
Global Partitioning of Parallel Loops and Data

Arrays for Caches and Distributed

Memory in Multiprocessors

by

Rajeev K. Barua

B.Tech., Computer Science and Engineering
Indian Institute of Technology, New Delhi

(1992)

Submitted to the
DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE
in partial ful�llment of the requirements

for the degree of

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

c
 1994 Massachusetts Institute of Technology

All rights reserved

Signature of Author:
Department of Electrical Engineering and Computer Science

May 12, 1994

Certi�ed by:
A. Agarwal

Associate Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by:
F. R. Morgenthaler

Chairman, Departmental Graduate Committee

Global Partitioning of Parallel Loops and Data

Arrays for Caches and Distributed

Memory in Multiprocessors

by

Rajeev K. Barua

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 1994 in partial ful�llment of the

requirements for the Degree of

Master of Science

in Electrical Engineering and Computer Science

ABSTRACT

This thesis presents a solution to the problem of automatically partitioning loops and
arrays for cache-coherent distributed memory multiprocessors. The compiler algo-
rithm described is intended for such machines, though it handles machines without
caches as well.

A loop partition speci�es the distribution of loop iterations across the processors.
A data partition speci�es the distribution of arrays. Loops are partitioned in order to
get good cache reuse, while data partitioning endeavors to make most array references
access the local memory of the processor issuing them. The problems of �nding loop
and data partitions are related, and must be done together. Our algorithm handles
programs with multiple nested parallel loops accessing many arrays with array access
indices being general a�ne functions of loop variables.

We present a cost model which estimates the cost of a loop and data partition
given machine parameters such as cache, local and remote access timings. Minimizing
the cost as estimated by our model is an NP-complete problem, as is the fully general
problem of partitioning. We present a heuristic method which provides solutions in
polynomial time.

The scheme has been fully implemented in our compiler for the Alewife machine.
We demonstrate the method on several small program fragments, and show per-
formance results on one large application, namely the conduct routine in SIMPLE,
which has 20 parallel loops (including both one and two dimensional loops) and 20
data arrays, which are shared by several loops.

Thesis Advisor: A. Agarwal

Title: Associate Professor of Computer Science and Engineering

Acknowledgments

The Alewife project at MIT is a collaborative project involving the contributions

of many people. It was using the infrastructure developed by these people that this

research was possible. Foremost, I like to thank my advisor Anant Agarwal for his

guidance and encouragement throughout the research project. He was the one who

got me interested in this area in the �rst place, and was a co-researcher for large parts

of the project. He, in e�ect taught me, a completely inexperienced researcher, how

to do research. His advice, in many things major and minor, has been invaluable.

David Kranz has been an active co-researcher in this work. Indeed, most of the

work in this thesis has been the result of our joint labor. His involvement throughout

the design and implementation stages of the project have been invaluable. It is safe

to say that without his help and deep knowledge of the existing system, this work

would not have been possible. The many brainstorming sessions that I have had with

Anant and David (sometimes both together) helped initiate many of the ideas in this

work. In some ways, the whole experience of learning to do research was perhaps

more valuable to me than the work itself.

Another person who I would like to thank is Venkat Natarajan of Motorola (Cam-

bridge). He has also been interested in this area, and the work in this thesis builds

up on the work he did with Anant and David before I joined the group. In addition

I spent last summer at Motorola working with him on an area very closely related to

this. His ideas and enthusiasm have been a great help.

Many other people have been a help during this project. Kirk Johnson, David

Chaiken, Beng-Hong Lim and John Kubiatowicz have always been ready to answer

my queries in various areas, and have helped �x bugs and write new routines for the

software for the compiler, simulator and kernel, whenever we reported bugs or asked

for additional functionality. Beng helped us provide a scan function in the compiler.

I thank my helpful o�cemates, David and Beng for their help and advice on many

occasions.

3

A special thanks to my apartment mates Nagi, Arvind and Naresh for providing

a great family-like environment at home. They and my other friends helped me get

through the times I was most stressed out, especially a period in October, and then

again in February/March, when the research work was the most hectic. Finally, I

thank my parents and sisters for the support and encouragement they give in many

ways.

4

Contents

1 Introduction 8

1.1 A Cost Model : 9
1.2 Overview of the Algorithm : 9
1.3 Method of Investigation : 10
1.4 Overview of Results : 10
1.5 Overview of the Rest of the Thesis : : : : : : : : : : : : : : : : : : : 10

2 Related Work 12

3 Loop Partitioning Overview 14

3.1 Footprints and Uniformly Intersecting Sets : : : : : : : : : : : : : : : 14
3.2 Cumulative footprint minimization : : : : : : : : : : : : : : : : : : : 17
3.3 An example : 18

4 The Cost Model 20

4.1 Derivation of the formula : 20
4.1.1 A basic formula : 21
4.1.2 Some De�nitions : 21
4.1.3 The Final Formula : 24

4.2 Limitations : 24

5 The Multiple Loops Heuristic Method 26

5.1 Graph formulation : 26
5.2 Iterative Method : 27

5.2.1 An example : 27
5.2.2 Details and �ne tuning : 29

5.3 Algorithm Complexity : 32

6 Cache and Data Locality: Relative Bene�ts and Tradeo�s 33

6.1 Cache Locality may be Overridden : : : : : : : : : : : : : : : : : : : 34
6.1.1 Crossover point : 35

6.2 Initial cache optimized solution may help : : : : : : : : : : : : : : : : 38
6.3 E�ect of Cache Optimization on Conduct : : : : : : : : : : : : : : : : 41

5

7 Results 43

8 Conclusions and Summary 47

8.1 Future work : 48

6

List of Figures

3.1 Iteration space partitioning is completely speci�ed by the tile at the origin. 15
3.2 Tile L at the origin of the iteration space. : : : : : : : : : : : : : : : : : 16
3.3 Footprint of L wrt B[i+ j; j] in the data space. : : : : : : : : : : : : : : 16
3.4 Data footprint wrt B[i+ j; j] and B[i + j + 1; j + 2] : : : : : : : : : : : 17

4.1 Di�erent uniformly intersecting sets have no overlap : : : : : : : : : : 23

5.1 Initial solution to loop partitioning (4 processors) : : : : : : : : : : : 28
5.2 Heuristic: iterations 1 and 2 (4 processors) : : : : : : : : : : : : : : : 28
5.3 The heuristic algorithm : 30

6.1 Initial solution : 35
6.2 Iterations : 35
6.3 Crossover point from data to cache locality domination : : : : : : : : : : 36
6.4 Contributions of cache, local and remote accesses to total : : : : : : : : 37
6.5 Cache-optimized initial solution : 39
6.6 Default initial solution : 39
6.7 E�ect of cache optimization on code fragment(Alewife) : : : : : : : : : : 40
6.8 E�ect of cache optimization on code fragment(UMA machine) : : : : : : 40
6.9 E�ect of cache optimization on Conduct(Alewife) : : : : : : : : : : : : : 41
6.10 E�ect of cache optimization on Conduct(UMA machine) : : : : : : : : : 42

7.1 Speedup over sequential for conduct. Problem size 153 x 133, double precision. 45
7.2 Percentage of total array references that were local. : : : : : : : : : : : : 46

7

Chapter 1

Introduction

The problem of loop and data partitioning for distributed memory multiprocessors

with global address spaces has been studied by many researchers [1, 2, 4, 14]. The

goal of loop partitioning for applications with nested loops that access data arrays is

to divide the iteration space among the processors to get maximum reuse of data in

the cache, subject to the constraint of having good load balance. For architectures

where non-local memory references are more expensive than local memory references,

the goal of data partitioning is to place data in the memory where it is most likely to

be accessed by the local processor. Data partitioning tiles the data space and places

the individual data tiles in the memory modules of the processing nodes.

