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Abstract

We present the design of a new transaction mechanism for an object-oriented database

system called Thor. We also describe a mechanism that allows objects to migrate from one

server to another.

Our transaction management approach is di�erent from other systems because we use op-

timistic concurrency control to provide serializability. Optimistic schemes have been sug-

gested in the literature but they do not address issues such as space and logging overheads.

In this thesis, we consider these problems and propose a scheme that has low space over-

head per object and also has low delays. We take advantage of system characteristics

such as loosely synchronized clocks and high availability to achieve these goals. We also

present a novel mechanism that allows applications to increase the transaction throughput

by overlapping the commit of a transaction with the execution of the next transaction.

Our work on object migration is di�erent from previous work because we provide transaction

semantics with respect to movement of objects; if a user moves a set of objects, our scheme

guarantees that either all or none of the objects are moved to their destination sites. In

addition, object migration is orthogonal to reading and writing of objects; this feature avoids

unnecessary aborts caused by con
icts between the migration primitives and reads/writes.

We accomplish these goals by a simple modi�cation to the basic validation scheme and

commit protocol.

Keywords: transaction, optimistic concurrency control, validation, object mobility, two-

phase commit, distributed systems, object-oriented databases.

This report is a minor revision of a Master's thesis of the same time title submitted to the Department
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Chapter 1

Introduction

This thesis presents the design of a new transaction mechanism for a distributed client-server

system. Most previous systems have used pessimistic concurrency control for transaction

management. Our approach is di�erent from these systems since we use optimistic con-

currency control to provide serializability. In addition, the thesis presents the design of a

mechanism that allows objects to move from one node to another. Our object migration

approach is integrated with the concurrency control mechanism; this strategy allows us to

provide transaction semantics with respect to movement of objects.

Our work has been done in the context of a new object-oriented database system, Thor.

Thor [Liskov93] is a distributed system based on the client-server model. It provides persis-

tent and highly available storage for objects by storing them at the servers. Each client runs

on a workstation and executes its operations as part of an atomic transaction. Clients can

access objects from multiple servers and operate on them. Objects are cached at clients in

order to improve system performance. Details of the Thor system architecture are discussed

in Chapter 2.

The remainder of this chapter elaborates on our contributions and discusses related work.

Section 1.1 presents the motivation and an overview of our transaction management strategy.

Section 1.2 discusses the issue of migrating objects among servers. Finally, Section 1.3

provides an overview of the remainder of this thesis.

1.1 Transactions and Concurrency Control

Transactions [Gray93] are a convenient mechanism for building reliable distributed systems

in the presence of concurrent access and failures. They allow operations on objects to

be grouped together and provide the atomicity guarantee, i.e., either all or none of these

operations are performed on the database state.

Any system that supports transactions needs a concurrency control mechanism to co-

ordinate them. Schemes that have been suggested to achieve the e�ect can be broadly

classi�ed into two categories | pessimistic concurrency control and optimistic concurrency

control schemes. A pessimistic scheme is based on the notion that any access to an object
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must be preceded by a request asking for permission to retrieve the object in the desired

mode, e.g., read or write. A strategy based on optimistic concurrency control optimistically

assumes that there will be few or no con
icting actions and allows immediate access to the

object. Work done as part of a transaction is synchronized or validated at the end of the

transaction. A transaction validates successfully and is committed if it can be serialized

with other transactions in the system. If the transaction is not serializable, it is aborted.

Herlihy [Herlihy90] has classi�ed pessimistic and optimistic schemes respectively as ask-

ing permission �rst and apologizing later . Either of the two schemes can be employed for

centralized or distributed systems.

Section 1.1.1 presents the client-server model and the concurrency control schemes used

by past and existing systems. Section 1.1.2 discusses the protocols suggested in the literature

for committing transactions. Finally, Section 1.1.3 describes our approach to transaction

management.

1.1.1 Concurrency Control Schemes for Client-Server Systems

Most of the current distributed database systems are implemented using a client-server

architecture. Objects are stored persistently at one or more server machines. Clients fetch

objects from server machines, operate on them locally and send back any modi�cations

to the server. Such architectures improve system performance by utilizing the processing

power of client machines; the server's load is reduced by performing as much computation

as possible on client machines. To reduce fetch delays, these systems cache objects at the

client. Prefetching is another technique that is used to improve the system performance.

Prefetching refers to the idea of fetching objects from a server even before they are required.

When a client sends a fetch request to a server, the latter returns the desired object and a

few extra objects in anticipation that the client will use them soon. Thus, when the client

actually needs an object, it is already present in the local cache. A concurrency control

algorithm designed for a client-server based system must take caching and prefetching into

account; it should not nullify the advantages of these strategies.

A variety of optimistic and pessimistic schemes have been developed for providing con-

currency control in client-server systems. However, systems in the past have used pes-

simistic schemes for transaction management. In earlier client-server architectures, due to

small client caches, little or no caching of data was done across transactions; if the same

piece of data was accessed by subsequent transactions at a client, it had to be fetched again

from the relevant server. But due to recent increases in memory sizes, newer databases try

to improve the system performance by caching data across transactions; existing machines

can cache a signi�cant fraction of a client's working set. A simple pessimistic scheme in

which locks are not cached across transactions loses the advantage of client caching; a client

has to send a lock request to the server even if it has the object in its cache (we will refer to

this scheme as regular locking). To improve system throughput, pessimistic schemes such as

no-wait locking, callback locking and optimistic locking have been suggested [Franklin92].

These locking techniques make \optimistic" assumptions about lock acquisition and lock

sharing to reduce synchronization overheads. Optimistic schemes take advantage of client

caching by not requiring any message to be sent to the server if the object is already present
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in the client cache.

Callback locking takes advantage of client caches and retains read locks after committing

a transaction. When a server receives a client request to acquire a write lock, it asks the

relevant clients to release read locks. In no-wait locking , a client requests a lock but does

not wait for the reply from the server; client processing proceeds in parallel with the lock

request. If the lock request fails, the client transaction is aborted. These schemes have been

used by some systems, e.g., Symbolic's Statice system [Weinreb88] uses no-wait locks and

ObjectStore [Lamb91] uses callback locking. In optimistic locking , a client does not acquire

any locks before any operation; at the end of the transaction, a server waits for clients to

release con
icting locks on relevant objects and commits the transaction. Note that this

scheme is di�erent from a classical optimistic scheme where instead of acquiring locks at the

end of the transaction, the servers execute a validation algorithm to check if the transaction

has violated any serializability constraints.

Franklin [Franklin92] andWang [Wang91] have conducted studies to compare the perfor-

mance of these schemes for di�erent workloads in a client-server model. These concurrency

studies indicate that callback, no-wait and optimistic locking provide higher throughput

than regular locking for most workloads. Furthermore, optimistic locking performs as well

or better than the other approaches for most workloads. This is so because it exploits client

caching well and also has relatively lower network bandwidth requirements. No-wait locking

avoids lock synchronization delays but it still needs to send lock request messages to the

servers; an optimistic scheme avoids these messages also. Due to lower message require-

ments, optimistic locking performs better or as well as callback locking for most cases. In

the latter scheme, lock recall messages are sent during the transaction's execution whereas

the former scheme groups these messages and sends them at the end of the transaction.

Note that these locking-based schemes incur some processing and message overhead due to

global deadlock avoidance or detection. On the other hand, a validation-based optimistic

scheme does not su�er from this problem. In such a scheme, deadlocks cannot occur; one

of the transactions in the wait-cycle is automatically aborted at validation time.

Franklin's studies show that optimistic locking performs poorly in high contention en-

vironments. In pessimistic schemes, transactions that access \hot spot" objects (objects

that are frequently modi�ed and shared among many clients) are delayed by the transaction

manager till the desired lock can be granted. Optimistic schemes allow such transactions

to proceed; con
icts are detected later causing most of these transactions to abort. The

poor performance of optimistic locking for hot spot objects results from the fact that these

schemes convert waiting on locks to transaction abort. For high-contention environments,

locking is desirable but for other workloads, optimistic schemes have a better performance.

Therefore, to support both low and high contention workloads, an adaptive scheme can

be designed that usually uses optimistic concurrency control but dynamically changes to

locking for hot spot objects. Such a technique is being developed by Gruber [Gruber94].

Optimistic schemes have been discussed in the literature but we do not know of any

multi-server distributed system that serializes transactions using such an approach. The

seminal paper on optimistic concurrency control by Kung and Robinson [Kung81] moti-

vates the need for optimistic schemes and presents the idea of validation. Their central-

ized server scheme for serial and parallel validation is generalized to a distributed system
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in [Ceri82]. H�aerder [H�aerder84] has developed the notion of forward and backward valida-

tion. Optimistic schemes have also been extended to exploit the semantics of abstract data

types [Herlihy90]. Gruber [Gruber89] has suggested validation-based optimistic schemes for

the nested transaction model. A system implementation that caches objects and uses a

classic optimistic scheme is Servio Logic's Gemstone [Maier86]. Gemstone is a distributed

system that allows multiple clients but objects can be stored at only one server. The Jasmin

database machine [Fishman84] also uses optimistic concurrency control for serializing trans-

actions; it too is a centralized server system. Their concurrency control control algorithm

was later extended to the distributed case [Lai84]. However, they use multiple versions and

also serialize transactions at a site in the order they are received.

Some systems use a combination of optimistic and pessimistic schemes for serializing

transactions. A hybrid optimistic-pessimistic scheme has been suggested in [Lausen82].

Another hybrid scheme has been proposed in [Rahm90]; this scheme uses optimistic con-

currency control for a transaction but switches to locking if the transaction aborts. The

object-oriented database Mneme [Moss90] provides support for such schemes. The idea of

hybrid concurrency control schemes has been applied to �le systems also. The Amoeba �le

system [Mull85] employs such a technique for modifying �les; updates on a single �le are

serialized using optimistic concurrency control whereas locking is used to modify multiple

�les.

A multiversion pessimistic scheme that does not require read-only transactions to syn-

chronize with other transactions was suggested in [Weihl87]. An optimistic strategy that

achieves the same e�ect has been presented in [Agarwal87]. Maintaining multiple versions

may permit more transactions to commit than a single version scheme. However, it com-

plicates transaction processing and reduces the e�ective cache size at the server/client;

multiple versions of objects have to maintained consuming more storage in the client cache.

The nested transaction model has been explored and discussed in the literature. The idea

of nested transactions was proposed in [Moss81]. Reed [Reed83] describes a timestamping

strategy for serializing transactions in this model. Systems such as Argus [Liskov84] and

Camelot [Spector87] provide a computational model that supports nested transactions using

pessimistic locking. An optimistic scheme for this model has been presented in [Gruber89].

To simplify the transaction model, Thor does not support nested transactions.

1.1.2 The Commit Process

When a client commits a transaction, the system has to ensure that all servers agree on

committing or aborting the transaction. This e�ect is usually achieved with the help of a

2-phase commit protocol [Gray79, Mohan83, Lindsay84]. Many variations have been sug-

gested to optimize this protocol, e.g., presumed-abort/commit strategies. Mohan [Mohan83]

has adapted the 2-phase commit protocol for a tree of processes. The coordinator log pro-

tocol suggested in [Stamos89] does not require a participant to 
ush the prepare record.

Group commit [DeWitt84] strategies have been suggested in which log 
ushes of multiple

transactions are grouped together to alleviate disk bandwidth problems; the Cedar sys-

tem [Hagmann87] uses this strategy. Non-blocking and 3-phase commit protocols have also

been studied [Skeen81]. Camelot has implemented a non-blocking protocol but its perfor-
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mance is much worse than a 2-phase protocol [Duchamp89]. Non-blocking protocols are not

of practical interest and systems rarely implement them.

During the commit protocol for pessimistic systems, read-locks can be released dur-

ing the �rst phase but write-locks have to be retained till the second phases completes.

Levy [Levy91] has developed a protocol where all locks can be released after preparing a

transaction. But this protocol provides a weaker guarantee than serializability, making the

transaction model quite complicated.

Lomet has suggested a timestamping scheme [Lomet93] for the two-phase commit pro-

tocol in a pessimistic system where a transaction commits at some nodes and continues

processing at other nodes. In this approach, the participants vote a timestamp range to the

coordinator for the transaction's commit time. The latter chooses a value and sends it as

part of the commit decision. Some of the complexity in Lomet's protocol arises from the

fact that the transaction timestamp is being chosen in the protocol's second phase rather

than the �rst phase. Furthermore, allowing read locks to be released at the end of phase

one adds more complexity to the algorithm.

Lampson and Lomet [Lampson93] have suggested a presumed-commit strategy that

reduces the number of background log writes and messages for the normal case. But these

gains are achieved at the cost of retaining some commit information forever. Furthermore,

a presumed-commit strategy cannot be used in a system where along with the coordinator's

decision, some other information has to be sent as part of the phase 2 message. For example,

in Thor, the coordinator needs to send information about newly created objects to the

participants along with its commit decision.

1.1.3 Our Design for Transaction Management

As stated earlier, the studies conducted by Franklin and Wang have shown that an opti-

mistic scheme performs better than pessimistic schemes in environments where there is low

contention on objects. We have made this assumption about the workload and designed

an optimistic concurrency control scheme for a client-server distributed system. Our design

is based on validation and not locking. However, we expect a validation-based optimistic

scheme and optimistic locking to have similar performance because both schemes verify se-

rializability constraints at the end of a transaction. Our optimistic scheme may have lower

message and bandwidth requirements than optimistic locking since our scheme does not

require messages to be sent to clients at commit time.

In this thesis, we adapt the optimistic schemes that have been suggested in the past

and propose a validation strategy that truncates transaction history information frequently

without causing unnecessary aborts. We assume the availability of an external service such

as NTP [Mills88] that provides loosely synchronized clocks. This assumption allows a server

to generate an appropriate timestamp for a committing transaction; it has also helped us in

simplifying the validation process. In addition, loosely synchronized clocks help in reducing

the logging requirements for read-only transactions and the space overhead for each object.

All techniques developed in this thesis aim to reduce application observable delays (also

called as foreground delays) as much as possible. In Thor, an application waits for the
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transaction result until phase one of the 2-phase commit protocol has been completed. Thus,

it is important that the time taken by this phase is minimized. This goal is achieved by

optimizing the validation algorithm and by decreasing foreground network delays. Like other

optimistic schemes in the literature, our scheme also allows multiple transaction validations

to proceed simultaneously at a server; this optimization reduces synchronization delays

at a server. Foreground network delays are reduced by optimizations such as early send,

Stamos's coordinator log protocol and short-circuited prepare.

With relatively few changes to our protocol, we can support the scenario described by

Lomet (discussed in Section 1.1.2). There are no complications regarding the release of

read locks in an optimistic scheme. Furthermore, assigning timestamps at the beginning of

phase one using loosely synchronized clocks also helps us in avoiding most of the complexity

of Lomet's protocol.

A novel contribution of this thesis is the idea of asynchronous commit. The asynchronous

commit facility gives more 
exibility and better control to applications; an application can

overlap a transaction's commit process with the next transaction's normal processing to

reduce application observable delays. In the usual case, a client sends a commit message

to the servers and waits for the result. In the asynchronous commit case, the commit call

returns immediately; this allows the application to proceed with the next transaction. As

a result, the commit time delay is the same as the delay observed for any normal operation

since the commit protocol is executed in the background. When the asynchronous commit

call returns, the application does not know the result of the transaction commit; it needs

some way to inquire about the commit result later. Thus, the application interface has to

be enhanced to support this strategy. We suggest possible extensions to the application

interface and demonstrate how the code-structure may be altered to use asynchronous

commit.

1.2 Object Migration

Any system that is intended to be used for a long time such that it outgrows its initial

con�guration must provide a way of migrating objects. The initial object placement by

an application or the system may not be suitable after some time. Thus, to improve

performance, applications need a way for recon�guring the object placement. We discuss a

strategy that allows applications to migrate objects from one server to another. Our object

migration scheme is integrated with the concurrency control mechanism; we provide strong

semantics of atomicity and serializability with respect to object migration.

Object migration can be used by an application to cluster objects at one or few servers.

Clustering objects at one server reduces the number of inter-server or external references.

This leads to more e�ective prefetching because a signi�cant fraction of an application's

working set is brought to the client machine from that server as prefetched objects instead

of a client sending explicit messages and waiting for them (assuming that the prefetching

strategy prefetches objects referenced at the same server by a fetched object). Fewer external

references are bene�cial for the distributed garbage collection algorithm also [Mah93]. Inter-

server references can be reduced by moving an object to a server where most references to it
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reside or vice-versa. Apart from reducing inter-server references, clustering an application's

objects at a single server has the advantage that a 2-phase commit protocol is not needed

to commit a transaction; this decreases the commit time delay by a log 
ush and a network

roundtrip delay.

An application may migrate objects due to the physical movement of the corresponding

(physical) entities; objects are moved to a server that is physically near the client site.

Object mobility may also be used to balance the object load across various servers; if a

server becomes loaded with a large number of objects, its load can be reduced by moving

some of its objects to lightly loaded servers. Chapter 5 discusses other applications for

which migration may be a useful facility.

A semantic issue that arises concerning object migration is whether locating and moving

objects are related to reads/writes or not. We argue that making object migration primi-

tives independent of reads/writes is not only more intuitive but also avoids a certain class

of spurious aborts; we present a design that supports these semantics. Another interesting

semantic issue is whether object migration is part of the transaction mechanism or not.

We believe that atomicity and serializability with respect to object migration o�ers elegant

semantics and makes it easier for users to reason about their programs. To provide serial-

izability with respect to migration, we adapt our validation scheme for read/writes and use

it for object locates and moves. The 2-phase commit protocol is also modi�ed to guarantee

atomic migration of objects.

