
Automatic Acquisition of Language Models for

Speech Recognition

by

Michael Kyle McCandless

S.B., Electrical Engineering and Computer Science

Massachusetts Institute of Technology, 1992

Submitted to the Department of Electrical Engineering and

Computer Science

in partial ful�llment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

c
 Massachusetts Institute of Technology 1994. All rights reserved.

Author : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Department of Electrical Engineering and Computer Science

May 12, 1994

Certi�ed by : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

James R. Glass

Research Scientist

Thesis Supervisor

Accepted by : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Frederic R. Morgenthaler

Chairman, Departmental Committee on Graduate Students



Automatic Acquisition of Language Models for Speech

Recognition

by

Michael Kyle McCandless

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 1994, in partial ful�llment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

This thesis focuses on the automatic acquisition of language structure and the subse-
quent use of the learned language structure to improve the performance of a speech
recognition system. First, we develop a grammar inference process which is able to
learn a grammar describing a large set of training sentences. The process of acquiring
this grammar is one of generalization so that the resulting grammar predicts likely
sentences beyond those contained in the training set. From the grammar we construct
a novel probabilistic language model called the phrase class n-gram model (pcng),
which is a natural generalization of the word class n-gram model [11] to phrase classes.
This model utilizes the grammar in such a way that it maintains full coverage of any
test set while at the same time reducing the complexity, or number of parameters,
of the resulting predictive model. Positive results are shown in terms of perplexity
of the acquired phrase class n-gram models and in terms of reduction of word error
rates for a speech recognition system.

Thesis Supervisor: James R. Glass
Title: Research Scientist



Automatic Acquisition of Language Models for Speech

Recognition

by

Michael Kyle McCandless

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 1994, in partial ful�llment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

This thesis focuses on the automatic acquisition of language structure and the subse-
quent use of the learned language structure to improve the performance of a speech
recognition system. First, we develop a grammar inference process which is able to
learn a grammar describing a large set of training sentences. The process of acquiring
this grammar is one of generalization so that the resulting grammar predicts likely
sentences beyond those contained in the training set. From the grammar we construct
a novel probabilistic language model called the phrase class n-gram model (pcng),
which is a natural generalization of the word class n-gram model [11] to phrase classes.
This model utilizes the grammar in such a way that it maintains full coverage of any
test set while at the same time reducing the complexity, or number of parameters,
of the resulting predictive model. Positive results are shown in terms of perplexity
of the acquired phrase class n-gram models and in terms of reduction of word error
rates for a speech recognition system.

Thesis Supervisor: James R. Glass
Title: Research Scientist



Acknowledgments

I am indebted to many people who made this research possible. Foremost, I would

like to thank Jim Glass, my thesis supervisor, for his guidance and long term vision,

and patience with my impatience. Without him, this thesis would not have been

possible.

I wish to thank everyone in the Spoken Language Systems group: �rst of all

Victor Zue, for making all of this research possible and providing the environment and

resources which have allowed me to explore my ideas; Stephanie Sene� for providing

very stimulating and rewarding conversations about language modeling, as well as

critical feedback on my thesis; Dave Goddeau for his insight and witty comments;

Mike Phillips for his invaluable help with our recognizer; Eric Brill for patiently

listening as I spoke my mind about �nite state models; Joe Polifroni and Christine

Pao for keeping the computers up and running and the disks empty; and Victoria

Palay and Sally Lee for taking care of all sorts of administrative details. I would also

like to thank all of the other students in our group for support and feedback and

challenging discussions. Without the e�orts of these people, this research could not

have reached this point.

I would also like to thank all four of my parents, Mom, Dad, Vic and Helen, as

well as my brothers Greg, Tim, and Cory and my sister Melanie, for supporting me

and providing everything to bring me to where I now stand.

This research was supported by ARPA under Contract N00014-89-J-1332 mon-

itored through the O�ce of Naval Research, in part by a research contract from

NYNEX Science and Technology and through a grant from Apple Computer, Inc.



Contents

1 Introduction 10

1.1 Related E�orts : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11
1.2 Thesis Outline : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

2 Background 14

2.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14
2.2 Formal Language Theory : : : : : : : : : : : : : : : : : : : : : : : : : 14
2.3 Natural Languages : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

2.3.1 Spontaneous vs. Read Languages : : : : : : : : : : : : : : : : 18
2.4 Probabilistic Languages : : : : : : : : : : : : : : : : : : : : : : : : : 18
2.5 Speech Recognition : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20
2.6 Language Modeling : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

2.6.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21
2.6.2 Word by Word Causal Formulation : : : : : : : : : : : : : : : 22

2.7 What Language? : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23
2.8 Evaluating Language Models : : : : : : : : : : : : : : : : : : : : : : : 24

2.8.1 Perplexity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25
2.9 n-gram Language Models : : : : : : : : : : : : : : : : : : : : : : : : : 26

2.9.1 Sparse Data : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28
2.9.2 Word Class n-gram Models : : : : : : : : : : : : : : : : : : : 30

2.10 Decision Tree Models : : : : : : : : : : : : : : : : : : : : : : : : : : : 30
2.11 Structured Language Models : : : : : : : : : : : : : : : : : : : : : : : 32

2.11.1 SCFG : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33
2.11.2 TINA : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34
2.11.3 PLR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

3 Grammar Inference 36

3.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36
3.2 Formal Machine Learning : : : : : : : : : : : : : : : : : : : : : : : : 37
3.3 Grammar Structure : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39
3.4 Occam's Razor : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40
3.5 Inference De�nitions : : : : : : : : : : : : : : : : : : : : : : : : : : : 41
3.6 Initial Grammar G0 : : : : : : : : : : : : : : : : : : : : : : : : : : : 43
3.7 Merging : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 44

3.7.1 In�nite Merges : : : : : : : : : : : : : : : : : : : : : : : : : : 45

4



3.8 Phrases : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46
3.9 Choosing Merges : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48
3.10 Minimum Count Threshold : : : : : : : : : : : : : : : : : : : : : : : 49
3.11 Active Grammar Units : : : : : : : : : : : : : : : : : : : : : : : : : : 49
3.12 Computational Complexity : : : : : : : : : : : : : : : : : : : : : : : : 51

3.12.1 Space : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51
3.12.2 Merging: Time : : : : : : : : : : : : : : : : : : : : : : : : : : 53
3.12.3 Phrases: Time : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

3.13 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54
3.13.1 Phrase Ordering : : : : : : : : : : : : : : : : : : : : : : : : : : 54
3.13.2 Language Space : : : : : : : : : : : : : : : : : : : : : : : : : : 55
3.13.3 Parsing and Ambiguity : : : : : : : : : : : : : : : : : : : : : : 55

3.14 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57
3.14.1 Test Set Coverage : : : : : : : : : : : : : : : : : : : : : : : : : 62
3.14.2 Grammar Size : : : : : : : : : : : : : : : : : : : : : : : : : : : 66
3.14.3 Number of Grammar Units : : : : : : : : : : : : : : : : : : : 67
3.14.4 Distortion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69

3.15 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69

4 Phrase Class n-gram 73

4.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73
4.2 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74
4.3 Details : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 75

4.3.1 Training : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 77
4.3.2 Validity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78
4.3.3 Examples : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 81
4.3.4 Properties : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83
4.3.5 Hand-written Grammars : : : : : : : : : : : : : : : : : : : : : 84

4.4 Evaluation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 85
4.5 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 87

4.5.1 Perplexity Trace : : : : : : : : : : : : : : : : : : : : : : : : : 87
4.5.2 Test Set Coverage : : : : : : : : : : : : : : : : : : : : : : : : : 94

4.6 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 94

5 Speech Recognition 99

5.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 99
5.2 Summit : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 100
5.3 Search : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 101

5.3.1 Lexicon Graph : : : : : : : : : : : : : : : : : : : : : : : : : : 101
5.4 Search Space : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102
5.5 Viterbi Search : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102
5.6 A� Search : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 104

5.6.1 Computational Complexity : : : : : : : : : : : : : : : : : : : : 106
5.6.2 Upper Bound Bigram : : : : : : : : : : : : : : : : : : : : : : : 107

5.7 Language Model Integration : : : : : : : : : : : : : : : : : : : : : : : 110

5



5.7.1 Full Integration : : : : : : : : : : : : : : : : : : : : : : : : : : 110
5.7.2 N -best Resorting : : : : : : : : : : : : : : : : : : : : : : : : : 111
5.7.3 Word Network Integration : : : : : : : : : : : : : : : : : : : : 112

5.8 pcng Integration : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 113
5.9 Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 114

5.9.1 Language Model Disparity : : : : : : : : : : : : : : : : : : : : 115
5.9.2 Word Accuracy : : : : : : : : : : : : : : : : : : : : : : : : : : 117
5.9.3 A� Computation : : : : : : : : : : : : : : : : : : : : : : : : : 119

5.10 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 121

6 Conclusions 124

6.1 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 124
6.2 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 125

A Perplexity 127

B Example Merge Sequence 130

6



List of Figures

2-1 Example context free grammar : : : : : : : : : : : : : : : : : : : : : 16
2-2 Parse tree for aaabb : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

3-1 Schematic diagram of the inference process : : : : : : : : : : : : : : : 38
3-2 Inference language relationships : : : : : : : : : : : : : : : : : : : : : 43
3-3 Word count distribution : : : : : : : : : : : : : : : : : : : : : : : : : 51
3-4 Active grammar units : : : : : : : : : : : : : : : : : : : : : : : : : : : 52
3-5 Language size : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56
3-6 Acquired grammar, part 1 : : : : : : : : : : : : : : : : : : : : : : : : 59
3-7 Acquired grammar, part 2 : : : : : : : : : : : : : : : : : : : : : : : : 60
3-8 Acquired grammar, part 3 : : : : : : : : : : : : : : : : : : : : : : : : 61
3-9 Test set coverage : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63
3-10 Test set coverage limit : : : : : : : : : : : : : : : : : : : : : : : : : : 64
3-11 Word-class-only test set coverage : : : : : : : : : : : : : : : : : : : : 64
3-12 Comparison of test set coverage : : : : : : : : : : : : : : : : : : : : : 65
3-13 Test set coverage vs. phrase set size : : : : : : : : : : : : : : : : : : : 66
3-14 Grammar size : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67
3-15 Number of grammar units vs minimum count threshold Mc : : : : : : 68
3-16 Number of grammar units vs. phrase set size S : : : : : : : : : : : : 69
3-17 Merge distortion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70

4-1 Example rules and probabilities. : : : : : : : : : : : : : : : : : : : : : 76
4-2 Model complexity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 79
4-3 Word-class-only bigram and trigram perplexity trace : : : : : : : : : 82
4-4 Unigram perplexity trace : : : : : : : : : : : : : : : : : : : : : : : : : 85
4-5 Word-class-only bigram perplexity trace : : : : : : : : : : : : : : : : 88
4-6 Word-class-only trigram perplexity trace : : : : : : : : : : : : : : : : 89
4-7 Standard run bigram perplexity trace : : : : : : : : : : : : : : : : : : 89
4-8 Standard run trigram perplexity trace : : : : : : : : : : : : : : : : : : 90
4-9 Minimum bigram perplexity vs. phrase set size S : : : : : : : : : : : 92
4-10 Minimum trigram perplexity vs. phrase set size S : : : : : : : : : : : 92
4-11 Minimum bigram perplexity vs. minimum count threshold Mc : : : : 93
4-12 Minimum trigram perplexity vs. minimum count threshold Mc : : : : 93
4-13 Minimum merge point vs. phrase set size S : : : : : : : : : : : : : : : 95
4-14 Minimum merge point vs. minimum count threshold Mc : : : : : : : 96
4-15 Test set coverage revisited : : : : : : : : : : : : : : : : : : : : : : : : 97

7



4-16 Test set coverage revisited : : : : : : : : : : : : : : : : : : : : : : : : 97

5-1 Excess log probability for upper bound bigram model : : : : : : : : : 110
5-2 Trigram word n-gram disparity : : : : : : : : : : : : : : : : : : : : : 116
5-3 Trigram word-class disparity : : : : : : : : : : : : : : : : : : : : : : : 116
5-4 Trigram phrase-class disparity : : : : : : : : : : : : : : : : : : : : : : 117
5-5 Word accuracy vs. number of completed paths N : : : : : : : : : : : 118
5-6 Bigram and trigram N -best resorting : : : : : : : : : : : : : : : : : : 120
5-7 N -best resorting and word network integration : : : : : : : : : : : : : 120
5-8 A� path extensions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 121
5-9 Average rank of best scoring path : : : : : : : : : : : : : : : : : : : : 122

B-1 Example starting grammar and language : : : : : : : : : : : : : : : : 132
B-2 After merge (pittsburgh, boston ! NT0) : : : : : : : : : : : : : : : : 132
B-3 After merge (NT0, philadelphia ! NT1) : : : : : : : : : : : : : : : : 133
B-4 After merge (please show, show ! NT2) : : : : : : : : : : : : : : : : 134
B-5 After merge (i would like, i need ! NT3) : : : : : : : : : : : : : : : : 135
B-6 After merge (would like, need ! NT4) : : : : : : : : : : : : : : : : : 136
B-7 After merge (NT4, want ! NT5) : : : : : : : : : : : : : : : : : : : : 137

8



List of Tables

2.1 Random Unigram Sentences : : : : : : : : : : : : : : : : : : : : : : : 31
2.2 Random Bigram Sentences : : : : : : : : : : : : : : : : : : : : : : : : 31
2.3 Random Trigram Sentences : : : : : : : : : : : : : : : : : : : : : : : 32

3.1 Example phrases and weighted mutual information scores. : : : : : : 47
3.2 Example acquired classes : : : : : : : : : : : : : : : : : : : : : : : : : 58

4.1 Random pcng trigram sentences : : : : : : : : : : : : : : : : : : : : 86

5.1 Asymptotic word accuracies : : : : : : : : : : : : : : : : : : : : : : : 119

9



Chapter 1

Introduction

In this thesis we describe an algorithm which is able to automatically learn something

about the structure of a language, given a large set of example \training" sentences.

Automatic learning is attractive for many reasons. First, we would like to understand

what sorts of language patterns a learning algorithm learns well and what patterns

it has di�culty with. This process can give us insight into the nature of our own

language facilities. Second, if an algorithm is able to learn some structure about lan-

guage this acquired knowledge can be used to improve language recognition systems,

e.g. speech recognition. At the same time it can save resources which must presently

be employed to write grammars to model language structure.

This thesis will explore two themes. The �rst is a question of the properties of

automatic learning of language. To address this we develop a grammar inference

process which generalizes from the training set to predict the likely target language.

This process of generalization is rewarding to watch| the algorithmmakes intuitively

satisfying choices. To better evaluate the output of this generalization phase we

construct probabilistic models from the acquired grammars. By computing the cross-

entropy of these acquired models and the true distribution of the language we are

able to better evaluate the limits of the grammar inference process.

The second theme is the issue of practicality. If we have a system which is able

to learn something about the structure of language we would like to use the acquired

knowledge to improve language recognition applications. We therefore investigate

10



practical issues about the language models, including the computational resources

they consume and the e�ect on word error rates of a speech recognition system.

1.1 Related E�orts

Recent advances in technology have enabled the storage of very large text databases,

which in turn has allowed previously infeasible (because of limits in both time and

space) data-driven approaches to be more realistic. As a result, there have been

a number of recent e�orts towards empirically deriving some structure of human

languages.

Most of the approaches have dealt only with word classes, not trying to acquire

any phrase structure. Some of these approaches utilize a word class n-gram model [11]

to evaluate the output, while others simply rely on linguistic knowledge to decide if

the system is learning \correct" word classes. Brill and Marcus [9] used bottom up

clustering to assign words to classes, using divergence as a similarity metric. Brown

et al. [11] use minimal loss of mutual information as the criterion for merging word

classes hierarchically. Jardino and Adda [24] used simulated annealing to divide words

into classes in a top-down manner. On a similar vein of automatic acquisition, Brill [6]

developed a rule based system which automatically acquires rules to decide how to

tag a word with its linguistic part of speech, given the word's context.

The e�orts to acquire phrase structure are fewer, and almost all of them are

linguistically motivated: is it possible to automatically discover the \correct" way to

bracket a sentence. Sentence bracketing is a �rst step in parsing the sentence { it

assigns the phrasal structure to the sentence. The second step is to then tag each of

the phrases with names denoting phrasal equivalence classes. Brill et al. [8] tested a

metric based on mutual information to automatically parse sentences, starting from

the parts of speech of the words. Brill [7] developed a system which learns a decision

tree to bracket sentences. Pereira and Schabes [35] developed a modi�ed version of

the inside/outside algorithm [2, 29] to automatically parse test sentences, given a very

small amount of training data. Bod [4] uses a monte-carlo based approach to bracket

11



sentences.

The emphasis in these approaches is to \correctly" parse a sentence in the linguis-

tic sense | i.e., not to decide whether a given sentence is legal or not, but to assume

the sentence is legal, and �nd the correct parse for it. They are not trying to assign

probabilities to test sentences, only to correctly derive their structure, which makes

it di�cult to extend them to language models for speech recognition.

1.2 Thesis Outline

All of the experiments described in this thesis are conducted within the atis domain,

which is a common evaluation domain in the ARPA speech understanding commu-

nity [23]. Atis contains 
ight information queries solicited from users who solved

problem scenarios. For example, these are some typical sentences: \what is the ear-

liest 
ight from boston to pittsburgh tomorrow afternoon", or \could you tell me if

american airlines 
ight two oh one serves breakfast".

All of the results presented in this thesis are trained on the same training set and

tested on the same test set. The training contains 9711 sentences, and the test set

contains 1595 sentences. These two sets are entirely independent. The lexicon used

to represent these sets has 841 words, including one \unknown word" to which all

words not in the lexicon are mapped.

The chapters in this thesis are structured as follows. Chapter 2 describes relevant

background information for this thesis: formal language theory, language modeling,

including current approaches and means of evaluation, and speech recognition. Chap-

ter 3 describes the inference process which produces a stream of acquired grammars

from the training set of sentences. In this chapter we will show example acquired

grammars, and evaluate the grammars by measuring test set coverage and other

qualities of the grammars. These acquired grammars are then used to develop a

novel probabilistic language model called the Phrase Class n-gram model, which is

described in Chapter 4. In this chapter we will further evaluate the acquired gram-

mars by plotting the perplexity and complexity of the resulting pcng models. Using

12



perplexity we can select the \best" grammar from the sequence and measure useful

quantities for these grammars as we test di�erent inference runs. Chapter 5 will de-

scribe how the pcng model can be integrated with a speech recognition system, and

will examine some computational implications and the impact on word error rate.

Chapter 6 will conclude the thesis and describe some directions for future work.

13



Chapter 2

Background

2.1 Introduction

This chapter provides some background information to place the results of this thesis

in context. Formal language theory will be described, including theoretical notions

of language, natural languages and sub-languages, and probabilistic frameworks for

languages. The speech recognition problem will be formulated in a Bayesian manner,

which is the basis of present day speech recognition systems. This will place the �eld

of language modeling in context.

We will address some issues behind language modeling, including the di�erent

ways of evaluating language models { both subjectively and objectively. Then we will

give an overview of three broad classes of present day approaches towards language

modeling { n-gram based models, decision tree models, and structured models.

2.2 Formal Language Theory

The de�nitions and formal properties of languages have been studied in great detail

by the theoretical community. In this section we review some of these de�nitions and

describe those properties that are relevant to this thesis.

A lexicon is a set of all possible words, also called terminal symbols, that a

person may speak. A sentence is just a �nite sequence of words chosen from the

14



lexicon; there are a countably in�nite number of sentences. A language is a subset

of all sentences, and may be either �nite or in�nite. There are an uncountably in�nite

number of languages because the total number of languages is the number of subsets of

a countably in�nite number of sentences. A sub-language is a subset of a particular

language.

Languages can be grouped into di�erent classes of complexity. For example, the

�nite languages are languages containing only a �nite number of sentences. The class

of regular languages, which contains all �nite languages as a subclass, consists of all

languages which can be accepted by a �nite state machine or, alternatively, denoted by

a regular expression. Regular languages may contain an in�nite number of sentences {

for example (01)� is a regular language containing f�; 01; 0101; 010101; 01010101; :::g

where � is the empty sentence (one containing zero words).

Another class of languages is the context-free languages, so called because they

are the set of languages which can be described, or denoted, by a context free

grammar (CFG) G. The class of context-free languages properly contains the regular

languages. For example, the language aNbN (i.e., f�; ab; aabb; aaabbb; aaaabbbb; :::g, or

those strings starting with a certain number of a's and ending with the same number

of b's) is an example CFL which is not regular.

A CFG consists of a �nite number of rewrite rules, or just rules for short, the

lexicon of words, and an implicit lexicon of non-terminal symbols. As a matter of

convention, words are spelled with lowercase letters, and non-terminals are spelled

with uppercase letters. A rule is of the form N ) X, where N is a single non-

terminal, and X is a string of one or more non-terminals and terminals. Rules that

share same non-terminal on the left may be abbreviated: N ) XjY is the shorthand

for the two rules N ) X and N ) Y . A distinguished non-terminal, S, is the start

symbol, from which all sentences in the language are derived. Figure 2-1 shows a

simple CFG which accepts the language of zero or more a's followed by one or more

b's.

The grammar uniquely denotes a language, referred to as L(G), by specifying

implicitly every sentence in the language. This implicit speci�cation is by means

15



S ) ABjB

A) ajAa

B ) bjBb

Figure 2-1: Example context free grammar

of derivation: if the grammar can derive a sentence then that sentence is in the

language denoted by the grammar. This derivation begins with the start symbol S,

and proceeds iteratively by replacing non-terminals in the string, one at a time, until

the string contains only terminals. Thus, if there is a rule S ) AB, then S can be

replaced with AB. We can then similarly replace A or B. There can be a number of

choices as to which non-terminal to replace at any given step, as there may be more

than one non-terminal in the partially reduced string, or more than one rule for each

non-terminal. By varying which replacements are chosen, all sentences in the language

may be derived from the start symbol S. This is referred to as using the grammar

generatively because, with this process, all sentences in the language denoted by the

grammar can be generated. It is because the context in which the non-terminal occurs

is ignored during this derivation process that this class of languages is referred to as

context-free. For example, to use the grammar in Figure 2-1 to derive aaabb, one

possible derivation is S ) AB ) AaB ) AaaB) aaaB ) aaaBb) aaabb.

The grammar may also be used in the other direction: given a sentence, �nd the

sequence of reductions which, starting with S, would result in the provided sentence.

This process is referred to as parsing, and there are well known search algorithms to

implement it [1, 15]. The output can then be represented as a parse tree, as shown

in Figure 2-2.

It is possible for a given sentence to have more than one derivation with respect

to a grammar. In such cases the grammar is said to be ambiguous. In many natural

language applications, ambiguity is di�cult to avoid, and presents problems in using

the grammars to model natural languages.

Because a language can be very much larger than the grammar being used to

16



S

A

A

A

B

a a a b b

B

Figure 2-2: Parse tree for aaabb

denote it (even in�nite), grammars are a compact means of denoting, or referring to,

a language. One di�culty, however, is that for a given context free language there are

many CFG's that will accept exactly that language | the correspondence between

CFG's and context-free languages is a many-to-one mapping.

2.3 Natural Languages

Natural languages, and sub-languages of natural languages, are languages spoken by

humans. Because a given natural language, for example English, is a language in the

formal sense, it falls somewhere in the hierarchy of the formal languages. However,

natural languages are very complex and have a number of properties which are beyond

the power of context free languages. A simple example is number agreement, which is

the requirement that the subject and verb of a sentence must agree on their number

feature. The sentence \the girl selling cookies is a good friend of mine" is an example

of such constraint. The subject \the girl" must agree with the verb \is" in number.