In this work the interaction between loop and data partitioning is focused on.

If a loop is partitioned in order to get good data reuse in the cache, that partition

determines which processor will access each datum. In order to get good data locality,

the data should be distributed to processors based on that loop partition. Likewise,

given a partitioning of data, a loop should be distributed based on the placement

of data used in the loop. This introduces a con
ict when there are multiple loops

because a loop partition may have two competing constraints: good cache reuse may

rely on one loop partition being chosen, while good data locality may rely on another.

8

1.1 A Cost Model

In order to obtain a global partitioning of all loops and data in a program I introduce

a cost model that estimates the cost of executing a loop given the loop partitions

and the partitions of data arrays accessed by the loop. This cost model is based on

architectural parameters such as the cost of local and remote cache misses. The cost

model is used to drive an iterative solution to the global problem.

1.2 Overview of the Algorithm

This thesis presents a solution to the problem of determining loop and data parti-

tions automatically for programs with multiple loops and data arrays. We assume

that parallelism in the source program is speci�ed using parallel do loops. This can

either be done by a programmer, or by a previous dependence analysis and paral-

lelization phase. The algorithm presented is mainly directed towards cache-coherent

multiprocessors with physically distributed memory.

Initially, the basic algorithm for deriving loop partitions de�ned in [2] is used.

These partitions are optimized for cache reuse without regard to data locality. This

partition is used as an initial loop partition and the induced data partition is used

as the initial data partition. That is, we partition each array in the same way as the

largest loop that accesses that array. It may then be the case that there are loops

accessing multiple arrays that have a large number of remote references. It might

be better to re-partition such loops to increase data locality. This re-partition would

be at the expense of cache reuse; the better partition is determined by architectural

parameters using the cost model, which thus controls the heuristic search of the space

of global loop and data partitions.

The above outlines one iteration of the algorithm. Successive iterations are run

to improve upon the solution produced, with each iteration composing two phases:

a forward phase followed by a back phase. The forward phase �nds the best data

9

partitions given the current loop partitions, and the back phase possibly changes the

loop partitions given the newly determined data partitions.

1.3 Method of Investigation

The heuristic search method presented in this work has been implemented in our

compiler for the MIT Alewife machine and some results to �nd its e�ectiveness have

been collected. We will describe the implementation and present some results using a

part of the SIMPLE program. The NWO simulator [7] for the Alewife machine has

been used in this process. We present the improvement in locality achieved as well

as the impact on overall performance.

1.4 Overview of Results

It was found that the heuristic method provided signi�cant speedup over using the

method described in [2], which itself had signi�cant speedup over using random data

partitions with cache-optimized loop partitions. Further, it was found that for a

machine like Alewife in which remote accesses are much more expensive than local

accesses, the bene�t of cache locality optimization is small, relative to that of data

locality optimization. However, by changing the architectural parameters input to

the cost model, the bene�t of cache optimization was seen to increase as local access

time became closer to remote access time. In the extreme case of the two being equal

(uniform memory access machines), the cost model predicted a bene�t for cache

optimization only, as expected, while data partitioning became irrelevant.

1.5 Overview of the Rest of the Thesis

The rest of the thesis is organized as follows. Chapter 2 describes related work. Chap-

ter 3 describes the framework and notation used by [2], which we build on. Chapter 4

10

describes the cost model. Chapter 5 describes the heuristic method. Chapter 6 looks

at the relative bene�ts of, and the tradeo�s between, optimizing for cache and data

locality. Chapter 7 describes some experimental results. Chapter 8 concludes and

summarizes the thesis, and looks at possible future work.

11

Chapter 2

Related Work

The problem of data and loop partition has been looked at by many researchers. One

approach to solve this problem is to leave it to the user to specify data partitions

explicitly in the program, as in Fortran-D [10, 16]. Loop partitions are usually de-

termined by the owner computes rule. Though simple to implement, this requires

the user to thoroughly understand the access patterns of the program, a task which

is not trivial even for small programs. For real medium-sized or large programs, the

task is a very di�cult one. Presence of fully general a�ne function accesses further

complicates the process. Further, the user would need to be familiar with machine

architecture and architectural parameters to understand the trade-o�s involved.

Ramanujam and Sadayappan [14] deal with data partitioning in multicomputers

and use a matrix formulation; their results do not apply to multiprocessors with

caches. Their theory produces communication-free hyperplane partitions for loops

with a�ne index expressions when such partitions exist. However, when communication-

free partitions do not exist, they deal only with index expressions of the form variable

plus a constant.

Abraham and Hudak [1] look at the problem of automatic loop partitioning for

cache locality only for the case when array accesses have simple index expressions.

Their method uses a local per-loop analysis.

12

A more general framework was presented by Agarwal et. al. [2] for optimizing

for cache locality. They handled fully general a�ne access functions, i.e. accesses of

the form A[2i+j,j] and A[100-i,j] were handled. We borrow the concept of uniformly

generated references from their work, which was used earlier in Wolf and Lam [17] and

Gannon et. al. [8] also. However, they found local minima for each loop independently,

giving possibly con
icting data partitioning requests across loops.

The work of Anderson and Lam [4] does a global analysis across loops, but has the

following di�erences with our method: (1) It does not take into account the e�ect of

globally coherent caches. Many new multiprocessors have this feature. (2) It attempts

to �nd a communication free partition by satisfying a system of constraints, failing

which it resorts to rectangular blocking. Our method of having a cost model can eval-

uate di�erent competing alternatives, each having some amount of communication,

and choose between them. (3) We guarantee a load balanced solution.

Gupta and Banerjee [9] have developed an algorithm for partitioning doing a

global analysis across loops. They allow simple index expression accesses of the form

c
1
� i + c

2
, but not general a�ne functions. They do not allow for the possibility of

hyperparallelepiped data tiles, and do not account for caches.

The work of Wolf and Lam [18] complements ours. They deal with the problem

of taking sequential loops and applying transformations to them to convert them to

a set of parallel loops with at most one outer sequential loop. This technique can

be used before partitioning when the programming model is sequential to convert to

parallel loops.