Our work on object migration is di�erent from earlier work since our strategy is in-

tegrated with the concurrency control mechanism; we provide transaction semantics with

respect to object migration also. The Hermes [Black90] and Emerald [Jul88] systems sup-

port object mobility but they do not have a client-server model like Thor and they do not

support transactions. The design suggested for a pessimistic system in [Tam90] supports

transactions in a model where objects are migrated from one site to another if the latter site

wants to modify the object. This model is neither a client-server model nor is it possible

to move a set of objects to a speci�c site. Research has been conducted in the area of

process migration for various operating environments. Systems such as Sprite [Douglis91],

V [Theimer85], DEMOS/MP [Powell83] and Accent [Zayas87] support this facility. Some

of the problems faced in process migration schemes are similar to the ones faced in Thor,

e.g., forwarding pointers have to be left at the old site and all relevant operations have to

routed to the new site. But there are other issues that are pertinent only to our approach

where object migration has been integrated with the concurrency control mechanism.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 describes the system architecture

of Thor and introduces the relevant terminology for later chapters. We also describe an

application's view of Thor and how application programs interact with the Thor universe.

In Chapter 3, we present the commit process and our basic validation scheme. We sug-

gest ways of reducing the concurrency control space overhead for each object. A technique

to avoid a foreground log 
ush at a read-only participant is also described. We use loosely-
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synchronized clocks to achieve these optimizations; these clocks help us in simplifying the

validation process also.

Various optimizations to reduce application observable delays at commit time are dis-

cussed in Chapter 4. We develop a scheme that allows the transaction manager at a server

to validate multiple transactions and install object modi�cations concurrently. A technique

to avoid a foreground log 
ush at each participant is also discussed; this strategy is based on

Stamos's coordinator log protocol. We explore the semantics and implementation of asyn-

chronous commit in this chapter. The application interface has to be modi�ed to support

this facility. We discuss these interface changes and illustrate how the code structure may

be altered to take advantage of asynchronous commit.

Chapter 5 presents our design for object migration. The primitives for locating/moving

objects and their semantics are discussed in this chapter. We motivate the need for atomicity

and serializability with respect to object migration and show how object mobility can be

integrated with the concurrency control mechanism in a client-server system. We also

discuss the changes that are made to the 2-phase commit protocol for implementing object

migration.

Finally, Chapter 6 concludes the thesis and mentions the areas for future work.
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Chapter 2

System Architecture of Thor

This chapter gives an overview of the Thor object-oriented database system. We discuss

only those aspects of Thor that are relevant to this thesis; for a complete description,

see [Liskov93]. The terminology and conventions developed in this chapter are used in the

remainder of the thesis.

Thor is a new object-oriented database management system (oodbms) that can be used

in heterogeneous distributed systems and allows programs written in di�erent programming

languages to share objects. Thor provides users with a universe of persistent objects, i.e.,

objects survive in spite of failures. These objects are also highly available; they are likely

to be accessible when needed. Thor provides a persistent root for the object universe. An

object becomes persistent if it becomes accessible from the persistent root. If an object

becomes unreachable from the root, its storage is reclaimed by a distributed garbage col-

lector [Mah93]. Each object has a globally unique id called oid . Objects contain data and

references to other Thor objects. They are encapsulated so that an application using Thor

can access their state only by calling their methods. In this thesis, we assume that the set

of methods available to users are just read and write. Thor supports transactions that allow

users to group operations so that the database state is consistent in spite of concurrency

and failures.

Objects are stored at server nodes that are di�erent from the nodes where application

programs run. The Thor system runs on both the application site and the server site. The

component that runs on the server side manages the storage of persistent objects. For each

application, there is a dedicated process called frontend that handles all the application

requests. A frontend machine is assumed to have no persistent storage. The universe of

Thor objects is spread across multiple servers and application programs can access these

objects by interacting with their frontends. Figure 2-1 gives a schematic view of Thor.

Although objects are stored at multiple servers, an application is given the view that the

Thor object universe is a single entity.

Thor is intended to be scalable, i.e., a large number of servers or frontends may exist in

the Thor universe at any given time. Furthermore, the object database and the application

sites may be separated by a wide-area network. The Thor design also takes account of

the fact that objects may persist for a long time (e.g., years). As the system is used,
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applications may want to change the system con�guration. The object migration facility

helps an application perform the desired recon�guration.

ServerServerServerServer

Application

Communication

Application

Frontend Frontend

Figure 2-1: Applications, frontends and object repositories in Thor

2.1 Object Servers

Each server manages some subset of the Thor object universe. A server stores a root

directory object that contains references to other objects or other directories. Applications

can ask for a server's root directory and access objects from that server. But it not necessary

to access objects through the root directory only; objects can be accessed by queries or

simply following pointers between objects.

Objects stored at a server may contain references to objects at the same server or at

other servers. A reference, also called xref , is implemented using a server's id (each server

has a globally-unique id called server-id) and a local name within that server called oref .

The tradeo�s associated with location-independent and location-dependent references and

the reasons for choosing the latter scheme are discussed in [Day94]. Given a reference, the

corresponding object can be accessed by sending a request to the relevant server. This

server uses the oref value to fetch the requested object.

For garbage collection purposes, each server keeps track of information about the objects

that have been cached at di�erent frontends in a table called the frontend-table. A server

A also maintains a table called the inlist that keeps track of objects at other servers that

have references to objects at A.

Each server is replicated to make objects highly available. We plan to use a primary

copy scheme for replication [Oki88]. In this scheme, each server's objects will be replicated
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at a number of machines. For each object, one of the machines that has a copy of that

object will act as the primary server and the others act as backup servers. The frontend

always interacts with the current primary server. All servers have uninterruptible power

supplies (ups's) in addition to disks; the ups's protect against power failures, which are

the most likely cause of a simultaneous server crash. The ups's allow us to view data as

safely recorded on stable storage as soon as it resides in volatile memory at the primary and

backups; the data is written to the disk at some later time. Thus, writing to stable storage

(e.g., 
ushing a log record) is equivalent to a network roundtrip delay. The primary and

backups exchange messages periodically. These messages, referred to as liveness messages,

are used by the replication scheme to determine whether either of the primary or backup

process has failed. In the rest of the thesis, unless indicated otherwise, we use the term

server to refer to the primary server. We also assume that there is one backup server for

every primary.

2.2 Applications and Frontends

The system creates a frontend process for an application whenever the latter wants to access

objects from the Thor universe. When the frontend interacts with a server for the �rst time,

it creates a session with that server. The frontend and the server then maintain information

about each other until the session terminates. The frontend fetches objects by sending the

xrefs of the desired objects to the relevant servers. To start accessing its persistent objects,

the application can access the root directory of a server without knowing its xref; it can

then navigate through the database.

A frontend process is usually created on the same machine as the application. An

application program never obtains direct pointers to objects; instead, a frontend issues

handles that can be used to identify objects in subsequent calls addressed to it. These

handles are meaningful only during an application's particular session with its frontend.

An application program may be written in any programming language. If the language

is type-safe, the application and the frontend may run in the same address space. But

programs written in unsafe programming languages may corrupt the frontend's data; such

an application must run in a separate address space and interact with its frontend by means

of messages.

The frontend is responsible for executing application calls. It caches copies of persistent

objects to speed up the application. An object copy stored in a frontend cache is called a

shadow version and its stable copy at the relevant server is referred to as its base version.

Objects in the frontend cache may contain references to objects that are not in its cache.

When an application makes a call in which an attempt is made to follow such a reference,

a fetch request is sent to the relevant server. The server sends the requested object to the

frontend along with some additional objects that might be required by the frontend in the

near future. This technique is referred to as prefetching . The frontend may send some

prefetching hints to the server to help the latter in selecting the extra objects.

One possible prefetching strategy is to prefetch objects by following the references of

the fetched object. Figure 2-2 shows a scenario in which object x refers to objects y and
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z. Shadow versions of x and z exist in the frontend cache but y is not present. When the

reference to y is accessed, an \object fault" occurs and y is brought in the frontend cache.

Along with y's fetch, object u is prefetched by the frontend.

Any operation for which the application waits is said to have been executed in the

foreground whereas operations done in parallel with the application's computation are said

to have run in the background . For example, a fetch request occurs in the foreground since

the application waits until the object has been brought into the frontend cache. On the other

hand, the commit protocol's second phase occurs in the background since the application

continues its processing in parallel with it.

x

z y

u

Frontend

Server  A

Server  B

x

z y

x

z

x

z

Before object y has been
fetched by the frontend.

After object y has been
fetched by the frontend
and u has been prefetched.

Shadow version of an object at the frontend

Base version of an object at a server

Virtual Memory Pointer

Xref

An  attempt   to  follow
x’s reference to object y 
triggers a fetch request.

u

y

u

Server  A

Server  B

Frontend

Figure 2-2: Accessing an object not present in the frontend cache

An object fetched from a server contains references in the form of xrefs. The frontend

converts these references into virtual memory pointers of cached objects for better perfor-

mance. This process is termed as swizzling [Moss90]. The frontend may swizzle an object x

on receiving it from the server or it may swizzle x lazily, i.e., swizzle the references when x

is accessed for the �rst time by the application. Furthermore, it may or may not swizzle a

complete object. Di�erent options for swizzling and their associated performance tradeo�s

are discussed in [Day94].
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2.3 Transactions

All operations of an application are executed as part of a Thor transaction; a new transac-

tion starts automatically after the current transaction commits or aborts. While performing

its computation, an application may read or modify objects in its frontend's cache. Objects

in the frontend cache for which a stable copy exists at some server are said to be persistent ;

other objects are referred to as non-persistent objects. When an application reads or writes

a persistent object, its frontend records this operation. When the application commits the

transaction, its frontend sends copies of modi�ed objects to the relevant servers. These

modi�ed values are installed if the transaction succeeds in committing. The frontend de-

termines the non-persistent objects that are reachable from the set of modi�ed objects. It

sends these objects to the servers along with its preference of where each of these objects

should reside. These non-persistent objects become persistent if the transaction commits

and are called newly-persistent objects.

yy

x xTransaction
Commited

Frontend Server

x

y

x

Before Transaction Commit After Transaction Commit

Virtual Memory Pointer

Xref

Non-persistent object at the frontend

Cached copy of persistent
object at the frontend

Persistent object at the server

ServerFrontend

Figure 2-3: Creation of a newly-persistent object

To commit a transaction, a frontend sends the transaction information to one of the

servers and waits for the decision. This server, also known as the coordinator of the trans-

action, executes a 2-phase commit protocol and informs the frontend of the result (details

of this protocol are presented in Chapter 3). The application waits only until phase one of

this protocol is over; the second phase is carried out in the background. During the �rst

phase, a server allocates space for the newly persistent objects that will reside at that server.

It also assigns oids/xrefs to these objects and sends this information to the coordinator.

If the transaction commits, the coordinator informs the frontend about the new xrefs and

oids. If the transaction aborts, this space, xrefs and oids are freed up for reuse. Figure 2-3

shows a scenario in which object x has been modi�ed by a current transaction to include

a reference to non-persistent object y. When the transaction commits, object y is installed

at the server and the frontend also records y as a persistent object.
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Figure 2-4: Moving an object from one server to another
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Before sending objects to a server, the frontend has to convert the virtual memory

pointers contained in the modi�ed and newly-persistent objects to xrefs. This process is

referred to as unswizzling . References to newly-persistent objects cannot be unswizzled

to xrefs since these objects are assigned xrefs during the commit process. Unswizzling

of pointers to newly-persistent objects has to be done by the servers that contain these

references. To make this work possible, the coordinator sends the xref information about

the newly-persistent objects to the relevant servers as part of its second phase message.

After a server has installed a transaction's object modi�cations, it sends invalidation

messages to frontends that have cached these objects; information about which frontend

has cached the relevant objects can be obtained from the frontend-table. The server can

send the modi�ed value to the frontends or simply ask them to invalidate the relevant

objects. Or it may decide to send the update values of some objects and invalidate the rest.

The advantages and disadvantages of these schemes for di�erent workloads are discussed

in [Franklin92]. On receiving an invalidation message for object x, a frontend aborts the

current transaction if its application has read or written x; otherwise, depending on the

strategy used it updates or invalidates x's cached copy. The frontend invalidates x's copy

by converting it to a frontend-surrogate. This surrogate is a small object that just contains

x's xref. The frontend-surrogate is needed because other objects at the client may refer to

x's invalidated copy.

2.4 Object Mobility

Objects in the Thor universe are allowed to migrate from one server to another. When

an object moves to another server it leaves a surrogate at the old server. This surrogate

contains a forwarding pointer for the object's location at the new server, i.e., the new xref

of the object. If a frontend tries to fetch the object from the old server, the latter returns

the surrogate to the frontend who can now fetch the object from the new server. Since

an object may move again to a di�erent server, it is possible that an object fetch might

require following a chain of surrogates. These chains are snapped by the distributed garbage

collector or the migration mechanism itself. The chain snapping process will be able to keep

the surrogate chains short because we assume that objects move rarely and the information

about object movement is propagated quickly to the relevant frontends and servers.

Figure 2-4 shows the movement of object x from server A to server B; it leaves a surrogate

at its old server. Object y stored at server C contains a reference to x. Because of an

indirection through the surrogate, this reference remains valid even after x has moved to

B. This indirection is later snapped and then y points to x directly. The surrogate will be

garbage collected when no reference to it exists in the system.
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Chapter 3

Basic Concurrency Control

Scheme

This chapter discusses our transaction commit strategy. It focuses on the basic optimistic

concurrency control mechanism employed to validate transactions. Section 3.1 presents an

overview of Thor transactions and the commit process. Section 3.2 describes the validation

scheme using a transaction history. In Section 3.3, we suggest a way of truncating this

history. Further optimizations to reduce the space and logging overheads are explored in

Section 3.4. Finally, Section 3.5 presents our basic validation algorithm.

This chapter assumes that validation of transactions and installation of objects is done

in a single critical section. This condition is relaxed in the next chapter.

3.1 Overview

3.1.1 Characteristics

Each server has a transaction manager (tm) that handles all the commit related activity.

The tm ensures that transactions are committed only if they do not violate serializability.

The design of the tm is based on the following characteristics of Thor transactions:

� Concurrency control is performed at the object granularity level. Any modi�cation

to an object generates a new value for it.

� Blind writes are not allowed, i.e., if a transaction has modi�ed an object x, the tm

assumes that it has read x too. Blind writes are rare or non-existent in practice and

making this assumption simpli�es the validation algorithm.

� Two transactions con
ict on an object if one has read the object and the other is

modifying it, i.e., the usual notion of read-write con
ict. Note that a write-write

con
ict will also cause a read-write con
ict since blind writes are not allowed.
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System Characteristics

Our design for transaction management has been in
uenced by the characteristics of the

operating environment. The tm optimizes the normal case processing and avoids time

consuming operations on the critical path of the commit protocol. It makes the following

assumptions about the operating environment:

� Network partitions and frontend/server crashes are rare. Furthermore, since each

server is replicated for high availability, the likelihood of two servers not being able

to communicate with each other is very low.

� Although multiple applications can execute transactions and access di�erent servers

concurrently, it is unlikely that they generate a commit request at the same instant

of time. The validation algorithm has been designed to take advantage of this fact.

� We make an assumption about the workloads that there are few con
icts on objects.

As a result, transaction aborts are unlikely to occur.

� Loosely synchronized clocks are available for generating timestamps. As discussed

later, this feature prevents a certain class of aborts and simpli�es the validation algo-

rithm.

3.1.2 Thor Transactions

As stated earlier, all read or write operations executed by an application are run as part

of a transaction. To commit its currently executing transaction T, the application in-

vokes a commit request at its frontend and waits for the reply. The frontend initiates a

2-phase commit protocol among the a�ected servers, i.e., servers whose objects have been

read/written/created as part of T's execution. It receives the decision from these servers

and informs the application of the outcome. If the commit succeeds, the servers guarantee

that T's changes become persistent.

The above process constitutes the lifetime of a Thor transaction T and can be divided into

3 phases:

Execution phase | During this phase, T reads data items, performs computations and

writes new values of objects. All modi�cations of persistent objects are made to a

copy in the frontend's local cache. The information about objects read/modi�ed by

T is maintained by the frontend for use in the later phases.

Validation phase | This phase begins when the application asks its frontend to commit

T. The frontend initiates a 2-phase commit protocol to decide whether T can be

committed. The �rst phase of the commit protocol constitutes the validation phase.

During this phase, each a�ected server executes a validation check (see Section 3.2)

to determine if T is violating any serializability constraints.
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Update phase | If T passes the validation check, its updates are made available for

later transactions, i.e., the new values of modi�ed objects are installed at the relevant

servers. These installations form the update phase of T.

Delays in the �rst two phases are visible to an application, i.e., it waits while the

read/write operations are being processed or the transaction is being validated. Thus, the

transaction mechanism must ensure that such foreground delays are minimized. Execution

phase delays can be reduced by techniques such as caching and prefetching [Day94]. Our

work is mainly focused on the validation and update phases, but we ensure that execution

phase operations such as object (pre)fetch are not penalized.

3.1.3 Distributed Commit Process

This section gives an overview of the two-phase protocol executed to commit a transaction.

In the following discussion, the server to which the frontend sends the transaction informa-

tion is termed the coordinator . All the a�ected servers, including the coordinator, are also

referred to as participants. An a�ected server where no object has been created or modi�ed

as part of the transaction is called a read-only participant and the transaction is referred

to as a read-only-at-site transaction for that participant. Similarly, a non-read-only-at-site

transaction at a participant is also termed as an update-at-site transaction.

When an application commits a transaction T, the frontend sends the following information

to the coordinator server:

1. Read Object Set or ROS | Set of objects read by T.

2. Modi�ed Object Set or MOS | Set of objects modi�ed by T. Since blind writes

are not allowed, the mos is always a subset of the ros.

3. New Object Set or NOS | Set of objects that are being made persistent for the

�rst time. The nos objects are installed i� T commits.

