A Safe, Efficient
Object Database Interface

Using Batched Futures

by
Phillip Lee Bogle

July 1994

[0 Massachusetts Institute of Technology 1994

This work was supported impart by the Advanced Research Projects
Agency ofthe Department of Defense, monitored by @i#ice of Naval
Research under contract N0O0014-91-J-418&] inpart by theNational
Science Foundation under grant CCR-8822158.

Massachusetts Institute of Technology
Laboratory of Computer Science

545 Technology Square
Cambridge, Massachusetts 02139

A Safe, Efficient Object Database Interface
Using Batched Futures

by

Phillip Lee Bogle

Abstract

For many systems such as operating systems and databases it is important to
run client code in a separate protectidomain so that itannot interfere
with the correct operation of theystem. Clients communicate with the
server bymakingcrossdomain callsput these arexpensive, often costing
substantiallymore thanrunningthe callitself. This thesis describes a new
mechanism calletbatched futures that transparently batctlesnt calls so
that domain crossings happen lesten, thussubstantially reducing the
cost. This thesis alspresents performance results showiingbenefits of
the mechanism owvarious benchmarks. Batched futuege described in a
context inwhich they are particularly applicable and usefulbe client
interface to Thor, a new object-oriented database. A secondary
contribution of this thesis ighe description ofthis safe, language-
independent client interface to Thor.

Thesis Supervisor: Barbara H. Liskov
Title: N.E.C. Professor of Software Science and Engineering

Keywords: futures, batching, protection domains, cross-domain calls,
remote procedure calls, RPC, distributed systems, context switch overhead

Acknowledgments

| am indebted to many people for their input and assistance in this thesis.

Barbara Liskov, my thesis supervisarho directed me in promising research direction,
made numerouselpful suggestions along the way, ahdlped mestructure myideas
clearly inthe form seen here. dowe her a debt of gratitudeot only for supervising this
thesisbut also for hefessons irhow to conduct and present researémy errorsexist in

spite of her.

My office-mates, Atul Adya and Quintodondervan, who were ready atnaoment’s
notice to discuss an idea, share tlosun research with me, or comment on one of the
innumerabledrafts of this thesis. They mad#ice 526 an interesting anentertaining

place to be.

To Mark Day, for introducing me to tHerogramming Methodologgroupbefore Icame
to MIT and for introducing me to Hor when | joinedthe group,and tohim andall the
othermembers othe Programming Methodologgroup foroffering invaluable feedback
on the thesis: Andrew MyerSanjayGhemawat, Robert Gruber, Deborah Hwargba
Shrira, Paul Johnson, and Dorothy Curtis. Thanks alséatoesO’Toole andKavita

Baala for their input.

To my parents and my parents-in-law in Seattle and Bangkok, and my exfandgd

around the world, for their continued guidance and encouragement.

Finally, a special thanks to Manjari Wijenaike, my wife, for the fresh perspedivesort,

and friendship she has always provided.

Contents

1. Introduction 13
1.1 REIAIEA WOTK ...ttt e e e ettt eeeeeas 15.......
R (o T o | 1= o P PP SUPTPPPN 17
2. Object-Oriented Database Model 19
2.1 OODBS GOAIS .. e iiiii ittt et et e e e e e e e e e e e oo e e et b bbb bbbttt ettt e e e et e e e e e e e e e e e e e e e e nnaae 19........
2.2 Compromises of Existing Object-oriented Databases...............oovviiiiiiiiiiice 21
2.3 Achieving Safety and 1S COSES.cciiiiiiiiiiiiii ettt e e e e e e e e e e et e e e e e e e e eeeeeeeen 22
3. Thor Client Interface 23
3.1 ODbJects and OPEIALIQIIS.......cciiieeeiiuiiiiia e e ettt e e e et e et e e et bbb e e e e e e e et e eesbbn bbb e e e eeeas 23
T O B [(=T = 1 = PR U 24
N B = (o= o 1T L ST TP P PUPPPPPPPPPPIN 25
I Y/ o1 PP 25
3.2.1 The SUBLYPE HIBTAICHYeiiiiiiii et 27
3.2.2 TYPECRECKING. ...ttt e e e e e e et e et e e e 28
R I =10 E57= Tod £ o] KT PP PPPPRRTPUPPPRRPPPPN 28
3.4 GaArDAgE COlIECHION. ... ittt ettt e e e e e e e e n s 29
3.5 Discussion: Transmitting the Representations of Arbitrary TYpes.........cccccvvvvvvveeeeccccc e, 29
3.6 HIgN-1eVEI ArCIITECTUIE.e ettt e e et e et e e e e e e enneaaaas 30
3.7 SAIBLY ISSUBSttt oottt ettt e e e e 32.....
4. Veneers 35
4.1 Database COMMEANGS.cciiiiiiiiiiiii ettt e e et e et e e e bbb et e e e e et e e e e e bbb bbb e e e eeeeeeas 35
S 11] o T Y o 1= SO 37...
4.2.1 STUD TYPE INLEITACE. ... oottt e e e et e e e e s 37
4.2.2 Stub Type IMPIeMENTATIONLceeeiiiiiiei et e e e e e e e 44
4.2.3 Storage ManagemeNtcouuiiiiiiiiiiiieeeieeiis e e eeenn e eennn e s ee s memmnn B

7

4.2.4 Veneer SUpport FOr Erators..........ueeviiiiiiiiiiniieiiiee e eeeneeen s A9

4.3 IMPIEMENTING NEW VENEERES. ...ttt e ettt e et e et e e e e bbb s 51
4.3.1 STUD GENEIALOISoiiiiiiiiiiieiteeee ettt e e e et ettt et ettt ettt et et e et s ea bbb e e e e e e eennanaaan s 51
4.3.2 Different TYPE SYSTEIMIS.eeititiiiii ettt ettt e ettt e e e e e et e e e e e bbb e e e e e e e eeeeeas 53
4.3.3 Coordinating Client and Database Garbage Collection.............ccccooei i, 55
4.4 Language INdePENUENCE ISSUBS.......ouuuuuuunii ettt e e e et ettt e e e e e e e e e e snenaaenenaaas 56
5. Batched Futures 59
5.1 INtrodUCTION 10 FULUIES ..ottt s £ 59
B2 EXAIMPIE e ——— 60
oIS I 0] o] (=70 0 T=T 01 = U1 o o PPN 62
5.3.1 RePreSeNnting FULUIES.coii i e e e e e e e e e e e e et e e eeees 62
5.3.2 Mapping FULUreS t0 ODJECTScoii e 62
5.3.3 Limiting the Size of the FULUre MapPing...........uuueeuuemmmmiiiiis s e e e e e e e eeeeeas 65
5.3.4 Stub Object Storage ManageMIEIL............ii it i et e e et e e e e eeeeeeennnes 66
5.3.5 Shared Memory OptimizZatioNS.........oooiiiiieiiiiiie e a7........
5.4 Other Benefits of BatChing CallScouueiiiiiiiei e 68.
5.5 EXCEPLIONS. ...ttt sttt et e e e e et e e et e e b b an s 69...
6. Experimental Results 71
6.1 Performance MOUEL........ooo i i e ettt e e e e e eeeees 71
6.2 Measured PerformancCe: BEST CaSe.......ooci ittt ettt e e e e e e e 72
6.3 A LeSS FaVOrable CaSe.......cooiiiiiiiiiiiiei s 76
7. Extensions 79
7.1 FULUES TOr BASIC VAIUBS........uiiiiiii ettt e e e e 79
N N T == 11] o] [T TP PP P PP PRRRRRERPRPN 82
7.2 Batched CONLrol SITUCTUIES. ...ttt e e e e e e e e mmmmmmmean 83
7.2.1 The Meaning of Batched Control SIrUCTUMES........cooiiiiieiee e 84

7.2.2 Restrictions on Batched Control StrUCTUIESc..vviiiiiieeee e s s O D)

7.2.3 Evaluating Batched Control StrUCTUIES...........iiiiiiee e A 8

7.2.4 Additional Benefits of Batching Control SIrUCTUIeSooiviiiiiiiiiii s
AR T 0011 011 41 1 5 T 90
8. Conclusions and Future Work 91

Table of Figures

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:

Example Type Interface
Subtyping

Thor Architecture

Database Commands

Type Interface in Theta
Stub Type Interface in C++
Example Client Routine
Basic Exception Handling
Stub object Exception Handling
Object Representation
Cross-Domain Method Calls
Example Stub Function

Figure 4-10: Smart Pointer Implementation
Figure 4-11: C++ Stub Function Skeleton
Figure 4-12: Lisp Stub Function Skeleton

Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:

Batching interrelated calls using futures
Representing Futures

Returning Futures

Mapping Futures to Objects

Remapping Futures

Values oftand § for some systems

Best Case Performance— Simple IPC
Best Case Performance— Thor, Local
Best Case Performance— Thor, Remote
OO7 Traversal Performance

Client Control Structures

Batched Iterator and Conditional Control Structures
Batched Calls and Control Structures
The Assign-Once Restriction

Batched Depth First Traversal

11

26
27
31
36
38
38
39
43
44
45
46
46
49
52
53
61
62
63
64
66
73
75
75
75
77
83
84
85
86
87

Chapter 1.

Introduction

An important problem irthe design of client-server systemstie tension thaexists
between safety, performance, and clean interface debigny systemsvould ideally be
structured asdistinct subsystems, each running in den protectiondomain and
communicating withother subsystems via fine-grained callsProtectiondomains are
desirable because they prevent ilibehaved client fromcorrupting data structures,
reading private information, or otherwise interfering vitie correct operation ckervers,

increasing the modularity, security, and debuggability of the system.

Unfortunately, there is asignificant performance penaltgassociated with crossing
protectiondomain boundariefor example the contexiswitch overhead in Unix). Even

the best cross-domain catiplementation@re manytens oftimes slower than direcalls
[Bershad 90].Crossing a protection boundary ewery call is prohibitively expensive for
lightweight operations, because much ntore isspent crossing protecti@omains than

getting work done.The overhead becomes anotbeder of magnitudeworsewhen the
communicating subsystennsn on differentmachinesand communicatever a network.

The problem isnot likely to disappear with advances in software and hardware
technology: context-dependent optimizations in hardware such as superscalar processors,
pipelining,and caching make domain crossiajshe moreexpensive, while increasingly

complex software systems make them all the more important.

This thesigporesents a generalethanism, callebatched futures, for reducing thest of
cross-domain calls. THaasic idea is that certagalls are notperformed at the point the
clientrequests them, but are instead defetneiil the client actually needthe value of a
result. By thatime a number of deferrezhlls haveaccumulated and are selitat once,
in a “batch.” In this way we caturn N domain crossings intone, and user codens

faster as a result. Oumechanism makethe batching essentiallyransparent talient

13

applications and allows latealls to makaise of the results @arlier calls. In addition, it

can be used when the client and server run on the same machine or different machines.

For batched futures to heseful,the client and server should Iseparated by a boundary
that it is expensivébut possible) tacross, and that crossing should havggaificantcost
component independent of the amountdata being transferred between th#gomains.
For example, in Unix,processes can communicate wikher processesising IPC
(interprocess communicatiomechanismsuch as sockets or sharegemory,but must
pay the penalty of acontextswitch on each communicationOther systems might use
even heavier-weight pratéon boundaries, such as runnitige client program on a

separate machine and communicating with it over a network.

Batched futures argarticularly usefulfor interacting with object-oriented database
systems (OODBS). In principle, an OO@Bmbinesthe rich object model of a modern
programming language with the language independence, persistence, and secure sharing of
a traditional database. In practice, most OOD&bto achieveone or more of these

goals. In the interests of performantteey sacrifice safety— running clientstime same
protectiondomain aghe dataandgiving themunrestricted access to the representations

of objects in the database— and/or languagependence, supportimgly a single client

language.

Thor is anew database thaims toreconcilethe goals okafety and performancerlhis
thesis presents elient interface desigtfior Thor thatallows safe sharing of database
objects by applications written wirtually any clienttanguage. Because this design places
clients in aseparate protectiodomain fromthe database, each interaction between the
client andthe databasencursthe overhead of a cross-domaall. We thenshow how
batched futures can be usedhpreduce the overhead of cross-domeatis, increasing

performance without sacrificing safety.
1.1 Related Work

A greatdeal ofwork has beemone on reducing theosts oftransferring control between

protection domains, foexample, Bershad'work on lightweight remote procedurealls

14

[Bershad 90]. Suckvork has made significargrogress, but despitatensiveeffort has
not suceeded ireliminatingdomain-crossing overheadur approach isomplementary
to these approaches in the sense that it amortizesrtteningoverhead by reducing the

number of crossings.

Several past systems haveaken advantage of batching to reduce domain-crossing
overhead, forexample Mercury call streams [Liskd®B8b] and the X windowsystem
[Getty 90]. However, pastystems have failed to deadlequately with the question of
what to return to the client iplace ofthe actual returrvalue. Xopts for the rather
draconian solution oélisallowing return valuesfor batchedcalls. Under Mercury, the
client receives a promider the eventual result of theall, which at dater point it can
explicitly claim to obtairthe actualvalue. However, a promise is efierior substitute for

the actual result, because it cannot be used an argument to another gaimot@ur
approach improves on thepast approaches both in its transparency to users and in its

ability to batch interrelated calls.

Futures were introduced in thparallel programming language Multiligplalstead 85].
However, they were used there moask caller-callee parallelism on raultiprocessor
systemyather than to batctalls in a serial system, asir schemedoes. Becausgarallel
futures introduce unrestricted concurrency, they can chdrgggemantics of the client
program, which is nevethe case with batched futures. Usauvisely, they can also
increasethe running time of a program, becausetloé overhead of thparallelfork and
the additionaltag checks required to check for futures, whereas batched futexes
increase client running time. In a parallel systerfytare might occuranywhere a basic
value is epected, so the taghecks for future&infect” the entiresystem. Inour system,
it is always the case that a future is evaluatethéyime it is needecdeliminatingthe need

for tag checks throughout the system.

Barrera hasndependently developed a scheme that seelosely related to ours in
[Barrera 93]. However, thisvo page workshop papelescribing his scheme fails to deal

with a number of important issues including:

15

» space efficiencythe design seems to require the system maintain an arbitrarily

large mapping for an indefinite period of time.
« time efficiencythe design has an &} copying overhead for a batchmtalls

* type safetythe papedescribeghe results of batchechlls aspromises, whictare a
distinct type from normal valuebut says that they can be passed as arguments as if
they were normal valuesyhich impliesthey havethe same type as normal values.

This apparent contradiction is not resolved.

» performance resultshe resultgyivenaretoo sketchy to be usefulhe papegives no

indication of the degree of batching required to obtain the claimed results.
This thesis attempts to provide answers to each of these questions.

Software-based fault isolation [Wahl®8] is a schemefor inserting software bounds
checks into untrustedient code to ensure that it dorst access data outside it own
region of memory, thereby allowing it tan safely inthe same protection domain as the
database.Unlike our scheme, software-based fault isolation adds overheditie thient
code even whenthe code is nottommunicating withthe database; however, these
overheads arsmalland software-based fault isolationliiely to outperformour scheme
for clients thatinteract frequently with a server. The major disadvantaghex$cheme
relative toours is that irequires modifications tthe compiler or a sophisticatdunary
patcher,which the authorsadmit is difficult if not impossible towrite for arbitrary,
unannotatedinaries. (Theauthors do suggest that bgding additional information to
the objectfile format, the binary patchingroblem becomes feasiblddowever,this just
transfers thenecessary modifications fromtme compiler on tothe linker, which is not
necessarily any less of a difficulty if all that is availabl¢hislinked binary.) Software-
based fault isolation is therefore more difficultitaplementand, in a practical sendess
portable tharour scheme, which can algsbe implementedor essential any programming
language without compiler modifications. Also, software-based fault isolatalvigusly

not applicable ifthe two domainsare actually running orseparatenachines, whereas our

16

scheme is. lIfiact, our scheme yieldshe greatesbenefits in just that situation, imhich

the domain crossing overhead is largest.

1.2 Roadmap
The remainder of this thesis is organized as follows.

Chapter 2: Motivates the need for batched futures dsscribing object-oriented
databases and theafety compromises thagiast databases hawmeade toget good

performance.

