-bit functions of twelve bits.5 How the

twelve bits are selected and fed into the processor is crucial and is described in the

next paragraph. The processor is shared among the cells in such a way as to e�ectively

update all of them simultaneously. In actuality, each cell is updated as the electron

beam in the TV monitor sweeps over the display of that cell.

At the heart of CAM-6 is a pipeline which feeds data from the memory to the

processor in rapid sequence. Roughly speaking, the pipeline stores data from the three

rows of cells above the current read/write location, and this serves to delay the update

of cells which have yet to be used as inputs to other cells. This unit also contains

many multiplexers which select prede�ned subsets (also called \neighborhoods") of

bits from adjacent or special cells. Well over forty bits are available in principle,

and while not all combinations are accessible through software, one can bypass the

limitations on neighbors and lookup tables by using external hardware. The subsets

available in software include the Moore, von Neumann, and Margolus neighborhoods.

The potential-well rule uses the Margolus neighborhood, as do many other physical

rules, so it is worthwhile to describe it in more detail.

The standard dynamical format of a CA rule is that each cell is replaced by a

function of its neighbors. An alternative is the partitioning format, wherein the state

space is partitioned (i.e., completely divided into non-overlapping groups of cells),

and each partition is replaced by a function of itself. Clearly, information cannot

5
Since the tables return four bits, they actually contain two separate tables|regular and auxiliary.
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Figure 3-4: The Margolus neighborhood: the entire array is partitioned into 2�2
blocks, and the new state of each block only depends on the four cells in that block.
The blocking can be changed from even to odd (solid to dotted) between time steps
in order to couple all the blocks.

cross a partition boundary in a single time step, so the partitions must change from

step to step in order to couple the space together. The Margolus neighborhood is a

partitioning scheme where each partition is 2 cells by 2 cells as shown in �gure 3-

4. The overall pattern of these partitions can have one of four spatial phases on a

given step. The most common way to change the phases is to shift the blocking both

horizontally and vertically.

The partitioning format is especially good for many CA applications because it

makes it very easy to construct reversible rules and/or rules which conserve \parti-

cles." To do so, one merely enforces the desired constraint on each partition sepa-

rately. Furthermore, the 2�2 partitions in particular are very economical in terms of

the number of bits they contain and are therefore highly desirable in cellular automata

machines where the bits in the domain of the transition function are at a premium.

The partitioning format has turned out to be so useful for realizing physical CA mod-

els that the spatial and temporal variation intrinsic to the Margolus neighborhood

has been hardwired into CAM-6.

In addition to the above data processing elements, CAM-6 has a facility for doing

some real-time data analysis. The most basic type of analysis one can do is to integrate

a function of the state variables of the system. In a discrete world, this amounts to
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counting the number of cells having a neighborhood which satis�es a given criterion.

Indeed, many measurements, such as �nding the average number density in a given

region, can be reduced to this type of local counting. Each step, the counter in CAM-

6 returns a value in the range 0 to 2562 = 65536. Whether or not a cell is counted is

determined with lookup tables in a similar way and at the same time that the cell is

updated.

This concludes the description of the resources contained in CAM-6, and now

I will outline a strategy for implementing a model. The design of a rule involves

(1) giving an interpretation to the data in the planes corresponding to the system

of interest, (2) determining the functional dependencies between cells and selecting

appropriate neighborhoods, (3) mapping out a sequence of steps which will transform

the data in the desired way, (4) de�ning the transition functions to be loaded into

the lookup tables, (5) setting up the counters for any data analysis, and (6) loading

an appropriate initial condition. Typically, one has to work back and forth through

this list before coming up with a good solution. In the next section, this formula is

applied to the potential energy model.

3.3.2 Description of the Rule

Recall that the point of this rule is to make a lattice gas reversibly accumulate in a

region which has been designated as having a lower potential. The result will be a

more ordered state, and thus it will have a lower entropy. However, it is impossible

for an isolated, reversible system to exhibit spontaneous self-organization in this way.

To get around this limitation, it is necessary to introduce extra degrees of free-

dom which can, in e�ect, \remember" the details of how each particle falls into the

potential well. This is accomplished by coupling the gas to a heat bath at a lower

temperature. More speci�cally, the coupling occurs in such a way as to conserve

energy and information whenever and wherever a gas particle crosses the contour of

the potential. The heat bath consists of energy tokens (also known as demons) which

behave as conserved particles except during interactions at the contour. In order to

achieve a greater heat capacity and good thermalization, the particles comprising the
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heat bath are deterministically stirred with a second lattice gas dynamics. Introduc-

ing a heat bath in this way removes a constraint and opens up a larger con�guration

space into which the system can expand. Hence the entropy of the overall system can

increase while that of the gas alone decreases.

The preceding discussion leads us to consider a model with three components:

(1) a lattice gas, (2) a two-level potential, and (3) a heat bath. Each of these sub-

systems requires a separate bit per cell, so the most natural thing to do is to devote

a separate bit plane to each one. Given this, we can make a tentative assignment of

data to the planes, conditioned on the availability of an appropriate neighborhood.

Thus, the state of the system is represented as follows: in CAM-A, plane 0 is the

lattice gas and plane 1 serves as the heat bath. In CAM-B, plane 2 contains a binary

potential, and plane 3 ends up being used in conjunction with plane 2 to discern the

slope of the potential as described below.

Now we turn to the choice of a neighborhood. Since the model incorporates two

reversible lattice gases, the partitioning a�orded by the Margolus neighborhood is a

must. In addition, a key constraint is the weak coupling of CAM-A and CAM-B that

was alluded to before: the only data available to one half of a cell from the other half

of the machine are the two bits in the other half of the same cell. This is important

because each half-cell can only change its state based on what it can \see." Given that

there are three sub-systems, two must be in CAM-A and the third in CAM-B, and we

have to justify how the planes were allocated above. The two lattice gases should be

in the same half of the machine because the crossing of a contour involves a detailed

exchange of energy and information between these two sub-systems. Furthermore,

the potential is not a�ected in any way by the lattice gases, so it might as well be in

the other half. As we shall see, it is possible for the lattice gases to obtain enough

information about spatial changes in the potential in CAM-B with only the two bits

available.

The dynamics of the system has four phases: two temporal phases which each

take place on each of two spatial phases. The temporal phase alternates between

even steps and odd steps. On even steps, the heat bath evolves and the potential
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Figure 3-5: Transformation rules for the TM (left) and HPP (right) lattice gases.

is \gathered" in preparation for use by CAM-A. On odd steps, the gas evolves and,

depending on the potential, interacts with the heat bath. After the odd steps, the

partitioning of the space into 2�2 blocks is shifted to the opposite spatial phase (as

shown in �gure 3-4) in order to accommodate the next pair of steps.

The even time steps can be thought of as ancillary steps wherein bookkeeping

functions are performed. During these steps, the gas particles are held stationary

while the heat particles are deterministically and reversibly stirred with the \TM"

lattice gas rule [89] as shown in �gure 3-5 (left). In the TM rule, particles move

horizontally and vertically unless they have an isolated collision with a certain impact

parameter, in which case they stop and turn 90�. This constitutes a reversible, particle

conserving, momentum conserving, nonlinear lattice gas dynamics. In CAM-B, the

potential is gathered in plane 3, the manner and purpose of which will become clear

below. For now, the gathering can be thought of as \di�erentiating" the potential to

obtain the \force" felt by the particles in the neighborhood.

The dynamics of primary interest takes place in CAM-A on odd time steps, while
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V=0

V=1

Figure 3-6: Diagram showing the relation of the even and odd Margolus neighbor-

hoods to the edge of the potential. Using this scheme, any cell can detect a change
in the potential by merely comparing its own potential with that of the opposite cell.

the data in CAM-B remains unchanged. In regions of constant potential, the gas

particles follow the \HPP" lattice gas rule [89] as shown in �gure 3-5 (right). A

summary of this rule is that particles move diagonally unless they have an isolated,

head-on collision, in which case they scatter by 90�. This rule has the property that

the momentum along every diagonal is conserved|a fact which will be important

when doing the statistical analysis of the model. The TM rule followed by the heat

bath has a behavior similar to the HPP rule except that momentum along every line

is not conserved|a fact which yields improved ergodic properties.

In addition to the dynamics described in the preceding paragraph, the key inter-

action with the potential takes place on odd time steps. If the neighborhood contains

a change in the potential, as shown in �gure 3-6, the HPP rule is overridden and each

cell only interacts with its opposite cell (including the heat bath). By looking at the

potential in the opposite cell as well as the center cell, a particle can tell whether

or not it is about to enter or exit the potential well. The particle then crosses the

boundary if there is not a particle directly ahead of it and the heat bath is able to

exchange energy appropriately. Otherwise, the particle remains where it is, which

results in it being re
ected straight back. By convention, heat particles are released

or absorbed in the cell on the interior of the potential.

Now it is �nally clear why gathering is necessary. A limitation of the neighbor-
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hoods in CAM-6 does not allow a cell to access information in the other half of the

machine unless it is in the same cell. Hence, the potential in the opposite cell must

be copied into the extra bit in CAM-B before the system in CAM-A can be updated.

The potential itself is never a�ected|only the copy in plane 3.

It is also possible to explain why the potential is aligned so that the contour always

passes horizontally or vertically through the 2�2 blocks. Once the potential of the

opposite cell has been gathered, the information in the CAM-B half of the cell allows

each of the four cells in the neighborhood to independently determine that this is

an interaction step and not an HPP step. Also, each of the cells knows whether the

potential steps up or down and can evolve accordingly without having to look at the

potential in any of the other cells.

The current implementation is also set up to measure several quantities of interest.

These quantities are completely speci�ed by counting (1) the number of particles

inside the well, (2) the number of particles outside the well, and (3) the number of

demons. These numbers can be initialized independently, but once the simulation has

begun, conservation laws make it possible to �nd all three by only measuring one of

them. The main quantities of interest that can be derived from these measurements

are the temperature and the particle densities inside and outside the potential well.

The initial conditions for this particular experiment consist of a two-level potential

and a gas of particles. The potential starts out as a single bit plane containing a

disk 128 cells in diameter. This pattern must then be aligned with the Margolus

neighborhood so that the contour always bisects the 2�2 blocks. This yields a bit

plane with 52896 cells having a unit potential and a well of 12640 cells having zero

potential. Plane 0 is initialized with particles to give a uniform density of 25 percent.

The heat bath on plane 1 is initially empty corresponding to a temperature of absolute

zero.

3.3.3 Generalization of the Rule

The implementation described above is rather limited in that it only allows binary

potentials. However, it is important to note that only di�erentials in the potential
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Figure 3-7: Contours of a multi-level potential showing how neighborhoods having the

same spatial phase can be interpreted as positive or negative depending on whether
the contour is horizontal or vertical.

are actually used to generate the force. This observation leads to an encoding of

the potential in terms of its gradient. Despite having only one bit per cell, such

a di�erence encoding makes it possible to represent any potential having a limited

slope.

The speci�c encoding used here is illustrated in �gure 3-7. An integer-valued

approximation to a potential is stored, modulo 2, in a single bit plane. Without

additional information, this would merely give a corrugated binary potential|the

potential would just alternate between zero and one. There has to be a way of

reinterpreting \negative" contours which step down when they should step up. This

can be done by insisting that, with a given partitioning, the negative contours cross

the partitions with the opposite orientation as the positive contours. In particular,

when the spatial phase of the partitions is even, horizontal contours are inverted and

when the phase is odd, vertical contours are inverted.

It remains to be shown how this scheme can be incorporated into the CAM-6 rule

above. In order to update the system, the two bits in the CAM-B half of a cell should

indicate the directional derivative along the particle's path, i.e., whether the potential

in the opposite cell higher, lower, or the same as the center cell. Therefore, it would

su�ce to complement both of these bits while gathering whenever a negative contour

is encountered. This way, the rule for CAM-A can remain exactly the same|only
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the gathering, which occurs entirely within CAM-B, has to be modi�ed.

In the basic model, most of the resources of CAM-B are idle, but now they will

be needed to compute the force from the encoded potential for use by CAM-A. The

computation involves comparing the orientation of the potential in a neighborhood

with the spatial phase to discern if a contour is positive or negative. Thus on even

steps, the potential is gathered and, if necessary, inverted in place. On the following

odd steps, the update can proceed as usual. Finally, one more administrative task

has to be performed. In the binary-potential model the data in CAM-B may be

left unchanged as the system is being updated. However in the extended model,

the gathering of the potential must be reversed at that time in order to restore the

negative contours of the potential to their uninverted state.

An example system which uses this rule is shown in �gure 3-8. In (a) is the special

binary encoding of a harmonic potential revealing the peculiar way in which the

contours follow the spatial phase. The radial coordinate could be taken to represent

position or momentum depending on the interpretation one assigns. In the former

case the potential energy is given by V = 1

2
m!2r2, and in the latter case the kinetic

energy is given by the classical expression T = p2=2m. The initial state of the gas

is exactly the same as in the previous experiment (�gure 3-1(b)), but the outcome

is rather di�erent. Since the gas falls into a deeper well than before, more energy is

released into the heat bath, and it is quickly saturated. The gas will be able to fall

deeper into the well if the system is cooled, and energy can be (irreversibly) removed

by clearing the demons in plane 1. After cooling and equilibrating the system �ve

times the result is shown in �gure 3-8(b).

3.4 The Maximum Entropy State

At the end of section 3.2, a discrepancy was noted between the elementary statistical

analysis and the time averages obtained from a long run of the simulation. Recall what

is assumed for them to agree: (1) the ensemble of states that will be generated by the

dynamics is completely de�ned by the conserved energy and particle number, (2) the
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(a) (b)

Figure 3-8: (a) Multi-level potential corresponding to a quadratic energy dependence
on the radial coordinate. (b) The �nal con�guration of the gas, yielding the charac-
teristic Fermi sea (interpreted as a picture in momentum space).

calculated maximumentropy state is representative of the entire ensemble, and (3) the

sequence of measured con�gurations taken from the simulation are representative of

the entire ensemble. Which of these assumptions is in error? It turns out that all three

may be partially responsible, but the primary culprit is point (1). In particular, any

additional conserved quantities restrict the accessible region of con�guration space,

and one such set of conserved currents will be treated in the following section. With

regards to point (2), one must be careful when redoing the calculation to take into

account the �nite size of the system as discussed below. The relevance of point (3)

will show up again in section 3.5.

3.4.1 Broken Ergodicity

It should be clear from the preceding sections that discrepancies between measured

and calculated expectation values could be a sign of previously ignored or unknown

conservation laws. Each conserved quantity will constrain the accessible portion of

the con�guration space of the system, and the true ensemble may di�er from the

microcanonical ensemble. Furthermore, the change in the ensemble may (or may

not) be re
ected in calculated expectation values. If this is the case, one may say
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that ergodicity is broken because the time average is not the same as a standard

ensemble average. However, the nature of the deviation provides a hint for �nding

new integrals of the motion [45]. Therefore, when faced with such a discrepancy, one

should consider the possibility of hidden conservation laws.

The data in table 3.1 show that, in equilibrium, there are fewer particles in the

well than a simple calculation would suggest, and we would like to see if this can be

explained by constraints that were previously unaccounted for. The analysis given in

section 3.2 made minimal assumptions about the dynamics, but additional conserva-

tion laws will, in general, depend on the details. Hopefully, we can �nd some reason

for the discrepancy by looking back over the description of the rule in section 3.3.

One possibility that was mentioned in connection with the HPP lattice gas is that

there is a conserved momentum or current along every single diagonal line in the

space. In the present model, the particles bounce straight back if they cannot cross

the boundary of the potential, so the conserved currents only persist if the diagonals

do not intersect the potential. However, with periodic boundary conditions and the

particular potential well used here, there happen to be a total of L = 74 diagonal lines

(37 sloping either way), each of length N = 256, that do not cross the potential and

are entirely outside the well (see �gure 3-9(a)). Thus, region AB naturally divides

into A and B, where all the lines in region A couple to the potential while those in

region B do not. In addition, region A crosses region B perpendicularly, so they are

coupled to each other by collisions in this overlap region.

The current on each diagonal line in region B consists of a constant di�erence in

the number of particles 
owing in two directions: j = n+ � n�. The total number of

particles on the diagonal, n = n++n�, is not constant, but it clearly has a minimum

of jjj (and a maximum of N � jjj). The minimum currents on all the lines can be

demonstrated by repeatedly deleting all the particles (and all the demons) that fall

into the well, since any excess will scatter into region A.6 The residual con�guration

shown in �gure 3-9(b) was obtained in this manner. This con�guration has a total

6
There is a small chance that they will scatter where region B intersects itself, but a di�erent

sequence of erasures can be tried until this does not occur.
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Figure 3-9: (a) The outer region is divided into two parts (A and B) in order to isolate
the e�ects of additional conserved quantities. (b) The current remaining in region B
after any extra particles on each line have scattered out due to head-on collisions.

of 394 particles which can never fall into the well, so the mean magnitude of the

current on each line is hjjji �= 5:32. The actual discrepancy in the particle counts are

much less than 394 because the currents are screened by the presence of all the other

particles, but the demonstration shows that the e�ect of these additional conservation

laws will be to reduce the number of particles nC in the well in equilibrium, provided

that the density of the initial con�guration is low. The numbers given above can be

explained by considering the disorder contained in the initial con�guration (�gure 3-

1(b)). Detailed calculations of all the results stated in this section can be found in

appendix B.

In order to determine the e�ect of these currents on the entropy, one must recount

the number of available states and take the logarithm. One attempt at the counting

assumes that every line has the same average number of particles n and then factors

each line into two subsystems contain opposing currents. The total entropy of all L

lines in region B is then

SB �= L ln

 
N=2
n+j

2

! 
N=2
n�j
2

!
; (3.14)
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and this can be expanded to second order in j by making the usual approximation

lnN ! �= N lnN�N . When j = 0, this returns the same result as the basic analysis of

section 3.2, but we are interested in the net change. Since the entropy is a physically

measurable quantity, the separate values of j2 for each line can be replaced with the

expected value hj2i = N�0�0, where �0 = 1=4 is the initial density of particles in

region B. Finally, the net change in the entropy as a function of the �nal density in

region B is

(�SB)nonergodic = � L�0�0
2�B�B

: (3.15)

Note that this correction is not extensive since it is proportional to L rather than to

NB = NL.

The logical e�ect of (3.15) is to reduce the entropy as the conserved currents

increase. And since �B�B reaches a maximum at �B = 1=2, it tends to favor inter-

mediate densities in the maximum entropy state. This is a direct manifestation of

the di�culty of pumping particles out of region B. The e�ect of adding this term to

the entropy is tabulated in appendix B, but the correction overshoots the experimen-

tal value and actually makes the theoretical answer even worse. Therefore, we must

reexamine the analysis.

3.4.2 Finite Size E�ects

The combinations above give the exact number of ways of distributing nx particles in

Nx cells, but an approximation must be made when taking the logarithm. The size of

the approximation can be gauged by looking at the following asymptotic expansion [1]:

lnN ! � N lnN �N + 1

2
lnN + 1

2
ln 2� +

1

12N � 1

360N 3
+ � � � : (3.16)

For any given number of terms, this expansion is better for large N , but for small

N , more terms are signi�cant and should be included. In the present calculation,

the logarithmic term, 1

2
lnN , is included for the factorial of any number smaller than

N = 256. These small numbers show up because of the way region B must be divided

up into L regions of size N in order to compute the e�ect of the individual currents.
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Despite being one level farther down in the expansion, the logarithmic terms give

contributions comparable in size to the conservation term (3.15). When terms of this

order are included, the approximation of equal numbers of particles on every line

must also be modi�ed as shown in appendix B. Thus, the change in the entropy due

to logarithmic terms as a function of the �nal density in region B is

(�SB)finite = �L
2
ln �B�B; (3.17)

where constant terms have been omitted. As before, this correction is not extensive

since it is proportional to L rather than to NB = NL.

The physical meaning of (3.17) is not as clear as the meaning of (3.15), but it has a

compensatory e�ect. The former is lower when �B�B is higher, and this tends to push

the maximum entropy state away from �B = 1=2. Together, the above corrections

bring the experimental and theoretical values into excellent agreement. The e�ect of

adding (3.17) alone to the entropy is also tabulated in the appendix, so the size of its

contribution can be seen separately.

3.4.3 Revised Statistical Analysis

Adding the corrections (3.15) and (3.17) to the bulk entropies for each region gives

the revised expression for the total entropy,

S = ln


�= NA(��A ln �A � �A ln �A) +NB(��B ln �B � �B ln �B)

+NC(��C ln �C � �C ln �C) +ND(��D ln �D � �D ln �D)

� L�0�0
2�B�B

� L

2
ln �B�B; (3.18)

while the revised constraints on the particle number and energy are given by

nT = nA + nB + nC and ET = nA + nB + nD: (3.19)

76



The solution for the maximum entropy state under these constraints exactly parallels

the derivation given before, and the resulting densities are

�A =
1

1 + e�(1��)
; (3.20)

�B =
1

1 + e�(1��) exp
n

1

2N

(1�2�B)

�B�B

�
1� �0�0

�B�B

�o; (3.21)

�C =
1

1 + e�(��)
; (3.22)

�D =
1

1 + e�
: (3.23)

The densities in regions A, C, and D obey Fermi statistics as before since the thermo-

dynamics limit applies to them. However, the density in region B re
ects the fact that

it is broken up into L = 74 �nite-sized regions, each of which contains an additional

conserved current. The analysis presented in appendix B manages to describe all of

these subsystems with single average.

Since region AB has been split in two, we now have six equations in six unknowns.

Equations (3.20){(3.23) can be combined to eliminate � and � and express the max-

imum entropy state directly in terms of the numbers of particles in the four regions:

nA(NC � nC)(ND � nD) = nCnD(NA � nA) (3.24)

nA(NB � nB) = nB(NA � nA) exp

(
1

2N

(1 � 2�B)

�B�B

 
1 � �0�0

�B�B

!)
: (3.25)

These equations are essentially statements of detailed balance: the �rst is in actuality

the same as equation (3.12) and ensures equilibrium of the reaction A *) C+D, while

the second equation (squared) ensures equilibrium of the reaction 2A *) 2B. Broken

ergodicity and �nite size e�ects have the net e�ect of skewing the later reaction to

the right hand side since �B�B < �0�0. Note that the extra factor is less important

when the �nal density in region B happens to be close to the initial density. These

equations in conjunction with (3.19) comprise four equations in the four unknown

equilibrium particle numbers. Solving gives the revised results shown in table 3.2,

where the numbers for regions A and B have been added together for comparison
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x T AB C D

Nx 65536 52896 12640 65536

nx (initial) 16191 13063 3128 0

nx (revised theory) 16191 7798.42 8392.58 5264.58

nx (experiment) 16191 7798.44 8392.56 5264.56

Table 3.2: A revised version of table 3.1. The theoretical values have been updated

to take into account additional conserved quantities and a logarithmic correction to

the entropy.

with table 3.1.

The agreement in table 3.2 is very good, but a certain amount of luck must be

acknowledged because of the many possible sources of disagreement. For one thing,

approximations were involved in the way the states were counted and in the way the

disorder in the initial con�guration was averaged out. The expansion of lnN ! involved

an asymptotic series, and it is not clear how many terms to keep. Additional terms

could account for more subtle �nite size e�ects, but still others could make the calcu-

lation worse. There is also a conceptual mismatch in that theoretically, we calculate

the mode of the ensemble, whereas experimentally, we measure ensemble averages.

This would be a problem if the distributions of the observables were skewed. Finally,

there is the possibility of further conservation laws (known or unknown). For exam-

ple, the HPP gas has another conservation law in the form of the moving invariant

shown in �gure 2-13. While the \soliton" waves would not survive upon hitting the

potential well, some version of the invariant could very well persist. Another set of

invariants that the gas particles in the potential-well rule de�nitely have is the parity

of the number of particles (0 or 1) on each of the 2N diagonals. These are not all

independent of the conservation laws previously mentioned, but they would probably

have a weak e�ect on some expectation values. Still another type of conservation law

has to do with discrete symmetries: a symmetrical rule that acts on a symmetrical

initial con�guration cannot generate asymmetrical con�gurations.

78



3.5 Results of Simulation

This section describes how the numerical experiments on the potential-well system

were performed on CAM-6. The experiments consist of �ve runs, each of which was

started from the initial condition described in section 3.2. A run consists of letting

the system equilibrate for some long period of time and then taking a running sum of

measurements for another long period of time. The system was also allowed to relax a

short period of time (20 steps) between measurement samples.7 For each sample, the

numbers of particles in regions AB, C, and D were counted separately and added to

their respective running totals. Only one of the three counts is independent because

of the constraints (3.1), but having the sum of all three provides sensitive cross checks

for possible errors. If any errors occur, the simulation can just be run again.

The results of the simulations are shown in table 3.3. The numbers in the center

columns are are just the running totals in the respective regions divided by the number

of samples. The column labeled t gives the time period over which each simulation

ran. The �rst number gives the equilibration time, and the second number is the

�nishing time. The number of samples taken is the di�erence of these times divided

by 20. Thus, runs #1 and #2 contain 10,000 samples each while runs #3{5 each

contain 300,000 samples each. Note that none of the sampling intervals overlap, and

in practice, the earlier runs serve as equilibration time for the later ones. CAM-6

runs at 60 steps per second, but since there is some overhead associated with taking

the data, the sequence of all �ve runs required about a week to complete.

The measurements consist of exact integer counts, so the only possible source of

error on the experimental side would be a lack of su�cient statistics. One way the

statistics could be misleading is if the system were not ergodic, though this could

just as well be considered a theoretical problem. The particular initial condition may

happen to produce a short orbit by \accident," but this could also be attributed to

an ad hoc conservation law. The statistics could also su�er if the equilibration time

7
As described in section 3.3, it takes two steps to update both the particles and the heat bath.

This makes for 10 updates of the system between samples, but t will continue to be measured in

steps.
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x T AB C D t

Nx 65536 52896 12640 65536 {

nx (initial) 16191 13063 3128 0 0

nx (expt. run #1) 16191 7801.26 8389.74 5261.74 10{210k

nx (expt. run #2) 16191 7799.31 8391.69 5263.69 210{410k

nx (expt. run #3) 16191 7798.43 8392.57 5264.57 2{8M

nx (expt. run #4) 16191 7798.51 8392.49 5264.49 8{14M

nx (expt. run #5) 16191 7798.38 8392.62 5264.62 14{20M

nx (expt. average) 16191 7798.44 8392.56 5264.56 2{20M

nx (�gure 3-9(b)) 394 0+394 0 0 {

Table 3.3: Experimental values for the time averaged number of particles in each

region of the system. The data is taken from simulations using the same initial
conditions but from nonoverlapping time intervals. The �nal average is over the last
three runs.

is too short. For example, the averages for runs #1 and #2 seem to indicate that the

system is approaching the �nal equilibriumaverages gradually, but since there are only

10,000 samples in each of these runs, this could also be due to random 
uctuations.

Accumulation of data for run #1 starts from �gure 3-2(b) which certainly looks like

an equilibrium con�guration, but perhaps it still has some macroscopic memory of

the initial state. Finally, a third way the statistics could be poor is if the run is

too short to sample the ensemble uniformly. Because of the small amount of time

between samples, consecutive counts are by no means independent. If they were, the

standard error in the measured values would be the standard deviation divided by the

square root of the number of samples. The standard deviation was not measured, but

the individual counts comprising the totals were observed to 
uctuate within about

100{200 particles of the averages, and this provides a reasonable estimate instead.

Since we have 900,000 samples in the �nal average, a crude estimate of the standard

error is � � 0:16 particles. The averages in runs #3{5 are well within the resulting

error bars. One should really measure the relaxation time (as is done in the polymer

simulations in chapter 5) to get an idea of how good the statistics are.
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3.6 Applications and Extensions

The model presented here is interesting both in terms of its applicability to fur-

ther modeling with CA and for the basic scienti�c issues it raises. The technique

introduced for modeling potentials and statistical forces can be used with little or

no further development. Microcanonical heat baths will certainly �nd application

in thermodynamic modeling and as a method for controlling dissipation. This sec-

tion presents just a few ideas and speculations on how these techniques might be

used or extended. Hopefully the discussion will spark further ideas for modeling and

mathematical analysis.

3.6.1 Microelectronic Devices

Several interesting physical systems consist of a fermi gas in a potential well including

individual atoms and degenerate stars. Another very common and important situa-

tion that involves the di�usion of particles in complicated potentials is that of elec-

trons in integrated circuits. This topic is pertinent to information mechanics because

of our interest in the physics of computation, particularly in the context of cellular

computing structures. While detailed physical �delity may be lacking in the present

model, it could probably be improved by introducing some variation of stochastic

mechanics [64]. Nevertheless, it is worthwhile to pursue these simple models because

interesting �ndings often transcend speci�c details.

Figure 3-10(a) shows a CAM-6 con�guration of a potential which is intended as a

crude representation of a periodic array that might be found on or in a semiconduc-

tor. In order of decreasing size, some examples of such periodic electronic structures

are dynamic memory cells, charge-coupled devices, quantum dots, and atoms in a

crystal lattice. The actual potential used is a discrete approximation to cosx cos y (in

appropriate units), and the alternating peaks and valleys which result are the 32�32

squares visible in the �gure.

The system was initialized with a 64�64 square of particles in the center and no

energy in the heat bath. Hence, the number of particles is just su�cient to cover
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(a) (b)

Figure 3-10: (a) A multi-level potential representing a periodic array on an integrated
circuit. (b) Particles in the center working their way outward via thermal hopping
from well to well.

exactly two peaks and two valleys, so there will be a net release of energy into the

heat bath as the particles seek their level. After 10,000 steps, �gure 3-10(b) shows

how the particles can di�use from well to well. Depending on the situation, the

lattice gas could represent either a collection of electrons or probability densities for

single electrons. One possible research problem based on this example would be to

determine the rates of thermodynamic transitions between the wells as a function of

temperature.