The coordinator assigns a globally unique timestamp1 to T and initiates the 2-phase commit

protocol. In the �rst phase of the 2-phase commit protocol, the coordinator sends prepare

messages to all participants. Each participant runs a serializability check and sends its vote

to the coordinator. If the coordinator receives a yes vote from all participants, it decides to

commit the transaction; otherwise, it aborts the transaction. It informs the frontend about

the decision and the latter conveys the transaction's commit result to the application. As

part of the second phase, the coordinator informs the participants about the transaction's

commit result. Each participant logs the coordinator's decision and sends an acknowledge-

ment to the coordinator. As an optimization, each participant sends invalidation messages

to frontends that have cached objects modi�ed by this transaction; these messages ask fron-

tends to 
ush old copies of the modi�ed objects from their cache. If the currently executing

1The need for timestamps is discussed in Section 3.2.1.
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Figure 3-1: The two phase commit protocol in Thor
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transaction at a frontend has read any of the objects, it is aborted. Thus, invalidation

messages prevent transactions from doing wasted work.

To make the protocol resilient to crashes, each participant must log a prepare record

on stable storage before sending its vote to the coordinator. It must also log a commit

record on stable storage before sending its acknowledgement message to the coordinator.

Similarly, the coordinator needs to log a commit record before informing the application

about the commit/abort decision. Our design uses the presumed-abort strategy [Mohan86]

and also does not require phase 2 messages to be sent to read-only participants (for details

of the 2-phase commit protocol, see [Mohan86]).

Note that the frontend waits only while the �rst phase of the protocol is being executed.

Thus, this phase of the commit protocol is said to have executed in the foreground (see

Chapter 2). The second phase proceeds in the background, i.e., the application does not

wait for this phase to be completed.

The messages and log forces involved in committing a transaction are shown in Figure 3-

1. Numbers indicate the order of messages, i.e., messagei precedes messagei+1. Messages

with the same numbers can be sent in parallel. A force to the backup has a superscripti=j

indicating that it is done after receiving messagei but before sending messagej .

During the commit process, the participants also exchange information about newly cre-

ated objects. As explained in the previous chapter, each participant assigns new xrefs/uids

and allocates space for the objects created at its site. This allocation is done along with the

validation process; if a participant is unable to allocate space for these objects, the trans-

action is aborted. Otherwise, if the transaction passes validation, the participant sends the

new object information to the coordinator along with its vote. The coordinator merges

this information from all the participants and sends it as part of the second phase. Each

participant needs this information to resolve references to the newly created objects. A

newly-persistent object x is installed in the second phase of the protocol. However, the

frontend is informed about x's new xref after the �rst phase itself. Therefore, it may hap-

pen that the frontend sends a fetch request for object x before x has been installed at the

server. The server can declare this fetch as invalid or delay the fetch till x has been installed.

The state of an object x stored at a server is termed the base version of x. This object

can be cached at di�erent frontends; each copy of x is called a shadow version of x. When

a transaction that has modi�ed x at frontend F commits, x's shadow version at F becomes

the new base version at x's server. If a prepared transaction T is modifying x, the value of

x that T is trying to install is called the potential version of x. Thus, we can view x having

multiple versions with the base version being the latest installed version of x. We refer to

the ith version of x as xi and x's base version is denoted by xbase.

3.2 Validation

Optimistic concurrency control schemes are designed to get rid of the locking overhead

of pessimistic schemes. Instead of performing checks during the read/write operations,

these schemes defer the burden of concurrency control till the validation phase. In the
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validation phase, the tm at each participant veri�es that the transaction has not violated

any serializability constraints; this process is termed validation or certi�cation.

There are two kinds of validation | forward validation and backward validation. The

former validates an incoming transaction T against all the concurrently executing trans-

actions and ensures that none of them is invalidated by T. Backward validation involves

validating T against prepared or committed transactions; T fails validation if any of these

transactions has invalidated T's operations.

Forward validation schemes have advantages over backward validation schemes:

� An active transaction never reads a stale value; applications never see an inconsistent

state of the database. If backward validation is being used, the programmer must be

aware that an active transaction may read an object's old version. The code must be

written to take this fact into account.

� As a result of the previous point, only transactions that modify objects need to be

validated at the end of the execution phase. Of course, each frontend needs to maintain

su�cient information about recently committed transactions so that it can validate

later transactions.

� Forward validation schemes do not validate the read set of a committing transaction

T. They just need to certify T's write set (usually small) whereas backward validation

schemes also need to validate T's read set (which is potentially large).

� In case of a con
ict, forward validation schemes provide the 
exibility of aborting

the active or the validating transaction whereas backward validation schemes always

abort the active transaction.

However, forward validation schemes have some drawbacks which led us to choose backward

validation for our design:

� In a system like Thor, forward validation can be viewed as a strategy in which the

participants of a committing transaction T are not only the a�ected servers but also

the frontends that have cached objects in T.mos. Making frontends be participants

of a transaction is not desirable because increasing the number of participants in the

commit protocol increases the load of the coordinator server. Another problem with

this approach is that frontends are not highly available; this can unnecessarily delay

the commit process or abort a validating transaction.

� Forward validation schemes assume that each active transaction's read/write sets are

known during T's validation phase. In a distributed system like Thor, this requires

extra communication during the execution or validation phase. Furthermore, active

transactions have to be blocked while a distributed validation is being carried out for

T | an expensive proposition.

� Pure forward validation schemes abort committing transactions in favor of active

transactions that may abort ultimately. On the other hand, backward validation

schemes abort active transactions in favor of already committed or committing trans-

actions.

� Livelock among transactions can occur if forward validation is being used whereas the

backward validation schemes can avoid such situations.
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3.2.1 Total Ordering of Transactions

Serializability means that the e�ect of executing the transactions concurrently is the same

as the e�ect of executing them in some serial order. This serial order is called the equivalent

serial schedule. The concurrency control mechanism can guarantee serializability in a dis-

tributed system by scheduling con
icting transactions in the same relative order at all sites.

Pessimistic schemes such as 2-phase locking [Bern87] achieve this a�ect by locking objects

and delaying transactions that try to execute con
icting operations. Most distributed opti-

mistic schemes use timestamps to ensure that transactions at di�erent sites are committed

in the same relative order.

Our design uses globally unique timestamps to guarantee serializability. The timestamp

of each committed transaction T can be viewed as the time when T executed in an equivalent

serial schedule H. That is, if T had been executed at time T.ts (instantaneously), it would

have read the same values as it did while running concurrently with other transactions. The

timestamp is a predictor of the commit order for validating transactions; the coordinator

predicts T's position in H and sends prepare messages to the participants. The validation

algorithm checks whether the serial schedule H made up of all committed transactions

placed in timestamp order will remain an equivalent serial schedule if T is inserted in H

at a place determined by T.ts. The tm also has to ensure that committing T will not

violate any serializability constraints with respect to the prepared transactions. That is, it

has to check that none of T's operations have been invalidated by a prepared transaction;

since backward validation is being used, T is not validated against active transactions. T

validates successfully against a committed or prepared transaction S only if the timestamp

order is the same as the commit order, i.e., if S.ts is less than T.ts, then T passes validation

only if S can precede T in H and vice-versa.

It is important that the coordinator chooses an appropriate timestamp value for a vali-

dating transaction T, since otherwise some transactions may be aborted unnecessarily. For

example, if T has read x installed by S, T.ts must be greater than S.ts. If the coordinator

chooses a low value for T.ts, T may not pass this test. Similar problems occur for later

transactions if the coordinator chooses a high value for T.ts. Timestamp values are also

important for validating T against concurrently committing transactions. For example, if S

is modifying x and T has read it, an excessively low value of S.ts can abort T unnecessarily.

Various techniques for choosing timestamps have been suggested in the literature. For

example, the scheme described in [Agarwal87] requires each site to maintain a monotonically

increasing counter that is updated according to incoming commit messages. But this scheme

can lead to unnecessary aborts or retries because the counters at di�erent servers are not

updated at the same rate. A negotiation-based scheme has been suggested in [Sinha85], but

it su�ers from the disadvantage of an extra network roundtrip delay on the critical path.

Essentially, these schemes synchronize the counters at various sites as part of the con-

currency control mechanism. The Thor model assumes that loosely synchronized clocks

[Lamport78] are available in the system; this is a reasonable assumption for current sys-

tems where protocols such as the Network Time Protocol [Mills88] provide such a facility.

To choose a timestamp for transaction T, the coordinator server uses its local clock and

augments it with the server id to make T.ts globally unique. Since loosely synchronized
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clocks are close to real time at all sites, it is likely that if S and T are assigned timestamps

(in that order) at sites A and B, then S.ts < T.ts. In general, the timestamp of an incoming

transaction will usually be greater than the timestamp of a con
icting committed/prepared

transaction. Thus, there will be few aborts due to excessively low or high timestamp values.

Being close to real time, loosely synchronized clocks also reduce the likelihood of external

consistency [Gi�ord83] being violated. A violation of external consistency occurs when the

ordering of operations inside a system does not agree with the order a user expects. For

example, if two users commit transactions S and T (in that order), they would expect S's

updates to be installed before T's updates or S to commit and T to abort if they cannot be

serialized in that order.

3.2.2 Validation Using the Transaction History

In this section, we develop the validation algorithm using an approach similar to the ones

discussed in [Gruber89] and [Agarwal87]. We do not discuss issues such as logging in

this section; these issues are addressed in the next two sections; in Sections 3.3 and 3.4,

we suggest ways of modifying the scheme to make it more practical for implementation

purposes.

The tmmaintains su�cient validation information about prepared and committed trans-

actions by keeping the complete history of committed and prepared transactions sorted by

timestamp order. For each prepared or committed transaction Si, it keeps an entry in

the history list with the following attributes | mos, ros, ts and a boolean that indicates

whether Si is prepared or committed. When transaction T reads object x, a tuple of the

form hx, install tsi is inserted in T.ros; install ts is the timestamp of the transaction that

has installed the version of x read by T. When T modi�es x, a tuple of the form hx, newvali

is added to T.mos where newval is the modi�ed value of x.

Suppose a transaction T reaches the server for validation such that Si.ts < T.ts< Si+1.ts.

This scenario is shown in Figure 3-2. The tm has to validate T.ros against transactions

older than T and T.mos has to be veri�ed against transactions younger than T. It uses the

following tests to perform validation (x 2 T.ros and y 2 T.mos):

1. ROS test | This test validates the objects that have been read by T. Let Sj be the

transaction from which T has read x, i.e., Sj.ts is equal to the value of install ts in

x's ros tuple. The tm veri�es that no prepared/committed transaction in the range

from Sj+1 to Si has modi�ed x. This condition guarantees that T would have read the

same values in an equivalent serial schedule H as it did while running concurrently.

Furthermore, the tm also veri�es that T.ts is greater than Sj.ts. This condition

ensures that T occurs after Sj in H.

2. MOS test | The tm validates T.mos by verifying that T has not modi�ed any

object y that has been read by a transaction in the range from Si+1 to Sn. This

condition guarantees that T does not invalidate the read operations of any of these

transactions.

Note that the mos test was not needed for the scheme suggested in [Gruber89] because
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the transaction manager allowed T to pass validation only if T.ts was greater than the

timestamp of all previously validated transactions at that site. Since we do not require

transactions to be validated in increasing order of timestamps, the tm has to perform the

mos test also. If T passes both the ros and mos tests, the tm inserts T between Si and

Si+1 in the transaction history and marks it as prepared. When the tm receives a commit

message from the coordinator, it installs T's updates, marks T's entry as committed and

sends its acknowledgement.

3.3 Truncating the Transaction History

The last section described the validation scheme at an abstract level without considering

the space or logging requirements. In this section and Section 3.4, we discuss these issues

and present a validation algorithm that is practical to implement.

To cut down on space requirements, the tm needs some way of truncating the transaction

history while maintaining su�cient validation information about prepared and committed

transactions. Once a transaction has committed, its modi�cations are installed at the rele-

vant servers. At this point, its entry can be deleted from the history list. The tm captures

the ros and mos information of committed transactions by maintaining two attributes for

each object | rstamp and version. The rstamp attribute denotes the highest timestamp

among committed transactions that have read that object. The version �eld of object x

stores the timestamp of the transaction that has installed x's current base version. As

stated in Chapter 1, it may be possible to serialize more transactions by maintaining infor-

mation about multiple versions of each object. However, we did not choose this approach

because it increases space overheads per object and complicates the validation algorithm.

Furthermore, due to low-contention on objects, we expect transactions to have read the

latest versions of objects. Thus, the latest version of objects would usually be su�cient for

validating a transaction's read operations. Sections 3.3.1 and 3.3.3 discuss how the version

and rstamp attributes are used by the tm for validation purposes. Section 3.4 shows how

to reduce the overheads of this information.

For prepared transactions, the tm maintains a data structure called the Validation

Queue or vq; this idea has been suggested in [Gruber89]. This queue contains an entry for

each prepared transaction S and each entry has the following attributes | ros, mos and

ts. Essentially, the vq just contains those entries in the history list that were marked as

prepared. An update-at-site transaction T is entered in the vq if it passes validation. It is

removed from the vq after its updates have been installed. Thus, entries are added at the

end of the vq but not necessarily removed in �rst-in-�rst-out order. If R is a read-only-at-

site transaction at a server and it passes validation, it is assumed to have been committed;

after updating the rstamp attributes of the R.ros objects, the tm removes R from the vq.

The tm uses the vq and the version/rstamp attributes to perform the ros and mos

tests for an incoming transaction. For ease of presentation and understanding we partition

the algorithm into two parts | validation against committed transactions and validation

against prepared transactions. The former tests are performed by the Version Check and

Rstamp Check whereas the incoming transaction is validated against prepared transactions
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using the Validation Queue Check (vq-Check).

3.3.1 Validating the ROS Against Committed Transactions

The version �eld of object x truncates modi�cation history of x. It only maintains the

timestamp of the transaction that has installed x's current base version. As a result, the tm

does not have information about older versions of x; it must abort any incoming transaction

that has read an older version of x.

To perform the version check, the tm veri�es that an incoming transaction T has read the

current base version of each object x in T.ros, i.e., x.version must the same as xbase.version.

This part of the version check ensures that x has not been modi�ed since T read it; the

server state with respect to objects in T.ros has remained the same since T read those

objects. The tm also needs to check that T occurs after all transactions from which it has

read objects. The pseudo-code for the version check is shown in Figure 3-3.

% Version Check

for each object x in T.ros do

if (T.ts < xbase.version or x.version 6= xbase.version) then

signal ``Abort T".

Figure 3-3: The version check

Figure 3-4 shows a scenario in which an incoming transaction T has read object x and y

from an server. But before T validates, another transaction S installs a new value of object

x (newx is the new value of x that S installs) and changes the version �eld value from 65

to 86. T passes the version check on object y but fails this test on object x and aborts.

3.3.2 Validation Against Prepared Transactions

If an incoming transaction T passes the version check, the tm validates T against the set of

prepared transactions using the Validation Queue Check or the vq-check . If any prepared

transaction S is invalidating T's operations, the tm can either wait for S's outcome to be

known or abort T. The former scheme has the disadvantage that it can result in a deadlock.

Our design uses the latter strategy since we assume that prepared transactions are likely to

commit.

The tm performs the ros test for T against prepared transactions that have a timestamp

value less than T.ts. To pass the ros test, T should not have read any object being modi�ed

by such a transaction. Similarly, to pass the mos test, T should not modify any object that

has been read by a prepared transaction whose timestamp is greater than T.ts. Thus, T
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passes the vq-check if the following conditions are satis�ed (S is a prepared transaction in

the vq):

1. If S.ts < T.ts, then S.mos \ T.ros = � ros test

2. If S.ts > T.ts, then T.mos \ S.ros = � mos test

If any of T's reads or writes has been invalidated by a prepared transaction, T fails this

check. In Figure 3-4, if transaction T reaches the server before S's updates have been

installed, it will pass the version check, but it will fail the ros test of the vq-check and

abort.

If T passes all validation checks, the tm inserts it in the vq and sends a yes vote to

the coordinator. On receiving the commit decision from the coordinator, the tm installs

T's modi�cations and updates the version �eld of the relevant objects. It also removes T's

entry from the vq. Thus, at any instant of time, there is at most one transaction in the vq

that is trying to modify a particular object (since the tm does not allow blind writes). In

other words, there is at most one potential version of an object in the vq.

3.3.3 Validating the MOS Against Committed Transactions

In this section, we motivate the need for the rstamp attribute and discuss how the tm

performs the mos test against committed transactions. Suppose that the tm does not

maintain the rstamp attribute for each object. After committing a transaction, it updates

the version �eld and discards the ros information. As the following example demonstrates,

lack of read timestamp information can lead to non-serializable conditions (assume that

transactions S and T are executing concurrently at di�erent frontends):

1. Transaction S has read object xp from site A and is modifying ym at site B. It passes

validation at both servers and S.ros is removed from site A.

2. Transaction T, with T.ts < S.ts, has read version ym and is modifying version xp. It

passes validation at site A because S.ros has been removed from the vq. It validates

successfully at site B also since S's updates have not been installed at that site. S is

still in the vq and according to the ros test, the tm at server B serializes T before S.

Both transactions pass validation and commit. However, these transactions are non-

serializable and at least one of them should have been aborted. In the current scenario, at

site B, S and T have committed in timestamp order but at server A they have committed

in opposite order. The tm at site A should have prevented T from validating since T's

write on x had been invalidated by S's read. Therefore, whenever a transaction's ros is

removed from the vq, some information must be maintained to prevent transactions such

as T from committing and violating the commit timestamp order. The tm achieves this

e�ect by maintaining the rstamp attribute for each object. To validate T.mos against

committed transactions, the tm checks that T.ts is greater than x.rstamp for each object x
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in T.mos. This test, called the Rstamp Check , guarantees that T's modi�cations have not

been invalidated by read operations executed by committed transactions.