Chapter 3: Describeshe client view ofthe Thor databaseClients see Thor as a
universe of persistent, encapsulated, strongly-typed objects. Atomic transactions
ensure database integrity in spite of sysfaitures andconcurrent access. Garbage

collection automatically deallocates objects that are no longer in use.

Chapter 4: Describes a client interface design, called a veneer, that prakieitsl
power of Thor to ararbitrary client languag&ithout compromising safety. The
essential features dhe model are a separate protecti@omain for clients and a

representation for object references that conceals the actual object representation.

Chapter 5: Explainsthe main contribution of this thesis, batched futures, and their
implementation irthe context of Thor. Batched futures requirepdargeneralizations
of the client objectrepresentation andata structureslready maintained by the

database.

Chapter 6: Presents a performance model #mlresults of performan@xperiments
from three systems: (1) a lightweight IPC system, (2) Thor in its standard
configurdgion, and(3) Thorwith the client running remotely. Wénd that batched
futuresyield performance increases up to 10 timesigh batchingfactors can be
obtained. Even under worst-case conditionshich onlylow batching factors can be

achieved, we still measure performance increases of over 1.7 times.

Chapter 7: Adds several extensions tioe basic batchedutures model that increase

the amount obatching that is possible. One extension allows futures to be used for

17

calls thatreturnbasic values as well &isose that return Thor objects. Anotladiows

simple control structures to be batched along with calls.

» Chapter 8: Gives our conclusions and discusses several areas for future research.

18

Chapter 2.

Object-Oriented Database Model

In this section, we discuss sometbé goals of object-oriented databases, in particular
those of the Thosystem, andvhy the safety provided by protection domaipkys an

important role in satisfying those goals

2.1 OODBs Goals
Object-oriented databases (OODBS) are intended to provideeh of storagemore

closely matched tthe needs ansemantics of modern applications than that provided by
traditionalfilesystemsand relational databases. In principle, they incorporatengoer of
features from object-oriented programming languagéde retainingthe best features of

traditional databases.

One important advantage over traditional databases isalility to store object
operations,implemented in a powerful programming languagewadl as the objects
themselves. This allows objects to éecapsulatedthat is, accessednly through a
predefined set of operations (methods) rather than &yectly modifying their
representation. Fagxample, an object-oriented database cauldport a blancedtree

type, with operations thamaintain the invariant thatthe tree object is balanced.
Encapsulation allowshe databasemplementer to ensure thdlhe database correctly
captures the objectsemantics, and that clients dot accidetally overwrite objects by
directly modifyingtheir representations. As a result, objects entrusted to the database are

less likely to be corrupted by the client applications that share them.

Another advantage is that an OODB diredlypports pointers between objeakowing
it to capture thenterrelationships in aetwork of objects. Relational databases, in
contrast, force applications to “flattetiie network into a tiear collection ofecords, and

simulate pointers using objects IDs and associative lookups. Such translatioausrding

19

to performance, inconvenient, aador-prone: the translation into the datab@wght not
be correct, owhen the information is accessed it couldsly be misinterpreted. In
addition, because a relational database cannot tell the difference between an object ID and,
say, apart count, it cannoperform usefultasks that depend updollowing object

references (for example, garbage collection and prefetching.)

Finally, an OODB supports &ierarchy of types and subtypes. The typeanuhy
describes common behavior amongset of related typedacilitates codereuse, and
simplifies reasoningabout code. In contrast, masaditional databasesnly support a

fixed set of basic field types arranged into records.

At the same timetheideal OODB maintainsthe best features of traditional databases. In
particular, the data in an object-oriented datalsks®ild besafely shareable between

client applications written in many different languages. We want to extend the full benefits
of the database and object-orienprdgramming to any cliedanguage, even specialized
languages with fixed type and data models such as Perl. Furthermore, we want that access
to be safe, even if thdient languages themselvase unsafe Applications written in C++

and Lisp, forexample, couldoth manipulate a sharezkt of objectswith the guarantee

that neither one could violate encapsulation and corrupt objects.

An OODB alsoshields clients fronmany ofthe complexities of concurrency argystem
failure. It achieveshese goals bgllowing clients togroup sets of related operationgo
transactions. Transactions a@mic either all ofthe operationsvithin thattransaction
takeeffect, or none of therdo. Theyare alscserializable the effect of running aet of
transactions is equivalent to running them in seer@alorder. In other words, thdient
does noneed to worryabout operations iits transactiorbeing interleaved witthose in
anotherclient’'s transaction. As long as each transactleavesthe database in a
consistentstate, the databasallvalways renain in such astateregardless of crashes or

concurrent access.

An object-oriented database is therefore more than a traditional database plus pointers and
stored operationdfjecause it adds also adds encapsulation, subtyping, automatic garbage

collection, and so forth. Likewise, it is more than an object-oriented programming

20

language plus persistence, becausé¢hef safe, language-independeshiaring inherited

from its database lineage. Trasipport for richly structured, persistematnd securely
shareable data can allow OODBSs to support new classes of distributed applications, a class
that will grow in importance as computerseing more ubiquitous, distributed, and

interconnected.

2.2 Compromises of Existing Object-oriented Databases
Unfortunately, most object-oriented databases compromise the Qde@BBoy failing to

provide either safety or heterogeneous access in their client interfaces

Safety requires that client applicatiarennot violate object encapsulation, whethefaloy
means or foul, even whewritten in unsafeclient languages such as C++ tledibw
unrestricted reads and writes to arbitramgmorylocations. Many systemsgspecially
commercial systems such @emstone [Butterworth 91dnd O, [O Deux 91], sacrifice
safety for performance by kwing clients direct access to object representations.
(Databases expose representatiortsvmways: linking the client application directly into
the database address space, or exporting copies of object representationsdireatthe
address space. Both options exposedients tothe danger we i describe here,

although linking the client into the database is probably more dangerous.)

Such systems do not provide secure sharing since there is no way to guarantee that objects
are used properlf.e., only by calling nethods)while in user space. Languages such as C

and C++ provide numerous loopholes that violate type safety and encapsuiakicing

pointer arithmetic, unrestricted typecastsplicit deletion, ntagged unionsgtc® When

the object is returned to the database, its representaggrhave been replaced with
garbage; the best thgystem can do is check thathat comes back hate correct

structure.(Surprisingly, despit¢he dangersapplication programmerarewilling to trust

! There are other, momubtle flaws inthe C++type system.Even without using explicit mechanisms
such as typecasts, the application programmer can cadkethat is notypesafe. For exampl€++ falls

into a well-known pitfall by declaringhat SOT implies that J]OT[], where O represents thsubtype
relationship and] represents an array 8 Thisallowsrun-timetypeerrors. For example, aarray of
applescould be passed as array of fruit, since an apple is a fruit. But this allows an orange to be added
to the array of apples, clearly a violation of type safety!

21

vital scientific andfinancial information to databases that make such compromises.
Perhaps this is because they avoid shaheglatabase witbtherclient applications, and

believe thatheywould never write a badly behaved application.)

In addition, many object-oriented databases support only a single client langsisdly, a
popular butunsafe language such as C++ (theriging the application programmer to
use an unsafe language), and thereforendb support heterogeneoascess. Such
databasedqe.g., ObjectStorgLamb 91]) sacrifice a key benefit of filesystems and
databases: providing means of exchange and communication between applications
written in different languages. Regardlesdhef merits of anyparticular language, it is
unrealistic toexpect application programmers testrict themselves to that language,
because theynay rely onthe specializedeatures|ibraries, orhardware support csome

of other language.

2.3 Achieving Safety and Its Costs
These problems can be solved if client applicatiares isolated in their own protection

domains. Protectiondomains improve safety because they can preslemt applications

from violating object encapsulation. They also improve client language independence,
because programs in sormmént languages doot easily co-exist withother programs in

the same protetion domain. For example, Lisp implementations typically assume they

have their address space all to themselves.

This approach requires, however, that etiste the application invokes an operation on
an object in the database, a cross-domain call must be madggnificant fraction of
database callperform very littlework (for example, looking uphe value of an instance
variable), so that the time to execute lightweight calls is dominated ldpthain-crossing
overhead. This makeghe databasprohibitively expensive taise forlightweight objects

and operations.

Object-oriented databases are thugrime example othe tension betweesafety and
performance alluded to in the introduction. This thesis is concerned with techniques that it
make it practical to keegdomainsseparate byproviding acceptable performance for

lightweight cross-domain calls.

22

Chapter 3.

Thor Client Interface

Thor [11] is anew object-oriented database tlams to achievehe OODB goals

mentioned in the previous chapter: safety, heterogeneityg@odperformance, even for

lightweight objects. {&nt applicationswvritten inany language caentrust persistent data

to Thor,with the assurance thatherapplications or incorrectly implemented typbat

they do not use will not be able to corrupt that data. Our warkdone in the context of

Thor, so we W need to introduce theient interfacesupported by Thor. Theemainder

of this chapter is a complete description of the interface that Thor provides to clients.

3.1 Objects and Operations
From theclient’s standpoint, Thor providesumiverse of encapsulated objects that can be

referenced by client variables. Each objegpports a set of operations. Tolent

interacts with objects in the databaseirbyoking operdions on them. An operation can

transform the internal state of its arguments and/or return one or more resultslienthe

(For example the depositoperation on a baniiccount objeciight increasehe amount

of money inthe account and return the newcant balance tothe caller.) Each

operation is described by an interface tbpecifiesthe name ofthe operation, the

arguments that it takes, the result that it returns, @thdr aspects of the operations

behavior..

There are two kinds of results:

Handlesare opaque references to shared objects in the database. The object reference
can be passed as an argumenbtioer operations, but the objscrepresentation

cannot be accessed.

23

* Values are returned for thduilt-in simple types: integers, characters, reals, and
booleans. Each of these hasgedined externatepresentation and corresponds to a

built-in client language type.

Similarly, the arguments to operations are either handles, obtained as the result of previous
calls, or values. The am point to realize is that bthe client isnot giventhe values for
objects, except for amall, fixed class obbjects. (Thor could support motemplicated
sorts ofvalues(e.g., structures), but thssues raised in that caaee orthogonal tdhis

thesis.)

Handlesare short-lived pointers that avalid only for the duration of a particulalient
session. Thevre actually represented by integémdices into a volatile array H in the
Frontend that mapthe handles to actual objects. hdr attempts to keep the range of

handles as small as possible by allocating them sequentially.

When the client first begins a session, it ovided with a handle tthe root of the
databasewhich is adirectory object that allowthe client tolook up thehandles obther
“well-known” objectsvia pathnamessimilar to those supported by file system. In
general, however, the cliefmds objects bynavigation— theclient calls aroperation that
returns a reference to some other object, which in turn may be used to reach other objects.
(Thor will also support queries, a specialized language for selecting some subset of objects
based on the results of an operatapplied to each object in a largest [Hwang 94].
However, we do natliscuss queries in this thesisTypically anapplication will do many

stages of navigation before reaching an object where the values are of interest.

3.1.1 lterators
In addition to procedures, hbr supportsiterators. Iterators, introduced in the

programming language CLU [Liskd4], allow a Thor programmer tadefine newcontrol
structuresspecializedor a particular type of object. Rather than returning a sivajlee,
an iteratoryieldsmultiple values tdhe caller, whichuses a specidbr construct to iterate
over theyielded valuesone at a time. Eactime the iteratoryields avalue, control

transfers back to the caller, but the state and control flow ofatraadtr arenaintained, so

24

that the iteratompicks up where it left off toyield the value for the next iteration.

(Essentially, the caller and iterator function as co-routines.)

For example, the following Theta code usesnites iterator to iterate over the nodes in

a graph and mark each one.

for n: node in graph.nodes() do
n.mark()
end

The code tovisit all of the nodes in the grapmay becomplex and representation
dependent; foexample, it could perform a recursivadepth first search, a breadihst
search using gueue, and so forthBut the iteratormechanism hideall of thesedetails
from the user of the type, so thatenthe mostcomplex traversamechanismappears to

the client as a simpler loop.

3.1.2 Exceptions
In the normal case, Thor operatiotessminate by returning a value. Howevahor

operations can also terminate &ignaling anexception [Liskov81, Goodenough 75],
indicating that a condition haxcurred that prevents the normal retuatue frombeing

computed. An exception consist ohame andzero or morevalues that give additional
informationabout the cause of the exception. Examplethearray type might signal a

bounds exception if the caller attempts to access a slot beyond the end of an array.

Each operation interfadacludes an explicit declaration of exceptions it might signal. In
addition to the exceptiorsxplicitly listed, any operation can gnal the failure exception
because of, foexample,incorrect argument types provided by ttleent, concurrency

control notifications that the current transaction will abei,

3.2 Types
Thor programmers group objects in the databaseypgson thebasis of behavior. Two

objects of thesame type sharthe sameoperation interface and semantiesen if their
representations and operatiomplementationsre entirely different. A type consists of a

set of operation signatures, each of which includes the following:

25

% Calendar items
item = type
% An item can be hilited in various ways.
hilite_mode = oneof [always, expire, never, holiday: null]

text () returns (string)
set_text (t: string)

dates () returns (dateset)
set_dates (s: dateset)

early_warning () returns (int)
set_early_warning (days: int)

hilite () returns (hilite_mode)
set_hilite (mode: hilite_mode)

equal (i: item) returns (bool)
end item

Figure 3-1: Example Type Interface

the operation name

the number and types of arguments expected

an (informal) description of the operation’s semantics

the type of the return value.

Thor types arespecified and implemented the Thetaprogramming language [D&84],
which was created in response to the shortcomingsxisting languages witregard to
safety and expressiveness. Client programmersigaamicallyadd new types and type
implementations tarhor, butthey must be written ifheta. The typénterface describes
the operations supported by the type lplices no constraints othe possible
implementations. Thor stores timerfaces for types ithe database in a parsiedm that

is easy for applications (for example, an interactive browser) to read and interpret.

As an example, Figure 3-1 presetite interface foritem type, which isused in Ical, a
distributed appointment calendar written $gnjayGhemawat. An item ithe calendar
recurs over a set afays(represented by theéateset type), and can béighlighted in

various styles.

26

3.2.1 The Subtype Hierarchy
A type system irwhich differenttypes areentirely unrelated isoo restrictive, because it

fails to capturecommon behavior among types tlae related buhot identical. Thor
thereforeincludes subtyping: a typ8 is a subtype of a typ€ if it supports thesamé
operations a3, plus possiblysome additional operationg-or purposes of typhecking,
an object belonging to a subtype of a type T camdsl as an argument anywhere an

object of type T is expected.

For example, Figure 3-2 presents tygpointmenttype, a subtype of théem type
presented earlier. An appointment is a kind of item shaports thedditional operations
of getting and setting specific timerange for the appointment amgaintaining aset of

alarm times in advance tfie actual appointment. An appointment can be passed to any

% Appointments are items that occupy a specified time range.
% They can also have associated times at which alarms can go off.
appointment = type item

% ... all of the item operations are retained, plus the following

% Appointment start (in minutes from midnight)
start () returns (int)
set_start (t: int)

% Appointment length (in minutes)
length () returns (int)
set_length (I: int)

% Optional alarm times (in minutes before beginning of appt)
alarms () returns (sequencelint]) signals (no_special_alarms)
set_alarms (list: sequence[int])

% Specialized "copy"”
copy () returns (appointment)

end appointment

Figure 3-2: Subtyping

2 The signatures of the operations in subtypeS do not have to bexactlyidentical to those iff, but

rather musitonformto them according to the standard contra/covariance [8lgsaffer 85, Black 87,
Cardelli 88]. For an operation i&to behave likehe corresponding operation T it must be able to
handleat leastthe same set of argumetypes,and must return aubset ofthe returntypesthat the

original operatiorwould return. More formally, an operatiofoo(s, $, ..., $) returns (g) in S conforms
to an operatiofioo(t, t,, ..., &) returns (§) in T if, for eachargument positiom, 5 is asupertypeof t; and

the return types is a subtype of.r

27

function expecting an item.