Had the subject been \the girls" instead, the verb would have to be \are". These kinds

of so-called \long distance" constraints can be arbitrarily far away in the sentence,

and do not �t very well into the context free framework.

If we assume that we can approximate a natural language or sub-language as a

CFL, then we can write a grammar trying to describe those sentences in the language.

17



In attempting to write such a grammar, we would like to have some means to evaluate

how well we have done. The grammar can fail in two di�erent manners. The �rst

type of error, referred to as under-generation, occurs when the grammar fails to

accept valid sentences of the sub-language we are trying to model. The second type of

error is over-generation, which means our grammar actually derives many sentences

which are not actually valid in the language.

The under-generation problem can be measured by computing what percentage

of the sentences in an independent test set of \example" sentences can be parsed by

the grammar. This is typically referred to as the coverage of the grammar on a

particular test set. High coverage is desirable as this means the grammar does not

su�er much from under-generation.

The problem of over-generation, however, is far more di�cult to measure. We

would like to measure how many of the sentences accepted by a grammar are not

valid sentences, but this is not directly possible. This presents a di�cult problem in

developing grammars.

2.3.1 Spontaneous vs. Read Languages

Another di�culty with natural languages is the stark di�erence between proper sen-

tences of the language, as one would read in a newspaper or magazine article, and

spontaneous sentences which are typically spoken in a dialog between two people.

The former version of the language is typically referred to as the read language, and

the second as the spontaneous language. The grammatical rules of the language

decide which sentences are well formed and which are not, but these formal rules are

often broken or at least relaxed during spontaneous speech. Thus, for a given natural

language, the spontaneous version can di�er substantially from the read version.

2.4 Probabilistic Languages

The formal notion of a language as described in Section 2.2 needs to be extended

somewhat for our purposes. Formally, a particular sentence is either in a given lan-

18



guage or not | it is a strictly binary property for all sentences. But natural languages

actually exhibit stronger patterns than this because some sentences are more likely or

more frequent than others. We will therefore augment the formal notion of a language

to associate probabilities with every possible sentence. If a particular sentence is not

in the language, it has probability 0. We will refer to this distribution for a language

as the underlying probability distribution.

We will model a language as a stochastic source which outputs sentences one

word at a time in proportion to the underlying distribution on sentences. This word

source could be thought of as �rst choosing a sentence, according to its distribution

on all sentences, and then outputting that sentence one word at a time. A special

marker, hi, is used to denote the boundary between two sentences. There is, in

general, substantial probabilistic dependence among the words.

We will assume that these sentences are probabilistically independent of one an-

other (i.e., ignoring all dialog e�ects). To generate two sentences, then, the language

source would generate the �rst, then generate the boundary marker hi, then generate

the second, then generate a second boundary marker. Because sentences are inde-

pendent, the order in which those two sentences are generated does not a�ect the

probability that they are generated. We could also \turn on" the source and have it

generate one sentence, then turn it o� and on again and have it generate the second,

with the same probability.

We further assume that this probability distribution is time-invariant, which

means that the probability distribution over all sentences does not change with time.

Also, we assume the source generating sentences is ergodic, which simply means that

if we were to run the source for a little while, the sentences that it produces during

that time would look very much like the sentences it would produce if we ran it for a

very long time.

These assumptions imply that we can collect many sentences from this source

to create various independent sets of sentences for experimentation and that each

such set produced will look somewhat similar. This source is typically actual human

subjects who, when carefully coerced, will emit the sentences of the language we are

19



trying to model. Our goal in attempting to model a target language is to build a

model which comes as close as possible to the true underlying distribution for the

language.

One interesting implication of this probabilistic formalism is that it is entirely

reasonable for a language source to assign some non-zero probability to every pos-

sible sentence. The implication is that every sentence is actually possible, but just

extremely unlikely. For example, consider the plausible but unlikely sentence \now

i am going to say something totally random: orange eagle bagels exacerbate uncle

�ll". Some of the language models we will examine actually approximate a language

source with such a distribution!

2.5 Speech Recognition

Speech recognition is fundamentally a classi�cation problem. We observe small per-

turbations in air pressure varying with time, typically referred to as acoustic evidence

A. We then wish to classify A into one of many equivalence classes representing the

actual sequence of words spoken, W . To establish these equivalence classes we choose

the sequence of words whose estimated posterior probability is maximal, given that

the acoustic waveform A was observed:

W ? = arg max
W

P̂ (W jA)

where W = w1:::wn is a sentence consisting of a sequence of n words, and P̂ (W jA) is

our estimate, according to our models of the speech production process, of the prob-

ability that the words W were spoken given that we observed the acoustic evidence

A.

By Baye's Law, we may rewrite W ?:

W ? = arg max
W

P̂ (AjW )
P̂ (W )

P̂ (A)

While computing this maximization, P̂ (A) is constant, and can therefore be ignored.

20



Acoustic models are used to estimate P̂ (AjW ), and they must take into account

the fundamental properties of speech production: what the basic phonetic units of

speech sound like, the constraints on word pronunciations, contextual e�ects, etc. A

language model is used to estimate P̂ (W ), and it must take into account the structure

and constraints of the language to assign probabilities.

Once we have constructed models to estimate these two probabilities, a recognizer

must consider all possible choices of W , in some e�cient manner, checking P̂ (W )

to see if it is maximal. This process is referred to as the search phase of speech

recognition, and it is typically compute intensive. The space which is being searched

is the sentence space, which contains all possible sentences that the person may

have uttered. The role of the language model is to, a priori, constrain this very large

sentence search space to a more manageable one.

2.6 Language Modeling

2.6.1 Introduction

The role of a language model in a speech recognition system is to approximate the true

underlying probability distribution of the target language. This approximation serves

to reduce the number of possible sentences that needs to be searched in recognizing

a given utterance. To formalize this role we abstract a language model as a device

which associates with every sentence W a probability P̂ (W ), such that:

X
W2word�

P̂ (W ) = 1

The di�erence between this formal abstraction of a language model and the stochastic

source model for the language is very small. For a language, the stochastic source

generates sentences randomly according to the hidden underlying distribution. A

language model performs the same function, just in the other direction | a sentence

is provided to it, and it outputs the probability of that sentence. Both a language

and a language model have a probability distribution over all sentences. Our goal in

21



constructing language models is to have these two distributions be as close as possible.

Within this rather general abstraction of a language model there are many dif-

ferent approaches that have been taken to assign probabilities to sentences. The

beauty of this abstraction is that all approaches to language modeling can be cast in

this framework and therefore certain measures for evaluating language models, which

depend only on the rules of this abstraction, can be used across all approaches.

Since it is clearly not practical for language models to actually store explicitly

the probability of each possible sentence, especially when the language is in�nite, all

language models assume some sort of structure about the language they are trying to

model, and then parameterize their probability estimates according to this structural

assumption. The models will di�er drastically on these structural assumptions. The

role of these structural assumptions is to reduce the total number of parameters which

must be stored, internally, and to enable the model to compute a probability for every

possible input sentence.

Language models are usually trained on a large training set of example sen-

tences from the language so that they can obtain robust estimates of their internal

parameters. The required size of the training set is in proportion to the number of

parameters within the model that need to be estimated. Thus, we will include in

the abstraction of a language model the model complexity, or the number of in-

ternal parameters used by the model to compute its sentence distribution. The more

complex a model, the more parameters it must estimate internally. The tradeo� be-

tween model complexity and performance must be carefully examined when choosing

a particular language model.

2.6.2 Word by Word Causal Formulation

The model can internally compute the probability of a sentence in any number of

ways. One popular formulation, for its ease of integration with recognition systems,

uses the chain rule of probability to represent the probability of an individual word

22



given only words preceding it. This form is a causal word by word framework:

P̂ (S) = P̂ (w1; :::; wn) =
nY
i=1

P̂ (wijw1; :::; wi�1)

where S = w1w2:::wn is a sentence.

The chain rule of probability is fully general, meaning any language model can

in theory be reformed so that it is able to estimate the probability of each word,

sequentially, given the previous words. But in practice many language models must

do a lot of work to compute this reformulation.

2.7 What Language?

The notion of a sub-language of a natural language is important and extremely

relevant to this thesis. A sub-language is a subset of the full natural language, and is

a language in its own right, but constrained to a certain subject matter. For example,

if we were to record an in�nite number of sentences spoken by future travelers to their

travel agents, those sentences would be a sub-language of the English language.

Until now the language we are working with has been deliberately left unde�ned,

but at this point it is necessary to describe the language in a little more detail. The

actual language being modeled is a function of what task is being handled by the

speech recognition system. Typically speech recognition systems are constructed to

handle very limited domains of queries (e.g., understanding air travel information,

playing games of chess, simple geographical navigation in limited areas). Once the

domain is known or de�ned, sample sentences are collected from likely users of the

system (called experimental subjects). These sample sentences, which are divided

into training and testing sets for evaluation of the language models and speech recog-

nition systems, de�ne a lexicon of words. Thus, the lexicon is tailored to the task at

hand and will contain words that are appropriate to that task.

Typically the lexicon will be chosen so that those words that occurred more often

than a certain threshold will be included. All other words (i.e., rare words) are

23



automatically mapped to a special unknown word also included in the lexicon.

2.8 Evaluating Language Models

Language models can be evaluated in several di�erent ways. Typically, for any of

the following evaluations, the training and testing sets are �xed when comparing two

di�erent language models in order to avoid the extra variable of empirical noise. By

far the most prevalent means is to compute an information theoretic quantity, called

perplexity. Perplexity is a measure of the distance between a language model's

distribution P̂ (W ) on all sentences and the true underlying distribution P (W ), in

an information theoretic sense. It re
ects how well the language model predicts a

particular set of test sentences in the language. Perplexity is discussed in detail in

the next section and in Appendix A.

Another means of evaluation is to compute how the language model impacts the

word error rate of a particular speech recognition system. This evaluation is more

relevant, but requires more work than perplexity, since two di�erent models must be

recoded so as to interface to the same recognition system. Furthermore, this evalua-

tion will vary from one recognizer to another. There is a rough correlation between

the reduction of perplexity and decrease in word error rate, but this connection is not

formal.

A third method for evaluating language models is to turn the model around and

use it to generate random sentences according to the model's probability distribution.

This form of evaluation is really a subjective one | it is often very amusing and

surprising to see what sentences the model feels are reasonable or likely. If the model is

a good one, then the random sentences it generates will tend to be plausible sentences.

If the model generates a large number of unreasonable sentences, this means the

model has allocated some probability mass to unreasonable sentences, necessarily at

the expense of reasonable sentences. If the model is perfect, i.e. P̂ (W ) = P (W ) for

all word sequences W , then the sentences produced by this random sampling will be

reasonable sentences.

24



2.8.1 Perplexity

Perplexity [25, 37] is an information-theoretic measure for evaluating how well a

language model predicts a particular test set. It is an excellent metric for comparing

two language models because it is entirely independent of how each language model

functions internally, and because it is mathematically very simple to compute. It

is often referred to as the average \branching factor" of the language model with

respect to a particular test set, meaning how many words on average can follow at

any point in a test sentence. For a given vocabulary size, a language model with lower

perplexity is modeling the language more accurately, which will generally correlate

with lower word error rates during speech recognition.

Perplexity is derived from the average log probability that the language model

assigns to each word in the test set:

Ĥ = �
1

N
�

NX
i=1

log2P̂ (wijw1; :::; wi�1)

where w1; :::; wN are all words of the test set constructed by listing the sentences of

the test set end to end, separated by a sentence boundary marker. The perplexity is

then 2Ĥ . Ĥ may be interpreted as the average number of bits of information needed

to compress each word in the test set given that the language model is providing us

with information.

While we assume a particular test set was produced by the same underlying source

distribution of the training set, perplexity does empirically vary from one test set to

another. For this reason two language models are typically compared based on the

perplexity of the same test set.

The quantity Ĥ is actually just the empirical cross entropy between the distribu-

tion predicted by the language model and the distribution exhibited by the test set.

Assuming the training and testing sets were drawn according to the same distribution,

Ĥ will be very close to the cross entropy between the language model's distribution

and the true underlying distribution of the language. Because cross entropy is lower

bounded by the true entropy H of the language, perplexity is lower bounded by 2H .

25



Thus, as we construct better and better language models, the models become closer

and closer to the fundamental entropy of the language, beyond which we cannot they

cannot be improved. Perplexity is an information-theoretic \distance metric" to mea-

sure how far a language model's prediction is from the true underlying distribution

of the language.

Some language models employ complex means to compute the probability of a

given sentence. It is often the case for such language models that the total probability

mass which they allot is less than 1, and thus their distribution is not valid. Such

models are said to have a normalization problem because their distribution could

be made to sum to 1 with appropriate normalizing of all sentence probabilities. For

these models determining the appropriate normalization is very di�cult. However, as

long as such models can guarantee that the sum over their distribution is less than 1

(rather than greater than), perplexity is still a meaningful quantity and is interpreted

as an upper bound on the true perplexity if the language model were normalized

correctly. Because the goal with language modeling is to minimize perplexity, an

upper bound on the true perplexity is useful.

Appendix A derives some information theoretic bounds relating perplexity to the

true entropy of the language.

2.9 n-gram Language Models

A very common approach to language modeling in present day speech recognition

systems is the n-gram approach, so called because the parameters it stores internally

are the frequencies of all unique sequences of n words (called n-grams) that occurred

in the training set. This model directly predicts the causal word by word probabilities

P̂ (wijwi�1; :::; w1) for every possible context wi�1; :::; w1, which makes it amenable to

integration with speech recognition systems. In addition, there are very e�cient

run-time tree structures for representing n-gram models. This approach to language

modeling is very simplistic as it does not make any e�ort to model the structure

of natural language, but it is the most competitive approach to date, in terms of

26



perplexity and recognition word error rates.

The n-gram models take the simple approach of considering all possible word

contexts, or words preceding the word to be predicted, that might ever occur. They

collect counts of all such n-grams from the training data. Because training data are

necessarily �nite, it is not possible to compute probabilities for every possible context

(of which there are in�nitely many).

One very powerful way around this problem, which is the approach taken by n-

gram models, is to collapse all possible word contexts into chosen equivalence classes,

and then estimate one probability vector for each such equivalence class. The lan-

guage model must therefore store a partitioning function, �, which maps any context

into its equivalence classes, and must also store probability vectors for each of these

equivalence classes:

P̂ (wijw1:::; wi�1) � P̂ (wij�(w1; :::; wi�1))

Typically � is chosen at the outset by hand, and then the probability vectors are

estimated for each equivalence class from the training set. By mapping many contexts

into a single equivalence class, the model assumes that the true distributions of the

words following these contexts are very similar. Simple n-gram models choose � to

map any two contexts to the same equivalence class if they share the same last n� 1

words:

�1(w1; :::; wi�1) =< wi�n+1; :::; wi�1 >

P̂ (wijw1; :::; wi�1) � P̂ (wijwi�n+1; :::; wi�1)

Thus, the assumption with simple n-gram models is that the most substantial

constraint o�ered by any given context comes from the nearest n � 1 words. It is

well known that natural languages have many constraints that are not so local, but

empirically the local context does seem to provide substantial constraint.

27



The parameters for an n-gram language model are derived from the frequency

counts of n-grams in the training set:

_P (wijwi�n+1; :::; wi�1) =
C(wi�N+1; :::; wi)

C(wi�N+1; :::; wi�1)

where C(W ) is the number of times the word sequenceW was observed in the training

set. The quantity _P will be used to derive the model probabilities P̂ .

2.9.1 Sparse Data

One di�culty for all models, which is especially pertinent to n-gram models, is that

of insu�cient training data given the model complexity. For any language model, we

must have enough training data to robustly estimate the parameters of the model.

The n-gram models are particularly sensitive in this regard because they make no

e�ort to reduce the number of parameters to estimate.

This problem is often referred to as the \sparse data" problem. With the n-gram

model, the problem is manifested by the fact that many of the n-grams that occur in

a new test set have never been seen in the training set, even for the bigram language

model (n = 2). By the straight maximum likelihood estimates as shown above, these

word sequences would be assigned zero probability. To deal with this di�culty various

approaches, collectively referred to as smoothing, have been developed. The general

approach is to reallocate some small amount of probability mass from n-grams that

have been seen in the training data to those that have not been seen. The speci�c

approaches di�er only in where this probability mass is taken from and how much is

taken.

28



One general approach to smoothing is referred to as interpolation [25], where

the estimated probability vectors of n-gram model are smoothed with the probability

vectors of the (n� 1)-gram model:

� =
C(w1; :::; wn�1)

C(w1; :::; wn�1) +Ks

P̂n(wi j wi�n+1; :::; wi�1) = � � _Pn(wi j wi�n+1; :::; wi�1)

+(1 � �) � P̂n�1(wi j wi�n+2; :::; wi�1)

whereKs is a global smoothing parameter, and � is a smoothing constant which varies

from context to context but depends only on the count of that context. In general,

the smoothing parameter � can be chosen as above by optimizing Ks empirically, or

through deleted interpolation techniques [25].

Typically the parameter Ks is optimized so as to minimize perplexity on an inde-

pendent test set. This smoothing process is recursive so that each level of the n-gram

model is smoothing with the vectors from the (n� 1)-gram model.

At the unigram level, we smooth the distribution by \pretending" we saw all words

at least a minimum count 
oor (Cmin) number of times. This guarantees that every

possible word sequence is assigned some non-zero probability. We state without proof

that this model is a valid one { i.e., all probability mass sums to precisely 1.

The interpolation approach is very simple in that it uniformly transfers probabil-

ity mass from all n-grams. Other approaches try to steal more probability mass from

infrequent n-grams, for example back-o� smoothing [27], which only removes proba-

bility mass from those n-grams that occurred fewer than a certain cuto� number of

times. There are various other approaches, such as nonlinear discounting [33], and

Good/Turing [21, 13].

When one uses an n-gram language model to generate random sentences, as shown

in Tables 2.1, 2.2 and 2.3, very few of the resulting sentences could be considered valid.

This indicates that n-gram models leave substantial room for improvement. The

sentences for the trigram model are curious because locally the words are somewhat

reasonable, but in the long term the sentence completely loses focus.

29



2.9.2 Word Class n-gram Models

A slight modi�cation of the n-gram model is that of the word class n-gram model [11].

This model �rst assigns words to word classes, M(w), and then maps contexts to

equivalence classes based on these word classes:

�2(w1; :::; wi�1) =< M(wi�n+1); :::;M(wi�1) >

Word class n-gram language models can be competitive because they can have

far fewer parameters, thus making better use of the training data. There are fewer

contexts to store, since many word n-gram contexts will map to a single class n-gram

context.

2.10 Decision Tree Models

Another approach to language modeling is the decision tree language model [5, 10].

These models function like the n-gram model in that they represent a function to

classify any possible context into a �nite number of equivalence classes. But they

di�er on how the function is chosen. In particular, a binary decision tree is created

from the training set. This decision tree asks questions at each node of a particular

context, thus mapping every context which comes in at the root to a particular leaf

of the tree. The leaves represent the equivalence classes.

The interesting property of decision trees is that they can have access to a num-

ber of questions and choose those questions which empirically function the best. A

context can thus be classi�ed based on very long distance information as well as local

information.

The performance of these models is very close to that of the n-gram models, but

they take considerable computation to build.

30



midnight lockheed sure boston
i+ve
atlanta downtown to live
the
fly
american early philadelphia u about philadelphia from atlanta thirty right
four t_w_a to i american
sort flight available land provides you six of midnight which
of aircraft fare east
the the stopover city the coach the one_way frequent in traveling flights
to show please later coast eight u_a those does guess specific august the
reserve on are to used that+s_fine these
does me fly noon like me mid unrestricted continue i provides ways
stop looks boston the three sorry cheapest how fare the
dallas_fort_worth
lands what
least tuesday denver how return the ticket does march
to
two on flight really boston me like
and like six would these fifty

Table 2.1: Random Unigram Sentences

show me the flight earliest flight from denver
how many flights that flight leaves around is the eastern denver
i want a first_class
show me a reservation the last flight from baltimore for the first
i would like to fly from dallas
i get from pittsburgh
which just small
in denver on october
i would like to san_francisco
is flight flying
what flights from boston to san_francisco
how long can you book a hundred dollars
i would like to denver to boston and boston
make ground transportation is the cheapest
are the next week on a_a eleven ten
first_class
how many airlines from boston on may thirtieth
what is the city of three p_m
how many from atlanta leaving san_francisco
what about twelve and baltimore

Table 2.2: Random Bigram Sentences

31



what type of aircraft
what is the fare on flight two seventy two
show me the flights i+ve boston to san_francisco on monday
what is the cheapest one_way
okay on flight number seven thirty six
what airline leaves earliest
which airlines from philadelphia to dallas
i+d like to leave at nine eight
what airline
how much does it cost
how many stops does delta flight five eleven o+clock p_m that go from
what a_m
one_way
is eastern from denver before noon
earliest flight from dallas
i need to philadelphia
describe to baltimore on wednesday from boston
i+d like to depart before five o+clock p_m
end scenario c_m_u thirty four eighty seven please
which flight do these flights leave after four p_m and lunch and <unk>

Table 2.3: Random Trigram Sentences

2.11 Structured Language Models

The other major class of approaches to language modeling is those that assign struc-

ture to the sequence of words, and utilize that structure to compute probabilities.

These approaches typically require an expert to initially encode the structure, typ-

ically in the form of a grammar. In general, they have the advantage over n-gram

approaches because there are far fewer parameters to estimate for these models, which

means far less training data is required to robustly estimate their parameters.

However, structured models require some amount of computation to determine the

structure of a particular test sentence, which is costly in comparison to the e�cient

n-gram mechanism. And, this computation could fail to �nd the structure of the

sentence when the test sentence is agrammatical. With such sentences structured

models have a very di�cult time assigning probability. This problem is referred to as

the robustness problem.

When discussing perplexity results for such structural language models, typically

the test set coverage is �rst quoted, which is what percentage of the test set parses

according to the grammar, and then the perplexity of the language model is quoted

for that particular subset of the test set. This makes objective comparisons of such

32



models di�cult since the perplexity varies with the particular subset of the test set

that parses.

Some extensions have been made to these systems to try to deal in some man-

ner with the robustness problem. For example, both the TINA and PLR models,

described below, accommodate such exceptions. But, the emphasis of these robust

parsing techniques is to extract the correct meaning of these sentences in rather than

to provide a reasonable estimate of the probability of the sentence.

2.11.1 SCFG

One structural approach is the stochastic context free grammar (SCFG) [26], which

mirrors the context-freeness of the grammar by assigning independent probabilities

to each rule. These probabilities are estimated by examining the parse trees of all of

the training sentences.

A sentence is then assigned a probability by multiplying the probabilities of the

rules used in parsing the sentence. If the sentence is ambiguous (has two or more

parses) the probability of the sentence is then the sum of the probabilities of each of

the parses. This process generates a valid probability distribution, since the sum of

the probabilities of all sentences which parse will be 1.0, and all sentences which do

not parse have zero probability.

SCFG's have been well studied by the theoretical community, and well-known

algorithms have been developed to manipulate SCFG's, and to compute useful quan-

tities for them [32, 26]. A SCFG may be converted into the corresponding n-gram

model [43]. The inside/outside algorithm is used to optimize the probabilities such

that the total probability of the training set is optimized [2, 29]. Given a sentence

pre�x, it is possible to predict the probabilities of all possible next words which may

follow according to the SCFG.

33



2.11.2 TINA

TINA [38] is a structured probabilistic language model developed explicitly for both

understanding and ease of integration with a speech recognition system. From a

hand-written input CFG, TINA constructs a probabilistic recursive transition network

which records probabilities on the arcs of the network. The probability of a sentence,

if it parses, is the product of all probabilities along the arcs. Thus, the probabilities

are conditional bigram probabilities, at all levels of the recursive network.