The rstamp and version attributes of relevant objects are updated when a transaction is

removed from the vq. For a read-only-at-site transaction, the rstamp attribute is updated

after the transaction has passed validation.

3.3.4 Failure of Transaction Validation

If a transaction fails validation, the simplest strategy is to abort it. Instead, if possible, the

tm may take steps to avoid aborting the transaction. If an incoming transaction T has a

low timestamp value, the tm can ask the coordinator to raise it. For example, if T fails the

Rstamp test or mos-test of the vq-check, the tm can ask the value of T.ts to be increased.

Thus, at the cost of some extra foreground messages, the tm may be able to commit T.

However, in our design, a participant never asks a coordinator to lower T's timestamp value

(e.g., if T fails the ros-test of the vq-check due to a transaction S in the vq); instead,

it aborts T. Retrying T with a lower timestamp may not be helpful because transaction S

would have probably committed by the time T's retry message reaches the server. Therefore,

on retry, T would fail the watermark check and abort. A retry with a lower timestamp can

also lead to a ping-pong e�ect, i.e., T.ts might be increased and decreased alternatively.

Furthermore, decreasing transaction timestamps can cause timestamp values to drift away

from real time.

3.4 Reducing the Space and Logging Overheads

This section explores techniques to reduce the per object space requirements for concurrency

control purposes, i.e., decrease the space overhead for the version and rstamp attributes.

It also suggests a strategy to avoid logging information at a read-only participant.

3.4.1 Maintaining the Read History Information

Suppose that U is a read-only-at-site transaction at site A. If U passes validation, the tm

sends its yes vote but does not need the commit decision from the coordinator. However,

if U.ts is greater than the rstamp attribute of an object x in U.ros, the tm has to update

x.rstamp to be U.ts (which will normally be the case because of loosely synchronized clocks).

The server must 
ush the new rstamp information to stable storage before replying to the

coordinator. Therefore, not only does the rstamp attribute have a space overhead, it also

requires a foreground log 
ush for read-only-at-site transactions. The rstamp attribute

problem can be alleviated in the following way:

Instead of maintaining the rstamp attribute per object, the tm approximates this infor-

mation by storing an upper bound on the read times of all objects at a server. This bound is

called the read-watermark or Xr for the server. Since the tm has lost the read information

for each object, it must assume that all objects at the server were read at time Xr. Thus,

to ensure that an update-at-site transaction T does not invalidate a read operation of a
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committed transaction, the tm has to verify that T.ts is greater than Xr. This test is called

the Read-watermark Check . However, lack of per-object information can cause spurious

aborts. But we expect such aborts to be rare since loosely synchronized clocks are being

used to generate timestamps; transactions reaching a server will usually have timestamp

values greater than the read-watermark at that server (see Section 3.2.1).

When S.ros is removed from the vq, Xr is set to the maximum of its original value

and S.ts. In our design, we remove a transaction S from the vq after it has committed

(Section 3.4.3 discusses other possibilities). If S is a read-only-at-site transaction, S.ros is

removed after S validates successfully at the site. If S.ts is greater than the read-watermark,

the tmmust force the new value of Xr to the backup. This is likely to happen because loosely

synchronized clocks are being used for generating timestamps; S.ts will usually be greater

than the last transaction committed at that site. Thus, the read-watermark approach avoids

space overhead per object, but read-only participants still require a log record to be 
ushed

on the critical path.

The tm can avoid updating Xr at a read-only participant using a technique suggested

in [Liskov91]. The tm maintains a stable copy of the read-watermark called the stable-

read-watermark or Xrs with the invariant: Xrs � Xr. The stable read-watermark is a value

maintained on stable storage. Xr is only maintained in memory; it is not kept on stable

storage. Initially, Xrs is set to Xr + � (the choice of � is discussed in the next paragraph).

Whenever a transaction prepare increases the value of Xr above Xrs, the latter is set to

Xr + � and forced to the backup. Thus, a read-only participant avoids a roundtrip delay

on the critical path if the new value of Xr is below Xrs. As an optimization, the tm can

update Xrs to Xr + � when an update-at-site transaction prepares or commits since it has

to force a prepare/commit record to the backup anyway.

If a site crashes and recovers, the read-watermark is initialized to the stable-read-

watermark. This step ensures that the invariant Xrs � Xr is still maintained and Xr is

always an upper bound on the read times of objects at a server. However, an update-at-

site transaction with a timestamp greater than the original value of Xr but lower than the

new value may fail the watermark test and be unnecessarily aborted. A large value of �

increases the likelihood of such aborts. This seems to suggest that � must be kept small.

But a low value of � will force frequent updates of Xrs, defeating the primary purpose of

the stable-read-watermark. The choice of � can be made based on system characteristics.

For example, in a system like Thor where messages are periodically exchanged between the

primary and the backup every ta seconds, � can be set to ta and the new value of Xrs

piggybacked over the liveness messages. If ta is su�ciently less then the time taken to

complete a view change [Oki88], the probability of a transaction being aborted due to the

reinitialization of Xr with Xrs becomes insigni�cant.

3.4.2 Implementing the Version Field

The preceding discussion assumed that an object's version �eld stores the timestamp of

the transaction that installed the latest version. Let us analyze the space overhead of

using timestamps for the version �eld. As stated earlier, a globally unique timestamp can

be implemented by augmenting a server's local timestamp with the server identi�cation
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number. Suppose that the local timestamp and the server id require n and d bits of storage

respectively. Thus, the version �eld has a space overhead of n+ d bits per object. Another

way of implementing this attribute is to use a k-bit counter (k < n+d), i.e., every object

update causes the version �eld to be incremented by 1. The version �eld implemented using

a counter is also referred to as the object's version number or vnum.

Version numbers not only use less space, they also wrap around at a slower rate compared

to timestamps. Wrapping around of the version �eld for the counter scheme depends on the

rate at which an object is modi�ed; for the timestamp implementation it depends on the

clock rate. Suppose that a counter implementation uses 32 bits and a timestamp scheme

take 64 bits of storage (32 bits for local time and 32 bits for the server id) to implement the

version �eld. Assume that an object is modi�ed 100 times per second and the granularity of

the clock is 1 millisecond. The counter value will wrap around after 1.3 years whereas the

timestamp value will wrap around after 50 days. Timestamp values run out faster because

only 1 in 10 clock values is being used for a new version value; the remaining values are

\wasted". Wrapping around of version numbers can cause serializability problems; this

issue is discussed later in this section.

It might seem that the modi�cation history is accurately captured by a counter imple-

mentation; any transaction T that has read an old version or has an inappropriate timestamp

value will be aborted by the version check. But this is not true since the counter value does

not capture the timestamp of a modifying transaction S. This information is lost when

S.mos is removed from the vq. The tm can perform only part of the the version check; it

cannot ascertain that T.ts is greater than the timestamp of all transactions from which T

has read objects. Here is an example to show how non-serializable behavior can occur if

the version �eld is implemented using counters.

1. Suppose that S is a transaction modifying object xp at site A and ym at site B. S

commits and passes the validation checks at A and B. The new version of x (xp+1)

gets installed at A.

2. Another transaction T that has read xp+1 and ym, tries to commit with a timestamp

less than S.ts. T passes the version check (because it has read x's new version) and

the vq check (because the vq no longer contains S.mos) at site A. Since T.ts < S.ts

and S is still in the vq at site B, T succeeds in validating at site B also.

But S and T are non-serializable and at least one of them must abort. The tm at site A

must abort T since T is trying to serialize in an order that is di�erent from the timestamp

order; T.ts is less than the timestamp of the transaction (S) from which it has read object

x. The validation mechanism failed to detect this behavior at site A because the version

�eld of x did not have su�cient information to abort T. Thus, the tm needs to maintain

some information about S's timestamp when it installs S's updates and removes S from the

vq.
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Maintaining the Write Timestamp Information Using a Write-watermark

Instead of keeping track of the individual installation times of objects, we can use an

approach similar to one used for the rstamp attribute. The tm use a counter for the version

�eld and maintains an upper bound on the modi�cation times of all objects at the server.

This bound is called the write-watermark or Xw. Since the tm has lost the �ne granularity

per-object update information, it must assume that all objects at the server were modi�ed

at time Xw. A transaction validating at that server must have a timestamp greater than

Xw; otherwise it is aborted. This test is called the Write-watermark Check . Note that

unlike the rstamp case, the tm still needs to maintain the version �eld for each object. This

is so because an upper bound on the write times is not su�cient to check whether object x

has been modi�ed since T read x.

The write-watermark captures the modi�cation time history of all objects in a compact

way. When the tm removes S.mos from the vq, it updates Xw to be the maximum of the

original value and S.ts. In our design, the S.mos is removed from the vq after installing S's

updates. Section 3.4.3 discusses other options.

Timestamps or counters for the version �eld?

The timestamp implementation of the version �eld has the advantage that no transaction

is aborted due to lack of per-object write timestamp information and no write-watermark

has to be maintained. But as stated earlier, timestamps have a higher space overhead than

counters. Since it is unlikely that a transaction will fail the write-watermark test, increasing

the space overhead per object to avoid a rare class of aborts is not a good design decision.

For the rest of the thesis, we assume that the version �eld is implemented using counters;

the tm validates the ros of an incoming transaction T against committed transactions

using the version and the watermark checks.

Thor is intended to be used over a long period of time and it may seem that wrapping

around of counters may cause problems. However, this is not the case since version numbers

are used just to check if the validating transaction T has read the latest version of its

ros objects or not, i.e., version numbers are used for an equality test not for ordering

purposes. To determine whether T's timestamp value is in consonance with its position

in the transaction history (with respect to committed transactions that have modi�ed the

T.ros objects), the write watermark is used. Thus, it is the wrapping around of watermarks

and not the version numbers that is an important consideration. To prevent watermarks

from wrapping around during the lifetime of a database, they can be implemented as large-

sized timestamps. Note that these watermarks are just being maintained per server and

not per object; as a result, their space overhead is insigni�cant. Assuming a 1 microsecond

clock, watermarks implemented using 88 bits will last for more than 2000 years.

However, there can be serializability problems if a frontend has an object xv in its cache

and xv's version number v is re-used by the relevant server. We assume that such situations

will not occur; a frontend will receive invalidation messages before the version number of

some object in its cache is reused by the relevant server. This is a reasonable assumption

because the time it takes for even a small vnum (e.g., 16 bits) to wraparound is relatively
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large compared to the time taken for a frontend to be informed about an invalidation.

However, if an object's version number is reused and a frontend F still has the object's old

copy, the relevant server can send a message to kill F.

3.4.3 Updating the Watermarks

As discussed in the previous sections, we remove a transaction's entry from the vq after

it has committed and update the watermarks. However, it is not necessary to update Xr

or Xw at commit time. The watermarks can be updated at any stage during (or after) a

transaction's lifetime. We will consider two possibilities for updating the watermarks:

1. The transaction manager updates the watermarks after preparing an incoming trans-

action S. For the read-watermark, this scheme has the advantage that S.ros does not

have to be kept in the vq and the tm does not have to validate the mos of an incoming

transaction T against S.ros; if T has passed the read-watermark test, its timestamp

must be greater than S.ts. However, this scheme essentially constrains transactions

to arrive at a server in increasing order of timestamps which may result in spurious

aborts. But as stated in Section 3.2.1, it is likely that transactions arrive at a server

in increasing order of timestamps.

2. The tm keeps a transaction's entry in the vq even after that transaction has com-

mitted at that site. The vq check has to be modi�ed for this approach since the vq

may now contain di�erent versions of the same object. This scheme can be used by a

tm if it discovers that there are excessive aborts due to transactions failing (say) the

write-watermark check. Note that this situation is unlikely in normal circumstances

but may occur in some cases, e.g., if the clock skew is high. The tm at server A could

wait to remove the entry of transaction S from the vq until the following condition is

satis�ed:

S:ts < Ct � � � � � � Removal Condition

where Ct is the current time at site A, � is an estimate of the clock skew, � is the

network delay and � takes retries into account.

If the local time at site A is Ct, then (most likely) the local time at any other site

is greater than Ct � �. No messages that were sent more than � seconds earlier

will reach site A. We also assume that when a server's current time is G, the earliest

prepare message it can send at this time cannot have a timestamp value less than

G ��. This implies that at time Ct � � � �, the lowest timestamp that could have

been assigned to a transaction by a server is Ct � � � � � �. Therefore, the tm can

remove the entry of any committed transaction that has a timestamp less than this

value and update the watermarks. Basically, the tm reduces the chances of an abort

due to the watermark checks by retaining some entries of the transaction history for

a su�ciently long time. But this approach increases the vq's space overhead and also

slows down the vq-check since an incoming transaction has to validate against more

transactions.
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We use the �rst scheme for read-only-at-site transactions so that the tm just has to update

Xr (which it may not have to if Xr is less than Xrs). For update-at-site transactions, we

retain the ros information until commit time since the mos information has to be kept

anyway. The second scheme complicates the validation algorithm and slows down the vq-

check since an incoming transaction has to validate against more transactions. We assume

that clock skews are low and retries are rare. As a result, it is very likely that the removal

condition will be satis�ed at the time S's updates are installed. Thus, in our design, the

tm removes S's vq entry information after S has committed.

3.5 The Serial Validation Algorithm

This section presents the basic validation algorithm for an incoming transaction. The

algorithm is serial, i.e., at most one validation or installation can be happening at a time2.

A synchronization lock called the vq-lock is used for this purpose; the tm holds this lock

during the validation process and while installing a transaction's updates. We also assume

that a synchronization lock is available for each object. The tm acquires a write-lock on

an object x, modi�es x and then releases the lock; therefore, it holds only one object write-

lock at at a time. A read-lock is acquired on an object by operations such as object fetch

and version check before reading the object. Note that deadlock cannot occur between

installation and validation because these operations acquire the vq-lock before proceeding

with their work. Furthermore, installation cannot deadlock with object fetch (which may

acquire multiple read-locks) because it holds at most one object lock at any given time.

Before discussing the algorithm, let us summarize the design decisions that have been made

for the transaction manager:

1. The version �eld is implemented using a counter. A transaction's mos is removed

from the vq after installing its modi�cations and the write-watermark Xw is updated.

2. A transaction's ros is removed from the vq after the transaction has committed at

that site and its updates have been installed. For a read-only-at-site transaction T,

the tm removes the T.ros after T has passed validation. As stated in Section 3.4.3,

if this causes too many aborts, the tm can retain the information for a longer time.

The read-watermark Xr and its stable version Xrs are maintained using the technique

described in Section 3.4.1. Since Thor does not permit blind writes, Xr is always

greater than or equal to Xw. For the sake of simplicity, the algorithm discussed in

Figure 3-5 assumes that the stable-read-watermark technique is not being used, i.e.,

Xr is 
ushed to the backup whenever its value increases.

Figure 3-5 gives the details of the validation algorithm. In the �gure, we assume that all

locks held by the tm are released when an signal is raised, e.g., when a transaction fails the

version check on object x, the tm releases the vq-lock and the read-lock on object x and

2A parallel validation scheme that allows transaction validations and object installations to proceed

simultaneously is discussed in the next chapter.
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T Enters Validation

Lock (vq-lock)

Write-watermark Check

if (T.ts < Xw) then

ask the coordinator to retry with a timestamp greater than Xw.

Read-watermark Check

if (T.ts < Xr and T.mos 6= �) then

% A non-read-only-at-site transaction has failed the read-watermark test.

ask the coordinator to retry with a timestamp greater than Xr.

Version Check

for each object x in T.ros do

Read-lock(x)

if x.vnum 6= xbase.vnum then signal ``Abort T".

Unlock(x)

Validation Queue Check

ros test: If (S.ts < T.ts and S.mos \ T.ros 6= �) then

signal ``Abort T".

mos test: If (S.ts > T.ts and T.mos \ S.ros 6= �) then

ask the coordinator to raise T's timestamp.

Validation Succeeded

If T.mos = � then

Xr := max (Xr, T.ts)

else insert in queue (vq, T) % Add T to the vq.

Unlock (vq-lock)

% Send Yes vote to the coordinator and wait for the decision.

Installation

Lock (vq-lock)

If decision is ``commit" then

for each object x in T.mos do

Write-lock(x)

xbase.vnum := x.vnum

xbase := x % Install the new version of x.

Unlock(x)

Xr = max (Xr, T.ts); Xw = max (Xw, T.ts)

Remove T from the vq.

Unlock (vq-lock)

Figure 3-5: The serial validation algorithm
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then signals abort. In the vq-check, the ros test ensures that an earlier transaction has

not invalidated T's read whereas the mos test ensures that T is not modifying an object

that has been read by a later transaction. As described in Section 3.3.4, the tm asks the

coordinator to retry with a higher timestamp in mos test but aborts T in the other case.

In the mos test, before asking the coordinator to retry T with a higher timestamp

value new ts, the participant can check whether there is another transaction U in the vq

that would demand a retry with an even higher timestamp. Otherwise, if T is retried with

new ts, U would force T.ts to be raised again. To avoid such multiple retries, the participant

can validate T against all transactions in the vq (unless T fails validation) and then decide

whether it should signal a retry or an abort. It can maintain a lower and upper bound

on the permissible values for T.ts called min val and max val respectively. During the vq

check, if this range becomes empty, T is aborted. Furthermore, if some transaction S is

restricting the maximum value of T.ts, the tm can signal abort instead of retry. The tm

can make this decision on the assumption that it will receive the revalidation message for T

(with a new timestamp less than max val) after S has committed; committing S will raise

the read/write watermark level and cause T to fail the watermark check.