3.2.2 Typechecking
As well as being usefufor classifying and documenting object behavior folient

programmers, types increagee safety ofthe system. Type information allowsh®r to
ensure that thelient does not attempt tperform an operation on an object fehich it
was not intended (forexample, hammering screw). Withoutthis information, clients
might be able tocorrupt objects in the database Ipassing them to inappropriate

operations.

For client languages with sufficiently richtype system, typerrorscan be dected at the
time the client program is compiled.However,manylanguages allow an object of one
type to be incorrectly forced to masquerade as angih@mpatible) typefooling the
compile-time typechecker. Therefore, Thortypechecks clientcalls from any such

language at runtime.

Whenthe databaseeceives a call, it verifies thétte handlesused ardegitimate, that the
object uponwhich the operation was invokedoes in fact support the requested
operation, and that theorrectnumber and types of argumentsre given. Ifthe check
fails, Thor does notperform thecall. This ensures thabperations alays receive
arguments of the expected types. [Kliant overwrites the storage used fwandles, the
worst it can do is make aalid call on anunexpected objectyhich must support an

operation with the correct name and signature.

3.3 Transactions
Each operation call occurs agpart of anatomic transaction. Thelient commits the

transaction with arexplicit call, whichimplicitly begins anew transaction. Under the
currentsystem, there ienly one active transaction ahy given timethere are no nested
or disconnected transactions. hév the client attempts tocommit the transaction, the
system checks to ensure tlthé operations in the transaction woulot beinterleaved

with those in somether transaction. Ithey would be interleavedhe transaction is

28

aborted, and thelient must be prered to redo the operations in the transaction. (See

[Adya 94] for a more complete description of how transactions are implemented in Thor.)

3.4 Garbage Collection
To ensure safety, or performs garbage collection on the objects in the Timbrerse.

(If clients couldexplicitly delete objects, theynight cause damage by deleting objects
needed bytherclients.) Handlesreroots ofthe garbage collection: as long as thent
references an object, Thor will not dispose of it. There is also a perseierdll obects
accessible fronthe persistentoot are automatically persistent araie garbage-collected

after they become unreachable. Both volatile and persistent objects are stored inside Thor;

the only distinction between the two is reachability from the persistent root.

The fact that handleare returned to thelients is important withrespect to garbage
collection. If we returned permanent pointers to objects talteet we wouldnot be
able togarbage collect objects whosealy reference was the pointgiven tothe client,
even aftetheclient sessiomnded. Thelient couldlegitimately save a permangminter
to a file, for example, and use it in a later session. Handles, in contrastlyadtefined to

be valid for the current session.

Because handleare roots for garbage collection, it islesirable thathe database is

notified when they aren’t used anymore, even if the client session continues.

3.5 Discussion: Transmitting the Representations of Arbitrary Types
Our system uses handlesrepresentll database objectdViany othersystemsexport the

representation of database objects intoctlest address space, so thadients can access
the objects without the expense of a cross-doroaiin There arecompelling reasons,

however, why we do not allow this in Thor.

Most importantly, although it is possible wonvert the representation of a Thayject
into a corresponding cliermepresentation, there is no reasonally to convert the
object’s methods, written in Theta, into methods inrthve client laguage. Therefore
the client program is forced to deal witthe object representation directly. Without

methods for interpreting them, the raws of the representatiomay be meaningless.

29

Also, a single type can have multiple implementations, each with a different representation.
The clientcode wll break when it receives an unexpected reptasen. Forlanguages
with very simpledatamodels, such as Perl, even mirrorithg representatiomay be a

challenge.

Second,only immutabletypes can be transmitted in this way. tlie client directly
modifies the object representation, the datalbaseno way ofrerifying that thechanges
maintain the representation invariant, so it cannot safely incorgorptthanges back into
the database. Even if tbkentwere preventettom modifying a mutablebject, it would
not bepossiblefor Thor to validate atommit time thatall of the objects read by the
transaction were up-to-datbecause the object wamt accessed usinghe standard

method interface.

Finally, transmitting complex object representations would complitegeseneer and the
databasesignificantly (see [Birrel94] for a description of a system with thability.)
Objects can contain referencesdiber objects asvell asdata; the code to encode and
decode theresulting object graphs can be time-consuming and a potevaiste of

bandwidth if the client is only interested in a small part of the data transmitted.

There are afew cases where we might relagur restrictions on transmitting
representations. Sequences iarmutable,orderedcollections of objects. Becausigey

are immutable anthave semanticsimilar to arrays in most programming languages, a
sequence of objects caafelyand eaily exported be into thelient address space as an
(immutable) array. (The databas@nnot prevent thelient frommodifying the array, but
changes to thelient array vill under no circumstances be incorporated back into the

database sequence, so it is effectively immutable.)

3.6 High-level Architecture
The objects of the Thaystemareimplemented irthe Thetaprogramming language [Day

94] and storedpersistently on get of distributed servers, $bly distinct fromthe client
machines. Becausthere are mitiple serves, accessing objects dhe servers often

involves network delay. To prevenhetwork delays on everpbject access, a process

30

known as thé-rontendcaches objects and executes operations alidrg node orbehalf
of theclient. However, becausehbr does nofully trustclient applicationsthe objects
reside in a different address space from the client prog(anunix, the operatingystem
on which Thor isimplemented, protection domairejdress spaces, and processes are all

equivalent, so the client runs in its own process.)

The part of thesystem that allowshe client to interact with Thor across the process
boundary is known as theeneey which is explained in detail ithe next chapter. The
correspondingart of the Frontend thagceives requestsom the veneer anthvokes the
appropriate operations in the database is known as the dispatcher. The dispatcher
supports two interfaces: a textual interface, suitable for use by humans and veneers written
in specializedtext-processing languages such as Perl, and arybinterface, which

provides higher performance and more direct encodings.

Client VeneerThor
x ‘ _1‘

X —id() @O/o\o B ﬂo 5
Network Xf

: v

FE Servers !

Figure 3-3: Thor Architecture

In Figure 3-3, the Frontend aching a subset dhe objectsstored on theservers
(includingthe object referenced by tlokent variablex), and invokingthe id operation on
x on behalf ofthe client. Thearrows in thediagramrepresent contexgwitches to and
from the database to perform the cross-domain call fordtioperation. x is represented
in the client address space as a hanvdhich is mapped bthe handle table H inhe FE to
an actual object. Wenthe client commits a@ransactionany modifications tox andother
objects cached at the Frontend arstalled inthe server oncehey have passed the

concurrency control checks.

31

Batched futures are concerned with reducingdii@ain crossing overhead between the

Frontend and the Veneer.

3.7 Safety issues
The Thor client interface ensures that ¢hent cannot interfere with theorrect operation

of the databasegven ifthe client language is unsafe ¢ine veneer i1ot implemented
correctly. (It is important that the database newut trust theveneer, sincéhe veneer is
linked into the client protection domain and could have its data structures corrupted by the
client.) Thisclaim of safety deserves close scrutiny. If it is faldes expense gblacing

the client in its own protection domain is wasted.

First, note that the client cannot directly violate encapsulation. The representations for the
database objects are in a separate protedoomain, so by definitiorthe client cannot
access them, assumitiige protectiondomainssupported by the operatingystem and
hardware are worthy of theame. For thesamereason, thelient cannot jump tallegal

points inside the database code or otherwise interrupt the database’s fhormatf
control. (Some microcomputer operatiggstems, such as Microsoft Windows, do not
provide sufficiently strong protectiordomains. In that case, safety can be achieved by
runningthe Frontend on different machine fronthe client. In fact, if securityvere of
paramount concern, we would do teeme undebnix, since auser withroot privileges

or physical access to the machine can gain direct access to physical memory.)

What theclient canmodify are thehandlesstored inits own address space. However, no
harm can come tthe system as aesult, because thgystem typechecksalls at runtime
and only defines handlefor objects that thelient is allowed to access. ftiie client
overwrites ahandle with a valueutside thdegalrange, or with déandlefor an object of
an incompatibleype, the databaseillvdetectthis fact whenthe client tries touse the

handle in a call and abort the call with an error.

If the client overwrites a handle with a handle for another object of the tyameor some
other type that happens to have the same interfaces for all of the operations the client uses,
the database will not be able to detect the switch. However, alliémt has succeeded in

doing is redirecting a reference to another object that the client is allowed to atoess,

32

in no way compromisethe safety ofthe system. Noticeéhe safety dependspon the fact

that a handle isot assigned to an object unldse client has gained legitimate access to

that object as the result of a methmadl. If everyobject had a preassigned handle, the
client might be able to guess the handle of an object it was not allowed to access and forge

a stub object with that handle.

33

Chapter 4.

Veneers

To use Thorfrom a particular language, that language neesall extension called a

veneer. The goal of the veneer ismap the features of the Thaslient interface as

naturally as possiblento native comstructs in theclient language. Thishapterexplains

what the veneer does and how itingplemented. It assumes a pie model inwhich

operdions areactually performed ahe point of the call and thaient waits until they are

complete; this assumption is relaxed in the next chapter.

The veneer consists of two major components:

* a small, fixedset of databaseommanddor interacting with the database asvhole
(e.g. starting a session, committing a transaction, etc.).

* a set ofclient types mirroringhe types insid@hor. Theclient typesmplement stub
objectsthat refer to objects in the database atdb functionsthat invoke the
corresponding database operations. Theeffett is to make Thor objects appear

exactly like client objects.

For concreteness, we shdwst how theséwo components arenplemented irthe C++
veneer. We then consider the stegeessary to implement a vender a newclient
language, and show how tlaesign changes depending prnoperties of theclient
language such as thiehness othe typesystem andhe availability of garbage collection.
The implementation details tiie veneer arprimarily of interest to veneamplementers,
and may beskipped without loss otontinuity by those wishing only to understand

batched futures.
4.1 Database Commands
The database commands allthve client application to makamitial contactwith Thor and

to perform higher-levebperations such as committing transactionsily@ small number

35

of general database commaruae needed because most of Théuisctionality resides in

individual objects and their associated operations, as discussed in the next section.

Figure 4-1 presents the CHnterface forthe database operations;amery other client
language they iV appearessentiallythe same, moduldifferences in syntax. The
commandsegin_session andlookup_wellknown allow a client tostart a Thor s&sion

and obtain references to “well-known” objects by name. After invoking a series of object
operations, aclient can commit or abandothe work of thetransaction bycalling
commit_trans or abort_trans, both ofwhich implicitly begin anew transaction.Finally,
end_session terminates a client sessioafter which point theclient object references

become invalid and the client can invoke no further operations.

/*
Database Commands

These functions are called directly by the client to initiate communication
with the database, lookup objects, and define transactions.

*/

bool begin_session (char *fe_spec);

1 requires -- fe_spec is a the name of a host, or NULL

1 effects -- attempts to open a connection with the specified frontend,
1 or with a newly create slave FE if fe_spec is NULL. Returns

1 TRUE iff the connection attempt succeeded

th_any* lookup_wellknown (char *wellknown);

/! effects -- returns the stub object named with the name wellknown, or
1 NULL if there is no such object.

bool commit_trans ();

1 effects-- Commits the current transactions and begins a new one.

/! Returns true if the commit succeeded.

void abort_trans ();

/! effects-- Aborts the current transaction.

bool end_session ();

/! effects-- Terminates the session with the database.

Figure 4-1: Database Commands

The implementation ahe databaseommands is trivial, as seenthme example in Figure
4-2, because the database dalesf the realwork. The database commands simply send

a cross-domain message to the database consisting of a command code and an encoding of

36

the argumentgif any), and read and decode the result sent lfrack the database,

returnng it to the client.

bool commit_trans ()
{
fputc(‘C’, client_out);
transfer_control_to_fe();
return (getc(client_in) == SUCCESS_CODE);

}

Figure 4-2: Database Command Implementation

4.2 Stub Types
The moresignificantcomponent of the C++ veneer is a stub th¥archy mirroring the

Thor type hierarchy. To use a Thor type, the client programmer includes the fileader
the corresponding stub type atks in a library of compilecgtub types when cqgoiling
the program. In the subsections that follow, wd Wwst describethe stubtypes’

interfaces, then their implementation.

4.2.1 Stub Type Interface
The C++ veneer headdites declare classes corresponding to eachhef Thor type

interfaces. For example, Figure 4-2 preseritee Thorinterface tothe Module type, and
Figure 4-3 presents the corresponding Gtass interface, defined ithe headeffile
th_Module.h. (TheModule type is used in the OO7 benchmark [Carey 92] and is intended
to be typical ofthe sort of object used in computer aidéesign applications. The
interface suports operations foreturning amanualobject that describethe module,
finding the number osubassemblies, fetching a subassembly by index nuareigetting

the root subcomponent.)

37

Module = DesignObj type class th_Module : public th_DesignObj
{

public:
man () returns (Manual) th_Manual* man ();
numAssemblies () returns (int) int numAssemblies ();
assemblyindex (i: int) returns (Assembly) th_Assembly* assemblylndex (int i)
signals (bounds) // signals(bounds)
designRoot () returns(ComplexAssembly) th_ComplexAssembly* designRoot ();
free ();
protected:
th_Module(handle h) : th_DesignObj(h) {}
end Module }
Figure 4-2: Type Interface in Theta Figure 4-3: Stub Type Interface in C++

The C++ interface igssentially alirect translation of the Thetaterface intothe C++
syntax. Because the interface preserves the sut#igi®nship declared betwestodule
and DesignObj, the C++compiler is able to do compile-time typecheckiog stub type
operations. There is one substardifference:itheway that exceptionarehandled. This
mapping of exceptions intG++ is explained infull in Section 4.2.1.2. There asdso

several cosmetic differences between the two interfaces:
» Thor type names are prefixed thy to reduce name clashes with client types

» The implicit pointers inthe Thetainterface are made explicit, following C++
conventions. (This is also necessary because restrictions in Gthe way types are
used. If type S declares\ariable oftype T andvice versa(for example, in an
argument declaration), then it is necessary to use pointers for the declaraoanseb

C++ must be able to determine the size of any variable at the time a type is declared.)

* The interfacencludes dree operation for deallocatinthe storage associatedth the
stub object anihforming the database the object is no longer referenced byliéme
program. (We wll discussstoragemanagement igreaterdetail in Sectior4.2.3.)
The interface alsecludes a privateonstructor for use by the veneer. It cannot be
called bythe client, but is used by the veneer tonstruct a newh_Module object

given a Thor object handle.

38

4.2.1.1 Example

Before going into theletails ofthe veneer, we W consider arief example tashow how
the veneer isctuallyused. Theraverse_part client functiondoes a depth-first tvarsal
of all of a graph of atomic parts in a OO7 database. ti gomicPart type is a stub type
define by the veneer, while th2Set type used to keep track of the pat®ady visited is
implemented entirely ithe client language. Thenly point we want teemphasize ishat

the two types are useddentically by the client programmerithe veneermakes the

indirection to the database invisible.

{

}

#include “th_AtomicPart.h”
#include “th_Connection.h”

int traverse_part (th_AtomicPart *a, IDSet *visited)

intid =a-id();

if (visited - contains(id)) return O; // don't visit same part twice
visited - insert(id); // Add part to list of visited parts
int result = doPart(a, id); // Perform action on part

int num = a-numOutgoing();

for (int i=0; i < num; i++) { // Traverse the subparts

th_Connection *next = a - outgoinglndex(i);
result += traverse(next - to(), visited);
next - free ();

}

a-free();

return result;

Figure 4-4: Example Client Routine

4.2.1.2 Handling Exceptions

Exceptions are officially a part of C++, but many compiler implementations do not support
them. Other populalanguages doot supportexceptions at all. For these reasons

(among other3 our C++ veneer does not use exceptions directly.

In performing this mapping of exceptions @+ withoutusing an exceptiomechanism,

we want tomaintain as many ofhe desirable features of exceptions as possible.

particular, features we would like to retain are:

% Another reason ithat C++exceptionsare notcompatible without futures, wheretd® technique to be

described is.

39

* The client shoulchot have to checKor exceptions afteevery operation,since this

interrupts the flow of code and makes it hard to read.
* However, exceptions should not go entirely undetected by the client.

» If the client doesfail to handle an exceptioithe veneer should ketble todetectthis

fact.

