MIT/LCS/TR-64
A GRAPH MODEL FOR PARALLEL COMPUTATIONS
Jorge E. Rodriguez

September 1969

Tius blank page was inserted to preserve pagination.

R - 0T S
b5
P

September, 1969 ‘ Report Nos. ESL-R-398
MAC-TR-64

A GRAPH MODEL FOR PARALLEL COMPUTATIONS

by
Jorge E. Rodriguez

The work reported in this document has been jointly supported by the
Air Force Manufacturing Technology Laboratory, RTD, Wright-
Patterson Air Force Base under Contract F33615-67-C-1530, M.LI. T.
DSR Project 70429, Electronic Systems Laboratory and by Project MAC
an M.I.T. research program sponsored by the Advanced Research Pro-
jects Agency, Department of Defense, under Office of Naval Research
Contract Nonr-4102(01).. Reproduction in whole or in part is permitted
for any purpose of the United States Government.

Electronic Systems Laboratory Project MAC
Department of Electrical Engineering 545 Technology Square

Massachugetts Institute of Technology
Cambridge, Massachusetts 02139

This empty page was substituted for a
blank page in the original document.

ABSTRACT

This report presents a computational model called program oraphs which
makes possible a precise description of parallel computations of arbitrary
complexity on non-structured data. In the model, the computation steps
arc represented by the nodes of a directed graph whose links represent
the elements of storage and transinission of data and/or control informa-
tion. The activation of the computation repres ented by a node depends
only on the control information residing in each of the links incident into
and out of the node. At any given time any number of nodes may be active,
and there are no assumptions in the model regarding either the length of
time required to perform the computation represented by 2 node or the
length of time required to transmit data or control informaticn from one
node to another. Data dependent decisions are incorporated in the model
in a novel way which makes a sharp distinction between the local sequenc-
ing requirements arising from the data dependency of the computation
steps and the global sequencing requirements determined by the logical
structure of the algorithm.

The concept of the state of a program graph is introduced and it is proved
that every program graph represents a deterministic computation, i.e.,
that the final state of each computation started from the same initial state
is unique. Computations which do not terminate properly are defined in
terms of the concept of hang+up state. Methods of analysis are developed
and necessary and sufficient conditions for the absence of hang-up states
are obtained. These conditions are interpreted in terms of the structure
of the graph and the manner in which the decision elements are imbedded
in that structure. Finally, an equivalence problem for program graphs

is formulated and a solution to this problem is presented.

iii

ACKNOWLEDGEMENT

This report is the unaltered thesis submitted by Jorge E. Rodriguez in
September, 1967, in partial fulfillment of the requirements for the
degree of Doctor of Science in Electrical Engineering at the Massa-
chusetts Institute of Technology:

The author wishes to thank the following: Professor Jack B. Dennis
who, as thesis supervisor, provided invaluable advice and guidance
throughout the course of this research; Professor Joseph Weizenbaum,
Professor Chung L. Liu, and Mr. Douglas T. Ross for their assistance
and suggestions as readers. (Mr. Ross was also Head of the Computer
Applicaticns Group at the Electronic Systems Laboratory, where the
author worked as a Research Assistant, who throughout the years had
supplied much insight, help, and encouragement); Professor Leonard
A. Gould who, as his faculty advisor since his early days at the Grad-
uate School, had provided invaluable academic and personal advice;
Dr. Jacob Kalzenelson for his timely help and encouragement.

iv

CHAPTER 1

a v o>

CHAPTER 1II

4w P 0w p

CHAPTER III
A.

B.

TABLE OF CONTENTS

INTRODUCTION
SUMMARY
REVIEW OF RELATED WORK

OUTLINE

"THE MODEL

INTRODUCTION

BACKGROUND AND VIEWPOINT

THE CONSTITUENTS OF PROGRAM GRAPHS
THE CONSTRUCTION OF PROGRAM GRAPHS
THE EXECUTION OF PROGRAM GRAPHS

THE DETERMINISM OF PROGRAM GRAPHS

ANALYSIS OF PROGRAM GRAPHS
INTRODUCTION

NOTATION AND TERMINOLOGY

1. Notation

2. Paths, Cycles, and Connectivity

3. Normal Sequences and Hang-Up States
EXAMPLES OF PROGRAM GRAPHS

1. Properties of Program Graphs

2. The Case of Selectors and Jt.j,nctions

3, The Use of Loop Junctions and Loop Outputs

ANALYSIS OF CYCLE FREE GRAPHS
1. The Role of Cycle Free Graphs
2. Properties of Execution Seq\iences

3. The Enabling Function

Page

12
17
21

27

40
40
41
41
41
42
43
43

45

52
52
52

57

CHAPTER IV

A.

Bl

Cc

D.

CHAPTER V

APPENDIX A

APPENDIX B

BIBLIOGRAFPHY

TABLE OF CONTENTS (CONT.)