One conceptually straightforward modi�cation to the rule would be to have time

dependent potentials. By switching portions of the potential on and o� in the ap-

propriate ways, it would be possible to shu�e the clouds around in an arbitrary way.

An important improvement in the model would be to have one cloud modulate the

behavior of another, but �nding a good way to do this is an open area of research.

Another interesting challenge would be to model a bose gas in a potential well.

3.6.2 Self-organization

The real strength of CA as a modeling medium is in the simulation of the dynamical

phenomena of complex systems with many degrees of freedom. An important aspect
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of such systems is that they are often marked by emergent inhomogeneity or self-

organization which occurs in non-equilibrium processes. Rather than approaching a

uniform state as might be expected from an increase in entropy, many macroscopic

systems spontaneously form a wide variety of interesting structures and patterns [70].

Examples of such dynamical behavior can be found in disciplines ranging from geology

and meteorology to chemistry and biology [97]. The concepts discussed in this chapter

are relevant to the study of self-organization in a number of ways.

Self-organization in a dynamical system is characterized by having a �nal state

which is more ordered than the initial state|i.e., it has a lower coarse-grained

entropy.8 Given what was said above about the connection between entropy and

reversibility, self-organization clearly requires irreversibility or an open system which

allows entropy (or information) to be removed. The actual process of self-organization

involves \reactions" that occur more often in one direction than in the reverse direc-

tion, and this bias can be said to arise from forces. In the potential-well rule, the

forces are entirely statistical which means that they are, in fact, caused by an increase

in entropy. However, the increase in entropy takes place in the heat bath in such a

way that the entropy of the system itself actually decreases. Conservation laws also

play an important role in the dynamics of self-organization because they determine

how the con�guration of a system can evolve, while the entropy determines, in part,

how it does evolve. Furthermore, the organized system usually consists of identi�able

\particles" which are conserved.

Dissipation refers to the loss of something by spreading it out or moving it else-

where. In the present context, it usually refers to the loss or removal of information

from the system of interest. However, the term could also be applied to energy, mo-

mentum, particles, or waste products of any kind. The potential-well model suggests

a general method of incorporating dissipation of information in a reversible scheme.

Whenever an interaction would normally result in a many-to-one mapping, it is only

allowed to proceed when the extra information that would have been lost can be writ-

8
Others may also talk about various measures of complexity such as algorithmic complexity and

logical depth, but for purposes of this discussion, we are more interested in statistical mechanics

than, say, natural selection.
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ten to a heat bath. In this case, the heat bath is acting very much like a heat sink.

Just as heat sinks are required for the continual operation of anything short of a per-

petual motion machine, the reversible dissipation of information requires something

like a heat bath. More generally, a heat bath can be used to absorb whatever is to be

dissipated, and if one is careful, it can be accomplished reversibly. Finally, reversibly

coupling a system to a heat bath in a low entropy state is a disciplined way of adding

dissipation and statistical forces to any rule. The energy or information which falls

into the bath can then be deleted gradually, and this gives us better control over how

the dissipation occurs. It is less harsh than using an irreversible rule directly because

the degrees of freedom cannot permanently freeze.

Let us think for a moment about how the process of self-organization might work

in CA in terms of abstract particles. Some features that seem to characterize self-

organizing systems are (1) energy, (2) feedback, (3) dissipation, and (4) nonlinearity;

their respective roles are as follows: (1) Particles are set into motion by by virtue

of having an energy. (2) The placement of the particles is dictated by forces which

are caused by the current state of the system. (3) When a particle comes to rest,

the energy associated with the motion as well as the information about the particle's

history are dissipated. (4) The above processes eventually saturate when the system

reaches its organized state. All of these features except feedback can be identi�ed in

the potential-well model|the organization is imposed by an external potential rather

than by the system itself.

The information about the state of a lattice gas is entirely encoded in the position

of the particles since they have no other structure. During self-organization, the

positions of many particles become correlated, and the positional information is lost.

Similar comments apply to the self-organization of systems consisting of macroscopic

particles (for example, think of patterns in sand). Also, the role of energy in moving

particles around may be played by \noise" of another sort. The real point is that the

dissipation of entropy (or information) and \energy" that was discussed above can

equally apply to large scales, not just at scales of k or kT . In fact, a CA simulation

makes no reference to the actual size of the system it is simulating. These �nal
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comments just serve to show that self-organization has more to do with the behavior

of information rather than with the behavior of matter.

3.6.3 Heat Baths and Random Numbers

One drawback with the heat bath described above (and its generalizations from ap-

pendix A) is that it has a relatively small heat capacity. This is a problem because its

temperature will not remain steady as it interacts with the main system. However,

the potential-well model itself presents a technique for increasing the capacity as can

be understood by looking back at �gure 3-8. Instead of a particle holding a single unit

of energy, it absorbs a unit of energy every time it jumps up a contour. By having a

steep V-shaped potential, it would be possible to have 128 contours in the 256�256

space of CAM-6. The gas in the potential would therefore bu�er the temperature of

the heat bath by absorbing and releasing energy as needed. The heat bath would not

equilibrate as quickly however, and in general, there is a tradeo� between the heat

capacity of the bath and its statistical quality.

Microcanonical heat baths have been o�ered as a technique for adding dissipation

to a deterministic CA model while maintaining strict microscopic reversibility. Such

dissipation is a nonequilibriumprocess which can be used to generate statistical forces.

However, once the system is near equilibrium, the same heat bath plays the seemingly

contradictory role as a random number generator. On one hand, it is known that the

heat bath is perfectly correlated with the primary system, and on the other hand, it

is assumed that it is uncorrelated. How is this to be understood?

Intuitively, the dynamics are usually so complex that the correlations are spread

out over the whole system, and they are unlikely to show up in a local, measurable way.

The complexity is re
ected, in part, by the extremely long period (T0 � 2O(N2
)) of

the system (after which all the correlations come back together in perfect synchrony).

The period could be substantially shorter if there are conservation laws that impose

a hidden order on the randomness, so any such degeneracy would say something

interesting about the CA's dynamics. As in any stochastic computer simulation, one

must be cognizant of the possibility that the quality of random numbers may be
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lacking and be prepared to deal with the problem. The mathematical problems and

philosophical questions associated with the use of deterministic randomness are by

no means settled.

3.6.4 Discussion

There are many topics related to the potential-well model which have yet to be

explored. This section gives a list of suggestions, observations, and problems from

which the research could be continued.

One project using the exact same system would be to keep statistics on the number

of particles in region A and B separately to check how well the predicted numbers

agree with the simulation. Another project would be to test the e�ect of removing the

additional conserved currents. This could be done by introducing interactions which

do not respect the conservation law responsible for constraining the system. For

example, when the gas particles are are not interacting at the edge of the potential,

they could be allowed to collide with the demons as well as each other.

The condensation of the gas in the well was caused by statistical forces arising

through a coupling of the system to a heat bath in a low entropy state. However,

there are other ways to generate reversible statistical forces. For example, instead

of having a heat bath, one could allow the particles to have one of several di�erent

\kinetic" energy levels, provided that there are more states available to higher energy

particles. The key interaction would then be to increment the energy of a particle

when it falls into the well and decrement the energy when it leaves. Such a gas that

starts with most of the particles in the low energy states would again preferentially fall

into the well because of the resulting increase in entropy. The associated increase in

thermal energy at the expense of potential energy would be similar to what happens

to a real gas when it is placed into an external potential. The gas would fall into the

well because it would result in a decrease in the free energy, even though the internal

energy (kinetic plus potential) would remain constant. One �nal thing to ponder

along these lines is the use of the term \energy." In fact, the entire system is made

out of nothing but information in the memory of a computer. To what degree are
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other identi�cations between physics and information possible?

One of the purposes of the potential-well model was to develop a technique for

incorporating forces in CA simulations. While the model is very successful in its own

domain, the statistical forces which result seem to be quite unlike those encountered

in elementary mechanical systems. In particular, statistical forces act dissipatively

on many independent degrees of freedom in nonequilibrium situations. Mechanical

forces, on the other hand, act on individual bodies whose detailed internal structure, if

any, seems to not matter; furthermore, the forces are often macroscopically reversible.

When thinking about how to use CA for general physical modeling, the problem of

forces acting on macroscopic solid bodies comes up in many contexts (see chapter 6).

The potential-well model illustrates many aspects of statistical mechanics and

thermodynamics, but one important ingredient that is missing is a treatment of work.

Work being done by or on a thermodynamic system requires the existence of a variable

macroscopic external parameter. The prototypical example is volume (which can

be varied with a piston). Such a parameter would have a conjugate force and a

corresponding equation of state. In principle, it would be possible to construct a heat

engine to convert energy from a disordered to an ordered form, and the maximum

e�ciency would be limited by the second law of thermodynamics. All of this would

be interesting to check, but it seems to be predicated on �rst solving the problem of

creating macroscopic solid bodies.

Finally, note that the potential itself does not possess a dynamics. If the potential

does not move, the force it generates cannot be thought of as an exchange of mo-

mentum since momentum is not conserved. An external potential such as this which

acts but is not acted upon is somewhat contrary to the physical notion of action

and reaction. A more fundamental rule would have a dynamics for all the degrees of

freedom in the system. At the very least, one would like to have a way of varying

the potential as a way of doing work on the system. One idea for having a dynamical

potential would be to use lattice polymers to represent the contours of the potential

(see chapter 5). Another interesting possibility would be to use a time dependent

contour map as a potential, especially if the potential could be made to depend on
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the gas. CA rules that generate such contour maps have been used to model the time

evolution of asynchronous computation [58].

3.7 Conclusions

Microscopic reversibility is a characteristic feature of fundamental physical laws and

is an important ingredient of CA rules which are intended to model fundamental

physics. In addition to providing dynamical realism, reversibility gives us the second

law of thermodynamics; in particular, the disorder in the system will almost always

increase or stay the same. In other words, the entropy can only increase, and yet

at the same time, the dynamics can be run backwards to the exact initial state. An

examination of the model presented here should remove most of the mystery typically

associated with this fact.

The related concepts of force and energy are essential elements of physics because

they are intimately tied up with determining dynamics. Unfortunately, the usual

manifestation of forces in terms of position and acceleration of particles does not

occur in CA because space and time are discrete. However, in many circumstances,

forces can be derived from potentials, and it is possible to represent certain potential

energy functions as part of the state of the CA. Such potentials can then be used

to generate forces statistically, as in the example of a lattice gas in the vicinity of a

potential well.

A statistical force is any systematic bias in the evolution of a system as it ap-

proaches equilibrium. Normally one thinks of such nonequilibrium processes as dissi-

pative and irreversible. However, one can arrange for prespeci�ed biases to occur in

a reversible CA|while maintaining the desired conservation laws|by appropriately

coupling the system to another system having a low entropy. The entropy of one sub-

system may decrease as long as the entropy of the other subsystem increases by an

equal or greater amount. This is the key to obtaining self-organization in reversible

systems. In general, the greater the increase in entropy, the stronger the bias.

The concept of entropy usually applies to an ensemble or probability distribution,
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but this chapter shows how it can be successfully applied to individual states by coarse

graining. The entropy of a state is therefore de�ned as the logarithm of the number of

microscopic states having the same macroscopic description. Entropy increases when

there are no conservation laws preventing it from doing so because there are vastly

more states with higher entropy. Since the entropy increases while the total number of

states is �nite, the system eventually reaches the maximumentropy state de�ned by a

set of constraints, though there will be 
uctuations around this maximum. The �nal

result of statistical forces acting in a reversible CA can be quanti�ed by �nding this

equilibrium state, and it can be used to calculate expectation values of measurable

macroscopic quantities. Any disagreement between theory and experiment can be

used to �nd conservation laws.

Cellular automata machines amount to 
exible laboratories for making precise

numerical measurements, and they enable close and fruitful interaction between the-

ory and experiment. In the context of the present model, they are also useful for

demonstrating important ideas in statistical mechanics and provide an instructive

complement to algebraic calculations. Reviewing the implementation of a CAM-6

rule in detail reveals a de�nite methodology for developing CA models and could

help in the future development of hardware and software.

The model presented in this chapter opens up a number of lines for further re-

search. The most direct line would be to apply the model and its generalizations to

systems that consist of a gases in external potentials. Another avenue of research

would entail studying the purely numerical and mathematical aspects of these mod-

els such as 
uctuations, nonequilibrium processes, mathematical calculation methods,

and ergodic theory. Still another related area is that of self-organization and pattern

formation. Finally, there is the original, broad, underlying question of how to model

forces among the constituents of a CA system.
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Chapter 4

Lorentz Invariance in Cellular

Automata

4.1 Introduction

4.1.1 Relativity and Physical Law

The theory of special relativity is a cornerstone of modern physics which has broad

implications for other physical laws and radically alters the classical view of the very

fabric of physics: space and time. The consequences of relativity show up in the form

of numerous interesting paradoxes and relativistic e�ects. Despite its far-ranging

signi�cance, special relativity follows from two innocuous postulates. The principal

postulate is the Principle of Relativity which states that the laws of physics must be

the same in any inertial frame of reference.1 Any proposed fundamental law of physics

must obey this meta-law. The secondary postulate states that the speed of light is a

constant which is the same for all observers. This second postulate serves to select

out Lorentzian relativity in favor of Galilean relativity. The primary implications for

theoretical physics are contained in the �rst postulate.

Cellular automata are appealing for purposes of physical modeling because they

1
This statement applies to 
at spacetime and must be modi�ed to include the law of gravity

which involves curved spacetime.
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have many features in common with physics including deterministic laws which are

uniform in space and time, albeit discrete. Another feature is that the rules are

local in the sense that there is a maximum speed at which information can propagate

between cells. This inherent limit of CA is often referred to as the speed of light,

and it imposes a causal structure much like that found in physics. In any event,

such a speed limit is suggestive, and it has led to speculation on the role of relativity

in CA [58, 84]. The existence of a maximum speed in CA is completely automatic

and corresponds to the secondary postulate of relativity, but the more important and

more di�cult task is to �nd ways to implement the primary postulate.

So is there some sense in which CA laws are Lorentz invariant? Or does the

existence of a preferred frame of reference preclude relativity? Ideally, we would like

to have a principle of relativity that applies to a broad class of CA rules or to learn

what is necessary to make a CA model Lorentz invariant. Preferably, relativity would

show up as dynamical invariance with respect to an overall drift, but it could also

manifest itself by mimicking relativistic e�ects. Rather than claiming the absolute

answers to the questions above, the approach taken here is to develop some properties

of a particular Lorentz invariant model of di�usion. This is also signi�cant for CA

modeling at large because di�usion is such an important phenomenon in many areas

of science and technology.

4.1.2 Overview

This chapter describes a Lorentz invariant process of di�usion in one dimension and

formulates it both in terms of conventional di�erential equations and in terms of a

CA model. The two formulations provide contrasting methods of description of the

same phenomenon while allowing a comparison of two methodologies of mathematical

physics. Most importantly, the CA model shows how one can have a Lorentz invariant

dynamical law in a discrete spacetime. Finally, the model provides a starting point

for further research into elucidating analogs of continuous symmetries in CA.

The remaining sections cover the following topics:

Section 4.2 discusses the meaning and implications of Lorentz invariance in the
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context of a one-dimensional model of relativistic di�usion. The model can be de-

scribed in terms of the deterministic dynamics of a massless billiard ball or in terms

of a gas of massless particles undergoing independent random walks of a special kind.

The continuum limit can be described by a set of partial di�erential equations which

can be expressed in manifestly covariant form using spacetime vectors. These equa-

tions can in turn be used to derive the telegrapher's equation which is a more common

equation for a scalar �eld, but it contains the same solutions.

Section 4.3 discusses the general solution to the continuum model in terms of an

impulse response. Plots of the separate components of the �eld are shown for a typical

case. The di�usion of individual massless particles can be well approximated on a

lattice, and therefore, the process can be implemented as a parallel CA model using

a partitioning strategy. The impact of the lattice on Lorentz invariance, particle

independence, reversibility, and linearity are each considered in turn. The results

of a CAM-6 simulation are presented for comparison with the exact solution of the

continuum model.

Section 4.4 brings up the issue of �nding Lorentz invariant CA rules in higher

dimensions. The fact that isotropy is an inherent part of Lorentz invariance in two

or more spatial dimensions turns out to be a major consideration for a lattice model.

A CA rule may be considered Lorentz invariant in situations where it is possible �nd

a direct mapping between individual events in di�erent frames of reference or where

the correct symmetry emerges out of large numbers of underlying events. Finally, we

show how analogs of relativistic e�ects must arise in any CA in which there is some

principle of relativity in e�ect.

Appendix D presents some of the more mathematical details of this chapter includ-

ing an introduction to di�erential geometry, a discussion of Lorentz and conformal

invariance, and a derivation of the exact solution.
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4.2 A Model of Relativistic Di�usion

The ordinary di�usion equation, @t� = Dr2�, is not Lorentz invariant. This is

easiest to see by noting that it is �rst order in time, but second order in space,

whereas properly relativistic laws must have the same order in each because space

and time are linearly mixed by Lorentz transformations. Furthermore, we know that,

unlike the solutions of the di�usion equation, the spread of a disturbance must be

limited to the interior of its future light cone in order to not violate the speed of light

constraint. However, it is possible to generalize the di�usion equation in a way that

is consistent with relativity [49]. This section gives one way of deriving such di�usion

law from a simple underlying process [81, 86, 88].

Consider a one-dimensional system of massless billiard balls with one ball marked

(see �gure 4-1). We are interested in following the motion of this single marked ball.

Since the balls are massless, they will always move at the speed of light (taken to

be unity), and it is assumed that when two balls collide, they will always bounce

back by exchanging their momenta. Suppose that the balls going in each direction

are distributed with Poisson statistics, possibly having di�erent parameters for each

direction. In this case, the marked ball will travel a random distance between colli-

sions, with the distances following an exponential distribution. Hence, the motion can

also be thought of as a continuous random walk with momentum or as a continuous

random walk with a memory of the direction of motion. We are then interested in

describing the di�usion of the probability distribution which describes the position

and direction of the marked ball.

The dynamics of the probability distribution can also be described in terms of

number densities of a one-dimensional gas of massless, point-like particles. The parti-

cles travel at the speed of light and independently reverse direction with probabilities

proportional to the rate of head-on encounters with the 
ow of an external �eld. The

external �eld is actually another gas in the background which also consists of massless

particles and is \external" in the sense that it streams along una�ected by any \col-

lisions." A di�using particle of the primary system has some small, �xed probability
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Figure 4-1: A spacetime diagram showing collisions in a one-dimensional gas of mass-
less billiard balls. The motion of the marked ball can be described as Lorentz-invariant
di�usion. The two pairs of axes show the relationship between standard spacetime

coordinates and light-cone coordinates.

of reversing direction upon encountering a background particle. If we look at the dif-

fusion on a macroscopic scale, then the gas can e�ectively be considered a continuous


uid [88]. This alternative description will be more closely suited to implementation

in CA form.

It is apparent from �gure 4-1 that the particle dynamics considered above is a

Lorentz-invariant process. A Lorentz transformation (or boost) in 1+1 dimensions

is easy to describe in terms of the light-cone coordinates, x� = 1p
2
(t � x): it is just

a linear transformation which stretches one light-cone axis by a factor of 
(1 + �)

and compresses the other by a factor of 
(1 � �), where 
 = 1=
p
1 � �2, and � =

v=c is the normalized relative velocity of the two inertial frames. The e�ect of this

transformation is to stretch or translate every segment of the world lines into a new

position which is parallel to its old position, while leaving the connectivity of the

lines unchanged. In the case of the number density description, the world lines of

the background gas are transformed in a completely analogous manner. The set of

the transformed world lines obviously depicts another possible solution of the original
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dynamics, so the process is invariant under Lorentz transformations.

Now we turn to formulating a continuum model of the process described above in

terms of conventional partial di�erential equations which then allows a more formal

demonstration of Lorentz invariance. The derivation of these transport equations

is is accomplished through simple considerations of advection and collisions by the

particles. The description is in terms of densities and currents which together give

one way of representing two-dimensional (spacetime) vector �elds. Section D.1.3 in

the appendix elaborates on the concepts and notation used in the analysis.

The continuum model describes two probability (or number) densities, �+(x; t)

and ��(x; t), for �nding a particle (or particles) moving in the positive and negative

directions respectively. One can also de�ne a conserved two-current, J� = (�; j),

where � = �+ + �� and j = �+ � ��. The background particles give well-de�ned

mean free paths, �+(x+) and ��(x�), for the di�using particles to reverse direction.

The transport equations for the densities can then be written down immediately:

@�+

@t
+
@�+

@x
= ��+

�+
+
��

��
(4.1)

@��

@t
� @��

@x
= ���

��
+
�+

�+
: (4.2)

Adding these equations gives
@�

@t
+
@j

@x
= 0; (4.3)

and subtracting them gives

@j

@t
+
@�

@x
= �j

�
1

�+
+

1

��

�
+ �

�
1

��
� 1

�+

�
: (4.4)

The condition that the background particles stream at unit speed is

@

@x+

�
1

��

�
= 0; and

@

@x�

�
1

�+

�
= 0: (4.5)

If one de�nes

�t =
1

�+
+

1

��
; and �x =

1

��
� 1

�+
; (4.6)
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then equations (4.3){(4.5) can be rewritten in manifestly covariant form as

@�J
� = 0 (4.7)

(@� + ��)"
��J� = 0 (4.8)

@��
� = 0 (4.9)

@�"
���� = 0: (4.10)

The parameter �� is essentially the two-momentum density of the background par-

ticles and gives a proportional cross section for collisions. Writing the equations in

this form proves that the model is Lorentz invariant.

Equations (4.7){(4.10) also happen to be invariant under the conformal group;

furthermore, when properly generalized to curved spacetime, they are conformally

invariant. These concepts are expanded on in section D.2. Physicists are always

looking for larger symmetry groups, and the conformal group is interesting because

it is the largest possible group that still preserves the causal structure of spacetime.

Clearly, it contains the Lorentz group. In 1+1 dimensions, the conformal group

involves a local scaling of the light-cone axes by any amount (x� ! f�(x�)). The fact

that the above model is invariant under this group is easy to see from �gure 4-1, since

any change in the spacing of the diagonal lines yields a similar picture. Conformally

invariant �eld theories possess no natural length scale, so they must correspond to

massless particles (though the converse is not true). It therefore seems only natural

that the underlying process was originally described in terms of massless particles.

In the case of a uniform background with no net drift (�� = � ) �x = 0), each

component of the current satis�es the the telegrapher's equation [35]. Indeed, if ��

is a constant, equations (4.7){(4.8) can be combined to give

2
2J� + ��@�J

� = 0; (4.11)

where 22 = g��@�@� is the d'Alembertian operator. More explicitly, equation (4.8)

can be written (@[�+��)J�] = 0. Acting on this equation by @� gives @�(@�+��)J��
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@�(@� + ��)J� = 0, and the second term vanishes by equation (4.7).

4.3 Theory and Experiment

As usual when developing theoretical modeling techniques, it is desirable to have

analytic solutions which can be compared to experiments (numerical or otherwise).

This section gives the exact solution to the continuum model above as well as the

results of a CA simulation of a comparable situation.

4.3.1 Analytic Solution

Here we discuss the general solution to equations (4.7) and (4.8). For a given a back-

ground �eld ��, the equations are linear in J�, and an arbitrary linear combination

of solutions is also a solution. In particular, it is possible to �nd a Green's function

from which all other solutions can be constructed by superposition. As an aside, note

that the equations are not linear in �� in the sense that the sum of solutions for J�

corresponding to di�erent ��'s will not be the solution corresponding to the sum of

��'s. This happens because �� and J� are multiplied in equation (4.8), and �� a�ects

J� but not vice versa.

Solutions are best expressed in terms of the component probability densities �+

and �� for �nding the �nding the particle moving in the � directions (�� are pro-

portional to the the light-cone components of the probability current J�). For the

moment, the background will be taken to be a constant which is parameterized by a

single mean free path �. We want to �nd the Green's function which corresponds to

a delta function of probability moving in the positive direction at t = 0. The initial

conditions are therefore j(x; 0) = �(x; 0) = �(x), and the corresponding components

will be denoted by %+ and %� respectively. This is an initial value problem which can

be solved with standard methods of mathematical physics; more detail can be found
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in section D.3. Inside the light cone (i.e., the region t2 � x2 > 0) the solution is

%+(x; t) =
e�t=�

2�

s
t+ x

t� x
I1

 p
t2 � x2

�

!
+ e�t=��(t� x) (4.12)

%�(x; t) =
e�t=�

2�
I0

 p
t2 � x2

�

!
; (4.13)

where I0 and I1 are modi�ed Bessel functions of the �rst kind. Outside the light cone,

%� = 0.

Plots of %+(x; t) and %�(x; t) are shown for � = 32 in �gure 4-2(a) and (b) respec-

tively. The independent variables range from 0 < t < 128 and �128 < x < 128. The

skewed density function for particles moving in the positive direction is marked by the

exponentially decaying delta function along the x+ axis, and it has been truncated

for purposes of display (a). The density of particles moving in the negative direction

follows a symmetrical distribution which ends abruptly at the light cone (b). The

total density �(x; t) = %+ + %� is plotted in �gure 4-2(c).

Equations (4.12) and (4.13) can be used to �nd the solution for any other initial

conditions. First, they can be re
ected around x = 0 to give the solution starting

from a delta function of probability moving in the negative direction. Second, the

light-cone axes can be scaled (along with an appropriate scaling of �� and %�|see

section D.2.2) to change � ! ��(x�) corresponding to an arbitrary background gas

�� satisfying equations (4.9){(4.10). Finally, solutions starting from di�erent values

of x can be added to match any �+(x; 0) and ��(x; 0).

4.3.2 CAM Simulation

The process depicted in �gure 4-1 can be approximated to an arbitrarily high degree

by discrete steps on a �ne spacetime lattice. Particles are merely restricted to collide

only at the vertices of the lattice. If there are many lattice spacings per mean free

path, the continuum distribution of free path lengths (a decaying exponential) is well

approximated by the actual discrete geometric progression. A Lorentz transforma-

tion would change the spacings of the diagonals of the lattice, but as long as 
 is
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Figure 4-2: Green's functions for models of relativistic di�usion: (a) Continuous
probability density for right-moving particles where t is increasing out of the page.

(b) Probability density for left-moving particles. (c) The total probability density.
(d) Result of a CAM-6 experiment showing particles executing random walks with

memory in the top half. A histogram of the position and direction of the particles at
t = 128 is taken in the bottom half.
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not too large, the lattice approximation to the continuum is still a good one. The

approximation to Lorentz invariance is also good, because it is still possible to map

the new set of world lines onto the nearest diagonal of the original lattice.

The probabilistic description of the position and direction of a single particle is

�ne, but we really want a parallel dynamics for many particles di�using in the same

space independently. Thus, in this section, �� will be interpreted as a number density

instead of a probability, and the number of particles must then be large relative to

the scale of observation. Also, the collisions with the background gas must take place

with a small probability rather than with certainty; otherwise, the motions of adjacent

particles will be highly correlated (e.g., their paths would never cross). Furthermore,

the density of particles must be low relative to the number of lattice points so that

no two particles ever try to occupy the same state of motion. If these conditions are

satis�ed, the movements of the particles can be considered independent, and we can

assume a superposition of many individual processes like that shown in �gure 4-1.

This again gives equations (4.7){(4.10) in the continuum limit.

The CA version of this process uses the partitioning format shown in �gure 2-

2(b). Such a format is used because it is easy to conserve particles.2 The di�usion

rule usually swaps the contents of the two cells in every partition on every time step,

but it has a small probability p of leaving the cells unchanged. Referring again to

�gure 2-2(b), one can see that this will cause particles to primarily stream along

the lattice diagonals in spacetime. However, on any given step, the particles have

a probability p of a \collision" which will cause them switch to the other diagonal

instead of crossing over it. In contrast to a standard random walk, the particles have

a memory of their current direction of motion, and they tend to maintain it. By

tuning the probability of reversal (using the techniques for randomness presented in

appendices A and C for example), it is possible to adjust the mean free path of the

particles. In fact, it is easy to show that � = (1 � p)=p in lattice units.

The process described in section 4.2 assumes that the particles di�use indepen-

2
Though it is not done here, partitioning also makes it possible to construct a reversible version

of the di�usion law by using a reversible source of randomness, such as a third lattice gas.
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dently. This is not a problem in a continuum, but on a lattice, there is a possibility

that particles will interfere with each other's motion. In particular, if there are two

particles in a partition and one turns, the other must also turn in order to conserve

particles and maintain exclusion. In other words, there is a small probability that

the motions of nominally independent particles will be correlated. This introduces a

small nonlinearity to the di�usion, though it is negligible in the limit of low particle

density per lattice site. On the other hand, as long as there is only one particle in

a partition, it is possible to have two di�erent probabilities for a particles to turn

depending on its original direction. This corresponds to a drift in the background gas

and is equivalent to the original dynamics in a di�erent Lorentz frame of reference.

Figure 4-2(d) shows the result of a CAM-6 simulation with the randomness chosen

so that � = 32. This implementation also serves to show one of the ways CA can be

used as a display tool as well as a simulation tool. The top half shows a spacetime

diagram of the region 0 < t < 128 and �128 < x < 128 where time has been spread

out over successive rows. On every other time step of the CA, a point source at

t = 0 emits a particle initially moving to the right, and the particle is passed to

subsequent rows as it di�uses. The rows can therefore be thought of as a sequence

of independent systems, each containing a single particle as in �gure 4-1, though the

dynamics is capable of supporting up to 256 particles per row. Over time, the rule

generates an ensemble of particles which approximates the probability distributions

given in �gure 4-2(a){(c). The bottom half of the simulation serves to collect a

histogram of the �nal positions corresponding to an elapsed time t = 128.