For each unique non-terminal NT in the input grammar, TINA constructs a

small bigram network that joins all rules that have the particular left-hand-side non-

terminal. This process is actually a form of generalization as it allows more sentences

to be accepted than were accepted by the original grammar. Probabilities are no

longer explicitly rule-dependent as in the SCFG formalism, but instead are depen-

dent in a bigram-like manner on the unit immediately preceding a given unit.

TINA parses a test sentence using a best �rst strategy whereby the partial parse

which looks most promising is chosen for extension. This has the e�ect of creating an

extremely e�cient parser, when the model is trained well, and was motivated by the

notion that humans do not have nearly as much di�culty with ambiguous parses as

computers do. TINA also has a trace mechanism and a feature-uni�cation procedure,

which complicates the probabilistic model and makes it more di�cult to estimate the

perplexity.

TINA, like SCFG, only assigns probability to those sentences which it accept.

It therefore has the same di�culties with robustness as other structural approaches.

Recent work has been done to address this problem, mainly by resorting to standard

bigram models for words that fall outside of parsable sequences [39].

2.11.3 PLR

PLR [19] is another approach to which generates a probabilistic language model from

a CFG as input. It is a probabilistic extension to the e�cient LR parsing algorithm [1],

and is designed to achieve full coverage of a test set by implementing error recovery

34



schemes when a sentence fails to parse.

The LR model takes a CFG as input and uses this CFG to construct a determin-

istic parser. This parser looks at each word in the input sentence in sequence, and

decides to either shift the word onto the top of the stack, or reduce the top of the

stack to a particular non-terminal. The PLR model extends this by predicting word

probabilities as a function of which units are on the top of the stack. At every itera-

tion, the stack represents the partially reduced portion of the test sentence processed

so far.

One limitation of this approach is that it requires that the input CFG fall within a

special class of CFG's known as the LR grammars. If the grammar is in this class, it

is possible to construct a deterministic LR parser. An advantage of this model is that

it is already formulated as a word by word predictive model, thus making integration

to speech recognition systems easier. It is also extremely e�cient as, at any given

point, the LR machine knows exactly which action, shift or reduce, applies.

35



Chapter 3

Grammar Inference

3.1 Overview

The process of automatically acquiring a language model is divided into two steps.

First, we try to learn a CFG which describes the training set and also generalizes

beyond it to the target language. Second, we use the learned CFG to construct a

probabilistic language model. The �rst step, which is described in this chapter, is

implemented using a form of grammar inference. It is the only step which does any

\learning". As output it produces a stream of grammars, each grammar more general

than those listed before it. The second step takes each learned grammar and trains a

probabilistic model using the training set. We can measure the overall performance

of these two steps by evaluating the �nal acquired language model according to the

known objective measures for language models.

In this chapter we describe an algorithm to implement the �rst of the above steps.

This algorithm is a form of grammar inference [16], which is an iterative process that

tries to learn a grammar to describe an example set of training sentences. From the

�nite training set the inference process produces a stream of learned grammars G0,

G1, G2, ..., where each grammar is successively more general than the ones before

it. Typically the initial grammars are quite speci�c in predicting only the training

set, but through generalization the grammars eventually become too general. One

extreme grammar is the �nal grammar, whose language will be something close to all

36



possible sentences. Somewhere in between these two extremes is the \best" grammar.

The overall inference process is actually quite simple, but the details are somewhat

complex. The process begins with a very explicit grammar which precisely encodes

the training set. It then iteratively simpli�es, or transforms, that grammar. Each

transformation generalizes the language accepted by the grammar such that each

language is a superset of the language accepted by the previous grammar. An example

of this generalization could be as follows. Throughout the training set it may be

apparent that the words \boston" and \denver" occur interchangeably, according to

some objective measure. Furthermore, there is a sentence \show me the cheapest


ights leaving boston before six p m" in the training set. The inference system could

generalize from this to also predict the sentence \show me the cheapest 
ights leaving

denver before six p m". This notion is at the very heart of the inference process.

Figure 3-1 shows a block diagram describing the general inference process. The

merging component is the process that generalizes each grammar by one iteration.

It selects units to merge, which may be either a word, a non-terminal, or a phrase from

the phrase set. The phrase set stores the top S phrases which can be considered for

merging at each iteration, where S is a parameter of the inference process.

3.2 Formal Machine Learning

The machine learning community has explored the theoretical limitations and proper-

ties of algorithms which can learn a language from example sentences of the language,

either positive or negative or both. Typically some sort of formalism for learning is

chosen, whereby a learner is presented with examples one at a time and must then

formulate a hypothesis over time that may be used to classify future examples. The

learner constructs the hypothesis that it believes is the correct one from the exam-

ples, and the performance of the learner is measured objectively based on how well it

classi�es future examples.

One such formalism of learning, proposed by Solomonof [42], is a strict sense of

learning called learning in the limit. This formalism requires that the learner

37



G’G

Words

NTs

MERGE

Phrase Selection

Phrase Set

Figure 3-1: Schematic diagram of the inference process
This shows the function of each component. The merging unit actually transforms
the grammar by selecting two similar units to merge. These units can either be word
or non-terminals or phrases from the phrase set.

eventually learn the concept or language precisely. Thus, the learner is presented

with many examples, positive or negative, and in any possible order. It is then said

to be able to learn a concept class if for any concept in that class, and after some

bounded number of examples, it will correctly classify all future examples. Many

e�orts have been made within this formalism to show that various concept classes are

or are not learnable. Gold [20] has shown that not even the regular languages, let

alone the context free languages, can be learned within this framework.

The learning formalism established by Solomonof is very strict in that it demands

precise learning of the concept. A more relaxed and practical formalism was pro-

posed recently by Valiant [44], called PAC-learning, which stands for \probably ap-

proximately correct learning". Instead of requiring the learner to classify all future

examples, it simply imposes a bound on the probability of misclassi�cation. Thus,

the learner is allowed to make mistakes, as long as it does not make too many. Many

e�orts have been undertaken to show that certain classes of concepts are or are not

\PAC-learnable" or e�ciently (polynomial time and polynomial in the requirement

38



of the number of examples that must be seen) PAC-learnable.

Each of these learning models also encompasses what sort of evidence is presented

to the learner, along with what sorts of concept classes are being worked with. Typ-

ically the evidence (examples) can be only positive, or both positive and negative.

Learning from only positive data is di�cult because the process never knows if the

concept it has acquired tends to over-generalize.

The results from this community are of interest to the linguistic community be-

cause it is widely held that children are exposed to very little negative evidence as

they learn natural languages [31, 34]. This constrains the linguistic theories of human

language as they must be consistent with this evidence.

For our purposes, we measure learning with far less stringent requirements. We

measure the quality of the resulting language models and speech recognition systems

which use these language models. The results of the machine learning community are

interesting only in the abstract. From our point of view, if an algorithm is able to

produce practical results through some learning framework, that algorithm is useful.

3.3 Grammar Structure

We can look at a CFG as serving two di�erent functions. First, it performs classing,

which is specifying which grammar units (words and non-terminals and phrases) of

the grammar fall into the same class. The grammar accomplishes this by creating

rules which allow a given non-terminal to derive each of the units grouped into the

same class. For example, a grammar will group similar words into the same class

{ days of the week, city names, month names. It can also do so with phrases. For

example, it could group the phrases \on tuesday evening" and \before two o'clock"

together. Therefore, any non-terminal in the grammar can be viewed as denoting

a class of similar words and phrases according to what the grammar allows that

non-terminal to derive.

The second role that a grammar serves is to assign structure to the language it

derives by specifying which sequences of words and non-terminals should be bracketed

39



as phrases. For example, the grammar will specify that \to CITY", \from CITY",

and \the least expensive 
ight" are phrases in the language. This function of the

grammar is referred to as structure building.

The two functions { classing and structure building { are very much intertwined

with one another. In building structure, the grammar speci�es phrases containing

non-terminals which denote classes. In grouping di�erent units into classes the gram-

mar groups the structured units as well as single words and non-terminals into classes.

Given this interpretation of a CFG, a natural decomposition of the grammar

inference algorithm is into two di�erent components: one that searches for appropriate

classes, and one that searches for structures to build. Somehow these two separate

functionalities of the inference process must then be made to function gracefully

together.

3.4 Occam's Razor

The word inference means to predict a general rule given speci�c example applications

of the rule. When applied to context-free grammars, grammar inference is the process

of predicting a general CFG to describe a set of example sentences. The process gen-

eralizes from a training set, called the positive sample, to produce grammars which

accept not only the training set but sentences beyond the training set. Inference sys-

tems can also be provided a negative sample, which contains examples of elements

which are not example applications of the general rule. We do not have access to such

data in our grammar inference, as such a notion does not really make sense { how

would we �nd prototypical negative example sentences? Thus the inference process

described here works only from positive data.

The inference process is guided by �nding a relatively simple grammar to describe

the training set. This principle is commonly referred to as Occam's Razor, or

\the simplest explanation is best", and embodies the rather strong philosophical

statement that the world we live in tends to favor simpler things. In this spirit,

inference begins with a relatively complex description of the training set and then

40



proceeds to iteratively generalize and simplify this description. In this context, the

word complex means a large model, in terms of its physical size (the total size of all

rules in the grammar, for example).

3.5 Inference De�nitions

We assume that there is an underlying language, Lt, which is the actual target lan-

guage that we are trying to learn. Furthermore, we assume that all sentences in

the independent training and testing sets are in Lt and that these sets were drawn

according to the probability distribution associated with the language Lt.

The grammar inference system consists of the pair hG0; T i, whereG0 is the starting

grammar derived directly from the training set, and T is a function which takes a

grammarG as input and outputs a set of grammar transformations which could apply

to G. G0 is a large grammar whose corresponding language is exactly the training set.

Any one of the transformations ti 2 T (G) for G, can be chosen to transform G into

G0: G0 = ti(G). These transformations represent the means of generalization that are

available to the inference system at each step, and typically simplify the grammar by

reducing its complexity or size. They have the property that they only transform the

grammar such that L(G) � L(G0)):

8ti 2 T (G) : L(ti(G)) � L(G)

The initial grammar G0, and the transformation function T (G) entirely de�ne the

inference system. The set of all reachable grammars, by some sequence of transfor-

mations starting from G0, de�nes the grammar space Ĝ of the inference process.

Correspondingly, the language space L̂ is the set of all possible languages this sys-

tem can acquire. If the target language Lt 2 L̂ then the inference process may, with

an appropriate search, �nd the correct language using a series of transformations

starting with the initial grammar. If Lt 62 L̂ then the inference algorithm can at best

approximate the target language. The mapping from Ĝ to L̂ is a many to one map-

41



ping since there are many grammars for each language. The language space contains

only languages which accept all sentences in the training set.

Because the grammar space can be exponentially large, the means employed to

search the space for a good grammar is a greedy search. At each iteration, the single

transformation which appears to be the best, according to a de�ned metric, is chosen

and applied to the current grammar. This process is done iteratively until either no

more transformations can apply to the grammar, or a stopping criterion has been

reached. The resulting output of this process is a sequence of grammars G0, G1,

..., each slightly more general than the previous one. By varying the criterion used

to choose the single best transformation from each set T (Gi), and by varying what

transformations are included in this set, we can produce di�erent streams of grammars

as output.

Figure 3-2 shows a graphical depiction of the relationship between the various sets

of sentences involved in the inference process. These bubbles are drawn in sentence

space; thus each bubble represents a particular subset of all sentences, or a formal

language. We have �nite training and testing sets, which are assumed to be drawn

independently according to the underlying �xed probability distribution on sentences.

These two sets will overlap with some non-zero probability. There is as well the

actual target language which we are trying to learn during the inference process. The

target language includes every sentence in the training and testing sets, but certainly

contains sentences which are not in either set. It is the goal of the inference process

to generalize from the training set to the target language.

Finally, there is the language which we have learned after some number of itera-

tions of the inference process. As explained earlier, the learned language will always

be a superset of the training set. The language learned by inference process can su�er

from both under-generation and over-generation, as shown in Figure 3-2.

42



Target
Language

Learned
Language

Training Set Testing Set

Figure 3-2: Inference language relationships
This �gure shows the relationship between training and testing sets and the target
and learned languages during the inference process.

3.6 Initial Grammar G0

For the unital grammar G0, we chose a grammar which contains exactly one rule for

each sentence in the training set, of the form S ) si where si is the ith sentence in the

training set. This grammar is extremely large since it does not make any attempt to

share common structures between the sentences of the language. The initial language,

L0, is therefore exactly the training set.

This group of rules, collectively referred to as the sentence rules, are present

in all subsequent grammars derived by the inference process. However, each rule

within the sentence rules can be altered with each iteration of the inference process.

In addition, new rules will be created and added to the grammar. These rules are

referred to as the acquired rules.

One nice property of this starting point is that we could easily give the system a

head start by providing it with an initial hand written grammar, thus saving some

computation time and space.

43



3.7 Merging

The set of grammar transformations T (G) for a given grammar G contains all trans-

formations which perform a merge of two units in the current grammar G. A merge

takes two units ui and uj which are currently present in the grammar and modi�es

the grammar such that these two units are interchangeable in every context both in

the new grammar and in the language accepted by the new grammar. A unit can

be either a single word (e.g., \denver"), or a single non-terminal in G representing

the class created by a previous merge (e.g., \NT5"), or a sequence of words and non-

terminals (e.g., \please show NT4"). For example, the phrase \washington d c" and

the word \boston" may be selected as similar units to merge.

The grammar transformation is mirrored in the language accepted by the gram-

mar. As a result of merging \washington d c" and \boston", any sentence whose

partially reduced form is of the form \� washington d c �", where � and � can be

zero or more words or non-terminals, allows the corresponding sentence \� boston

�" to also be included in the language. Symmetrically, substituting \washington d

c" for \boston" allows new sentences to be added to the language as well.

Formally, a merge must make a number of changes to the grammar G. A fresh

non-terminal, for example NT0, is chosen. The grammar is most un-creative in its

selection of fresh non-terminal names | it simply chooses NTi for i = 0; 1; 2; etc.

Two new rules are added to G:

NT0 ) washington d c

NT0 ) boston

Next, wherever \washington d c" or \boston" occur in the present grammar, that

occurrence is replaced with NT0. This replacement is done for both sentence and

acquired rules. It has the e�ect of allowing \washington d c" to appear wherever

\boston" previously appeared, and vice-versa. There are some further transparent

modi�cations that are done to the grammar to remove unnecessary non-terminals

and to otherwise \clean" the grammar to make it easier to read. The notation used

throughout the rest of this thesis to denote the merging of two units ui and uj to

44



create NTk is (ui, uj) ! NTk.

As a result of this replacement everywhere in the present grammar, there may be

several rules that have been reduced to exactly the same form on their right hand

sides. In particular, any two rules which previously di�ered only by \washington d

c" and \boston" will now be equal. For example, if these rules:

NT4 ) from washington d c

NT4 ) from boston

were already in the grammar, they will be duplicate rules as a result of this merge.

Since it is unnecessary to have duplicate rules in a CFG, such rules are discarded

(leaving one copy). This elimination of duplicate rules actually reduces the size of

the grammar substantially, even though the grammar size actually increases slightly

at �rst by adding the two new rules.

Appendix B describes a detailed example of a sequence of merges.

3.7.1 In�nite Merges

The exception to the merging process as described above are situations when the

merge would introduce recursion into the grammar, thus generating an in�nite lan-

guage. One example of this is trying to merge two units where one unit is contained

in the other: \please show me" and \show me". In the naive merging algorithm

described above, this would create the rules:

NT0 ) please NT0

NT0 ) show me

because the unit \show me" appeared in the rule just added, and we want to make

both units interchangeable in all contexts. This would have the e�ect of allowing

any number of \please's" to precede the phrase \show me". Clearly exactly zero or

one \please's" ought to be allowed, so we chose to disallow these in�nite merges.

Whenever such a merge is proposed, we still allow the merge but we carefully update

the grammar so as to avoid introducing recursion. Thus, the merge would add instead:

NT0 ) please show me

45



NT0 ) show me

Another way to describe such situations is that there is an optional word which may

be inserted or not. In the example above, that word is \please". Natural language

tends to use many such optional words, so properly handling such cases is important.

3.8 Phrases

Some means must be provided to allow the inference process to acquire structure, or

phrases. A phrase is a unit consisting of two or more terminals or non-terminals in

sequence (e.g., \show me").

Ideally, every possible phrase, perhaps limited to only those word sequences that

actually occur frequently enough in the training set, should be considered. But this

is computationally unrealistic because the cost of introducing phrases grows with the

square of the number of phrases. There are too many possible phrases to consider

every one of them exhaustively.

Some criterion is needed to select a subset of all possible phrases which look

\likely". To achieve this, we de�ne a simple objective metric, shown in Equation 3.1,

to measure the quality of the the phrase \u1 u2". The units u1 and u2 could be a word,

a non-terminal, or even another phrase. In this manner longer phrases than length

two can be considered even though the concatenation process is binary. This metric

is based on mutual information, which has been used it other grammar inference

approaches as a means to acquire structure [8].

Pr(u1; u2)� log(
Pr(u2ju1)

Pr(u2)
) (3:1)

This score is high when two units are \sticky", meaning the probability that u2

follows u1 is much higher than the simple frequency of u2. The additional weight of

the frequency of the bigram is added to favor phrases which occur frequently.

Using this metric, we select the top S best phrases whose frequency count satis�es

the count threshold (�Mc), and store these phrases in a phrase set. Table 3.1 shows

46



Phrase Score �10�2

show me 4.06

from boston 3.28

from boston to 3.27

boston to 2.79


ights from 2.71

i+d like 2.51

is the 2.51

what is the 2.82

what is 2.51

to san-francisco 2.45

would like 2.13

i would like 2.07

i would 2.04


ight from 1.64

like to 1.63

i'd like to 1.65

the cheapest 1.55

me the 1.52

show me the 1.99

ground transportation 1.41

Table 3.1: Example phrases and weighted mutual information scores.

an example phrase set of size 20. Once a phrase is selected, its distributional counts

are collected by looping through all of the training sentences searching for occurrences

of the phrase. The merging process is then free to choose any of these phrases, or a

single word or non-terminal, as it searches for the most similar pair of active units.

The merging process is entirely independent from the phrase set. Only the merging

process actually changes the grammar. The phrases which are added to and removed

from the phrase set have no direct e�ect on the grammar. Only when the merging

process chooses a phrase to merge is the grammar altered to include a phrase. The

phrase set must be updated after every merge because certain phrases may now be

obsolete (if they contained one of the merged units), while other newly competitive

phrases may need to be added.

47



3.9 Choosing Merges

At each iteration the system must choose one merge from among many candidates

as the actual merge to apply. Because a merge takes two previously distinct units

and merges them together such that they are interchangeable everywhere, it seems

reasonable to choose as the criterion for merging a metric which measures how similar

or interchangeable the units really seem to be in the training set.

This similarity metric will be based on distributional information { i.e., the

contexts in which a given unit occurs and the frequency of occurrence in each con-

text. The context that is considered could be very general, but in the interest of

computational resources, we limit it to simple left and right bigram units. Every

possible unit ui has two context vectors associated with it { one listing the counts of

units k which ever occurred to the left of this unit (Li[k]) and one listing counts of

units which occurred to the right of it (Ri[k]), in the training data. From these count

vectors, smoothed probability vectors are estimated representing the probabilities

P̂ (left context kjui) and P̂ (right context kjui). This smoothed distribution is com-

puted in exactly the same way as the interpolated n-gram distribution as described

in Section 2.9.

There are various possible choices for \distance metrics" once we have these con-

text probability vectors for all units. We chose as our distance metric divergence [28],

which is a natural information theoretic distance between probability vectors. Diver-

gence is based on the relative entropy D(pjjq) between two probability vectors p and

q, each of length N :

D(pjjq) =
NX
i=1

p(i)� log
p(i)

q(i)
(3:2)

Divergence is then the symmetric sum D(pjjq) +D(qjjp).

In order to be able to use a distributional distance metric such as divergence

we must maintain the distributional counts of all candidate units for merging. At

the start of the inference process, these count vectors need to be set properly by

looking through all of the training sentences. After each merge is completed, the

distributional count vectors for all units must be updated accordingly. For the newly

48



created merged class, the new count vectors are simply the sum of the individual

count vectors of the two units before they were merged. For all other units which

occurred in a context involving one of the merged units (i.e., preceded by or followed

by one of the merged units), their distributional counts are altered as well.

3.10 Minimum Count Threshold

The time and space complexity of this inference process is sensitive to the number

of candidate units that must be considered for merging. To limit this number, and

thus allow the process to run more expeditiously, we impose a minimum count limit

Mc on any unit which may be considered for merging. If a unit has occurred fewer

thanMc times in the training set, it cannot be considered as a candidate for merging.

Another motivation for this is to ensure that the contextual probability estimates are

robust so that a comparison of two units based on the divergence metric is reliable.

The minimum count threshold ensures that we are merging units whose distributional

information is trustworthy.

For all inference experiments completed in the rest of this thesis, Mc will be 5

unless otherwise stated. The inference run with either Mc = 5 or S = 100 or both

is referred to as the standard inference run, and will be the default inference run

when these parameters are not explicitly speci�ed. These values were chosen because

they represent near optimal choices as determined in the next chapter.

3.11 Active Grammar Units

The grammar units are de�ned as the single words and non-terminals in the gram-

mar which have not yet been merged. This includes any word which has not yet

been merged, and any non-terminal which was created by a previous merge and not

merged since. The parameter N will be used to denote the number of these units.

A subset of these grammar units, called the active grammar units, or active

units, are those units whose count satis�es the minimum count threshold Mc and

49



are thus candidates for merging. The number of these units is de�ned as Na, where

Na � N . During the merging process, N = Na + K for some constant K, because

the non-active grammar units, of which there are K, will remain unmerged during

the entire inference process.

The two parameters Na and N are parameters of interest for several reasons. The

computational complexity of the inference process depends strongly on both of them.

At the start of the inference process, N is precisely the number of words in the lexicon,

and Na is the number of words whose count is �Mc. Na is very sensitive to the value

of Mc. Figure 3-3 shows how many words occur �Mc times in the training set, as a

function of Mc. Thus, the choice of Mc has tremendous impact on the computational

complexity of the inference process.

The evolution of N as the inference process iterates is a means of comparing

how much classing versus structure building is being accomplished by the acquired

grammar. For a given merge, N can change by 1, 0, or -1 depending on the units.

If both merged units are a single word or single non-terminal, the merge collapses

two previously distinct active units into one active unit, thus reducing N (and Na)

by 1. If one merged unit is a single word or non-terminal, but the other is a phrase

from the phrase set, the number of units in the grammar remains unchanged, because

the merge process has simply grouped the phrase with the class of a currently active

unit. Finally, if both units are phrases, then the merge process has spontaneously

created a new active unit represented by NTk, containing only those two phrases,

which increases N by 1. This evolution of N is dependent on various parameters

of the inference process, but is also very dependent on the underlying nature of the

language: does the language structure favor more classes or more phrases ?

Figure 3-4 shows the evolution of N for an inference run when Mc = 5 and

S = 100. The dotted line in this �gure shows the steepest possible curve for Na for

reference, which is the case when the grammar is learning only word classes. Thus, the

deviations from that reference curve and the curve shown occur because the inference

process is choosing to merge some phrases. Before any merges, Na = 512, i.e., there

are 512 words in the lexicon whose counts satisfy the minimum count threshold. At

50



0 20 40 60 80 100
100

200

300

400

500

600

700

800

900

Count Threshold

N
um

be
r 

of
 W

or
ds

Figure 3-3: Word count distribution
Number of words which occur more than a certain threshold number of times in the
training set. This number drops o� quickly as the cuto� increases.