ANALYSIS OF CYCLIC GRAPHS
1. Cycle Decomposition
2. Simple Cyclic Graphs

3. Graphs of Type I

AN EQUIVALENCE PROBLEM
INTRODUCTION

A SIMPLE EQUIVALENCE PROBLEM'

THE EQUIVALENCE PROBLEM FOR ARBITRARY

GRAPHS

SIMPLE TRANSFORMATIONS
CONCLUSIONS AND RECOMMENDATIONS

AN ALGORITHM TO GENERATE BASE
SEQUENCES

VERIFICATION OF PROPERTIES OF THE
TRANSITION TABLES

vi

Page
60

60

65

82
82

83

86

100

106

109

114

118

" LIST OF FIGURES

Chapter II

2,

2.

2.

1

.10

11

12

Representation of an Algebraic Computation by a
Program Graph

Representation of a Conditional Expression by a
Program Graph

Functional Composition in a .Program Graph

A Simple Iterative Process

Program Graph and Flow Chart of an Iterative Process
A Single Loop with Multiple Loop Junctions

States During the Execution of a Cycle Free Program
Graph

States During the Execution of a Cyclic Program Graph

The Possible Configurations of Two Active Nodes
Sharing a Link ‘

The Relation among the 'Next' States of a State Ao
The Three Cases in the Proof of Theorem 2,2

The Three Cases in the Proof of Theorem 2.3

Chapter III

3.

3.

3.

1

2

3

.10

Use of Selectors and Junctions

Junctions Creating Hang-Up States

Single and Parallel Cycles

Nested Cycles with and without Loop Output Nodes

The Proper Way of Connecting Loop Junctions and
Loop Outputs

Initial States of Program Graphs that dc not Satisfy
Theorem 3.2

A Cycle that does not Pass Through a Loop Junction
Example of the Cycle Decomposition Procedure
The Link Names of Loop Junction-Loop Outp{;t Pairs

The Link Names of O"perators, Selectors, and Junctions

vii

Page

10

19
20
22
23

25

26

31

33
35

38

46
46
49
51

55

55

55
64
67

67

LIST OF FIGURES (CONTINUED)

Page
3,11 The Link Names in the Iteration Step of Lemma 3.5 72
3,12 Dingram of Paths Between mscs's which May Cause 74
tHlang-Up States
3.13 The Enabling Functions of a Cyclic Graph 77

3.14 A Possible Hang-Up State Arising from mscs with Different 79
Feedback Enabling Functions

Chapter 1V

4,1 Cyclic Graphs with the Same Cycle Structure 84
4,2 The Two Program Graphs of Example 1 ' 94
4,3 The Two Program Graphs of Example 2 96
4.4 Transformations to Identify Common Subgraphs Disrégarding v98

Selectors and Junctions

4,5 Transformations to Identify Common Subgraphs Including 99
Selectors and Junctions \ '

4,6 Alternative Form of a Transformation Scheme which Does 101

not Preserve Equivalence

4,7 Subgraph in which the Transformation of Figure 4. 6 Introduces
a Cycle : 102
4,8 Two Equivalent Program Graphs Differing on the Way a 104

Control Link is Applied to Operators.

viii

PREFACE

The goals of generalized computer-aided design, being synonymous
with generalized man-machine problem-solving, place the most stringent
requirements on underlying foundations and implementation techniques.
As increasingly elaborate and complex applications are contemplated, it
becomes clear that substantial inroads must be made to deepen our funda-
mental understanding of computation itself. Ultimately it must be possible
te prove the correctness of a program, for no conceivable technique can
provide an adequate basis for debugging; it must be possible to transform
a proposed computation automatically from one formulation to another
radically different formulation, with firm knowledge that the two forms
are in a useful way equivalent; it must be possible to design, analyze,
and compute using entire computational processes themselves as data, for
manual composition of constructs of such vast complexity will be beyond
human comprehension. It was in the spirit of these convictions that the
research described in this report was undertaken.

Early in the preliminary investigation, it became clear that before
any questions of equivalence or operations of transformation could mean-
ingfully be posed, a rigorous, deterministic, and elegant model of a com-
putational process itself was required. The model had to be independent
of any artifacts of existing programming language characteristics and had
to exhibit in an inherently simple and natural form only the essential rela-
tions between data and operators on data, from which any computational
process is composed. The '"program graph'' model introduced here is a
major contribution which meets the most basic criteria. Since the model
is based directly upon '"data dependency' relations, it enjoys the essential
simplicity needed to assure its adequacy as a general model. Also, the
rigorous formulation enables determinism of the model to be proved.
Finally, some initial attempts to address questions of equivalence and

transformation lend credence to the viewpoint that further elaborations and

refinements can lead toward the desired basis for a mathematics for com-
putational processes. Already the trends in this direction are takmg shape

in a number of related theses and studies listed at the end of this preface.

ix

PREFACE (Contd.)