13

Chapter 3

Loop Partitioning Overview

This chapter gives a brief summary of the method for loop partitioning to increase

cache reuse given in [2]. We use this method as the starting point for loop and

data partitioning. The method handles programs with loop nests where the array

index expressions are a�ne functions of the loop variables. In other words, the index

function can be expressed as,

~g(~i) = ~iG+ ~a (3.1)

where G is a l � d matrix with integer entries and ~a is an integer constant vector

of length d, termed the o�set vector. ~i is the vector of loop variables, and ~g(~i) is

the vector of array index expressions. Thus a�ne functions are those which can be

expressed as linear combinations of loop variables plus a constant. For example,

accesses of the form A[2i+j,100-i] and A[j] are handled, but not A[i2], where i,j are

nested loop induction variables.

3.1 Footprints and Uniformly Intersecting Sets

A loop partition L is de�ned by a hyperparallelepiped at the origin as pictured in

Figure 3.1. The number of iterations contained in L is jdetLj. The footprint of a loop

tile L with respect to an array reference is the set of points in the data space accessed

14

j

i(L , L)
 21 22

(L , L)
 11 12

L L
 11 12
L L
 21 22

L =

Figure 3.1: Iteration space partitioning is completely speci�ed by the tile at the origin.

by the loop tile as a result of the reference. This footprint is given by LG. A set

of references with the same G but di�erent o�sets are called uniformly intersecting

references. The footprints associated with such sets of references are the same shape,

but are translated in the data space. This can be illustrated using the following code

fragment.

Doall (i=0:99, j=0:99)

A[i,j] = B[i+j,j]+B[i+j+1,j+2]

EndDoall

This code has two uniformly intersecting references for array B and a G matrix given

by 2
64
1 0

1 1

3
75 :

Assume that the loop tile at the origin L is given by

2
64
L
1

L
1

L
2

0

3
75 :

Figure 3.2 shows this tile at the origin of the iteration space and the footprint of the

tile (at the origin) with respect to the reference B[i + j; j] is shown in Figure 3.3.

Finally, Figure 3.4 shows the combined footprints of both references.

15

(L ,0)

(L ,L)1 1

2

Figure 3.2: Tile L at the origin of the iteration space.

(L , 0)

(2L , L)

2

1 1

2

Figure 3.3: Footprint of L wrt B[i+ j; j] in the data space.

16

A

B

D

C

F

G

H

P

E

S

R

V

U

T

Figure 3.4: Data footprint wrt B[i+ j; j] and B[i+ j + 1; j + 2]

3.2 Cumulative footprint minimization

The objective of cache locality optimization is to have maximum reuse of data in the

cache. If the total number of references in the program loops is �xed, then this is

achieved by minimizing the sum of the cumulative footprints of all the arrays. This is

because all data elements in the cumulative footprints have only their �rst time access

not in cache, assuming a large enough cache, and no interference. [2] shows how L

can be chosen to minimize the number of cache misses. In doing so, it shows how the

combined footprints of a set of uniformly intersecting references can be characterized

by a single o�set vector â. This vector is used in the cost model presented in the next

chapter. The vector in a sense is the summary of all the o�set vectors in a uniformly

intersecting set. [2] presents a theorem giving the size of the cumulative footprint,

which we reproduce here:

Theorem 1 Given a hyperparallelepiped tile L and a unimodular reference matrix

G, the size of the cumulative footprint with respect to a set of uniformly intersecting

references speci�ed by the reference matrix G and a set of o�set vectors ~a
1
; :::; ~aR, is

approximately

j Det LGj+
Pd

k=1 j Det LGk!âj

17

where â = spreadLG(~a1; :::; ~aR) and LGk!â is the matrix obtained by replacing

the kth row of LG by â.

The above yields an expression for the cumulative footprint for one loop for each

array. The sum of these expressions for all the arrays in a loop yields the total cumu-

lative footprint of the loop. This can then be minimized by conventional methods to

obtain the loop partitioning with best cache locality. A complete description of this

technique appears in [2].

In the cost model we also refer to the data partition D. D represents how the data

space is tiled. This is represented as a tile at the origin of the data space just like L

is represented as a tile at the origin of the iteration space. An array reference in a

loop will have good locality when LG = D.

3.3 An example

This section presents an example of cache locality optimization using the above

method. Consider the following code fragment.

Doall (i=0:N, j=0:N)

A[i,j] = B[i+1,j]+B[i,j+2]

EndDoall

There are two uniformly intersecting classes of references, one for array A, and

one for B. Because A has only one reference, its footprint size is independent of the

loop partition, given a �xed total size of the loop tile, and therefore need not �gure

in the optimization process.

We may in our implementation choose to restrict loop tiles to be rectangles and

allow data tiles to be hyperparallelepipeds in general. This is not a serious loss in

exibility as either loop or data tiles being hyperparallelepipeds allows programs with

a�ne function accesses to match their loop and data tiles well. In our implementation,

18

since its easier and more e�cient to implement hyperparallelepiped data tiles than

loop tiles (for reasons not mentioned here), we make this choice.

Thus, assuming that the loop tile L is rectangular, it is given by

2
64
L
1

0

0 L
2

3
75 :

Because G for the references to array B is the identity matrix, the D = LG

matrix corresponding to references to B is the same as L , and the â vector is

spread((1,0),(0,2)) = (1,2). Thus the size of the corresponding cumulative footprint

according to theorem 1 is

�������
L
1

0

0 L
2

�������
+

�������
1 2

0 L
2

�������
+

�������
L
1

0

1 2

�������
:

The size of this cumulative footprint reduces to L
1
L
2
+ 2L

1
+ L

2
. We minimize

this subject to the constraint that the area of the loop tile, j Det Lj , is a constant to

ensure a balanced load. For example if the loop bounds are I; J then the constraint

is j Det Lj = IJ=P , where P is the number of processors.

The optimal values for L
1
and L

2
can be shown to satisfy the equation 2L

1
= L

2

using the method of Lagrange multipliers. Using actual values of P and the loop

bounds, they are solved for exactly.

19

Chapter 4

The Cost Model

In order to evaluate the combined cache and data locality of loop and data parti-

tions we use a cost function to compare di�erent solutions. This function takes, as

arguments, a loop partition, data partitions for each array accessed in the loop, and

architectural parameters that determine the relative cost of cache misses and remote

memory accesses. It returns an estimation of the cost of array references for the loop.

4.1 Derivation of the formula

In this section we shall de�ne the cost formula in terms of the variables used to de�ne

partitions in [2]. We shall begin in section 4.1.1 by stating a basic formula for total

access time in a loop, in terms of the number of cache, local and remote accesses in

the loop. Then in section 4.1.2, we shall de�ne certain functions, with a view to

using them to express the total number of accesses to di�erent levels of memory in

terms of the variables used to de�ne partitions. Finally in section 4.1.3 we shall show

how the number of accesses to di�erent levels of memory can actually be expressed

in terms of these functions.