Note that the odd and even columns of the histogram appear to follow di�erent

distributions. Indeed this is the case: because of the partitioning format shown in

�gure 2-2(b), the direction of motion of a particle is determined entirely by the parity

of the column. Thus, the even columns contain �+(x; 128), and the odd columns

contain ��(x; 128). The envelopes of these two components are quite apparent in the

histogram and should be compared to the �nal time of t = 128 in �gure 4-2(a) and (b)

respectively. Finally, the rightmost bin �+(128; 128) is full, so the delta function it

represents has been truncated. Also, some of this delta function has been de
ected
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into the neighboring bin �+(126; 128) because of spurious correlations in the noise

source.

4.4 Extensions and Discussion

The above model provides an example of how one can have a Lorentz invariant CA

rule in one dimension. Now we would like to consider how similar results might

be obtained in higher dimensions. Of course, the full continuous symmetry is is

impossible to achieve in a discrete space, so we will always imagine limiting situations.

Two possible approaches are (1) to �nd simple rules which have bijective mappings

of individual spacetime events between any two frames of reference, and (2) to �nd

complex rules from which Lorentz invariant laws emerge out of a large number of

underlying events. The �rst approach works for the present example, while the second

approach would be more in the spirit of lattice gas methods for partial di�erential

equations [24, 25].

The case of di�usion of massless particles in one dimension is special because

there is a direct mapping between the world lines in one frame and the world lines in

another. However, this mapping does not work for higher dimensional CA because

invariance under arbitrary Lorentz boosts implies invariance under arbitrary rotations

(as shown below). Since straight world lines cannot match the lattice directions in

every frame of reference, any system for which the most strongly correlated events

preferentially lie along the lines of the lattice cannot easily be interpreted as Lorentz

invariant. This would be important, for example, in situations where particles stream

for macroscopic distances without collisions.

The fact that isotropy is an intrinsic part of a relativistically correct theory can be

seen by constructing rotations out of pure boosts. This will be shown by examining

the structure of the Lorentz group near the identity element. A convenient way

to represent such continuous matrix groups (Lie groups) is as a limit of a product

of in�nitesimal transformations using exponentiation.3 Thus, an arbitrary Lorentz

3
Since limn!1(1 +

x

n
)
n
= e

x
.
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transformation matrix can be written [43]

A = e���S���K (4.14)

where � and � are 3-vectors parameterizing rotations and boosts respectively. The

corresponding generators of the in�nitesimal rotations and boosts are given by

S1 =

2
666666664

0 0 0 0

0 0 0 0

0 0 0 �1

0 0 1 0

3
777777775
; S2 =

2
666666664

0 0 0 0

0 0 0 1

0 0 0 0

0 �1 0 0

3
777777775
; S3 =

2
666666664

0 0 0 0

0 0 �1 0

0 1 0 0

0 0 0 0

3
777777775
;

K1 =

2
666666664

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

3
777777775
; K2 =

2
666666664

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

3
777777775
; K3 =

2
666666664

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

3
777777775
: (4.15)

These generators satisfy the following commutation relations (Lie brackets) as can be

veri�ed by direct substitution:

[Si; Sj] = "ijkSk

[Si;Kj] = "ijkKk

[Ki;Kj] = �"ijkSk: (4.16)

The reason for expanding the Lorentz transformation matrices in this way will become

apparent next.

Consider a sequence of four boosts making a \square" of size " in \rapidity space."

To lowest nonvanishing order in ",

A = (1 + "Ki +
1

2
"2K2

i )(1 + "Kj +
1

2
"2K2

j )

� (1� "Ki +
1

2
"2K2

i )(1� "Kj +
1

2
"2K2

j )
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= 1 + "2[Ki;Kj ] +O("3)

= 1 � "2"ijkSk +O("3) (4.17)

If (i; j; k) is a cyclic permutation of (1; 2; 3), then A is not a pure boost but a rotation

around axis k through an angle "2. Therefore, appropriate sequences of boosts can

result in rotations, and similar sequences can be repeated many times to construct an

arbitrary rotation. The implication for generalizing the relativistic model of di�usion

of massless particles to more than one spatial dimension is that particles must be

able to stream with few collisions in any direction, not just along the axes of the

lattice. At present, we do not know any reasonable way of doing this. Another way

to see the problem is that if a particle is moving along a lattice direction which is

perpendicular to the direction of a boost in one frame, it will su�er aberration and

will not, in general, be moving along a lattice direction in the other frame.

What about the second approach where we don't demand that all spacetime events

in any two frames are in one-to-one correspondence? The intuition here is that if a

CA is dense with complex activity, then cells in all directions will be a�ected, and

anisotropy will not be as much of a problem. Now, any CA which gives a Lorentz

invariant law in some limit can reasonably be said to be Lorentz invariant. For

example, lattice gases in which all particles move at a single speed (the speed of

light), exhibit sound waves which obey the wave equation with an isotropic speed of

sound of 1=
p
d in d spatial dimensions [39] (see �gure 2-14). But the wave equation

is Lorentz invariant if the wave speed instead of the particle speed is interpreted as

the speed of light. This is somewhat unsatisfying since some information can travel

at greater than the speed of light, but it may still be used to obtain some measure

of Lorentz invariance in higher dimensions. In general, the lack of isotropy of the

underlying lattice means that the speed of light of the CA cannot coincide with the

speed of light of the emergent model. Furthermore, in such cases, there is no natural

interpretation of all possible Lorentz transformations on the lattice as there was in

the 1+1 dimensional case. Finally, we mention in passing the possibility of having

an isotropic model by using a random lattice since it would clearly have no preferred
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directions.

A �nal point about special relativity in the context of CA concerns the connection

between Lorentz invariance and relativistic e�ects. If it were the case that a given

CA rule could simulate certain physical phenomena (such as particle collisions) in any

frame of reference then it would be the case that the evolution in those frames that are

moving faster with respect to the preferred lattice frame would have to evolve slower.

The reason for this is that the number of cells in the causal past of a cell would be

restricted. In the extreme case, a CA con�guration moving at the maximum speed

of light could not evolve at all because each cell would only depend on one other cell

in its past light cone; consequently, no interaction between cells could take place. In

information mechanical terms, this \time dilation" would happen because some of the

computational resources of the CA would be used for communication and fewer would

be available for computation. In this manner, one obtains phenomena reminiscent of

relativistic e�ects. However, the hard problem is to �nd any nontrivial rules which

obey the primary postulate of relativity. The above model of relativistic di�usion in

1+1 dimensions represents only a limited class of such rules. Special relativity is not

so much a theory of how physical e�ects change when high speeds are involved as it is

a theory of how the physical laws responsible for those e�ects are unchanged between

frames in relative motion. Relativistic e�ects such as time dilation and the like come

about as mere consequences of how observable quantities transform between frames,

not because of motion with respect to some kind of \ether."

4.5 Conclusions

Symmetry is an important aspect of physical laws, and it is therefore desirable to iden-

tify analogous symmetry in CA rules. Furthermore, the most important symmetry

groups in physics are the Lorentz group and its relatives. While there is a substantial

di�erence between the manifest existence of a preferred frame in CA and the lack

of a preferred frame demanded by special relativity, there are still some interesting

connections. In particular, CA have a well-de�ned speed of light which imposes a
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causal structure on their evolution, much as a Minkowski metric imposes a causal

structure on spacetime. To the extent that these structures can be made to coincide

between the CA and continuum cases, it makes sense to look for Lorentz invariant

CA.

The di�usion of massless particles in one spatial dimension provides a good exam-

ple of a Lorentz invariant process that can be expressed in alternative mathematical

forms. A corresponding set of linear partial di�erential equations can be derived with

a simple transport argument and then shown to be Lorentz invariant. A CA formu-

lation of the process is also Lorentz invariant in the limit of low particle density and

small lattice spacing. The equations can be solved with standard techniques, and the

analytic solution provides a check on the results of the simulation. Generalization to

higher dimensions seems to be di�cult because of anisotropy of CA lattices, though

it is still plausible that symmetry may emerge in complex, high-density systems. The

model and analyses presented here can be used as a benchmark for further studies of

symmetry in physical laws using CA.
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Chapter 5

Modeling Polymers with Cellular

Automata

5.1 Introduction

5.1.1 Atoms, the Behavior of Matter, and Cellular Automata

Perhaps the single most important fact in science is that the world is made of atoms.

Virtually every aspect of physics that we encounter in our daily lives can be accounted

for by the electromagnetic interactions of atoms and their electrons.1 It is di�cult to

directly incorporate all of the detailed microscopic physics of a complex system in a

calculation or computer simulation, but it is often more illuminating to �nd approx-

imations at higher levels of organization anyway. For example, one may introduce

phenomenological parameters and stylized variables which describe the con�gurations,

energies, motions, or reaction rates of atoms or collections of atoms. Under favorable

circumstances and with a suitable dynamics, the correct behavior will emerge in the

limit of large systems.

When is it possible to successfully construct CA models of physical phenomena

in terms of abstract atoms in this way? This is a hard question that doesn't have a

1
Of course this claim is drastically oversimpli�ed in terms of the quantum-mechanical details

involved, but the general idea is sound. The primary exception to the rule is due to gravity.
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�nal answer, but a few pertinent observations can be made. First, the phenomena

in question should be characteristic of many atoms rather than of the structure of

relatively simple individual molecules. In other words, the systems should fall into

the domain of statistical mechanics. It may be conceptually possible to decompose

the underlying physics into a statistical substructure through quantum Monte Carlo

or stochastic mechanics [64], but for practical purposes, it is better to develop models

at or above the scale of real atoms. Second, the dynamics should rely on local or even

point-like interactions as opposed to long range forces. It is possible for CA to exhibit

large coherence lengths, but for e�ciency's sake, it is better to avoid models having

complicated rules or widely disparate time scales. The continuing development of

models and supporting analysis for a wide variety of physical situations will bring us

closer and closer to a resolution of this question.

Even within the above classical framework, CA have a great deal of potential for

studies in condensed matter because they have the basic structure of physics and a

large number of programmable degrees of freedom. Promising areas of application

include 
uid dynamics, chemistry, solid state physics, materials science, and perhaps

even plasma physics. Besides conventional homogeneous substances it is also pos-

sible to model more exotic heterogeneous materials which are not usually thought

of as matter in the physicists' sense of the word: currencies, alluvia, populations,

and even \grey matter." These possibilities lead to the notion of \programmable

matter" [91] which is a powerful metaphor for describing the relationship between

CA and the essential information-bearing degrees of freedom of nature. Furthermore,

programmability means that the atoms in CA are not limited by the rules of physi-

cal atoms, and one can explore the behavior of exotic forms of matter that may not

even exist in nature. Such investigations are interesting and important because they

increase the utility of parallel computers for physical simulation while extending the

boundaries of mathematical physics.
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5.1.2 Monte Carlo Methods, Polymer Physics, and Scaling

An important tool in computer modeling and statistical mechanics is the so-called

Monte Carlo method [5, 6]. It is a technique for doing numerical integration in high

dimensional spaces and is useful for �nding expectation values in complex systems.

The procedure is to select points from a sample space according to some probability

measure and then take the sum of contributions from all these points. The samples

are usually generated by imposing an arti�cial dynamics on the con�guration of the

system in question, and the dynamics can sometimes be used as an alternative to

molecular dynamics. In the case of large, dense systems, CA are well suited to

execute Monte Carlo simulations of abstract molecular dynamics.

An active area of research where the behavior of collections of atoms is important

is that of polymer physics. The interest in polymers stems from their ubiquity|

plastics, proteins, nucleic acids, and cellulose are conspicuous examples|and their

importance in biology and industrial applications. Polymers form complex biological

structures such as enzymes, organelles, microtubules, and viruses, while they also play

important practical roles in petroleum products and advanced composite materials.

In order to understand and control the physical behavior of polymers, one must study

their structure, dynamics, chemistry, rheology, and thermodynamic properties. How-

ever, the phenomena are often so complex that computational methods are becoming

increasingly necessary to the research.

From a more theoretical and mathematical point of view, polymers provide inter-

esting phases of matter and a rich set of phenomena which are often well described

by scaling laws [21]. A scaling law is a relation of the form y � x�. It says that over

a certain range, multiplying (or scaling) x by a constant g has the e�ect of multiply-

ing y by a related constant g�. However, fundamental theoretical questions remain

about the scaling behavior and dynamical origin of certain quantities, most notably,

viscosity. There are some questions as to whether or not the pictures on which scaling

arguments are based are even correct (for example, what is the physical meaning of

\entanglement length"?), and computer simulations are invaluable for educing the

answers. In addition, such simulations can be used to explore theoretical novelties
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such as polymer solutions in the semi-dilute regime or the existence of irreversibly

knotted materials [71].

5.1.3 Overview

This chapter successfully demonstrates the atomistic approach advocated above for

physical modeling with CA by developing techniques for simulating polymers on a

lattice using only local interactions. Consequently, it opens up new ways of exploiting

the power of parallel computers for an important class of problems in computational

physics. The essential features of abstract polymers that are needed to give the

correct basic scaling behavior are that the strands not break and that they not over-

lap. Furthermore, the resulting models show that it is possible to construct mobile

macroscopic objects having absolute structural integrity by using only local CA rules.

Finally, the numerous possible embellishments of the basic polymer model make it a

paradigm for the entire discipline of modeling interactions among particles using CA.

The following is a breakdown of the respective sections:

Section 5.2 discusses the general problem of simulating polymers in parallel and

describes the rationale behind using abstract polymers and Monte Carlo dynamics.

Starting from the ideal case of a very high molecular weight polymer in a continuum,

a sequence of polymer models are introduced which illustrate some of the problems

associated with creating lattice polymers having local dynamics. The discussion leads

to the double space algorithm which solves the problems in an elegant fashion. Finally,

this algorithm is compared to another popular lattice polymer algorithm: the \bond


uctuation" method.

Section 5.3 covers some of the quantitative aspects of polymer physics which give

the subject a �rm experimental and theoretical foundation. Samples taken from

simulations can be used to measure expectation values of quantities having to do

with the static structure of the polymers. Time series of sampled quantities can be

used to measure dynamic properties such as time autocorrelation functions and the

associated relaxation times. Simulation results from the double space algorithm are

presented which verify the theoretical scaling laws and thereby serve as a test of the
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algorithm.

The double space algorithm along with the availability of powerful parallel com-

puters and CA machines opens up a variety of prospects for additional research in

computational polymer physics. Section 5.4 discusses extensions of the basic model

as well as a number of possible applications. In particular, the speci�c example of a

simple model for pulsed �eld gel electrophoresis is given.

5.2 CA Models of Abstract Polymers

The great computational demands of polymer simulation make it necessary to �nd

new techniques for working on the problem, and parallel computers are an important

part of the search. The most straightforward approach to parallelizing the simulation

is to assign a processor to each monomer and have all of them compute the motion

much as they would on a single processor. In principle, this leads to a large amount of

communication between the processors during the calculation of the interactions be-

cause any two monomers in the systemmay come into contact [8]. If this is not enough

of a problem, it also happens that communication and synchronization between pro-

cessors is usually a time-consuming operation [67]. Because of these considerations,

it has generally been considered di�cult to perform e�cient parallel processing simu-

lations of polymers. However, one can get around these problems by recognizing that

the interactions are local in space and allowing the natural locality and synchronous

parallelism of CA to guide the design of a model. The resulting algorithms will be

useful on all kinds of parallel computers, especially massively-parallel computers.

Once it has been decided to arrange the processors in a local, spatially parallel

fashion, it is still necessary to describe the polymer model and specify the dynamics.

It is tempting to make the model as direct and realistic as possible using molecular

dynamics [61], i.e., essentially integrating Newton's laws under arti�cial force laws and

small time steps. However, Monte Carlo dynamics in which the steps are motivated

by considerations of real polymer motion (much like Brownian motion) are su�cient

to model many aspects of polymer behavior. Furthermore, the steps are larger and
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Figure 5-1: A typical con�guration of a random, self-avoiding strand which represents
a polymer with a very high degree of polymerization N .

there is less computation involved in each monomer update, and this enables much

more extensive simulations. Using a simpli�ed dynamics is also in accordance with

our desire to �nd abstract models which capture the most essential features of physics.

Now consider an isolated polymer in a good solvent with short-range, repulsive

interactions between monomers. In the limit of high polymerization, the details of

the local polymer structure don't e�ect the large-scale structure [21], and the polymer

e�ectively becomes a continuous, self-avoiding strand as shown in �gure 5-1. Thus it

is possible to approximate this situation with an abstract polymer model consisting

of a chain of nonoverlapping monomers, where all con�gurations have equal energies.

The essential constraints on the dynamics of an abstract polymer are

1. Connectivity: consecutive monomers remain bonded, and

2. Excluded volume: no two monomers can overlap.

The basic Monte Carlo dynamics works by picking a single monomer at random

and making a trial move in a random direction. The move is then accepted if the

constraints are satis�ed. However, if two or more monomers were to be moved simul-

taneously and independently, it could lead to violations of these constraints.

The purpose of this section is to develop CA representations of polymers along

with parallel Monte Carlo dynamics. A series of models is presented in order to
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illustrate some of the issues involved. The polymer con�gurations shown below are

approximations to the polymer strand shown in �gure 5-1, and each one uses N �= 60

monomers. Each model requires a di�erent lattice pitch and gives a di�erent quality of

approximation and degree of 
exibility. Modi�cations beyond the simple algorithms

given here will be discussed in section 5.4.

5.2.1 General Algorithms

A general procedure for turning the basic Monte Carlo algorithm given above into a

parallel algorithm is to use the CA notion of spatial partitioning [56]. Partitioning

refers to breaking up space into isolated regions with several processors per region.

The dynamics can then act on these partitions in parallel without interference. Other

spatial domain decomposition schemes can be used for a wide range of simulations [30].

To see how partitioning can be used, consider the abstract polymer shown in �g-

ure 5-2. Each monomer is represented by an excluded volume disk of radius r, and the

bond between monomers are indicated by line segments. Each square represents a re-

gion of space assigned to a processor. The monomers are allowed to have any position

subject to some minimum and maximum limits on bond lengths. Two monomers can

simultaneously take a Monte Carlo step of size � l if they are su�ciently far apart.

Instead of randomly picking which monomers to update, those whose centers lie in

the black squares are chosen. To prevent interference on any given step, the marked

squares should have a space of at least 2(r+ l) between them. In this case, the parti-

tions consist of the 3�3 blocks of squares surrounding the black squares, and only the

processors within a partition need to cooperate to maintain the constraints. Finally,

the overall o�set of the sublattice of black squares should be chosen at random before

each parallel update.

Further simpli�cation of Monte Carlo polymer models is obtained by restricting

the positions of the monomers to the vertices of a lattice, or equivalently, to the

cells of a CA. This substantially simpli�es the moves and the checking of constraints.

Removing a monomer from one cell must be coupled to adding a monomer to a

nearby cell, and this is where partitioning CA neighborhoods are essential. In the
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Figure 5-2: An abstract version of the continuous polymer strand with N = 58.
Monomers whose centers lie in one of the black squares can take a Monte Carlo step

in parallel without interference.

�gures below, the partitions are indicated by dots in the centers, and arrows indicate

all possible moves within the current partitions. Connectivity of the CA polymers is

determined entirely by adjacency|the bonds do not have to be represented explicitly.

The excluded volume constraint is then equivalent to not creating new bonds.

Perhaps the simplest CA polymer model one can imagine is illustrated by �gure 5-

3. Monomers are connected if and only if they are adjacent horizontally or vertically.

The only moves allowed in this model consist of folding over corners, and as in the

previous model, moves are attempted in parallel for monomers in the marked cells.

Note that the approximation to the continuous example is rather crude because the

lattice is fairly coarse. The polymer is not very 
exible in that out of �ve marked

monomers, only one move is possible. An even more serious problem with 
exibility is

that there are sometimes very few, if any, paths in con�guration space between certain

pairs of con�gurations. For example, consider a polymer shaped like a shepherd's sta�.

In order for the crook of the polymer to bend from one side to the other, it must pass

through a unique vertical con�guration. Situations such as this form bottlenecks in

con�guration space which greatly hamper the dynamics.

A somewhat improved CA polymer model is illustrated by �gure 5-4. In this case,

a monomer is connected to another if it is adjacent in any of the eight surrounding
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Figure 5-3: A simple CA realization of the polymer strand using a lattice model
having only nearest-neighbor connections. Here, N = 65. Dots mark the cells from

which monomers may move in parallel. The arrow indicates the only possible move.

cells. Trial moves are chosen at random from the four compass directions. With this

scheme, the lattice can be �ner, and one obtains a closer approximation to the shape

of the original polymer strand. Furthermore, more monomer moves are typically

possible on a given time step than in the previous model. However, the model also

su�ers from severe bottlenecks in con�guration space because the end of a polymer

must pass through a diagonal con�guration in order to make a transition between

horizontal and vertical.

The models presented in this section prove the general concept of parallel CA

polymer dynamics, but they are lacking in two respects. First, very few monomers

can be moved in parallel because only one out of sixteen cells is marked for movement

on a given step. Nature moves all atoms in parallel, and we would like as far as

possible to approach this level of parallelism with our abstract atoms. Perhaps the

more serious di�culty is that, unlike real polymers which can move in any direction,

the lattice polymers described above cannot move along their own contours. This is

a root cause of the in
exibility encountered in the polymers above. These problems

are solved with the algorithm presented in the next section.
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Figure 5-4: Another CA representation of the polymer having either nearest or next
nearest neighbor connections. The lattice is �ner than in the previous model while

N = 68 is comparable. Dots indicate active cells, and the arrows show all possible
moves.

5.2.2 The Double Space Algorithm

The inherent rigidity of the CA polymer models given above makes it di�cult for

a bend in a polymer strand to 
ip to the other side, especially in two dimensions.

The rigidity of the polymers stems from the incompressibility of the internal bonds

and the inability of monomers to move parallel to the polymer chain. Basically, the

monomers cannot move in the direction they need to because adjacent monomers get

in each other's way. One way to get around this problem would be to allow connected

monomers to occasionally overlap somehow. While this is not physically realistic, it

will not matter to the correct scaling behavior as long as some measure of excluded

volume is still maintained. Others have recognized various forms of rigidity in lattice

polymers and have proposed several algorithms to get around the problems [11, 26].

In order for adjacent monomers in a CA simulation to overlap, there must be extra

space in a cell for a second monomer to occupy. The simplest way to do this is to

invoke a double space [2, 79, 80] and have odd and even monomers alternate between

spaces along the chain as shown in �gure 5-5. Connectivity is again determined

solely by adjacency in any direction, but only between monomers in opposite spaces.

Excluded volume arises by demanding that no new connections are formed during the
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odd

even

Figure 5-5: Cross section through the CA space along a polymer chain showing

the double space. Odd and even monomers are only connected to monomers in the

opposite space of neighboring cells. The bonds show the connections explicitly, but

they are redundant and are not actually used.

dynamics. This has the remarkable e�ect that the constraints are maintained solely

with respect to monomers in the opposite space. Therefore, by checking constraints

against monomers held �xed in one space, the Monte Carlo dynamics can update

all of the monomers in the other space simultaneously without interference. This

amounts to a partitioning of the polymer chain rather than a partitioning of space.

A polymer represented using the double space scheme is shown in �gure 5-6 where

circles denote odd monomers and squares denote even monomers. The algorithm

proceeds by alternately updating one space and then the other, and a pair of these

updates is considered to be a single step of the CA rule.2 The rule for updating each

monomer in one space is to pick one of the four compass directions at random and

accept a move in that direction if the constraints allow (see �gure 5-7). The resulting

lattice polymers are very 
exible.

The double space algorithm just described clearly satis�es the connectivity con-

straint. However, one must still check that distinct monomers can never coalesce into

a single monomer. This is trivially true for monomers in opposite spaces. It can

be proved for any two monomers in the same space on di�erent chains by assuming

the converse. Since the dynamics was constructed to preserve the connectivity of the

chains, the set of monomers to which any particular monomer is bonded remains the

same. However, if two monomers were to move to the same site, they would have to

have been connected to the same monomers in the �rst place, and that contradicts

2
In order to achieve strict detailed balance in this model, one would have to pick which space to

update at random as part of the Monte Carlo step. This is because an update of one space cannot

undo the prior update of the other, and inverse transitions do not have the same probability as

the forward transitions. However, it is still the case that all con�gurations become equally likely in

equilibrium.

119



Figure 5-6: Abstract CA representation of the continuous polymer strand using the
double space algorithm with N = 58. The odd monomers, indicated by circles, are
currently selected to move, and the arrows show all possible moves. The compara-

tively large number of available moves makes the polymer very 
exible.

connectivity excluded
 volume

Figure 5-7: Checking constraints for a trial move in the double space algorithm. The
odd monomer can make the indicated move if there are no even monomers in the cells

marked with x's. Checking the marked cells to the left and right respectively serves

to prevent the polymer from breaking and to give excluded volume to the chains.
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(a) (b)

Figure 5-8: Left: Initial CAM-6 polymer con�guration showing chains with N =
10, 20, 40, 60, 100, 140, and 240. The implementation also supports rings and
branched polymers as well as individual monomers. Right: After 1000 time steps,

the contraction of the chains is apparent.

the assumption that the monomers are on di�erent chains. Note that this proof fails

for polymers with N = 1 and N = 3 because distinct monomers in the same space

can have the same set of bonded monomers.

Figure 5-8 shows con�gurations taken from a CAM-6 simulation using the double

space algorithm. The initial con�guration shows a variety of polymer types including

several fully stretched linear polymers ranging in length from N = 10 to N = 240.

The dynamics generates a statistical tension since there are vastly more contracted

con�gurations than stretched ones; thus, the chains start to contract. After 1000 time

steps, the shortest two chains have undergone several relaxation times, while the third

(N = 40) has undergone almost one. Due to limited computational resources, the

implementation of the polymer rule on CAM-6 chooses the directions of movement

deterministically and whether to accept the move is made randomly rather than the

other way around (which makes two trial moves necessary for the equivalent of one

step). Furthermore, the trial moves always occur between pairs of cells in such a way

that an accepted move merely swaps the contents of the cells. This variation admits

polymers with N = 1 and N = 3 and makes it possible to construct a reversible

version of the rule.
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5.2.3 Comparison with the Bond Fluctuation Method

The double space algorithm was motivated as a parallel algorithm ideally suited for

CA, but it is also an excellent lattice polymer Monte Carlo algorithm in general. The

advantages of the double space algorithm can be gauged by comparing it with the

bond 
uctuation method, a state-of-the-art Monte-Carlo algorithm [11]. There are

basically four ways in which the double space algorithm excels: (1) step speed (less

computer time per time step), (2) relaxation rate (fewer steps per relaxation time),

(3) inherent parallelism, and (4) simplicity. Each of these point along with possible

drawbacks will be considered brie
y below.

The bond 
uctuation method is illustrated by �gure 5-9. The monomers �ll 2�2

blocks of cells which can touch but not overlap. This is the conventional, direct way of

implementing the excluded volume constraint. All bonds between a minimum length

of 2 (which can be derived from the excluded volume) and a maximum length of
p
13

are allowed, giving a total of 36 possible bond vectors (compared to 9 for the double

space algorithm). The bond 
uctuation method was not originally thought of as a CA

model, and unlike the CA models given above, it requires explicit representation of the

bonds since nonbonded monomers may be closer than bonded ones (this can also be

done with a local CA rule, but it would be fairly complicated). As in two of the above

lattice polymer models, the Monte Carlo update of a monomer involves picking one

of the four compass directions at random and accepting the move if the constraints

allow. Which monomer to move should be chosen at random, but a random partition

can also be used for a parallel update. The �ne lattice gives a good approximation

to the continuous polymer strand, but the step size is correspondingly small. Finally,

the algorithm does not su�er from severe bottlenecks in con�guration space because

the variable bond lengths allow movement parallel to the chain.

The relative speeds of the double space algorithm and the bond 
uctuation method

were tested on a serial computer using very similar programs on single polymers with

N = 100. The details of the comparison are given in [80]. The upshot of the discussion

is that the extrinsic speed of the double space algorithm in terms of computer time

is about 21

2
times greater than the bond 
uctuation method. This is partly because
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Figure 5-9: Realization of the polymer strand in the bond 
uctuation method with
N = 60. All monomers containing a dot can move in parallel without interference,

and the arrows show all moves allowed by the constraints.

the double space algorithm is simpler, but it is primarily due to the fact that, in the

bond 
uctuation method, which monomer to update must be decided at random in

order to satisfy detailed balance. This requires an extra call to the random number

generator followed by �nding the remainder of division by the length of the polymer.

The intrinsic speed of the double space algorithm in terms of relaxation time in

units of Monte Carlo steps is also about 21

2
times faster than the bond 
uctuation

method because the polymers are more 
exible. This value is the ratio of the pref-

actors in the �t of the scaling law for the relaxation time to measurements (to be

described in the next section) taken from simulations using the two algorithms. The

reason for this dramatic di�erence stems from the fact that the relative change in the

bond vectors on a given step is much larger in the double space algorithm, allowing

the polymer to relax faster.