In addition, we want thenappings of exceptions intthe client language to be as
unobtrusive as possible in terms of its effecstub function signatures-or example, we
would not wantexceptions to require an additional argumentefegry operation,since
this is inconvenienfor the client programmer andeduces thesimilarity between the

veneer and database type signatures.

Our solutionhastwo major features: an exception history that alldivsclient to defer
checkingfor exceptions, and exception propagathjch allowsthe client to determine
if exceptions occurred fanyintermediate calls istring of interrelatedalls by checking

only the final result.

The exception history isaintained bythe veneer and contains a history of the exception
results ofall “recent” calls, where aecent call is a call in the current transaction. If no
exception is signaled by aperation, the veneer returns the normal retatne and adds

a null exception value tthe history,indicating that no exception hascurred. If, on the
otherhand, an exception is signaléde veneer returns a nuthluefor the result (that is,

an invalid handldor stub objects, O for integerstc.)and adds an exception value to the
history giving the name and associated values for the exception. At a later poatierthe
can obtain the exceptioralue associated with a call and, ibyoking methods on the

exception value, determine the properties of the exception result.

Before proceeding to a description of how tient obtains exception values, wél irst

consider exception propagationhich is possibldor operations that returhandles but
not for those that returbasic values. When aperation that returnsteandle signals an
exception, that stub object is tagged iagalid. If the client usesthe handle as an

argument to anotherall, the veneedetectsthis fact andeturns another exceptiaalue

40

with the nameunhandled_exc and a value consisting ofinter to the exceptiomalue
that the client originally failed tocheck. Continuingthe propagation, if shandle
associated with amnhandled_exc is passed as an argument, anotin@randled_exc
exception is returned that points to threginal exception value. Thus, if an exception is
signaled anywhere in a string of interrelatadls thatreturn handlesthe exceptionwill
propagateall the way tothefinal call. To determine hat exception occurreariginally,

the client need only check the final exception value. Exception propagatiotpisssible

for calls that return basic values because in general the entire range of a basidegdle is

as a return value.

We now return to aliscussion ofthe client callsfor obtaining exception values. The
exception history provides several different wlysthe client to obtain exception values,
each providing different tradeoffs withspect to the unobtrusiveness anecision of the
exception handling.The last_exc() call returns the exceptiovalue for the most recent
call. Theexc() method defined on stub objects returns the exception f@itlee call that
returned the stub object.Finally, the first_exc() call, followed by repeatedcall to
next_exc(), allows the client to iterate throughi of the unhandled, non-null exceptions in

the history. We expand on each of these calls in the paragraphs below.

The last_exc() call supports astyle of exceptiorhandling in whichthe client checks for
exceptions immediately after each call. This style of excepaiadling is inconvenient, in
that it tends to break up tlilew of the client programput isnecessary if exceptions are
to be detectedmmediately. Inmost cases, thelient will need to all last_exc() after

every call that returns a basic value to make sure the result is valid.

Theexc() call allows a more convenient way to handle exceptionealts thatreturn stub
functions. The client can defer checkiig exceptionsuntil any later point, because as
long as theclient holdsonto astub object, it can retrieve the associated exceptiure.
Because exceptions propagate fatls thatreturn handles,the client can even avoid
checkingfor exceptions from mogtalls. Ifthe client needs tdind the precise exception
that set of achain ofexceptions, thelient can obtain it bygetting thevalue associated

with theunhandled_exc error.

41

Finally, examiningthe exception history provides doptimistic” exception handling
mechanism. Ifthe programmerbelieves thatexceptions areunlikely, they can
optimistically assume thatone wil be signaled and defer checkirigr exceptions until
commit time. At commit timethe client program carverify thatthere are naems in the
unhandled exception history. tliere are exceptions in the histotlgey canabort the
transaction, undoing all of the work in the transaction,stattagain, or they caattempt
to unwind itsstateback to the point of the exception, althouiis is probably quite
difficult. For this approach to work, the client has to be prepared for posslyingless
null values from basic valued calls that sigmathecked exceptions, even if the operation

specifications say that such values are not returned.

The exception histordoes more thaallow the client to handlegpastexceptions; it also
allows the veneer taletermine wherthe client has failed to handle axception. Each
non-null exception value ithe historyhas a flagjnitially false, indicatingvhether it has
been checked yet lihe client. Whenthe client obtains an exception value usige of

the calls mentioned above, the checked flag is set to true.

At commit time,the veneewerifies that every non-nuéxception value ithe history has
been checked; if nothe veneer refuses mmmmitthe transaction. The intention tisat

the client should beaware ofany exceptions before deciding th#te work of the
transaction should be committed. The client can override this igpentsansactioasis

by calling exceptions_clear() immediately before committing. Exceptions are
automatically cleare@ut when the client aborts a transaction and after a transaction

commits successfully.

In practice, clients wil probably use a mixture of these exceptioandling styles,
depending upothe nature of the exception. The exceptierglicitly listed inthe type
interfaces Wl usually need to be checked fommediately (for example,the bounds
exception for an array.) Howevanany clients wil probably defer checkindor the
failure exceptions untihe end of a loop oeven untilthe end of the transaction. These
exceptions are often not caused directly by the client @hdetnecessarilyeoccur if the

transaction is restarted, so it makes sense for the client to simply abort and try again.

42

4.2.1.3 Exception-Handling Example
Consider awithdraw operation for a baniccount thasignalstwo exceptionsoverdrawn

andnot_possible. Each exception has associated information: an integewéodrawn,
giving the amount the account is overdrawn, and a stringhdorpossible, giving an

English explanation for why the caller is going to go penniless.

The Theta interface favithdraw is:

withdraw (dollars: int) signals (overdrawn(int), not_possible(string))

The corresponding C++ stub function interface is:
void withdraw (int dollars); /* signals (overdrawn(int), not_possible(string)) *

Figure 4-5 shows how a C+application wouldhandle the exceptionssignaled by
withdraw, an operation that does not retwany values. The exception valusupports
methods for each of the exceptions that the corresponding opemaiibh signal; the
methods returtrue if theexception with that name has been signaledfalsd otherwise.
In addition, the exceptionalue supports methods foeach value associated with an
exceptionname;for example,overdrawn_int is used in thdigure is used to retrieve the
integer value associated withe overdrawn exception. The clienprogram uses these

methods to check for exceptions and retrieve their values.

my_account - withdraw(100);
if (last_exc() - overdrawn()) // check for exceptions

cout << “Your account is overdrawn by “ << e - overdrawn_int() << *“ dollars”;
else if (last_exc() - not_possible())

cout << “Withdrawal is not possible because: “ << e - not_possible_string();

Figure 4-5: Basic Exception Handling

Similarly, Figure 4-6 shows how thelient would checkfor exceptions fronthe next
operation on a listwhich returns a stub object arsignalsthe bounds exception. The
only real differencebetween thegwo cases is that the exceptimalue is obtained by
invoking exc() on the result objecthis wouldwork even if other operationdiad been

invoked in the meantime.

43

| =15 next(); // get the next item in a list
if (I-exc() - bounds()) // check for the bounds exception

Figure 4-6: Stub object Exception Handling

4.2.2 Stub Type Implementation
The previous subsection showed how the venegsthe interfaces of Thor typesnto

corresponding client interfaces. This subsection is concerned with how the veneer exports
the functionality of Thor objects withouttcompromising their safety or changing their

semaitics.

4.2.2.1 Basic Values
Basic values (integegharacters, reals, and booleans) are representedtias client

values, transmittedsing a suitable representation to and fittw database and decoded
by the veneer(For examplethe num_assembly stub function returns mative C++int.)

In our system, basic values hatlee same representation in Thor andGa+, so the
encoding and decoding steps areal; the representations can be copie@aly to and

from the communications buffers. lotherlanguages, the decoding stepght be more
substantial. In angase the burden of encoding and decoding shalildn the veneer,

not the dathase. Doing encoding and decoding in the database would require
modifications tothe database for each new language, whereas tluéng inthe veneer
offers opportunities formproving performancéecause they can be dolaeily, as we

shall later see.

4.2.2.2 Object References
Thor objects, in contrast teasic valuesare represented by referenoet bytranslations

of their actual representations. Although the stub typerfaces encouragelient
programmers to believe that thaye pointing directly to hor objects, the actual Thor
objects aresafely stashed away in separate address space. Whatdlent is actually

pointing to arestub objects

44

The representation faverystub object is theame: a singleyrotectedfield containing
the handlefor the corresponding Thor objec{By protected, wanean thathe handle
field can be accessaxhly within the th_any class and its subclassest by theclient.)
The stub objects thus encapsulate a reference tmaobject withoutevealing its actual
representation, even the client violates encapsulation to access tlentents. This

scheme is depicted in Figure 4-7.

Client Database
T

g:3
Variable Stub Handle Database

Object Table Object
Figure 4-7: Object Representation

There is ndegitimate wayfor the client to accesshe handlestored inside of the stub
object, make a copy of a stub objectcorate a new stub object withanvoking aThor
operation. Althougltlientsmay dothese thingsdlegally by violating encapsulation, they
can only cause trouble fothemselves by doing so (especially witie optimizations

discussed later) and cannot cause damage to the objects in the system.

Stub objects are allocated on the hedpen Thor returns ahandle as aesult of an
operation. To ensure that exactly one stub object is allocatdthpele the veneer keeps

a table VH that maps between handles and stub objects. (VH is analogous to the table H in
the database that maps handles to actual objects.) When the veneer receivesf@imandle
Thor, it checks the corresponding slot in VH to see if a stub oligstalready been
allocated, returning a reference to that objesoif If not, theveneer allocates a new stub

object and stores a pointer to it in VH for later use.

4.2.2.3 Stub Functions
A stub functionimplements a for operation bymaking a cross-domain call to the

database which performsthe actual operation and sends back the resuMore
specifically, the stub function marshéte function name and arguments into a message to
the server and transfers control to the database protection domain, as depicted in Figure 4-

8. The databas#ispatcher receivabe interprocess message, looks up the corresponding

45

method and objects, typechecks da, performsit, and sends the results back to the

client in aninterprocess messag€inally, the client stub receiveghe results and returns it

to the client program.

Client

X - next();

next #2

Database

st

-l
-t

#3

next()
return(self.next

Figure 4-8: Cross-Domain Method Calls

Thor stubfunctions are similar to those used in standard RABirrel 83], with two

differences:

» all objects are passed by refereffesing handleshot byvalue, so thathe encoding

for objects is much simpler.

* The database performs a method dispatohmerely a function call.The actual code

that is invoked depends upon the receiver’s typeealsasthe methochame. (Other

RPC systems (for example, [20]) also provide this facility.)

As an example, Figure 4-9 givd®e implementatiorfor the concat stub functiondefined

onmstrs (mutable strings.)

th_mstr* th_mstr::concat (th_string* s)

{
th_mstr* res=0;
begin_invoke(self, 2);
put_handle(s->handle);
if (do_invoke()) {

}
else {
get_exception();

end_invoke();
return res;

}

NEW_TH_OBJ(get_handle(), th_mstr, res);

Figure 4-9: Example Stub Function

Stubfunctions have a simple, fixestructure with each line in the stubending someart

of a call tothe database dispatcher. The dtuixrtion first sendshe receiver and method

index usingbegin_invoke, followed by each othe argumentsdo_invoke() transfers

46

control to the database and returns TRUE if the operation succeeded. inlfoke()
indicates successhe stub creates a new stub object of the appropriate result type,
initialized with the resulbandlereadfrom the database. If not, tleése branch contains a

call to read the exceptioralue. The stub thecalls end_invoke() and returns the result
object to theclient. (It may seem thaend_invoke() is superfluous. Indeed, folormal
invocations, end_invoke() does nothing. However, bghanging the behavior of
end_invoke() andget_handle(), the veneer cadynamically switch from mode without
futures to one with futures, amite versa. Everpther stulbfunction follows exactly the
samepattern; as weshall see, this makes stub functioeasy togenerateautomatically

based on their interfaces.

4.2.3 Storage Management
Some client applications can quheppily ignore theissue of deallocatingtub objects.

The individual stub objects are compact; as long as dhent accesses a reasonable
number of distinct objecthe total space taken up by stub objeats not betoo large,
and as soon as tlodient application terminatethe database caeclaimthe handle table
space and garbage collect the objects wbaolereferences were thendles given to the

client.

However, in general, the veneer needs someayf of knowing when a handle is no
longer needed so that it and the databaseemd@imstorage associatedth the handles.

For example, some applicationsay access very large numbers of objects (such as
traversals thatisit every item inthe database), or createnytemporary objects that are

only used for a short time.

The current C++ veneamplementation requires that client applicatianglicitly free
stub objects byalling the free method on them. R&hthe client frees astub object, the
client must no longeuse any other references to it. This is a reasonable requirement,
giventhe C++philosophy,but what theclient cannot be expected to knowwvidien two
calls happen to haveeturned thesame object. To behave reasonably in taise, the
veneer handle table VH includes a counter for each hanaieremented whenever a stub

function returndh to theclient and decremented each tithe client callsfree_object on

a7

h. Onlywhenthe count reachezero does theeneer reclainthe slot in VH and send a

message to the database sayinglihgino longer in use.

4.2.3.1 Smart Pointers
C++ programmers are accustomecexplicitly deallocatingdynamicallyallocated objects,

S0 ourconvention of using a fregperation Wl not seem alien tdahem. However, it is
possiblefor the veneer tdift this burden from programmers lgefining “smart pointers”
that automatically maintain a refererzmunt foreach stub obje¢Stroustrup 87]. Rather
than accepting and returning normal pointers, the veneer operatioreslefieed to use
smart pointers. \Wenthe referenceount for a stub object drops to zero, that stoject
is automaticallydestroyed. Because thient program references stub objeeislusively

through smart pointers, it never needs to worry about freeing them.

Like a normalpointer, a smart pointer supports thand . dereferencingperators to

return the referenced object. In addition, however, the smart pointer type overloads its
assignment, copy, andestructor operations to update theference counts of the
associated stub objects. Figure 4dH)ines asmart pointer to @h_any, assuminghat

th_any has a reference count fialefs initialized to zero.

Smart pointers andtherreference counting schemggpically havethe problem that they
cannot garbage collect cycles of referendest example, if A points to B and B points to
A, their reference countsilvboth be at least 1 aridey will never be garbage collected.
Fortunately, this situatiodoes nothappen with stub objectsStub objectonly “point”
(via handles) to objects the database, and database objectsadpoint to stub objects,
therefore acycle including astub object ismpossible, so everstub object that casafely

be reclaimed will be.

One complication of using smart pointers with subtyping is that is necessary to mirror the
subtyping relationships in a hierarchy of sn@ointer types, rather than creatingiagle
parameterized smart pointer type. Although Gtpports parameterized types, there is
no subtyping relationship between different instances of a paramet¢yzedso a

parameterized smart pointelassdoes notallow the Thorsubtype relationships to be

48

captured. Foexample, ifS is a subtype off, then there is nsubtyping relationship
betweenPtr<S> andPtr<T>, wherePtr is a smart pointer type. Instead, the smart pointer
implementer mustreatePtr_S and Ptr_T smart pointer types, witlPtr_S explicitly

declared to be a subtypeRif T.

class smart_ptr {
public:

th_any *obj;
// Increment and decrement the reference counts of the object

void inc_refs() const {if (obj) ++obj->refs;}

void dec_refs const {if (obj) {if (--obj->refc < 0) delete obj;}
// Unless the pointer is null, increment the refs when a
// smart pointer is created or copied

smart_ptr() : obj(0) {}

smart_ptr(th_any *t) : obj(t) {inc_refs();}

smart_ptr(const smart_ptr& o) : obj(o.obj) {0.inc_refs();}
// If smart pointer b is assigned to a, increment b’s refs and

// decrement a’s
smart_ptr& operator =(const smart_ptr& o) {
o.inc_refs(); dec_refs();
obj = 0.0bj;

return *this;

// Decrement the reference count when a smart ptr is destroyed
~smart_ptr() {dec_refs();}

// Define operators to convert a smart pointer into an actual pointer
operator smart_ptr*() {return obj;}
th_any* operator->() {return obj;}

}

Figure 4-10: Smart Pointer Implementation

We implementedmart pointers foour C++ veneer. Unfortunatelyur C++ compiler
adhered to an obsolete versiontloé still evolving C++ standard that allowegktremely
aggressive deletion of tr@ompiler temporaries used gtoresmart pointersleading to
the premature destruction of stub objects. At least for now weusng the free

approach instead.