20

4.1.1 A basic formula

We can express the cost due to memory references in terms of architectural parameters

in the following equation:

Ttotal access = TR(nremote) + TL(nlocal) + TC(ncache)

where TR; TL; TC are the remote, local and cache memory access times respectively,

and nremote; nlocal; ncache are the number of references that result in hits to remote

memory, local memory and cache memory. TC and TL are �xed by the architecture,

while TR is determined both by the base remote latency of the architecture and

possible contention if there are many remote references. TR may also vary with the

number of processors based on the interconnect topology.

ncache, nlocal and nremote depend on the loop and data partitions. The task we have

is to de�ne these three variables in terms of the notation presented for partitions

de�ned in Chapter 3. To do this exactly is a very hard problem. However, with

an approximation which is almost always true, it is tractable. We show how in the

remainder of this chapter.

4.1.2 Some De�nitions

We de�ne the functions Rb; Ff and Fb, which are all functions of the loop partition L,

data partition D and reference matrix G with the meanings given in Chapter 3. For

simplicity, we also use Rb; Ff and Fb, to denote the value returned by the respective

functions for the partition being evaluated.

In order to de�ne these functions, we need the concept of a base o�set for each

uniformly intersecting set. A uniformly intersecting set may contain several refer-

ences, each with slightly di�erent footprints due to di�erent o�sets in the array index

expressions. We pick one and call it the base o�set, or ~b. Whenever we induce a data

partition from a loop partition, we shall make the data partition coincide with the

21

footprint of the base o�set reference in the uniformly intersecting set.

De�nition 1 Rb is a function which maps L, D and G to the number of remote

references that result from a single index expression de�ned by G and the base o�set

~b, in accessing D.

In other words, Rb returns the number of remote accesses that result from a single

program reference in a parallel loop, where the data partitioning is speci�ed by D.

To simplify the computation of Rb we make an approximation: We assume that

one of the two following cases apply to loop and data partitions.

1. That loop partition L matches the data partition D perfectly, in which case we

assume that Rb = 0,

2. or that L does not match D, in which case we assume all references are remote.

The latter case results in the maximum value of Rb. Note that L matches D if

LG = D and the origin of D is a mapping of the origin of L with the given access

function. That is:

Rb = 0 if LG = D and Origin(D) = Origin(L)G +~b

= jDet Lj otherwise

where, Origin(D) is the o�set vector of the data tile in the data space at processor

zero, and Origin(L) is the o�set vector of the loop tile in the iteration space at

processor zero. Origin(L)G +~b is the mapping of the loop tile o�set vector into the

data space via the access matrix G.

The reason this is a good approximation is that both L and D represent regular

tiling of their spaces. This means that if L and D partially overlap at the origin, there

will be less overlap on other processors. For a reasonably large number of processors,

some will end up with no overlap as shown in the example in Figure 4.1. Since the

22

Doall (i=0:100, j=0:75)

B[i,j] = A[i,j] + A[i+j,j]

EndDoall

(a) Code fragment

0 1 2 3

4 5 6 7
Rectangles : Footprints for A[i,j]

Parallelograms : Footprints for A[i+j,j]

Processor 7’s footprints have no overlap

(Numbering for footprints of A[i,j]

75

0

0 100 175

(b) Data space for Array A(8 processors)

Figure 4.1: Di�erent uniformly intersecting sets have no overlap

execution time for a parallel loop nest is limited by the slowest processor, it will be

the same as if all processors had no overlap. Hence, this is a very good approximation.

De�nition 2 Fb is the number of �rst time accesses in the footprint of L with base

o�set ~b. Hence:

Fb = jDet Lj

De�nition 3 Ff is di�erence between (1) the cumulative footprints of all the refer-

ences in a given uniformly intersecting set for a loop tile, and (2) the base footprint

due to a single reference represented by G and the base o�set ~b. We refer to Ff as

the peripheral footprint.

Although the exact details of how Ff is computed is not important to understanding

the heuristic method in the next chapter, [2] demonstrates that Ff can be computed

as:

23

Ff =
Pd

k=1 j Det Dk!âj

where â is the spread vector of references as mentioned in Chapter 3, and de�ned

in [2].

4.1.3 The Final Formula

Theorem 2 The cumulative access time for all accesses in a loop with partitioning

L, accessing an array having data partition D with reference matrix G in a uniformly

intersecting set, is

Ttotal access = TR(Rb + Ff) + TL(Fb �Rb) + TC(nref � (Ff + Fb))

where nref is the total number of references made by a loop tile for the uniformly

intersecting set.

This result can be derived as follows. The number of remote accesses nremote is

the number of remote accesses with the base o�set, which is Rb, plus the size of the

peripheral footprint Ff , giving nremote = Rb + Ff . The number of local references

nlocal is the base footprint, less the remote portion, i.e. Fb�Rb. The number of cache

hits ncache is clearly nref � nremote � nlocal which is equal to nref � (Ff + Fb).

4.2 Limitations

The cost model is incomplete in the following two ways. A complication arises when

one uniformly intersecting set in
uences another. This may happen when two loops

access the same array with the same reference matrix G resulting in ncache to be

higher than predicted above. This is because much of the data may be in the cache

due to the earlier loop when we execute the later loop.

Also, a linear
ow of control through the loop nests of the program has been as-

sumed. While this is a common case, conditional control
ow still should be handled.

24

Although this case is not handled now, we intend to handle this by assigning prob-

abilities to each loop nest, perhaps based on pro�le data. This probability can then

be multiplied by the loop size to get an e�ective loop size for the algorithm to use.

I have not yet implemented solutions to these two problems as yet.

25

Chapter 5

The Multiple Loops Heuristic

Method

In this chapter we present the heuristic search algorithm for �nding loop and data

partitions. We begin by stating the bipartite graph data structure we use in the

optimization process in section 5.1. Next we present the method itself in section 5.2.

Section 5.2.1 demonstrates the method by an example, and section 5.2.2 presents

certain details of the method. Finally section 5.3 shows that the algorithm has

polynomial time complexity.

5.1 Graph formulation

A commonly used natural representation of a program with many loops accessing

many arrays is a bipartite graph G = (Vl; Vd; E), as in [4]. We picture the loops as a

set of nodes Vl on the left hand side, and the data arrays as a set of nodes Vd on the

right. An edge e2E between a loop and array node is present if and only if the loop

accesses the array. The edges are labeled by the uniformly intersecting set(s) they

represent.

26

5.2 Iterative Method

The basic method is the following. We begin with an initial loop partition arrived at

by the single loop optimization method described in Chapter 3. Then we follow an

iterative improvement method with each iteration having two phases: the �rst (for-

ward) phase �nds the best data partitions given loop partitions, and the second (back)

phase determines the values of the loop partitions again, given the data partitions

just determined.