Perhaps the most signi�cant advantage of the double-space algorithm from a theo-

retical point of view is the fact that it is inherently parallel|a full half of the polymers

can be updated simultaneously. Whereas great e�ort is required to vectorize tradi-

tional Monte-Carlo polymer simulations [98], formulation of the problem in terms of

cellular automata insures that the algorithm is parallelizable from the outset. Hence,

the technique marks a conceptual milestone in our thinking about computational
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polymer physics. With the advent of massively parallel computers, cellular automata

machines, and the like, inherent parallelism is becoming an increasingly practical

advantage as well.

The �nal advantage of the double-space algorithm is a practical consideration as

well as an aesthetic one: simplicity. Simplicity often makes it easier to work with and

reason about models. The initial incentive for developing the simplest possible algo-

rithm stems from the desire to implement polymer simulations on cellular automata

machines, where compact representations are important. Similarly, with conventional

computers and programming languages, a simple algorithm leads to small, fast pro-

grams, and small programs are easier to write, debug, optimize, execute, maintain

and modify. The conceptual simplicity can be appreciated when extending the algo-

rithm to three dimensions. In the bond 
uctuation method, the extension requires

careful consideration of the problem of polymer crossing, and the resulting solutions

are unnatural. In contrast, it is easy to see that the short bonds in the double-space

algorithm, combined with exclusion of non-neighbors, do not allow crossing, and no

ad-hoc restrictions have to be imposed to make the model work.

A potential disadvantage of the double space algorithm relative to the bond 
uc-

tuation method is that the bonds are short compared to the excluded volume radius of

a monomer. This makes more monomers necessary for a given level of approximation

to a true polymer con�guration (compare �gures 5-6 and 5-9). Thus, more monomers

may be required to show the e�ects of entangled or knotted polymers. Finally, the

polymer partitioning of the double space algorithm may be hard to generalize to more

realistic polymer simulations. In this case, spatial partitioning can still be used to

achieve parallelism.

5.3 Results of Test Simulations

Now that we have successfully developed CA algorithms for abstract polymers, we

want to put the techniques on a more mathematical footing and gain a quantita-

tive understanding of polymer behavior. This is accomplished through measurements
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taken from simulations and through theoretical arguments and calculations. Of pri-

mary interest here is the characteristic radius of a polymer along with its associated

relaxation time and how these quantities scale with N . The measurements given

below together with the derivation of scaling laws given in appendix E provide a

satisfying closure of theory and experiment. This in turn extends the applicability of

CA methods and paves the way for more simulations and theoretical development.

This section presents an example of the type of measurements and analysis that

can be done on lattice polymers while making quantitative tests of the double space

algorithm. There are numerous static quantities one might sample, but the radius of

gyration is one of the most basic and gives us some essential information. Checking

the measurement of the radius against the Flory scaling law serves as a veri�cation

of the concepts behind abstract models as well as as a test of the correctness of the

algorithm. The measurement of the relaxation time of the radius of gyration shows

that the algorithm is consistent with Rouse dynamics [23] and also serves to verify

the e�ciency of the algorithm.

The graphs below are based on data taken from a series of 30 simulations of

isolated polymers ranging from N = 2 to N = 240. These are low density systems

where serial computers are adequate and are used for convenience.3 Each run consists

of 100,000 samples, and for economy of measurement, the system is allowed to relax �t

steps between samples. The value of �t ranges from 1{3000 in rough proportion to the

expected scaling law for the relaxation time, �t �= � � N5=2. This gives approximately

40 samples per relaxation time which is su�cient to resolve the slower 
uctuations.

Each system was allowed to equilibrate by skipping the �rst 100 samples (which is

over two relaxation times), and the statistics are based on the remaining \good" data.

The radius of gyration of a polymer is a second moment of the monomer distri-

bution relative to the center of mass and is given at a time t by

Rg(t) =
q
r2 � r2; (5.1)

3
For N = 3, the serial implementation allows the monomers at the ends to overlap without fusing.

Hence, for N = 2 and 3, the polymers reduce to ideal random walks with nearest and next nearest

neighbor bonds.
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where r is the current position of a monomer, r is the center of mass, and the bar

denotes an average over the N monomers. Initially the polymers are fully stretched

in the y direction, giving a radius of gyration of

Rg(t = 0) =

s
N2 � 1

12
: (5.2)

It should be noted in passing that the moments of a distribution can be calculated

using the resources of a cellular automata machine. Built-in counters (e.g., see sec-

tion 3.3.1) make it possible to rapidly count features of interest in di�erent regions of

the space, and the counts can be combined in an arbitrary way on the host computer.

For example, by summing the nth power of x (the column number) weighted by the

count of monomers on that column, one obtains the moment

xn =
1

N

NX
i=1

xni ; (5.3)

where xi is the x coordinate of the ith monomer. By adding another bit plane

running a CA rule which sweeps a diagonal line across the space, it is possible to

count monomers on lines of constant (x + y). This can in turn be used to �nd

expectations of powers of (x+ y) which enables one to extract the expectation of xy

and so on. By diagonalizing the matrix of second moments, one can �nd the overall

orientation of a polymer. Determining additional ways of measuring characteristics

of polymeric systems using CA directly without reading out an entire con�guration

is an interesting area of research. Appendix F deals with some mathematical issues

related to the general problem of measurement by counting over patches of space.

Figure 5-10 shows a typical time series for the radius of gyration. It consists of the

�rst 1000 samples (1% of the data) from the simulation of the polymer with N = 140

and �t = 800. The line segment above the plot shows one relaxation time as derived

from the time series using the method described below. Starting from a stretched

state, the polymer contracts due to statistical forces, and the radius 
uctuates around

its mean value with a characteristic standard deviation �. The relaxation time gives a
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Figure 5-10: The radius of gyration as a function of sample number for a lattice
polymer with N = 140 in the double space model. At t = 0, the polymer starts
out fully stretched in the vertical direction. The horizontal lines show the mean and
standard deviation. One relaxation time is indicated above the plot.

typical time scale for the initial contraction and for 
uctuations away from the mean.

The mean radius of gyration for a given value of N is

hRgi � hRg(t)i; (5.4)

where h� � �i denotes a time average over the good data. The variance of the radius of

gyration is then

�2 � h(Rg(t)� hRgi)2i: (5.5)

Figure 5-11 shows a log-log plot of the mean radius of gyration vs. the number of

bonds (N � 1). The number of bonds was used instead of the number of monomers

N because it gives a straighter line, and it may be a better measure of the length of

a polymer besides. In either case, the radius follows the Flory scaling law in the limit

of large N :

hRgi � N� where � =
3

d + 2
: (5.6)

The dotted line shows a least-squares �t through the last thirteen points and is given
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Figure 5-11: The mean radius of gyration of an isolated polymer in the double space
model as a function of the number of bonds. The dotted line shows a least-squares
�t to the asymptotic region of the graph.

by

hRgi �= (0:448)(N � 1)0:751: (5.7)

The exponent is close to the exact value of � = 3=4 for two dimensions, and the line

gives an excellent �t to the data even down to N = 3.

The time autocorrelation function of the radius of gyration for a given time sep-

aration �t is

�(�t) =
h(Rg(t+�t)� hRgi)(Rg(t)� hRgi)i

h(Rg(t)� hRgi)2i
; (5.8)

where the time average is again limited to the good data. Figure 5-12 shows a semilog-

arithmic plot of the time autocorrelation function vs. the sample separation. This

curve shows how much the polymer \remembers" about its former radius of gyration

after a time �t has passed. Such correlations are often assumed to fall o� expo-

nentially, �(�t) = exp(��t=� ), and the dotted line shows the best-�t exponential

as explained below. However, it has been my experience that these curves always

appear stretched, and a stretched exponential �(�t) �= exp(�(�t=� )�) with � �= 0:8

would give a much better �t.
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Figure 5-12: A semilogarithmic plot of the time autocorrelation function of the radius
of gyration for the polymer with N = 140. The dotted line is chosen to have the same
area under the curve, and its slope gives a measure of the relaxation time.

Assuming an exponential form for the time autocorrelation function, the relaxation

time � is given by the area under the curve. In order to avoid the noise in the tail of

the curve, the area can be approximated by (as in [63])

� =

R te
0
�(t)dt

1 � �(te)
; (5.9)

where te is the �rst point after the curve drops below 1=e. The value of � can be

interpreted as a characteristic time over which the polymer forgets its previous size.

Figure 5-13 shows a log-log plot of the relaxation time vs. the number of bonds. The

relaxation time is expected to obey the following scaling law in the limit of large N :

� � N2�+1 where 2� + 1 =
d + 8

d + 2
: (5.10)

The dotted line shows a least-squares �t through the last thirteen points and is given

by

� �= (0:123)(N � 1)2:55: (5.11)

The exponent is close to the exact value of 5/2 for two dimensions, and the �t is very
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Figure 5-13: The Rouse relaxation time as a function of the number of bonds as
derived from the radius of gyration. The dotted line shows the least-squares �t to
the asymptotic region of the graph.

good for N � 50. The fact that the prefactor is much less than one time step says

that the intrinsic relaxation rate in the double space model is high. Recall that the

prefactor was 2.5 times greater for the bond 
uctuation method. The relaxation is

even faster than expected from about N = 4 to N = 40, but the origin of the dip is

not entirely clear.

5.4 Applications

The models introduced above for doing polymer simulations with CA open up nu-

merous possibilities for applications and further development. Some investigations,

including those involving three dimensional systems, are fairly straightforward, while

others will require creative breakthroughs in CA modeling techniques. To begin with,

it is always possible to do more detailed measurements and analysis, and the results

may verify or demand theoretical explanations. Of course eventually, one will want

to reconcile the newfound understanding with actual experiments. In addition to

more analysis, much of what can be done involves varying the system geometry or

the initial conditions, e.g., studying di�erent polymer topologies [37, 51, 63]. Most
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interesting from the point of view of developing CA methods is the potential for in-

troducing new rules and interactions. Examples of each of these types of extensions

is evident in what follows.

More realistic polymer models would have to exhibit chemical reactions arising

from changes in internal energy between di�erent con�gurations, and ways to do this

will now be described. Di�erent types of monomers and solvent molecules (which can

be denoted by extra bits in a CA) may attract each other to varying degrees, and this

can result in gelation, folding, or further polymerization. Equilibrium ensembles of

polymer mixtures having well-de�ned energies can be sampled using the Metropolis

algorithm [62] as follows. Trial moves are generated as before, but instead of checking

for violation of absolute constraints, the moves are accepted or rejected probabilisti-

cally. The move is accepted unless the new state has a higher energy, in which case it

is only accepted with a probability of exp(��E=kT ). One must be careful to de�ne

the energy in such a way that a parallel update only changes the energy by the sum

of the energies of the individual moves. The resulting Monte Carlo dynamics will

generate a Boltzmann weight of exp(�E=kT ) for con�gurations with energy E. As

an alternative to having an energy-driven dynamics, one can construct ad hoc rules

for stochastically forming or breaking bonds and let the dynamics emerge statisti-

cally. This would be more in line with our desire to �nd the simplest mechanism for

causing a given behavior. Either way, random numbers are clearly an important part

of CA rules for abstract molecular simulation, and useful techniques for incorporating

randomness in CA are discussed in appendices A and C.

5.4.1 Polymer Melts, Solutions, and Gels

This section and the next describe some of the variations on the double space algo-

rithm that have just begun to be explored (see [21] for ideas). The models are still

athermal, meaning that there is no temperature parameter which can be adjusted,

but they show how much can already be done with such trivial energetics. The simu-

lations discussed below have been run on a variety of computer platforms, but cellular

automata machines and other massively parallel computers are better for high den-
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(a) (b)

Figure 5-14: CAM-6 simulations showing complex polymer con�gurations. Left: A
medium density polymer melt consisting of 128 chains each with N = 140. Right: A
gel spontaneously formed from a random con�guration of monomers by ignoring the

excluded volume constraint.

sity systems [67]. However, even for low density systems, an advantage in doing them

on cellular automata machines is that real-time visualization is immediately possible.

These examples bring up several problems for future research.

An important application of polymer simulation is to polymer melts [12, 51]. An

ongoing project is to study two-dimensional abstract polymer melts such as the one

shown in �gure 5-14. Preliminary measurements consisting of histograms, averages,

and relaxation times have been made on over a dozen quantities including radii, bond

lengths, and Monte Carlo acceptance ratios. Also measured are structure functions,

mass distribution functions, and the di�usion rates of individual polymers. One novel

part of this project is to quantify the shape of the region occupied by individual poly-

mers as a measure of polymer interpenetration. This is done in order to determine

how interpenetration scales with increasing polymer concentration c (taken with re-

spect to the concentration c? where separate polymers start to overlap) [72]. The

necessary techniques for measuring the geometry of separate domains in a cellular

space are presented in appendix F.

The presence of a solvent is an important factor in the behavior of real polymers.

If the solvent it good, an isolated polymer will obey the Flory scaling law for the
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radius as indicated in the previous section, but if the solvent is poor, the polymer

will tend to collapse. This naturally leads to the question of how a polymer collapses

when it goes from good to poor solvent conditions. A crude way to mimic a poor

solvent without introducing bonding energies is to simply remove the check of the

excluded volume constraint shown in �gure 5-7. This allows new bonds to form, and

many monomers in the same space can occupy a single cell. If these monomers are

taken together as a single monomer, it is possible to take into account the higher mass

by having the monomer move less frequently. Such simulations on single polymers

have been done on serial computers with the e�ect of mass on di�usion included in

a phenomenological way [68]. These simulations suggest that polymers preferentially

collapse from the ends instead of uniformly along their length in a hierarchical fashion

as is the case for chains near the so-called � point (where steric repulsion and van

der Waals attraction between monomers cancel).

The collapse mechanism can also be performed even more simply by allowing

monomers to fuse while not changing their mass. This is the easiest thing to do on

a cellular automata machine because there is no room for more than one monomer

per cell in one space. While nonconservation of monomers is unphysical, it leads

to interesting behavior. Starting from a random con�guration, monomers quickly

polymerize to create a network of polymer strands. Figure 5-14 (right) shows a foam

that results from running for 500 steps from an initial monomer density of 28% in

each space. CA dynamics along these lines could form the basis of models of gel

formation, and it would be possible to investigate, for example, the correlation length

or distribution of pore sizes as a function of the initial monomer concentration.

Possibly the most interesting area for application of polymer simulation in general

is that of protein folding. This is a rich area for future research in CA simulations

of abstract polymer models as well. In fact, investigations of polymer collapse were

originally motivated with a view towards the protein folding problem. While real

proteins are very complex objects and local structure counts for almost everything,

there are still some interesting things that can be done with simulations on lattice pro-

teins [13]. Furthermore, it is still possible to model highly complex interactions with
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CA (including solvents) by introducing intermolecular potentials and using spatial

partitioning.

One important aspect of polymer physics that is missing from all of the above

lattice Monte Carlo models are hydrodynamic interactions; that is, the transport

of a conserved momentum between polymer strands and the intervening 
uid. The

examples here assume that di�usion is the dominant mode of transport, but hydro-

dynamics is often necessary for a proper description of dynamical behavior. Having

a CA model of such behavior would enable interesting studies of, for example, the

e�ect of polymers on 
uid 
ow. It is easy to have momentum conservation in a gas

of point particles, but it is di�cult to obtain for systems of polymers. The question

of how to obtain momentum conservation for extended objects is brought up again

in chapter 6.

5.4.2 Pulsed Field Gel Electrophoresis

Electrophoresis of polymers through a gel can be used to separate DNA fragments

by length, and this constitutes an important technique in advancing genetic research

in general and the the Human Genome project in particular. Separation using a con-

stant electric �eld is only e�ective on relatively short chains because longer chains

become aligned with the �eld and subsequently exhibit mobilities that are indepen-

dent of chain length. However, periodically changing the direction of the applied

�eld by 90� (referred to as pulsing) causes entanglement and disentanglement of the

DNA with the gel and leads to e�ective separation for longer chains [74]. Computer

simulations of polymers and gels are useful for understanding and improving elec-

trophoretic separation techniques [76]. Therefore we would like to modify the double

space algorithm in order to simulate electrophoresis, with and without pulsed �elds.

This section discusses procedures and results from this project [77, 78].

Two straightforward tasks are necessary to turn a lattice Monte Carlo dynamics

for polymers into a model of DNA electrophoresis: (1) modify the rule, and (2) create

a suitable initial condition. The rule should be modi�ed to give the polymers a net

drift velocity and to support a background of obstacles which represents the gel. The
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bias in the direction of di�usion can be e�ected most simply by assigning unequal

probabilities of performing steps in di�erent directions. Alternatively, one can, at

regular intervals, chose a de�nite direction of movement (say, to the right) for all the

monomers. The initial condition will consist of relaxed polymers in a background gel

matrix, and the simplest model of such a matrix is a �xed set of small obstacles. In

two dimensions, these obstacles can be thought of as polymer strands of the gel which

intersect the space perpendicular to the plane. The ability to vary the parameters in

the rule, as well as the size of the polymers relative to the typical pore size of the gel,

opens up a range of possibilities for experimentation with the model. The paragraphs

below describe the implementation on CAM-6.

The electrophoresis dynamics on CAM-6 proceeds in cycles which contain the

equivalent of four steps of the ordinary double space algorithm: essentially one for each

of the four possible directions of movement. For this reason, time in the simulation

described below will be measured in terms of cycles. Once per cycle, only moves to

the right are accepted, which causes an overall drift to the right. Because of the way

monomers are swapped in the CAM-6 implementation, 2�2 blocks of even monomers

superimposed on a similar blocks of odd monomers (eight monomers total) forms a

tightly bound polymer that cannot move. Therefore, the immovable obstructions can

be made out of monomers arranged in these blocks, and no further modi�cations to the

rule are necessary. Moreover, there is a one-cell excluded volume around each block,

so that no other monomers can touch it. Thus, each block maintains an excluded

volume of 4�4 which reduces the pore size accordingly.

Initial con�gurations of the system are prepared on a serial computer in three

stages and then transferred to CAM-6. First, a given number of 2�2 blocks compris-

ing the matrix are placed at random, one at a time. Placements within a prespeci�ed

distance from any other block (or the edges of the space) are rejected and another

placement is found for the block. This causes an anticlustering of the obstructions

which makes them more evenly distributed than they would be without the distance

constraint. Second, the polymers are distributed in a similar fashion to the blocks by

starting them out in straight, vertical con�gurations. In this case, the polymers must
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be kept at least one cell away from the blocks and other polymers. Finally, the poly-

mers are allowed to relax into an equilibrium state by using a fast, nonlocal Monte

Carlo dynamics. This so-called reptation dynamics randomly moves monomers from

either end of a polymer to the other end, subject to the constraints of the model.

This algorithm produces the correct equilibrium ensemble and is used here only to

establish a starting con�guration for the modi�ed double space algorithm dynamics.

Con�gurations from the CAM-6 simulation of DNA gel electrophoresis are shown

in �gure 5-15. The initial condition (a) contains 1000 of the immovable blocks and

128 polymers, each with N = 30. The blocks were scattered with a minimum allowed

separation of 5 in lattice units, giving a typical separation of 8 (for a typical pore

size of 4). The density of polymers was chosen to be arti�cially high in order to show

many kinds of interactions in a single frame. The characteristic radius of the polymers

is larger than the pore size in this case, so the chains must orient themselves with

the �eld in order to squeeze though. Figure 5-15(b) shows the system after running

for 100 cycles, and virtually all of the polymers have started to be caught on the gel.

Furthermore, many of the polymers are draped over more than one obstacle, while

the few that are oriented along the �eld can continue to move. After 100,000 cycles

(�gure 5-15(c)), the polymers have di�used around the space several times and have

become entangled with the matrix to form extended mats. Note that this means the

polymers must be able to repeatedly catch and free themselves from the blocks.

The �nal part of this simulation shows the e�ect of pulsed �elds (�gure 5-15(d)).

The switching was accomplished by periodically turning the con�guration by �90�

while keeping the rule (and therefore, the direction of the bias) the same. Starting

from �gure 5-15(b), the �eld direction was switched �ve times followed by running 20

cycles of the rule after each switch (for a total of 100 additional cycles). The result is

a net drift at 45�, meaning that the polymers do not have time to reorient themselves

in 20 cycles. At very low frequencies, one would expect the polymers to have time

to respond to the change and alternately drift at right angles. At some intermediate

\resonant" frequency, the polymers should have a minimum mobility due to being

constantly obstructed by the gel.
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(a) (b)

(c) (d)

Figure 5-15: Electrophoresis demonstration on CAM-6. (a) Initial equilibrium con�g-

uration consisting of 128 polymers with N = 30 in a background of 1000 immovable
2�2 blocks. (b) After 100 cycles of the rule, most of the polymers have become

caught on an obstruction. (c) After 100,000 cycles of the rule, the polymers have

drifted around the space until most are caught in one of a few clumps. (d) A con�g-

uration showing the e�ect of switching the direction of the �eld.
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In addition to visual examination of more con�gurations, this research could be

continued in several ways. For example, by adding labels to the polymers one could

trace the position of individual polymers and measure polymer mobility as a function

of polymer size, gel density, and switching frequency. Other possibilities include

modifying the polymer rule, changing the matrix, and going to three dimensions.

One problem with this rule as it stands (and in lattice models in general) is that

tension is not transmitted along the chain as readily as it would be in a real poly-

mer. This is related to the problem of momentum conservation mentioned previously.

Furthermore, there are con�gurations in which polymers cannot slide along their own

contours (e.g., see �gure 5-15(c)), and it takes an inordinately long time for them

to break free from the obstructions. This would be less of a problem with a weaker

driving force, though simulation time would also increase.

5.5 Conclusions

Cellular automata are capable of modeling complex physical situations by moving

abstract atoms according to physically motivated rules. An important technique in

many of these simulations is the Monte Carlo method, and polymer physics is one

area where CA can be successfully employed. Polymers are especially interesting from

the point of view of abstract modeling because they can often be described by scaling

laws which arise from averaging out the relatively unimportant details.

The availability of cellular automata machines and other massively parallel com-

puters make it desirable to �nd CA rules for modeling polymers. The essential features

of lattice polymer dynamics that must be retained in a parallel implementation are

that the chains maintain connectivity and excluded volume. The technique of spatial

partitioning can be used to construct parallel polymer dynamics quite generally, but

the resulting lattice polymers are in
exible and the dynamics are slow. These prob-

lems are elegantly solved by the double space algorithm. This algorithm is well suited

to CA and is superior in most respects to the alternative bond 
uctuation method.

Physical modeling with CA is a quantitative �eld which lends itself to a range
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of interesting experiments. In many cases, it is possible to use additional CA rules

as tools for measurement and analysis. Extensive simulations of the double space

algorithm show that it obeys the correct scaling relations for the characteristic radius

and its relaxation time. Hence, it forms a suitable basis for further modeling.

Many applications are immediately made possible by the techniques given here

including extensive simulations and measurements of polymers in melts and complex

geometries. Even more applications would be made possible by adding chemical

reactions, and this can be done with the Metropolis algorithm or by ad hoc means.

Simulations of electrophoresis of polymers in a gel show how they can get caught

on obstructions. While momentum conservation is automatic in molecular dynamics

simulations, it is still an outstanding problem to �nd a sensible way to add momentum

conservation to CA simulations of polymers.
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Chapter 6

Future Prospects for Physical

Modeling with Cellular Automata

6.1 Introduction

Each of the models presented in the previous chapters brings up a number of problems

for additional research. Besides these follow-up problems, several topics for research

in new directions are indicated below, and some trial models are given as seeds of

investigation. The models are lacking in some respects, but they can already be

studied as they stand; this will undoubtedly lead to further ideas in the course of the

work. Undoubtedly by now, the reader also has many ideas for modeling with CA.

6.2 Network Modeling

A class of complex dynamical systems that is becoming increasingly important in the

modern age is that of information networks. The most familiar example of such a

network is the telephone system. Other notable examples are the Internet and the

local area networks that link computers within a single building. Depending on the

amount of bandwidth available, they can carry textual, numerical, audio, or even

video data. The technology can be put to numerous uses, and there is always more

demand to increase the throughput [40].
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Networks can be anywhere from single chip to global in scale. They consist of

a number of nodes (which are often just computers) connected by communications

channels. Information 
ows from a source node to a destination node, possibly passing

though several nodes in between. The nodes are responsible for tra�c control, and a

central problem is to determine how to route the signals. A circuit-switched network

is an older type of network, originally suited to carrying analog signals, and it provides

a continuous connection from source to destination. The advent of digital information

processing has made possible the more sophisticated packet-switched network in which

digital signals are chopped into packets of data which travel separately, only to be

reassembled at the destination. Each packet of data contains an address telling it

where to go and a time stamp telling its order. The advantage of packet switching

over circuit switching is that it is much more 
exible in how the resources of the

network are used: the packets can travel whenever and wherever a channel is open

without having to have a single unbroken connection established for the duration of

the transmission.

The dynamics of a packet-switched network emerge from the switching of the

nodes in response to the tra�c. As the tra�c in the network increases, con
icts start

to arise when two or more packets want to use the same channel, and one must devise

a communication protocol which works correctly in such cases. Some possibilities are

to temporarily store the packet, drop the packet and try the transmission later, or

de
ect the packet along another channel that is open and hope that it eventually

�nds a way to its destination. These techniques may be used in combination, but

each of them obviously has drawbacks. De
ecting the packets is a good way to keep

the data moving, but it may also lead to further con
icts. Under certain conditions,

the con
icts can feed back and develop into what is known as a \packet storm,"

wherein the information throughput suddenly drops. It is not entirely understood

how packet storms originate, how to prevent them, or even what they look like, and

this is where CA come in. Cellular automata have the potential of simulating the

behavior of complex networks, and hopefully they can provide a visual understanding
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Figure 6-1: Example of a network with data packets of various lengths traveling along
bidirectional wires. The nodes have four ports and switch signals coming in on one

port to one of the other three ports.

of phenomena such as packet storms.1

The basic idea for using CA to simulate networks is illustrated by the CAM-6

con�guration shown in �gure 6-1 (compare this to the digital circuits shown in �g-

ure 2-20). The lines represent wires, and the sequences of bits on the wires represent

indivisible packets of data. There are a total of 38 data packets ranging in length from

1 to 51 bits. The dark squares where the wires meet are the nodes, whereas the light

intersections are just crossovers. This network has 100 nodes, each of which is con-

nected to four others (with a total of 200 wires). The wires are actually bidirectional

since they transmit the bits by swapping the values in adjacent cells.

The network operates as follows. The nodes receive packets as they come in

1
The author would like to thank Randy Hoebelheinrich for suggesting this application.
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through one of the four ports and then immediately send them out on di�erent ports.

Furthermore, the packets are always sent out on a wire that is not currently being

used, so the packets will never merge into each other. This is already describes the es-

sential functionality of the network, but there are some additional details. Since each

node has four inputs and four outputs, it can have up to four packets going through

it at any given time. Each node has nine possible internal settings corresponding to

the nine derangements (i.e., permutations that change the position of every object) of

the four ports, so that each derangement speci�es which input is connected to which

output. The internal state of each node merely cycles through all nine settings unless

there are packets going through in which case it cycles through only those settings

that will not break the packets.

This network dynamics as described has a number of special properties. First,

the packets are just strings of 1's with no sources and no destinations, so they are

just being switched around in a pseudorandom fashion. Second, the packets keep

their identity and never merge. Third, the wires carry bits in a perfectly reversible

way. Finally, the nodes cycle through their internal states in a de�nite order, so

the overall dynamics is reversible. Reversibility gives the remarkable property that

the information in the network can never be lost, and there can never be a con
ict.

Unfortunately, it also means that the packets cannot have destinations to which they

home. If they did, it would mean that there is ambiguity as to where a given packet

has come from, and this incompatible with a one-to-one map. In order for them to

be able to retrace their paths, they would have to have additional degrees of freedom

in which to record their history. All of this is interesting from a physical point of

view because it means that the network has a nondecreasing entropy, and could be

described in thermodynamic terms. A more realistic network simulation would inject

packets containing forwarding addresses and would remove them once they reach their

destinations. Note, however, that there may not be room to inject a packet and the

operation of removing them would be irreversible.
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6.3 The Problem of Forces and Gravitation

One of the most basic physical notions is that of a force. Intuitively, forces are what

\cause things to happen." There are several ways in which they are physically man-

ifested: as a push or pull between the pieces of a composite object, as a contribution

to the Hamiltonian (or energy) of a system, and even as \�ctitious" e�ects due to a

choice of a coordinate system. In one way or another, forces underlie almost every

aspect of physics. Hence, a desirable feature of any paradigm for physical modeling

is the ability to include forces. Forces can be of many types, and eventually we would

like to be able to simulate them all.

We would like to be able to create forces within CA in order to simulate a variety

of phenomena of physical interest, and in particular, gravitational attraction. In

chapter 3 one approach to generating an attractive interaction was to invoke statistical

forces. A statistical force is created by exploiting the tendency for entropy to increase

during the evolution of any complex reversible system. One merely has to devise a

scheme whereby the statistically most likely (and therefore typical) response of the

system is to follow the desired path.

The evolution of any nontrivial dynamical system can be attributed to forces, and

CA are no exception. However, the usual view of CA as �eld variables means that the

forces act to change the states of the cells, as opposed to changing the locations of the

cells. If we want to model general motion through space, we must invent reversible

interactions that lead to acceleration in the spatial dimensions of the CA. Now in a

discrete spacetime, one seems to be limited to a �nite set of velocities and positions,

so forces will be impulsive and take on a �nite set of values.2 Therefore, it will not

be possible to have a solitary particle following a nontrivial smooth trajectory as one

would like.