�rst, the inference algorithm very much favors grouping words into classes. But then,

as it progresses, it builds more structure by merging phrases together.

3.12 Computational Complexity

The actual running time of the inference process is quite sensitive to the parameter

Mc. The current implementation of the system, which is written in C, takes on the

order of eight hours on a single Sun SparcStation 10 to compute a su�cient number

of merges. In this section we compute the running time and space complexity of the

various components of the system.

3.12.1 Space

For every active unit plus every phrase in the phrase set, we must maintain vectors

of the distributional counts of each unit. These vectors are represented sparsely and

thus take space proportional to how many units actually occur as the context for a

51



0 100 200 300 400 500 600
660

680

700

720

740

760

780

800

820

840

860

Number of Merges

N
um

be
r 

of
 G

ra
m

m
ar

 U
ni

ts

Figure 3-4: Active grammar units
Evolution of the number of active grammar units Na for the standard inference run.
The dotted line shows the steepest possible curve as reference, which is the word-
class-only case.

given unit, in the

worst case O(N). There are Na + S units whose counts must be stored, so the

total space is at worst O(N(Na + S)).

In addition to this, the training sentences have to be maintained in their partially

reduced state to be able to collect context counts for the phrase set construction,

taking O(T ) space. Finally, the grammar needs to also be maintained. The bulk of

the space in the grammar is consumed by the sentence rules. We can actually save

this space by using the partially reduced training sentences to serve this purpose as

well. Additional space is used by the acquired rules in the grammar, but that is very

small, on the order of the number of merge iterations.

Thus, the total space complexity of this inference algorithm is O(N(Na+S)+T ).

If the training set is very large, this complexity will be dominated by T , otherwise

it will be dominated by the number of active units in the grammar or the number

of words in the lexicon. Again, this in turn is very sensitive to the minimum count

52



threshold Mc.

3.12.2 Merging: Time

A merge involves three computational steps. First, the pair of most similar active

units and phrases must be identi�ed. Second, the grammarmust be updated to re
ect

the merge. And third, the distributional counts must be recomputed. Searching for

the two most similar units to merge requires O((Na+S)2) unit pairs to be considered.

Computing divergence involves looping through the distributional vectors for each

unit, which can involve N units. The total time to �nd the best pair of units is thus

O(N(Na + S)2), which is quite sensitive to Na and N .

Fortunately a simple improvement can be implemented in selecting merges by

maintaining a queue of the top few hundred best merges at each iteration. At the

beginning of the inference process, we �rst perform the full computation to �ll the

queue initially, taking time O(N(Na + S)2). Then, when a merge is performed,

the divergence is only recomputed between pairs of active units whose distributional

counts were altered as a result of this merge. While in the worst case there can still be

O((Na + S)2) unit pairs to compare, in practice it is quite a bit less and this merge

queue saves substantial time.

Updating the grammar requires searching for any instance of ui or uj in the

grammar and replacing it with NTk. This can be done in time proportional to the

total number of words T in the training set, which is O(T ).

Updating the distributional counts is a matter of �rst adding the count vectors of

the two merged units, which takes O(N) time. Then we must look through the count

vectors of all other active units adding together the context counts of the two units

wherever they occur in another unit's context. The count vectors are stored using a

sparse representation, thus to look up each unit takes O(logN) time using a binary

search. Since there are Na units, the total time is O(N +NalogN).

Adding all of this up, a single iteration of merging takes time:

O(N(Na + S)2 +N +NalogN + T )

53



= O(N(Na + S)2 + T )

3.12.3 Phrases: Time

Filling the phrase queue requires selecting S phrases. Each selection requires consid-

ering all pairs of active units to concatenate, of which there are O((Na + S)2). The

weighted mutual information calculation for each pair takes O(1) time. Once a phrase

is selected the distributional counts for that phrase must be collected. This requires

looping through the entire training set of sentences searching for all occurrences of the

phrase. This takes O(T ) time, where T is the total number of words in the training

set. Adding a phrase to the phrase set therefore takes O(T + (Na + S)2) time.

At the start of inference, the phrase set is �lled by �nding the best S phrases,

taking total time O(S(T + (Na + S)2)). Then, after each merge we must update the

phrase set. In the worst case this could involve replacing all S phrases, which would

result in a worst case running time of O(S(T +(Na+S)2)) per iteration, but typically

the actual number of phrases replaced is quite a bit less.

3.13 Discussion

In this section we describe some interesting issues and properties of the inference

process.

3.13.1 Phrase Ordering

The fact that each merge is also applied to previously acquired rules deserves special

attention. Although the inference process may have merged a large phrase with some

other unit, that phrase may be further decomposed when sub-phrases within it are

merged. For example, the phrase \show me all 
ights" can be merged with \show me

the 
ights". A later step could merge \show me" with \please list", thus replacing the

occurrence of \show me" in the two original rules. This notion is interesting because it

allows the grammar to acquire the eventual phrase structure in a somewhat arbitrary

54



order. At one extreme, it could at �rst learn very large particular examples of phrases,

in a 
at manner, and then learn the phrase structure within these phrases. At the

other extreme, it could learn these phrases in a bottom up manner, always learning

smaller phrases before learning larger phrases using these smaller ones.

The same observation cannot be made about the merging component. For merging

there is a very de�nite dependency on the ordering. Once two classes are merged

together there is no way to reach those classes in a future merge.

3.13.2 Language Space

While the grammars acquired by this system are context-free grammars, the set of

all possible languages which can be learned, called the language space, is strictly

smaller than the set of context-free languages. The grammar transformation process

does not allow a merge to introduce recursion into the CFG rules. Thus, the resulting

language is necessarily �nite in the number of sentences it contains, and the language

space contains only �nite languages.

The language is transformed concomitantly with the grammar transformations,

thus producing a stream of output languages L0, L1, L2, ..., one for each grammar,

which monotonically increase in their size. Figure 3-5 shows an upper bound on the

language size of a particular inference run. The language size actually increases at a

doubly exponential rate with the number of merges; thus the y axis is plotted on a

log(log(language size)) scale.

3.13.3 Parsing and Ambiguity

In building the grammar through iterations of merges, the original training sentences

are maintained as sentence rules in the grammar. With each merge these training

sentences are further reduced according to the newly acquired rules. Because there

is no room for ambiguity as these sentences are represented in the grammar, it is

very unlikely for an acquired grammar to be ambiguous in how it parses a particular

sentence. This is just a byproduct of how merges are done without allowing any room

55



0 50 100 150 200 250 300 350 400 450
2

3

4

5

6

7

8

9

10

11

12

Number of Merges

Lo
g 

Lo
g 

La
ng

ua
ge

-S
iz

e

Figure 3-5: Language size
Upper bound on the number of sentences in the acquired language during the standard
inference run. The language size is plotted on a log log scale on the y axis, and the
number of merges is shown on the x axis. At x = 0 the language size is exactly the
number of unique sentences in the training set.

56



for maintaining di�erent possible parses of the training sentences.

This property is very useful as it allows us to develop a very simple parser to take

a new test sentence and reduce it to its unique reduced form. This parser simply �nds

all rules which can apply to the current test sentence, and applies the rule which was

acquired earliest during the inference process, and then reiterates. In this manner the

test sentence will be parsed exactly as it would have been parsed if it were a training

sentence.

This parser can be used to see if a test sentence is in the language using the

following procedure: the test sentence is �rst reduced as far as possible using the

acquired rules of the grammar. When this is done, we see if the resulting reduced

form matches any of the reduced sentence rules stored in the grammar. If so, the test

sentence is in the language of the grammar.

While the nature of this inference process discourages acquiring an ambiguous

grammar, there can be sequences of merges that do result in an ambiguous grammar.

Fortunately, this seems empirically not to happen very often. Unfortunately, there

is no algorithm to determine whether an arbitrary CFG is ambiguous [30] | this

decision problem has been proven undecidable by the theoretical community. Thus,

we simply hope that the grammars are not too ambiguous since this ambiguity will

cause problems when we use the grammar to develop a probabilistic language model,

as discussed in the next Chapter.

3.14 Results

There are numerous ways to examine the results of the inference process. Probably

the most immediately rewarding subjective result is the actual grammars that are

acquired. Figures 3-6, 3-7, and 3-8 show the grammar acquired after 200 merges

with the standard inference run. The classes and phrase structure represented in this

grammar seem quite reasonable, and it seems like the system is doing a good job

learning the language. For example, NT29 from the grammar is especially interesting.

It derives many phrases which ask for 
ight information, for example \i would like a

57



northwest kind washington d-c sunday kosher ninth
lufthansa type washington friday vegetarian eighth
midway types dallas-fort-worth board passengers third
eastern kinds oakland wednesdays people seventh

continental sort boston saturday now �fth
american today san-francisco tuesday hello fourth
delta tomorrow baltimore monday hi second
united stop in philadelphia thursday evening sixth
these arrive in pittsburgh wednesday morning reserve
those departing denver c-o afternoon arrange

weekday leaving atlanta e-a end buy
weekend breakfast dallas d-l beginning rent
please list dinner b-w-i u-a begin aircraft

list lunch chicago ending airplane

Table 3.2: Example acquired classes
Example word and phrase classes as acquired by the standard inference run.


ight", \can you give me all the 
ights", and \what 
ights are available" all derive

from this non-terminal.

Another way to look at the grammar is to simply enumerate the actual words and

word phrases which fall into the same class. This is only practical for small classes

because the number of units in each class can become very large even with a few

depths of recursion in the grammar. Table 3.2 shows some examples of words and

phrases which are derived from the same grammar.

For more objective evaluations, we can examine the test set coverage and the net

grammar size, as a function of the number of merges and the two parametersMc and

S. We are unfortunately limited in this because we have no way of knowing at what

point each inference run is overgeneralizing. It is nonetheless interesting to see how

these quantities progress.

We can also watch how the distortion, or divergence, for each merge varies. Ini-

tially we expect the merged units to be very close, and then to become further apart

over time.

Another parameter we can watch is N , the number of units in the grammar. How

N evolves with the merges re
ects to what extent the acquired grammars are classing

58



NT0 ) end j beginning j begin j ending

NT1 ) kind j type j types j kinds j sort

NT2 ) i'd j i would

NT3 ) washington d-c j washington j dallas-fort-worth j oakland j boston j san-francisco j baltimore

j philadelphia j pittsburgh j denver j atlanta j dallas j b-w-i j chicago

NT4 ) wanted j wish

NT5 ) NT21 is j what's j what is j what are

NT6 ) NT8 NT3

NT7 ) largest j smallest

NT8 ) NT3 to

NT9 ) kosher j vegetarian

NT10 ) i NT60 j NT2 like

NT11 ) give j tell

NT12 ) last j earliest j latest

NT13 ) now j hello j hi

NT14 ) california j colorado j georgia

NT15 ) q-w j q-x j y

NT16 ) nineteenth j thirtieth j twelfth

NT17 ) ninth j eighth j third j seventh j �fth j fourth j second j sixth

NT18 ) northwest j lufthansa j midway j eastern j continental j american j delta j united

NT19 ) reserve j arrange j buy j rent

NT20 ) sunday j friday j board j wednesdays j saturday j tuesday j monday j thursday j wednesday

NT21 ) what time j when j where j how NT22

NT22 ) long j much

NT23 ) can j could

NT24 ) please NT11 j NT11

NT25 ) show j NT23 you NT24 j NT24

NT26 ) these j those

NT27 ) from NT6 j between NT3 and NT3

NT28 ) stopping j with a stopover

NT29 ) NT5 the 
ights j what 
ights are available j NT5 NT33 j NT10 a 
ight j NT25 NT34 j NT10

NT50

NT30 ) passengers j people

NT31 ) cheapest j least expensive

NT32 ) NT44 
ight j NT12 
ight j NT44 fare

NT33 ) the NT32

Figure 3-6: Acquired grammar, part 1
Grammar acquired after 200 merges during the standard run (�gure 1 of 3).

59



NT34 ) NT100 the 
ights j NT100 all 
ights

NT35 ) weekday j weekend

NT36 ) breakfast j dinner j lunch

NT37 ) itinerary j costs j prices

NT38 ) connections j enroute

NT39 ) spend j visit

NT40 ) price j name j shortest

NT41 ) live j stay

NT42 ) scratch j sure

NT43 ) the NT51

NT44 ) NT31 one-way j NT31

NT45 ) t-w-a j u-s-air j NT18 airlines

NT46 ) depart j leave

NT47 ) arrivals j departures

NT48 ) aircraft j airplane

NT49 ) arrival j departure

NT50 ) to NT94

NT51 ) evening j morning j afternoon

NT52 ) fourteenth j thirteenth j twentieth j seventeenth j sixteenth j eleventh j tenth j �fteenth j

eighteenth j twenty NT17

NT53 ) NT28 in j through j via

NT54 ) thirteen j completed j hold

NT55 ) connect j originating

NT56 ) international j logan

NT57 ) one j nine j eight j �ve j six j seven j four j three j two

NT58 ) makes j include j under

NT59 ) zero j �fty j forty j oh

NT60 ) need j want

NT61 ) b j c

NT62 ) NT18 
ight j NT45 
ight

NT63 ) NT1 of NT48 is j NT48 is

NT64 ) its j reservations

NT65 ) select j standard

Figure 3-7: Acquired grammar, part 2
Grammar acquired after 200 merges of the standard inference run (�gure 2 of 3).

60



NT66 ) atlanta's j dulles

NT67 ) describe j explain

NT68 ) okay j yes

NT69 ) stopovers j thanks

NT70 ) c-o j e-a j d-l j u-a

NT71 ) a-m j p-m

NT72 ) ninety j sixty j eighty j seventy

NT73 ) NT57 NT57 j NT57 NT59 j NT57 NT72

NT74 ) this 
ight j NT76 NT57

NT75 ) approximately j thousand

NT76 ) NT62 NT73 j 
ight NT73

NT77 ) after j before

NT78 ) NT77 NT57 NT71 j NT77 NT88

NT79 ) stop in j arrive in

NT80 ) start j starting

NT81 ) today j tomorrow

NT82 ) transport j transportation

NT83 ) companies j rentals

NT84 ) a-t-l j midnight

NT85 ) eleven j ten

NT86 ) please list j list

NT87 ) NT86 all j which of NT26

NT88 ) noon j NT85 NT71

NT89 ) delta's j them

NT90 ) may j april j february j december j september j august j november j july j june j march

NT91 ) NT90 NT52 j NT90 NT17

NT92 ) airfares j choice

NT93 ) departing j leaving

NT94 ) 
y j go

NT95 ) equipment j why

NT96 ) departs j leaves

NT97 ) nonstop j transcontinental

NT98 ) display j in
ight

NT99 ) section j tickets

NT100 ) me all j me

NT101 ) NT27 on NT91 j NT27

NT102 ) rate j route

Figure 3-8: Acquired grammar, part 3
Grammar acquired after 200 merges of the standard inference run (�gure 3 of 3).

61



versus building structure. This will be very relevant in the next chapter.

3.14.1 Test Set Coverage

As the inference process generalizes, we expect the coverage on the test set to increase,

because more sentences are being added to each language. However, the inference

process also over-generalizes at the same time, thus causing over-generation of the

acquired grammar. We would like to select a grammar that achieves reasonable

coverage of the test set while minimizing over-generation.

Figure 3-9 shows the evolution of test set coverage for the �rst 600 merges of the

inference process with Mc = 5 and S = 100. The coverage starts at 10% because

10% of the test sentences appear verbatim in the training set. For the �rst 50 merges

the coverage seems to rise very quickly, and then rises at a more or less steady rate

for the rest of the merges. This pattern is typical for all coverage traces as Mc and

S vary. In Figure 3-9 the system eventually reaches about 35% coverage after 600

merges. If we consider merges beyond 600, this coverage does not improve too much.

Furthermore, we have strong reason to believe (from the next chapter) that already

by 600 merges the acquired grammar is over-generalizing substantially.

While this result is somewhat disappointing from the perspective of learning the

precise target language, coverage is more an academic issue because very good prob-

abilistic models can be developed based on these grammars. In the next chapter we

will explore such models.

The test set coverage depends on both parameters Mc and S of the inference

process. Any test sentence which contains a word whose count is below Mc does not

have much of a chance of being included in the acquired language because this word

will never be merged during the inference process. Such a sentence can only parse

if there is a training sentence which also contains that word and which otherwise

reduces to the same form as the test sentence. Thus, as a function ofMc, the number

of test sentences which do not contain any word whose count was belowMc is roughly

an upper bound on the achievable test set coverage. Figure 3-10 shows this upper

bound on test set coverage as a function of Mc. In this respect, we wish to makeMc

62



0 100 200 300 400 500 600
5

10

15

20

25

30

35

40

Number of Merges

P
er

ce
nt

 T
es

t S
et

 C
ov

er
ed

Figure 3-9: Test set coverage
Evolution of test set coverage for the standard inference run. Test set coverage in-
creases substantially, which means the grammars are indeed generalizing correctly
beyond only the training sentences.

as low as possible to have hope of covering a substantial portion of the test set.

On the 
ip side, decreasing Mc means that the estimates of the distributional

probabilities for units is less reliable. We would expect this to have a detrimental

e�ect on how well the system learns the language, because units are being merged

based on unreliable estimates of their similarity. Decreasing Mc also causes Na to

increase, thus there are more merges to consider, and plots like Figure 3-9 are not

directly comparable.

The test set coverage will also depend on S. If S = 0, the system is only able

to learn word classes. Figure 3-11 shows the evolution of test set coverage with the

number of merges for Mc = 5 and S = 0. Since language does seem to have some

natural word classes, this will increase coverage to a point. But once the natural

word classes have been learned, future merges can only over-generalize tremendously.

This causes the coverage to increase tremendously as well, but at the expense of

over-generation. That is what generates the sharp knee in Figure 3-11.

63



0 20 40 60 80 100
30

40

50

60

70

80

90

100

Minimum Unit Count

P
er

ce
nt

ag
e 

T
es

t S
et

Figure 3-10: Test set coverage limit
Percentage of test sentences not containing a word whose count is below the count
cuto� shown on the x axis. This quantity is of interest because it is an upper bound
on achievable test coverage when we choose Mc.

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

Number of Merges

T
es

t S
et

 C
ov

er
ag

e

Figure 3-11: Word-class-only test set coverage
Evolution of the test set coverage for word-class-only inference with a count threshold
of 5 (S = 0, Mc = 5). The coverage increases very sharply towards the end as words
are nearly collapsed to one class.

64



0 50 100 150 200 250 300 350 400
5

10

15

20

25

30

35

Number of Merges

T
es

t S
et

 C
ov

er
ag

e

S = 0
S = 100

Figure 3-12: Comparison of test set coverage
This �gure shows the evolution of test set coverage during the �rst 400 merges for two
choices of the phrase set size: S = 0 (word-class-only) and S = 100. With S = 100
the inference process is better able to model the language structure, hence coverage
is higher.

As S increases, the inference system is better able to model the language because

it is able to incorporate phrases that compose the natural structure of the language.

Figure 3-12 compares the test set coverage for S = 0 and S = 100 for the �rst

400 merges. During this time, the inference with S = 100 achieves higher coverage

because language really does have phrase structure. But the word class only inference

will eventually catch up because it over-generalizes substantially.

Figure 3-13 shows how the choice of S impacts the eventual coverage of the system.

It is interesting that as S increases the asymptotic test set coverage decreases. All

of these coverage plots tend to taper out to an asymptote, which is very interesting.

Since the language size increases with each merge, this must mean that the merges

are mainly causing the grammars to over-generate beyond that point.

65



400 500 600 700 800 900 1000
25

30

35

40

45

50

55

60

65

Number of Merges

T
es

t S
et

 C
ov

er
ag

e

150

75

50

25

Figure 3-13: Test set coverage vs. phrase set size
The e�ect of phrase set size S on eventual test set coverage (for merges 400 to 1000).
As the phrase set size increases, the asymptotic test set coverage decreases (minimum
count threshold Mc = 5).

3.14.2 Grammar Size

The underlying motivation of the inference process is Occam's Razor, or \the simplest

explanation is best". This is manifested in our inference process by the decrease in

net size of the grammar through the iterations. While acquired rules are added to

the grammar, the reduced sentence rules are being reduced to the same form, thus

allowing us to discard the duplicate rules. Empirically, the second e�ect far outweighs

the �rst, and the grammars decrease in size substantially. For these purposes, we

measure the grammar size simply as the sum of the number of elements on the right

sides of all rules in the grammar.

It is interesting to note that reduction of grammar size is not the explicit goal of

the inference system. The goal is to choose similar units and merge them together.

This has the side e�ect of substantially reducing the grammar size, which, by Occam's

Razor, is an indication that our inference system is �nding a good grammar to model

the target language.

66



0 100 200 300 400 500 600
3

4

5

6

7

8

9
x 10

4

Number of Merges

N
et

 G
ra

m
m

ar
 S

iz
e

Figure 3-14: Grammar size
The evolution of the grammar size for the standard inference run. The grammar size
decreases substantially in keeping with Occam's Razor, \the simplest explanation is
best".

Figure 3-14 shows the evolution of the grammar size with the number of merges,

for Mc = 5 and S = 100. Indeed, the grammar becomes very much smaller through

the merges. But, at some point, the grammar is being oversimpli�ed, which is causing

it to over-generate. Again, we do not know where that point is.

All other plots of grammar size have roughly the same shape. Just as was the

case with test set coverage, as Mc increases, any training sentence containing a word

whose count is below Mc will most likely never be reduced to the same form as

another sentence. Thus, the higher Mc, the higher the asymptotic limit on how small

the grammar may become.

3.14.3 Number of Grammar Units

The evolution of the number of grammar units N re
ects how much classing versus

structure building the grammar is doing. If there is little structure building and lots

of class building then N will decrease substantially. If the grammar has a lot of

67



0 200 400 600 800 1000 1200 1400
400

450

500

550

600

650

700

750

800

850

Number of Merges

N
um

be
r 

of
 G

ra
m

m
ar

 U
ni

ts

1

5

30

Figure 3-15: Number of grammar units vs minimum count threshold Mc

E�ect of the minimumcount thresholdMc on the evolution of the number of grammar
units during the standard inference run. As Mc decreases more word classes are
created, so the number of grammar units decreases substantially.

structure and relatively few classes, then N will increase. It seems that for all choices

of S and Mc, the evolution of N tends to �rst decrease substantially as the grammar

acquires word classes, then begins to level o� or increase as the system acquires more

phrases. This would seem to indicate that the language is actually composed in this

structure.

Figure 3-15 shows how N varies as a function ofMc. By reducingMc we are allow-

ing the merging component to choose units which are relatively infrequent. Because

of the bias of the phrase set to phrases which occurred frequently, these additional

infrequent words are usually merged into word classes. Thus, decreasing Mc allows

N to decrease more during inference.

Di�erent choices for the parameter S also a�ect the evolution of N . This is shown

in Figure 3-16. As S increases, N tends to decrease less, which is an expected e�ect.

By o�ering the merging system more phrases to choose from, it chooses to merge

phrases more frequently, thus limiting the reduction in N .

68



0 100 200 300 400 500 600
500

550

600

650

700

750

800

850

Number of Merges

N
um

be
r 

of
 G

ra
m

m
ar

 U
ni

ts

50

0

150

100

Figure 3-16: Number of grammar units vs. phrase set size S
E�ect of the phrase set size S on the evolution of the number of grammar units during
the standard inference run. As S increases more of the merges involve phrases thus
limiting how much reduction occurs in the number of grammar units.

3.14.4 Distortion

The distortion between merges tends to increase over time because at each point we

greedily select the merge with the least distortion. This increase is not monotonic,

though, because a merge can spontaneously create a new class which is closer to other

classes in term of divergence. Figure 3-17 shows the divergence values for each merge

for the inference run. This value has been smoothed to make the overall pattern more

visible. It is interesting that the distortion increases quite smoothly; there is no sharp

point where the divergence becomes substantially larger.