4.2.4 Veneer Support For Iterators
There ardwo issues associated with supportitgrators inclient programs. First, most

client languages daoot directly support iterators. laddition, on the database side, it is
expensive to maintaithe state associatedth theiterator betweeralls. Implementing

yield directly would require thathe database use a separate thread foriesaealorcalled

49

by theclient; the thread would be awakenetienthe client requests the nexialue from

the iterator.

To avoid this complexitythe veneer presents @rrator to aclient as aroperation that
returns an array that containsedementsall of the values yielded byhe iterator. (Note
that thisdoes nothange theémplementation ofterators inside the databasés simply a
way of packagingthe iterator construct in aay that can beused from theclient

language.)

For example,suppose a&ompositePart object had asubparts iterator thatyielded its

constituenfAtomicParts:

CompositePart = type
subparts() yields (AtomicPart)

end CompositePart

In the C++ veneer, the iterator would be mapped to the function:

Array<th_AtomicPart*> subparts_array()

where Array<th_AtomicPart*> is a parameterized array type, instantiated store
references tah_AtomicParts. If the iteratorsignals arexception atny point, iteration
stopsand the correspond slot in the arrages to a nulvalue;the exceptiorvalue can be

determined by callintast_exc.

To iterate through thatomicParts array returned bgubparts, a C++ client programmer

could write:

Array<th_AtomicPart*> ap = cp - subparts_array()
for(int i=0; i < ap - size(); i++) {
th_AtomicPart* p = apl[i];

}

Bundling the results of an iterator as an arfays to provide one important feature of
iterators: early terminationThe client has no way of stoppitige iterator before it has

generatedhll of its values. This can be a problenthé iterator generateslage number

50

of values thatheclient isnotinterestedn, or the iteratorhas side effects and musit be
allowed to run longer thatine desirechumber of times. Also, sonierators generate an
unbounded number of valuefgr example aniterator that generatesll of the prime

numbers.

The problem can bpartially solved by allowinghe client to specifyhow manytimes the
iterator is allowed to run in advance. However, this approach is of no use if the number of
iterations cannot be determined in advanEer example, withthe prime numbeiterator
mentioned earlietthe caller couldfind the 10,000thprime, but not thelargestprime less
than 10,000. In the Batched Control Structures section (Section 7.2)esgdbe a
scheme thatoesallow early termination ofiterators, and that provides (wittome
restrictions) theadditional benefit of allowinghe entirebody ofthe foreach loop to run

inside the database without domain crossing or typechecking overheads.

4.3 Implementing New Veneers
We will now consider the steps required to implement a veneer for a new landdacie.

of a new veneer can be copied from an existing vendéere areonly a handful of
database commands, and itrigial to reimplement them by hand, so wen't discuss
them further. This leaveghe stub types: as wahall see,implementingthe stub types is
mostly a natter of tweaking arexisting stub generatorto outputstubsfollowing the
syntax of the new language. However, we also consider how the desegr changes in
response to somsgnificant differencedetween client languages, suchvasying type

systems and garbage collection.

4.3.1 Stub Generators
In principle, the veneamplementer might implement all dfie stub typenterfaces and

implementations by hand, and in fact this has been dorsenisubsets of Thor. For the
complete hor typehierarchy, however, this i®8o muchwork, especially sincéhe Thor
type hierarchy is constantly growing as new typesadded. (There are currergveral
dozen types and hundreds of methods.) Therefore, the ver@ementer instead writes

a stub generatgr which automatically generates the stub typeterfaces and

51

implementations givethe interfaces tahe Thor types.This is essentially similar to the

stub generator used in RPC [Birrel 83].

The stub generator runs apart of thedatabase and hasfairly simpleimplementation.

Given a method interface for a type T of the form:
method(argl: T1, arg2 T2, ..) returns (esul)

the C++ stub generator constructs a stub function based on the skeleton in Figure 4-11
with each of underlined items replaced by the corresponding item from the method
interface. Because the database stores a parsed version of the method interface, it is easy

for the veneer generator to obtain the appropriate items with which to “fill in the blanks.”

result * method (T1 argl, T1 arg2, ...)
{

result* res=0;
begin_invoke(self, method-index);
put_handle(argl); put_handle(arg2); ...

if (do_invoke())
NEW_TH_OBJ(get_handle(), result, res);

end_invoke();
return res;

}

Figure 4-11: C++ Stub Function Skeleton

(For explanatory purposed, weavesimplified the skeleton somewhat. Fexample, the
call used to send an argumenh@ alwaysput_handle but rather depends upon ttype

of the argument being sent.)

Constructing a new stub generatoressentially a ntéer of modifying an existingstub
generator to use thg/ntax ofthe new language For example, Figurel-12 shows the
skeleton that would be used for an Emlaisp stub function. It conceptuallyhe same as
the C++ version, though surfadéferencesshow up because dfisp’s different syntax
and lack of explicitype declarations. (Notice that the methmasine is prefaced with the
name ofthe type to ensuraniqueness, and th#te implicit self argument in the Thor
version is made explicit. Ithe next section, we ilivconsider in more detail these and

other changes caused by differences in the client language.)

52

(defun T-method (self argl arg2 ...)
(begin-invoke self method-index nhame)
(put-handle argl) (put-handle arg2) ...
(let (result ((if (do-invoke)

(get-handle) nil))
(end-invoke)
result))

Figure 4-12: Lisp Stub Function Skeleton
Currently, the stub generatorimplemented as programrunning inthe database that is

explicitly modified tosupportnew languages; this hasovedreasonably convenient. One
might build a “universal’stub generatonvhich takes a description of the stéimnction
skeleton for an arbitrary language amgomatically generatébe stubfunctions directly
from the description. Thehallenge is to makekeleton description languagafficiently
powerful withoutmaking it as difficult touse afull-fledged programming languagé-or
example, some form of looping is required, iaplied by the ellipses inthe skeleton

examples.) This might be an interesting direction for future work.

4.3.2 Different Type Systems
The C++ type and function dispatch systaerarich enough to completely mirréihose of

Thor. (In particular, the C++ typsystem supports subtyping, and thdispatch
mechanism allowshe same methodhame to dispatch to different functions, with the
appropriate function chosen based tbe type of the receiver.)This allowsthe C++
compiler to typecheckfior calls at compile time and also permits methathmes to be
used “as is”. In this section, we consithenw the veneeinterface changes fdanguages

with more restrictive type and function dispatching systems.

4.3.2.1 Weakly-typed Languages
Languages such as Lisp hathe simplest possible type system, which there are no

explicit type declarations and function dispatching depemayg on the name of the
function, not thetype of the receiver. As we saw in Figure 4-tfs requires several
changes to the stuhnction interfaces. Firsthe methochame is prefaced wittihe type
name, to ensure uniqueness; example,the next operation of thdist type would be

calledlist-next in the Lisp veneer. (The type and methoameare separated by a *-’, a

53

character that never occurs imdr type or methodhames, so uniqueness thie stub
function name isssured.) Second, thmplicit self parameter in the Thetgersion is
made explicit. Finally, the type declarations for the arguments @apletely omitted in
the actual code, thoughey should be maintained in a commémnt the benefit of the
client programmer. Any type errors in aweakly typed language W of course go

unreported at compile-time, but Thor will detect and report any type errors at run-time.

4.3.2.2 Type Systems without Subtyping
Many older statically-typed languages, such as C and Gugportexplicitly declared

types, but dmot have any form of subtyping onethod dispatching. Theame clash
problems caused ke lack of method dispatching can be solvedhiasame fashion as
for theweakly typed languagéby concatenating the type afhction name); indeed this

is style already required by CLU and commonly used by C programmers.

The lack of subtyping is more of a challenge. The cleaamstoach is for each type to
include explicit conversion functions thatnvert between it and ilsimediatesupertypes,

thus giving the client the ability to use the subtype wherever the supertype is expected,
without allowing any illegakconversions. (Because evetyb object hasxactlythe same
representation, it is trivial to convert a stub object of one type into a stub object of another
type.) Forexample, if type D has supertypes B andv@ich havesupertype A, then stub

type D wil include conversion functions to B and C, whichil include conversion
functions to A. To make things more convenient, each subtype includes all of the methods
of its supertypes with the receiver type declaratipacialized tdhe subtype, so that no

subtype-to-supertype conversions are ever necessary for the receiver argument.

A less clean, but more convenient approach is currently used i8veneerwhich treats
C as if it were aveaklytyped language. Each of the stub typegiven a differenname
to serve as documentation, dbey are all typedef'd to the same typdor purposes of
typechecking. This eliminatébe need foexplicit subtype-to-supertype conversions but

also eliminates any possibility of compile-time typechecking.

54

4.3.2.3 Type Systems without Multiple Supertypes
Finally, languages such as Modula-3 and Object Pascal have subtyping and dispatching,

but do notallow a subtype to have multipbeipertypes. Our solution gsicallythe same
as in the previous section: a type is declared to be the subtgpgaie of its supertypes
(chosen arbitrarilyput includes conversiooperations to convert it tany ofthe other
supertypes. Fewxplicit conversiorarelikely to berequired because ttatient language
alreadydoes the righthing for single supertypes, and becausdtiphe supertypes are

currently not used very frequently in Thor.

4.3.3 Coordinating Client and Database Garbage Collection
Some languages, such as Lisp, Smalltalk, &dJ, have a garbage collectdhat

automatically disposes of objects tlaa¢ no longer referenced. Thus, garbegection
performs a function similar to that performed by the smart poidefised as gart of the
C++ veneer. However, because the garbage collector bsiltain and often non-
customizablepart of the system, it is difficult to achievehe necessary degree of
cooperation between the veneer and database garbage colleasaong, issueshat we

discuss in this section.

When a stub object is disposef] the database needs toit®rmed so that iknows that

the database caeclaimthe handle tableslot andpotentially garbage colle¢he object.

Some garbage collection systems, such as that of Smalltalk, allow user-defined
“finalization hooks” that areutomatically run when an objectabout to be disposed of.

In such a language, theok can asily be defined to infornthe database of the stub
object’'s impending demise. Other languages, such as Lismtgoovide sucthooks. In

that caseclient programmers musixplicitly call afree operation to releasendles and

allow the database to garbage collect the associated objects. If such an operation is not
provided, the stub objects in the venedrlve automatically garbage collectdaljt newly

created ornewly unreachabl®bjects in the databaseillwnot be subject to garbage

collection until the client program terminates.

A second issue iBow to avoid creating redundant stub objetlksle still allowing stub

objects to be garbage collecteldecall that weused a table VH to map betweleandles

55

and existingstub objectswhich weused to avoid creating a new stub object ifsame
handlewas returnedagain bythe database. In system with garbage collection, the

references in VH will prevent the stub objects from ever being garbage collected!

Smalltalk provides a specialechanisnfor avoiding this problemweak arrays. A weak
array is like a standard array, except that references in naaregeaced for purposes of
garbage collection, thuslowing the referencedems to be potentially garbage collected.
Furthermore, the entry in the arrayastomatically cleared whethe associatedem is
garbage collectedhallowing the veneer tadetect whether the associated stigm still

exists.

In the absence of weak pointers or arrays, thare two not entirely satisfactory

compromises possible:

» allow redundantstub objects. This will cause additionalvork for the garbage
collector, and vl waste storage if thelient maintains references twanyredundant

stub objects.

» prevent stub objects frobeinggarbage collected unleize client explicitly clears out
the entry in VH bycalling free on the object. The disadvantages are the dangers and
inconveniences of explicit deallocatioflf the stub objechasotherreferences in the
client, but the corresponding Thor objdws nootherreferences, the Thaeference

could be garbage collected, leaving the veneer references dangling.)

The general problem is thtite veneer and the database need to performpdesiorm of
distributed garbage collection, the needvitich wasnot anticipated bymanylanguage
designers. Unfortunately, unlesise garbage collector providesufficient hooks for

customization, we don’t have any magic bullets for remedying these shortcomings.

4.4 Language Independence Issues
We claimed thathe veneedesign was language independent. leawgue that it is not

only possiblebut alsoeasyto implementthe veneerdesign in essentially any client

language. Several features of thesign contribute to thiproperty. First, the object

56

representation used is quénple. The client languagenly needs to be able tepresent

integer handles, plus a fixed set of basic types.

Second, generating the stiumctions for an arbitrarglient language is easy. The veneer
generatoitself is fairly simple because each stub function lexactlythe samestructure,
and because the databaseres thenterfaces othe types it supports in atready-parsed
form. Addingsupport for anew language is as simple @®difying an existingreneer
generator to produce output in thgntax ofthe newclient languages.For example, we
wereable to quickly modifythe C stub generator fally support C++, even though the
class and subtypingmechanisms irC++ aremuch richer than hat is available in C.
Similarly, [Helfinstine 94] describeshis implementation of &odula-3 veneer for Thor;
the author reports that it wamt difficult to modify the C++ stub generator tutput

stubs for Modula-3.

Theonly non-trivialrequirement to implement a veneer is tthegtclient languageupport

a cross-domain communicatiomechanisn(for example, interprocess communication) so
that it can exchange message with the databases. Most client languages hsnpmsuth
or allow it to be added in an extension language. Attesting tpattability of the design,

we have implemented veneers for C, C++, Emacs Lisp, Perl, and TCL.

57

Chapter 5.

Batched Futures

This section discusses batcHatlres, the rain contribution of this thesis. It beg with
an abstract description of futures and hitvey are used t@chievetransparent batching.

It then presents an efficient implementation of batched futures in Thor.

5.1 Introduction to Futures
In general, a future can be viewed as a referentieeteventual result of @ll. Like the

actual result, it can be passed as an argumeaoither calls, included irdata structures,
and so forth. If the actualalue referred to byhe future is required andot yet
computed, theslient waits until it isavailable. Futures were introduced in thparallel
programming language Multilisp to hide caller-callee parallelisat,we usehem for a

different reason: to defer calls so that they can be batched.

An important point to realize is thd&br many calls, the actual returrvalue isnot of

immediateinterest to theclient. This is especialljrue in asystem such asurs that
conceals the representation of objects thrdugydlesthe particulavalue of a handle is
neverof anyinterest,sincethe only thing a clientan do with a returneldandle is pass it
as an argument to anothell. (In manyveneers, client programmersdlwot even know

that handles exist because they are encapsulated inside of stub objects.)

The basic idea obur batched futures design, in ggnplest form, is to batctalls as long
as theyreturn handles. Whernhe client makes such a callhe stubfunction records
informationabout thecall, andreturns afuture to theclient instead. Irour system, the
future isessentialljjust an integer chosen by thheneerto stand for the eventual result of

a particularcall’. Latercalls in abatch can refer to results of earlier ones using futures

“Similarly, a handle igeally just a arbitrary integer chosen by the database to designate a particular
object; there is no particular significance to the actual value.

59

and thus a sequence of interrelatedls can be batchetbgether. As soon as tloient

makes a call that W return abasic value, or commits teansaction, the veneer sends the

entire batch of calls to the database in a single domain crossing. As the database processes
each call, it makes a mapping between the result and the corresponding fatlow the

result to be retrieved for later uses of the future, and sends back to the veneer the actual

values for each of the futures in batch.

Note that themechanisndepends upon knowing the signatures of the database methods,
so that the veneer casll whether to send a cathmediately ordefer it. This information

is available inthe interfacesstored in Thorand embedded ithe stubfunctionsstored in

Thor. Stubs that retudmandles defer thetallsfor later executionpther stubs cause the

execution of their call and the preceding batch of deferred calls.

5.2 Example
Consider thenth function, which a client application might define to return the nth value in

a list of integers as seen in the following pseudocode:

nth (I :int_list, n: int) returns(int)
fori=1tondo
| = l.next()
return 1.first()
end nth

It works bycalling the next operationn times to findthe nth node in thdist. Then it uses
first to get thanteger associated with that noddsingstandard invocations, thienction

requiresn+1 pairs of domain crossings.