Attractive forces are arguably more important than repulsive forces because they

serve to hold matter together into functional entities. This is especially true in re-

2
This conclusion is di�cult to escape if the state of the system is to be interpreted locally and

the amount of information is locally �nite. What other interpretations might be useful to get around

this problem?
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versible CA since the natural tendency for systems of particles is to di�use. Fur-

thermore, it is harder to simulate long-range forces since interactions in CA are,

by de�nition, short-ranged. Therefore, the particular problem we want to address in

this section is the construction of a reversible CA for simulating attractive, long-range

forces such as gravity.

In classical �eld theory, forces are gauge �elds which are coupled to matter �elds.

In quantum �eld theory, interactions are often pictured as exchanges of gauge parti-

cles between matter particles. One approach to simulating forces in CA is to build a

classical analogy based on these pictures. The idea is to introduce exchange particles

which carry momentum between distant gas particles. The resulting models di�er

from real physics in several signi�cant respects. First, the model is based on classical,

deterministic collisions rather than on quantum mechanical probability amplitudes.

Second, the exchange particles are real instead of virtual. Third, the exchange par-

ticles have a momentum which is opposite to their velocity. Finally, to make the

model reversible, the exchange particles are conserved instead of being created and

destroyed.

The model given here couples the TM and HPP gases which are de�ned by �g-

ure 3-5, and each gas obeys its own dynamics when it is not interacting with the

other. The particles of each gas carry a momentum proportional to their velocity,

but the key to obtaining attractive forces is that the exchange particles are considered

to have a negative mass. The gases interact in a 2�2 partition whenever they can

exchange momentum conservatively. The basic coupling is shown in �gure 6-2, and

others can be obtained by rotation and re
ection of the diagram. Note that this inter-

action is reversible. One may think of the TM particles as the \matter" gas and the

HPP particles as the \force" �eld. Instead of having virtual exchange particles with

imaginary momenta, the exchange particles are considered to be real with negative

mass which means that their momenta are directed opposite to their velocity.

What is the e�ect of this coupling between the gases? Since the rule is reversible,

gravitational collapse cannot occur starting from a uniform initial condition because

the entropy must increase, and there are no low entropy degrees of freedom available
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before during after

Figure 6-2: A collision rule for generating an attractive coupling between the two

lattice gases. In order to conserve momentum, the mass of the HPP particle (circle)

is taken to be negative one-half of the mass of the TM particle (square).

(a) (b)

Figure 6-3: (a) A uniform gas of matter particles, containing a block of force mediating
particles. (b) Attraction of the matter particles by the expanding cloud of force
particles.

to use as a heat sink. However, it is possible to obtain an attraction by starting

from a nonuniform initial condition as shown in �gure 6-3. Initially (6-3(a)), there is

a random 64�64 block of HPP (force) particles in a 20% background of TM (mat-

ter) particles. As the �eld moves outward, it attracts the gas and reverses direction

as described by �gure 6-2. After a few hundred steps, the block has swollen some-

what, but a rarefaction has developed in the gas while its density in the center has

increased (6-3(b)).

Unfortunately, the contraction is only a transient e�ect because the force particles

continue to di�use through the matter particles while the entropy continues to rise.

Eventually, the system becomes completely uniform, and there is no further attrac-
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tion. One problem with having real exchange particles instead of virtual ones is that

they are not obligated to be reabsorbed in an attractive collision. Rather, as is the

case here, they often miss the matter particles they were meant to contain, and then

they can no longer contribute to the gravitational �eld. However, the question still

remains, is there some way to get around these problems and make a reversible CA

model of gravitation?3

6.4 The Dynamics of Solids

Another area of physics in which forces play an important role is in the dynamics of

\rigid" bodies. Examples such as billiard balls are common in classical mechanics, and

the ability to simulate themwould open a host of applications. A successful simulation

would probably solve the more general problem of simulating intermolecular forces as

well.

The question is basically this: How does one program a CA to support the motion

of macroscopic solid bodies? This question has been dubbed the \solid body motion

problem" and was �rst asked by Margolus [57], but a de�nitive statement of the

problem has never really been elucidated. The question also illustrates the problem

with coming up with fundamental dynamics of physical interest. Several members

of the Information Mechanics Group have worked on this problem with limited suc-

cess [15, 14, 42]. The one-dimensional case has been satisfactorily solved by Hrgov�ci�c

and Chopard independently by using somewhat di�erent modeling strategies. Unfor-

tunately, one-dimensional problems often have special properties which make them

uniquely tractable [54].

An implementation of the solution proposed by Hrgov�ci�c for the one-dimensional

case is shown in �gure 6-4. Because of the way the object moves, it has been dubbed

\plasmodium" after the amoeboid life form. The object consists of a \bag" which

is under tension and which contains a lattice gas (�gure 6-4(a)). The gas particles

3
It is possible to simulate condensation and phase separation in a lattice gas by having a nonlocal,

irreversible rule that is reminiscent of the one given here [102].
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(a) (b)

Figure 6-4: (a) The initial condition consisting of a line segment 30 cells long and
with the internal particles moving predominantly to the right. (b) As time evolves,
the momentum of the internal lattice gas carries the object to the right.

travel back and forth through the bag at the speed of light, and they extend the bag

by one cell by being absorbed when they hit the end. Conversely, the bag is retracted

by one cell when a particle leaves. Figure 6-4(b) shows a spacetime diagram of 1000

steps of the evolution of this object. The excess of internal gas particles moving to

the right is apparent.

6.4.1 Statement of the Problem

To make the problem precise, we need to establish some de�nitions. The key features

of CA that we want are local �niteness, local interactions, homogeneity, and determin-

ism. What we mean by a solid body is a region of space that has an approximately

constant shape and is distinguishable from a background \vacuum." Such regions

should be larger than a CA neighborhood and have variable velocities. Roughly in

order of importance, the solid bodies should have the following:

� A reversible dynamics

� Arbitrary velocities with a conserved momentum

� Realistic collisions
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� Arbitrary angular velocities with a conserved angular momentum

� Arbitrary size

� Arbitrary shape

� A conserved mass and energy or mass-energy

� An internal solid state physics

As mentioned before, reversibility is necessary to make our physical models as

realistic as possible. The �nite speed of propagation of information limits the veloc-

ities, so we can't demand too much in this regard. However, the dynamics of the

objects should obey some principle of relativity. Similarly, conservation laws should

be local. These requirements may imply an internal physics, but we would like to

rule out \unnatural" solutions (such as navigation under program control).

This might not even be a precise enough statement of the problem since there

may be solutions to the above that miss some characteristic that we really meant

to capture. Deleting conditions will make the problem easier and less interesting.

Alternatively, we may be ruling out some creative solutions by imposing overly strict

demands.

6.4.2 Discussion

The problem as stated in its full generality above may very well be unsolvable. While

no formal proof exists, there are indications to that e�ect. First and foremost is the

constraint imposed by the second law of thermodynamics. In any closed, reversible

system, the amount of disorder or entropy, must increase or stay the same. This is

because a reversible system cannot be attracted (i.e., mapped many-to-one) to the

relatively few more ordered states, so it is likely to wander to the vastly more numerous

generic (random looking) states.4 The wandering is constrained by conservation laws,

4
This argument holds for even a single state in a deterministic system|it is not necessary to

have probabilistic ensembles. The entropy can be de�ned as the logarithm of the number of states

that have the same macroscopic conserved quantities.
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(a) (b)

Figure 6-5: (a) A \solid" block of plasmodium which contains an HPP lattice gas
moving to the right. (b) The object moves to the right by fragmentation along the
directions of motion of the lattice gas particles.

but any interesting, nonlinear rule will not be so highly constrained that the system

cannot move at all. This is especially true for systems whose constituent particles

(as in a solid) are constantly jumping from cell to cell. This is clearly not a problem

in classical mechanics where the constituent particles can smoothly move from one

position to another.

Figure 6-5 shows an attempt to extend the plasmodium model to two dimensions.

The idea is to run a lattice gas (HPP in this case) inside of a bag which grows and

shrinks depending on the 
ux of particles hitting the inside edges of the bag. The

resulting rule is reversible and almost momentum conserving. A more complex rule

could be devised which would conserve momentumexactly, but the basic phenomenon

would be the same. Figure 6-5(a) shows the initial state consisting of a square bag

containing a lattice gas moving to the right. Figure 6-5(b) show the results of 500

steps of the rule. However, since the dynamics is reversible, the entropy of the system

tends to increase. Adding surface tension to maintain the integrity of the object would

make the rule irreversible. Such considerations illustrate the di�culty of making a

reversible dynamics stable [3, 92].

The second problem is the lower limit on the size of a disturbance in a discrete
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system. For example, in a discrete space, one can't even imagine the smooth, con-

tinuous acceleration usually associated with F = ma. Another argument goes as

follows. Any continuum mechanics of solids is likely to support sound waves of some

description. Such a dynamics tends to distribute disturbances evenly, yet in more

than one dimension, this implies a thinning of the wave. But it seems impossible

to have a disturbance which shows up as less than a single bit in a cell. Perhaps

correlated information can be less than a bit, but this seems too abstract to comprise

a real solid object. It may be the case that any CA which has material transport

always amounts to a lattice gas.

The �nal problem is particular to Chopard's \strings" model [14, 15], but it may

be a re
ection of deeper underlying problems. This model is quite simple and elegant,

and it has several of the desired features. One reason that it works as well as it does

is that the string is e�ectively one-dimensional, and as we have seen, this simpli�es

things greatly. Despite being so simple, it is not even described as a CA �eld rule,

but rather as a rule on (integer) coordinates of particles. This would be �ne, except

that it is not clear that there is a good way to extend the rule to arbitrary CA

con�gurations. One must instead place global restrictions on the initial conditions.

This is a particular problem with regards to collisions, which cannot be predicted in

advance. The collision rules considered lead to strings which overlap or stick.

Examining these points will give us clues to what restrictions need to be relaxed in

order to solve the problem. For example, if we drop the demand for reversibility, we

might be able to make a \liquid drop" model by adding a dissipative surface tension

which would keep the drops from evaporating. Such considerations probe the power

and limitations of CA in general.

6.4.3 Implications and Applications

The solid body motion problem is central because it embodies many of the di�cul-

ties encountered when trying to construct a nontrivial dynamics that gradually and

reversibly transforms the state of any digital system. It addresses some hurdles en-

countered when attempting to apply CA to physics including continuity, relativity,
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and ultimately, quantum mechanics. Solving the more general problem of �nding

realistic dynamical �elds would obviously have many applications. If this cannot be

done, then it would eliminate many approaches to building worlds with CA. For this

reason, I think the solid body motion problem is important.

This problem could lead to the development of CA methods for modeling stress

and strain in solids that are complementary to lattice gas methods. One would like

to be able to set up an experiment by loading a design of a truss, for example, into

the cellular array. Given other methods for incorporating forces in these models, say,

gravity, one could also put an external load on the structure. Running the automaton

would generate a strain in the truss with stresses distributing themselves at the speed

of sound until the system breaks or relaxes into an equilibrium con�guration. The

stresses and strains could be monitored for further analysis.

Finally, this problem has implications for the �eld of parallel computation as a

whole. The basic question is how best to program parallel machines to get a speedup

over serial machines which increases with the number of processors. And, of course,

CA machines are the ultimate extreme in parallel computers. One ambitious, but

di�cult, approach is to make intelligent compilers that will automatically �gure out

how to parallelize our serial programs for us. Perhaps a more practical approach is

to drive parallel algorithm design with speci�c applications. The solid body motion

problem is a concrete example, and solving it involves the inherent coordination of

the e�orts of adjacent processors.
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Chapter 7

Conclusions

Cellular automata constitute a versatile mathematical framework for describing phys-

ical phenomena, and as modeling tools they o�er a number of conceptual and practical

advantages. In particular, they incorporate essential physical features such as causal-

ity, locality, determinism, and homogeneity in space and time. Furthermore, CA are

amenable to e�cient implementation in parallel hardware as cellular automata ma-

chines which provide important computational resources. The study of physics using

CA combines physics, mathematics, and computer science into a uni�ed discipline.

This thesis advances CA methods in mathematical physics by considering funda-

mental physical principles, formulating appropriate dynamical laws, and developing

the associated mathematics. A major underlying theme has been the importance of

reversibility and its connection with the second law of thermodynamics. The primary

contributions of this thesis are that it:

� Establishes the �eld of cellular automata methods as a distinct and fruitful area

of research in mathematical physics.

� Shows how to represent external potential energy functions in CA and how to

use them to generate forces statistically.

� Identi�es and illustrates how to design dissipation into discrete dynamical sys-

tems while maintaining strict microscopic reversibility.
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� Gives an e�cient algorithm for doing dynamical simulations of lattice polymers

and related systems on massively parallel computers.

� Elaborates some properties of a Lorentz invariant model of di�usion and dis-

cusses the relationship between CA and relativity.

� Presents and analyzes several techniques for exploiting random numbers on

cellular automata machines.

� Sets out the groundwork for creating a calculus of di�erential forms for CA.

� Identi�es promising areas of application of CA in a number of �elds.

These contributions have been supported by simulations and mathematical analysis

as appropriate.

The examples given in this thesis help to establish a catalog of CA modeling

techniques. By combining these techniques, it is becoming possible for physicists to

design CA and program CA machines|much as they now write down di�erential

equations|that contain the essential phenomenological features for a wide range of

physical systems. We are now in a position to embark on cooperative projects with

scientists in many disciplines.
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Appendix A

A Microcanocial Heat Bath

This appendix presents the derivation of some statistical properties of a microcanon-

ical heat bath while illustrating some standard thermodynamic relationships in the

context of a simple, self-contained dynamical model. It also discusses some of the uses

of such a bath including that of a random number generator in Monte Carlo simula-

tions. The heat bath given here is somewhat more general than the one illustrated in

chapter 3. In particular, the bath consists of two bit planes instead of one, and they

form a pair of coupled lattice gases which can hold from zero to three units of energy

per cell. This makes for a greater heat capacity as well as a richer set of statistics.

Similar baths of demons have been used in a number of variants of dynamical Ising

models [20, 73], and further generalization is straightforward.

A.1 Probabilities and Statistics

For purposes of analysis, it is convenient to view the heat bath as completely isolated

and having a �xed energy while its dynamics redistributes the energy among its in-

ternal degrees of freedom. Almost any randomly chosen reversible, energy-conserving

dynamics will su�ce. However, in an actual simulation, the heat bath will be free

to interchange energy (or information if you prefer)|and nothing else|with the pri-
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mary system.1 When the systems come into thermal equilibrium, the zeroth law of

thermodynamics tells us that the heat bath will be characterized by a temperature

parameter which must be the same as that of the primary system. If the heat bath

relaxes quickly compared to the system and they are not too far out of equilibrium,

the assumption of a uniform temperature and independent random energy in each

cell is approximately valid.

A.1.1 Derivation of Probabilities

Consider a collection of N cells of a heat bath that share a total energy E between

them (N = 65536 on CAM-6). In equilibrium, there will be approximately Ni cells

with energy "i = i 2 f0; 1; 2; 3g respectively, but if the cells are viewed as independent

random variables, each will have an energy "i with a probability pi = Ni=N . The

number of equally likely (a priori) ways of assigning the Ni's to the N cells is


 =

 
N

N0 N1 N2 N3

!
=

N !

N0!N1!N2!N3!
= eS: (A.1)

The distribution of Ni's that will be seen (with overwhelming probability) is the

same as the most likely one; i.e., it maximizes S = ln
 subject to the constraints:

N =
X
i

Ni and E =
X
i

Ni"i: (A.2)

This problem can be solved by �nding the extremum of the auxiliary function

f(fNig; �; �) = ln
 + �(N �
X
i

Ni) + �(E �
X
i

Ni"i)

= N lnN �N �
X
i

Ni lnNi +
X
i

Ni + �(� � �) + �(� � �); (A.3)

where � and � are Lagrange multipliers which will be determined by satisfying the

1
As in the potential well model, the energy transfers take place as part of updating the system.

The heat bath can be stirred in between steps with its own separate dynamics. These phases

may occur simultaneously as long as no additional constraints are inadvertently introduced and

reversibility is maintained.
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constraints (A.2):

@f

@�
= 0) number constraint,

@f

@�
= 0) energy constraint. (A.4)

The condition for maximum entropy then becomes

@f

@Ni

= � lnNi � 1� � � �"i = 0

) Ni / e��"i ; (A.5)

which is the usual Boltzmann distribution for energy where the temperature is de�ned

as T � 1=�. Therefore, the probabilities are given by

pi =
e��"i

z
where z �

3X
i=0

e��i =
1 � e�4�

1 � e��
: (A.6)

The energy of each cell can be represented in binary by introducing a description

in terms of energy demons|tokens of energy of a given denomination. In this case,

we need two demons, each carrying a bit of energy: bit j 2 f1; 2g denoting energy

�j = j. The two kinds of demons can be thought of as a pair of lattice gases which

may be coupled with an arbitrary, reversible, energy-conserving dynamics in order to

stir the heat bath. The possible energies of a cell are then "0 = 0, "1 = �1, "2 = �2,

and "3 = �1 + �2 as required. Let Rj = N�j be the total number of j's bits, where �j

is the density (read probability) of j's bits. Then the probabilities are related by

�1 = p1 + p3 = (e�� + e�3�)

 
1� e��

1 � e�4�

!

=
1

1 + e�
=

1

1 + e��1
; (A.7)

and

�2 = p2 + p3 = (e�2� + e�3�)

 
1� e��

1� e�4�

!

=
1

1 + e2�
=

1

1 + e��2
; (A.8)

159



which are just Fermi distributions for the occupation number of the respective energy

levels. Also note that 0 � �j < 1=2 for 0 � T <1.

A.1.2 Alternate Derivation

The counting of equilibrium states can also be done directly in terms of the numbers

of demons in order to illustrate the e�ect of particle conservation on occupation

numbers. Let Rj (j 2 f1; 2g) be the number of demons of type j, and introduce the

constraints

R =
X
j

Rj and E =
X
j

Rj�j: (A.9)

Now we want to maximize the number of ways, W , of putting Rj indistinguishable

particles in the N j's bits subject to the constraints, where

W = w1w2 and wj =

 
N

Rj

!
: (A.10)

As before, this can be accomplished by extremizing an auxiliary function

g(fRjg; �; �) = lnW + �(R �
X
j

Rj) + �(E �
X
j

Rj�j)

= 2N lnN � 2N �
X
j

Rj lnRj +
X
j

Rj +
X
j

(N �Rj)

�
X
j

(N �Rj) ln(N �Rj) + �(� � �) + �(� � �); (A.11)

which incorporates the constraints (A.9) and leads to

@g

@Rj

= � lnRj � 1 + ln(N �Rj) + 1 � �� ��j = 0

) N �Rj

Rj

= e�(�j��); (A.12)

where � � ��=�. Thus,

�j =
Rj

N
=

1

1 + e�(�j��)
; (A.13)
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and the chemical potential, � = �T @g

@R
, gives a measure of how sensitive the maximum

entropy con�guration is to changes in the constraint on the total number of demons,

R. In the actual heat bath, the number of demons is not �xed, so in fact, � = 0 as

before. Similarly, if E were unconstrained, there would result � = 0 and T = 1.

Since the number of states of the system factors as in equation (A.10), the entropies of

the two subsystems add and are maximized individually (i.e., there are no correlations

between them in equilibrium). Therefore, the probabilities, �j, of the two bits in a

cell are independent, and we obtain (as before)

p0 = (1 � �1)(1 � �2) =

�
1� 1

1 + e��1

��
1� 1

1 + e��2

�

=
e�(�1+�2)

1 + e��1 + e��2 + e�(�1+�2)
=

e��"0

1 + e��"1 + e��"2 + e��"3
=

1

z
; (A.14)

p1 = �1(1 � �2) =
e��"1

z
; (A.15)

p2 = �2(1 � �1) =
e��"2

z
; (A.16)

p3 = �1�2 =
e��"3

z
: (A.17)

The heat bath was originally motivated here as a way of adding dissipation to

Monte Carlo simulations within a reversible microcanonical framework. In other

applications, the extra degrees of freedom help speed the evolution of system by

making the dynamics more 
exible [20, 89]. In both of these cases, the subsystems

interact and a�ect each other in a cooperative fashion so as to remember the past of

the coupled system.

However, such a heat bath can also be used as a purely external random number

generator which is not a�ected by the dynamics of the primary system. In this

case, causality only runs in the direction of the heat bath towards the main system,

although under certain circumstances, the overall system can still be reversible. The

energy distribution of a cell will settle down to yield the Boltzmann weights (A.14{

A.17) given above, with all of the other cells acting as its heat bath. Any of the four

probabilities of attaining a particular energy can then be used as an acceptance ratio

in a more conventional Monte Carlo algorithm [62]. The cells will be independent
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from each other at any given time if they were in maximum entropy con�guration

initially (since any correlations would reduce the entropy while it must increase or

stay the same [87]). Of course the random variables in the cells will not be totally

independent from one time step to the next, but they will be adequate for many

applications.

A.2 Measuring and Setting the Temperature

In addition to being useful for implementing dynamical e�ects such as dissipation, a

microcanonical heat bath provides a good way to measure and set the temperature of

a CA system with which it is in contact. This is because the properties of a heat bath

are easy to describe as a function of temperature, while those of the actual system

of interest are not. Measuring the temperature requires �tting the experimentally

derived probabilities to the formulas given above, and setting the temperature involves

randomly distributing demons to give frequencies that match the probabilities.

CA machines have a built-in mechanism for counting the number of cells having

a given characteristic, so it is makes sense to work from formulas for the total counts

(or averages of counts) of cells of each energy:

Ni = N

 
1� e��

1 � e�4�

!
e��i = Npi for i = 0, 1, 2, 3; (A.18)

and the total counts of demons:

Rj =
N

1 + e�j
= N�j for j = 1, 2: (A.19)

Numerous formulas for the temperature (T = 1=�) can be derived from (A.18)

and (A.19), and several of the simplest ones are given below. All of them would

give the same answer in the thermodynamic limit, but since the system is �nite,


uctuations show up in the experimental counts. Thus, each derived formula will, in

general, give a slightly di�erent answer, but only three can be independent due to the

constraining relationships among the Ni's and Rj 's. Taking the ratios of the counts
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in (A.18) leads to:

Tij =
j � i

lnNi � lnNj

; (A.20)

and solving directly for T in (A.19) gives:

Tj =
j

ln
�
N
Rj
� 1

� : (A.21)

Finally, taking the ratios of the counts in (A.19) gives:

r � �1

�2
=

R1

R2

=
1 + e2�

1 + e�
;

which becomes

�
e�
�2 � r

�
e�
�
+ 1 � r = 0

) e� =
1

2
(r �

p
r2 + 4r � 4);

and for positive temperatures,

Tr =
1

ln
h
1
2
(r +

p
r2 + 4r � 4)

i: (A.22)

The measured temperature can be estimated by any kind of weighted mean of the

nine quantities above. For example, discarding the high and low three and averaging

the middle three would give the smoothness of an average while guarding against

contributions from large 
uctuations. T1 would probably give the best single measure

because it only depends on R1 which is large and will have the smallest relative

error (� 1=
p
R1). Alternative methods for extracting the temperature are suggested

elsewhere [19, 20, 73]. Note in the formulas above that a population inversion in the

Ni,s or the Rj's will lead to a negative value for T . This can happen in any system

which has an upper bound on the amount of energy it can hold. A heat bath with a

negative temperature is sometimes described as being \hotter that in�nity" because

it will spontaneously give up energy to any other system having an arbitrarily high
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(positive) temperature.

The temperature of the heat bath can be set by randomly initializing demons 1

and 2 with probabilities �1 and �2 as given by equations (A.7) and (A.8) respectively.

Note that since � is always zero in equilibrium, not all values of �1 and �2 are allowed.

However, another way to set the temperature would be to initialize the heat bath with

an amount of energy equal to the expected value corresponding to a given temperature

and then allow the bath to equilibrate. By alternately measuring and setting the

temperature, one can e�ectively implement a thermostat which can follow any given

temperature schedule. This would be useful for annealing a system, varying reaction

rates, or mapping out a phase diagram.

A.3 Additional Thermodynamics

This section demonstrates some important relationships between thermodynamic

functions and brings up the issue of macroscopic work in discrete systems. Let

Z =
P

s e
��Es where the sum is over all states of the entire heat bath:

Z(�;N) =
X
E


(E)e��E where E = E(fNig)

=
X
fNig


(fNig)e��
P

i
Ni"i =

X
fNig

 
N

N0N1N2N3

!Y
i

�
e��"i

�Ni

=

 X
i

e��"i
!N

= zN : (A.23)

Note that there is no 1=N ! in the �nal expression because all the cells are distinct.

Now

S(hEi; N) = ln
 = N lnN �N �X
i

(Ni lnNi �Ni)

 
= �NX

i

pi ln pi

!

= N lnN �X
i

 
Ne��"i

z
ln
Ne��"i

z

!

164



= N lnN �
�
N

z
ln
N

z

� X
i

e��"i
!
+ �

X
i

Ne��"i

z
"i

= ln zN + �hEi = lnZ + �hEi (A.24)

where � is implicitly de�ned in terms of hEi. Then we can see that � = @S
@hEi. Also

de�ne

F (T;N) = hEi � TS = �T (S � �hEi) = �T lnZ (A.25)

which is the (Helmholtz) free energy. The decrease in the free energy is a measure of

the maximum amount of work that can be extracted from a system held at constant

T by varying an external parameter such as N (read V , the volume). Work done

by a thermodynamic system serves to convert the disordered internal energy into an

ordered (i.e., low entropy) form. Examples of ordered energy from classical physics

include kinetic and potential energy of macroscopic objects as well as the energy

stored in static electric and magnetic �elds. However in the case of CA, it is not clear

how one would go about changing the volume or even what it would mean to convert

the random internal energy into an ordered form. This, in my view, represents a

fundamental obstacle in the application of CA to physical modeling.

The �nal relationship given here establishes the connection between the physical

and information-theoretic aspects of the heat bath, namely I = S= ln 2. This quantity

is the amount of information (i.e., the number of bits) needed to specify a particular

con�guration out of the equilibrium ensemble of the heat bath (given hEi and N).

Sometimes information is taken to be how much knowledge one has of the particular

con�guration of a system in which case it de�ned to be the negative of the quantity

above. In other words, the higher the entropy of a system, the less detail one knows

about it.
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Appendix B

Broken Ergodicity and Finite Size

E�ects

This appendix gives some additional details behind the calculation of the entropy of

the potential well system described in chapter 3. The primary correction to the ele-

mentary analysis given in section 3.2 comes from the presence of a family of conserved

currents which limits the number of particles that can fall into the well. These cur-

rents are nonzero to begin with due to 
uctuations in the random initial conditions.

Another correction re
ects the �nite diameter of the system and comes from the way

the the problem is broken up to calculate the e�ect of the conserved currents. These

corrections are of comparable magnitude even though they have somewhat di�erent

origins, and both would disappear in the thermodynamic limit. The existence of ad-

ditional conservation laws must always serve to lower the total entropy of the system

because the number of accessible states is reduced. However, additive constants can

be ignored because we are ultimately interested in how the derivatives of the extra

terms shift the equilibrium densities.

B.1 Fluctuations and Initial Conserved Currents

The �rst step is to understand the statistics of the currents on the diagonal lines

shown in �gure 3-9. Half of the cells on each line are devoted to particles moving
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in either direction, and the currents arise because the two halves will not generally

be equally populated. Let N = 256 be the number of cells on each line, and let

L = 74 be the total number of lines. The total number of cells in region B is then

NB = NL = 18944. Call the number of particles moving with and against the

current, n+ and n� respectively|each will follow a binomial distribution where p is

the probability of any given cell being occupied:

p(n�) =

 
N=2

n�

!
pn�(1� p)N=2�n�: (B.1)

The mean and variance of the number of particles 
owing in either direction are then

n� = 1
2
Np and �2

� = 1
2
Np(1 � p): (B.2)

The current on any given line is a random variable valued function of these two

random variables, j = n+ � n�. Since n+ and n� are independent and identical,

hj2i = h(n+ � n�)
2i = hn2

+ � 2n+n� + n2
�i

= �2
+ + n2

+ � 2n+n� + �2
� + n2

� = 2�2
� = Np(1 � p)

= N�0�0; (B.3)

where �0 is the initial density of particles used in the simulation. For the particular

initial condition used here, �0 = 1=4 which gives hj2i = 48. For comparison, explicit

counting of the number of particles on each line shown in �gure 3-9 gives a true mean

value of hj2i = 3448=74 �= 46:59.

The expected absolute value of the current is di�cult to calculate in closed form,

but a numerical summation gives hjjji = 5:5188 : : :, while a Gaussian approximation

gives hjjji �= 2��=
p
� = 5:5279 : : :. The true value of hjjji in this experiment is

394=74 �= 5:3243 : : :. Note that the low values of hj2i and hjjji are consistent with

the fact that nT and ET are also less than expected, although the overall 
uctuation
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is within the typical range:

NT

4
� nT = 16384 � 16191 = 193 = 0� 256 = 0� 2

s
NT

4
: (B.4)

B.2 Corrections to the Entropy

This section recalculates the entropy of the potential well system taking into account

the the presence of the conserved currents while being careful to include all corrections

of a comparable size. The approach taken here is to build the extra conservation laws

into the counting of the states while leaving the constraints of particle and energy

conservation out until the entropy maximization step. This is done to maintain a

close similarity with the basic analysis, but it also turns out to be necessary because

the L = 74 subsystems which contain the currents are so small that their entropies do

not simply add. Signi�cant 
uctuations between these subsystems results in entropy

from shared information about the total number of particles as will be explained next.