Speci�cally, in the forward phase we set the data partition of each array to be

one of the data partitions induced by the loops accessing it. The choice is to pick the

data partition induced by the largest loop accessing it. There are some details and

changes to this basic strategy which we discuss in Section 5.2.2. In the back phase

we set the loop partition of each loop to be one of the loop partitions induced by the

arrays accessed by the loop. We use the cost model to evaluate the alternative loop

partitions and pick the one with the minimum cost.

These forward and backward phases are repeated, each time using the cost model

to determine the estimated array reference cost for the current partitions. After some

number of iterations, the best partition found so far is picked as the �nal partition.

Termination is discussed in Section 5.2.2. In practice this heuristic seems to perform

quite well.

5.2.1 An example

We demonstrate the workings of the heuristic on a simple example. Consider the

following code fragment:

Doall (i=0:99, j=0:99)

A[i,j] = i * j

EndDoall

Doall (i=0:99, j=0:99)

27

i , j

i , j

j , i

X

Y

A

B0 1

2 3

0 1

2 3

(loop spaces)

Figure 5.1: Initial solution to loop partitioning (4 processors)

i , j

i , j

j , i

X

Y

A

B0 1

2 3

0 1

2 3

i , j

i , j

j , i

X

Y

A

B0 1

2 3

0 1

2 3

i , j

i , j

j , i

X

Y

A

B0 1

2 3

0

1

2

3
i , j

i , j

j , i

X

Y

A

B0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0

1

2

3

0 1

2 3

0 1

2 3

0 1

2 3

0

1

2

3

Iteration 1

Iteration 2

forward phase back phase

forward phase back phase

(changed)

(optimal solution)

(loop spaces) (data spaces)

Figure 5.2: Heuristic: iterations 1 and 2 (4 processors)

B[i,j] = A[j,i]

EndDoall

The code does a transpose of A into B. The �rst loop is represented by X and

the second by Y. The initial cache optimized solution for 4 processors is shown in

Figure 5.1. In this example, as there is no peripheral footprint for either array, a

default load balanced solution is picked. Iterations 1 and 2 with their forward and

back phases are shown in Figure 5.2.

In iteration 1's forward phase A and B get data partitions induced by their largest

accessing loops. Since both loops here are equal in size, the compiler picks either,

and one possible choice is shown by the arrows. In 1's back phase, loop Y cannot

28

match both A and B's data partitions, and the cost estimator indicates that matching

either has the same cost. So an arbitrary choice as shown by the back arrows induces

unchanged data partitions. So until now, nothing has changed from the beginning.

In iteration 2, something more interesting happens. As explained in the next

section, the choice of data partitions to be induced in the forward phase is favored in

the direction of change. So now array A picks a di�erent data partition from before,

induced by Y instead of X. In the back phase loop X now changes its loop partition to

reduce cost as dictated by the cost estimator. This is the best solution we �nd, and

no further change is induced in subsequent iterations. In this case, this best solution

is also the optimal solution as it has 100% locality.

The choices we made for tie breaking when costs were equal and for inducing

forward iterations were worst case: any other choice would have a solution in the

same or lesser time. For example, if in iteration 1's forward phase array A's data

partition was induced by Y instead of X, we would �nd the same solution in iteration

1's back phase itself. Finally, we note that in this example a communication-free

solution exists and was found. More generally, if one does not exist, the heuristic will

evaluate many solutions and will pick the best one it �nds.

5.2.2 Details and �ne tuning

An algorithmic outline of the heuristic method is presented in Figure 5.3. Some of

the issues in the algorithm are discussed in this section. These are determining how

many iterations we should use, solving the problem of local minima, and a heuristic

to ensure progress in the algorithm.

Number of iterations The length of the longest path in the bipartite graph seems

to be a reasonable bound on the number of iterations. This is because we need

partitions in one part to propagate changes to distant parts of the graph. The time

needed to do this is bound by the longest acyclic path in the graph, and along this

29

Procedure Do forward phase()

for all d 2 Data set do

if Progress
ag[d] then

l largest loop accessing d which induces changed Data partition[d]

Data partition[d] Partition induced by Loop partition[l]

Origin[d] Access function mapping of Origin[l]

endif

Inducing loop[d] l

endfor

end Procedure

Procedure Do back phase()

for all l 2 Loop set do

d Array inducing Loop partition[l] with minimum cost of accessing all its data

Loop partition[l] Partition induced by Data partition[d]

Origin[l] Inverse access function mapping of Origin[d]

if Inducing loop[d] 6= l then

Progress
ag[d] false

endif

endfor

end Procedure

Procedure Partition

Loop set : set of all loops in the program

Data set : set of all data arrays in the program

Graph G : Bipartite graph of accesses in Loop set to Data set

Min partitions �

Min cost 1

for all d 2 Data set do

Progress
ag[d] true

endfor

for i= 1 to (length of longest path in Graph G) do

Do forward phase()

Do back phase()

Cost Find total cost of current partition con�guration

if Cost < Min cost then

Cost Min cost

Min partitions Current partition con�guration

endif

if cost repeated then /* convergence or oscillation */

for all d 2 Data set do /* force progress */

Progress
ag[d] true

endfor

endif

endfor

end Procedure

Figure 5.3: The heuristic algorithm

30

length changes are propagated . This bound seems to work well in practice. Further

increases in this bound did not provide a better solution in the examples we tried.

Local Minima and Progress We had mentioned earlier that the forward phase of

the algorithm chooses the new data partition to be one of the partitions induced by

the di�erent loops accessing the array. One possibility is to choose the data partition

that minimizes cost. In machines with caches, this is the data partition induced by

the largest loop accessing the array. However, we notice that in the back phase cost

is already being minimized in selecting loop partitions. Hence we have some leeway

in applying another rule here, which will help us solve the problem of local minima.

A 'local minimal solution' is one at which all local choices of loop and data partitions

minimize cost, but the solution is not globally minimal. When we used the largest

loop rule in the forward phase and applied it to several small programs the results

were reasonable, but the heuristic failed to �nd optimum solutions in some cases. The

reason was that the heuristic had reached a local minimum solution, and made no

further progress.

We solved this problem by adding the following heuristic. We want the algorithm

not to remain at a local minima, i.e. we want some rule to ensure progress in the

algorithm. So we choose the data partition in the forward phase such that we prefer

to change the partition if there is a loop which induces a change. However we do not

want to change too fast either, before a data partition has had a chance to induce

other partitions in the graph to match it. So we add the rider that we will not move in

the direction of change if some loop (other than the one which induced this partition

in the �rst place) in the previous iteration had its loop partition induced by this

array's current partition.

Another Progress Heuristic Another improvement is that on reaching a situation

in which there is convergence or oscillation in iterations, we simply enforce change

at all data partition selections in the forward phase. This sets o� the heuristic on

31

another path, which sometimes �nds a better solution before the iteration count

bound is reached. The above two progress optimizations considerably improve the

heuristic, and make it more robust. In many small programs we tried, the heuristic

now �nds the known optimal solution. In the large hydrodynamics application we

ran we do not know the optimal, but the heuristic �nds a solution with locality quite

close to an upper bound we calculated for it.