3.15 Summary

In this chapter we have described the �rst step towards acquiring a language model.

This step is an iterative grammar inference process which creates a sequence of gram-

mars from a set of example training sentences. At each iteration, the current grammar

69



0 100 200 300 400 500
0.5

1

1.5

2

2.5

3

3.5

4

Number of Merges

S
m

oo
th

ed
 D

is
to

rt
io

n

Figure 3-17: Merge distortion
Evolution of divergence distortion during the standard inference run. It gradually
increases with the number of iterations. The plot is smoothed with a window size 30.

is transformed by merging two similar units together, thus generalizing from the pre-

vious grammar. Each resulting grammar therefore accepts not only all of the training

sentences but also sentences beyond the training set. This allows the coverage of the

independent test set to increase with each merge. It begins with a grammar which

directly encodes the training set and then proceeds to iteratively generalize the gram-

mar by merging similar units. This generalization also simpli�es the grammars, thus

reducing their size with each iteration. This is in keeping with Occam's Razor, or

\the simplest explanation is best", which is the underlying philosophy of all inference

algorithms.

At some point the grammars in the output sequence will become overly general and

will very much over-generate and accept sentences beyond the actual target language.

While we have no means of measuring the extent of this error, the next chapter will

construct a probabilistic model from these grammars which will allow us to indirectly

measure this extent of over-generation.

There are two important parameters which a�ect the outcome of this inference

70



process. The �rst parameter is the minimum unit count Mc, which is a lower bound

on the frequency of units which can be considered for merging. The second parameter

is the phrase set size S, which is how many phrases at each iteration the merging

component is allowed to choose from. The computational complexity of this algorithm

is sensitive to both of these parameters.

Our interpretation of the results of the inference process is necessarily hampered

by the fact that we have no idea which grammar is \best" is in the output grammar

sequence. This sequence begins with grammars which are very speci�c because they

predict little more than the training set, and ends with very general grammars which

predict nearly all sentences. Somewhere in the middle is a \best" grammar in some

sense. The next chapter will allow us to make this determination.

The results of this algorithm are quite impressive. The grammars and phrase

classes which it acquires look very reasonable and intuitive. The size of the grammar

decreases substantially through the inference process even though that is not directly

the criterion for selecting merges. According to Occam's Razor, this implies that

the inference process is indeed constructing a good grammar for the training set. At

the same time, the test set coverage increases | this implies that the grammars are

generalizing in good directions. While this test set coverage seems somewhat low,

the next chapter will derive useful probabilistic models from these grammars which

achieve full coverage.

Another curious result which was examined was the evolution of the number of

grammar units N with each iteration. The number of these units re
ects the relative

proportion of the two functions of the grammar: classing and structure building.

For all of the inference runs, we observed N decrease initially as the system favored

acquiring word classes, and then level o� as more phrases were chosen for merging.

This indicates that the language really follows this sort of structure: words initially

distribute into word classes, and then these word classes compose phrases.

We saw how the minimum unit count Mc a�ects the test set coverage and the

evolution of N . With a small Mc the grammar favors even more strongly placing

words into classes, thus the evolution of N drops quite a bit further before levelling

71



o�. S also a�ects both the test set coverage and the evolution of N in reasonable

ways.

72



Chapter 4

Phrase Class n-gram

4.1 Introduction

The output of the inference process is a stream of acquired grammars, each general-

izing a little over the previous one, representing likely structures and classes of the

target language. Each grammar G in this stream denotes a language in the formal

sense { i.e., a sentence is either accepted or rejected. From this grammar, and from

the original training set, we will construct a probabilistic model which attempts to

approximate the true underlying distribution of the language source. We can then ob-

jectively measure the overall performance of this system (inference plus probabilities)

by measuring the perplexity and complexity of the resulting language models. From

the stream of grammars we can produce a stream of probabilistic language models.

There have been many approaches developed to utilize a given CFG to produce a

probabilistic model. For example, TINA, PLR, and SCFG, which were described in

Section 2.11, achieve exactly that goal. Producing a grammar is only the beginning in

building a language model { how probabilities are then assigned is also a di�cult issue

which is far from solved at present. Because of the unique nature of the grammars

acquired by the inference algorithm, and because of the limitations of other structural

approaches, we developed a new formalism called the Phrase Class n-gram model, or

pcng. Using standard language model evaluation techniques we can then evaluate

the quality of the pcng models derived from the grammar stream produced by the

73



inference process. The performance of the pcngmodels will then allow us to evaluate

more objectively the performance of the inference process, and in particular, allow

us to choose the \best" grammar in the sequence as that grammar which minimizes

perplexity.

The pcng model is entirely independent from the inference process, and is a

valid model in its own right. It is therefore entirely possible and reasonable to use a

hand-written grammar instead of the inferred grammars as input to the pcng model.

4.2 Overview

Grammars acquired by the inference system have a unique structure because of the

nature of the process by which they were created. The grammar was acquired in a

bottom up manner, where words and phrases were �rst grouped into classes, then

used to create higher classes, etc. As this bottom up acquisition is happening, the

original training sentences are reduced and collapsed, but remain as the top level rules

in the grammar. It is only the acquired rules which re
ect the learning being done

and which assign useful structure and classes to the language. The sentence rules

remain as 
at top-level rules only because they are legacies of the original training

sentences. Furthermore, the sentence rules are extremely large and represent the bulk

of the grammar size.

Because of these negative attributes of the sentence rules, when creating a phrase

class n-gram model we will temporarily set aside the sentence rules from the gram-

mar and retain only the acquired rules in the grammar. Just like the SCFG model,

every rule in this grammar will be assigned a probability representing the likelihood

that that rule (instead of any other applicable rules) is used when it applies. These

probabilities will then help to compute the probability of a test sentence.

Without the sentence rules the grammar cannot ever reduce a test sentence to

the single start symbol S. Therefore, the pcng model uses the sentence rules which

were set aside from the input grammar to train an n-gram model directly on their

reduced forms. The n-gram model serves to generalize beyond the actual training

74



sentences such that any sequence of units will receive some probability. While the

input grammar may have had very limited coverage on an independent test set, the

generalization accomplished by the n-gram model allows full coverage of the pcng

model on the test set. This n-gram probability will also contribute to the �nal

probability of the test sentence.

To display the results of an inference process we can plot a perplexity trace for

the run which shows the perplexity of pcng model derived from each grammar in

the inference output. These plots show the number of merges completed on the x

axis, and the perplexity of the pcng model derived from each grammar in the merge

sequence on the y axis. All perplexities are computed with respect to the independent

test set described in Section 1.2.

4.3 Details

The pcng model makes two passes to determine the probability of a test sentenceW .

During the �rst pass the test sentence is reduced as much as possible using only the

acquired rules of the input grammar G. This reduction process uses the deterministic

bottom-up parsing strategy described in Section 3.13.3. During the reduction we

compute the product of the probabilities of the rules used to reduce the sentence,

just as in the SCFG model. This component of the probability is referred to as the

spatial probability P̂s(W ).

The second pass uses an n-gram model to assign a temporal probability P̂t(U) to

the reduced sequence of units U , where n is an input parameter to the pcng model.

This n-gram model is actually derived from the sentence rules in the grammar, and is

therefore de�ned over all grammar unit sequences. The probability of the test sentence

is then the product P̂s(W )P̂t(U). The acquired grammar rules are the mechanism

for translating the sentence from the domain of word sequences to the domain of

grammar unit sequences.

For example, consider the sentence \show me the least expensive 
ight from boston

to denver" and the pcng model containing the grammar, with associated rule prob-

75



NT0 ) boston [.25]
NT0 ) denver [.1]
NT1 ) least expensive [1.0]
NT2 ) NT1 
ight, [.5]
NT3 ) show me, [.5]

Figure 4-1: Example rules and probabilities.

abilities, shown in Figure 4-1. This sentence will be reduced to the sequence of units

\NT3 the NT2 from NT0 to NT0". The probabilities of the rules used for this re-

duction are multiplied together to compute the spatial probability: P̂s(\show me the

least expensive 
ight from boston to denver") = :25 � :1 � 1:0 � :5 � :5 = :00625.

Using this reduced sequence we then compute the n-gram temporal probability, and

return as the probability of the sentence P̂s(W )P̂t(U).

Because of the n-gram phase of the pcngmodel, the pcngmodel is a full coverage

model, meaning it will assign a non-zero probability to every possible sentence. Thus,

although this model is structure based, it will not have the robustness problems

confronted by other structural language models. At the same time, the pcng model

achieves a substantial reduction in complexity because it is able to group words and

phrases into equivalence classes. The pcng model can be seen as a step from simple

word n-gram models towards fully structural models. How large this step is depends

on how completely the grammar tends to reduce sentences.

This model is referred to as a phrase class model because in the input grammar,

the non-terminals implicitly represent an equivalence class of words and word phrases.

This class contains all words and word phrases which can be derived from the non-

terminal, along with the probability associated with each such phrase as computed

during the derivation. Thus sum of the probability of each word and word phrase

in each class will be 1. In assigning probability to a test sentence, the pcng model

makes the assumption that the occurrence of a particular word or word phrase is

independent of the context in which it occurs given the class representing it. This

is precisely like the word class n-gram model, extended to allow word phrases to be

included in classes as well.

76



4.3.1 Training

The pcngmodel needs to be trained to estimate the two di�erent set of parameters |

rule probabilities and n-gram probabilities. This training process proceeds as follows.

Each sentence in the training set is reduced as far as possible using the input grammar

G. During this reduction, each rule in the grammar records how many times it was

used for the entire training set. These counts are represented as C(A ) �) where

A) � is a rule in the grammar.

Once this is �nished, the counts are used to estimate a probability for each rule. If

there are any rules whose count is below a minimum count threshold Cmin, the count

for that rule is raised to Cmin, where Cmin is typically 1.0 for our experiments. This

guarantees that each rule has some non-zero probability. The probability of each rule

is estimated as follows:

P̂ (A) �) =
C(A) �)X

(A)
)2G

C(A) 
)

This guarantees that probabilities of all rules sharing the same left hand side sum to

1,
X
A)�

P (A) �) = 1

which is necessary for the pcng model to be a valid model. It is entirely possible for

a rule to have probability 1, which means that no other rules in the grammar have A

as their left hand side.

The now reduced training set is then used to train a simple n-gram model, as

described in Section 2.9. This reduced training set is actually very similar to the

sentence rules in the input grammar G. In particular, the sentence rules from the

grammar are exactly equal to the reduced training set with the duplicate reduced

forms removed. Because the n-gram is sensitive to word frequencies, it is necessary

to retain the information as to which sentence rules were duplicated how many times.

Thus, the n-gram model is e�ectively trained on the sentence rules from the input

grammar. This can be seen as a means of generalizing from the sentence rules to

77



achieve full coverage of all sequences of units. This step was necessary because the

actual test-set coverage of these grammars was quite poor, as described in the previous

chapter.

Because this n-gram model is computed over sequences of grammar units, its

complexity is directly correlated with the number N of grammar units. N , in turn,

varies with the kinds of units merged in each iteration of the inference process, as

described in Section 3.11. Thus, we achieve a reduction in the complexity of the pcng

n-gram model over the word n-gram model if the acquired grammar performs more

classing than structure building.

The additional parameters of the pcng model are the input grammar and the rule

probabilities. The number of parameters in the n-gram model tends to far outnumber

the number of rules in the grammar. Thus, reduction in the n-gram complexity

typically outweighs the addition of rule probabilities. Figure 4-2 shows how the

model complexity of the bigram and trigram pcng models evolves during inference.

In this plot, the y axis plots the relative model complexity, which is what percentage

of a normal word n-gram's number of parameters are required for the pcng model.

This plot starts at 100% for both the bigram and trigram pcng because after zero

merges the models are just the word bigram and trigram models. It then decreases

substantially for both, and more so for the trigram. The bigram complexity then

begins to rise again because the number of rules in the grammar is increasing with

each iteration.

4.3.2 Validity

Before trusting the perplexity of the pcng model, we must �rst prove that the model

is a valid one { i.e., that the net probability mass that it allocates to all possible

sentences is at most 1:
X

Word sequences W

P̂ (W ) � 1 (4:1)

We can show that this is the case by starting with the sum involving all unit

sequences. The n-gram model guarantees that the total probability mass allotted to

78



0 100 200 300 400 500 600
70

75

80

85

90

95

100

105

Number of Merges

R
el

at
iv

e 
M

od
el

 C
om

pl
ex

ity

Bigram
Trigram

Figure 4-2: Model complexity
Relative number of parameters in the bigram and trigram pcng models during the
standard inference run, shown as a percentage normalized to the word n-gram model.
Substantial reduction in complexity is achieved.

all sequences of units is exactly 1:

X

Unit sequences U
P̂t(U) = 1 (4:2)

We can de�ne the set D(U) to be all word sequences which are derivable from a unit

sequence U . This set contains all combinations of possible expansions of the non-

terminals in U . Let P̂0(U;W ) be the spatial probability associated with deriving W

from U , where W 2 D(U). This quantity will be the product of the probabilities of

the rules used in deriving W from U . The sum of P̂0(U;W ) across all W 2 D(U) is

always 1:
X

W2D(U)

P̂0(U;W ) = 1 (4:3)

This can be proven by induction by showing that the sum of the probabilities of all

word phrases derivable from a particular non-terminal is always one, and relies on

the fact that rule probabilities for rules sharing the same left-hand-side non-terminal

79



must sum to 1.

We can then look at the product of these two sets of probabilities, which must

also be 1:
X
U

0
@P̂t(U)

X
WinD(U)

P̂0(U;w)

1
A = 1 (4:4)

Let R(W ) denote the unique reduced unit sequence as produced by the determin-

istic parser. Every word sequence W maps to exactly one unit sequence U = R(W ).

This implies that W 2 D(R(W )) because the reduction process which mapped W to

U is reversible. Also, U = R(W ) is a unit sequence and is will therefore be included

in the summation in Equation 4.4. Consider the summation we wish to bound:

X

Word sequences W
P̂s(W )P̂t(R(W )) (4:5)

Because every element W in that summation is in some unit sequence U = R(W ),

every term in the above summationmust also be included in the summation in Equa-

tion 4.4. The above summation includes some subset of the terms in the summation

in equation 4.4, which is bounded by 1. It follows:

X

Word sequences W
P̂ (W ) � 1 (4:6)

It may very well be the case that the sum in equation 4.4 includes additional

terms not included in equation 4.5. In this case the total probability mass will sum

to less than 1, at the expense of perplexity. There are two cases which allow this

to happen. The �rst case involves unit sequences which can never by realized by

reduction of any word sequence W , but are nonetheless included in the summation

in equation 4.4. This source of normalization error derives from the fact that the n-

gram model allocates probability to every possible sequence of units U , even though

some unit sequences cannot ever occur. For example, if the grammar has the rule

\NT ) show me", then the unit sequence \could you show me NT14" cannot occur,

yet the n-gram model allocates some probability to it and that probability mass is

80



lost. Fortunately, this value is quite small because the n-gram model will never see

\show me" in the reduced training sentences.

The second case is when there exists a word sequence W which is contained both

D(U1) and D(U2) for U1 6= U2. This means the grammar is ambiguous for the word

sequenceW because there are two unit sequences whichW can correspond to. While

the inference process discourages the acquisition of ambiguous grammars, there are

certain sequences of merges which can result in an ambiguous grammar. When this

happens, any probability mass associated with a parse di�erent from the parse chosen

by the deterministic parser is lost. This normalization problem is more serious since

the probability that is lost can be relatively substantial. This problem could easily be

corrected by extending the parser to be more general so that it �nds multiple parses

of a given sentence. While this solution solves this normalization problem, we feel

it is not necessary because this system does not acquire ambiguous grammars very

easily, and the computational simplicity of the parser is valuable.

These implications mean that the perplexity traces that we plot are actually upper

bounds of the true perplexity, which are the worst-case values for the perplexity.

4.3.3 Examples

It is helpful to understand what sorts of models the pcng formalism produces when

we consider di�erent extremes of grammar choices. If the input grammar G contains

no rules whatsoever, the resulting pcng model is just the word n-gram model. Thus,

when examining a perplexity trace for a particular inference run, the perplexity at

x = 0 (x is the number of merges) will always be the word n-gram perplexity. If, at

the other extreme, the grammar contains well written rules which somehow manage

to parse every sentence they come across, then the model reduces to precisely a SCFG

model.

Another extreme grammar is one which performs only classing operations. This

means words are grouped into equivalence classes, and no rule has a phrase on its

right hand side. In this case, the pcng model based on this grammar will be identical

to the word class n-gram model [11], as no sequence of two or more words will ever be

81



0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

Number of Merges

P
er

pl
ex

ity

Bigram
Trigram

Figure 4-3: Word-class-only bigram and trigram perplexity trace
Evolution of the bigram and trigram perplexity for the word-class-only standard in-
ference run. The sharp bend around 300 merges indicates that the language really
does have certain word classes, but forcing these fundamental word classes to merge
hurts the predictive power of the model.

reduced to a single non-terminal. This kind of grammar is produced by the inference

process when the phrase set size S is set to 0 during inference. Figure 4-3 shows the

full perplexity trace for this inference run. The �gure shows the perplexity of both

the bigram and trigram models, with Mc = 5. It is interesting to see that this curve

has such a sharp bend in it. We take this as evidence that the target language really

does have substantial word classes. As we collapse words into classes the predictive

power of the model does not su�er too much, but as we continue to collapse words

beyond a certain critical point, the perplexity su�ers substantially.

The other extreme, in which the grammar performs no classing operations what-

soever, is also an interesting case. The grammar then contains only rules which build

phrases, and every rule has a unique non-terminal as its left hand side. The right

hand side of each rule will contain a phrase of words and non-terminals. This means

the pcng model will assign probability 1 to every rule, so the probability of any test

sentence in this model is entirely determined from the temporal n-gram probability.

82



But the grammar can be reduced, without changing at all the resulting probability

distribution of the pcng model, such that every rule in the grammar has only words

on the right hand side. Each rule in the grammar then maps a unique non-terminal

to a unique word-only phrase. The pcng model which results from this grammar is

equivalent to the word n-gram model if the lexicon were extended to include \super

words" representing the phrase for each non-terminal. For example, the grammar

may consist of the rules:

NT0 ) show me

NT1 ) what is

NT2 ) how many

We could equivalently add three new words to the lexicon, \show me", \what is", and

\how many", and train a normal word n-gram, to achieve precisely the same proba-

bilistic model. While it is not actually possible for the inference process to acquire a

grammar of this form (since the merge operation always puts two units into a class),

this has interesting implications for grammars which are written by hand.

4.3.4 Properties

When there are phrase rules in the grammar, the e�ect with the pcng model is

essentially to allow a given n-gram model to use more than just the previous n � 1

words of context. For example, if the grammar has the rule \NT ) show me",

then in the context of \show me", the bigram language model would ordinarily only

see the word \me" as the context. Because of the above rule, however, the bigram

component of the pcng model will know that \show me" was the context. Likewise,

in assigning the probability to a given unit occurring in a given context, the pcng

model predicts the probability of \show me" as a single unit, whereas the ordinary

word n-gram model would predict only the probability of \show".

Thus, when we have a grammar with quite a few phrasal rules, a bigram model

actually has access to quite a bit more context than just the previous word, which

allows it to predict probabilities much like the trigram model. Because the word

trigram perplexity is quite a bit lower than the word bigram perplexity, we expect

83



this to help the bigram perplexity substantially.

The unigram pcng model has some curious properties. The word unigram model

makes the assumption that a given word has no probabilistic dependence on its con-

text. This model is far from correct, as demonstrated by the substantially higher

perplexity the unigram model has over the bigram or trigram models. The unigram

model of a pcng model has the curious property that the classes have absolutely no

e�ect | i.e., the resulting temporal probability distribution is the same whether we

group units into classes or not. Thus, the unigram pcng model makes the assump-

tion that a sentence consists of a sequence of independently drawn phrases. Instead

of assuming the words are independent from one another, the unigram pcng model

breaks the sentence into a sequence of phrases which it then assumes are independent

of each other.

Figure 4-4 shows the trace of the unigram perplexity for the standard inference

run. It is very interesting to see that the unigram perplexity drops so substantially

from 150 to 40. This substantial reduction in perplexity means that the inference

process is actually breaking the language into phrasal fragments which really are

more independent from one another than the original words. This is more a curiosity

than a truly useful result because the bigram and trigram models have far lower

perplexities.

4.3.5 Hand-written Grammars

While the pcng model is motivated by the properties of the acquired grammars from

the inference process, it can accept other grammars (e.g., hand-written grammars) so

long as these grammars have some basic properties. The grammar must be a phrase

class grammar, meaning it is written in a bottom up manner and it does not allow

ambiguous parses. These requirements are not very strict and allow many present

day properties of language models to be incorporated.

84



0 100 200 300 400 500
40

60

80

100

120

140

160

Number of Merges

U
ni

gr
am

 P
er

pl
ex

ity

Figure 4-4: Unigram perplexity trace
Evolution of the unigram perplexity for the standard inference run. Substantial re-
duction is achieved because the pcng model decomposes a sentence into phrasal
fragments which are empirically more independent probabilistically than the words.

4.4 Evaluation

The inference process can be thought of as a \�rst pass" in acquiring a language

model. It produces a grammar which tries to derive all sentences in the language.

The \second pass" derives a pcng model from that acquired grammar. If the �rst

pass has poorly approximated the underlying language, then the second pass may be

able to \smooth out" to some extent the limitations of the �rst pass. By measuring

the quality of the overall language models, as a perplexity trace, we can then evaluate

the performance of the inference process.

Consider the two types of error made by the inference process: under-generation

and over-generation. Under-generation is something we can directly measure without

probability by evaluating the coverage of the independent test set. However, over-

generation we could not measure. By using the grammar to create a pcng model

we can now use perplexity to get at these two problems. Over-generation in the

grammar will cause over-generation probabilistically, meaning probability mass will

85



what is restriction a_p five nine five
what flights leave after three a_m
i want to go from boston to dallas early a_m
flights from boston to denver arrive before three a_m
what is the cheapest fare from denver to boston
which of these the daily flight from denver to baltimore
show me the round_trip fare for flights arriving after four
show me fares
all_right do you have a list of flights into baltimore
i would like delta flight seventeen ninety is there a flight leaves san_francisco

to san_francisco flights
seven p_m as trips
does delta airlines flight one oh three
please repeat that have a taxi from pittsburgh to denver on sunday
what flight do any limousines o+clock in oakland
what is the flights from boston to san_francisco one_way and san_francisco
book a flight from boston to san_francisco that stops pittsburgh before noon
beginning scenario c_m_u oh eight
show me the times eighteen
show me the afternoon
which flights with fares for united airlines flight two fifty three months

Table 4.1: Random pcng trigram sentences
Random sentences from the pcngmodel constructed after 200 merges of the standard
inference run.

be allocated to sentences which are not valid, at the expense of valid sentences. This

will therefore cause the perplexity to increase.

The under-generation problem is addressed by using the n-gram model in the

pcng model. While the grammar may under-generate and therefore fail to parse

certain valid sentences, the pcngmodel derived from that grammar blurs those sharp

lines to achieve full coverage, thus accepting all sentences. However, not assigning

enough probability to these sentences will result in an increased perplexity.

In this sense, mapping from a grammar to the pcng model can o�set to some

extent any over-generation and under-generation that the grammar su�ers from, by

smoothing the rigid lines drawn by the grammar. But the extent to which the pcng

model is able to do this is limited by the structure of the grammar. Over-generation of

the grammar will therefore lead to over-generation probabilistically, and the resulting

perplexity will increase. In this sense, we can use the pcng models to evaluate the

over-generation of the acquired inference grammars.