Each of the four regions A{D is large enough that the number of particles it

contains can be treated as a constant, and the total number of states factors into the

product of the number of states in each subsystem separately (or to put it another

way, their entropies add):


 =

 
NA

nA

! g 
NB

nB

! 
NC

nC

! 
ND

nD

!
: (B.5)

The tilde over the number of states in region B indicates that the expression is only

approximate, and that the combination is just being used as a symbolic reminder of

what we are really trying to count.

Now let us turn to counting the actual number of states in region B assuming that

there are nB = nL particles and NB = NL cells. To do this to the required accuracy,

we will keep one more factor in Stirling's approximation than is customary for small
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numbers [1]:

lnN ! �=
8><
>:
N lnN �N + 1

2
lnN ; N � N

N lnN �N ; N � N:
(B.6)

Suppose for a moment that we can ignore the constraints imposed by the conservation

laws. Then the entropy of region B would be exactly

SB = ln

 
NB

nB

!
= ln

 
NL

nL

!
�= L [N lnN � n ln n� (N � n) ln(N � n)] : (B.7)

However, if attempted to factor the number of states into L � 1 identical pieces

before computing the entropy, we would obtain

ln

 
N

n

!L

�= L

"
N lnN � n ln n� (N � n) ln(N � n) +

1

2
ln

N

n(N � n)

#
: (B.8)

The fact that these two expressions are not the same shows that the entropy is not

quite extensive, though the di�erence becomes negligible in the thermodynamic limit.

In order to factor the number of states for �nite N we can write

 
NB

nB

!
=

 
NL

nL

!
�=
 
N

n

!L

exp

(
L

2
ln
n(N � n)

N

)
: (B.9)

The extra factor accounts for the fact that the particles can 
uctuate between the

lines. Therefore, even if the conserved currents are present, we make the approxima-

tion g NB

nB

!
=

g NL

nL

!
�=

g N
n

!L

exp

(
L

2
ln
n(N � n)

N

)
: (B.10)

The extra factor contains the shared information, and it could be ignored in the

thermodynamic limit.

Now we want to count the number of states on a line containing n particles and

a current j. The particles in each line are divided among the two directions so that

n = n+ + n�, and

n+ =
n+ j

2
and n� =

n � j

2
: (B.11)
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The total number of states on a line is therefore

g N
n

!
=

 
N=2

n+

! 
N=2

n�

!
=

 
N=2
n+j

2

! 
N=2
n�j
2

!
; (B.12)

and the entropy due to a single line is

ln
g N
n

!
= ln

 
N=2
n+j
2

! 
N=2
n�j
2

!
�= N lnN

�
�
n + j

2

�
lnn

�
1 +

j

n

�
�
�
N � n� j

2

�
ln(N � n)

�
1� j

N � n

�

�
�
n � j

2

�
lnn

�
1 � j

n

�
�
�
N � n+ j

2

�
ln(N � n)

�
1 +

j

N � n

�

+
1

2
ln

2N

(n + j)(N � n� j)
+
1

2
ln

2N

(n� j)(N � n+ j)
�= N lnN � n lnn� (N � n) ln(N � n)

�
�
n + j

2

�"
j

n
� j2

2n2

#
�
�
N � n� j

2

�"
� j

N � n
� j2

2(N � n)2

#

�
�
n � j

2

�"
� j

n
� j2

2n2

#
�
�
N � n+ j

2

�"
j

N � n
� j2

2(N � n)2

#

� ln
n(N � n)

2N
� 1

2
ln

"
1� j2

n2
� j2

(N � n)2
+

j4

n2(N � n)2

#

= N(�� ln �� � ln �)� j2

2N

 
1

�
+
1

�

!
� ln�� � ln

N

2
+O

 
j2

N2

!
; (B.13)

where � = n=N .

The above expression can be used to obtain the contribution to the entropy for

all of region B by averaging over the currents:

SB = ln
g NB

nB

!
�= L ln

g N
n

!
+
L

2
ln
n(N � n)

N

�= LN(��B ln �B � �B ln �B)� L
hj2i
2N

 
1

�B
+

1

�B

!

� L ln �B�B � ln
N

2
+
L

2
ln
n(N � n)

N
: (B.14)
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Using hj2i = N�0�0 and dropping constants gives

SB �= NB(��B ln �B � �B ln �B)�
L�0�0
2�B�B

� L

2
ln �B�B: (B.15)

This expression consists of a bulk entropy term, a correction for the extra conservation

laws, and a correction for �nite size.

B.3 Statistics of the Coupled System

The counting of regions A, C, and D requires no special treatment, so the entropy for

the whole system is

S = ln


�= NA(��A ln �A � �A ln �A) +NB(��B ln �B � �B ln �B)

+NC(��C ln �C � �C ln �C) +ND(��D ln �D � �D ln �D)

� L�0�0
2�B�B

� L

2
ln �B�B; (B.16)

while the revised constraints on the particle number and energy are

nT = nA + nB + nC and ET = nA + nB + nD: (B.17)

The entropy of the equilibrium ensemble will assume the maximum value subject

to the constraints (B.17). To �nd this extremum, introduce Lagrange multipliers �

and �, and de�ne the auxiliary function

f = S + �(nT �NA�A �NB�B �NC�C) + �(ET �NA�A �NB�B �ND�D): (B.18)

Extremizing f with respect to �, �, �A, �B, �C , and �D returns the constraint

equations (B.17) along with

�NA ln
�A

�A
� �NA � �NA = 0; (B.19)
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x T A B C D

Nx 65536 33952 18944 12640 65536

nx (initial) 16191 13063 3128 0

nx (basic theory) 16191 5003.79 2791.94 8395.27 5267.27

nx (nonergodic) 16191 4984.44 2819.39 8387.17 5259.17

nx (�nite size) 16191 5017.09 2773.09 8400.82 5272.82

nx (revised theory) 16191 4997.37 2801.05 8392.58 5264.58

Table B.1: Theoretical values for the expected number of particles in each region of

the system. The last three lines show the e�ects of broken ergodicity and �nite size,

separately and together, as calculated by including their respective correction terms

in the entropy.

�NB ln
�B

�B
+
L�0�0
2

1 � 2�B

(�B�B)
2
� L

2

(1� 2�B)

�B�B
� �NB � �NB = 0; (B.20)

�NC ln
�C

�C
� �NC = 0; (B.21)

�ND ln
�D

�D
� �ND = 0: (B.22)

Solving for the densities gives

�A =
1

1 + e�(1��)
; (B.23)

�B =
1

1 + e�(1��) exp
n

1
2N

(1�2�B)
�B�B

�
1� �0�0

�B�B

�o; (B.24)

�C =
1

1 + e�(��)
; (B.25)

�D =
1

1 + e�
: (B.26)

The above equations can be solved numerically, and it is illuminating to do so

with and without each correction term in the entropy. Table B.1 gives the results.

Note that the conservation term drives the number of particles in region B up, while

the �nite size term drives the number down.
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Appendix C

Canonical Stochastic Weights

This appendix describes a frugal technique for utilizing random bits in Monte Carlo

simulations. In particular, it de�nes a canonical set of binary random variables along

with a recipe for combining them to create new binary random variables. By using

just a few well-chosen random bits in the right combination, it is possible to �ne tune

the probability of any random binary decision. The technique is especially useful in

simulations which require a large number of di�erentially biased random bits, while

only a limited number of �xed sources of randomness are available (as in a cellular

automata machine).

C.1 Overview

Random bits are often used as digital coins to decide which of two branches a com-

putation is to take. However, in many physical situations, one may want one branch

to be more probable than the other. Furthermore, it may be necessary to choose

the probability depending on the current state of the system. For example, in the

Metropolis algorithm for sampling a canonical ensemble [62], one accepts a trial move

with a probability of min(1; e��E=T ), where �E is the change in energy and T is the

temperature in energy units. This acceptance probability can be anywhere from 0 to

1 depending on the current state, the chosen trial move, and the temperature. Hence,

it is desirable to be able to switch coins on the 
y.
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The simplest way to make a biased decision is to 
ip a suitably unfair coin a

single time. This is e�ectively what is done in CA simulations when using a lattice

gas as a random number generator where the density of the gas is equal to the

desired probability. However, this only gives us one level of randomness at a time,

and changing it is slow because it requires initializing the gas to a di�erent density.

An obvious way to synthesize a biased coin 
ip out of N fair coins 
ips is to

combine them into an N -bit binary number and compare the number to a preset

threshold. This method can discriminate between 2N + 1 probabilities ranging uni-

formly from 0 to 1. Furthermore, by combining bits in this way, it is possible to tune

the probabilities without changing the source of randomness.

However, it is possible to do far better than either of the above two strategies.

By combining and extending the strategies, it is possible to obtain 22
N

probabilities

ranging uniformly from 0 to 1. The technique can be subsequently generalized to

multiple branches.

C.2 Functions of Boolean Random Variables

In what follows, the term, \the probability of b," will be used to mean the probability p

that the binary random variable b takes the value 1 (the other possibility being 0).

Thus, the expectation (or weight) of b is simply p. The vector b will denote a single

N -bit binary number whose components are its binary digits: b =
PN�1

n=0 bn2
n. Let

p = 1 � p be the universal complement of the probability p, b = :b the logical

complement of the bit b, and b = 2N � 1� b the one's complement of b.
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C.2.1 The Case of Arbitrary Weights

There are 22
N

Boolean functions f(b) of N Boolean (or binary) variables b.1 Any of

these functions can be written in the following sum of products format:

f(b) =
2N�1_
a=0

f(a)�ab

=
2N�1_
a=0

f(a)
N�1̂

n=0

bann b
an
n

= f(0)bN�1bN�2 � � � b1b0
+ f(1)bN�1bN�2 � � � b1b0
...

+ f(2N � 1)bN�1bN�2 � � � b1b0; (C.1)

where I have adopted the convention that 00 = 1. For each a, �ab consists of a

product of N b's which singles out a speci�c con�guration of the inputs and thereby

corresponds to one row in a lookup table for f . Hence, the above column of f(b)'s (0 �
b � 2N � 1) consists of the entries of the lookup table for this function. The lookup

table considered as a single binary number will be denoted by f =
P2N�1

b=0 f(b)2b

(m.s.b.=f(0), l.s.b.=f(2N � 1)). This number can be used as an index into the set of

all Boolean functions of N bits:

FN = fff (b)g22
N�1

f=0 : (C.2)

A given probability distribution on the N arguments will induce a probability on

each of these functions. Suppose the inputs are independent, and let the weight of

bit n be p(bn) = pn. Then the probability of a particular b is

P (b) =
N�1Y
n=0

pbnn p
bn
n : (C.3)

1The argument list b will often be referred to as the \inputs," since they will ultimately be fed

into a lookup table (which happens to be a memory chip in a CA machine).
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Figure C-1: Probabilities of the 16 functions for N = 2 showing their dependence on

p1 when p0 = :3 is �xed. When p0 =
1
3
and p1 =

1
5
, the P(f)'s become equally spaced.

Occurrences of di�erent values of b are disjoint events; therefore, the probability of

a given f can be written as the following sum:

P(f) =
2N�1X
b=0

f(b)P (b);

=
2N�1X
b=0

f(b)
N�1Y
n=0

pbnn p
bn
n

= f(0)pN�1pN�2 � � � p1p0
+ f(1)pN�1pN�2 � � � p1p0
...

+ f(2N � 1)pN�1pN�2 � � � p1p0: (C.4)

For N = 2, there are 22
N

= 16 distinct f 's. Figure C-1 shows the complex way in

which the probabilities of the f 's vary as a function of p1 alone. This \cat's cradle"

shows that it is hard to get an intuitive grasp of how the set fP(f)g as a whole

behaves as a function of the input probabilities. The numerous crossings even make

the order of the f 's unclear.

C.2.2 The Canonical Weights

We have a set of N free parameters fpng and would like to be able to specify any

distribution of probabilities for the 22
N

f 's. Perhaps the most useful distribution
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one could obtain would be a uniform one. Though we are doubly exponentially far

from being able to specify an arbitrary distribution, we can, in fact, obtain this most

favorable case! For example, for N = 2, one can generate the set of probabilities

P2 =

�
0;

1

15
;
2

15
;
3

15
;
4

15
;
5

15
;
6

15
;
7

15
;
8

15
;
9

15
;
10

15
;
11

15
;
12

15
;
13

15
;
14

15
; 1

�
(C.5)

by taking all possible Boolean functions of two Boolean random variables fb0; b1g
having the weights W2 = f1

3
; 1
5
g (cf. �gure C-1). The functions which give P2 are

respectively

F2 =
n
0;^; <; b1; >; b0; 6�;_;�_;�; b0;�; b1;�; �̂; 1

o
; (C.6)

where the binary operators are understood to mean b0 op b1.

More generally, for N bits, we want to choose the set of weights fpng so as to

generate the set

fP(ff (b))g22
N�1

f=0 = PN �
(
0;

1

22N � 1
;

2

22N � 1
; : : : ;

22
N � 2

22N � 1
; 1

)
: (C.7)

This can be done by choosing the weights of the inputs to be reciprocals of the �rst

N Fermat numbers, Fn = 22
n

+ 1:

fpngN�1
n=0 =WN �

�
1

Fn

�N�1

n=0

=

�
1

3
;
1

5
;
1

17
; : : : ;

1

22N�1 + 1

�
: (C.8)

That this choice is unique up to a relabeling of the probabilities and their complements

is proved in the next section.

The above choice of probabilities also gives the answer to the following question.

Suppose you want to make two rectangular cuts through a square of unit mass to make

four separate weights. There are 24 = 16 ways of combining the resulting weights to

make composite masses ranging from 0 to 1. The question is then, how do you make

the cuts in order to obtain the largest uniform set of composite masses? Clearly, the
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four weights should be �
1

15
;
2

15
;
4

15
;
8

15

�
: (C.9)

This can be accomplished by cutting the square one third of the way across in one

direction and one �fth of the way across in the other direction. The fractions of the

square on either side of the cuts correspond to the probabilities and their comple-

ments, but in the latter case, the weights are stochastic. For cubes and hypercubes,

additional cuts are made according to subsequent Fermat numbers.2

Substituting the weights WN in equation (C.3) gives

P (b) =
N�1Y
n=0

�
1

Fn

�bn �Fn � 1

Fn

�bn
: (C.10)

Now either bn or bn is 1, and the other must then be 0; therefore,

P (b) =

 
N�1Y
n=0

1

Fn

! 
N�1Y
n=0

(Fn � 1)bn
!
: (C.11)

It is easy to show that
N�1Y
n=0

Fn = 22
N � 1; (C.12)

so we obtain

P (b) =
1

22N � 1

N�1Y
n=0

2bn2
n

=
1

22N � 1
2
PN�1

n=0
bn2

n

=
2b

22N � 1
: (C.13)

In this case, the expression for P(f) takes a simple form:

P(f) =
1

22N � 1

2N�1X
b=0

f(b)2b

2If putting masses on either side of the scale is allowed, it is even better to cut the unit mass

according to 32
n

+ 1.
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b b1 b0 f(b) P (b)

0 0 0 1 p1p0 = 8=15
1 0 1 0 p1p0 = 4=15

2 1 0 1 p1p0 = 2=15
3 1 1 1 p1p0 = 1=15

Table C.1: Construction of an f(b) with N = 2 inputs, b0 and b1, which gives a net

probability of 11
15
.

=
f

22
N � 1

=
f(0)f(1) � � � f(2N � 1)2

22N � 1
; (C.14)

where the numerator of the last expression is not a product but a binary number,

with each f(b) (0 � b � 2N � 1) determining one of the bits.3

In order to choose the appropriate f with the desired P(f), approximate P as

a fraction, where the denominator is 22
N � 1, and the numerator is a 2N -bit binary

number. Then simply �ll in the lookup table for f with the bits of the numerator.

For example, suppose we want an N = 2 function f having a probability near 11
15
, i.e.,

P(f) = f

222 � 1
=

11

15
=

10112

11112
: (C.15)

This will be given by ff = f11, and the lookup table and component probabilities

for this function are listed in table C.1. This function can also be put into more

conventional terms:

f11(b) = b1b0 + b1b0 + b1b0 = (b0 � b1) = :b0 _ b1; (C.16)

and the total probability comes from

P(f11) = p1p0 + p1p0 + p1p0: (C.17)

3N.B. The bits in the lookup table are reversed relative to what one might expect, viz., f(0) is

the most signi�cant bit of f and f(2N � 1) is the least signi�cant bit. Alternatively, the input bits

or their probabilities could have been complemented.
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C.2.3 Proof of Uniqueness

In the last section, we derivedPN from one particular choice of weightsWN = fp(bn)g.
Now we will work backwards from PN to construct the set WN , thus proving that

the choice is unique.

In order for fP (b)g to span PN using only binary coe�cients as in equation (C.4),

we clearly must have

fP (b)g2N�1
b=0 =

(
1

22
N � 1

;
2

22
N � 1

;
4

22
N � 1

; : : : ;
22

N�1

22
N � 1

)
: (C.18)

Therefore, each P (b) must be proportional to a distinct one of the �rst 2N powers of

two, with a constant of proportionality of (22
N � 1)�1.

Recall that each P (b), as given in equation (C.3), is a product consisting of either

pn or pn for every n. In order to get 2N di�erent products, none of the pn's can be

equal, nor can they be zero, 1
2
, or one. So without loss of generality, we can relabel

the pn's so that

0 < pN�1 < pN�2 < � � � < p1 < p0 <
1
2
; (C.19)

1 > pN�1 > pN�2 > � � � > p1 > p0 >
1
2
: (C.20)

Since the p's are all less than the p's, the smallest product is P
�
0
�
, and it must

be proportional to 1:

P
�
0
�
= pN�1pN�2 � � � p1p0 / 20: (C.21)

The order of the p's also lets us conclude that the second smallest is P
�
1
�
which must

be proportional to 2:

P
�
1
�
= pN�1pN�2 � � � p1p0 / 21: (C.22)

The ratio of these proportionalities is

P
�
1
�

P
�
0
� =

p0
p0

=
21

20
= 2; (C.23)

and solving gives p0 = 1
3
. Similarly, the third smallest is P

�
2
�
which must be pro-
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portional to 4:

P
�
2
�
= pN�1pN�2 � � � p1p0 / 22: (C.24)

Then
P
�
2
�

P
�
0
� =

p1
p1

=
22

20
= 4; (C.25)

giving p1 =
1
5
. This in turn generates

P
�
3
�
= pN�1pN�2 � � � p1p0 / 23; (C.26)

which is evidently the fourth smallest.

Once the lowest 2n products are obtained, the next lowest P (b) will introduce

pn. This in turn generates the next 2n products, thereby doubling the set of lowest

products. By induction,

P
�
2n
�
= pN�1 � � � pn+1pnpn�1 � � � p1p0 / 22

n

: (C.27)

Dividing this by P
�
0
�
gives

P
�
2n
�

P
�
0
� =

pn
pn

=
22

n

20
= 22

n

; (C.28)

and �nally,

pn =
1

22n + 1
: 2 (C.29)

C.3 Application in CAM-8

The technique described above is particularly well-suited to use in CAM-8, which

is the most recent cellular automata machine to be developed by the Information

Mechanics Group (cf. the description of CAM-6 in section 3.3.1).4 At the risk of

oversimplifying the situation, it is useful for present purposes to think of the state

4For a more detailed description of CAM-8, see [24], pp. 219{249.
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space in CAM-8 as consisting of 16 parallel \planes" of bits with periodic boundary

conditions. Each cell contains one bit from each of these planes, and data is shifted

between cells by sliding the planes an arbitrary distance relative to the others. Each

cell is updated between shifts by replacing the 16 bits of data in each cell with an

arbitrary 16-bit function of the original data. For a stochastic rule, this typically

means using a few (e.g., N = 3) of the 16 planes as a random number generator and

the rest for the system itself.

Once and for all, each of the N bit-planes devoted to randomness is �lled with

its own density pn = 1=Fn of 1's (or \particles"). These planes should be separately

\kicked" (i.e., shifted) by random amounts every time step to give each cell a new

random sample. Thus, for each cell, the probability of �nding a particle on one of the

random planes will be given by its corresponding pn. Since the same set of particles

will be used over and over, one should set exactly
h
4M
Fn

i
bits to one (assuming 4M -bit

planes), where [� � �] denotes the nearest integer. This is the only way to guarantee

satisfaction of the law of large numbers.

The update of the system on the other 16 � N planes can now depend on any

one of 22
N

di�erent coins. For N = 3, this translates into a choice of 256 uniformly

distributed probabilities. For many applications, this tunability of P(f) is e�ectively
continuous from 0 to 1. Furthermore, the choice of a coin in each cell can depend

on the rest of the data in the cell|the densities in the random planes need never be

changed. This would be useful, for example, in a physical simulation in which various

reactions take place with a large range of branching ratios depending on which particle

species are present.

C.4 Discussion and Extensions

This section brie
y discusses some �ne points which are characteristic of those which

inevitably come up when dealing with computer-generated random numbers. It also

suggests some problems for further research. Many of the problems concern the

quality of the randomness obtained, while still others address practical considerations
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in the application of the technique. Finally, an algorithm for extending the idea to

multiple branches is presented.

Computer-generated randomness will always contain some residual correlations

which could conceivably throw o� the results of Monte Carlo simulations. An im-

portant extension of this work, therefore, would be to investigate the correlations in

the coin tosses and their e�ects on the reliability of CA experiments. In CAM-8 for

example, the same spatial distribution of random bits will occur over and over again

as each plane of randomness is merely shifted around. Could this cause a spurious

\resonance" with the dynamics under investigation?

A mathematical problem along these lines would be to �nd a good \random" se-

quence of kicks which minimizes the degree of repetition in the spatial distribution

of coin 
ips. Truly random kicks would give good results, but a deterministic, anti-

correlated sequence could possibly be better. The optimal solution may resemble a

\Knights Tour" or \8-Queens" con�guration on a chess board.

One way to enhance the randomness would be to use extra bit planes to stir

or modulate the particles. Stirring would require an \ergodic," particle conserving

rule with short relaxation times|perhaps a lattice gas would do. Modulation could

take the form of logical combinations of planes (such as `and' or `exclusive or'). On

the other hand, one could save storage of randomness in the cell states by using an

external random number generator as inputs to the processor (the lookup table). The

problem would be to build a fast, hardwired source of probability 1=Fn random bits.

A practical problem is to �nd a good way to throw down, at random, exactly a

given number of particles. A \physical" way to do this would be to put down the

desired number of particles in a non-random way and then use the machine to stir the

particles. Having a �xed number of particles in a plane introduces mild correlations,

but they become negligible as the size of the system is increased.

Note that there are severe correlations between the various coins in a single cell.

So while coins are virtually independent from cell to cell, one cannot, in general, use

more than one at a time from a single cell and expect good results. By looking at

several of these coins, one can never get more than IN bits of randomness per cell,
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where

IN = �
N�1X
n=0

(pn log2 pn + pn log2 pn)

= log2

QN�1
n=0 (2

2n + 1)QN�1
n=0 (2

2n)
+

N�1X
n=0

2n

22
n
+ 1

= log2
(22

N � 1)

2(2N�1)
+
22

N � 2N � 1

22N � 1

= 2 � 2N

22
N � 1

� log2

 
22

N

22
N � 1

!
: (C.30)

IN approaches 2 bits in the limit N ! 1. While this seems small, it would require

exponentially more perfectly random bits to tune the derived probabilities to the

same extent as given here.

The main drawback of the technique as presented so far is that it is limited to

2-way branches. However, I have extended the technique to an arbitrary number

of branches, and the probability of each outcome is drawn from the largest possible

set of probabilities ranging uniformly from 0 to 1. The resulting lookup tables take

in random binary inputs whose weights are all reciprocals of integers and combine

them to create \loaded dice" with any number of sides. The common denominators

of the output probabilities grow more slowly as the number of branches increases,

but eventually, they too grow as a double exponential. As before, this gives very �ne

control over the exact probabilities of the di�erent branches.

The extended technique does not yield simple formulas for the lookup table and

the input probabilities as in the binary case, so the solution is given in algorithmic

form instead|see the subroutine listing at the end of this section. The subroutine

can be used immediately to generate a suitable lookup table whenever appropriate

constraints are satis�ed. It will also work in the binary case, even if the denominators

of the pn's grow more slowly than Fn. The theory behind the algorithm will be the

subject of a future paper.

A �nal problem along these lines is to understand how to �ne tune the output

probabilities for a particular application by modifying the input weights. The di�-
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culty is that the output probabilities do not form a uniform set if the reciprocals of

the input weights are not integers or if the integers grow too fast. While very good

results can be obtained by using only rational probabilities, it may be worthwhile

in certain circumstances to relax this constraint. Further software will probably be

necessary to optimize the probabilities for each application.
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/* This subroutine recursively loads a portion of a lookup table in order to

generate a single random variable as a function of a given set of binary random

variables. The function takes on one of F values, f = 0, 1,..., F-2, F-1, and

the probability of each outcome can be varied by swapping lookup tables without

changing the given set of binary inputs. Such tables yield an efficient

technique for implementing Markov processes in situations where the number of

sources of random bits is limited, while their fairness is adjustable (such as

in Cellular Automata Machines). The special characteristics of the random

variables involved are described below.

The bits which form the input address to the lookup table are numbered n = 0,

1,..., N-2, N-1 (in order of increasing significance) and can be viewed as being

drawn from a set of N "bit planes." The bits so taken are considered to be

independent binary random variables with probabilities p_n = 1/d_n, where each

d_n is an integer >= 2. An array of these integer plane factors is given as

input to the subroutine in order to specify the input probabilities that will be

used. The N low order bits in the lookup table index passed into the subroutine

must be set to zero. The high order bits of the lutindex determine which

subtable will be loaded, and can also be used to represent the current state of

a Markov chain (i.e., the table can vary from state to state).

The F possible outcomes may be interpreted differently depending on the current

state of the Markov process, and the probability of the next state in turn

depends on certain branching ratios. These branching ratios are proportional to

nonnegative integer branching factors, S(f), which are specified by an array

given as input to the subroutine. The probability of a particular output of the

table is given by the ratio of the corresponding branch factor to the product of

all of the plane factors. Since the branching ratios must add up to one, the

branch factors must add up to the product of the plane factors, and the actual

number of degrees of freedom is therefore one less than the number of branches.

Interpreted geometrically, the branching ratios are rational numbers which lie

on a fine lattice in a delta-dimensional simplex, where delta = F-1. The

subroutine works by recursively decomposing the vector of numerators into a sum

of major and minor components lying on coarser and coarser sublattices

(actually, a common factor of d_n-1 has been cancelled from the list of major

components). The denominator at each stage is D_n, which is the product of all

the plane factors up to and including the current plane (that is, for all planes

numbered <= n). If at any stage, the branch factors do not add up to the

correct denominator, an error message is printed.

In order for an arbitrary set of branch factors to be allowed, each plane

factor, d_n, must satisfy d_n <= 2 + D_(n-1)/delta. If the plane factors grow

too fast, and thus do not satisfy this constraint, some branch factors will

cause an overflow error message because the minor components will not fall in

the required simplex. In this case, the overall probability space will have

unreachable lattice points, giving a reachable set which is reminiscent of a

Serpinski gasket. For other branch factors, no error will be produced, and the

lookup table will work as desired. Finally, the lookup table which results from

the decomposition is not, in general, unique, because subsimplexes must overlap

to fill the larger simplexes. */
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/*

Source: /im/smith/programs/randlut/randlut.c

Author: Mark Andrew Smith

Last Modified: June 3, 1993

*/

randlut(int branches, /* Number of possible outcomes = F. */

int branch_factors[], /* Numerators, S(f), of branching probabilities. */

int planes, /* Number of planes of random bits = N. */

int plane_factors[], /* Inverse probabilities, d_n, for each plane. */

int lutindex, /* Specifies which subtable is being filled. */

int lut[]) /* Lookup table to be filled. */

{

int plane, branch, denominator;

int quotients[branches], remainders[branches];

int quotient_total, remainder_total;

int quotient_excess, quotient_decrement;

if(planes == 0) /* Base case. */

{

for(branch = 0; branch < branches; branch++)

{

if(branch_factors[branch] == 1) /* Only remaining outcome. */

{

lut[lutindex] = branch;

break;

}

}

}

else /* Recursive case. */

{

planes--; /* Continue with the next most significant bit plane. */

/* Find the required total for the constituent branching factors. */

for(denominator = 1, plane = 0; plane < planes; plane++)

denominator *= plane_factors[plane];

/* Compute the major components of the branching factors and their sum. */

for(quotient_total = 0, branch = 0; branch < branches; branch++)

quotient_total += quotients[branch] = branch_factors[branch] /

(plane_factors[planes]-1);

/* Cut the quotient total down until it is equal to denominator. */

quotient_excess = quotient_total - denominator;

for(branch = 0; quotient_excess > 0; branch++)

{

quotient_decrement = quotients[branch] < quotient_excess ?

quotients[branch] : quotient_excess;

quotients[branch] -= quotient_decrement;

quotient_excess -= quotient_decrement;

}
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/* Compute the minor components of the branching factors and their sum. */

for(remainder_total = 0, branch = 0; branch < branches; branch++)

remainder_total += remainders[branch] = branch_factors[branch] -

quotients[branch]*(plane_factors[planes]-1);

/* Check to see if the remainder total is what it should be. */

if(remainder_total > denominator)

fprintf(stderr, "Overflow: I=%d d=%d D=%d r=%d\n", lutindex,

plane_factors[planes], denominator, remainder_total);

if(remainder_total < denominator)

fprintf(stderr, "Underflow: I=%d d=%d D=%d r=%d\n", lutindex,

plane_factors[planes], denominator, remainder_total);

/* Recursively decompose the quotient and remainder vectors. */

randlut(branches, quotients, planes, plane_factors, lutindex, lut);

lutindex |= 1 << planes; /* Switch to the other half of the table. */

randlut(branches, remainders, planes, plane_factors, lutindex, lut);

}

}
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Appendix D

Di�erential Analysis of a

Relativistic Di�usion Law

This appendix expands on some mathematical details of the model of relativistic

di�usion presented in chapter 4. The symmetries of the problem suggest underlying

connections between a physical CA lattice model and the geometrical nature of the

corresponding set of di�erential equations. Solving the equations rounds out the

analysis and serves to make contact with some standard techniques in mathematical

physics.