If T is a single-server transaction the coordinator need not assign a value to T.ts before

the vq check. After completing the vq check it can select any value in the range [min val,

max val]. The tm can make a choice according to T's characteristics. For example, if T is

predominantly read-only, the tm can select min val for T.ts since this value would permit

a higher range of timestamp values for later transactions that modify objects in T.ros.

Similarly, if T has modi�ed many objects, the tm can choose max val for T.ts. However,

assigning min val or max val to T.ts may result in loss of external consistency since the

tm may choose a timestamp far from the current time. Thus, in our design, we have not

adopted this strategy.

In this chapter, we presented a strategy in which there is some space overhead per object

for concurrency control. We have developed a scheme in which there is no space overhead

per object; see [Adya94] for details. In that paper, we have also discussed a validation

algorithm in which a transaction's vq entry may be retained in the vq even after the

transaction has committed.
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Chapter 4

Optimizations

This chapter explores various optimizations that can be used in Thor to minimize the delays

observed by an application. Section 4.1 presents a strategy to allow multiple validations

and installations to proceed in parallel at a server. Section 4.2 presents more optimizations

to reduce the foreground delays of the commit protocol. Section 4.3 discusses a scheme

in which the application does not wait for the current transaction's outcome to be known

before starting the next transaction.

4.1 Parallel Validation and Installation

The last chapter discussed the basic strategy used in Thor for validating an incoming

transaction. However, it required that at most one transaction validation or installation

of objects could be happening at any given time. This section presents a scheme to allow

the validation of transactions and installation of objects to proceed simultaneously at a

server. The algorithm described in this section is based on the assumption that there are

synchronization locks available for each object and for the vq/watermarks (vq-lock).

4.1.1 Parallel Validation

If two con
icting transactions S and T validate at a server, the tm needs to ensure

that at least one of them detects the con
ict and takes appropriate action. Let us call this

requirement the con
ict-detection property . To maintain this property and permit multiple

validations at a server, we use a strategy similar to the one suggested in [Gruber89]. For an

incoming transaction T, the idea is to take a fast snapshot (inside a critical section) of all

the relevant activities that can occur during T's validation process and then perform T's

validation using the snapshot. To generate this snapshot, the tm locks the vq, makes a copy

called the vq-copy and enters T in the vq. It performs the watermark checks and releases

the vq-lock. For the version check, the tm read-locks a ros object, performs the test and

releases the lock. It performs T's vq-check using the vq-copy, i.e., it assumes that all

transactions in vq-copy are prepared and validates T against them. It is possible that some

of the validating transactions in vq-copy that cause T to abort get aborted themselves, i.e.,
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T Enters Validation (Watermark Checks)

Lock (vq-lock)

Generate vq-copy from vq. Enter T in the vq.

Perform the write-watermark test.

Perform the read-watermark test.

Unlock (vq-lock)

Version Check

for each obj, x, in T.ros do

Read-lock(x)

Perform the version check for x.

Unlock(x)

Validation Queue Check

Perform the vq-check using vq-copy.

% Validation completed.

Lock (vq-lock)

If T has passed validation, mark T's entry in the vq as prepared.

else remove T's entry from the vq.

Unlock (vq-lock)

Send appropriate message to the coordinator and wait for the decision.

``Commit" or ``Abort" decision received from coordinator

Lock (vq-lock)

if the coordinator's decision is commit then

Install T's updates by write-locking one object at a time.

Update the watermarks.

Remove T from the vq.

Unlock (vq-lock)

Figure 4-1: The parallel validation algorithm
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they fail validation at this server. In the serial validation case, T would have been validated

after these earlier transactions had been prepared/aborted and it might have been possible

that due to some of these aborts, T would have passed validation. However, since aborts

are rare, it is likely that the validating transactions in the T's vq-copy will pass validation.

Thus, by taking a snapshot of the vq and making the above assumption, the tm is able

to permit multiple transactions to validate simultaneously at a server. However, to prevent

non-serializable behavior from occurring, object modi�cations are not performed while a

transaction is validating. This condition is relaxed in Section 4.1.2.

Figure 4-1 shows the validation algorithm in which multiple transactions can validate

simultaneously at a server. Deadlocks cannot occur between various operations because

the the tm acquires at most one object lock at a time. Non-serializable conditions due

to simultaneous validations cannot occur because the tm maintains the con
ict-detection

property. In this algorithm, if two con
icting transactions validate simultaneously, the

transaction that enters the vq later will detect the con
ict. For example, suppose that S

has read x and T is modifying x. Transaction S enters the vq before T and both transactions

validate in parallel. Thus, T's vq-copy contains S's entry and T passes validation only if

T.ts is greater than S.ts. In general, if two concurrently validating transactions at a server

are non-serializable, the transaction that enters the vq later will fail validation and abort.

In Figure 4-1 objects are updated atomically with respect to the addition of transaction

entries in the vq. As a result, if a validating transaction is not serializable with a transaction

that is installing its updates, the former is aborted. Suppose R is a committed transaction

that is installing a new version xp+1, and U is a validating transaction that has read xp. If

U makes the vq-copy after R has been removed from the vq, U aborts on the version check.

Otherwise, the vq-copy has su�cient information to abort U if it needs to be. Thus, U is

de�nitely aborted if it is not serializable with R.

An issue of concern in this approach is the generation of the vq-copy. A naive imple-

mentation that copies all the vq information is space and time expensive. Instead, the

following approach can be used to achieve the e�ect of copying the vq:

Assume that the vq is implemented as an array of transaction entries. Each entry of

the vq has a counter that is initialized to zero. When an incoming transaction T needs to

copy the vq, the tm acquires the vq-lock and records the array index of the last element

in the vq as the endpoint of T's vq-copy. The beginning of T's vq-copy is the �rst element

in the vq whose entry is marked as prepared. The tm increments this entry's counter and

releases the vq-lock. The tm carries out the vq-check using the entries that are between

these points. When T's validation has been completed, the tm decrements the counter; this

step e�ectively destroys T's vq-copy. If T has passed validation, the tm marks T's entry

as prepared else it marks the entry as aborted. When the tm receives the coordinator's

decision for a transaction, it marks that transaction's entry as committed/aborted. The

tm can remove an entry from the beginning of the vq if it is marked as committed/aborted

and its counter value is zero. Thus, vq-copy for a transaction can be generated without

excessive space or time overheads.
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4.1.2 Permitting Installations to Proceed in Parallel with Validation

We have assumed that the tm performs object installations atomically with respect to

addition of entries from the vq. In Figure 4-1, the tm achieves this e�ect by holding the

vq-lock while installing a transaction's updates. As a result, any incoming transaction T

is delayed until the updates have been installed because the tm has to acquire the vq-lock

for generating T's vq-copy. This delay lies on the critical path of the commit protocol and

a strategy is required to reduce it.

Validation of transaction T

% As in Figure 4-1.

Installation of T's updates

If the coordinator's decision is ``commit" then

Lock (vq-lock)

Update the watermarks.

Unlock (vq-lock)

for each object, x, in T.mos do

Write-lock(x)

Install the new version of x.

Unlock(x)

Lock (vq-lock)

Remove T's entry from the vq.

Unlock (vq-lock)

Figure 4-2: Concurrent installation of object updates

This problem can be alleviated if the tm holds the vq-lock for only a short period of time.

It holds this lock only while updating the watermarks and the vq but not while modifying

the objects. The steps executed to install a transaction's updates are shown in Figure 4-2.

When the tm receives the coordinator's commit decision, it acquires the vq-lock, updates

the watermarks and releases the lock. It installs the object updates by locking the relevant

objects one at a time. Finally, it acquires the vq-lock, removes the transaction's entry1 and

releases the lock. In this strategy, it is important that the watermarks are updated before

the objects are modi�ed, as the following example shows:

Suppose the watermarks are updated after the new versions of objects have been in-

stalled. Consider the scenario in which a prepared transaction S is modifying xp and yq.

Object xp+1 has been installed but not yq+1. Transaction T reads xp+1 and yq. It reaches

1In the vq-copy implementation described in Section 4.1.1, the tm just marks the transaction's entry as

committed.
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the server for validation with T.ts < S.ts. It passes the watermark (Xr, Xw have not been

updated till now), version, vq checks and commits. However, T is not serializable with S

and must abort.

Updating the watermarks before modifying the objects maintains the invariant that the

write watermark is an upper bound on the object modi�cation times at the server. With

this strategy, transaction T in the previous example would have failed the watermark test

and aborted. Thus, updating the watermarks is a critical point in the installation process.

Let us see how serializability is not sacri�ced when installations are allowed to proceed

in parallel with validations. We need to consider only the case in which a transaction is

installing an object that a validating transaction has read. Correctness for other cases has

already been discussed in Section 4.1.1; parallel installation of objects does not a�ect those

cases. Suppose R is installing object x and U is a validating transaction that has read x.

There are two cases to consider:

1. U has read x from R. If U is not serializable with R (i.e., U.ts < R.ts), U will fail the

watermark test and abort. Note that when installation was not allowed to overlap

with validation (i.e., the algorithm in Figure 4-1), U's validation would have been

delayed till R's installation process had been completed. In the new scheme, the tm

does not delay U's validation.

2. U has not read x from R. If R and U are non-serializable (i.e., U.ts > R.ts), U will fail

the vq-check and abort. Executing R's installation process in parallel may have the

benevolent side-e�ect of failing U before the vq-check, i.e., the watermark or version

check.

Thus, in both cases, the new scheme ensures that U is aborted if R and U are non-

serializable. Combining the strategy shown in Figure 4-2 with the strategy presented in

Section 4.1.1, the tm can allow multiple transaction validations and object installations to

proceed in parallel at a server. As the next chapter shows, this feature is very important

for object migration.

4.2 More Optimizations to Reduce Foreground Delays

This section explores a few more optimizations that can help in decreasing an application's

wait time during the commit protocol's �rst phase. In the distributed commit scheme

discussed so far, the frontend has to wait for a time equal to 2 network roundtrip delays

plus the time taken to perform 2 backup 
ushes (for the prepare and commit records).

Section 4.2.1 explores a strategy to reduce network roundtrip delays by letting the frontend

send the prepare messages to the coordinator/participants. Section 4.2.2 presents a scheme

to avoid the backup 
ush of the prepare record. Section 4.2.3 discusses an optimization in

which the frontend sends the transaction information to the coordinator even before the

transaction has committed.
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4.2.1 Short-circuited Prepare

As described earlier, when an application requests its current transaction T to be committed,

the frontend chooses a coordinator server and sends a commit-request message that contains

T's information. This server sends prepare messages to the participants and waits for their

votes. Instead, the frontend can send the commit-request and prepare messages to the

coordinator and participants respectively. The participants validate T's operations and send

their votes directly to the designated coordinator; as before, the coordinator collects the

votes and is responsible for resending validation messages. Note that this scheme requires

the frontend to assign a timestamp for T. Since prepare messages are sent in parallel with

the commit-request message, the foreground message delay is reduced from 4 message delays

(2 network roundtrip delays) to 3 message delays. Another advantage of this approach is

that it takes some load o� the coordinator because the frontend is responsible for sending

prepare messages to the participants.

A scenario that can happen in the short-circuited prepare scheme is that the coordinator

may receive a yes vote from a participant before receiving the commit-request message from

the frontend. Since there is no entry for T in the vq, the coordinator will ask the participant

to abort T (our design uses the presumed-abort strategy). This is an unlikely situation

because the frontend{coordinator path involves 1 message delay whereas the frontend{

participant{coordinator path involves 2 message delays plus some validation processing.

The likelihood of such spurious aborts can be reduced even further if the coordinator delays

its reply to the participant. That is, the coordinator compares its local clock with T's

timestamp in the vote message. If T.ts is very low compared to the server's local clock,

it sends an abort message to the participant. Otherwise, it waits for the commit-request

message from the relevant frontend for a certain period before sending the abort message.

Thus, this scheme increases the complexity of the commit protocol slightly, but it reduces

foreground delays and also reduces the coordinator's load.

4.2.2 The Coordinator Log Protocol

Two log 
ushes are done in the �rst phase of the 2-phase commit protocol. These 
ushes

are required to make the protocol resilient to crashes. But the Thor model assumes that

crashes are rare. It would be preferable to develop a strategy that reduces the number of

foreground log 
ushes for the normal case, i.e., when there are no crashes. A strategy,

called the coordinator log protocol, has been suggested in [Stamos89] to achieve this e�ect.

The basic idea is to avoid a synchronous log 
ush (forcing the record before sending

the vote reply) of the prepare record by a participant. However, to ensure that the commit

protocol is resilient to crashes, the commit decision must not be 
ushed to stable storage

by the coordinator before each participant's prepare record has reached stable storage. In

the normal protocol, each participant maintains its prepare record on stable storage. In

the coordinator log protocol, the coordinator maintains the prepare record on behalf of

each participant. Along with its yes vote, each participant sends the relevant informa-

tion to the coordinator, i.e., read/write watermarks, log sequence number (lsn) and other

implementation-dependent log information. The lsn is sent so that the participant can
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order the log records during recovery. Note that the participant does not need to send the

ros, mos and nos information since the coordinator already has it (as discussed later in

this section, this is true for the short-circuited prepare scheme also). Thus, the increase in

the size of the vote message is quite small. On receiving all the yes votes, the coordinator

server 
ushes the prepare record information along with its commit decision to its backup.

This approach results in only one log 
ush in the foreground instead of two 
ushes. In

Thor, where a 
ush involves sending the data to the backup, the application waiting time

is reduced by a network roundtrip delay; in systems where the log has to be 
ushed to the

disk, the savings are even greater.

In the coordinator log protocol, a server's log is spread over servers that have been

coordinators for transactions prepared at that server. If the server crashes and recovers, it

could regenerate its log by contacting all the servers in the Thor universe. But this is not

an e�cient way of recovering a server's log. Instead, the server keeps track of the servers

that have been its coordinators in the recent past and maintains this information on stable

storage in a set called recent-coord. When it receives a prepare message from server A,

it checks if A is a member of recent-coord. If A 62 recent-coord, it adds A to this

set and 
ushes it along with the prepare record. Otherwise, it just validates the incoming

transaction and sends its reply to A; the prepare record is not 
ushed to the backup. A

server can keep the the size of recent-coord small by periodically removing servers that

have not been the coordinators of any of its transactions in the recent past.

A problem with the coordinator log protocol is that autonomous recovery of a server

(say B) has been sacri�ced. This protocol requires all servers in B's recent-coord to be

available when B is recovering from a crash. If some of these servers are down, B's recovery

will be delayed. This is not a problem in Thor where servers are highly available; the

probability of B not being able to contact one of its recent coordinators is very small. But

in systems where servers are not highly available, each server can maintain crash information

about other servers. On receiving a prepare message from server C, a server 
ushes the

prepare record if it considers C to be an unreliable server.

The Coordinator Log Protocol with Short-circuited Prepare

The short-circuited prepare scheme reduces the foreground delay and the coordinator log

protocol reduces the number of foreground log 
ushes. If both these strategies are combined,

the distributed commit delay of 4 message delays and 2 log 
ushes can be brought down to

3 message delays and 1 log 
ush. In Thor, the commit wait time for a frontend is reduced

from 8 message delays to 5 message delays (a log 
ush is equivalent to a network roundtrip).

Figure 4-3 shows the combination of these two strategies for committing a transaction. It

describes the case where the coordinator is a member of recent-coord and the prepare

record is not 
ushed to the backup. Note that the ros/mos/nos information about each

participant can be sent by the frontend to the coordinator or by the participants along with

their yes votes. The former strategy seems to be better because it takes the load o� the

participant servers.
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Commit  Request
1

Commit / Abort Decision
3

Commit / Abort Decision

Acknowledgement
4

Yes / No response
2

Backup Backup

Decision 2/3

Decision
3/4

Messages sent in the background.
Messages sent in the foreground.

Frontend

Coordinator Participant

Invalidation
Messages

4

Invalidation
Messages

43

Prepare  Request 1

Figure 4-3: The coordinator log protocol with short-circuited prepare
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4.2.3 Amortizing the Commit Cost Over a Transaction's Lifetime

A frontend sends the commit information to the servers after receiving a commit request

from its application. Instead, it can send this information during the execution phase of

a transaction. This scheme has the advantage that the commit time delay is amortized

over a transaction's lifetime; a similar scheme has been proposed in [Oki85]. The frontend

piggybacks the current transaction's read/write information on fetch requests and liveness

messages. At commit time, most of the transaction information has already reached the

participants and the frontend just needs to send small commit-request/prepare messages.

However, this mechanism has the disadvantage that multiple updates to the same object

during a transaction's execution may cause the modi�cation information to be sent more

than once to a server. This problem can be alleviated if a frontend never sends an object's

update information more than n times during the execution phase, where n is a small

number. Thus, an object's modi�cation information is sent at most n+1 times to a server |

in n messages sent during the execution phase and one sent at the end of the transaction.

There are three strategies that a server can use for handling the commit information

sent during the execution phase of a transaction T:

1. Early Send | The tm just stores this information and starts validation when it

receives a message to validate T from the coordinator/frontend.

2. Early Validation | The tm validates T to determine whether T's operations have

been invalidated by a prepared or committed transaction. This strategy still requires

T to be validated at the end of the execution phase.

3. Early Prepare | In this case, the tm only early-validates T and adds an entry for T

in the vq if T passes the early validation process. This mechanism has the advantage

that operations that have been early-validated need not be validated at T's commit

time.

The early send scheme reduces the size of the commit message sent by the frontend to

the coordinator and is useful in reducing the commit delay as observed by an application.

The early validation scheme checks whether T's operations have been invalidated by some

other prepared/committed transaction S and can prevent T from doing wasted work. But

early validation is not necessary to achieve this e�ect; invalidation messages sent at the end

of a transaction's second phase inform the relevant frontends about object modi�cations.

If T has been invalidated by S's operations, this will be detected at the frontend when the

invalidation message for S arrives from the relevant server. Thus, early validation does not

o�er any gains; on the contrary, it increases the load at the frontend and the servers.