With batchedfutures, thesamecode requirenly a singlepair of domain crossings.
Insidethefor loop, theclient codemakesno domain crossings. Theext stub function in
the veneer simply returns futurés.f, to stand for the results of thells and adds
information about each call to a queue of batched calls. Each future is usedeasities
(i.e., first argument) afhefollowing call. Finally,the client calls|- first(), whichreturns

a basic value.The stub function fofirst sends the batch @flls tothe databaseyhich

60

evaluates theet of batchedallsand sends back the requested resulfifgir This entire

process is depicted in Figure 5-1.

In essence, the batchedlls form a simplg@rogram that recreates teéects of aset of

possibly interrelated calls. The programming language allows just a few actions:

» calling an operation

* assigning the result of an operation to a future usable as an argument to later calls
* returning the result to the client

The database’s job is simply to interpret this programming languagendly. We will

describe how it does so in the next section.

Client Code

int nth (int_list *I, int n)

{

—

for i=1tondo
| = l.next();

—

Batched Program

Thor

f; = hynext()
f, = f.next()

return fo.first()

4

return Lfirst(); <

}

A

7

@

~

/

Figure 5-1: Batching interrelated calls using futures

The nth function is not necessarily a realistic example, becauseatld logically be
included aperation in the database. However, one aspect @xtmaple is realistic: it
navigates a chain of pointeogfore reaching a point where actual valass of interest.
Clients often navigate other, less predictable chains of pointersnditrsalistic to expect
that the databasecludes a built-inoperation forevery chain of poiters that theclient
might follow, both because it @ifficult to anticipate every useful chain and because to do
so would create a very cluttered interface. Batched fuhaigsresolvehe dilemma:type
interfaces can consist of a logicakt of operations, gsibly fine-grained, that are

combined based on the particular needs of the application.

61

5.3 Implementation
There are three key issues in the implementation of batched futures:

1. how to represent batched futures in the veneer.
2. how to maintain the mapping between futures and actual objects in the database.
3. how to limit the size of the mapping

Futureshave to be represented in such thaway that theyare interchangeable with
handles in stub objects. A mapping has to be maintained so that the database can associate
a future used as an argument in a call with the corresponding result, asizetioé this

mapping has to be limited, since each oallrns a new future and tmeapping could
potentiallygrow without bound. Weonsider each of these issuesum in thefollowing

subsections.

5.3.1 Representing Futures
Futures are simply apecial kind of handletagged todistinguish them from normal

handles. Inour implementation, weag futuresusingthe sign bit: futures are negative,

handles positive. This convention is followed in our examples and diagrams.

Futures are chosen by the veneer, inaaamar to be explained the next section.Like
handles, futureare notmanipulated directly byhe client but are encapsulated in a stub
object, towhich the client program isgivenpointers. Because of thisvel of indirection,
there is only one instance of each future; on assignment, clientpcmpgrs,not thestub

objects themselves, just as with handles.

Client

X

Figure 5-2: Representing Futures

5.3.2 Mapping Futures to Objects
Two parallel tables maintaithe mapping betweefutures and objects, analogous to the H

and VH tables that map handles to objects €t object. The veneer future table VF

maps futures testub objects, and the database future tablmdps futures to actual

62

objects. Slots in VF and F aratialized as aesult of client calls, as w&halldescribe in

the following subsections.

5.3.2.1 Maintaining VF
Slots in VF arénitialized whenthe a stuldunction returns a future tiheclient. The stub

functions themselvesre unchangedhen futuresare used, but thieinction that reads the
result object fromthe database imodified to choose a future instead andorm the

database of its choice.

stub_obj* get_object () // version using futures
{
future_index = future_index + 1;
batch message to Thor: “assign call result to future future_index”
stub_obj* o = new stub_obj(-future_index);
VF[future_index] = o;
return o;

}

abwnNBE

Figure 5-3: Returning Futures

The veneer performs the following steps to create a new future, as shown in Figure 5-3:
1. increment a global counter to determine the indéxhe future.

2. constructs a message to thié database that the result of the ladt should be
mapped to future (The database will receive the message as part of the next batch of

calls.)
3. allocate a stub objectthat contains future
4. store a reference toin VF
5. returno to the client program.

Because thget_object function and the containing stub function are so simple (see Figure
5-3), they are small enough to be inlined into the client program, avdltenexpense of a

function call.

63

5.3.2.2 Maintaining F
The database initializes slots in F when it processes a batch of client calls. Each batched

call specifies the future indexhat should be mapped to the result, as described in the
previous section. After the database processes the call, it stores the resulting object in
F[i]. When futurd is used as an argument to a call, the server looks]itoR{nd the
corresponding object. Because the server processes the calls in the same order they were

made, the arguments of calls are determined by the time the server processes them.

Veneer Database
f, = hi.next()

X —#-] >|F:-)——>

"

VF

Figure 5-4: Mapping Futures to Objects
Thefollowing is amore detailed description of the steps performed by the datalbese

it processes a call message from the client:
* Read the method name and arguments

* Look upeach of the object arguments in H ordépending on whethehe index is

positive or negative.
* Typecheck and perform the call

» Ifthe result is a basic type or futures are not enabled, send the result backlienthe
otherwisestore areference to the call result iniF[wherei is theindex specified by

the client.

Notice that theonly overhead that has been addedthie server stub is a couple of
inexpensive conditionals. Thverhead igninusculeand is dwarfed by the amount of
time saved in avoiding a domain crossing émel amount otime spent performing the

actual operation.

64

5.3.2.3 Example
Suppose/F is empty wherthe nth function shown in Figure 5-1 runs. Aftiére for loop

runs, futured,..,n will be assigned to results dfecalls. Calli +1 will refer to the result
of calli by usingfuturei, and the slots o¥F will point to the stub objectsolding these

futures.

Whenthe callsrun at the server, the slots in Rivee assigned pointers tthe objects
corresponding to the results of the calls, and the object corresponding to the resuit of call
will be computed before it is used in caltl. The operations inside the databaseer

need to be concernembout the case where one tbkeir arguments is an unevaluated
future. The actual Thor operationalled bythe dispatcher requineo modifications and

run at their full speed.

5.3.3 Limiting the Size of the Future Mapping
Because each deferred call returns a new future and a future could be used as argument to

any later call, tableE andVF can grow arbitrarily large.

Our implementation solves this problem by periodically replaciotures with the
corresponding handles. Aftdre number of futures passedimit, the veneeflushes the
pending invocations and piggybacksemuest to the database to send the olhawctlle
equivalentdor all futures currently in use. (The futures currently in use are thetbaes
havenot yet been freed bihe client.) The veneer uses the pointergknto update the
stub objects. Becaus#ient copiespointer to the stub objects, andt the stulbobject
themselves, we doot have to worryabout updatingnd tracking mitiple copies of each

stub object.

The veneer and the database can daely reclaim alklots inF andVF. Thus futures

require only a constant amount of additional storage relative to normal calls.

Logically speaking,there is no reasomvhy the database couldot send back the
corresponding handleafter every batch otalls. However, there are performance
advantages to sending handles in larger batches because it is cheapené&bidaead

than a lot ofsmallones. Also, the longer the database waits gtieater thdikelihood

65

that theclient has freedutures in the batchgllowing the database to avos#nding back

the corresponding handles, as discussed below.

Before After

H
x—-» my X @ "ay
L “

VF

Figure 5-5: Remapping Futures

5.3.4 Stub Object Storage Management
Managing storage associatemith stub objects containing futuresnst aproblem if the

client language is garbage collected. Atftex veneer updates the future in a stub object
with corresponding handle, it cleaosit the slot in VF. The stub objectillvnot be
discardedwhile still referenced from VRyut will be subject to garbage collection sgon

as it is updated with the correct handle and the slot in VF is cleared.

As mentioned earlientherlanguages requirne programmer to usxplicit deallocation.
In such languages, theee_object operation should cleavut the entry inVF as well as
reclaimingthe object storage. kénthe veneer attempts to replace futures vihibir
actual values, it can simply skipe entries iVF that have been cleared, siratberwise it
might overwrite memory that had beemeallocated for other purposes. As an
optimization, the veneer caell the frontend at futureemapping time exactlyvhich
futures have non-empty entries \@F, saving the expense sénding back handles for

futures that have been freed.

There is one other conceregarding stub objects containing futures hafstub objects
contain handleghe veneer almost abysensures that there aly one stub object for
each database objed(t is possible that if an object migrates frame server to another,

it will be assignedwo or more differenthandles bythe frontend. Howevehis should be

66

a rare occurrence.) Thsamepropertydoes notold for stub objects containing futures.
This is a necessary consequenctheffact that the veneer doest know what thectual
handle vill be atthe time the stub object is created. Thereforeltiple stub objects can
refer to thesame database object. Such redundauii objects are problem only if the
client has a very large number adtive references that correspond t@raallnumber of
actual objects. (Inactive references are not a problem because in ththecsts® objects
will be freed.) Presumably, thisilwbe not be acommon occurrence. In general, we
expect that most futures aomly temporaries (thats, intermediate navigation pointers)

and users won't want to hold onto them.

If redundant stub objects are a problem, the veneeswaport an operation that takes a
reference to a stub objedteeing it if it is redundant and returning a pointer to the
corresponding ‘canonical’ stub object for that object’s handle. (The operation requires, of
course, that the client has no other references to the redundant stub ddjentatively,

a customized garbage collector can do $ane thingsafely and automatically by
redirectinglinks fromthe redundant object to tlvanonicalone so that the former can be

freed.

5.3.5 Shared Memory Optimizations
Batched futures can beplemented using Unipipes. In this casthe veneer just writes

each message to the stream but dm#dlushthe streanuntil it needs aesult. However,

it is faster to use sharademory if it is available. Each deferredall is recorded in a
sharedmemory buffer, andlata written by oneide is always immediatelyisible to the
othersidewithout any need forflushes. (To obtain optimal performance, it is important
that whenone process blocksaiting for a result, the other is woken up quickly. Our
implementation uses shared-memory semaphores to obtain this effect.) thlith
implementationthe database cdmeginworking on deferrectalls whenever it has time,
even ifthe veneer isot yet waitingfor the result of the last call in a batcRor example,
on a multiprocessor this approaalowsthe database to processls in parallel with the

veneer.

67

Another sharednemory optimization permits us et rid of the F and VF tables and

future remappingntirely. The tables exisinly to allowfutures used in latezalls to be

mapped to the results ebrlier calls. The same effect can be achieved by allocating stub

objects in shared memoryRather tharmpassing a handle duture, the veneer passes a

pointer to the stub objeaishich the database dereferenceshamthe result of a batched

call becomes availabl¢he database stores thandle inthe stub object allocated for the

result, effectively performing the future remapping step for that object immediately.

The use of shared memory might raise the concern that the securitysgétira has been

somehow compromisedNote, however, that the worstaient can do i®verwrite a stub

object in shared memory, whithe client could do just asasily whenthe stub object was

in its own private address space. The databasat exposing anynore information than

it was before, and its runtime typechecking will continue to preverdigreg from making

illegal calls.

5.4 Other Benefits of Batching Calls
Batching callscan provideother benefits in addition to amortizing domain-crossing

overheads. Because the server‘saethe future” by looking ahead in the current batch

of calls, it canoften improve performance based on that foreknowleddgere are a few

examples of how this might work:

Thor could look forward in theatl stream to see objects thatllvibe used, and
prefetchany objects that areot already inthe cache. Foexample, in a breadth-first
traversal, thelient will make aset ofcalls thatfetch eactchild of aknown node. By
looking ahead, the frontend can know thatlesinitely worthwhile to prefetchall of
the children atonce, rather thafetching eaclchild individually as deranded by each

operation.

An interface to a filesystemould reorder read requests in a batclkads to optimize

disk head motion, and so forth.

A three-dimensional rendering system could avoid performing an expensive rendering

if it determined that a later call would obscure it.

68

Of coursethis ability to know futurecalls in advance has limitationgzor example, if an
argument to aall is afuture, thesystem wi not what it denoteantil at least some of the

preceding calls have been evaluated.

5.5 Exceptions
If exceptions are returnechmediately,then no batching caiakeplace. However, in the

model we haveroposed, irwhich the client makes explicit calls toheck for exceptions
in the exception history, there isagell-definedpoint, which neednot be thepoint of the
call, at whichexception valueare obtained. For purposeshaitching, the venedreats a
request for an exceptioralue in exactlythe same way it wouldreat an operation that
returns abasic value— batchingtopsand the current batch chlls issent over to the
database to obtain the excepti@ue. To avoid unnecessanund trips to the database,
the database sends owdirof the non-null exception values that haven't besemt yet to

the client, not just the particular one requested by the client.

Thus batching is possibssuminghe client can defer askinfpr exceptionvalues until
theyareactually needed. Because exceptipngpagate, as waentioned, thelient can
often avoid checkinfpr exceptionauntil thefinal call in astring of interdependermalls—
the last call W succeed if ananly all of the precedingalls succeeded. Thushecking

for exceptions and achieving high batching factors need not be mutually exclusive aims.

69

Chapter 6.

Experimental Results

In this section we characterizBe gains that can bexpected fromusing futures, and
present experiments showitige benefit obtained on variowgorkloads. Webegin with a
simple mathematical model ¢fie system’s performance. We therhibit systemghat
show the predicted performance across a rangmtohing factors andomain crossing
costs. Finally, we giveresults from an OODB benchmanknning on Thor that show that
batched futureyield usefulperformance increases even in unfavorable conditions where

only low batching factors can be achieved.

6.1 Performance model
The average cost of a call can be modeled by the formula

t

t, +—é

wheret, is the cost ofunning a callfy is the cost of the pair of domain crossings, ail
is the “batching factor”: the total number of calls divided by the number of paiiendin
crossings. Wenthere are no futuresB = 1 (since each call requires a pairdaimain
crossings); as we defer calBincreases anthe averageost of a call goes down. Note
that themodel assumes that is independent of B, which tsue inactual systems. In
other words, the amount time it takes to switch betweedomains is independent of the
amount of data (thas, the number of batched calleingtransferred between the two

domains.

The model predictshat, as B increases, tlaeragecost of a call Wl asymptotically
approacht., droppingrapidly at first andhen with increasing slowness 888 goes to

zero and. begins to dominate the total cost of the call.

71

The key points to realizare thatt. provides a lower bound on the averagst per call,
and that the larger the ratio @fto t;, the more aystem has to gain from batchetures,

but also thehigher the batching factors it musachieve beforeghe domain crossing
overheady/B becomes negligibleFor example, ifthe ratio oftyto t.isr, then a batching

factor ofr will yield performance that is within a factor of two of the optimal value.

6.2 Measured Performance: Best Case
The best case for batched futures @ient program inwhich all ofthe cross-domainalls

can be batched. To experiment with a program that attains this best case, we considered
the nth function described earlier. Each operatiothianth function returns dandle, so

all of the calls can be batched, leading to an arbitrarily large batching factor B.

To show how the speedup provided by batched futtagesacross a range ehlues for
t. andty, and also to demonstrate a rangesgétems to whichbatched futures are

applicable, we considered three systems:

1. The first system is a simple client-server system with a verytdJovalue and a
comparatively high valuéor ty. The client and serveun in differentprocess on the
same machinand communicate using a sharadmory buffer. The server, written in
C++, implemented just the essential elements necessary toerexperiment: dinked
list, a very simple dispatcher, a handle table, ahduwae table. It dichotimplement
typechecking, garbage collection, concurrency control, persisten@yoof other
features of Thor as a database. The dtuiztions andthe client program were

essentially the same as those in the case of Thor, however.

2. The second system i&dr running in its typical configuration, in whidhe client and
frontend areunning onthe same machinéut in different processes. Thg for this
system is significantly highethan that of thefirst system, inpart because the
functionality provided by for is much greater and irpart because the frontend

dispatcher is currently highly unoptimized.

3. The third system is agairhor, butwith the client and frontend running odlifferent

machines. (It is possible that we W run Thor inthis fashion inthe case otlient

72

machines with memory capacities smallfor aneffective frontend cache, evithout

sufficiently safe protection domains.)

The observed performance of each ofdxstemsare shown in Figure 6-2 throudigure
6-4. The experimentsere compiled usingDEC C++ and run on kghtly loadedAlpha
AXP3000 running OSF/1.3. Each of the Thor experiments ran with a warm cathat so
the Frontendlid not have to gaover the network tdetch objects. The average time per
call was calculated bglividing the actuakunning time ofthe program by th@eumber of

calls on the database.