The Lorentz invariance of the model can be explained and generalized by adopt-

ing a description in terms of di�erential geometry. In order to establish a common

understanding of this branch of mathematics as it is used in physics, a brief digres-

sion is made to lay out some of the fundamental concepts and terminology. Further

terminology will be introduced as needed. Using this language, the invariance of the

system under conformal rescalings and the conformal group is demonstrated.

The general solution to the equations in the case of a uniform background can

be written as a convolution of the initial data with a di�usive kernel, and a simple

derivation of the kernel is given. Just as symmetry and conservation laws are powerful

tools for problem solving, the invariance of the equations under the conformal group

can be used in conjunction with this basic solution to solve the equations in the most

general case.
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D.1 Elementary Di�erential Geometry, Notation,

and Conventions

The study of di�erential equations involving general �elds and arbitrary spacetimes

requires the use of di�erential geometry. Consequently, the sections below serve as a

more or less self-contained introduction to the mathematics needed to elucidate the

invariances of the relativistic di�usion law. The presentation is meant to be intuitive

and readily absorbed, so no great attempt is made to be rigorous. Instead, the terms

are used rather loosely, and many logical shortcuts are taken. The reader who requires

more detail can consult any number of references [7, 16, 96]. The �rst section covers

those aspects of geometry that do not require any notion of distance|in particular,

manifolds and tensor �elds. In section D.1.2, further geometric structure is added by

introducing a metric tensor. Finally, the special-case de�nitions used in chapter 4 are

given in section D.1.3.

D.1.1 Scalar, Vector, and Tensor Fields

Di�erential geometry starts with the concept of a manifold which is the mathemat-

ical name and generalization of the physical notion of a space or spacetime, and

these terms will be used interchangeably. For purposes of this section, a manifold is

smooth, has a de�nite dimensionality, and a �xed global topology, but is otherwise

unconstrained. In what follows, a point on an arbitrary manifold will be denoted

by x, and the dimension will be denoted by n; however, the discussion will often be

specialized to an ordinary, two-dimensional spacetime.

After manifolds comes the analysis of smooth functions on manifolds (a.k.a. �elds

in physics). Speci�cally, the concepts and operations of di�erential calculus can be

extended to non-Cartesian spaces and multicomponent objects. Consideration of the

di�erential structure of a manifold leads to the notion of vectors and vector �elds. The

algebra of vectors leads to higher rank vectors (i.e., elements of vector spaces) called

tensors, and the algebra of tensors is the ultimate result of this section. The reason
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for constructing all of this machinery it that tensor-valued functions of spacetime

constitute the classical �elds which are found in physics.1

The simplest kind of �eld is a scalar (rank 0 tensor) which merely assigns a number

to each point in the space, e.g., f(x). An important class of scalar functions are the

coordinate functions. Each set of n coordinate functions is called a coordinate system

and will be indexed by Greek letters, e.g., x�, where � 2 f0; 1; 2; : : : ; n � 1g. In

general, specifying a value for each of the n functions in a coordinate system uniquely

speci�es a point on the manifold which in turn speci�es the values of the coordinate

functions in any other system. Hence there is a functional relationship between one

set of coordinates and any other, and any one of them can be taken as a domain of

independent coordinate variables on the manifold.

The relationships between two coordinate systems (unprimed and primed) will

now be used to develop the di�erential properties of the manifold. Two complemen-

tary types of vector (rank 1 tensor) �elds on the manifold can in turn be expressed

in terms of directional derivatives and coordinate di�erentials respectively. This ap-

proach to representing physical quantities illustrates the sense in which the �elds of

physics are rooted in the geometry of spacetime. However, it should be stressed at

this point that the �elds that ultimately make their way into the fundamental laws

of physics should not depend on a particular coordinate system in order to comply

with the principle of relativity.

A directional derivative is de�ned by its action on scalar functions, but it can

be written as an operator without explicitly specifying a function. Thus the chain

rule for partial derivatives with respect to coordinate variables (with the others held

constant) can be written

@�0 =
@x�

@x�
0
@� and @� =

@x�
0

@x�
@�0; (D.1)

where by the summation convention, there is an implicit sum over any index that

occurs twice in the same term (unless otherwise noted). An index that occurs once

1The exception, spinor �elds, will not be covered here.
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in every term in a formula is a free index, one that occurs twice and is summed over

in a term is a dummy index (because any other unused letter could take its place),

and one that occurs more than twice in a term is probably a mistake.

Similarly, the total di�erentials of a coordinate in one set with respect to di�er-

entials of coordinates in the other set can be written

dx�
0

=
@x�

0

@x�
dx� and dx� =

@x�

@x�
0
dx�

0

: (D.2)

The above formulas must be consistent under the reverse transformation, so @x�
0

@x�

and @x�

@x�
0 must be inverses of each other:

@x�
0

@x�
@x�

@x�
0
= ���; and

@x�

@x�
0

@x�
0

@x�
= ��

0

�0; (D.3)

where ��� is 1 if � = � and 0 otherwise. This so-called Kronecker delta is an example

of a rank 2 tensor and is sometimes called the substitution tensor because its presence

in a term has the e�ect of replacing a dummy index for the other index. Also note

that the summation convention implies ��� = �
�0

�0 = n. The �'s can be represented

as an identity matrix in any coordinate system in any number of dimensions. For

example,

[���] � [��
0

�0] �
2
64 1 0

0 1

3
75 (D.4)

in two dimensions, where \�" denotes a numerical equivalence.

The above relationships can be used to de�ne vector quantities on the manifold

that have an existence which is independent of any coordinate system. For example,

the essence of \a quantity with magnitude and direction" can be rigorously captured

with directional derivatives. An arbitrary �eld of directional derivatives can be writ-

ten as a linear combination of coordinate derivatives, v = v�@�, where the v
�'s can

be any set of n scalar functions on the manifold. In order for v to be a quantity

which doesn't refer to a particular coordinate system, it must also be the case that

v can be written as v = v�
0

@�0 for some other set of functions, v�
0

. However, from
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equation (D.1) we have

v�@� = v�
@x�

0

@x�
@�0 and v�

0

@�0 = v�
0 @x�

@x�
0
@�: (D.5)

Therefore, the sets of component functions of v must transform according to

v�
0

=
@x�

0

@x�
v�; and v� =

@x�

@x�
0
v�

0

: (D.6)

A quantity that obeys this transformation law is called a contravariant vector.

The other type of vector whose existence is independent of any coordinate system

is called a covariant vector (also called a covector or a 1-form). Such a vector can be

thought of as \a quantity with slope and orientation" and its essence can be rigorously

captured with di�erentials. An arbitrary �eld of 1-forms can be written as a linear

combination of coordinate di�erentials, ! = !�dx
�, where the !�'s can be any set

of n scalar functions on the manifold. In order for ! to be a quantity which doesn't

refer to a particular coordinate system, it must also be the case that ! can be written

as ! = !�0dx
�0 for some other set of functions, !�0 . However, from equation (D.2) we

have

!�dx
� = !�

@x�

@x�
0
dx�

0

; and !�0dx
�0 = !�0

@x�
0

@x�
dx�: (D.7)

Therefore, the sets of component functions of ! must transform according to

!�0 =
@x�

@x�
0
!�; and !� =

@x�
0

@x�
!�0 : (D.8)

Note the di�erences and similarities between the transformation laws for @�, dx
�,

v�, and !� given by equations (D.1), (D.2), (D.6), and (D.8) respectively. In partic-

ular, the transformation law is entirely determined by the name and position of the

index: an upper index is always summed against a lower index and vice versa. The

name of the free index determines the index on the new component, and it is in the

same position as on the original component (contravariant components transform to

contravariant components, etc.). Furthermore, the primes are written on the indices

because it determines in which coordinate system the components are taken while
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the actual vector being represented is always the same, independent of coordinate

system.

These transformation laws can be extended to �elds of higher rank tensors|

that is, multicomponent vectors which \have more indices." The number of upper

and lower indices indicates the type of the tensor, sometimes written (nu; nl). For

example, the components of a type (1; 2) tensor T transform according to

T
�0

�0�0 =
@x�

@x�
0

@x�

@x�
0

@x�
0

@x�
T �
�� (D.9)

The fact that a multicomponent object transforms according to this law is what makes

it a tensor, not merely that it has a certain number of components.

The components of a tensor are taken with respect to a basis made of a ten-

sor product of basis vectors. For example, T �
�� is the component of the tensor T in

the coordinate basis, @� 
 dx� 
 dx� . The tensor product is associative, distributive

over addition, but not commutative, so the indices must be understood to have some

particular order which must be maintained. Summing over all basis tensors gives

T = T �
�� @� 
 dx� 
 dx� . This basis decomposition, along with the transformation

laws above, shows that the tensor is a geometrical object with an existence inde-

pendent of any coordinate system. However, in physics, one usually only deals with

the components directly without reference to the basis tensors and their underlying

origin in the di�erential structure of a manifold. Once an order for the indices is

understood, one can build up higher rank tensors componentwise by taking ordinary

products of components of lower rank tensors. For example, it can be veri�ed that

T �
��v

�!� are components of a type (2; 3) tensor.

In addition to the tensor or outer product of tensors it is possible to de�ne an inner

product of a contravariant and a covariant vector through the relation h@�; dx�i � ���.

It follows from linearity of the inner product that hv;!i = v�!�. This product is

independent of coordinates as is shown by the following calculation:

v�!� = v����!� = v�
@x�

0

@x�
@x�

@x�
0
!� = v�

0

!�0 : (D.10)
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The operation of equating an upper and lower index in a term and summing is known

as contraction, and it maps a type (nu; nl) tensor to a type (nu � 1; nl � 1) tensor.

It is often useful to think of tensors as multilinear mappings on vectors to lower

rank tensors via the operation of contraction with the vector components. As shown

above, contraction is a coordinate invariant operation because the contravariant and

covariant components transform inversely to each other. Note, however, that we don't

yet have a coordinate invariant way of taking an inner product of two vectors of the

same type.

As a �nal topic of basic di�erential geometry, we introduce the notion of integra-

tion of di�erential forms. A type (0; p) tensor (p � n) that is totally antisymmetric in

all its indices is called an p-form (also called a di�erential form or simply a form). An

example in the usual coordinate basis for p = n = 2 can be represented as a matrix:

[���] �
2
64 0 1

�1 0

3
75 : (D.11)

Di�erential forms are important because they can be used to de�ne a coordinate

independent notion of integration on p-dimensional (sub)manifolds. In the current

example, Z
f� =

Z
f(x) ���dx

� 
 dx� �
Z
f(x) dx0dx1; (D.12)

where f(x) is any scalar function. The antisymmetry along with the transformation

law (D.2) guarantees that, under a coordinate transformation, one recovers the stan-

dard Jacobian formula for changing variables in integration. Therefore, the integral

of a form is independent of coordinate system, just as the form itself.

Throughout this discussion, nothing has been said about the \shape" of the man-

ifold. Roughly speaking, the manifold can be smoothly deformed and nothing that

has been presented so far is a�ected. This will not be the case in the next section

where the manifold will be made \rigid" with the speci�cation of distance between

the points of the manifold.
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D.1.2 Metric Geometry

Up to this point, our space has had no notion of distance, angles, volume, or any

of the other things that one usually associates with geometry. All of these things

are obtained by specifying a preferred metric, which is an arbitrary nondegenerate,

symmetric, type (0; 2) tensor �eld, denoted by g�� .

The primary e�ect of a metric is to determine the squared interval between

\nearby" points on the manifold:

ds2 = g��dx
�dx� : (D.13)

The interval can be thought of as an in�nitesimal distance or proper time, depending

on the application. The net interval between arbitrary points depends on the path

taken between them and is the integral of the in�nitesimal intervals. Thus, the total

interval along a parameterized curve, x�(�), is given by

s =
Z
ds =

Z s
g��

dx�

d�

dx�

d�
d�: (D.14)

An equation for the shortest distance (or maximum proper time) between any two

points in spacetime can be found by taking the variation of s with respect to x�(�)

and setting it to zero:

�s

�x�
= 0 ) d2x�

d�2
+ ����

dx�

d�

dx�

d�
= 0: (D.15)

Solutions to this geodesic equation are called geodesics, and they generalize the con-

cept of straight lines to arbitrary manifolds. The ���� are called theChristo�el symbols,

and they are given by the general formula

���� =
1
2
g��(g��;� + g��;� � g��;�); (D.16)

where an index following a comma denotes the corresponding partial derivative, (e.g.,

f;� = @�f), and g�� is de�ned as the unique matrix inverse, g��g
�� = ���. However,
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it is often easier to compute the components of the Christo�el symbols directly by

variation of the argument of the square root in equation (D.14).

Despite appearances, the Christo�el symbols are are not the components of a

tensor because they don't obey the tensor transformation law exempli�ed by equa-

tion (D.9). Nor is the ordinary derivative of a vector a tensor because the derivative

does not commute with the transformation matrix:

@�0v
�0 =

@x�

@x�
0
@�
@x�

0

@x�
v� =

@x�

@x�
0

@x�
0

@x�
@�v

� +
@x�

@x�
0

@2x�
0

@x�@x�
v�: (D.17)

However, these elements can be used together to de�ne a covariant derivative which

does yield a tensor. The de�nition of a derivative requires a taking a di�erence

between �elds at di�erent points, and ���� serves as a connection, which tells how

tensors at di�erent points are to be transported to the same point where they can be

subtracted. In any event, the covariant derivative of a contravariant vector is de�ned

by

(rv)�� � r�v
� � @�v

� + ����v
�: (D.18)

Similarly, the covariant derivative of a covariant vector is de�ned by

(r!)�� � r�!� � @�!� � ����!�: (D.19)

The covariant derivative can be extended to higher rank tensors by adding (or sub-

tracting) analogous terms for each index. By direct substitution, a calculation such as

equation (D.17) shows that the nontensorial terms cancel under a coordinate trans-

formation.

The metric can also be used to de�ne an inner product on vectors of the same

type. For contravariant vectors, we have (u;v) � g��u
�v�, and for covariant vectors,

(�;!) � g����!� . In direct analogy with the ordinary dot product, this inner product

can be used to de�ne the magnitude of a vector as well as the angle between two

vectors: (v;v) = jvj2 and (u;v) = jujjvj cos �, etc.
The metric also gives a natural isomorphism between vectors and forms; i.e.,

199



a linear bijection that doesn't depend on the choice of a basis, but rather on the

invariant structure imposed by the metric. In particular, in order for the two kinds

of inner product de�ned above (contraction and dot) to agree, it must be the case

that v� = g��v
� and !� = g��!� . The operation of contraction with the metric to

convert from covariant to contravariant components and vice versa by is referred to

as raising and lowering indices respectively. In an entirely analogous manner, one

can also use the metric to raise and lower indices on higher rank tensors, but care

must be exercised to maintain a consistent ordering of the indices.

Finally, since we now have de�nite notions of distance and angles, it seems only

natural that there should be a unique notion of volume, and indeed this is the case.

Speci�cally, the determinant of the metric (when viewed as a matrix), g � det(g��) =

1=det(g��), gives a de�nite scale to di�erential forms. By considering an orthonormal

set of 1-forms, it can be shown that the magnitude of each component of the preferred

volume form in the coordinate basis must be
q
jgj.2 For example, in two dimensions

the volume form, "��, is given by

["�� ] �
q
jgj [���] �

q
jgj

2
64 0 1

�1 0

3
75 : (D.20)

By raising the indices, one obtains the contravariant version:

["��] � [g��g��"��] � sgn(g)q
jgj

2
64 0 1

�1 0

3
75 ; (D.21)

where sgn(g) is the sign of the determinant. Also note that "��"�� = 2! sgn(g).

D.1.3 Minkowski Space

This section specializes the discussion above to the case of ordinary two-dimensional

Minkowski space. It contains the basic de�nitions needed to understand the mani-

fest covariance of the relativistic di�usion law under Lorentz transformations. The

2The choice of sign is arbitrary, but a positive sign will denote a right-handed coordinate system.
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notation will also be used in deriving the solution in section D.3.

Two coordinate systems are particularly useful for the description and analysis of

this model, and the formulas developed above allow us to transform back and forth.

The unprimed coordinates are the usual space and time coordinates, x� = (x0; x1) �
(x; t), and the primed coordinates are the so-called light cone-coordinates, x�

0

=

(x0
0

; x1
0

) � (x+; x�), where x� � 1p
2
(t � x). The inverse coordinate transformation

looks similar: t = 1p
2
(x+ + x�), and x = 1p

2
(x+ � x�).

In cases such as this where the coordinate transformation is linear, the component

transformation matrix is constant throughout spacetime:

"
@x�

0

@x�

#
�
"
@x�

@x�
0

#
� 1p

2

2
64 1 1

1 �1

3
75 : (D.22)

Thus, @� = 1p
2
(@t� @x), @t =

1p
2
(@+ + @�), and @x =

1p
2
(@+ � @�). Furthermore, the

old notion of a displacement being a vector is also meaningful, and the coordinate

functions are related by the vector transformation law:

x�
0

=
@x�

0

@x�
x�; and x� =

@x�

@x�
0
x�

0

: (D.23)

In the unprimed coordinate system, the metric can be written as

[g��] � [g�� ] �
2
64 1 0

0 �1

3
75 : (D.24)

Using this metric to raise and lower indices of a vector, v, gives v0 = v0, and v1 = �v1.
Using the above transformation matrix, the metric in the light-cone coordinates can

be written

[g�0�0 ] � [g�
0�0 ] =

2
64 0 1

1 0

3
75 : (D.25)

The rule for raising and lowering indices in the new system is then: v� = v�. Of

course, this is consistent with raising and lowering indices before transforming coor-

dinates.
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The metric is important for the relativistic di�usion law because it enters into

the expressions for the covariant derivative and the preferred volume form. Since the

metric is constant in both coordinate systems, ���� � �
�0

�0�0 � 0, and the covariant

derivative reduces to an ordinary derivative: r� = @� and r�0 = @�0 . Since g = �1,
the preferred volume forms can be written

["�� ] � [�"�0�0 ] �
2
64 0 1

�1 0

3
75 : (D.26)

The volume form in the primed system di�ers by a minus sign because the light-cone

coordinate system has the opposite orientation than the original coordinate system

(i.e., the new coordinate axes have been interchanged, not just rotated|see �g. (4-1)).

By raising the indices we �nd that

["�� ] � [�"�0�0 ] �
2
64 0 �1
1 0

3
75 (D.27)

where the sign di�erence from the last equation re
ects the sign of the determinant

of the metric.

The subject of this appendix is the relativistic di�usion law, so here we reproduce

the central equations (4.7){(4.10) for convenience:

@�J
� = 0 (D.28)

(@� + ��)"
��J� = 0 (D.29)

@��
� = 0 (D.30)

@�"
���� = 0: (D.31)

This form of the equations is valid in any coordinate system that is linearly related

to the standard spacetime coordinates because the transformation matrix is a con-

stant. In particular, the coordinate systems which correspond to physically meaning-

ful frames of reference are related by Lorentz transformations. Hence the equations
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written in this form are manifestly covariant under Lorentz transformations, and the

di�usion law obeys the principle of relativity.

D.2 Conformal Invariance

Equations (D.28){(D.31) can be rewritten in terms of completely general tensors by

replacing ordinary partial derivatives with covariant derivatives so that they are valid

in any coordinate system:

r�J
� = 0 (D.32)

(r� + ��)"
��J� = 0 (D.33)

r��
� = 0 (D.34)

r�"
���� = 0: (D.35)

This form of the equations is also the proper generalization for curved spacetimes

and is appropriate for studying their properties under general coordinate and metric

transformations.

D.2.1 Conformal Transformations

A conformal transformation is a change of metric resulting from a rescaling of the

original: ĝ��(x) = 
2(x)g��(x). Such a transformation may or may not be derived

from a mapping of the space to itself (as in the next section), but for now, 
2(x)

is just an arbitrary, positive scalar �eld. This section shows that equations (D.32){

(D.35) are conformally invariant, which means that under a conformal transformation

and a suitable corresponding change in the tensor �elds, the equations take on the

same form as before. Conformal invariance is of substantial interest in �eld theory

and implies that the �eld is composed of massless particles (though the converse

not true). This is re
ected in the CA model since the particles always move at the

speed of light. While the existence of a maximum speed of propagation in all CA is

suggestive, the full mathematical consequences of this fact are unknown.
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A metric rescaling changes the covariant derivative, the volume form, and possibly

the �eld variables, so it is necessary to evaluate these with respect to the new metric:

�̂��� = 1
2
ĝ��(ĝ��;� + ĝ��;� � ĝ��;�)

= 1
2

�2g��(
2g��;� + 
2g��;� � 
2g��;�

+ 2
g��
;� + 2
g��
;� � 2
g��
;�)

= ���� + 
�1(���
;� + ���
;� � g��g��
;�): (D.36)

Contraction gives

�̂��� = ���� + 
�1(n
;� + 
;� �
;�)

= ���� + n
�1
;� : (D.37)

One must allow for the possibility that the �elds have a nonzero conformal weight,

s, so the scaled �eld is de�ned as Ĵ� = 
sJ�, and the left hand side of equation (D.32)

becomes

r̂�Ĵ
� = r̂�


sJ�

= 
s@�Ĵ
� + 
s�̂���J

� + s
s�1
;�J
�

= 
sr�J
� + n
s�1
;�J

� + s
s�1
;�J
�

= 
sr�J
� if s = �n (= �2 in 2d)

= 0: (D.38)

Therefore, r�J
� = 0 is conformally invariant if Ĵ� = 
�2J�. Similarly, r��

� = 0 is

conformally invariant if �̂� = 
�2��. In other words, the conformal weight of J� and

�� must be s = �2.
Equations (D.32) and (D.35) involve the covariant components of the �elds, and

the index must be lowered with the new metric:

�̂� = ĝ�� �̂
� = 
2g��


�2�� = �� : (D.39)
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Therefore, �� (and likewise, J�) has a conformal weight of zero. In general, lowering

an index increases the conformal weight by two and vice-versa.

Equations (D.32) and (D.35) also involve the volume form, "�� , which may have

some nonzero conformal weight, s: "̂�� = 
s"�� , and by raising the indices, "̂�� =


s�4"��. Since "̂�� "̂�� = 2! sgn(g) is the same constant for any metric, one obtains

"̂�� "̂�� = 
s�4"��
s"�� = 
2s�4"��"�� = "��"�� ) s = 2: (D.40)

Hence, the volume changes as "̂�� = 
2"�� and "̂�� = 
�2"��, which is intuitively

clear since the e�ect of the metric rescaling is to increase all lengths by a factor of 
.

The volume form also appears inside a derivative; however,

0 = r�"
��"�� = 2"��r�"��

) r�"�� = 0; (D.41)

because all the relevant terms in "��r�"�� are the same and "�� is nonzero. Raising

the indices gives r�"
�� = 0. Therefore, the volume form can be moved through the

covariant derivative.

The right hand side of equation (D.35) then becomes

r̂�"̂
�� �̂� = r̂�"̂

���� = "̂��r̂���

= "̂��(@��� + �̂�����) = "̂��@���

= "̂��(@��� + ������) = "̂��r���

= 
�2"��r��� = 
�2r�"
����

= 0; (D.42)

where the contraction of the volume form with the connection vanishes by antisym-

metry. Therefore, r�"
���� = 0 is conformally invariant. Similarly,

(r̂� + �̂�)"̂
��Ĵ� = (r̂� + ��)"̂

��J� = 
�2(r� + ��)"
��J� = 0; (D.43)
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so (r� + ��)"
��J� = 0 is also conformally invariant. Thus, it has been shown that

the entire system of equations, (D.32){(D.35), is conformally invariant.

The system of equations can also be written with a compact, index-free (and there-

fore coordinate-invariant) notation3 which sheds some light on the issue of conformal

invariance. The covariant components of the �elds, J� and ��, are the components of

1-forms, J and �, so equations (D.32) and (D.35) can be expressed purely in terms

of exterior derivatives and products:

"��r��� = 0 , r[���] = 0 , (d�)�� = 0 , d� = 0: (D.44)

Also,

"��(r� + ��)J� = 0 , r[�J�] + �[�J�] = 0 , dJ + � ^ J = 0: (D.45)

Since the exterior derivative, d, and the exterior product, ^, don't depend on the

metric, these equations are automatically conformally invariant.

On the other hand, equations (D.32) and (D.34) can be written as

r�J
� = 0 , �J = 0 (D.46)

r��
� = 0 , �� = 0: (D.47)

The � operator does depend on the metric, so these equations require a conformal

rescaling of the contravariant components of the �elds in order to be conformally

invariant.

D.2.2 The Conformal Group

The set of smooth mappings of a spacetime to itself that result in a rescaling of

the metric is called the conformal group, and it also happens to be the group that

preserves the causal structure de�ned by the light cones (i.e., it maps null vectors to

3See [16] for de�nitions of the operators d, ^, and �.
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null vectors). The picture of mapping the space to itself is the active point of view,

but the conformal group can also be viewed as a change of coordinates, which is the

passive point of view. The later viewpoint, which is adopted here, is perhaps more

physical because the space remains the same: only the description of the points in

the space changes.

The purpose of this section is to show that the original equations (D.28){(D.31)

are invariant under the conformal group. In addition to a change of coordinates, the

�elds may need to be rescaled as before. In n � 2 spacetime dimensions, the conformal

group has (n + 1)(n + 2)=2 dimensions, but for n = 2, it has an in�nite number of

dimensions. The later can be seen by imagining an arbitrary local scaling between

two sets of light-cone coordinates, x� = (x+; x�) and x�
0

= (x+
0

; x�
0

), which can

be written as x�
0

= f�(x�) for any strictly monotone functions f�. This enormous

freedom in two dimensions is related to the fact that the light cone consists of two

disconnected branches.

The transformation matrix in this case consists of two elements which will be

abbreviated as

Df� � d f�

dx�
(x�) =

@x�
0

@x�
: (D.48)

Then @� = (Df�)@�0, and the metric transformation is simply

[g�0�0 ] =
1

(Df+)(Df�)
[g��] =

1

(Df+)(Df�)

2
64 0 1

1 0

3
75 : (D.49)

The metric in the new coordinate system can be rescaled, ĝ�0�0 = 
2g�0�0 where


2 � (Df+)(Df�), to give the original metric:

[ĝ�0�0 ] = (Df+)(Df�)[g�0�0 ] = [g�� ] =

2
64 0 1

1 0

3
75 : (D.50)

The �elds scale as in the previous section: Ĵ�0 = 
�2J�0, �̂�
0

= 
�2��
0

, and �̂�0 = ��0.
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To see how all of this helps, consider the following sequence of transformations:

@�J
� = 0 (given) (D.51)

) r�J
� = 0 (constant g�� ) ���� = 0) (D.52)

) r�0J
�0 = 0 (by tensor transformation) (D.53)

) r̂�0Ĵ
�0 = 0 (by conformal invariance) (D.54)

) @�0Ĵ
�0 = 0 (constant ĝ�0�0 ) �̂�

0

�0�0 = 0). (D.55)

Therefore, by rescaling the �elds, one can o�set the e�ect of a transformation of the

conformal group.

This can be shown more explicitly in light-cone coordinates as follows:

J�0 =
@x�

0

@x�
J� ) J� =

J�
0

(Df�)
=


2Ĵ�
0

(Df�)
= (Df�)Ĵ�

0

: (D.56)

Similarly, �� = (Df�)�̂�
0

and �� = (Df�)��0 = (Df�)�̂�0. Equations (D.28){

(D.31) (i.e., without covariant derivatives) also apply in the original light-cone coor-

dinates as de�ned in section D.1.3 because the metric is constant and the connection

vanishes. Using the fact that "��J� � (�J+; J�) gives:

@+J
+ + @�J

� = 0 (D.57)

@+J
+ � @�J

� + �+J
+ � ��J

� = 0 (D.58)

@+�
+ + @��

� = 0 (D.59)

@+�
+ � @��

� = 0: (D.60)

Substitution of the scaled and transformed �elds gives

(Df+)@+0(Df
�)Ĵ+0 + (Df�)@�0(Df

+)Ĵ�
0

= 0 (D.61)

(Df+)@+0(Df
�)Ĵ+0 � (Df�)@�0(Df

+)Ĵ�
0

(D.62)

+ (Df+)�̂+0(Df
�)Ĵ+0 � (Df�)�̂�0(Df

+)Ĵ�
0

= 0 (D.63)

(Df+)@+0(Df
�)�̂+0 + (Df�)@�0(Df

+)�̂�
0

= 0 (D.64)
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(Df+)@+0(Df
�)�̂+0 � (Df�)@�0(Df

+)�̂�
0

= 0; (D.65)

which become (since Df� doesn't depend on x�
0

)


2(@+0Ĵ
+0 + @�0Ĵ

�0) = 0 (D.66)


2(@+0Ĵ
+0 � @�0 Ĵ

�0 + �̂+0Ĵ
+0 � �̂�0Ĵ

�0) = 0 (D.67)


2(@+0�̂
+0 + @�0�̂

�0) = 0 (D.68)


2(@+0 �̂
+0 � @�0�̂

�0) = 0: (D.69)

Adding and subtracting the last two equations gives @+0�̂
+0 = 0 and @+0�

+ = 0 which

can be integrated immediately to give arbitrary functions �̂+0 = �̂+0(x�
0

) and �̂�
0

=

�̂�
0

(x+
0

). The background �eld, �̂�0 , can be transformed to a constant by choosing

coordinates so that �� = (Df�)�0. This makes �̂�0 = �0 (as well as �̂
�0 = �0). The

equation for the transformed and scaled currents then become

@+0Ĵ
+0 + @�0Ĵ

�0 = 0 (D.70)

@+0 Ĵ
+0 � @�0Ĵ

�0 + �0(Ĵ
+0 � Ĵ�

0

) = 0: (D.71)

As a �nal remark, note that it is completely clear from �gure 4-1 that the process

described by the original CA is invariant under arbitrary rescaling of the light-cone

coordinates. In other words, the visual representation a�orded by CA allows one to

bypass all of the above formal development in order to draw signi�cant conclusions

about the properties of the model. This illustrates the latent power of CA as a

mathematical framework for describing the essential aspects of physical phenomena.