In the early prepare mechanism, the timestamp used to early-validate T is also used at

T's commit time. Thus, it is important that the frontend chooses an appropriate timestamp

for early preparing T. Choosing the current time for T.ts has the problem that this value will

be too low when T completes its execution phase and validates its remaining operations; at

most of the participant servers, T will fail the watermark test and abort. Thus, validating

T using the frontend's current time for T's timestamp is not bene�cial and we will not

consider it further.
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Instead of assigning a particular value to T.ts, the frontend can assign a range of values

for the timestamp value | its current time (denoted by curtime) to in�nity. If T passes

early validation for all timestamp values in this range, no transaction that invalidates T's

operations is allowed to commit at that server. That is, until T has �nished validation, any

transaction that con
icts with T's operations will be aborted (or delayed depending on the

tm's choice). Thus, at T's commit time, any timestamp value in the range [ curtime; 1 ]

can be chosen for T.ts. The tm achieves the e�ect of assigning a timestamp range to

transaction T by creating two entries for T in the vq | one with curtime for T.ts and

the other entry for which T.ts is in�nity. If T is serializable at both these points, it is

serializable at any point in between2.

By early-preparing T in this manner, the tm prevents transactions con
icting with T

from committing at the server. This strategy could be used to implement locking. Acquiring

a read (write) lock for object x on behalf of transaction T corresponds to early-preparing T

at the site such that x 2 T.ros (T.mos). If T fails the early-validation process, the tm will

delay T till the lock request can be satis�ed. As part of the lock grant message, the server

can also inform the frontend about the new lower bound on T.ts (if the tm was not able to

serialize T on the curtime value suggested by the frontend). Object fetches are not a�ected

by this mechanism; transactions that do not request locks are allowed to fetch \locked"

objects.

Out of the three approaches discussed, early send seems to be the most useful strategy

since it amortizes the commit delay over a transaction's lifetime by sending the commit

information during the transaction's execution phase. Early validation just consumes more

network bandwidth and increases the load on the frontend/servers. If a locking mechanism

is to be provided in Thor, the early prepare mechanism could be used to implement locks.

Otherwise, like early validation, it does not o�er any signi�cant advantages.

4.3 Asynchronous commit

The optimizations discussed so far decrease the foreground delay of the commit protocol.

However, even if all the optimizations suggested in the previous sections were implemented,

a transaction commit call will be more expensive than a normal operation call due to the

messages and log 
ushes involved. To avoid performance problems, a client-application must

be designed with the knowledge that the application will be delayed at commit time. In this

section, we propose a mechanism that gives the application better 
exibility and control

over commit time delays. To obtain bene�ts from this facility, the application programmer

needs to modify his code structure slightly.

In this strategy, the application sends a message to the frontend for committing its

current transaction T. On receiving this message, the frontend records the commit request

and returns control to the application. The application proceeds with the execution of the

next transaction while T's commit protocol is being carried out by the frontend. Since the

2In general, if T passes validation for timestamp values ts1 and ts2, it can successfully validate with any

timestamp value in the range [ts1, ts2]; the vq-check guarantees this property.
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application does not wait for T to be committed/aborted, it observes T's commit delay to

be the same as the delay observed for any normal operation. This strategy of committing

transactions without waiting for their result will be termed asynchronous commit. The

original commit approach in which the application waits for the commit result will be

referred to as synchronous commit. In the asynchronous commit scheme, the application

needs some way of determining whether T committed or not; the application interface has to

be modi�ed to provide an operation that the application can call to determine T's commit

result (see Section 4.3.2).

The Thor model assumes that aborts are rare; with this assumption, it is wasteful for

the application to wait on commit results. The asynchronous commit mechanism provides

the 
exibility to avoid such waits and is in consonance with the basic Thor philosophy of

optimizing the normal case. Note that this mechanism does not reduce the work done by the

frontend; it just decreases commit time delay observed by an application. If an application

is overly aggressive in committing transactions, its performance will be degraded due to

limitations of processor speed, network/disk bandwidth, etc.

Any application that wants to overlap the validation phase of a transaction with the

execution phase of a later transaction can bene�t by the asynchronous commit mechanism.

This facility is especially useful for applications that have little or no sharing , very few

con
icts and need Thor mainly for persistence; using asynchronous commit, they incur very

small overhead due to the concurrency control mechanism. Essentially, this commit facility

provides a cheap way of writing objects atomically, making Thor su�ciently lightweight to

be used for many applications, e.g., writing �les, single user applications, etc. Some other

applications that can use this facility are:

� A real time display application that is reading a set of objects and displaying objects

on the screen can take advantageous of this facility. The display program reads some

objects, performs an asynchronous commit and copies the objects into a bu�er. While

the commit is proceeding, it can start the next transaction and process data for the

subsequent set of objects to be displayed. Whenever it knows that the transaction

has committed, it can display the objects from the bu�er.

� In a cad application for designing an integrated chip, each user is assigned a di�er-

ent part of a chip. A user operates on a low-con
ict database, essentially a private

database that is available to other users but rarely used by them. Hence, a transaction

committed by such a user usually passes validation. A user may prefer to have the

commit call return quickly and be noti�ed of a failure later rather than being delayed

every time he commits a few changes.

� Small transactions (not many objects have been read) can be committed frequently

without excessive degradation in performance. For example, a shared editor program

that treats each word as an object can commit the changes at the completion of a

line. Without the asynchronous commit facility, the editor would have poor perfor-

mance. As stated earlier, this mechanism does not reduce the total work done by the

frontend/servers and an editor is unlikely to perform well if it commits too frequently.
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4.3.1 Asynchronous Commit Issues

Asynchronous commit raises some interesting issues regarding multiple commit calls re-

ceived by a frontend. Consider a scenario in which an application commits transaction T1

followed by T2, both in the asynchronous mode. Suppose that the �rst phase of T1 is not

�nished when the frontend receives the commit call for T2. This situation is unlikely for

interactive applications, but is possible for non-interactive applications with a high trans-

action commit rate. There are two choices for the frontend:

1. Wait until T1 commits and then start the �rst phase of T2, i.e., there is at most one

pending commit at a frontend. This scheme is called single pending commit or spc.

When the asynchronous commit call for transaction T2 returns, the application knows

about the outcome of all transactions that committed before T2. This approach is

well-suited to interactive applications where the duration of a transaction is larger

than the time taken to complete the �rst phase of the commit protocol. Furthermore,

it is easier to write an application program with at most one unknown commit result

(see Section 4.3.2).

2. Allow T2 to be committed in parallel with T1. When the application commits a

transaction, it no longer has the guarantee of knowing the commit results of previously

committed transactions, i.e., there are can be multiple pending commits at a frontend.

This approach makes it more di�cult to write application programs, but it provides

a facility for committing small non-interactive transactions frequently.

There are some problems in supporting the second approach. Suppose that T1 has

modi�ed object xv to xv+1. The application commits T1 in asynchronous mode and starts

processing T2. T2 reads object x (the frontend returns the object value that has been

written by T1, i.e., xv+1) and is also committed in asynchronous mode. The frontend

does not know T1's result but it starts T2's commit process in parallel. T1 fails validation

and aborts. Meanwhile, a transaction S from another application commits and updates

xv to xv+1. T2 reaches the relevant server and passes validation although it should have

been aborted. Essentially, x's version number did not have su�cient information about

the transaction that had installed xv+1. If the version number �eld is implemented using

timestamps3, the server can detect that T2 had not read xv+1 from S and abort T2.

A problem not alleviated by using timestamps is that of cascading aborts, i.e., trans-

actions whose results are not known may be dependent on each other and aborting one of

them may abort a later transaction and so on. The frontend can alleviate this situation by

delaying an asynchronous transaction commit if it depends on an earlier transaction whose

result is not known. Suppose an application has committed transactions T1 and T2 (in

that order) in asynchronous mode. T2's commit is allowed to proceed in parallel with T1's

commit if T2 does not depends on T1, i.e., if T2 has not read any object written by T1:

T1.mos \ T2.ros = � Condition 1

3Recall that each transaction is assigned a globally unique timestamp that can be used to identify a

transaction.
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This is called the independent multiple pending commit or impc scheme. If T2 is depen-

dent on T1, the application call will block till T1's outcome is known.

However, the possibility of cascading aborts still exists. Suppose T2 has modi�ed an

object y that T1 has read. If messages are reordered and T2 installs y's new version before

T1 reaches the server, T1 fails validation and is aborted. Although the likelihood of aborts

due to reordering of messages is very low, they can be avoided by allowing T2's commit to

proceed in parallel with T1's commit if both condition 1 and the following condition are

satis�ed (this is called the non-con
icting multiple pending commit or nmpc scheme):

T1.ros \ T2.mos = � Condition 2

The nmpc approach has the advantage that it supports stronger semantics, i.e., an

application is given the guarantee that only the results of non-con
icting transactions are

not known. Thus, an application's call for committing its current transaction T blocks at

the frontend until all transactions con
icting with T have committed/aborted.

Multiple pending commits seem very attractive, however it is unlikely that consecutive

transactions committed by an application are independent of each other. Furthermore,

given the assumption that the commit time delay is much less than the execution time of a

transaction (for interactive applications), the multiple pending facility will be of little use.

Thus, for most cases, the spc scheme will su�ce. For the rest of this section, we will not

consider the mpc schemes.

4.3.2 Application Interface

As discussed in Section 4.3.1, di�erent schemes that support varying levels of control

and 
exibility can be implemented. Let us see how the application interface is modi�ed to

support the spc scheme. A transaction object type is provided by the frontend to support

the asynchronous commit mechanism. When an application asynchronously commits a

transaction, the frontend returns a handle to a transaction object. The application can

call various methods on this object, e.g., determine the status of transaction. Note that

transaction objects are not essential for supporting the spc scheme; they just make the

application code structure simpler. Thus, two features are added to the application interface

| an async-commit call and the notion of a transaction object:

1. Async-commit() | This procedure commits the current transaction T in asyn-

chronous mode and returns a handle to a transaction object corresponding to T.

2. Transaction Object: Some of the important methods of the transaction object type

are:

(a) Status() | The application can inquire about the status of a transaction using

this call. For example, if the application wants to ask about the status of trans-

action T whose transaction object is tr , it simply calls tr.status(). The frontend

can respond with one of three: committed , aborted or not-known-yet .

(b) Block-until-commit() | This call blocks until the result of the relevant trans-

action is known and returns the outcome.
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(a) Synchronous commit

do

: : :

% The code for transaction T1.

until commit() % The application waits for T1 to commit.

do : : :

% The code for transaction T2.

until commit() % The application waits for T2 to commit.

(b) Asynchronous commit

result1 := false; result2 := false

do

if (not result1) then

: : :

% The code for transaction T1.

tr1 := async-commit()

endif

: : :

% The code for transaction T2.

% T1's validation phase being overlapped with T2's execution phase.

result1 := tr1.block-until-commit()

% Usually no waiting; T1's result is known.

if (result1) then

result2 := commit() % The application waits for T2 to commit.

else

result2 := abort() % result2 is set to false.

endif

until (result1 and result2)

Figure 4-4: Code restructuring for asynchronous commit

64



Let us see how an application might use the asynchronous commit facility. Suppose that

it wants to commit transactions T1 and T2 with two requirements. Firstly, the work done

by T1 and T2 should be done exactly once. Secondly, it wants order to be maintained, i.e.,

T2 must follow T1. Figure 4-4 shows the code structure for committing these transactions

in the synchronous and asynchronous modes. For the sake of simplicity, assume that the

result of a transaction is true or false (for commit/abort). In the synchronous case, the

application keeps executing a transaction until it commits. Furthermore, it starts T2 after

T1 commits, so the order property is guaranteed.

In the asynchronous commit case (Figure 4-4b), the application asynchronously commits

T1 and starts T2. At the end of T2, it checks for T1's outcome. If T1 has committed,

the application commits T2 else it aborts T2 and restarts T1. Clearly, T1 and T2 are

executed exactly once. Furthermore, the order property is also maintained since T2 is

committed i� T1 has committed. Thus, the application's requirements can be met while

using asynchronous commit if the code structure is altered slightly. The di�erence in the

synchronous and asynchronous case is that the latter has a better performance since there

is no waiting for T1's commit. Note that T1's result will usually be known when the block-

until-commit call is made, so no waiting needs to done at that point. An issue of concern

is that T2's work is wasted in the asynchronous case if T1 aborts. To reduce the amount

of wasted work, the application can check for T1's result before T2 is �nished and continue

with T2's computation i� T1 has succeeded in committing. The code shown in Figure 4-4b

has been structured to demonstrate the normal case where T1 would have succeeding in

committing; T1's result is checked after T2's work has been completed.

The previous example demonstrated how asynchronous commit can be used to commit

two transactions with the same semantics as the synchronous case. In general, the code

structure will depend on the relationship that the application wants to maintain between

T1 and T2. Essentially, what it wants to do with T2 if transaction T1 aborts will determine

the control 
ow of the code.

In conclusion, asynchronous commit with single pending commit is a useful strat-

egy to support since neither the implementation nor the application interface are com-

plex/ine�cient. Asynchronous commit provides a limited form of multi-threading without

making the code-structure excessively complicated; providing support for multi-threading

would require a much more sophisticated application interface. Furthermore, asynchronous

commit is also in consonance with the basic Thor philosophy of optimizing the normal case

(very few aborts); it provides a facility in which the application can tradeo� code simplicity

for better performance.

65





Chapter 5

Object Migration

The discussion in the previous chapters assumed that objects remain at the server where

they were initially installed. This chapter explores the idea of moving objects among servers

and discusses various issues related to object mobility. The migration facility designed for

Thor is essentially available to applications for performance enhancement purposes.

Any system that is intended to be used over a long period of time requires the ability to

migrate objects for recon�guring object placement in an application-speci�c manner. Some

scenarios where the object migration facility will be useful are:

� An application may migrate its objects to a single server to improve its performance.

Clustering an application's objects at a single server has the advantage that a 2-phase

commit protocol does not have to be executed to commit a transaction.

� The migration facility may also be used for reducing the number of inter-server or

external references among objects. Fewer external references are bene�cial for the

distributed garbage algorithm [ref] and may cause prefetching to be more e�ective.

As discussed in Chapter 2, prefetching may be done by following the references of a

fetched object, but only when they refer to objects at the same server. More e�ective

prefetching may be achieved if there are fewer external references because a signi�cant

fraction of an application's working set would be brought to the frontend cache as

prefetched objects instead of the frontend sending explicit messages and waiting for

them. When objects are created, the application or the system tries to place objects

such that inter-server references are minimized. But the initial object placement may

become less e�ective and more inter-server references may be introduced as the system

is used. Object migration can be used to reduce the number of external references by

recon�guring the placement of objects, e.g., an object can be moved to a server where

most references to it reside or vice-versa.

Figure 5-1(a) shows a scenario where there is a signi�cant number of remote refer-

ences between various objects. Migrating objects v, w and y to server A results in

the situation shown in Figure 5-1(b), where all the inter-server references have been

converted to local references.
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Figure 5-1: Reducing the number of external references using object migration

� An application may migrate objects due to the physical movement of the correspond-

ing (physical) entities. For example, a car company may have its factory at site B

and part of its inventory at site A. When the parts are shipped from site A to B, the

objects corresponding to the moved parts may also be migrated to a server at site B.

� An application may want to use a group of objects for a short period of time. If it

is the only client using these objects, it can migrate these objects to a server that

is closer to its site; accessing objects from a server closer to an application site may

improve the application's performance.

� An application may move rarely-used objects to another server to avoid cluttering up

a particular server. For example, in a company database, old records can be moved to

another server for archival purposes. This will ensure that the commonly used server

stores the recent objects only.

� If a machine has to be shutdown for some time, important objects can be migrated to
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other servers. Since Thor provides high availability, object migration is not required

for this purpose. But if a server has to be removed from service, object migration can

be used to move all its objects to other servers.

� If a server becomes heavily loaded with a large number of objects, it will start a�ecting

the performance of the system. Objects can be moved to other or new servers, i.e., the

load of this server can be decreased by spreading it across the system. Note that load

balancing and clustering all objects at one server are opposing requirements. Object

migration provides a mechanism for an application to recon�gure object placement to

suit its requirements of load balancing and clustering.

� The system may expand or shrink by removal or addition of new servers during the

system's lifetime and migration may be required to recon�gure the object placement.

� An application can move the objects to a server if that machine has some special

software or hardware characteristics, e.g., a faster processor or bigger cache.

Note that an application can migrate an object x by copying x from its original site A

to its destination site B. But it has to change all the references to object x to refer to the

new location; this process is complex and ine�cient. The object migration facility provides

a transparent mechanism that removes the burden of such activities from the application

and also has better performance.

(a) Before object y has moved to server B

(b) After object y has migrated to server B

Server A Server B

y

Server A Server B

y
Surrogate
    for y

Figure 5-2: Use of surrogates for moving objects

In our design, when an object y is moved from A to B, it is replaced at server A by

a surrogate or forwarding pointer that contains the xref of y at server B (see Figure 5-2).

Any operation that tries to fetch y from A is automatically forwarded to server B. Thus, all
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the old references to x are still valid, although an extra level of indirection has been added.

These indirect links are snapped later and when no more references to the surrogate exist

in the system, the surrogate is garbage collected.

An important assumption made in our design is that objects are moved rarely. We

also assume that information about a moved object x is usually propagated to frontends

and servers that have references to x before x moves again. We take advantage of these

characteristics and ensure that the common case is not penalized, i.e., when there are few

or no object migrations.

5.1 Semantic Issues

In this section, we discuss the interface issues about object movement, i.e., an application's

view of moving and locating objects. The following application interface issues are discussed:

� The primitives available for moving and locating objects. An application needs some

way of indicating how and where it wants the objects to be placed.