5.3 Algorithm Complexity

In this section we show that the above heuristic runs in polynomial time in n, the

number of loops in the program, and m, the number of distributed arrays they access.

We note at this point that an exhaustive search guaranteed to �nd the optimal for this

NP-complete problem is not practical. One algorithm we designed had complexity

O(nm). For the large application we ran, n = 20 and m = 20, and this would give a

time of thousands of years on the fastest machines of today.

Theorem 3 The time complexity of the above heuristic is O(n2m+m
2

n).

To �nd the the complexity of the heuristic, we note that the number of iterations

is the length of the longest acyclic path in the bipartite graph, which is bounded

above by n+m. The time for one iteration is the sum of the times of the forward and

back phases. The forward phase does a selection among m possible loop partitions for

each of n loops, giving a bound of O(nm). The back phase does a selection among n

possible data partitions for each of m arrays, giving a bound of O(nm). Thus overall

the time is O((n+m)mn) = O(n2m+m
2

n).

32

Chapter 6

Cache and Data Locality: Relative

Bene�ts and Tradeo�s

This chapter demonstrates through examples the tradeo�s between optimizing for

cache and data locality which the heuristic method makes. We also see how architec-

tural parameters of the target machine a�ect the choice of optimal partitioning found.

The relative bene�ts of cache and data locality are measured by doing data-locality

optimizations alone, and then doing both optimizations. Since this chapter does not

add anything to the description of the method, but only to an understanding of the

same and of the relative bene�ts of cache and data locality optimization, a reader

looking for just an overview of this thesis could skip over to the next chapter.

Section 6.1 shows how cache locality considerations may be overruled by data

locality considerations for one example. Section 6.1.1 shows that cache locality e�ects

ultimately dominate over data locality e�ects for the same example, as the local access

latency is increased to make it closer to remote access latency. Section 6.2 shows an

example of how an initial cache optimized solution helps. Section 6.3 presents the

e�ect of the same on conduct, a large application.

33

6.1 Cache Locality may be Overridden

In case the target machine architecture has remote access time signi�cantly larger

than local access time, cache locality could often be sacri�ced in order to satisfy data

locality in case their demands con
ict during iterations. The Alewife machine is an

example of a machine where this is quite likely. See chapter 7 for Alewife access

parameters. These decisions are made during the back phase of the heuristic, when

the cost estimator decides which e�ect is more important. This does not mean that

cache optimization in this case gave no bene�t, as the choice of the initial solution

being one optimized for caches will lead to some bene�t over choosing the initial

solution to be a default non-cache optimized solution.

Here we present an example of such a case. Consider the code fragment below.

Doall (i=0:127, j=0:125)

A[i,j] = B[i,j]+B[i,j+2]

EndDoall

Doall (i=0:125, j=0:127)

A[i,j] = B[i,j]+B[i+2,j]

EndDoall

The �rst loop asks for an initial solution based on cache locality as blocked

columns, while the second asks for blocked rows. These solutions minimize the cu-

mulative footprint of array B in both loops. Let us consider the portion of the graph

with array B only, as that is the only array which is shared or has any demand based

on cache locality. Figure 6.1 shows this initial solution.

Figure 6.2 shows the �rst iteration. In the forward phase, array B gets a data

partition based on its largest accessing loop. Here since both loops are of the same

size, (say) loop 2 is picked. In the back phase, loop 1 has a choice of either retaining

its current partition to optimize cache locality or changing to a blocked row partition

to optimize data locality. For Alewife's parameters, our cost estimator found it better

34

X

Y

B

0
1
2
3

0 1 2 3

(loop spaces)

Figure 6.1: Initial solution

X

Y

B

0
1
2
3

0 1 2 3

(loop spaces)

0
1
2
3

X

Y

B

0
1
2
3

(loop spaces)

0
1
2
3

(data spaces) (data spaces)

0
1
2
3

forward phase back phase

Iteration 1

Figure 6.2: Iterations

to satisfy data locality. This choice is shown in the �gure, and is the best solution

found.

6.1.1 Crossover point

Suppose instead of Alewife's parameters, the cost model was given input parameters

such that cache accesses were much cheaper than local accesses, but the latter only

slightly cheaper than remote accesses. In such a case it may be possible that cache

locality considerations override data locality considerations. To see at what point

cache locality dominates we plotted a curve of total estimated access time while

varying local access time, keeping cache and remote access times �xed. We �x TC

= 4 cycles, and TR = 240 cycles. Since remote and local accesses fetch cache lines

(assumed 16 bytes), this is an e�ective remote access time of about 120 cycles for

8 byte
oating point numbers (cache:remote = 4:120 = 1:30). We vary TL between

these two values, and the result is shown in �gure 6.3.

The crossover point is when, as TL is increased, the �rst loop retains its initial

35

� data locality dominates
� cache locality dominates

|

0
|

30
|

60
|

90
|

120
|

150
|

180
|

210
|

240

|0

|20000

|40000

|60000

|80000

|100000
|120000

|140000

|160000

|180000

|200000

|220000

|240000

|260000

 Local latency

 E
st

im
at

ed
 c

o
st

�

�

�

�

��
���

�

�

Figure 6.3: Crossover point from data to cache locality domination

36

� total cache access time
� total local access time

 total remote access time

|

0
|

30
|

60
|

90
|

120
|

150
|

180
|

210
|

240

|0

|20000

|40000

|60000

|80000

|100000
|120000

|140000

|160000

|180000

|200000

|220000

|240000

|260000

 Local latency

 E
st

im
at

ed
 c

o
st

� � � � ����� � �

�

�

�

�

��

���
�

�

Figure 6.4: Contributions of cache, local and remote accesses to total

37

cache optimized tile in the back phase of iteration 1. It was measured by observing

the actual partitions generated. In this case, the crossover occurred when TL = 212

cycles.It was found that cache locality dominates only when TL is quite to TR, and

much larger than TC. For other examples, the crossover point might be lower or

higher.

In order to better understand this solution, plots of the total remote, local and

cache access time contributions are presented as TL is varied, in �gure 6.4. The sum

of the three contribution curves equals the curve in �gure 6.3. As the partitioning

solutions on each side of the crossover point are the same, but di�erent from the

solutions on the other side, the remote and cache contributions remain constant on

each side, as TR and TC remain �xed. But as TL is varied, the local contribution

increases on both sides. However, we note that the local timing is a larger fraction of

the total time on the left hand side of the crossover point. This is expected, as the

solution is optimized for data locality on the left hand side, and most data is local.

6.2 Initial cache optimized solution may help

In the above example, we saw a case where cache locality considerations were over-

ridden by data locality considerations .Here we present an example where having the

initial solution as cache-optimized lead to a gain, even though it was relatively small.