D.3 Analytic Solution

This section shows how to derive the complete solution to equations (D.28){(D.31).

Given the symmetries outlined above, it makes sense to do the analysis in light-

cone coordinates which results in the equivalent equations (D.57){(D.60). It is clear
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from the above discussion that (D.59) and (D.60) can be solved completely to give

�+ = �+(x�) and �� = ��(x+); furthermore, without loss of generality, they can be

rescaled to a constant, �0.

Adding and subtracting equations (D.57) and (D.58) with �� = �0 gives

2@+J
+ + �0(J

+ � J�) = 0 (D.72)

2@�J
� + �0(J

� � J+) = 0: (D.73)

Since �0 is related to the mean free path by �0 =
p
2=�, it is convenient to rescale

the problem by introducing dimensionless coordinates z� = x�=
p
2�. This gives

�
p
2 @� = @z�. Using the fact that J� is proportional to �� (in fact, J� =

p
2��),

the above equations can be expressed in terms of the densities as

@z+�
+ + �+ � �� = 0 (D.74)

@z��
� + �� � �+ = 0: (D.75)

These also could have been written down immediately from the original transport

equations, (4.1) and (4.2).

The general solution can be written in terms of Green's functions as a superposi-

tion of solutions, each one of which starts from an isolated pulse moving right or left

from a given position. Since the problem is invariant under translation and parity, it

su�ces to �nd the solution starting from a single pulse at the origin moving to the

right. The Green's function for the right and left moving particles will be denoted by

%�(x; t). The initial conditions are therefore

%+(x; t = 0) = �(x) = �(t� x) (D.76)

%�(x; t = 0) = 0: (D.77)

From physical considerations, it is clear that the �elds vanish outside the light cone.

The boundaries can therefore be rotated to light-cone coordinates to give the condi-
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~f (s) f(z)

s ~f (s)� f(0) d
dz
f(z)

~f(s+ �) e��zf(z)

1 �(z)

1
s+�

e��z

e�=s

s
I0(2

p
�z)

e�=s � 1
q

�
z
I1(2

p
�z)

Table D.1: A table of Laplace transforms used in the solution of the relativistic

di�usion equation.

tions

%+(z+ = 0; z�) = �(
p
2x�) = �(2�z�) =

1

2�
�(z�) (D.78)

%�(z+; z� = 0) = 0: (D.79)

Since the equations are linear and have constant coe�cients, they can be treated

with integral transforms. Furthermore, by using the Laplace transform, the initial

boundary values can be absorbed into the transformed equations. Accordingly, the

Laplace transform is de�ned by

~f(s) � Lff(z)g �
Z 1

0
f(z)e�szdz; (D.80)

where table D.1 gives a complete list of the transforms that are needed in this sec-

tion [17].

The equations are transformed term by term, and each term can be transformed

one variable at a time. For example, applying the transform parallel to the z� axis

gives

~%�(z+; s�) =
Z 1

0
%�(z+; z�)e�s�z

�

dz�; (D.81)
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and transforming this intermediate function parallel to the z+ axis gives

~~%
�
(s+; s�) =

Z 1

0
~%�(z+; s�)e

�s+z+dz+

=
Z 1

0

Z 1

0
%�(z+; z�) e�s+z

+�s�z�dz+dz�: (D.82)

The nontrivial boundary condition on %+ enters through the @z+ derivative term which

transforms as

L�L+f@z+%+g = L�fs�~%+(s+; z�)� %+(z+ = 0; z�)g
= s�~~%

+
(s+; s�)�

Z 1

0

1

2�
�(z�) e�s�z

�

dz�

= s�~~%
+
(s+; s�)� 1

2�
: (D.83)

Thus, the fully transformed equations are

s+~~%
+
+ ~~%

+ � ~~%
�

=
1

2�
(D.84)

s�~~%
�
+ ~~%

� � ~~%
+

= 0: (D.85)

Solving these algebraic equations for ~~%
+
and ~~%

�
gives

~~%
+

=
1

2�
� 1

s+ + s�
s�+1

(D.86)

~~%
�

=
1

2�
� 1

s� + 1
� 1

s+ + s�
s�+1

: (D.87)

The inverse transforms are also done one variable at a time. Inverting with respect

to s+ gives

~%+ =
1

2�
e
� s�z

+

s�+1 =
e�z

+

2�
�
"
e

z+

s�+1 � 1 + 1

#
(D.88)

~%� =
1

2�
� 1

s� + 1
e
� s�z

+

s�+1 =
e�z

+

2�
� e

z+

s�+1

s� + 1
: (D.89)

Inverting with respect to s� (with an extra factor of e�z
�

from the shift theorem
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applied to s� + 1) gives
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Using the fact that x+x� = (t2 � x2)=2 as well as x+ =
p
2 t when t = x gives the

fundamental result:

%+(x; t) =
e�t=�
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+ e�t=��(t� x) (D.92)

%�(x; t) =
e�t=�

2�
I0

 p
t2 � x2

�

!
: (D.93)

These can be added and subtracted to give �(x; t) and j(x; t) respectively.

The kernel for a pulse initially moving to the left can be found by interchanging

x$�x (including %+ $ %�) in the solutions above. The solution for arbitrary initial

conditions can then be written as a convolution:

�+(x; t) =
Z h

�+(x0; 0)%+(x� x0; t) + ��(x0; 0)%�(x0 � x; t)
i
dx0 (D.94)

��(x; t) =
Z h

�+(x0; 0)%�(x� x0; t) + ��(x0; 0)%+(x0 � x; t)
i
dx0: (D.95)

If necessary, the rescaling given in the last section can be applied to give the solution

for arbitrary �+(x+) and ��(x�). In this case, the complete solution will no longer

be a simple convolution; rather, the Green's functions in the above integral should

instead be written as %�(x; t;x0) since they will not be translation invariant but will

vary from point to point.
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Appendix E

Basic Polymer Scaling Laws

This appendix gives a simple, intuitive derivation of the basic polymer scaling laws

seen in chapter 5. It follows in the spirit of the highly physical arguments given

by deGennes [21]. While there has been a great deal of sophisticated work done on

polymer statistics including �eld-theoretic and renormalization group calculations,

no great e�ort is made here to be physically or mathematically rigorous. Instead, it

is included for completeness and because it reveals a considerable amount about the

physics of complex systems for such a small calculation. It is also notable for purposes

of justi�cation of physical modeling with CA, in that such universal phenomena can

arise out of an abstract model in discrete space and time.

The goal is to obtain a measure of the characteristic radius R of an isolated

polymer and the associated relaxation time � . We are primarily interested in their

dependence on the degree of polymerization N and the dimensionality d, although

they also depend on the bond length a (or lattice spacing) and on the e�ective ex-

cluded volume of a monomer v. In particular, all macroscopic quantities grow as a

power of N (which depends on d) because the system displays a self-similarity with

increasing polymer length. In the present case, this scaling requires that the polymer

is in a good solvent and feels only short-ranged interactions, i.e., it doesn't stick to

itself and is not charged.

In what follows, the symbol \�=" will be used for approximations where numerical

factors may be omitted. Furthermore, the symbol \�" will be used when dimensional
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factors have also been dropped in order to simplify the relationships and to emphasize

the scaling dependence for large N . Finally, the expected values of all macroscopic

lengths (end-to-end distance, radius of gyration, Flory radius, etc.) are proportional,

so any of them can be denoted simply by R.

E.1 Radius of Gyration

The scaling law for the characteristic radius of a polymer in a dilute solution with a

good solvent was originally given by Flory [29]. The nontrivial behavior results from

a competition between entropy and repulsion among the monomers. On one hand,

the polymer would like to contract for entropic reasons to become an ideal random

walk (also called a Gaussian chain). On the other hand, the chain cannot collapse

that far because the monomers would start to overlap. The strategy of the calculation

then, is to minimize the total free energy consisting of a sum of contributions from

statistical and repulsive forces.

The elastic energy of an ideal polymer is determined by the number of possible

random walks between its end points. The probability of a random walk with steps

of length a ending at a position R relative to its beginning is a Gaussian distribution

with a standard deviation given by � �=
p
N a. The number of random walks out to

a radius R is therefore proportional to


 �= Rd�1e�R
2=Na2: (E.1)

With the temperature T given in energy units, this leads to a free energy of

Fel = E � TS = �T ln
 �= TR2

Na2
� (d� 1)T lnR � R2

N
� lnR; (E.2)

where all polymer con�gurations have zero energy.

The energy due to repulsion of the monomers can be estimated by counting the

number of monomer overlaps in a volume of Rd using a mean �eld approximation to

the local concentration, c �= N=Rd. The number of overlaps is therefore approximately
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cvN=2, where v is an e�ective excluded volume parameter which may depend on the

temperature, and the factor of two prevents double counting. The corresponding free

energy is then

Frep
�= 1

2
Tv(T )

N2

Rd
� N2

Rd
: (E.3)

A solvent is considered to be good when v > 0.

Neglecting the logarithmic contribution to the free energy for now gives the total

dependence on N and R:

F � R2

N
+
N2

Rd
: (E.4)

Minimizing this with respect to R at constant N gives

@F

@R
� R

N
� N2

Rd+1
� 0; (E.5)

or

R � N
3

d+2 � N� : (E.6)

Thus, the Flory exponent is given by

� � 3

d + 2
: (E.7)

This result is valid for 1 � d � 4 and is well veri�ed by simulations.

Discussion

Note that the exponent drops below the ideal value of 1=2 for d > 4. Clearly this is

unphysical, and we can see the origin of the problem if we include the logarithmic

term in the free energy:

F � R2

N
� lnR +

N2

Rd
: (E.8)

and
@F

@R
� R

N
� 1

R
� N2

Rd+1
� 0: (E.9)
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As N and R scale, the middle term becomes more signi�cant than the last one for

d > 4, and

R � N1=2: (E.10)

In other words, the overlap energy becomes negligible and the chains are ideal.

Another interesting point is that the overlap energy can also be viewed as entirely

entropic. Consider the reduction in the volume of con�guration space which results

from the excluded volume of the monomers. In the original calculation, the monomers

are allowed to reside anywhere within a volume of Rd. However, if the monomers are

added to the volume one by one, the volume available to the nth monomer is reduced

to Rd � nv. Thus, the volume of con�guration space is reduced by the factor


0



�= Rd(Rd � v)(Rd � 2v) � � � (Rd � (N � 1)v)

(Rd)N
(E.11)

= 1 �
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: (E.13)

The total free energy is then again

F = �T ln
0 = Fel � T ln

0



�= T

R2

Na2
+ Tv

N2

2Rd
: (E.14)

In the case of our lattice models, the monomers can never really overlap, and the

internal energy is constant. The free energy comes entirely from the entropy, and the

temperature doesn't matter: the model is \athermal."

Finally, note that nothing in the above argument assumes anything about the

connected topology of the polymers. In other words, the polymers could just as well be

\phantom chains" which are allowed to pass through each other while still maintaining

an excluded volume, and the scaling law would be the same. I have veri�ed this with

a simulation using a variation of the bond-
uctuation algorithm that uses bonds long

enough to allow the polymers to pass through each other. Furthermore, if the check

for excluded volume is eliminated, ideal chain behavior results.
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E.2 Rouse Relaxation Time

In general, dynamic scaling laws are not as universal and are not as well understood

as static scaling laws, but for our individual lattice polymers, the situation is greatly

simpli�ed by the absence of hydrodynamic e�ects, overlapping chains, shear, and the

like. We are interested in �nding the characteristic time � that it takes for the radius

of gyration to change, sometimes called the Rouse relaxation time.

The relaxation of the polymer chain proceeds by the relative di�usion of one part

of the chain with respect to another, e.g., the two halves of the chain. Fluctuations in

R are themselves proportional to R, so the relevant time scale will be proportional to

the time needed for the entire chain to di�use across its own width. Since a di�usion

length x is related to a di�usion time t by x2 � Dt, where D is the di�usion constant,

the relaxation time we wish to calculate is given by � � R2=D.

The di�usion constant for the polymer scales like D � 1=N which can be under-

stood as follows. In equilibrium, each monomer will move in a random direction some

average distance � per time step. These random displacements will add up as in a

random walk to give a total moment of � �=
p
N �. Hence, the center of mass of the

entire polymer moves an average distance �=N �= �=
p
N in one time step. After t

such steps, the center of mass moves
p
t times this amount. On the other hand, in t

time steps, the center of mass will di�use a distance proportional to
p
Dt. Comparing

these results gives D � 1=N .

Combining the above scaling laws gives the relaxation time

� � R2

D
� (N�)2

1=N
� N2�+1 (E.15)

where

2� + 1 =
d + 8

d + 2
: (E.16)

This result also compares favorably with the scaling of the relaxation times found in

the simulations.
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Appendix F

Di�erential Forms for Cellular

Automata

This appendix discusses how some of the machinery presented in appendix D might

be extended to CA. Eventually it should be possible to develop rigorous de�nitions of

the concepts introduced here and to recapitulate the �eld of analysis in these terms.

A lot of work is still left to be done as this is just a preliminary attempt at bringing

together a few mathematical ideas for capturing physical systems in CA.

F.1 Cellular Automata Representations of Physi-

cal Fields

The fundamental laws of physics do not depend on a particular coordinate system nor

on the choice of a basis. Similarly, the properties of a CA model of a physical �eld

should not depend on the way the model is coordinatized [81]. Thus, we would like

our CA �elds to follow a true geometry and not have them be a mere, discretized ap-

proximation of components in some special basis. The ultimate goal in this direction

is to pattern the analysis after a geometrical approach to physics [16].

Topology is also an important consideration in representing physical spaces and

�elds. The main properties from topology that we are concerned with are connected-
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ness and continuity. Roughly speaking, connectedness tells us how our spaces (both

spacetime lattices and sets of cell values) are woven together, and continuity tells us

that mappings between spaces respect this connectivity. One way to discretize any

manifold is to embed it in a high dimensional space which has been �nely tiled with

cells: the discretized manifold is then comprised of the cells which contain the original

manifold. For example, a sphere can be approximated by the 26 states given by the

1�1 surface cubes of a 3�3 cube. Connectivity is then de�ned by adjacency in the

original tiling. A con�guration of cell states is then de�ned to be continuous if the

values in adjacent cells di�er by at most one with respect to a cyclic ordering of the

states.

Many of the CA models of physical systems that one sees are composed of dis-

tinctly identi�able particles as in a lattice gas. A possible alternative to this particle

picture is a �eld picture where it may not possible to unambiguously de�ne a particle.

Both lattice gases and �elds have many degrees of freedom, but they di�er in their

kinematic descriptions and in degree of continuity they convey. In the �rst case po-

sition is a function of a particle index, and in the later case, amplitude is a function

of a position index. It would be interesting to trace the similarities and di�erences

between the particle and �eld pictures in CA and quantum �eld theory.

F.2 Scalars and One-Forms

The simplest �eld, and probably the easiest one to model, is a scalar, i.e., a real or

complex function that doesn't change under transformations of spacetime. This does

not involve any di�erential properties of space, so it is acceptable to use the values

in the cells directly. These values can be smeared for interpretation (\measured") by

convolution with a test function (averaged on a per cell basis). One might also want

to take the limit of a sequence of simulations by letting the lattice spacing and the

time step go to zero. Such limiting procedures, while not strictly necessary for the

CA rule per se, are useful for us to get a continuum approximation of the behavior

(if one exists).
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Another closely related way to do this is to use a unary representation as is done

for density in lattice gases. This means that one counts the number of \particles" in a

region and takes the mean (averaged on a per area basis). To�oli [85] gives a general

discussion of how to do this along with other ways in which CA might be viewed as

an alternative mathematical structure for physics. One thing to be stressed is that

averaging representations in this way automatically gives a kind of continuity|this

is good in general, but might be a disadvantage in certain situations.

A scalar �eld can also be represented by its contours. Contours are unbroken lines

(or hypersurfaces in higher dimensions) that do not cross and never end. They can

be represented in any way which has these properties and consistently speci�es which

side of each contour is higher. The magnitude of the �eld is inversely proportional

to the \distance" between contours. The implementation used in �g. 3-8 encodes the

potential very e�ciently by digitizing it and then only storing the lowest bit. In this

case, it is a harmonic potential, 1
2
m!2r2, in real space or alternatively, the classical

kinetic energy, p2=2m, in momentum space. The entire potential can be recovered

(up to a constant) by integration. Note that the overall slope of the potential is only

discernible by looking at a relatively large region. This illustrates the multiple-cell

character of this representation.

One-forms are geometrical quantities very much like vectors. Like vectors, they

are rigorously described in terms of in�nitesimals of space. Unlike vectors, they cannot

always be pictured as arrows. A better picture of a one-form is that of a separate

contour map at each point. If the maps �t together to make a complete contour

map, then the one-form �eld is said to be exact. In this case, it can be written as a

gradient, dV . The scalar �eld that it is the gradient of is a potential, V . Potentials

are important in physics because they create forces; in this case, Fidx
i = �dV .

The contour map method for one-forms could also be modi�ed in several ways.

First, they don't have to be made exact: the contours could be joined in such a way

that is globally incompatible with an underlying function, e.g., �gure F-1. Second,

they could, by �at, be weighted by one of the above representations of scalar functions.

Finally, they could be \added" by cycling between two or more con�gurations. These
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Figure F-1: Con�guration from a CA model of an oscillatory chemical reaction. The
cells assume eight di�erent values, and the values change gradually between neigh-
boring cells. The centers of the spirals are topological defects.

modi�cations taken together might form a suitable scheme for representing general

one-forms.

F.3 Integration

Di�erential forms constitute the basis of integration on manifolds (see section D.1.1),

while this section discusses the topic of integration in CA. The \windows" over which

the counts are taken play the role of di�erential forms. Similar ideas occur in the

�eld of image processing under the name count measures [95].

Consider a tiling of the Cartesian plane with simply connected domains. Each

square cell in the space is labeled with the number of the domain to which it belongs

or with zero if it is in the no-man's land between domains. The problem is to assign

to each domain an area and a circumference which closely approximate those of the

continuum limit as the size of the domains grows without bound. Furthermore, we

would like to make these assignments by integrating a local function of the cells.
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F.3.1 Area

The area of a numbered domain will simply be the count of the cells having that

number. As will be explained below, it sometimes makes sense to subtract 1=2 from

this value.

F.3.2 Winding Number

Winding number refers to any topological quantity which is given by the number of

complete turns made by mappings between a circle and a plane. An archetype to

keep in mind is provided by the function of a complex variable, w = f(z) = zn.

This maps the circle, z = rei�; 0 � � < 2�, around the point w = 0 a total of

n times. The terminology comes by analogy with the principle of the argument in

complex analysis, which gives the number of zeros minus the number of poles (of a

meromorphic function) surrounded by a contour. This number is the number of times

the image of the contour winds around the origin.

A winding number can be associated with a set of domains in two-dimensions

(see �g. F-2). It is the net number of turns made by following all the boundaries

(taken with the same orientation) of all the domains. The orientation of a boundary

is determined by whether the interior of a domain is to the right or to the left of the

boundary as it is traversed. This number is the number of domains minus the number

of holes in the domains and can be shown to be the same as the Euler number of the

set. See [36] for a more complete mathematical treatment of these topics.

In the discrete case (as for CA), the plane is tiled with cells. A connected group of

occupied cells (or tiles) constitutes a domain. If the sides of the tiles are straight, the

boundaries of the domains only turn where three or more cells meet at a point (the set

of all such points form the vertex set of the lattice dual to the original lattice). The

net number of turns is simply the sum of these angles (�cells=360�) taken over all the
cells of the dual lattice. Hence it is possible to de�ne a density whose integral gives

the winding number. This connection between a topological number and a di�erential

quantity is surprising and important.
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Figure F-2: Magnetic domains (in black) taken from an Ising model with 64K spins.
Each black cell can be thought of as a particle. The winding number is 1357, which is
somewhat less than the actual number of domains. The average number of particles
per domain is approximately 7.9.

The winding number density on the dual lattice is de�ned to be zero unless there

is a boundary passing though the vertex. In this case, it is 180� minus the angle

subtended by the cells constituting the interior of the cluster. This is just the angle

that the boundary bends through. On a square lattice, the winding number density

is assigned as shown in �g. F-3. Note that this quantity depends on correlations in a

group of cells, and that the groups overlap.

The winding number density can be taken as a many-body potential in a deter-

ministic Ising model. The potential can thus be used to bias the curvature of the

phase boundary in models of droplet growth. The winding number then provides an

estimate of the number of droplets. In the low-density limit, the domains become

simply connected (no holes), and the correspondence between winding number and

the number of domains becomes exact. In the case of droplet growth, it can be used

to �nd an estimate of the average droplet size as a function of time.

In order to �nd the average domain size, one needs to count the number of oc-

currences of cases (b), (c), and (e) in �g. F-3 as well as the total number of occupied
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(a) 0, +180_

Figure F-3: Contributions to the winding number from various boundary con�gura-

tions.

cells. Fig. F-2 has 7380 90� angles, 2310 �90� angles, 179 180� angles, and a total of

10,749 particles. The built-in counter in CAM-6 makes doing these counts over the

64K cells very fast. Finding and tracing out domains one by one requires a relatively

slow, complicated procedure, whereas �nding the average domain size on CAM-6 only

takes four steps or 1
15
of a second; hence, this is a practical method to use while doing

real-time simulations.

Another form of winding number is illustrated by �g. F-1. The winding number

of a closed loop of cells is the net number of times the cell states go through the cycle

as the loop is traversed in a counterclockwise direction. Any loop with a nonzero

winding number is said to contain a defect. The defects have a topological character

because the winding number of a loop cannot be changed by modifying the state of

one cell at a time while still maintaining continuity. The centers of the spirals are the

topological defects.

Analogous topological objects are important in several disciplines. The mathe-

matical study of these objects falls under �eld of algebraic topology. Their physical

relevance stems from the fact that, depending on the dynamical laws and the overall

topology of spacetime, most �elds can form \knots"|continuity and energy conserva-

tion forbid such con�gurations of �elds from being untied. Two physical instances of

topological charges which have been postulated to exist (but not de�nitely observed)

are magnetic monopoles and cosmic strings.
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F.3.3 Perimeter

The circumference presents more of a problem since the boundary has jagged edges

whose lengths persist in the continuum limit. The coarsest approximation would be to

just count the number of cells which have any nearest-neighbor boundary. However,

in the case of a diagonal (\staircase") boundary, this procedure would give an answer

which is too low by a factor of
p
2. A more detailed approximation would be to

count the number of cell boundaries themselves, but again, in the case of a diagonal

boundary, this would give an answer which is too high by a factor of
p
2.

Clearly, we would like to have something in between{in particular, the length of

a smooth curve which encloses a similar area and which is best approximated by

the jagged boundary. The approach taken here is a third approximation which takes

into account the number of next-nearest-neighbor (diagonal) boundaries as well. To

obtain the length as a linear function of the counts, they will have to be weighted

appropriately as shown below.

Assume we have counted the number of nearest- and next-nearest-neighbor bound-

aries for a given domain. Call these counts A and B respectively, and call the as-

sociated weights a and b. Thus, l = aA + bB. The weights will be determined by

looking at two representative cases: horizontal (or vertical) boundaries, and diagonal

boundaries.

A single cell in a horizontal boundary has one nearest-neighbor boundary and two

next-nearest-neighbor boundaries. The neighbor relation can be indicated by line

segments (or \bonds") which connect pairs of cells, one inside and one outside the

domain:

In this case, we want the contribution to the length to be unity, i.e., 1 = a + 2b.

Similarly, the basic unit along a diagonal has two nearest-neighbor boundaries and
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two next-nearest-neighbor boundaries:

In this case, we want the contribution to the length to be
p
2, i.e.,

p
2 = 2a + 2b.

Solving the two simultaneous equations gives a =
p
2� 1 and b = 1� 1=

p
2.

The boundary counts are local in the sense that they can be determined by looking

at 2x2 \windows" of cells. Consider a block of four such cells, where some of the

cells may be inside a given domain, and some may be outside. Each pair of cells

has the potential to be a boundary, either horizontal and vertical (nearest-neighbor

boundaries) or diagonal (next-nearest-neighbor boundaries). If the numbers in a pair

of cells di�er, then each of the respective numbered domains has a corresponding

boundary. By looking at all possible 2x2 blocks, we will encompass all pairs of cells.

In order to avoid double counting of bonds, we only look at four of the six possible

pairs within a block as shown:

Summing over all possible 2x2 blocks gives the total number of bonds of each

type. Furthermore, the counts for each domain can by tallied at the same time by

using the numbers in the cells as counter indices: each bond contributes to the two

domains de�ned by the two numbers in the pair of cells.

With the above weighting scheme, a single number, or measure, representing

length can be assigned to each possible boundary con�guration of a block. This

assignment of a number to each block can be thought of as a di�erential form for arc

length, and the integral of this form gives the total length of the boundary.

This is all well and good if all we have is one of the eight types of straight bound-

aries, but what about turning corners? We will see that the above procedure still
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gives very reasonable results. For example, the following shape

has 28 nearest-neighbor bonds and 44 next-nearest-neighbor bonds, and the formula

gives 16+6
p
2. This is exactly the same as the perimeter of its smoothed counterpart

de�ned by the surrounding solid line. The smoothing is done by cutting corners

de�ned by the midpoints of the sides of the cells which jut out or angle in.

In general, given any simply connected domain of cells, one can construct a new

domain by cutting o� convex corners and �lling in concave corners. The formula

applied to the original shape gives identically the perimeter of the new shape. This

can be proven inductively by building up the domains one square at a time along

nearest-neighbor boundaries, while maintaining simple connectivity.

This new shape will have a slightly smaller area than the original domain. This

is a topological correction due to the fact that the boundary forms a closed curve.

Since the boundary of the domain turns through a full 360�, there will be four more

corners cut o� than �lled in. The area of the four corners is exactly one half of a cell.

Hence the rule for �nding area given above could be modi�ed to subtract 1=2 from

the count of cells in the domain to make a more consistent scheme overall.

The current scheme does not give the right length for boundaries at arbitrary an-

gles. In fact, it will be proved below that no purely local cellular integration scheme

can yield the continuum limit. However, better and better approximations can be

developed by looking at larger and larger windows. The idea is that a better �t to

a smooth curve can be made with more information. The situation is analogous to

that in �nite-di�erence methods for integration (and di�erentiation), where better

approximations are given by looking at larger and larger templates. The topologi-
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cal correction mentioned above is similar to the end point corrections of numerical

integration.

In light of this limitation, we can make an interesting observation in regard to the

proper generalization of a circle. Note that all the sides of the new shape are always

at one of eight angles, and in the continuum limit, we can talk about all polygons

constructed with sides at these angles. Now, what is the largest area of such a polygon

one can have with a given perimeter? First, it must be convex, since the area can be

increased by folding out any concavities. Second, it must be an octagon, since after

eight (convex) 45 degree turns, the boundary must close on itself. Finally, all the

sides must be the same length because the perimeter could be reduced by shaving

area from a shorter side and putting it on a longer side. Thus, the shape with the

maximum area for a given perimeter (or equivalently, the minimum perimeter for a

given area) is a regular octagon. A dimensionless way to quantify deviations in the

boundary of a shape is to calculate the ratio of the perimeter squared to the area.

For a regular octagon, this ratio is 32(
p
2 � 1) �= 13:25, while in comparison, for a

circle, it is 4� �= 12:57. These are optimal values in the Cartesian and continuum

cases respectively.

Now we will prove a basic limitation of lattice approximations to continuummath-

ematics:

Theorem: No cellular integration scheme which looks at a �xed window of cells can

determine the length of smooth contours in all cases.

Proof: Let the integration window have a diameter d, and assume that we can recover

the continuum limit as the subdivision of cells becomes �ner and �ner. Consider a

straight line with a small slope, 0 < s < 1=d, extending over D � d cells in the

x direction. The length of this curve must approach D
p
1 + s2 in the continuum

limit. The cellular approximation to this curve will be a staircase with Ds unit steps

separated by at least d cells. For the 
at segments in between steps, the only plausible

value of the integral is the length of that segment. Now, the integration window will

encompass only one step at a time, and by linearity, each step will contribute some

constant, �, independent of s, above and beyond the horizontal length of the step.
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Hence the value of the integral must be D(1 + �s). As D ! 1, this will have the

right limit if and only if (1 + �s) =
p
1 + s2. However this is not identically true for

all s which contradicts our hypothesis.

About the best we can do is to make � = (
p
2 � 1)=d, so that the maximum

relative error is approximately (3
p
2� 2)=(2d2). This error is small, and of course, it

could be made arbitrarily small by increasing the size of the window without bound.

However, the above speci�cation of a cellular di�erential form does not provide an

unambiguous recipe for extending the procedure to larger windows.
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