� Interpretation of an object move. Are object locates and moves independent of

reads/writes or are they related to these operations?

� The atomicity guarantee with respect to migrating objects. Are the relevant objects

moved i� the transaction commits or are the move primitives mere hints to the system?

� The relationship between the location and movement primitives.

In our design, semantics of object migration have been chosen such that it is easy for pro-

grammers to reason about their programs. Intuitively speaking, object mobility should be

orthogonal to the object state or type. Thus, migration has been designed to be independent

not only of an object's type but also of read/write operations. Furthermore, transaction

semantics of atomicity and serializability are provided with respect to migration resulting

in uniform semantics for all user operations. These issues are discussed in more detail in

the next few subsections.

The rest of the chapter assumes the existence of a distinguished and immobile node-

object for each server. The move/locate primitives can refer to a particular server using its

node-object. Thor has such an object as a fundamental part of its design | the server's

root directory.

5.1.1 Primitives for Locating and Moving Objects

In this section, we discuss the primitives to locate and move objects. These primitives can

be executed as part of a transaction along with reads and writes.

An application can locate objects and based on their location, it may decide to move

some of them to a certain server. For example, to minimize object movement, the application

can determine the location of objects x1, x2, : : : xn and then move all the objects to the
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server where most of the xi's reside. To determine an object's location, the application can

use the locate-object primitive:

locate-object = proc (Object z) returns (Node-object)

The locate-object primitive returns the node-object corresponding to the server (say A)

where z was located in the recent past. It only guarantees that z resided at A recently

because some other application may have moved the object to another server. But most

likely z is still located at server A since object moves are assumed to be rare and we propagate

the migration information quickly to the relevant frontends and servers. Note that the

locate-object call is similar to the read operation. In the former case, an application may

have read an old location; similarly, in the latter case, the application may have observed

an old value.

The frontend implements the locate-object primitive by simply determining z's server

using z's xref1; this call does not require any communication between the frontend and the

server. As stated earlier, z need not be located at A when the call returns.

To move an object x, the application uses the move-to-server primitive:

move-to-server = proc (Object x, Node-object N)

This procedure asks the frontend to move object x to the server whose node-object is N. The

frontend records this request and returns the control to the application. The frontend groups

all move requests and performs them at transaction commit time. By performing the object

moves as part of the commit protocol, the system is able to reduce the application delay

and reduce network bandwidth requirements. Furthermore, strong guarantees of atomicity

and serializability can be provided only if object moves are performed at commit time.

5.1.2 Object Location with Respect to Object State

The location of an object can be viewed as part of the object state. This implies that lo-

cating an object is equivalent to reading it and moving an object modi�es its value. Such a

scheme would force atomicity and serializability to be provided with respect to object migra-

tion because these semantics are guaranteed for reads and writes. However, this approach

has some disadvantages. Firstly, treating a move like an update unnecessarily increases the

percentage of writes on the database. This can cause false con
icts between moves, locates,

reads, and writes resulting in unnecessary aborts. Secondly, migration becomes type depen-

dent. Objects of immutable types cannot be modi�ed, so it is not possible to treat an object

move like an update in a uniform manner; either migration of immutable objects has to be

disallowed or di�erent semantics must be supported for immutable objects. Thus, treating

an object's location to be part of its state causes unnecessary aborts and is non-intuitive.

To achieve independence of an object's location from its state, we partition an object's

state into two parts | the value-state or the state required for reads/writes and the location-

state or the state required for locate/moves. Note that the value-state actually corresponds

to some attributes present in the object whereas the location-state is just a logical concept

1If the application has a handle to an object z, either z or its frontend-surrogate is present at the frontend

and the server number can be extracted from the xref.
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and does not consume any space in the object; the server where an object resides represents

its location-state. The locate-object primitive reads the location-state and move-to-server

operation modi�es it. The former is a shared operation and the latter is an exclusive

operation with respect to the location-state; they are independent of reads/writes on the

value-state.

Apart from the advantages discussed above, partitioning the object state in this manner

gives us the 
exibility of not providing transaction semantics for object migration (although

as discussed in the next few subsections, we do guarantee transaction semantics with respect

to migration primitives also). Furthermore, this approach does not require a located or

moved object to be present in the frontend cache; the object's xref is su�cient to provide

the necessary information2. However, as discussed in Section 5.2.1, making object migration

orthogonal to reads/writes does add some complexity to the commit protocol.

5.1.3 Atomicity of Object Moves

Suppose that an application asks its frontend to move x1, x2, : : : , xn to server A. If there is

no guarantee that either all or none of the xi's will be moved to A, the system may migrate

some of the objects and leave others at their source servers. Such partial migration of

objects can increase the number of inter-server references among the migrating objects and

degrade the system's performance. To prevent such possibilities, the system must ensure all-

or-nothing semantics for object movement, i.e., either all objects are moved to the desired

destinations or none of them move. Our migration mechanism guarantees atomic movement

of objects; all relevant objects are moved if and only if the transaction commits. To support

atomicity with respect to object migration, the commit protocol has to be changed; each

destination server must reserve su�cient space in the validation phase to ensure that these

objects can be migrated in the installation phase.

5.1.4 Relationship Between Locates and Moves

When an object is located by an application, its frontend simply returns the server number

from the object's xref. However, the object may have moved by the time the transaction

commits, i.e., the object's location-state may have changed. The system can either ignore

the fact that the transaction has read an old value of the location-state or treat the locate as

invalid and abort the transaction. The former approach has the advantage that the server

does not have to check if a located object has moved or not. But it o�ers weaker semantics

compared to the latter approach in which locates and moves are serializable with respect to

each other. In the latter approach, a transaction T commits successfully with timestamp

T.ts only if all its locates and moves can occur at time T.ts in an equivalent serial schedule.

Therefore, like reads and writes, object locates and moves must be validated at the end

of a transaction. This approach makes it easier for users to reason about their programs

since transaction semantics are being supported for all operations on the value-state and

2If an object's location is part of the the object state, the object has to present in the frontend cache so

that its version number can be recorded.
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the location-state.

Let us consider an example to understand the transaction semantics o�ered with respect

to object migration. Suppose two applications want to co-locate objects x and y that are

currently located at servers A and B respectively. The �rst application locates x's server to

be A and moves y to that server. The second application determines y's server to be B and

asks x to be moved to B. Figure 5-3 illustrates transactions T and U executed by the two

applications respectively. T reaches the two servers before U and is able to move x to A. U

aborts because it is not serializable with T and y is not moved to server A. If locates were

not validated, y would have been moved to server A and x moved to server B. Therefore,

we have chosen the scheme in which locates are also validated at the end of a transaction;

if an object located by transaction T has moved to another server, T is aborted.

Transaction U  :

x

Server  A Server B

Server  A Server B

Surrogate
pointing to x

p := locate-object(y)
Move x to p

Transaction T  :

q := locate-object(x)
Move y to q

Before T  or U
have committed.

After T   has committed
     and U has aborted.

y

x

y

Figure 5-3: Serializability of transactions with respect to move/locate primitives

5.2 Migration Mechanics

In this section, we discuss how atomicity and serializability with respect to migration can be

provided. Since the locate-object operation reads the location-state and the move-to-server

operation modi�es it, a validation scheme for the location-state can be designed that is

similar to the one designed for the value-state. Section 5.2.1 discusses the changes made

to the validation algorithm for accommodating migration and Section 5.2.2 presents the

installation phase issues.
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5.2.1 Validation phase

When an application commits its current transaction, T, the validation algorithm must not

only check the validity of reads/writes but also of moves and locates. The frontend chooses

a coordinator for T and sends it the following sets:

1. Read Object Set or ros | The set of objects read by T.

2. Modi�ed Object Set or mos | The set of objects modi�ed by T.

3. New Object Set or nos | The set of objects that are being made persistent for

the �rst time; nos objects are installed i� T commits.

4. Locate Object Set or los| The objects that have been located by T, i.e., the ap-

plication has used the locate-object primitive for these objects. This set just contains

the xrefs of the located objects.

5. Migrating Object Set or mios| The set of objects that the application has asked

the frontend to move. Each set element is a tuple of the form <object, xref, size,

server>, i.e., the object, its xref and its destination server. The size �eld contains

the current size of the object known at the frontend; if the object was not cached in

the frontend cache, the value of the size �eld is zero. During T's execution, if the

application has asked object x to be moved to two di�erent servers, then only the last

call is considered. That is, if a move-to-server(x, A) is followed by move-to-server(x,

B), then the destination server for x in mios is B.

The frontend sends this information to the coordinator and waits for the reply. The

coordinator chooses a timestamp for T and sends it along with this information to the

participants. T's participants are the servers from which objects have been read (ros),

modi�ed (mos), created (nos), located (los) and moved to (mios) by T. In case an object

is being moved from site A to site B, the coordinator sends prepare messages to both A and

B. As in the mos case, we assume that blind moves are not allowed; when an application

executes a move-to server operation for a particular object x, the system automatically

executes a locate-object operation for x. Blind moves, like blind writes, are not permitted

since they complicate the algorithm (this issue is discussed in Section 5.3). Thus, we can

assume that the mios is a subset of the los; similar to the case of object writes where

mos � ros.

On receiving the prepare message, each participant performs the watermark, version

and vq tests for the value-state. Along with these tests, it also validates T's moves and

locates using the following checks:

1. Location Check | This test is used to validate the locates executed as part of the

incoming transaction. It is analogous to the version check for the value-state. As

described in Chapter 3, the version number of an object x truncates x's modi�cation

history. Similarly, x's server number acts like the version number for the location-

state3. As the version number is incremented on every updated, an object's server

3Actually, the server number represents x's location-state and also functions like a version number for

this state.
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number is also \modi�ed" whenever the object moves. To validate a transaction's

reads against committed transactions, the tm performs the version check to verify

that T has read the latest version of each object. Similarly, a check is required for

all the los objects to ensure that T has read the latest value of the location-state for

each object x in the los. In other words, a participant server B has to ensure that

none of the los objects have moved from B to some other server. The server simply

performs this check by verifying that x is not a remote surrogate. This test is called

the Location Check .

Consider the scenario in which an object x moves from site A to B and back to A.

Suppose that x has been located using its old xref at site A by transaction T. If x has

been moved back to its original xref at A, T will pass the location check. However, if

a new xref has been allocated for x, T will abort; this is so because the old xref at A

will be a remote surrogate that points to x's place at B.

2. Watermark Checks | Similar to the watermark checks for the value-state, these

tests are required because there is no timestamp information being kept about the

transaction that last located or moved a particular object. Thus, like the read and

write watermarks, the transaction manager needs to maintain a locate-watermark (Xl)

andmove-watermark (Xm). The locate-watermark for server A denotes the timestamp

of the latest transaction that has located an object at A. The move-watermark denotes

the timestamp of the latest transaction that has moved an object from or to server

A. As in the case of the value-state, these watermarks are updated after a transaction

has committed at that site and its entry has been removed from the vq.

True S.ts < T.ts

FalseT.ts < S.ts

Read Write

Read

Write

Transaction S
   (prepared)

Transaction T
 (validating)

Locate Move

Locate

Move

Transaction S
   (prepared)

Transaction T
 (validating)

True S.ts < T.ts

FalseT.ts < S.ts

Figure 5-4: Validation Queue check

3. vq Check | The vq check for the location-state veri�es that none of the moves/

locates of the incoming transaction T have been invalidated by a prepared transaction.

T passes the vq check only if it satis�es the following conditions for each prepared

transaction S:

(a) If x 2 T.los and x 2 S.mios then T.ts < S.ts. vq-rulea

(b) If x 2 T.mios and x 2 S.los then S.ts < T.ts. vq-ruleb
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These rules bear a strong resemblance to the vq-check for the ros/mos case. vq-rulea
prevents T from validating if S is moving x and has a lower timestamp than T. T is

aborted because at time T.ts (in an equivalent serial schedule), x would not be present

at server A. Similarly, vq-ruleb prevents T from validating if one of its move primitives

has been invalidated by a locate-object executed by S. Figure 5-4 gives a graphical rep-

resentation of the vq-rules. If S and T have operated (read/written/located/moved)

on an object x, the relevant table entry is used to validate T. T passes the vq check

if for each x, the condition speci�ed in the corresponding table entry is true. For

example, if S has located an object and T is moving it, T passes validation only if

S.ts < T.ts. Similarly, if S and T are both moving objects, T fails validation (blind

moves are not allowed).

Interactions Between the Location and Value States

There are some interactions between the location-state and the value-state that may result

in extra messages being sent in the validation phase of the commit protocol or cause delays in

object fetches. Consider the following scenarios (T is a validating transaction, S is prepared

at site A and object x is currently located at A):

Scenario 1:

Suppose object x is being moved to from server A to server B by transaction T. The

coordinator (server C) predicts x's size and asks space to be reserved at B. The coordinator

can predict x's size with the help of the mios information sent by the frontend. The

destination server B must ensure that su�cient space is available for x to be moved to B.

But two extra foreground messages may have to be sent for reserving space at the destination

server. Suppose transaction S is modifying x and increasing its size. The space reserved at

server B on behalf of T corresponds to the current value of x. Since S is increasing x's size,

server B must have su�cient space to store x's potential version (the version S is going to

install). This has to be done to take care of the fact that S may commit or abort. Server A

sends a space-reserve message to server B to reserve space for object x. Server A can either

wait for the acknowledgement from B and then respond to the coordinator or it can ask the

latter to wait for B's response. The second scheme is better because it avoids a foreground

message delay. Note that B may or may not be able to combine the space-granted message

with its vote message. Scenario 1 has been demonstrated in Figure 5-5 (all messages are

sent on T's behalf). In the �gure, we have shown the case in which B sends separate vote

and space-granted messages to the coordinator.

There are situations similar to the above scenario that may require extra foreground

messages. For example, suppose T is modifying x and S is moving it from A to B. If the

new version of x that T is trying to install has a size greater than the space reserved for

it on B, a space-reserve message has to be sent to B. Note that these problems would have

been avoided if moves were treated like writes and locates like reads. Instead of sending

space-reserve messages to the relevant servers, the system would aborted the validating

transaction because moves and writes would have con
icted.

Scenario 2:

Suppose T has read object x from site A but x has moved to B. To validate T's read, the
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Figure 5-5: Reserving space for migrating objects

tm at site A must forward the prepare message to B. If x has moved from B to another site,

this message has to be forwarded to that server. This forwarding process continues till the

x's current location is found; T's read is validated at that server. This is a rare situation

because object moves are rare and long surrogate chains are unlikely to exist. Furthermore,

since servers inform frontends about the recent moves (see Section 5.2.2), frontends usually

know the current locations of objects.

A similar situation can arise in the installation phase. Suppose transaction T is mod-

ifying object x at server A and x has migrated to server B. When T receives its commit

message from the coordinator, this message must be forwarded to B so that object x can

be modi�ed at B. As in the above scenario, the commit message may have to be forwarded

until x's current location is found.

Scenario 3:

Suppose that transaction T is moving object x from server A to B. It passes all the validation

and space allocation checks at both servers. The destination server B allocates a new xref

for x and returns this information to the coordinator. T commits and the coordinator sends

these xrefs along with the nos xrefs to the participants and the frontend. Now the frontend
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asks x to be fetched from its new server (i.e., server B). If x has not been migrated to server

B when the fetch arrives at B, server B can either delay the fetch till x's migration has been

completed or it can declare the fetch as invalid. Note that this situation is similar to the

case where a frontend may fetch an object before it has been installed at the server.

5.2.2 Installation Phase

On receiving the commit decision from the coordinator, each participant server initiates

a move protocol to migrate the relevant mios objects to the destination servers. Suppose

that x is stored on server A and a committing transaction T is moving x to B. Server A

has to ensure that the latest value of x is installed at B. Furthermore, A must also send the

relevant validation information to server B. In particular, the read/write watermark and

vq information must be sent to B.

Moving x from A to B is similar to installing the update of an object. In the latter

case, the object is locked with respect to validation and fetches, the update installed and

the lock released. To move an object x, the tm at A keeps x locked until x has been moved

to server B. This lock prevents validation and installation from occurring while the move is

going on. Object fetch need not be blocked; it is delayed only when the object is converted

to a surrogate | a short term synchronization lock.

To perform the move, server A locks x and sends its latest value to B. Along with the

vq information and the read/write watermarks, A also sends the frontend-table and inlist

information relevant to x. It also merges the vq information with its vq and updates its

watermarks to be the maximum of the original values, incoming values and T.ts. Note that

server A does not have to send its locate/move watermarks to server B. Information about

prepared transactions that have located x also need not be sent to B. This is so because T.ts

is an upper bound on the timestamp of any prepared transaction that could have located

x, i.e., T.ts captures the locate/move watermark and the relevant prepared transaction

information.

After completing the installation process for x, B sends an acknowledgement message to

A. On receiving this message, server A converts x into a surrogate and forwards all trans-

actions waiting on x to server B. Server A also updates its locate/move watermarks to be

the maximum of the old values and T.ts. Meanwhile, server B sends move-inform messages

to frontends that have cached x. These messages are similar to invalidation messages sent

for modi�ed objects. Server B can also send these move-inform messages to servers that

have remote pointers to x; it can determine these servers using the inlist information. It is

not necessary to send this information in separate messages; it can be piggybacked on other

messages. When the servers receive this information, they can change their pointers to x's

new location. This prevents long surrogate chains from being formed.

If transaction T is moving more than one object from server A to server B, T can group

all its moves to B. To migrate these objects, A's tmmust lock them during the move process.

Deadlock is not possible because multiple objects are locked only while moving objects and

concurrently committing transactions move disjoint sets of objects; for updating an object,

locks are acquired one object at a time. Thus, a transaction S that is moving object x can
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only be waiting for a transaction T that is modifying x and T cannot be waiting for any

other transaction. This implies that a cycle cannot occur in the waits-for graph.