The gain was over a default initial partition where all the loops were partitioned in

a square blocked fashion. The globally optimizing heuristic was then run on each of

the initial solutions, and the estimated costs compared.

We did this comparison on the program fragment below.

Doall (i=0:255, j=0:255)

A[i,j] = 1

EndDoall

Doall (i=0:251, j=0:255)

38

X

Y B0 1 2 3

(loop spaces)

A0 1
2 3

Figure 6.5: Cache-optimized initial solution

X

Y B

(loop spaces)

A0 1
2 3

0 1
2 3

Figure 6.6: Default initial solution

B[i,j] = A[i,j]+A[i,j+4]

EndDoall

Figure 6.5 shows the cache-optimized initial solution, while 6.6 shows the default

square blocked initial solution. We ran the global heuristic beginning with each

of these solutions initially for Alewife's access parameters, and then for a Uniform

memory access (UMA) machine (TL = TR), giving two graphs each of two curves.

The curves for Alewife are shown in �gure 6.7, while the curves for a UMA machine

with TL = TR = 240 cycles, TC = 4 cycles are shown in �gure 6.8.

We see that a bene�t for using an initial cache-optimized solution was seen in

both types of machines, as expected. The gains were small, but signi�cant (3 to 6%).

We also found that no further gains were obtained when the cache e�ects due to

peripheral footprints were taken into account in subsequent iterations. This was due

to the e�ect described in section 6.1 for NUMA machines. For UMA machines, of

course, the �rst iteration itself yields the optimal solution.

39

� Cache-optimization ON

 Cache-optimization OFF

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|0

|30000

|60000

|90000

|120000

|150000

|180000

|210000

|240000

|270000

|300000

|330000

|360000

 Number of Processors

 E
st

im
at

ed
 c

os
t (

cy
cl

es
)

�

�

�

�

Figure 6.7: E�ect of cache optimization on code fragment(Alewife)

� Cache-optimization ON

 Cache-optimization OFF

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|0

|400000

|800000

|1200000

|1600000

|2000000

|2400000

|2800000

|3200000

 Number of Processors

 E
st

im
at

ed
 c

os
t (

cy
cl

es
)

�

�

�

�

Figure 6.8: E�ect of cache optimization on code fragment(UMA machine)

40

� Cache-optimization ON

 Cache-optimization OFF

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|0

|60000

|120000

|180000

|240000

|300000

|360000

|420000

|480000

|540000

|600000

 Number of Processors

 E
st

im
at

ed
 c

os
t (

’0
00

 c
yc

le
s) �

�

�

�

Figure 6.9: E�ect of cache optimization on Conduct(Alewife)

We conclude that an initial cache optimized solution is a useful optimization for

some programs.

6.3 E�ect of Cache Optimization on Conduct

We performed the same experiment as described in the previous section on the con-

duct routine of the SIMPLE application, a hydrodynamics code from the Lawrence

Livermore National Lab, with 20 loops and 20 arrays. That is, estimated costs for a

large version of conduct were obtained for initial solution cache optimization turned

on and o�, for both Alewife and a UMA machine. The curves for Alewife are shown

in �gure 6.9, while the curves for a UMA machine are shown in �gure 6.10.

In this case we found measurable but almost negligible bene�t in each case. The

two curves for both machines were so close that they seem to coincide on the plot

(they di�ered by at most about 0.1%). In the case of Alewife, estimated costs for lower

41

� Cache-optimization ON

 Cache-optimization OFF

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|0

|40000

|80000

|120000

|160000

|200000

|240000

|280000

|320000

|360000

|400000

 Number of Processors

 E
st

im
at

ed
 c

os
t (

’0
00

0
cy

cl
es

)

�

�

�

�

Figure 6.10: E�ect of cache optimization on Conduct(UMA machine)

number of processors was actually marginally higher with the optimization turned on.

This is explained as there is a higher probability of tiles matching up with each other

in iterations if they were all partitioned in the same default way to begin with. With

higher number of processors, the bene�t of cache optimization rises as the peripheral

footprint area becomes a larger percentage of a reducing total area per tile, and a net

gain in the optimization is seen. In the case of UMA machines, there was always a

bene�t, but a very small one. In any case the two curves never di�er by more than

0.1%, and hence any di�erence is insigni�cant.

The reason for the lack of bene�t of cache optimization on conduct was seen on

examination of the partitions generated. It turned out that for the particular example

of conduct, by coincidence, the cache-optimized initial solutions demanded for the tiles

was exactly the same as the default for all the 20 loops save one.

Hence we conclude that an initial cache optimized solution may not make a dif-

ference for some programs, and leads to gains in others.

42

Chapter 7

Results

We have implemented the algorithm described in this thesis as part of our compiler

for the Alewife [3] machine. The Alewife machine implements a shared global address

space with distributed physical memory and coherent caches. The nodes contain

slightly modi�ed SPARC processors and are con�gured in a 2-dimensional mesh net-

work. The approximate Alewife latencies are: 2 cycle cache hit (4 bytes), 3 cycle

cache hit (8 bytes), 11 cycle local memory hit, 40 cycle remote access assuming no

contention. Local and remote accesses fetch cache lines (16 bytes). The last number

will be larger for large machine con�gurations.

As an example, we ran the conduct routine from the SIMPLE application , a

hydrodynamics code from the Lawrence Livermore National Lab, on the Alewife

machine simulator, known as NWO [7]. This is the same code used as the example

in [4]. It has 20 loop nests. They used a problem size of 1K by 1K but, because we

were using a simulator, we used a problem size about 50 times smaller. We use a

static partition for the data. Combining the possibility of runtime data migration as

in [4] with our algorithm might well improve performance.

We ran the conduct code using three di�erent data partitions:

global This is the partition obtained by running the algorithm described in this

thesis.

43

local To get this partition, we do the loop part of the analysis to determine the

loop partition, and then partition each array by using the loop partition of the

largest loop that accesses the array. This analysis proceeds as in global but

stops before the �rst backward step of the iteration.

random This partition just allocates the data across processors with no regard for

data locality. However it does loop partitioning optimized for cache locality.

Figure 7.1 shows the speedups obtained for the global, local, and random parti-

tions. We see that the global partitioning heuristic provides a signi�cant increase in

performance over local, which itself is signi�cantly faster than using a random data

partition.

The results for data-only optimization (initial cache optimized solution not used)

are not presented. Meaningful results for that case, not a�ected by the load imbalance

because of the small problem size we are using, which can be obtained by scaling the

problem size upwards, will require too much simulation time on our current simulator.

In lieu of this data, we did present estimated total access times for a scaled-up conduct

routine with and without an initial cache optimized solution in section 6.3. Simulat-

ing a larger problem size should not be a problem once the Proteus [5] simulator for

Alewife is available.

We see that the local version does pretty well. This is partly because the remote

latency of the machine we simulated is quite low. Future work will have much more

data, including a larger problem size and larger number of processors, as well as results

of varying remote memory latency. The di�erent partitions impact the percentage of

local versus remote references quite dramatically as shown in Figure 7.2. In all cases

the cache hit rate was around 88%.