86



4.5 Results

We can now use the pcng model to objectively evaluate the quality of each grammar

in the stream of grammars created by the inference process. We do this by creating the

perplexity trace for the inference run, and determining that grammar which minimizes

perplexity. This \best" grammar is one which generalizes to a reasonable extent, but

not so much that the predictive power of the model su�ers. Once we have this

information, we can return to the inference process and reevaluate various quantities

at the point of the \best" grammar.

The �rst results we show are the random sentences generated by a minimum

perplexity pcng model, as shown in Table 4.1. These sentences were generated

from the trigram pcng model after 200 merges of the standard inference run, which

is the minimum perplexity grammar for this inference run. It is nice to see that

these sentences look more reasonable than the n-gram random sentences shown in

Chapter 2.

4.5.1 Perplexity Trace

We �rst computed the perplexity trace for the word-class-only case, i.e., with S = 0,

and Mc = 5. Figure 4-3 shows both the bigram and trigram perplexity trace for the

entire run. Figure 4-5 shows the trace for the �rst 300 merges of the bigram pcng,

and Figure 4-6 shows the same trace for the trigram model. It is very nice to see that

the perplexity initially decreases for both models. For the bigram, the decrease was

from 20.6 for the word bigram model to about 20.1 after 150 merges, a 2% decrease

in perplexity. The trigram model starts at 15.9 as the word perplexity, and reaches

a minimum of 15.3 after 150 merges, which represents a 3.8% decrease in perplexity.

Both of these results are sizable.

The perplexity starts to increase because the inference process is merging classes

together that are more and more dissimilar, thus forcing the model to over-generate.

In all of these perplexity traces, the perplexity tends to drop at �rst, then reach a

minimum point, then rise again. The reason for this is that at �rst the inference

87



0 50 100 150 200 250 300
20

20.2

20.4

20.6

20.8

21

21.2

Number of Merges

B
ig

ra
m

 P
er

pl
ex

ity

Figure 4-5: Word-class-only bigram perplexity trace
Bigram pcng perplexity for the word-class-only standard inference run. A slight
reduction is achieved over the word bigram model.

process is selecting units which are very appropriate for merging. When the units are

merged their counts are shared according to the pcng formalism. Their underlying

distributions must actually be quite similar and sharing their counts allows more

robust estimates of their distributions. But as the inference process proceeds, it is

merging more and more dissimilar classes, which hurts the predictive power of the

model; thus the perplexity eventually increases.

When we allow the inference system to consider phrases, the performance is better.

Figure 4-7 shows the bigram perplexity trace for an inference run with Mc = 5 and

S = 100. In the bigram case, the perplexity reduction is far more substantial than in

the word class case, from 20.6 to 16.8 after about 350 merges { an 18% reduction in

perplexity. The trigram perplexity drops from 15.9 to 14.9 after about 180 merges, a

6% reduction in perplexity.

There are a few curious properties to observe about these two graphs. First of

all, the net drop in perplexity for the bigram model (3.6) is much more than that of

the trigram (1.0). This is due to the fact that the bigram really appreciates having

88



0 50 100 150 200 250 300
15.3

15.4

15.5

15.6

15.7

15.8

15.9

16

16.1

16.2

Number of Merges

T
rig

ra
m

 P
er

pl
ex

ity

Figure 4-6: Word-class-only trigram perplexity trace
Trigram pcng perplexity for the word-class-only standard inference run. A slight
reduction is achieved over the word trigram model.

0 100 200 300 400 500 600
16.5

17

17.5

18

18.5

19

19.5

20

20.5

21

Number of Merges

B
ig

ra
m

 P
er

pl
ex

ity

Figure 4-7: Standard run bigram perplexity trace
Substantial reduction is achieved because the phrases which are merged allow the
bigram pcng model to be conditioned on longer distance constraint.

89



0 50 100 150 200 250 300 350 400 450
14.8

15

15.2

15.4

15.6

15.8

16

Number of Merges

T
rig

ra
m

 P
er

pl
ex

ity

Figure 4-8: Standard run trigram perplexity trace
Appreciable reduction is achieved primarily because of the grammar collapsing many
units into classes which allows more robust estimates of the trigram parameters.

phrasal units far more than the trigram model does. Also, because the perplexity

is lower bounded by the true entropy of the language, the bigram model clearly has

a high potential for improvement (the trigram model is evidence of this). When a

phrasal unit occurs in a context, it provides the model with access to longer distance

information than it would normally have access to, information which adds substantial

constraint. This can be seen by comparing the word-class-only bigram trace with the

trace in Figure 4-7. In the word-class-only case, the bigram perplexity only dropped

0.4, whereas when phrases are involved it drops by 3.6.

The trigram model does not bene�t quite as much in involving phrases in addition

to words. In the word-class-only case, the trigram perplexity dropped by 0.6, whereas

in the phrase class case it dropped by 1.0, which is quite a bit better but not as much

better as in the bigram case.

Second, the minimum perplexity of the trigram model occurs quite a bit sooner

(after 180 merges) than for the bigram model (after 350 merges), and its minimum is

quite a bit sharper than that of the bigram. The trigram perplexity also rises much

90



faster, after reaching the minimum, than the bigram perplexity. Thus, depending on

which model we wanted to use, we would stop the inference process at a di�erent

point.

As we change the inference parameters,Mc and S, the resulting perplexity traces

look much the same | only the number of merges it takes to reach the minimum

changes, and the value of the lowest perplexity changes. To get an idea of how large

the phrase set size should be, we computed the perplexity traces for various di�erent

phrase set sizes with Mc �xed at 5, and found the minimum perplexity achieved in

each of these traces for the bigram model and for the trigram model. Figure 4-9

shows the minimum bigram perplexity achieved as we vary the phrase set size, and

Figure 4-10 shows the same plot for the trigram model.

It is clear from these plots that the bigram model very much bene�ts from having

more phrases to choose from, but bottoms out at a phrase set size of about 100. The

trigram model is less a�ected by the number of phrases each merge has to choose

from. Somewhere between 60 and 100 phrases is the best size for the trigram model.

We can likewise see how the minimum achievable perplexity varies with Mc, the

minimum count threshold. We tested various values of Mc from 1 to 50, keeping

the phrase set size S �xed at 100. Figure 4-11 shows the resulting minimum bigram

perplexity when Mc is varied, and Figure 4-12 shows the minimum trigram perplex-

ity. Both exhibit exactly the same pattern that decreasing Mc can only reduce the

perplexity further. We did no expect to see perplexity continue to reduceMc became

very small because we thought that allowing the inference system to consider words

whose distributional probability vectors were not very robust would hurt the predic-

tive power of the eventual pcng model. It was surprising to see that instead the

perplexity was very near the lowest for Mc = 1.

As we reduce the Mc parameter the inference algorithm must do more work to

reach the minimum perplexity | it must iterate for a larger number of merges.

Figure 4-14 shows the correlation between how long the inference algorithm must

run to reach the minimum value and the setting of Mc, for both the bigram and

trigram pcng models. AsMc decreases, the number of merges necessary to reach the

91



0 20 40 60 80 100 120 140 160
16.5

17

17.5

18

18.5

19

19.5

20

20.5

Phrase Set Size

M
in

im
um

 B
ig

ra
m

 P
er

pl
ex

iy

Figure 4-9: Minimum bigram perplexity vs. phrase set size S
Minimum bigram pcng perplexity as the phrase set size S is varied, with minimum
count threshold Mc = 5. Increasing S allows the bigram pcng model to be condi-
tioned on longer distance constraint thus consistently reducing perplexity.

0 20 40 60 80 100 120 140 160
14.85

14.9

14.95

15

15.05

15.1

15.15

15.2

15.25

15.3

15.35

Phrase Set Size

M
in

im
um

 T
rig

ra
m

 P
er

pl
ex

iy

Figure 4-10: Minimum trigram perplexity vs. phrase set size S
Minimum trigram pcng perplexity as the phrase set size S is varied, with minimum
count threshold Mc = 5. The trigram pcng model does not make much use of the
phrases, thus increasing S beyond 50 does not help the minimum perplexity.

92



0 10 20 30 40 50
16.6

16.7

16.8

16.9

17

17.1

17.2

17.3

17.4

Minimum Count Threshold

M
in

im
um

 B
ig

ra
m

 P
er

pl
ex

ity

Figure 4-11: Minimum bigram perplexity vs. minimum count threshold Mc

Minimum bigram pcng perplexity as the minimum count threshold Mc is varied.
Decreasing the minimum count threshold during inference only improves the perfor-
mance of the bigram pcng model. Phrase set size S is �xed at 100.

0 10 20 30 40 50
14.8

14.9

15

15.1

15.2

15.3

15.4

Minimum Count Threshold

M
in

im
um

 T
rig

ra
m

 P
er

pl
ex

ity

Figure 4-12: Minimum trigram perplexity vs. minimum count threshold Mc

Minimum trigram pcng perplexity as the minimum count threshold Mc is varied.
Decreasing the minimum count threshold during inference tends to improve the per-
formance of the trigram pcng model. Phrase set size S is �xed at 100.

93



minimum perplexity increases, especially as Mc becomes very low.

Figure 4-13 shows the correlation between the size of the phrase set and how

long the inference algorithm (run with Mc = 5) must run to achieve the minimum

perplexity for that perplexity trace. Allowing the inference process to choose from

more phrases at each iteration increases the number of iterations necessary to reach

the minimum perplexity.

4.5.2 Test Set Coverage

Because the pcng model yields full coverage regardless of the coverage of the input

grammar, the coverage of the grammar in the formal sense is not directly relevant

to the pcng model. In the previous chapter we were disappointed to see that the

inference algorithm achieved such a low coverage on the test set. We now know,

looking at the perplexity traces, that that coverage was achieved at a substantial cost

of over-generation. Now, armed with minimum perplexity as a metric to choose the

\best" grammar from the stream of grammars, we can return to the coverage issue

and examine the test set coverage for the best grammar. Figure 4-15 shows the test

set coverage of the minimum perplexity trigram grammars as Mc is varied and S is

�xed at 100. The coverage is extremely low, around 23%, at the minimum perplexity

points, which is surprising. There is a general trend for this coverage to decrease as

Mc is increased, which is expected because increasing Mc excludes many words from

the generalization process.

Figure 4-16 shows the same plot as we vary the phrase set size S, keepingMc at 5.

Again, the coverage is disappointing. There is a trend for this coverage to increase as

the phrase set size is increased. This is an expected pattern because if the inference

algorithm can choose from more phrases, it can better model the language.

4.6 Summary

In this chapter we described the pcng model, which is a novel probabilistic language

model well suited to the grammars acquired by the inference process. This model

94



0 20 40 60 80 100 120 140 160
150

200

250

300

350

400

450

500

Phrase Set Size

N
um

be
r 

of
 M

er
ge

s

Trigram

Bigram

Figure 4-13: Minimum merge point vs. phrase set size S
Number of merges needed to reach the minimumperplexity of the bigram and trigram
pcng models as the phrase set size S is varied. The bigram model consistently
requires more computation, and both models require more computation as S increases.

95



0 10 20 30 40 50
100

150

200

250

300

350

400

450

500

550

600

Minimum Count Threshold

N
um

be
r 

of
 M

er
ge

s

Bigram
Trigram

Figure 4-14: Minimum merge point vs. minimum count threshold Mc

Number of merges needed to reach the minimumperplexity of the bigram and trigram
pcng models as the minimum count threshold Mc is varied. The bigram model
consistently requires more computation, and both models require more computation
as Mc decreases.

96



0 10 20 30 40 50
20.5

21

21.5

22

22.5

23

23.5

Minimum Count Threshold

T
es

t S
et

 C
ov

er
ag

e

Figure 4-15: Test set coverage revisited
Test set coverage at the minimum perplexity point for the trigram pcng model as
the minimum count thresholdMc varies. Coverage is quite low, and increases slightly
as Mc decreases.

0 20 40 60 80 100 120 140 160
19

19.5

20

20.5

21

21.5

22

22.5

23

23.5

Phrase Set Size

T
es

t S
et

 C
ov

er
ag

e

Figure 4-16: Test set coverage revisited
Test set coverage at the minimumperplexity point for the trigram pcngmodel as the
phrase set size S varies. Coverage is quite low, and increases slightly as S increases.

97



is a natural generalization of the word class n-gram model to phrase classes, and a

hybrid n-gram/SCFG model. It is able to take advantage of the rules acquired by the

inference process so as to reduce the complexity of the resulting model, but at the

same time does not su�er from the robustness di�culties of other structural models

because it achieves full coverage.

This model allowed us to construct perplexity traces of the grammar sequences

acquired by the inference process and thereby select the best grammar from the se-

quence which achieves su�cient generalization while minimizing over-generalization.

This model, combined with the acquired grammars, achieved substantial reduc-

tions in perplexity of the trigram model and is thus very practical. The random

sentences generated from this model seem more reasonable than the simple word tri-

gram sentences. We observed that the bigram perplexity is reduced far more than

the trigram, and that the bigram model bene�ts substantially by merging phrases in,

and the trigram model less so. This allowed the trigram pcng model to achieve its

minimum perplexity after fewer merges than the bigram model.

98



Chapter 5

Speech Recognition

5.1 Introduction

The most direct objective measure of how well a language model models a language is

to what extent that language model reduces the word error rate of a speech recognition

system, when compared to other language models. However, this measure is not as

simple as perplexity because it is a function of the particular speech recognition

system. Furthermore, to evaluate a language model in such a framework requires

integrating the language model into the particular search strategy employed by the

recognizer, which can be a di�cult process if the language model and recognizer di�er.

We decided to evaluate the acquired pcng language models by integrating them

with the summit speech recognition system developed in the Spoken Language Sys-

tems group in the Laboratory for Computer Science at MIT [47]. Summit is a segment

based speech recognition system which typically employs class based n-gram models

as the language model. [18]. We tested the performance of the system using acquired

pcng models and found them to improve recognition performance when compared

to the word trigram model.

Not only is word accuracy of interest, but the computational cost is also important.

A more powerful language model should do a better job constraining the search space

so that less computation is necessary to �nd the best word sequence. However, a more

powerful language model is also typically more expensive computationally. These

99



two issues, computational cost versus word accuracy, need to be examined closely in

deciding which language model to integrate into a recognition system.

5.2 Summit

The speech recognition system used to evaluate this system was the atis version of

summit [47], which has been developed over the past six years in the Spoken Language

Systems group at MIT. Summit is segment based, which means the incoming speech

signal is explicitly segmented into likely phonetic segments before being classi�ed into

phonetic units.

Summit can be divided into two phases. The �rst phase breaks the incoming

speech signal into likely phonetic segments and classi�es each segment according to

which phone it could be. This phase makes use of acoustic models to label each

segment with a probability vector representing the likelihood that that segment is

each of the possible phones. The output of this phase is a network of such segments.

Summit typically uses on the order of 50 to 100 phones as the basic acoustic units

to model the words.

The second phase, called the search phase, is responsible for taking this acoustic

network and searching for a sequence of words that could have produced the speech

signal. This phase is actually further broken into two steps. The Viterbi search is

the �rst pass through the acoustic phonetic network to look for likely words. This

search combines the constraints of the network, a lexicon, and a word bigram model,

to search for likely words. It operates on the phonetic segments one at a time. The

second step of the search process is a more thorough search which uses a more powerful

language model. This search is done with an A* search [3], and it operates with words

as the fundamental units. It uses the results of the Viterbi search to help it through

the search.

100



5.3 Search

5.3.1 Lexicon Graph

A critical component in the search phase of the recognizer is the lexicon graph. The

lexicon graph stores all words which may be used by the speaker to create sentences, as

well as all transitions from one word to another according to the word bigram model.

Each word is represented as a graph such that multiple paths through the graph, from

an initial node to a �nal node, correspond to di�erent legal pronunciations of the word.

Each arc of this graph is labelled with a single phone label and a score representing

the cost of using that arc, or the likelihood of a pronunciation which uses that arc.

The graph for each word is hand-written at �rst to create a base-form pronunciation.

It then undergoes some automatic transformations based on phonetic pronunciation

rules which attempt to model word contextual pronunciation e�ects [46]. The score

on each arc is trained automatically using a corrective training process. The lexicon

graph incorporates the word bigram model, which allows the individual word graphs

to be interconnected with arcs labelled with the bigram score for the two connected

words. These connections also handle any intra-word contextual e�ects.

A distinct word representing silence, -pau-, is required to start every sentence.

Likewise, the silence word -pau2- is required to �nish every sentence. These require-

ments, plus the connections between all word pairs by the bigram language model,

de�ne the large lexicon graph which describes all possible sentences at the segmental

level. A particular sentence can have many di�erent paths traversing through this

graph because each word may have di�erent pronunciations, but all such paths must

start with one of the initial nodes of -pau- and end with one of the �nal nodes of

-pau2-. The number of nodes in the lexicon graph will be de�ned as L, and will just

be the sum of the number of nodes of all words in the lexicon.

101



5.4 Search Space

From the point of view of the recognizer, the search space contains not only all possible

sentences which could be spoken, but for each possible sentence, all possible ways that

that sentence could be pronounced and aligned with the recorded utterance. This is

because the goal of the search phase of a recognizer is to �nd the best sentence and

the highest scoring alignment at the same time.

This very large space may be represented as a large directed graph called the

alignment graph Gs, with initial and �nal nodes. This graph is a function of the

acoustic segment network produced by the �rst phase of recognition and the static

lexicon graph stored within the recognizer. Each node of Gs is a pair hn; bi of a node

n from the lexicon graph and segmental boundary b in the utterance. If the utterance

has B boundaries, then this graph has L � B nodes. This graph has an arc from

node hn1; b1i to node hn2; b2i if n1 has an arc to n2 in the lexicon graph and there

is an acoustic segment connecting b1 and b2 in the acoustic network. This arc will

be assigned a score which is derived from the score on the arc between node n1 and

n2 in the lexicon graph and the probability of the segment between boundaries b1

and b2 in the acoustic network. The initial nodes consist of those nodes hn; bi whose

boundary b is 1, and whose n is an initial node of -pau- in the lexicon graph. The

�nal nodes hn; bi are conversely those nodes whose boundary b is the end boundary

of the utterance, B, and whose node n is a �nal node of -pau2- in the lexicon graph.

There is a one-to-one correspondence between paths through this large graph

and alignments of sentences with the acoustic evidence. Thus, we have reduced the

problem of �nding the best sentence and alignment to one of searching a large graph

for the best path.

5.5 Viterbi Search

The Viterbi search [45] is an e�cient search algorithm, based on dynamic program-

ming, which �nds the best path through Gs. It is a time synchronous search, which

102



means it makes a single pass through Gs one boundary at a time. For each boundary

it computes the shortest paths up until that boundary for all nodes in Gs correspond-

ing to that boundary. As a side e�ect, the Viterbi search also produces a vector, for

each acoustic boundary, representing the best path up until that boundary ending at

every possible node in the lexicon. These vectors will be useful for later stages of the

search.

For each boundary b the Viterbi search maintains the best path from the initial

nodes of Gs to all nodes in Gs corresponding to b. It loops through all boundaries in

time-order, from 1; 2; :::; B, updating all nodes at that boundary before moving to the

next one. For each node it searches for all incoming arcs to that node to see which

would incrementally create the best path to this node, and records that maximum

arc and resulting total score as a back-pointer. When the search is completed the

best scoring node among the �nal nodes in Gs is selected, and the best path is

reconstructed by following the back-pointers backwards of each node in the path.

The time and space complexities of the Viterbi search are �xed functions of L and

B. This is an excellent property as it means we can always know how long and how

much space the search will take to complete.

The Viterbi search is exhaustive to some extent because it computes the best path

for every node/boundary pair. One of the critical reasons why the Viterbi search

can accomplish this is that at each point in stores only the very best path. This

unfortunately means that we cannot e�ciently compute the top N best sentence

alignments using the Viterbi search. Another reason for the e�ciency of the Viterbi

search is because it employs a very simple language model: the word bigram model.

Unfortunately, other more complex language models can perform much better than

the bigram model, in terms of perplexity, so we would like to be able to use those

models. This leads us to the A* search.

103



5.6 A
� Search

Because the Viterbi search cannot easily integrate more powerful language models,

summit uses another search strategy, called the A� search [3], to tie in more powerful

language models. Unlike the Viterbi search, the A� search is a time asynchronous

search which derives from the best �rst search formalism. It allows us to integrate

more powerful language models and to compute the top N best scoring sentences from

the recognizer. The A� search uses the results of the Viterbi search to help constrain

its choices. One disadvantage of the A� search is that the worst case computation

time can be exponential in the number of words in the sentence. Empirically, however,

the time complexity is much better.

In many applications generating the top N best sentences is useful or necessary.

For example, it is common to generate the top N best sentences from the recognizer

and use a natural language parser to �lter the N best sentences for one that parses.

Another example application is one which allows more e�cient experiments comput-

ing the e�ect of a new language model on recognition accuracy. This can be done

by storing the N best outputs for each utterance and then resorting these outputs

according to a new language model.

The A� search maintains a queue containing many partial paths in Gs which have

been explored so far. Each path describes some sequence of words, not necessarily an

entire sentence, and how those words align with the acoustic network. At any point in

the search, it is entirely reasonable that many paths have the same sequence of words

but di�erent alignments of those words with the acoustic network. At the beginning

of the search, only the paths consisting of a single initial node in Gs are placed into

the queue. At each iteration, the best scoring path is extracted from the queue and

extended by all words which might follow that path. Each of these extensions creates

a new path with a new score, and these paths are inserted into the queue. If the path

extracted from the queue is complete, meaning it ends on a �nal node of Gs, then

that path is reported as a complete path, and the search can continue searching for

additional complete paths.

104



The A� search uses a parameter D, called the stack depth to determine when it

should stop searching. The A� search will continue producing completed paths until

the scores of the paths fall below the best scoring path minus D. As D increases,

the number of paths N which can be computed from the A� search increases sharply.

Typically the A� search is run until either N paths are completed, or the paths scores

fall below the stack depth threshold, whichever comes sooner. D also has implications

on the computational complexity of the search as it has an e�ect on what words each

partial path should be extended by.

The A� search in summit di�ers from the Viterbi search in that it works with

words as the atomic units of a path. Every path is always extended by a word at a

time, whereas the Viterbi search was done one arc, or acoustic segment, at a time.

The big di�erence between the A� search and an ordinary best �rst search is the

fact that the A� search makes use of additional information in performing its search.

This information is a function h(p) which maps any path p to an upper bound on the

scores of all possible completions of path p. The function h represents an additional

source of knowledge which can \predict the future" of a particular path by identifying

the score of the best possible completion of the path. When a newly-extended path p

is inserted into the queue, the score of that path will be computed as a combination

of its true score so far and its estimate h(p) of its future.

If the function h(p) is guaranteed to be a true upper bound, then the A� search

is said to be admissible. This means that the completed paths which are extracted

from the queue are guaranteed be in decreasing order of their scores. In particular,

the �rst complete path will be the best scoring path. If h(p) cannot guarantee that it

will always be an upper bound, then the A� search using h(p) is inadmissible, which

means paths may complete out of order. If this is the case, one option is to run

the search to generate the top N sentences, and then look for the best scoring path

among those N sentences. If N is large enough, and if h(p) is not \too far" from an

upper bound, then the best path is often near the top of the N completed paths.

In summit, h(p) is provided by an initial Viterbi search. In particular, a Viterbi

search is �rst computed in the forward direction in time. Then, the A� search searches

105



the reversed direction in time (i.e., starting from the end of the utterance, moving

backward to the start). Because the Viterbi search in the forward direction stores

the best partial path up to each boundary, for every node, the A� search can use the

scores of the Viterbi search as its estimate of the future. One direct implication of

this is that if the language model used during the Viterbi search (the bigram model)

is mismatched with the model used during the A� search (typically a word class

quadgram model in summit), then the search will be inadmissible.