As predicted by the model, the averagee per call dropsrapidly at first and then
approacheg for that system with increasing slowness; the shape for eachrgssrhbles
the graph of 1/B scaled liyand shifted up bi.

In thefirst system, batched futures lead tgraater thanenfold increase in performance
for sufficiently large B, in the secondnly athreefold, and in the thirdagainabout a
tenfold increase in performance. Taying benefits obatched futures arexplained by
the differences int; andty across thalifferent systems, as summarizedhe Figure 6-1,
which givesapproximate value®r t. andty in microseconds for each system. Thakies
for ty were estimated by observitige difference between average call tifioe B=1 and
B=2, which works out to b&/2. The value fot, was estimated by subtractibgirom the

average call time for B=1, whichis+ ts.

te ty

1 10 126
2 |75 130
3 1100 905

Figure 6-1: Values of.tand § for some systems

73

We verifiedour estimates of; andty for Thor verified by runningthe nth function on a
version of Tor inwhich the client andthe database welked into the same address
spaceallowing us to measure directly (becausg is zero.) In that case, vieundthat

t. averaged around 94 microseconds, in the same rangewrigstimates. It'snteresting
to note thatwvith batched futures the averagest per call dropped to\alue below this
figure, to around 80. This is probably because batched futures eliminate the need to read a
resulthandleafter everycall. Instead, a whole batch fifture-to-handle mappings is a
read at thesame time, which imoreefficient. The otherinteresting result is the fatitat

t. is about 33%higher when For and theclientrun on differentmachineghan wherthey
run on thesame machine. This is explained thg fact that the kix calls toread and
write from sockets are morexpensive tharthose using our custom shareanemory

communication mechanism.

As mentioned, themaximum speedup for batched futures withhdr in its normal
configuration (client and frontend on the same machine) is around 3. The spesdalb is
because operatiomarshaling, typechecking, and dispatching inoiT have not been
optimized and are currently rather expensive, leading to a high valyet@nthough the
operationsthemselvesare simple. Wherthe operation dispatcher is optimized, we can

expect to see speedups from batched futures closer to those seen in the simple IPC system.

Even Thor'srelatively large value of; is dwarfed in comparison with theost of a
network communication, as seen the thirdsystem. In that case, batched futusgain
lead up to a tenfold speedup. If batched futwere used in gystem that hathe t; of
our IPC system and thigof a system communicating ovenatwork, we would expect to
see up to a 90 fold performance improvement. Obtainingsg@edup, however, would

require hundreds of operations being combined in each batch.

74

140

120 T

100 \

60

Time/Call (usec)

40 \O\O\O\Q\QOM
20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Batching Factor

30

Figure 6-2: Best Case Performance— Simple IPC

225

200 +-2%

175

150
125 x\‘

100 \‘

Time/Call (usec)

75

50

25

0 2 4 6 8 10 12 14 16 18 20 22

Batching Factor

24 26 28 30

Figure 6-3: Best Case Performance— Thor, Local

1100

1000
900

| +—9

800

700
600

LT |

500
.

Time/Call (usec

400
300 \

200 ,A..i

100

0 t t t t
0 10 20 30 40
Batching Factor

50

60

Figure 6-4: Best Case Performance— Thor, Remote

75

6.3 A Less Favorable Case
Not all applicationsare asfavorablefor batched futures dsst descent. Foexample, in

graph traversals, many values have to be knownediately,such as theumber of nodes
connected to the current nodaeaning that many callsannot be deferred and the
batching factor is necessarilylow. In this section, wegive an example of such an
application, and show that even under such unfavorable circumstasefes batching

factors and performance increases still result.

As a representative application, weplemented various traversals frahe OO7 suite of
benchmarks for object-oriented databases [C8P¢y The OO7 databasensists of a set

of interconnected parts, arranged ihiararchy of complex assemblies, base assemblies,
composite partsndfinally atomicparts. The operations on the patslassemblies are
quite simple: eithemreturning a connectegart, orreturning a scalar attribute, such an
integer id or a character documentation string. Miplementedthe parts andheir
primitive operations as types in the Thor databasel the traversals in thehdr C++

veneer using the methods defined by the OO7 type interfaces.

In practice, onenight safelyincrease performance layjiplementingparts of the traversal
inside of the databasesingTheta, thgorogramming language fohe Thor database. We
wished, however, to assetbe worst-case scenario, Wwhich the client performs a large
number of very fine-grained interactions withe databasempany of whichneed to be

performed immediately.

We ran OO7 traversal 2b, the traversal t&nandshe greateshumber of fine-grained
database calls. The traversadits everypart in the databaseswappingthe x and y
coordinates of each atonpart. Itmakes dotal of 207,39%alls onthe database and has

an actual running time of 46.19 seconds, for an average of 222 microseconds a call.

76

01 4619

40 4

30 4 27.25

201 15.28 B

10 il M Inside DB
N

Batch Factor: 2.33
Speedup: 1.7

Figure 6-5: OO7 Traversal Performance

The batchingactor was low, around 2.33, bobt solow that batched futures did not
yield usefulperformance increases. Even in a program such as theb@@Rmarkhat
needs to knowmany values immediatelythe calls are aboutevenly balancedetween
operations that return objects and can be deferredadlsdhatreturnvalues and need to

be performed immediately.

As seen in Figure 6-5, batched futures increased the performance by a fattdr of
decreasing theunning time fromaround 46 seconds to 27 second$ow good isthis
improvement? To provide a basws comparison, we measured tirae for the traversal
when the client program waslinked into the database, so that tli®main crossing
overhead was zero batl of the other costs were treame. In that case, thiee to
perform the traversal was 15 seconds, so batched futures broughwitisria factor of
two of the optimal time. Theotal time when running insidehbr is about a third of the
normal value, which matchesur measurements ithe list descent case that shdwis

about a third of; + t4, the total overhead of running an operation without futures.

I

Chapter 7.

Extensions

In this chapter, we introducseveral extensions tbe batched futuresiodel that increase

the amount of batching that is possible.

7.1 Futures for Basic Values
One obvious extension to batched futures isathifity to use futures for operations that

would ordinarily returnbasic values. Sometimése client does noteed to knowbasic
value resultsmmediately, if at all. For example,the client canswap thevalues of two
slots in an array of integers without knowing wtradsevaluesare, orsum aset ofvalues
without knowing the values of all of the intermediate results, as long as the database keeps

track of the intermediate values and allows the client to refer to them using futures.

The original,parallel version ofutures allowed futures to be returned in placéadic
values, while remaining completelsansparent to thelient programmer.However,this
transparency came at a cost: siyetem had tadd tags tevery value to indicate whether
it was a future or an actual value. Evérnge anoperation depended on the actualue

of an object, it had to check th&g tosee if the object was a future and block if so until
the actualvalue wasavailable. Thesetwo requirements arencompatible with the
demands obur veneer. Many client languages allodirect access tall of the bits of a
value and Wil not toleratetagging; furthermore insertintpe necessaryag checks would

require modifications to the client language compiler.

We therefore expose thaistinction between futures fdyasic values and actubbsic
values to client programmersjlowing them toconvert between théwo forms on
demand. (Our schemerslated, bunotidentical tothe promises mechanismsedwith

Mercury call streams; th&mall but significant difference is thétutures forvalues can be

passed as arguments to Thor operations withtagking.) Like promises, futures for

79

valuesare distinguished from normal values by making them a distyjp¢. Foreach
basic value type Tthe veneedefines acorresponding stub type Thor-T; wbhallrefer to
such types collectively as ThorValues. (For exantple stubversion of a client integer is
a Thorint Similarly, the veneerdefinesThorChars, ThorFloatgtc) Conceptually, a
ThorValue can behought of as a pointer to waalue that lives insidelhor. Each
ThorValue type supports‘dereferencing’ operation thaeturns the correspondiraijent
value; this is analogous to thaim operation for promisesUnlike promises, ThorValues
also support a creation operation that encodeslient value asthe corresponding

ThorValue.

To allow futuresfor values to be passed as argumevithout claiming them, theveneer
type interfaces include “futurized” versions of eastnb function thatake and return
ThorValues rather thaibasic values. For convenience, we also retathe standard
versions othe stub functions, so that tiekent does nohave toconvertall client values
into ThorValues before passing them as an argument to aopeoation. If theclient
wishes to batch a call containingrax of client and hor values, it vill need to convert
the client values to Mor values. Noticghat, aswith handlesthe veneer can batch up a
number of interrelatectalls without communicating withthe database. Unlike with

handles, the client has a way of obtain the actual representation of the return result.

A ThorValue is represented in the veneer asn&én containing either an actubsic
value, or a future for a call that will return a basic value, withgato indicatevhich is the
case. If theclient attempts to ‘dereference’ a ThorValoentaining afuture, theveneer

sends the current batch of calls to the database.

To process a set of batchedlls thatuse ThorValues, the database keepsapping
between each future forvalue andhe correspondinfasic valugesult, and sends back

the actual results to the veneer in a batch. The veneer then overwrites the futures in the
ThorValue stub objects with their actual values. Theredfieryalue for each of the
ThorValues used in that batch cdlls is available immediatelwithout consulting the

database.

80

As an optimization, the veneer cstore thevalue ofthe future in some ‘rawform when

it first gets it and defer the decodingtil the client actually askdor the value. This

allows the veneer to save the expense of decoding results thabnBreused as
intermediate values bthe client. For example,suppose the database and ttent
language use different formatsr representingloating point numbers, and that it is
expensive tocconvert between thewo formats. If theclient does not alwayseed the
values of the floating point numbers, the veneer could increase performance by performing
the conversiondazily. (It might be advantageous to keep a copy of theginal
representation even aftére number wagonverted, to avoid re-encoding thember if it

is passed as an argument to another database operation.)

Whenfutures are used fdvasic values, thegre no longecompletelytransparent. The
client must insertalls to obtain theclient values corresponding to ThorValueten
desired, and ®sibly also to wrapclient values as database valuedowever, client
programmers are always free to write their programssaal withthe normalversion of

calls, then convert them to use futures later as an optimization.

One concern is the proliferation of stub functioadding futures fotasic values has
approximately doublethe number ofstub functions. (Th@umber isnot exactly double
because stub functions whose argumentsrananvalues consist entirely of handles do
not need a futurized version.) We can avoid substantially incredstngodesize by
inlining the stub functions, which is desirable in @went because theyesmallandfairly
lightweight, especially wheffutures arebeingused. The other concern is thaient
programmers will be confused by a cluttered interface containittgplawersions of each
stub function. We can minimize this problem by choosing sensible conventiorasrimg
and ordering stub functions so thlé futurizedversions danot interrupt thdlow of the
interface. (The conventions we suggest are to use ALL-CAPS fondghe of the
futurized version of a stub function and to place them afteof the normal stub

functions, where they can be easily ignored.)

We havenot yet implementedutures forbasic values.However, we hve donesome

calculations ohow they would increasthe batchsizefor OO7 traversals and whetfect

81

that might have on performance. Trave®al theexample we considered in this thesis,
would benefit fromthe use of futures fdsasic valueswere theyavailable, becausall of
the calls toswap the integex andy attributes can be deferred; tbleent has no need to

know the actuat andy values.

Using promisesthe average batchize increase fron2.33 to 3.47,and the predicted
performance usinghe matheratical model increases from.7 times the standard

performance to over 2 times faster.

7.1.1 Example
The following shows the normal and futurizecersions ofthe fetch andstore stub

functions for an array of integers.

class IntArray {

int fetch(int slot) ;
void store(int slot, int val);

Thorint* FETCH(ThorlInt* slot) ;
void STORE(ThorlInt* slot, ThorInt* val);

The interface firsdefinesthe normalversions ofthe calls, thenthe futurizedversions,
which take and return ThorValues wherever theginal versionswould take or return

client values.

The client coulduse these functions tefine a function thaswapstwo elements of an

array with no additional domain crossings:

void swap (int_array *a, ThorInt* i, ThorInt* j) {
/* Swap afi] and a[j] using futures */
Thorint* a_i = a—FETCH(i);
a->STORE(i, a— FETCHJ());
a->STORE(j, a_li);

}

82

7.2 Batched Control Structures
When acontrol structure in thelient program depends upon the result of a database call,

that callcannot be deferreavhich limitsthe degree obatching that can be attained. For
example, if anf statement depends upon the result of a call that returns a boolean, that call
must be performednmediately, so thathe correct branch in theient program can be
chosen. What we would like to do is send the control structures aitimghe batched

calls, and have them evaluated inside database. If we could batch entire loops and

conditionals, very high batching factors could be achieved.

Ultimately, wewould like to beable to move arbitrarygafe pieces ofthe client program
into the database protectidomain. To do so in general is difficalbhd goedeyond the
scope ofthis thesisthe veneer would need a detailed knowledge ofsthecture of the
client program and wouldessentially become a compiler otterpreter for theclient
language. However, for certain restricted bseful cases, it is quite soe to allow

batches to include control structures.

Consider thdollowing example, which increaséise salary of allmanagers by $1000 and

all other employees by $500.

Array<th_employee*> a = employees - elements_array();
for (int i=0; i < a.size(); i++) {
th_employee* e = a[i];
if (e »is_manager())
e increase_salary(1000);
else
e increase_salary(500);

}

Figure 7-1: Client Control Structures

The code uses thelements_array function to obtainthe members ofthe employees
collection, and increaséie salary of each employee by eiti€00 or 500depending on

the results of thes_manager() call.

Notice that the code, except for the control structwessists odeferrablecalls on the
database. These conditions makgossible to batcthe control structures alovgth the

calls. Thebasic idea is that instead of using client languegetrol structures, the

83

application uses veneealls thatrepresent the control structure. Thea#sare deferred;
they includethe names and arguments tioe control structureallowing the database to
evaluate the contratructureitself. In C andC++, the new control structures are
implemented agpreprocessor macros, so ththey havethe syntactic form of control

structures even though they are actually calls.

7.2.1 The Meaning of Batched Control Structures

employee *empl;
FOREACH(empl, employees - elements()) {
IF (empl - IS_MANAGER()) {
empl - increase_salary(1000);

}
ELSE {
empl - increase_salary(500);
} ENDIF
ENDFOR

Figure 7-2: Batched Iterator and Conditional Control Structures

In Figure 7-2, we show how the Figure 7ight berewritten using batchedtontrol
structures. It useswo different batchedcontrol structuresFOREACH and IF. The
FOREACH control structure is used talta Thor iteratorand takeswo arguments: a
future for the iterator that il control the loop, and a loogariable that Wil refervia a
future to thevalue yielded bythe iteratoreach iteration. Thability to call iterators
directly, rather tharobtaining their results as an array, is a new feature made possible by
the fact that the entirBEOREACH control structure is batcheahd evaluated inside the
database. Thi statement takes one argument: a future for a boolean thatowtrol
the branching inthe database. Thesmaining structures,i.e. ELSE, ENDIF and
ENDLOOP, take no argumentand simply batch a call to indicate whettee first
matching unclosedontrol block ends.They are necessary becausiee databasbas no

other way of knowing when a block ends, since it has no access to the actual client code.

The stub functions fothe batched control structures in the vengerk essentially the
same as angther stubfunction. TheFOREACH stub function batches a message to the

database with the future for titerator and a new future to mapped to theielded

84

results. Similarly, the if stubfunction batches afif’ call to the database with the future
for the conditional. Thelements() stub functionwhich returns a future to an iterator,
andall of the other deferredalls, work exactly as before. In ncase, however, is the
control flow of the client program altered. Note that alldaks, includingthe conditional
test, aradeferred; we arassuming thathe veneer isising futuredor basic values awell

as objects, as described in Section 7.1.

The resultingset of batchedalls sent to the database is depicted in Figure 7-3. We use
the conventions here that virave used in earlier diagramsrdpresents théandle for

employees, anfi represents thigh future allocated in the course of the example.

fi « h.elements()

—» | FOREACH(f, f1)

f3 « f.is_manager()
IF(fs)
h.increase_salary(1000)
ELSE()
h.increase_salary(500)
ENDIF()

L | ENDFOR()

Figure 7-3: Batched Calls and Control Structures

7.2.2 Restrictions on Batched Control Structures
Several constraints on the use of batched costrotturedollow from the semantics of

the deferred code. These constraints stem from two essential facts:

* every statement in a block is executegctlyonce on theclient side, whereas in the

database the same block may be executed zero or many times.