The overall speedups are not that large compared to those shown in [4] for four

reasons.

1. The problem size we used is 50 times smaller resulting in more overhead asso-

ciated with barriers.

44

 global
� local
� random

|

0
|

4
|

8
|

12
|

16

|0

|2

|4

|6

|8

|10

 Number of Processors

 s
p

ee
d

u
p

�

�

�

�

�

�

�

�

Figure 7.1: Speedup over sequential for conduct. Problem size 153 x 133, double precision.

2. The Stanford Dash [12] machine distributes data which does not �t in local

memory across the network in the one-processor run case, which Alewife does

not do. Hence their sequential run would be relatively slower than ours, giving

a larger speedup for Dash.

3. Our simulation only counts one cycle for each
oating-point operation, e�ec-

tively increasing the communication to computation ratio and lowering speedup.

4. We do not dynamically relocate data when the direction of parallelism changes

as they do. This results in many more remote references. In fact, our mea-

surements are similar to what they show when they do not do the dynamic

movement.

It still appears that our method signi�cantly decreases the number of remote

references even though the overall performance impact depends on these other factors.

45

 global
� local
� random

|

0
|

4
|

8
|

12
|

16

|0

|10

|20

|30

|40

|50
|60

|70

|80

|90

|100

 Number of Processors

 %
 lo

ca
l r

ef
s

�

�

�

�

�

�

�

�

Figure 7.2: Percentage of total array references that were local.

46

Chapter 8

Conclusions and Summary

This thesis has presented a method and algorithm for automatically partitioning

multiple loops and data by evaluating the con
ict between cache locality and data

locality. By making the approximation that an array reference in a loop partition

will have all access local or all remote, we can use a simple cost function to guide

a heuristic search through the global space of loop and data partitions. We have

implemented this method in our compiler and shown results for a routine of a large

application.

Obtained results show that global data partitioning is an important factor in

getting good performance. Cache locality optimization is somewhat less important

for machines like Alewife, in which remote latency is signi�cantly more expensive than

local latency. However the relative importance of doing cache locality optimization

increases as local access time becomes a larger fraction of remote access time. In the

extreme case when they are equal (UMA machines), data locality holds no meaning,

and only cache locality optimization provides gains.

A contribution of this thesis is that this method attempts to do the best possible

irrespective of the type of machine.

47

8.1 Future work

In order to evaluate these techniques fully future work will include runs on larger

numbers of processors with more applications. Current results indicate that com-

bining loop and data partitioning is important in obtaining the best performance on

cache-coherent distributed memory multiprocessors.

Prefetching is a promising technique for latency reduction in multiprocessors.

Software-controlled prefetching [6, 11, 13, 15] involves placing prefetch instructions

in the compiler generated code. Future compiler implementations could incorporate

prefetching and our partitioning scheme, and measure how well they complement each

other.

We would like to add the possibility of copying data at runtime to avoid remote

references as in [4]. This factor could be added to our cost model. We do however sus-

pect that data relocation is probably less important in cache-coherent shared memory

machines than in message passing machines.

48

Bibliography

[1] S. G. Abraham and D. E. Hudak. Compile-time partitioning of iterative parallel
loops to reduce cache coherency tra�c. IEEE Transactions on Parallel and

Distributed Systems, 2(3):318{328, July 1991.

[2] Anant Agarwal, David Kranz, and Venkat Natarajan. Automatic Partitioning
of Parallel Loops for Cache-Coherent Multiprocessors. In 22nd International

Conference on Parallel Processing, St. Charles, IL, August 1993. IEEE. A version
of this paper appears as MIT/LCS TM-481, December 1992.

[3] A. Agarwal et al. The MIT Alewife Machine: A Large-Scale Distributed-Memory
Multiprocessor. In Proceedings of Workshop on Scalable Shared Memory Multi-

processors. Kluwer Academic Publishers, 1991. An extended version of this paper
has been submitted for publication, and appears as MIT/LCS Memo TM-454,
1991.

[4] Jennifer M. Anderson and Monica S. Lam. Global Optimizations for Parallelism
and Locality on Scalable Parallel Machines. In Proceedings of SIGPLAN '93,

Conference on Programming Languages Design and Implementation, June 1993.

[5] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl. Pro-

teus: A high-performance parallel-architecture simulator. Technical Report
MIT/LCS/TR-516, Massachusetts Institute of Technology, September 1991.

[6] David Callahan, Ken Kennedy, and Allan Porter�eld. Software Prefetching.
In Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS IV), pages 40{52. ACM, April 1991.

[7] David Chaiken. NWO User's Manual. ALEWIFE Memo No. 36, Laboratory for
Computer Science, Massachusetts Institute of Technology, June 1993.

[8] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory
management by global program transformation. Journal of Parallel and Dis-

tributed Computing, 5:587{616, 1988.

49

[9] M. Gupta and P. Banerjee. Demonstration of Automatic Data Partitioning Tech-
niques for Parallelizing Compilers on Multicomputers. IEEE Transactions on

Parallel and Distributed Systems, 3(2):179{193, March 1992.

[10] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran
D for MIMD Distributed Memory Machines. Communications of the ACM,
35(8):66{80, August 1992.

[11] Alexander C. Klaiber and Henry M. Levy. An Architecture for Software-
Controlled Data Prefetching. In Proceedings of the 18th International Conference

on Computer Architecture, Toronoto, May 1991.

[12] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. Lam. The Stanford Dash Multiprocessor. IEEE Computer,
25(3):63{79, March 1992.

[13] Todd Mowry and Anoop Gupta. Tolerating Latency Through Software-
Controlled Prefetching in Shared-Memory Multiprocessors. Journal of Parallel

and Distributed Computing, 12(2):87{106, June 1991.

[14] J. Ramanujam and P. Sadayappan. Compile-Time Techniques for Data Distri-
bution in Distributed Memory Machines. IEEE Transactions on Parallel and

Distributed Systems, 2(4):472{482, October 1991.

[15] Monica S. Lam Todd C. Mowry and Anoop Gupta. Design and evaluation of
a compiler algorithm for prefetching. In Proceedings of the Fifth ACM Int'l

Conference on Architectural Support for Programming Languages and Operating

Systems, Oct 1992.

[16] C.-W. Tseng. An Optimizing Fortran D compiler for MIMD Distributed-Memory

Machines. PhD thesis, Rice University, Jan 1993. Published as Rice COMP
TR93-199.

[17] M. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of

the ACM SIGPLAN 91 Conference Programming Language Design and Imple-

mentation, pages 30{44, 1991.

[18] Michael E. Wolf and Monica S. Lam. A Loop Transformation Theory and an
Algorithm to Maximize Parallelism. In The Third Workshop on Programming

Languages and Compilers for Parallel Computing, August 1990. Irvine, CA.

50