When a path is extended by each possible word, a language model is consulted,

along with the acoustic models, to assign a score to that extension. The acoustic

scores are comparable to log probabilities, so we combine the acoustic and language

model score as follows:

S0 = S +A+ �(
 + logP̂ (wijw1:::wi�1))

where S is the score of the current path, S0 is the score when we extend this path

by wi, A is the acoustic score of the extension, and P̂ (wi) is the language models

probability of extending by the word wi given the words so far in the path. The

parameter 
 is referred to as the language model o�set, and the parameter � is

the language model scale factor. Typically � is 70, and the 
 is 2.7.

The language model in theA� search can a�ord to be more costly computationally,

and therefore more powerful predictively, than the bigram model used in the Viterbi

search. This is because the number of path extensions during the A� search for a

typical utterance is far fewer than the corresponding number of extensions for the

Viterbi search.

5.6.1 Computational Complexity

The A� search can run in exponential time in the number of words in the sentence,

which is unfortunate. In practice, however, the search tends to be quite e�cient.

The computational time of an utterance is typically measured by the number of path

extensions accomplished to complete N paths for the utterance U . We will denote

106



this function as CU(N) | it states how many paths had to be extended to complete

N paths. Very little can be formally said about how CU(N) varies with U and N ,

but empirically we will see that it seems to grow somewhat slower than linearly.

Empirically, it seems the running time of the search is actually quite sensitive to

the upper-bound function h(p). If h(p) is not a tight upper bound for every path

p, the A� search takes a very long time to complete N paths. For this reason, it is

often quite a bit less expensive in terms of computation time to use an inadmissible

h(p) and resort the N outputs. The search is also very sensitive to the stack depth

threshold D because D a�ects how many path extensions will be performed for each

partial path. As D increases the computation increases sharply.

5.6.2 Upper Bound Bigram

In order to have an admissible A� search we need to compute a word bigram model,

for the Viterbi search, which guarantees that the scores assigned by this model are

always an upper bound of the scores assigned by the pcng model. This bigram-like

model will not be a proper language model, as its probability mass can in general

sum to more than 1. This is not a problem for the Viterbi search { i.e., we can still

use the model because we are not using the answer paths that come from the Viterbi

search as our answer. Thus, we will not refer to it as a bigram model, and simply call

it a function fu(w1; w2) which returns a number between 0 and 1 such that for every

possible word sequence W = w1:::wN:

N�1Y
i=1

fu(wi; wi+1) � P̂ (w1; :::; wN)

where P̂ (w1; :::; wN) is the probability that the pcng model assigns to the word

sequence. The word pairwise product of fu must be greater than or equal to the

probability assigned by the pcng model.

Furthermore, we would like the upper bound to be as tight as possible in the inter-

est of e�ciency for the A� search. This upper bound function fu must be computed

as a function of the grammar and rule probabilities and of the n-gram component of

107



the pcng model.

We can examine some simple cases �rst. If the grammar has no rules, and we

are looking at a trigram model, then the pcng model reduces to a simple word

trigram model, such that the probability of a word depends on the previous two

words. Computing fu in this case is quite simple:

fu(w1; w2) = max
w0

P̂ (w2 j w0; w1)

Since the upper bound function fu has no knowledge of which word preceded word

w1 when looking at the word sequence w1 w2, it must assume the worst, or assume

that it was the word w0 that allows maximal probability of w2 given w0 and w1. The

quadgram case is similar, except the maximization is computed over all word pairs.

If we begin to add rules to the grammar, the situation becomes more complicated

as there is more freedom in how we set fu. For example, consider a grammar which

contains only the two rules:

NT0 ) one way [0.6]

NT0 ) round trip [0.4]

If the pcng model is using a bigram model, for simplicity, fu(w1; w2) could just be

set to P̂ (w2 j w1) for all bigrams not involving the words \one", \way", \round", and

\trip". For any bigram involving one of these words we must consider all possible

ways that the two above rules might apply to some sentence with that pair of words,

and choose that parse which allocates the most probability to this pair of words as

the value for fu. For example, consider fu(the; one). \One" could be the start of NT0

with the �rst rule applying, or it could be just the word \one" not then followed by

\way". These two cases need to be separately considered to decide how each of them

would allocate probability to the pair of words.

This notion can be applied recursively to handle grammars with more rules and

deeper recursion in these rules. The general algorithm functions as follows. It will

make two passes. In the �rst pass, it examines all non-terminals in the grammars and

recursively computes which bigrams could be derived by these non-terminals along

108



with the portion of the probability mass that should be allocated to these bigrams.

For example, with the rules:

NT0 ) one way [0.6]

NT0 ) round trip [0.4]

NT1 ) NT0 
ight [0.5]

NT1 ) earliest NT0 
ight [0.25]

NT1 ) cheapest NT0 fare [0.25]

NT0 would be record f(one way), (round trip)g as the bigrams it could derive, and

NT1 would record f(one way), (round trip), (way 
ight), (trip 
ight), (way fare), (way


ight), (earliest one), (earliest round), (cheapest one), (cheapest round)g. These sets

of bigrams are recursively computed. To divide the probability evenly we take the nth

root of the probability for a given rule whose right hand side is length n and divide

it evenly among all elements on the right-hand-side of that rule. This is equivalent

to dividing the log probability by n.

Once this �rst pass is complete, each non-terminal has a list of the bigrams for

which it can be responsible. For the second pass, we examine all n-gram sequences

which occurred during training. For each of these, if a non-terminal is involved we

compute how much probability should be allotted to all the bigrams derivable from

that non-terminal, and maximize this over all possible n-gram sequences. We repeat

this for the (n� 1)� gram, etc, all the way to the unigram model.

We have some empirical results of this upper bound model, as shown in Figure 5-

1. This �gure shows a histogram representing how tight the upper bound model is

per word in the test set. The mean of this plot is 0.61, which means on average the

log probability (base e) assigned to a word by the upper bound function fu is 0.61 in

excess of what the real pcng model assigns. The plot was made for a trigram pcng

model acquired after 190 merges of the standard inference run. Each sentence in our

independent test set accounts for one element in the histogram.

Unfortunately, when we tested the performance of this system empirically, the A�

search could not even complete one utterance (within our patience limit, that is).

It spent all of its time extending partial paths, never completing a path. The A�

109



0.5 1 1.5 2
0

20

40

60

80

100

120

140

160

180

200

Per Word Excess Logprob

N
um

be
r 

of
 S

en
te

nc
es

Figure 5-1: Excess log probability for upper bound bigram model
Per word excess log probability of function fu for the phrase class trigram model.

search is far too sensitive to loose upper bounds, rendering this upper bound model

impractical.

5.7 Language Model Integration

A fundamental computational issue in recognition is how a language model is inte-

grated with the speech recognition system.

5.7.1 Full Integration

One approach, called full integration, uses the model directly during the A� search.

This is perhaps the simplest and most elegant solution, but it imposes some di�cult

constraints. First, the number of language model extensions which are typically com-

puted during a direct A� search is substantial. A language model which is expensive

computationally will therefore incur a substantial penalty for this. Furthermore, the

A� search extends paths one word at a time. If the language model is not formulated

in a word-by-word manner, this form of integration is di�cult. The simple word n-

110



gram models or word class n-gram �t both of these criteria and are thus amenable to

full integration.

5.7.2 N -best Resorting

Another means of integration is N-best resorting. In this framework the normal

A� search continues until a stack depth D or n paths, whichever occurs sooner, and

records the completed paths that result. During this search it can use any simple

n-gram language model. Then the new language model can look at the N -best list

for each utterance and resort the paths according to its probability by replacing the

language model component of the scores with its own scores.

This tends to be a computationally ine�cient means of integration because com-

puting the N -best lists takes substantial computation. Furthermore, the more mis-

matched the two language models are, the further from the top of the list the truly

best path, according to the new language model, may be. Thus, as the language

models become more disparate in how they assign probabilities to sentences, n must

increase at the expense of computation. Where n is set is usually determined empir-

ically by calculating the e�ect it has on word accuracy and computation.

One advantage of this approach is that the number of computations required of

the new language model is very small in comparison to the other means of integration.

Another advantage is that this form of integration is very easy to implement. The

N -best lists can be computed one time and kept in storage. Then, as new language

models are developed, they can be tested quickly to see how it a�ects recognition word

accuracy. For these reasons, N -best resorting is typically only used for experimental

language model development purposes. When a language model is determined to

prove worthwhile by reducing word error rate, one of the other two integration schemes

is developed.

111



5.7.3 Word Network Integration

The �nal means which we will discuss for language model integration is the word

network. This form of integration actually falls between the other two in that

it requires more computation from the language model than N -best resorting, but

less than full integration. Furthermore, the word network is a more compact way

to represent the same information of the N -best lists | it actually represents all

completed paths to a stack depth D, which may correspond to a very large n. As

D increases, the number of completed paths n which must be computed to achieve a

stack depth of D can grow very quickly. The word network is thus a generalization

of the N -best lists.

Word networks also have same advantage of N -best lists that they can be com-

puted once and stored for later experimentation, but the same disadvantage for full

integration that in searching a word network the language model must predict word

probabilities one at a time. Their computational e�ciency actually makes them

attractive not only for experimentation purposes but also for real-time speech recog-

nition.

A word network represents possible word alignments and scores within the utter-

ance as a connected graph. It is actually computed using a modi�ed A� search, called

the word network A� search, where paths which end at the same word/boundary node

in the alignment graph are merged together. It is this merging that creates a network

of words instead of a simple N -best list as output from the search. During this search

a simple language model, usually a word bigram, is used. Again, the word network

A� search is run to a depth D which guarantees that any paths whose score is within

D of the best scoring path will be included in the word network.

We can then use the word network for an utterance as input to an A� search using

the more powerful language model. Because the word network has already limited

the number of word arcs that need to be considered, this more powerful language

model has to compute far fewer extensions than it would with full integration. The

parameter D needs to be chosen as a function of how disparate the probabilities of

the two models (the bigram model and the more powerful model) are on typical test

112



sentences. As long as the di�erence in probability of the new model and the bigram

model on a particular test sentence corresponds to less than D (after being scaled

scaled by �), the new model can �nd the best path in the word network.

Therefore, for any language model we would like to use during word network

integration, we can empirically compute how the model compares to the word bigram

model over the test set of sentences, and use this comparison to determine a reasonable

value for the stack depth D.

5.8 pcng Integration

In this section we describe an approach to integrate a pcngmodel with the A� search.

Since both the full integration and word network integration paradigms use an A�

search, what is developed here can be used for both forms of integration.

The word-by-word issue is the di�culty which the pcng model must overcome.

What is di�cult about this is that the model does not know what the �nal parse of

the sentence may be. Several possible rules may be able to apply depending on what

words complete the sentence pre�x. For example, consider a grammar containing the

rules:

NT0 ) one way 
ight [0.5]

NT0 ) one way fare [0.5]

NT1 ) one [1.0]

The sentence pre�x \show me the one" could end up parsing in di�erent ways de-

pending on how it is completed. The system has no way of knowing which could

apply. Furthermore, this ambiguity could continue recursively if there are other rules

which depend on NT0 or NT1. Somehow the pcng model needs to be restructured

so that it is able to provide a reasonable probability for the above sentence pre�x.

One possible solution would be to place multiple paths in the queue representing

the possible choices of future rule applications, with their di�erent probabilities. This

would mean that whenever there was ambiguity as to which rule may end up applying,

we simply create as many duplicate paths as necessary to enumerate all possible

113



outcomes, and place them in the queue with their di�erent total scores. The problem

with this approach is that it is wasteful of space in the queue, since there can actually

be very many such possible parses.

A better solution is to develop a modi�ed pcngmodel which internally keeps track

of all parses which could possibly apply to sentences containing the pre�x. Then, the

net probability of a particular word extension can be computed by adding the total

probabilities allowed by all of the parses. An easier solution is to simply choose the

partial parse which has the highest probability and report that as the probability for

the word extension. These two approaches will always yield the same answers since

a complete sentence, by de�nition of the pcng model, has exactly one parse. Thus,

whether we compute the sum or the maximum, that value will be the same when we

extract a completed path.

We chose to implement this procedure using a modi�ed version of Earley's parser [15],

which is an e�cient CFG parser. Earley's parser processes a sentence in one pass,

keeping track of all possible rules applications at every word. Our word-by-word ver-

sion of the pcng model does precisely this for every path extension. It then searches

through the possible rules that apply to determine that potential parse that has

the highest score, and returns that as the language model probability for the word

extension.

5.9 Results

For our recognition experiments we tried two forms of integration of the pcng model

with the recognizer: N -best resorting and word network integration. For N -best

resorting we tested two di�erent language models for generating the N -best list to

begin with: a word bigram and a word trigram model. We test results with only

trigram language models since they achieve the best results. We use three language

models in this evaluation. One model is the baseline word trigram model, which had

a test set perplexity of 15.92. The next model is the minimumperplexity grammar for

the word-class-only inference run, with Mc = 5. This model has perplexity 15.33 on

114



the test set. In this section we refer to this model as the word class trigrammodel.

The third language model is the minimum perplexity grammar acquired during the

standard inference run, which has perplexity 14.89 on the test set. This model is

referred to as the phrase class trigram model.

For all of these experiments we use an independent test set consisting of 508

utterances. This set of utterances is independent from the training set and from the

development test set used for the perplexity experiments. The word networks were

computed with a stack depth D = 800. During the experiments we will vary the

number of paths N searched to �nd the best path to study the e�ect this has on word

accuracy and computation.

5.9.1 Language Model Disparity

We must �rst explore the probabilistic di�erences between the language models we

would like evaluate and the bigram language model used to generate the word net-

works. The bigram language model was used to generate all of the word networks,

and thus the word networks guarantee that any path within D = 800 of the top

scoring path is represented within the word network. But if we then use a language

model which di�ers substantially from the bigram model, the best path may not be

in the word network a large portion of the time.

Figure 5-2 shows the disparity between the word trigram pcng model and the

word bigram model. This plot shows the trigram log probability minus the bigram

log probability for each sentence. The scaling factor used for integration with the

A� search is 70, which means a stack depth of 800 corresponds to a log probability

disparity of 11.43. It is very nice to see that almost all sentences fall below this point.

Figure 5-3 shows a similar plot for the word-class pcng model, and Figure 5-4 shows

the plot for the phrase-class pcng model. All of these models are similar enough to

the bigram model to license using the word network search with a stack depth of 800.

115



-10 -5 0 5 10 15 20
0

20

40

60

80

100

120

140

160

Difference in Logprob

N
um

be
r 

of
 S

en
te

nc
es

Figure 5-2: Trigram word n-gram disparity
This histogram shows how the word trigram and bigram pcng di�er in predicting
probabilities for sentences. The plot shows the di�erence in log probability of the two
models over all sentences in the development test set.

-10 -5 0 5 10 15 20
0

20

40

60

80

100

120

140

160

Difference in Logprob

N
um

be
r 

of
 S

en
te

nc
es

Figure 5-3: Trigram word-class disparity
Histogram of sentence log probability di�erences between acquired word class trigram
model after 175 merges and the basic word trigram model. The di�erences fall almost
entirely below the 11.5 cuto�.

116



-10 -5 0 5 10 15 20
0

20

40

60

80

100

120

140

160

Difference in Logprob

N
um

be
r 

of
 S

en
te

nc
es

Figure 5-4: Trigram phrase-class disparity
Histogram of sentence log probability di�erences between acquired trigram pcng

model after 200 merges of the standard inference run, and the basic word trigram
model. The di�erences fall almost entirely below the 11.5 cuto�.

5.9.2 Word Accuracy

We compute the word accuracy of the recognition system as a means to measure

performance. Word accuracy is determined by �nding the optimal alignment of the

reference (answer) sentence to the recognized sentence, and determining how many

substitution, deletion, and insertion errors were incurred. Word accuracy is then the

percentage of correctly recognized words of all words in the reference sentences minus

the percentage of words inserted into the recognized sentences. The word error rate

is the sum of substitution, deletion, and insertion errors.

For each of the three di�erent integration methods we need to use the top N

paths to search for the best scoring path. None of the integration techniques are

admissible, so we must consider the top N paths, and possibly resort them according

to new language model scores. As we increase N we have a better chance of actually

�nding the true best scoring path, and we thus expect the word accuracy to improve

as N increases. While this tends to be the case, it is not necessarily a monotonic

117



0 20 40 60 80 100
80.6

80.8

81

81.2

81.4

81.6

81.8

82

82.2

82.4

82.6

Phrase Class

Baseline

Word Class

Figure 5-5: Word accuracy vs. number of completed paths N
This shows hows varying N changes the resulting word accuracy for N -best resorting.
The two curves were computed by the trigram N -best resorting integration using the
word class and phrase class pcng models.

function because that best scoring path could very well be a worst output of the

recognizer. Figure 5-5 shows how word accuracy improves with larger values of N ,

comparing the performance of the three language models.

The word accuracy clearly varies as a function of N in this Figure. For low values

of N the word accuracy is quite a bit lower than its asymptotic value. However,

once N reaches a certain point, the word accuracy remains approximately the same.

This plot can be used to empirically determine how far to run the N -best outputs

to achieve reasonable word accuracies. This plot empirically shows the degree of the

inadmissibility. By observing that the word accuracy really does not change too much

as N is increased beyond a certain point, we know that the extent of inadmissibility

is limited. It is very nice to observe that the asymptotic word accuracy does indeed

correspond to the perplexities of these language models. These results represent a

substantial asymptotic reduction in the word error rate, from 18.7 to 17.7, which is a

5% reduction.

118



Word Trigram Word Class Trigram Phrase Class Trigram
Bigram N -best resorting 80.8 81.5 81.6
Trigram N -best resorting 81.3 82.0 82.3

Word Network 81.3 81.8 81.6

Table 5.1: Asymptotic word accuracies
This table shows the improvement in word accuracy of recognition using the acquired
word class and phrase class grammars

We can compute the asymptotic word accuracies for all nine combinations of

language model and integration algorithm. Table 5.1 shows exactly this plot. One

interesting feature which stands out with this plot is the disparity between the word

accuracies of the bigram and trigram N -best integration approaches. Figure 5-6

compares these two integration approaches using the phrase class language model.

The disparity is due to the fact that the bigram N -best integration is using a weaker

language model than the trigram N -best integration, and because our values of N

and D are too small. In theory, if we were to allow N and D to grow arbitrarily large,

these two approaches must achieve exactly the same asymptotic word accuracy.

Another very surprising result from Table 5-6 is the substantial di�erence in word

accuracy for the word network and trigram N -best integration. The direct word

network search should allow for performance on par with the corresponding N -best

resorting integration simply because the word network is a more compact means of

representing N -best lists. One likely di�erence for this is because we are sorting

the N -best list created by the word trigram model, which is more powerful than

the bigram model used to create the word network. The 81.6% word accuracy in

the corresponding bigram N -best integration is directly comparably with the word

network result.

5.9.3 A
� Computation

As we vary N to choose a good point in terms of word accuracy, we pay for this with

increased computation by the A� search. This computation is typically measured

by the number of path extensions which have to be completed to generate the N

sentences. Figure 5-8 shows the number of extensions per word in the test sentence

119



0 20 40 60 80 100
78

78.5

79

79.5

80

80.5

81

81.5

82

82.5

N

W
or

d 
A

cc
ur

ac
y Trigram

Bigram

Figure 5-6: Bigram and trigram N -best resorting
In computing the N -best lists we can use either a bigram or a trigram language
model. These N -best lists are then resorted with our optimal word class and phrase
class models. The disparity between the two is surprising.

0 20 40 60 80 100
80.6

80.8

81

81.2

81.4

81.6

81.8

82

82.2

82.4

82.6

N

W
or

d 
A

cc
ur

ac
y

n-best resorting

word network

Figure 5-7: N -best resorting and word network integration
This compares the performance of the best phrase class pcng model on the two
means for integration: N -best resorting and word networks. It is very surprising that
performance of the word network is so poor compared to the N -best resorting

120



0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

N

A
ve

ra
ge

 N
um

be
r 

of
 P

at
h 

E
xt

en
si

on
s

word network

trigram nbest

Figure 5-8: A� path extensions
This plot shows the average number of path extensions done by the A� search using
the N -best resorting approached computed with a trigram vs. the word network
approach. Computation is slightly higher with the word network.

required to compute the N paths for both the trigram N -best integration and word

network integration, using the phrase-class pcngmodel. It is surprising that the word

network integration requires slightly more computation to compute the �rst N paths

to complete. Both of these plots are falling o� below a linear rate as N increases.

To get a direct measure on how inadmissible the A� search is we can examine the

average rank of the best scoring path for each of the three integration methods. This

is shown in Figure 5-9 for the phrase-class pcng model. It is very interesting to see

that the rank continues to increase as N increases. We would have expected it to

eventually taper o�, indicating that the top scoring path typically falls somewhere

near the top of the N -best list.

5.10 Summary

In this chapter we described a means for integrating the pcng model with the A�

search for speech recognition. We investigated how to compute an upper bound model

121



0 20 40 60 80 100
0

2

4

6

8

10

12

N

A
ve

ra
ge

 R
an

k 
of

 B
es

t P
at

h

bi-gram

tri-gram

word network

Figure 5-9: Average rank of best scoring path
This plot shows how the average rank varies for the phrase class trigram model when
test the three integration schemes

for the bigram search such that the resultingA� search was admissible, and soon found

this model to be very impractical as it drastically increased the computation required

by the search. We then realized that the loss of admissibility was not too damaging in

practice since we can run the search to produce N answer paths and then search for

the best scoring path in this list. This does, however, require substantial computation.

We described three means for integration: full integration, word networks, and

N -best resorting. In this chapter we tested the latter two forms of integration, and

found some unexpected dependencies among the resulting word accuracies. It was

surprising that the word accuracy of N -best resorting was so sensitive to whether a

word bigram or trigram model was used to generate the N -best list originally. It was

also very surprising to see that the trigram N -best integration performed quite a bit

better than the word network integration.

We believe that some of these unexpected results are due to some implicit biases

present in the word network approach because they were created with the bigram

model. In particular, as the new language model deviates more from the bigram

122



model, it seems likely that the computational cost will increases substantially. We

were hoping to observe that the more powerful language models allowed the A� to

do fewer extensions to generate the N -best lists, but we believe the implicit bias of

the word network towards models which are similar to the word bigram model far

outweighs any such e�ects. We intend to explore these issues more thoroughly in the

future.

123



Chapter 6

Conclusions

6.1 Summary

The learning system described in this thesis produced de�nite improvements in the

performance of language models, in terms of perplexity, and in speech recognition

error rate, for the atis domain which we were working with. This process is entirely

automated, and consists of �rst acquiring a stream of grammars using the inference

process, and then building a probabilistic pcng model from the acquired grammars

to select the minimum perplexity grammar.

We evaluated the inference system by measuring the perplexity of the acquired

grammars, and found the perplexity to be substantially reduced for both the bigram

and trigram pcng models, which represents a substantial improvement in language

model performance. Unfortunately, at these optimal points for each inference run the

actual test set coverage of the grammar was quite low. This would seem to imply that

the inference system generalizes poorly at the sentence level. But the pcng model

renders the issue of coverage academic, since it is a full coverage model.

The pcng model represents a new formalism for using grammars to derive a

probabilistic model. It is a useful model because it can take a partial grammar

and construct a full coverage language model, which reduces both the number of

parameters and the perplexity when compared to the word n-gram models. This

formalism should prove valuable for as an aid for hand-written grammars as well.