* the database knovegly the future mapped to a call resulgt thenameof theclient

variable to which the future is assigned.

From the first fact it follows that there must be no side-effect®toThorclient variables
within adeferred control structure. Because s$ide-effectsare notevaluated inrhor, it
is not possible for the database to provide the deseexdntics of conditional sepeated

evaluation for client side-effects. If side-effeate desired, thelient can achieve them by

85

manipulating Tor objectsand values. Rather thancrementing a client integer, for
example,the client can increment &horint andget theactual valueafter the loop has

completed.

More importantly, fromthefirst and second facts follows an “assign-once” restriction on
client identifiers. Thedentifiersused to refer to futures in batched control structjusts
allow the results of particulagalls to beused in latercalls; theyare notvariables. For
example, consideghe code on théeft hand side of Figure 7-4. Tieeaning of thixode

is that, after thdF, v refers to the future of the call of thallcin the ELSE branch,
regardless ofvhich branch istaken whenthe code runs in the database. general,
identifiers obeythe following scoping rulethe meaning of ause of andentifier is always
the future assigned to that identifier ithe invocation statement moshmediately
preceding that usejisregarding control structure If the branch of the computation
containing that invocation statementist taken, thedentifier maynot mean anything at

all— its slot in the future table can be null.

Therefore all of the identifiers in a batched constolictureneed to be “assigonce”, that

is, used as the target of just one assignment. To ensure this, client program&ibauld
the convention ofising a fresh variable nan@ eachassignment othe result of a Thor
call to a variable. Thisnay make it necessary to duplicate some codéhé case of
conditionals, as seen in tegample orthe righthand side of Figure 7-4. Because of the
copying of code into bothbranches ofthe statement, these transformations could
potentially lead to exponential blowup e size of the client code, certainly an

inconvenience even though technically no expressive power has been lost.

IF(.) IF(..)
v = f(); Vihen = f();
ELSE U1 = Vihen —>f00()
v=g(); U - bar()
ENDIF ELSE
u = v-foo() Veise = 9();
u-bar() Uz = Veise —» f00()
Uz - bar()
ENDIF
Original Code “Assign-Once” Code

Figure 7-4: The Assign-Once Restriction

86

As a result of the assign-once restriction, variable assignments cannot be carrfezshover
one iteration to the nexsince to do savould requiretwo assignmentsone before the

first use, and a second to change the variables value after that use.

A final restriction on batched control structures is that there mexhanisnprovided for
batched recursion. This is mostly an inconvenience, bedhessame effect can be

achieved using an explicit stack.

7.2.2.1 Example
It might seems witlall of these restrictions that it would awkward at best to wusiful

batched control structures. To show tteg isnot thecase, we present batched control
structures that perform a degtrst traversal of a graph in Figure 7-5. The program uses
a queue stored in Thor twmulatethe recursion; otherwise no changes from natural
coding styleare required. (We introduce a batched WHILE statementakethe code
more natural; WHILE ismplemented alonghe same lines as amyther batched control
structure.) Sincethe OO7benchmark consists of various kinds of traversals, it would
probably be feasible to impleme®O?7 entirely interms of batched control structures,

leading to very high batching factors.

void DFS(th_node* n) {
th_queue *q = th_queue_type - new();

g - push(n);

WHILE (q-empty() - IS_FALSE()) {
th_node* current = q — dequeue();
/l... perform some action on current

th_node* child;
FOR_EACH(child, current - children()) {
q - enqueue(child);
} END_FOR
} END_WHILE
}

Figure 7-5: Batched Depth First Traversal

7.2.3 Evaluating Batched Control Structures
We now consider the trickier part of batched control structeseduating them inside the

database. At a high level, the database first typechecks the deferred code and then runs it.

87

To do so, thedatabase first processéise code into a tree form tha&xpresses its
structure. The task gfrocessing the deferrezdlls is very much like writing @imple
compiler ortranslator. The input language is a simpleedir stream describing the
deferredcalls; the output laguage is dree describingthe “program” thataccomplishes
thosecalls. The form of thisree is like arordinary parse tree; tha, it has a different

kind of node for each statement type and a node has subnodes as needed for that type.
For example, aFOREACH node wouldhave three subnodester, which indicates the
iterator that controls the loomop_var, which givesthe future tablendexfor the slot in

which the loop variable isstored,and body, which points to a bodgtatement node

containing the code of the loop body.

7.2.3.1 Typechecking
As with standard batched futures, typechecking uses slots in dtote intermediate

results. In this case wstore both thevalue ofthe future (i.e., the object itilrefer to
whenthe program runs) and its typ&or example, inthe exampleabove, slof; holds the
loop variable andslot f3 holds the result oévaluatingthe call on methods_manager().
Typecheckingthe codeinvolves a linear scan dhe batch of deferredalls. When the
typechecker encounters thesignment to a giveiuture table slot, it is alaysthe case
that of the futures in the operatitveing typechecked have had their types determined
already. The database ugske signature of thealled operation to determine what type
will be returned and storesthis type inthe future table slot for that futuré&or example,
the elements signature allows fior toinfer thatf; is an iterator that returramployees,
and hence thdt will hold pointers to employee objects. Typechecking infdshkion is
correctbecause each future represents the resudtxattly one call. If futures could
represent the result of more than @adl, thingswould be quite a bit more complicated.
For example, duture might enter a loop with theorrecttype for itsinitial use, then be
modified after that use to contain an object ofiavalid type, so that in the next iteration
type-safety is violated. However, ftiple assignments tthe samefuture arenot possible
under the current design. Regardless ofideatifier assigned tahe result of a call,

different callsalwaysuse different futures.

88

7.2.3.2 Evaluation
Evaluating the program tree is straightforward; effectively, Thor acts as an interpreter of

the tree. For example, ata node Thor runs the following code:

eval_for (s: for_stmt) returns ()
for a:any in s.iter() do
F[s.loop_var()] :=a
eval_body (s.body())
end
end eval_for

The code runs the requested iterasssigning each value thatyields tothe futuretable
slot specified inthe for statement node. It then evaluates the bd8ynilarly, evaluation
functions for other control structuregvaluate the appropriate blocks based on the

provided arguments.

7.2.4 Additional Benefits of Batching Control Structures
One obvious benefit of batchedntrol structures is thgreatly increased batching factors

that they permit. For example, it seems that an entire OO7 traversal, or at least substantial
pieces of itmight bewritten as a single batched control structure. Theestraversal

would require no extra communications with the database.

In addition to increasinthe batchingfactor B, batched control structures also reduce the
call costt.. They allowthe set ofcalls in aloop sent to the database to be sent onér
once rather than once per iteratiamgreasing performance by reducitige amount of
data the databad®s toread. They also amortizéhe cost of typecheckingnd other

expensive components if

Finally, the number offuture table entries needed for the loop is greatly reduced. Each
iteration, thecalls inthe body are reevaluated with the nexaluefor the iterator future,
and the old futures for thealls are mapped to the new result. Thus, regardless of how

many times the loop executes it uses the same number of futures.

89

7.2.5 Comments
Batched control structurggobablyrepresent thémit of what can be achieved without

actually inspectinghe client program. They already impose a perhaps excessive burden
on the client programmer to follomhe restrictions outlined above. However, the
increased batching, decreased typechecking overheadtlarperformance advantages
they allow wil justify their use by experiencedient programmers in some cases. Based
on ourmeasurements, typechecking and domain crossing overtadadap over 90% of

the time requiredfor eachcall; batching etire loops vill amortize these overheads to
negligible amounts for reasonable sizddops, leading to anorder of magnitude
performance increase in realistic caseBurthermore, in the future workection of
Chapter 8, we discuss an approachetininating the greatest restriction on batched

control structures, the “assign-once” restriction.

90

Chapter 8.

Conclusions and Future Work

This thesis has describétk design and implementation of Thor veneers, a safe, language
independent interface to an object-oriented database, and batched futuregrah gen
mechanism thateduces theost ofclient calls toservers that run in a separate protection
domain. Futuresllow calls to bedeferred until a clienteally needs a result and then

made all at once in a batch; later calls in the batch can refer to the results of earlier calls.

The work was done in the context of Thor, bcén be used imther systems. Our
implementation depends on knowing whether aredillrns an opaque pointer ovalue
and can be used iany systemwhere this information isvailable,for example, an
operating system. Even withaiis information, an approach which the client chooses
whether omot todefer a call is always possible. Theechanisntan be used when the
client and serverun in different processes dne same machine, and also whée client

runs at a different machine than the server.

The thesisanalyzedhe performancegains that can bexpected fronour mechanism and
presented performance results to show that futuiets usefulimprovements. Agart of
our performance studies, wanalyzedthe cost of making cross-domaircalls and
developed a formula thatccounts for the costThe formula haswo components: one
for thedomain crossings, arahe forperformingthe call. Obviouslythe relativecosts of
the components iW vary for different systems anidr differentworkloads, but wdelieve

that the following statements are true in general.

First, thecost ofdomain crossings igkely to increase relative tthe other costsdrause
of current developments in computer architecturd-or example, pipelining and
superscaler processors depend upging able tdook ahead in the instruction stream. In

general, looking ahead is difficult if not impossible to do if the following instrucaoasn

91

a different address space or g@tiondomain, so domain crossingse likely to lead to
increasegrocessostalls and cache misseSecond, although some workloaagyht be
restricted tocallssuch that it takes a lortgne just to dahe work of the operatiomany
workloads will not have thisproperty. Therefore we conclude thair results are of

interest generally.

Although significant benefit can be obtained by using futures even when batches are small,
speedups aremited by the number ofoperations that can be deferred. Even with futures
for basic valuesmany ofthe OO7benchmarks dmot allow deferring verymany calls,
because after a fevallsthe application needs to do something itselfj, look at avalue

to determine what to do next.

To do better requires a way gétting longerchains ofdeferred calls. Weresented a
scheme that allowethe client to combine calls with siphe control structures in a batch.
The database interprets the structuresanycarriesout the calls onthe indicated paths.
However, ourscheme had limitationsnost notably restrictions on side-effects tbent
variables withinthe batched control structures andirebility to handlerecursion. An
interesting direction we intend to pursue isetmminatethe “assign-once” restriction by
making assignment @eferred operation asell. By manipulatinghe mapping of futures
to handlesthe database cacthievethe same effect as an assignment to a client variable,
allowing it to performonly the assignments actuallgncountered in thevaluation of a
batched control structureThis would makehe semantics of batchetbntrol structures
identical tothose ofclient control structures, dseng as no side-effects to non-Tladient

variables were included.

A moreflexible alternative is suggested by Stama®irk onremote evaluatiofStamos

86] , in which a clientprocedure is sent to be evaluated in the server address space.
However, remote evaluation asoposed by Stamos supportedly a single, safe
language, avoidingheissues of safety and heterogeneity tha important irour work.

For themechanism tavork safely,the remotely evaluategrocedure mushot beable to

violate the security of the databasEnis implies that imust be written in &safe” subset

92

of theclient language. Probabhot all languages have useful safe subbetdooking for

them is an interesting research direction.

One possibility for ensuring that the veneers only attempt to remotely evaluate safe subsets
of theclient language is to require that they transtagesubset into Thetayhich is safe

by design. For many languages, this iaot significantly more difficult than parsing the
program andverifying that it issafe. In addition, it solvethe problem of needing an
interpreter forevery client language that might be remotely evaluatethendatabase,
sincethe database caaynamically link Theta code intatself. If an entire application

could be written in theafe language subset, it could run inglie database without any

domain crossing or checking, thereby achieving the best performance.

93

Works Cited

[Adya 94]

[Barrera 93]

[Bershad 90]

[Birrel 83]
[Birrel 94]
[Black 87]

[Butterworth 91]

[Cardelli 88]
[Carey 92]

[Day 94]

[Getty 90]
[Gifford 86]
[Goodenough 75]
[Helfinstine 94]

[Halstead 85]

Atul Adya. Transaction Management for Mobil Objects using
Optimistic Concurrency ContrplMasters ThesisMIT, January
1994.

J. Barrerdnvocation Chaining: Manipulating Lightweight Objects
across Heavyweight BoundarjeSsourth Workshop on Workstation
Operating Systems, October 14-15, 1993, pp. 191-193.

B. Bershad, T. Anderson, E. Lazowska, andeMy. Lightweight
Remote Procedure CallACM Transactions on Computer Systems,
8(1), February, 1990.

A.D. Birrel and BJ. Nelsonlmplementing Remote Procedure Calls
, Xerox CSL 83-7, October 1983.

A.D. Birrel et. al. Network ObjectsDigital EquipmentCorporation,
SRC Research Report 115.

A. Black, E. Hutchinson, H. Levy, and Carter.Distribution and
abstract types in EmeraldEEE TSE pp. 65-76, January 1987.

P. Butterworth, et. &he Gemstone Object Database Management
System Communications othe ACM, Volume 34, Number 10,
October 1991, pp. 65-77.

Cardelli. A Semantics of Multiple Inheritanceinformation and
Computation 76:138-164, 1988

M. Carey, D. DeWitt, and J. Naughtdrhe OO7 BenchmaykVork
in Progress, October 26, 1992.

M. Day, R. Gruber, B. Liskov, and A. Myer®bstraction
Mechanisms in Thetan prep.

J. Getty et alThe Xwindowsystem version 1IDigital Equipment
Corp., Cambridge Research Lab, December 1990.

D. Gifford. Remote pipes and proceduris efficient distributed
communication.MIT/LCS/TR-384, October 1986, p. 24.

J. Goodenough. Exceptidandling: issues and g@roposed
notation. Communications of the ACMB(12): 683-696, 1975.

B. Helfinstine. Bachelors Thesis (prep), MIT Department of
Electrical Engineering and Computer Science, 1994.

R. HalsteadMultilisp: A Language for Concurrent Symbolic
Computation ACM Transactions on Programming Languages and

95

[Hwang 94]

[Lamb 91]

[Liskov 81]

[Liskov 88a]

[Liskov 88Db]

[Liskov 90]

[O Deux 91]

[Schaffer 85]

[Stamos 86]

[Stroustrup 87]

[Wahbe 93]

Systems, Volume 7 Number 4, October 1985.

D. Hwanglndexing for Fast Associative Access to Large Object
Sets Ph. D. thesis, MIT Laboratory for Computer Science, 1994.

C. Lamkbet. al. The ObjectStore Database Systgdommunications
of the ACM, Volume 34, Number 10, October 1991, pp. 51-63.

B. Liskov et. al. CLU Reference ManualNew York: Springer-
Verlag, 1981.

B. Liskov. Communication in the Mercury SysteRroceedings of
the 2 Annual Hawaii Conference on System Sciend&EE,
January 1988, pp. 178-187.

B. Liskov and L. ShriraPromises: Linguistic Suppofor Efficient
Asynchronous Procedure Calls in Distributed Systdpmec. ACM
SIGPLAN ‘88, June 1988.

B. Liskov. A highly available object repository for use in a
heterogeneous distributed systerRroceedings of the Fourth
International Workshop on Persistent Object Systenesign,
Implementation, and Use, pages5-266, Martha’'svVineyard, MA,
September 1990.

O Deux et al. Th®, System, Communications dhe ACM,
Volume 34, Number 10, October 1991, pp. 35-48.

C. Schaffer, T.Cooper, C. Wilpti. Trellis: Object-based
environment language reference manual. Techriiegport 372,
Digital Equipment Corp./Eastern Research Lab., 1985.

J. Stamo&emote Evaluation Ph.D. ThesisMIT Laboratory for
Computer Science, Technical Report 354, January 1986.

B. Stroustrup. The Evolution of C++ 1985 to 198 Prdx. Usenix
C++ Workshop pages 1-22. Usenix Association, November 1987.

R. Wahbe, S.ucco, T. Anderson, and S. Grahafbfficient
Software-Based Fault Isolatipn Computer ScienceDivision,
University of California, Berkeley.

96