Figure 5-6 shows the changes made to the commit protocol for supporting migration.

Numbers indicate the order of messages, i.e., messagei precedes messagei+1. Messages with

the same numbers can be sent in parallel. Move-inform messages are sent by the destination

server after it has installed the moved objects.

5.3 Blind Moves

In this section, we analyze the issue of blind moves. We �rst discuss the semantics associated

with blind moves and then point out the implementation problems that arise in order to

support them.

5.3.1 Semantics of Blind Moves

If blind moves are permitted, the user gives an object's new destination and the system

does not execute an implicit locate-object operation for that object. This implies that an

object that is being moved has not been necessarily located. Allowing blind moves has

the desirable semantics that transactions are not aborted due to concurrent moves. Let us

consider an example to understand the 
exibility achieved by allowing blind moves.

Suppose objects x, y and z are located at server A. Transaction S tries to move all

these objects to server B and and transaction T tries to move y and z to server C (see

Figure 5-7(a)). Both S and T pass validation and are committed; neither S or T is aborted

due to concurrent moves. The order in which S and T are serialized determines the �nal

destination of the objects. If S is serialized before T, objects y and z migrate to server C

and object x at server B. If T is serialized before S, all the objects end up at server B.

Figure 5-7(b) shows the situation in which S has been serialized before T.

Now let us assume that blind moves are not allowed. Since implicit locate-object op-

erations have been executed for all the objects, either S or T must be aborted (moves and

locates are con
icting operations). Figure 5-7(c) shows the scenario in which transaction S

is aborted.

Thus, disallowing blind moves results in aborts due to concurrent moves. If blind moves

are permitted, concurrent moves are ordered according to the timestamp order of their

transactions. Blind moves are more intuitive to the user; there is no reason why a transaction

must be aborted because an object has moved from the site as observed by the system at

some point of time. If blind moves are permitted, the system can locate the object's location

during the commit protocol and move the object to the desired destination.

5.3.2 Implementation of Blind Moves

Allowing blind moves has the desirable semantics of permitting concurrent moves on an

object but there are some implementation problems associated in supporting blind moves.
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Figure 5-7: Object migration with and without blind moves
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Blind moves complicate the validation and installation phases of the commit protocol. Con-

sider the following scenario:

Suppose S and T are two prepared transactions on site A that are moving object x to

servers B and C respectively. If a transaction U that has modi�ed x tries to validate at

server A, the tm must ensure that su�cient space is available at servers B and C. This is

so because the system must be prepared to commit U irrespective of whether S and T are

committed or not. Thus, at U's validation time, server A may have to send space-reserve

messages to B and C. In general, if an object at server A is being moved by prepared

transactions to n di�erent servers, server A may have to send space-reserve messages to all

the n servers. Not permitting blind moves ensures that at most one space-reserve message

has to be sent for an object that is being modi�ed by a validating transaction.

Permitting blind moves complicates the installation phase for object moves also. Sup-

pose transaction T is trying to move object x from server A to B and is prepared at server

A. While T is still in the prepared stage, another transaction U moves x from server A to

server C. When T receives a commit message from its coordinator, it tries to move object

x to server B. Since x has moved to server C, T's commit message must be forwarded to

server C (which will try to move x to B). This situation is similar to the one discussed in

Section 5.2.1 (scenario 2) where the commit message must be forwarded to the current site

of an object that is being modi�ed.

Another issue has to be handled in the installation phase. Suppose that two prepared

transactions S and T are moving object x from server A to B and C respectively. Suppose

S's timestamp is less than T's timestamp and T commits at A before S does; object x is

moved to server C. When S's commit message reaches A and is forwarded to C, the latter

server must ensure that x is not moved to server B. This is required because a later move

of x (by T) has \absorbed" an earlier move of x (by S). Moving x to B now would be

incorrect. Thus, if two transactions are moving the same object, the system has to ensure

that the object's ultimate destination is the server speci�ed by the transaction that has

been serialized later. This condition is similar to Thomas's write rule [Bern87] for blind

writes.

From the preceding discussion, we can see that supporting blind moves does complicate

the commit protocol. To avoid these complications, our design disallows blind moves. As

stated earlier, this will prevent concurrent move operations to be executed on the same

object. However, since concurrent moves on an object are expected to be rare, disallowing

blind moves will not be a serious restriction and therefore it is not worthwhile to implement

the machinery needed to support them.

5.4 Summary

In this chapter we discussed a scheme for migrating objects among servers. We presented

the primitives available to an application for locating and moving objects. In our design,

migration has been made orthogonal to read/write operations by partitioning an object's

logical state into two independent parts | the value-state and the location-state. Transac-

tion semantics are provided with respect to the migration primitives. Atomic movement of
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objects is guaranteed so that either all or none of the objects are migrated; partial migration

does not occur. Migration primitives executed during a transaction are also serializable with

respect to each other. Providing transaction semantics with respect to migration makes it

easier for users to reason about their programs. Furthermore, modeling the location-state

in a way similar to the value-state allows us to implement object migration by adapting the

validation schemes and optimizations presented in the earlier chapters.

We have presented the changes that must be made to the commit protocol for support-

ing migration; extra foreground and background messages may have to be sent in certain

situations. We also discussed the semantics of blind moves and showed that although they

o�er reasonable semantics, our design does not support them because of implementation

concerns.
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Chapter 6

Conclusions

In this thesis, we have presented the design of a new transaction mechanism for a distributed

client-server system. We have also described a facility to migrate objects among servers.

In this chapter, we summarize our work and also present interesting problems for future

research.

6.1 Summary

Our design for transaction management is based on optimistic concurrency control. We

chose optimism over pessimism because we assumed that are few con
icts on objects. In

such workloads, optimistic schemes tend to perform better than pessimistic schemes since

they make better use of client caching and prefetching than pessimistic schemes. We have

taken advantage of system characteristics to reduce the space and time overheads of the

concurrency control mechanism.

We have also developed a mechanism to allow applications to migrate objects among

servers. Our object migration scheme has been integrated with the concurrency control

mechanism; this strategy allows us to provide transaction semantics with respect to the

migration primitives also.

Our work has been done in the context of the object-oriented database Thor. We have

made certain trade-o�s in our schemes based on the environment we expect Thor to be

operating in, e.g., we assume that loosely synchronized clocks are available in the system.

Based on such assumptions we have designed our schemes to optimize the normal case

processing.

6.1.1 Concurrency Control

We �rst presented a validation scheme in which at most one transaction was allowed to

validate or install objects at any given time. We later optimized this algorithm to allow

multiple transaction validations and object installations to proceed simultaneously. This

strategy reduces the validation delay since it prevents an incoming transaction from being
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blocked by other validating transactions. Allowing object installations to proceed in parallel

with transaction validation is especially important for object migration; it is undesirable to

delay a validating transaction while an object is being moved from one server to another.

In general, all optimizations suggested in this thesis aim at reducing the delay observed

by an application. For example, the coordinator log protocol and short-circuited prepare

reduce the number of messages in the �rst phase of the protocol; both schemes optimize the

commit protocol and can be used in pessimistic systems also. Some of these optimizations

take advantage of system characteristics such as loosely synchronized clocks, high availabil-

ity of servers, etc. Note that these schemes reduce the commit delay time as observed by an

application and also result in decreasing the total time taken to execute the commit proto-

col. As a result, we expect transaction throughput to increase due to these optimizations.

However, some of these optimizations complicate and slow down the crash recovery process.

Our optimistic scheme uses backward validation for checking a transaction's operations.

As discussed in Chapter 3, this choice was primarily made for e�ciency reasons. However,

backward validation does o�er weaker semantics compared to forward validation because

an application can observe inconsistent states of the database. Application programmers

must be aware of this fact and program accordingly. The designers of Gemstone [Maier86]

did not �nd this problem to be severe.

The asynchronous commit strategy suggested in this thesis is useful for applications that

usually expect their commits to succeed. This facility is in consonance with the basic Thor

philosophy of optimizing the common case; if transactions usually succeed in committing, it

is wasteful for an application to wait for the result. In our design for asynchronous commit,

an application does not know at most one transaction's result at any given time; to simplify

the interface and the implementation, we did not allow more than one transaction to be

pending at the frontend. An important consideration in using asynchronous commit is

the change in code structure required to achieve the desired semantics. In Chapter 4, we

presented an example to demonstrate the use of asynchronous commit. Depending on the

needs of the application, the programmer may have to restructure his code.

6.1.2 Object Migration

Our work in object migration is di�erent from previous research in the area of process and

object migration because we have integrated our migration strategy with the concurrency

control mechanism. Providing transaction semantics for migration makes it easier for users

to reason about their programs. Some other design decisions that we have taken are moti-

vated by the same reason. For example, migration has been kept orthogonal to reads/writes;

this strategy also helps in avoiding some unnecessary aborts due to false con
icts. Not sup-

porting blind moves is the only design decision made because of implementation rather

than semantic concerns; allowing blind moves complicates the commit protocol consider-

ably. In our design we have assumed that applications move objects rarely and information

about migrating objects is propagated quickly to the relevant frontends and servers; our

scheme takes these characteristics into account and ensures that normal case processing is

not penalized because of migration.
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Applications may attempt to use the migration facility for con
icting reasons. For

example, one application may want to move a set of objects to one server whereas another

may want to spread the same set of objects across the system. The migration mechanism

will move objects according to the serialization orders of the application transactions; some

higher level access control scheme is required to give priority to the relevant application.

An application programmer may not want work on the value-state to be aborted if a

transaction passes the validation for the value-state but fails on the location-state (and

vice-versa). That is, he may want to commit the changes to the location-state and the

value-state independently. To support this requirement, the application interface needs to

be modi�ed; primitives have to be added to allow an application to commit operations of

the value and location states independently.

6.2 Future Work

Our transaction management and object migration schemes can be extended to suit the

relevant operating environment. Some of the assumptions we have made may not hold in

those settings. This section discusses some of these issues and gives possible directions for

future research.

6.2.1 Transaction Support for Application Multithreading

In our design, an application executes only one transaction at a time. If an application is

multithreaded, it has to coordinate its threads as part of a single transaction. Users may

prefer to execute multiple transactions in parallel. In the current design, they have to start

multiple frontends for the same application. However, this approach is expensive since it

leads to excessive duplication of data; it is also di�cult for the programmer to coordinate

these transactions. It is more desirable to have a scheme in which a single frontend allows an

application to execute multiple transactions simultaneously. The frontend must be extended

to support concurrent transactions. The application interface has to be modi�ed so that

the application can refer to di�erent transactions; transaction objects can be used for this

purpose. The application needs some way of associating threads with transactions. One

possible strategy is to associate each thread with a di�erent transaction. However, this

mechanism may be overly restrictive since a user might want to coordinate a group of

threads as part of a single transaction.

To allow an application to execute multiple transactions concurrently, a frontend must

have some concurrency control mechanism for coordinating the access to its objects. A

pessimistic or an optimistic scheme can be chosen for this purpose. For a pessimistic

scheme such as locking, a lock manager must be implemented as part of the frontend.

For an optimistic scheme, the frontend has to make a copy of an object before it allows

a transaction to read or modify that object. The problem with this approach is that it

decreases the e�ective size of the frontend cache. Note that at the end of a transaction

T, the frontend can run a centralized validation algorithm to validate T and if T passes

validation it can send T's information to the servers. Another strategy for the frontend could
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be to directly send T's information to the servers. The former approach adds complexity to

the frontend. However, it has the advantage that it relieves the servers of some work. For

example, if transaction R from frontend A aborts another transaction U at A, no message

has to be sent for U to any of the servers since U will be aborted at A itself.

6.2.2 Hybrid Approach for Long-running and High-con
ict Transactions

Our optimistic scheme is not well-suited for serializing long transactions; if a con
icting

transaction invalidates a long-running transaction's operations, all the work done by the

latter is wasted and has to be redone. It may happen that such a transaction is not able

to run until completion because it keeps getting aborted by other committing transactions

that invalidate its operations. Our scheme has to be extended to handle long-running

transactions. One possible approach is to use pessimism for long-running transactions. At

the beginning of a transaction, an application declares that it is going to execute a long-

running transaction. During the transaction's execution, the frontend acquires locks on its

behalf; the no-wait locking scheme can be used for this purpose. The validation algorithm

has to be modi�ed to handle locks; validating transactions that are not serializable with

long-running transactions can be aborted.

As stated in Chapter 1, optimistic schemes achieve lower throughputs compared to pes-

simistic schemes in high-con
ict environments. To achieve good performance in such envi-

ronments locking can be used. However, for low-con
ict environments, optimistic schemes

perform better than pessimistic schemes. Thus, a mechanism is needed that adapts dy-

namically according to the characteristics of the workload. Gruber [Gruber94] is exploring

such a strategy. He proposes a hybrid approach in which the decision to use pessimistic

or optimistic concurrency control is done on a per-object basis and this selection is done

dynamically. If optimism is being used for a particular object x and it results in excessive

aborts, the system considers that object to be \hot" and starts using locks for x. When

very few transactions con
ict on x, the system switches back to using optimistic concurrency

control for x.

6.2.3 A Utility for Recon�guring Object Placement

In this thesis, we presented a mechanism that allows applications to migrate objects among

servers. However, certain decisions about migration have been left to the application, e.g.,

which objects have to be migrated, which server must they go to, when should they be

migrated, etc. It would be interesting to design a utility that tries to make intelligent

decisions based on di�erent characteristics of the system and migrates objects. Previous

work done in the area of load-balancing [Walds92] and process migration [Douglis91] can

be used for designing this facility. This utility can monitor di�erent aspects of the system

and recon�gure the object placement accordingly. For example, it can determine which

server is excessively loaded and with the help of the object usage pattern, migrate objects

to lightly-loaded servers. It can also determine the network load between the application

site and the servers and move objects accordingly. The fact that migration is orthogonal to

reads and writes will ensure that unnecessary aborts do not occur during the load-balancing

process.
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6.2.4 Supporting High Mobility

Our migration scheme has been designed for an environment where movement of objects is

rare. It would be interesting to support highly mobile objects. An important consideration

in such an environment will be to avoid long surrogate chains from forming. If an object

x keeps migrating from one server to another, remote references to x must be updated

at a reasonably fast rate; otherwise, long surrogate chains may degrade the application's

performance substantially. Also if di�erent applications are trying to migrate a certain set

of objects simultaneously, it can lead to excessive aborts. This high-contention problem can

be solved using a hybrid approach similar to the one suggested in Section 6.2.2. If an object

x is moved excessively resulting in aborts, the system considers x to be highly mobile and

uses locks for x's location-state; the locate and move primitives lock the location-state of

an object in shared and exclusive modes respectively.

Another way of reducing aborts for highly mobile objects is to permit blind moves. Blind

moves complicate the migration mechanism but they decrease the number of con
icting

locates on highly mobile objects. Furthermore, if multiple transactions are moving an object

blindly to di�erent servers, the source server can just move the object to the destination

speci�ed by the transaction that is serialized last.

6.2.5 Di�erent Granularities for Concurrency Control and Migration

Our design for concurrency control and migration is based on the �ne granularity of objects.

Our schemes can be extended to operate at di�erent granularities of control. For example,

if there is some way of grouping objects and naming them, concurrency control can be

performed based on object groups. These groups can either be exposed to the application

or be internal to the system. When a server receives an incoming transaction T, it can

validate the transaction's operations at the coarser granularity of object groups. If an

object x passes this check, the server does not need to carry out a �ne granularity test

for object x. For example, suppose that version numbers are assigned to object groups

also. The server executes the version check for the object group of each ros object. If

an object passes this test, the server does not have to execute the version check for that

object. Grouping objects together and validating at di�erent granularities may turn out to

be advantageous in a low-contention environment; if the objects accessed by a transaction

belong to a small number of object groups, only a few coarse granularity checks have to be

carried out. This strategy has another advantage as the following discussion shows:

In the Thor architecture, version numbers are stored with the objects. During the

version check of transaction T, the version numbers of T.ros objects have to be read from

the server state. If these objects are not present in the server's cache, there will be disk

delays during the validation process. This problem can be alleviated by using object groups;

if a transaction passes its tests at the object group level, the version numbers for individual

objects are not required. Thus, at validation time, a server's cache need not contain all

the T.ros objects; it just needs validation information about the relevant object groups.

Object groups can be used to validate the migration primitives also. Furthermore, if an

application can name and create object groups, it can move objects using these groups.
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6.2.6 Performance Evaluation

We are currently implementing our transaction management scheme in Thor. The perfor-

mance of our schemes can be evaluated by measuring the transaction throughput and the

commit delay observed by an application for di�erent workloads. It would also be interest-

ing to observe the performance di�erence caused by some of the design decisions we have

made. For example, it is important to evaluate the number of aborts caused due to the

watermark checks; if there are too many such aborts, the validation algorithm needs to be

modi�ed so that the watermarks are updated less aggressively and a transaction entry is re-

tained in the vq for some time even after the transaction has committed. Another strategy

could be to maintain a watermark for each object group, i.e., keep timestamp information

at a granularity lower than the server level.

The performance of short-circuited prepare can be compared to the normal prepare

mechanism to determine if the complexity added to the commit protocol is worthwhile or

not. Another strategy that needs to be evaluated is the early send mechanism. It would be

useful to determine the bene�ts achieved from this optimization; early sending the data may

not be worthwhile if lots of redundant data is being sent by the frontend. The e�ectiveness

of asynchronous commit can be measured by comparing its transaction throughput with

the synchronous commit case for di�erent workloads.

We can also determine how transaction throughput is a�ected due to the interference of

object migration with normal operations such as object fetch and commit. For example, the

di�erence in the commit delay and the system load in the presence and absence of migration

would indicate the overheads of migrating objects. Measuring transaction throughput before

and after moving objects would be useful to determine the e�ectiveness of a recon�guration.
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