124



The integration of the pcng model with the A� search is also a novel contribu-

tion. We demonstrated that the automatically acquired pcng models substantially

reduce word error rate, but at the increased cost of computation for the word network

coupling explored. This increased computation cost is actually a smooth function of

how many rules are present in the grammar and is thus an element under control of

the designer of the speech recognition system.

6.2 Future Work

There are a number of directions where this research should be taken. First, the

inference algorithm should be tested on more complex domains. The atis domain is

a relatively simple domain, both in its language structure and in the actual size of the

training set and lexicon used. A more complex domain would challenge the inference

algorithm computationally, and would require re-engineering some of the components

to make them more e�cient. It would be interesting to see if this notion of simple

phrase classes would be useful in modeling richer languages.

Further e�orts should be made to expand the power of the inference algorithm.

Presently, the languages it acquires are all �nite languages. It would be interesting

to extend this system to full CFG's, and to allow it to maintain di�erent possible

parses of the training sentences at the same time, as it searches for a good grammar.

Such extensions would formally give the inference system more power, which would

presumably allow it to better model the actual language.

Another future direction would be to try to augment the inference process with

some notion of understanding a sentence. Presently, most structured language models

in speech recognition are used as the understanding component of the system. But

because this inference process pays no attention to the semantics of the training sen-

tences, the output is not immediately useful for understanding. The classes that the

system learns, however, very often look semantically similar, so there are possibilities

in this direction.

Structured language models o�er advantages over simple n-gram approaches be-

125



cause they extract additional information from the sentence. For example, one inter-

esting direction to explore would be to see if the structure acquired by this system

can be used to more e�ectively adapt to a particular speaker's usage of the language.

This could result in substantial reductions in perplexity and in word error rates.

Further experimentsmust be done to more thoroughly understand the implications

of integrating more powerful language models directly into the search phase of speech

recognition. Almost all systems at present choose to make a rough �rst pass with

an approximate language model, and then re�ne that pass using a more powerful

model. Since the pcng e�ectively represents a small step from the simple word n-

gram model to a more powerful model, it should have some interesting implications

for computation/accuracy tradeo�s with a full integration scheme.

126



Appendix A

Perplexity

Perplexity is an information theoretic metric used to evaluate how close the distri-

bution of a given language model P̂ is to the \true" distribution of the language.

Because we cannot know the true distribution we must approximate it by selecting

an independent test set according to the true distribution and measuring an empirical

information-theoretic distance between P̂ and the distribution seen in the test set.

This appendix will relate perplexity to the fundamental entropy of the language, in

particular showing the perplexity is lower bounded by 2H .

The perplexity is computed from the average log probability of words in the test

set. The test set will be denoted as tN = w1w2:::wN, where w1w2:::wN are the words

in the sentences in the test set listed end-to-end and separated by a unique sentence

boundary marker. This boundary marker is a distinct word, and counts as a word in

the perplexity computation. Perplexity is based on the quantity

Ĥ:

Ĥ = �
1

N
log2P̂ (t

N) (A.1)

= �
1

N

NX
i=1

log2P̂ (wijw1; :::; wi�1) (A.2)

This formulation is fully general in that it makes no assumptions about the nature of

P̂ . The perplexity is then 2Ĥ .

To relate Ĥ to H, a few assumptions must be made about the language source.

127



First, we assume that the underlying distribution used to create the training and test

sets is the same source distribution, and that the training and test sets are indepen-

dent samplings according to this distribution. The source is assumed to be ergodic,

meaning that a test set which is reasonably large is in some sense \prototypical" of the

language. These assumptions are not unreasonable, and were made anyway to be able

to create the language model. They could be relaxed to some extent without changing

the results proven in this appendix, but they make the proof more straightforward.

The true entropy H of a source which generates output symbols w1; w2; ::: inde�-

nitely is de�ned as [14]:

H = lim
n!1

�
1

n

X
wn2Wn

P (wn)log2P (w
n) (A:3)

where the sum is taken over all possible sequences of words of length n, and P (wn)

is the true underlying probability of the sequence of words. The quantity inside

the limit monotonically decreases as n in the limit increases. H can therefore be

approximated by removing the limit and summing across all sequences length N

where N is su�ciently large:

H = �
1

N

X
wN2WN

P (wN )log2P (w
N ) (A:4)

We assume that the size of the test set N is su�ciently large { this assumption is most

likely a very safe one as the languages we deal with tend not to have tremendously

long distance e�ects (i.e., on the order of N).

Because we've assumed the source is ergodic, if we randomly draw a particular

sample of size N , according to the underlying distribution the particular sample will

be \typical". Therefore, our test sample tN will be a typical sample, according to

the Asymptotic Equipartition Principle for ergodic sources [14]. This means that the

average of all the model log probabilities across all word sequences of length N will

128



be very close to the log probability of the test set tN :

Ĥ = �
1

N
log2P̂ (t

N) (A.5)

� �
1

N

X
wN2WN

P (wN )log2P̂ (w
N ) (A.6)

We can now relate the quantities Ĥ and H. In particular, consider the di�erence

Ĥ �H:

Ĥ �H � �
1

N

X
wN2WN

P (wN )log2P̂ (w
N ) +

1

N

X
wN2WN

P (wN )log2P (w
N ) (A.7)

= �
1

N

X
wN2WN

P (wN )(log2P̂ (w
N )� log2P (w

N )) (A.8)

=
1

N

X
wN2WN

P (wN )(log2P (w
N )� log2P̂ (w

N )) (A.9)

=
1

N

X
wN2WN

P (wN )log2
P (wN )

P̂ (wN )
(A.10)

=
1

N
D(P k P̂ ) (A.11)

� 0 (A.12)

where D(P k P̂ ) is the relative entropy [14] between the probability distributions P

and P̂ . Relative entropy is a natural information theoretic distance metric between

probability distributions which is always greater than or equal to zero. Equality is

achieved if and only i� P = P̂ . It is also precisely the basis for the divergence distance

metric used to select merges during inference. Thus, Ĥ � H, with equality only when

the language model has precisely the underlying distribution. Perplexity is therefore:

� 2
H+D(PkP̂ )

N (A:13)

This means we may interpret perplexity as a distance metric between the language

model distribution and the true underlying distribution. As we produce better and

better language models, D(P k P̂ ) decreases, and the perplexity becomes closer and

closer to the lower bound limit 2H .

129



Appendix B

Example Merge Sequence

This section describes an example sequence of merges to illustrate the process a little

more clearly and intuitively. Figure B-1 shows the initial grammar and language of

this example inference run. In the example, the training set contains only six sen-

tences as shown in the �gure, and the initial grammar has one rule for each sentence.

Likewise, the initial language is just the training set. Each successive �gure shows

the resulting grammar and language as a result of that particular merge. Sentences

newly added to the language, or rules changed in the grammar, are highlighted in a

bold typeface.

The �rst merge shown in Figure B-2 that is chosen is (pittsburgh, boston) !

NT0. The grammar is modi�ed to allow pittsburgh and boston to be interchange-

able. Likewise, the language is expanded to accept new sentences which di�er from

present sentences by only the words boston or pittsburgh. The second merge is (NT0,

philadelphia) ! NT1, shown in Figure B-3. This merge selected the non-terminal

which resulted from the previous merge to merge with another city name. This merge

creates the rule NT1 ) NT0, which makes NT0 an unnecessary non-terminal. Thus,

we can safely replace all occurrence of NT0 with NT1, removing it from the grammar.

For the third merge, the phrase \please show" is merged with the word \show" (please

show, show) ! NT2. This merge is done carefully so as to avoid creating recursive

rules, as described in Section 3.7.1. Again, two new rules are added to the grammar,

and the occurrences of the two units are replaced everywhere with NT2.

130



The fourth merge is (i would like, i need) ! NT3. The resulting grammar and

language are shown in Figure B-5. Fifth, we choose to merge (would like, need) !

NT4). This merge actually created duplicate rules out of the acquired rules added

for the previous merge, so one of the duplicates was discarded. This illustrates how

the system can learn very large phrases early on and then later divide those phrases

up internally. Furthermore, this merge had no e�ect on the accepted language { all

it did was to change the structural description of the phrases \i would like" and \i

need". The �nal merge is (NT4, want) ! NT5. This process actually reduced two

originally di�erent sentence rules to the same form, so one of them is discarded.

With each merge the language increases as new generalized sentences are added.

In this manner the size of the language increases quite quickly (it started with 6

sentences and ended with 23). Also, the sentence rules in each grammar represent the

training sentences reduced according to the acquired grammar so far. Any sentences

which reduced to the same form during this inference process are discarded, thus

simplifying the grammar by decreasing its size.

131



S ) i would like the least expensive 
ight from boston to denver

S ) please list the early 
ights from pittsburgh to denver

S ) please show me the 
ights that leave around noon

S ) i want to go to oakland

S ) show me the cheapest fare to philadelphia

S ) i need to go to oakland

i would like the least expensive 
ight from boston to denver

please list the early 
ights from pittsburgh to denver

please show me the 
ights that leave around noon

i want to go to oakland

show me the cheapest fare to philadelphia

i need to go to oakland

Figure B-1: Example starting grammar and language

NT0 ) pittsburgh j boston
S ) i would like the least expensive 
ight from NT0 to denver

S ) please list the early 
ights from NT0 to denver

S ) please show me the 
ights that leave around noon

S ) i want to go to oakland

S ) show me the cheapest fare to philadelphia

S ) i need to go to oakland

i would like the least expensive 
ight from boston to denver

i would like the least expensive 
ight from pittsburgh to denver

please list the early 
ights from pittsburgh to denver

please list the early 
ights from boston to denver

please show me the 
ights that leave around noon

i want to go to oakland

show me the cheapest fare to philadelphia

i need to go to oakland

Figure B-2: After merge (pittsburgh, boston ! NT0)

132



NT1 ) pittsburgh j boston j philadelphia
S ) i would like the least expensive 
ight from NT1 to denver

S ) please list the early 
ights from NT1 to denver

S ) please show me the 
ights that leave around noon

S ) i want to go to oakland

S ) show me the cheapest fare to NT1
S ) i need to go to oakland

i would like the least expensive 
ight from boston to denver

i would like the least expensive 
ight from pittsburgh to denver

i would like the least expensive 
ight from philadelphia to denver

please list the early 
ights from pittsburgh to denver

please list the early 
ights from boston to denver

please list the early 
ights from philadelphia to denver

please show me the 
ights that leave around noon

i want to go to oakland

show me the cheapest fare to philadelphia

show me the cheapest fare to boston

show me the cheapest fare to pittsburgh

i need to go to oakland

Figure B-3: After merge (NT0, philadelphia ! NT1)

133



NT1 ) pittsburgh j boston j philadelphia
NT2 ) please show j show
S ) i would like the least expensive 
ight from NT1 to denver

S ) please list the early 
ights from NT1 to denver

S ) NT2 me the 
ights that leave around noon

S ) i want to go to oakland

S ) NT2 me the cheapest fare to NT1
S ) i need to go to oakland

i would like the least expensive 
ight from boston to denver

i would like the least expensive 
ight from pittsburgh to denver

i would like the least expensive 
ight from philadelphia to denver

please list the early 
ights from pittsburgh to denver

please list the early 
ights from boston to denver

please list the early 
ights from philadelphia to denver

please show me the 
ights that leave around noon

show me the 
ights that leave around noon

i want to go to oakland

show me the cheapest fare to philadelphia

please show me the cheapest fare to philadelphia

show me the cheapest fare to boston

please show me the cheapest fare to boston

show me the cheapest fare to pittsburgh

please show me the cheapest fare to pittsburgh

i need to go to oakland

Figure B-4: After merge (please show, show ! NT2)

134



NT1 ) pittsburgh j boston j philadelphia
NT2 ) please show j show
NT3 ) i would like j i need
S ) NT3 the least expensive 
ight from NT1 to denver

S ) please list the early 
ights from NT1 to denver

S ) NT2 me the 
ights that leave around noon

S ) i want to go to oakland

S ) NT2 me the cheapest fare to NT1
S ) NT3 to go to oakland

i would like the least expensive 
ight from boston to denver

i need the least expensive 
ight from boston to denver

i would like the least expensive 
ight from pittsburgh to denver

i need the least expensive 
ight from pittsburgh to denver

i would like the least expensive 
ight from philadelphia to denver

i need the least expensive 
ight from philadelphia to denver

please list the early 
ights from pittsburgh to denver

please list the early 
ights from boston to denver

please list the early 
ights from philadelphia to denver

please show me the 
ights that leave around noon

show me the 
ights that leave around noon

i want to go to oakland

show me the cheapest fare to philadelphia

please show me the cheapest fare to philadelphia

show me the cheapest fare to boston

please show me the cheapest fare to boston

show me the cheapest fare to pittsburgh

please show me the cheapest fare to pittsburgh

i need to go to oakland

i would like to go to oakland

Figure B-5: After merge (i would like, i need ! NT3)

135



NT1 ) pittsburgh j boston j philadelphia
NT2 ) please show j show
NT3 ) i NT4
NT4 ) would like j need
S ) NT3 the least expensive 
ight from NT1 to denver

S ) please list the early 
ights from NT1 to denver

S ) NT2 me the 
ights that leave around noon

S ) i want to go to oakland

S ) NT2 me the cheapest fare to NT1
S ) NT3 to go to oakland

i would like the least expensive 
ight from boston to denver

i need the least expensive 
ight from boston to denver

i would like the least expensive 
ight from pittsburgh to denver

i need the least expensive 
ight from pittsburgh to denver

i would like the least expensive 
ight from philadelphia to denver

i need the least expensive 
ight from philadelphia to denver

please list the early 
ights from pittsburgh to denver

please list the early 
ights from boston to denver

please list the early 
ights from philadelphia to denver

please show me the 
ights that leave around noon

show me the 
ights that leave around noon

i want to go to oakland

show me the cheapest fare to philadelphia

please show me the cheapest fare to philadelphia

show me the cheapest fare to boston

please show me the cheapest fare to boston

show me the cheapest fare to pittsburgh

please show me the cheapest fare to pittsburgh

i need to go to oakland

i would like to go to oakland

Figure B-6: After merge (would like, need ! NT4)

136



NT1 ) pittsburgh j boston j philadelphia
NT2 ) please show j show
NT3 ) i NT5
NT5 ) would like j need j want
S ) NT3 the least expensive 
ight from NT1 to denver

S ) please list the early 
ights from NT1 to denver

S ) NT2 me the 
ights that leave around noon

S ) NT3 to go to oakland

S ) NT2 me the cheapest fare to NT1

i would like the least expensive 
ight from boston to denver

i need the least expensive 
ight from boston to denver

i want the least expensive 
ight from boston to denver

i would like the least expensive 
ight from pittsburgh to denver

i need the least expensive 
ight from pittsburgh to denver

i want the least expensive 
ight from pittsburgh to denver

i would like the least expensive 
ight from philadelphia to denver

i need the least expensive 
ight from philadelphia to denver

i want the least expensive 
ight from philadelphia to denver

please list the early 
ights from pittsburgh to denver

please list the early 
ights from boston to denver

please list the early 
ights from philadelphia to denver

please show me the 
ights that leave around noon

show me the 
ights that leave around noon

i want to go to oakland

show me the cheapest fare to philadelphia

please show me the cheapest fare to philadelphia

show me the cheapest fare to boston

please show me the cheapest fare to boston

show me the cheapest fare to pittsburgh

please show me the cheapest fare to pittsburgh

i need to go to oakland

i would like to go to oakland

Figure B-7: After merge (NT4, want ! NT5)

137



Bibliography

[1] A. Aho and J. Ullman. The Theory of Parsing, Translation and Compiling. En-
glewood Cli�s, NJ: Prentice-Hall, 1972.

[2] J. K. Baker. \Trainable grammars for speech recognition", Proc. Conference of

the Acoustical Society of America, 547{550, June 1979.

[3] A. Barr, E. Feigenbaum and P. Cohen. The Handbook of Arti�cial Intelligence.
Los Altos, CA: William Kaufman, 1981.

[4] R. Bod. \Monte carlo parsing", Proc. International Workshop on Parsing Tech-

nologies, 1{12, August 1993.

[5] L. Breiman, J. Friedman, R. Olshen and C. Stone. Classi�cation and Regres-

sion Trees. Monterey, CA: Wadsworth and Brooks/Cole Advanced Books and
Software, 1984.

[6] E. Brill. \A simple rule-based part of speech tagger", Proc. Conference on Applied

Natural Language Processing, 152{155, 1992.

[7] E. Brill. \A Corpus-Based Approach to Language Learning", Ph.D. Thesis, De-
partment of Computer and Information Science, University of Pennsylvania,
1993.

[8] E. Brill, D. Magerman, M. Marcus and B. Santorini. \Deducing linguistic struc-
ture from the statistics of large corpora", Proc. DARPA Speech and Natural

Language Workshop, 275{281, June 1990.

[9] E. Brill and M. Marcus. \Automatically acquiring phrase structure using dis-
tributional analysis", Proc. DARPA Speech and Natural Language Workshop,
155{159, February 1992.

[10] P. Brown, S. Chen, S. DellaPietra, V. DellaPietra, R. Mercer and P. Resnik.
\Using decision-trees in language modeling", Unpublished Report, 1991.

[11] P. Brown, V. Della Pietra, P. de Souza, J. Lai and R. Mercer. \Class-based n-
gram models of natural language", Computational Linguistics, Vol. 18, No. 4,
467{479, December 1992.

138



[12] S. Chen. \The Automatic Acquisition of a Statistical Language Model for En-
glish", Ph.D. Thesis in progress, Harvard University.

[13] K. Church and W. Gale. \A comparison of the enhanced good-turing and deleted
estimation methods for estimating probabilities of english bigrams", Computers,

Speech and Language, Vol 5, No 1, 19{56, 1991.

[14] T. M. Cover and J. A. Thomas. Elements of Information Theory. New York:
John Wiley and Sons Inc., 1991.

[15] J. Earley. \An e�cient context-free parsing algorithm", Communications of the

ACM, Vol. 13, 94{102, 1970.

[16] K. Fu and T. L. Booth. \Grammatical inference: introduction and survey |
part 1", IEEE Transactions on Systems, Man and Cybernetics, Vol. 5, No. 1,
95{111, January 1975.

[17] K. Fu and T. L. Booth. \Grammatical inference: introduction and survey |
part 2", IEEE Transactions on Systems, Man and Cybernetics, Vol. 5, No. 5,
409{423, July 1975.

[18] J. Glass, D. Goddeau, D. Goodine, L. Hetherington, L. Hirschman, M. Phillips,
J. Polifroni, C. Pao, S. Sene� and V. Zue. \The MIT atis system: January 1993
progress report", Proc. DARPA Spoken Language Systems Technology Workshop,
January 1993.

[19] D. Goddeau. \Using probabilistic shift-reduce parsing in speech recognition sys-
tems", Proc. International Conference on Spoken Language Processing, 321{324,
October 1992.

[20] E. M. Gold. \Language identi�cation in the limit", Information and Control,
Vol. 10, 447{474, 1967.

[21] I. J. Good. \The population frequencies of species and the estimation of popu-
lation parameters", Biometrika, Vol. 40, 237{264, 1953.

[22] I. Hetherington, M. Phillips, J. Glass and V. Zue. \A� word network search for
continuous speech recognition", Proc. European Conference on Speech Commu-

nication and Technology, 1533{1536, September 1993.

[23] L. Hirschman, et al., \Multi-site data collection for a spoken language system",
Proc. DARPA Speech and Natural Language Workshop, 7{14, February 1992.

[24] M. Jardino and G. Adda. \Language modelling for CSR of large corpus using
automatic classi�cation of words", Proc. European Conference on Speech Com-

munication and Technology, 1191{1194, September 1993.

[25] F. Jelinek. \Self-Organized language modeling for speech recognition", Readings
in Speech Recognition, Alex Waibel and Kai-Fu Lee, eds., 450{506, 1990.

139



[26] F. Jelinek, J. La�erty and R. Mercer. \Basic methods of probabilistic context free
grammars", Speech Recognition and Understanding: Recent Advances, Trends,

and Applications, P. Laface and R. De Mori, eds., Vol. 75, 1992.

[27] S. M. Katz. \Estimation of probabilities from sparse data for the language model
component of a speech recognizer", IEEE Transactions on Acoustics, Speech, and

Signal Processing, Vol. 35, 400{401, 1987.

[28] S. Kullback. Information Theory and Statistics. New York: John Wiley and Sons
Inc., 1959.

[29] K. Lari and S. J. Young. \The estimation of stochastic context-free grammars
using the inside{outside algorithm", Computer Speech and Language, Vol. 4, 35{
56, 1990.

[30] J. C. Martin. Introduction to Languages and the Theory of Computation. New
York: McGraw-Hill Inc., 1991.

[31] E. Newport, H. Gleitman and E. Gleitman. \Mother, I'd rather do it myself:
some e�ects and non-e�ects of maternal speech style", Talking to Children: Lan-

guage Input and Acquisition, C. E. Snow and C. A. Ferguson, eds., New York:
Cambridge University Press, 1977.

[32] H. Ney. \Stochastic grammars and pattern recognition", Speech Recognition and

Understanding: Recent Advances, Trends, and Applications, P. Laface and R. De
Mori, eds., Vol 75, 319{344, 1992.

[33] H. Ney and U. Essen. \On smoothing techniques for bigram-based natural lan-
guage modeling", Proc. International Conference on Acoustics, Speech, and Sig-

nal Processing, 825{828, May 1991.

[34] S. Penner. \Parental responses to grammatical and ungrammatical child utter-
ances", Child Development, Vol. 58, 376{384, 1987.

[35] F. Pereira and Y. Schabes. \Inside-outside reestimation from partially bracketed
corpora", Proc. DARPA Speech and Natural Language Workshop, 122{127, 1992.

[36] F. Pereira, N. Tishby and L. Lee. \Distributional clustering of English words",
Proc. 30th Annual Meeting of the Asoociation for Computational Linguistics,
128-135, 1992.

[37] S. Roucos. \Measuring perplexity of language models used in speech recognizers",
BBN Technical Report, 1987.

[38] S. Sene�. \TINA: A natural language system for spoken language applications",
Computational Linguistics, Vol. 18, No. 1, 61{86, 1992.

[39] S. Sene�, H. Meng and V. Zue. \Language modelling for recognition and un-
derstanding using layered bigrams", Proc. International Conference on Spoken

Language Processing, 317{320, October 1992.

140



[40] C. E. Shannon. \Prediction and entropy of printed English", Bell Systems Tech-

nical Journal, Vol. 30, 50{64, January 1951.

[41] S. M. Shieber. \Evidence against the context-freeness of natural language", Lin-
guistics and Philosophy, Vol. 8, 333{343, 1985.

[42] R. Solomono�. \A Formal Theory of Inductive Inference", Information and Con-

trol, Vol. 7, 1{22, 234{254, 1964.

[43] A Stolcke and J. Segal. \Precise n-gram probabilities from stochastic context-free
grammars", ICSI Technical Report, January 1994.

[44] L. G. Valiant. \A theory of the learnable", Communications of the ACM, Vol.
27, 1134{1142, 1984.

[45] A. Viterbi. \Error bounds for convolutional codes and an asymptotic optimal
decoding algorithm", IEEE Transactions on Information Theory, Vol. 13, 260{
269, April 1967.

[46] V. Zue, J. Glass, D. Goodine, M. Phillips and S. Sene�. \The SUMMIT speech
recognition system: phonological modelling and lexical access", Proc. Interna-
tional Conference on Acoustics, Speech, and Signal Processing, 49{52, 1990.

[47] V. Zue, J. Glass, M. Phillips and S. Sene�. \Acoustic segmentation and pho-
netic classi�cation in the summit speech recognition system", Proc. Interna-
tional Conference Acoustics, Speech, and Signal Processing, 389{392, 1989.

141