In view of the abstract nature of the model, .and the fact that such
important features as data structures are included only in the most
degenerate form, it is clear that it still will be some time before these
developments can have a direct impact on the practical matters of con-
structing man-machine systems. Many aspectls can, vhowever, be
extracted and can be cast in terms compatible with some of the more
advanced aspects of programming language semantics and compilation
of optimized machine code. Hopefully such application attempts com-
bined with the theoretical advancements will accelerate the pace at

which these vital matters can be pursued.

&{Qfﬁg,ézd /> §Cozo

Douglas T, Ross
Head, Computer Applications Group
January, 1969

1. Dennis, J.B. Programming Generality, Parallelism and Computer
Achitecture., (Submitted for publication to the Journal
of ACM)

2. Luconi, F.L. Asynchronous Computational Structures. MAC-TR-49,
Project MAC, MIT (1968) '

3. Slutz, D.R. The Flow Graph Schemata Model of Parallel Compu-
tation., MAC-TR-53, Project MAC, MIT (1969)

I. INTRODUCTION

A, SUMMARY

This paper presents a computational model called program graphs

whict makes possible a precise description of parallel computations of
arbitrary complexity on non-structured data. In the model, the compuata-

tion steps are represented by the nodes of a directed graph whose links

represent the elements of storage and transmission of data and/or control
information. The activation of the computation represented by a node de-
pends only on the control information residing in each of the links incident
into and out of the node. At any given time any number of nodes may be
active, and there are no assumptions in the model regarding either the
length of time required to perform the computation represented by a node
or the length of time required to transmit data or control information
from one node to another., Data dependent decisions are incorporated in
the model in a novel way which makes a sharp distinction between the
local sequencing requirements arising from the data dependency of the
computation steps and the global sequencing requirements determined by
the logical structure of the algorithm.

The concept of the state of a program graph is introduced and it

is proved that every program graph represents a deterministic computa-

tion, i.e. that the final state of each computation started from the same
initial state is unique. COmeutation.s which do not terminate properly are
defined in terms of the concept of hang-up state. Methods of anélysis are
developed, and necessary and sufficient conditions for the absence of hang-
up states are obtained. These conditions are inferpreted in terms of the

structure of the graph and the manner in which the decision elements are

-1-

-

-2-

imbedded in that structure. Finally, an equivalence problem for program
graphs is formulated and a solution to this problem is presented.

The model may be useful in a variety of problems including: the
analysis and transformation of computer programs to meet some desired
criterion, e.g. reduce the amount of space required, or increase the
speed of operation, or both of these objectives; the assignment and
sequencing of computations in parallel processor computer systems; and
the design of sequencing and control units for parallel computation, in
particular, the results of this paper are directly applicable to the design |
of macro-modular systems.3’ 18,22
B. REVIEW OF RELATED WORK

Graphs have been used to represent computations since the early
days of computers. Most of these representations are strictly sequential
and can be generally classified as flow charts. In a flow chart, a node
represents either an operational element or a decision element, and an
arc of the graph denotes flow of control from one node to another. At
any one point, control resides in precisely one of the nodes. Flow charts
have been studied by a number of workers in the field.2'4’ 5. 8,9,11,13,20
In the context of this paper, these studies are not directly relevant and
therefore we proceed to review only those models which have a direct
bearing on the subject of parallel cofnputations.

C. A. Petri 19 has proposed an approach to the description of
transmission and transformation of information in discrete systems in
which time is introduced only as a local relation among local states. In
Petri's formalism, a system is represented by an undirected graph il.l

which each node is a connecting element which binds together (relates)

objects contained in places. Each arc of the graph is a place. A node

-3-
represents a switching element of a type given by its label. The behavior
of cach type of elementis given by a transition table andis influenced only
by those objects assigned to places attached to the node. Petri claims that
it is possible to construct conflict-free, deterministic networks corres-
ponding to Turiﬁg machines using switching elements defined over the
objects 0 and 1.

A, W, Holt7 has introduced a formalism called -theory for des-
cribing discrete information systems. In a -theory the characteristics
and behavior of a system are expressed by means of relations of parts. The
state of a system is formalized as a finite undirected graph. The nodes of
the graph represent system parts and every node is labelled with a node type.
The arcs represent relations between two parts. A -theory consists of a

-grammar, a list of event types, and a list of observables, The grammar

establishes the laws of local context for the node types, i.e. what node types
must or may relate and how, The list of event types establishes the laws
_of local change, i, e. which relations of parts bring about which changes in
relations of parts. The list of observables defines which relations of parts
are capable of conditioning events in the environment of a system of the
class. Changes on the state of a system are defined by means of a simula-
tion rule which effects the changes specified by an admissible subset of
applicable event types. A subset of applicable event types is admissible
if it is consistent and lossless which means that the state resulting from
the changes obeys the rules of the grammar, no two events bring about
conflicting changes, and every applicable event not contained in the admis-
sible subset remains applicable after the changes are effected.

E. C. Van Horn23 has proposed a class of ibstract machines for
coordinated multi-processing or MCM. An MCM consists of a set of cells,

a scheduler, and a count matrix, The state of an MCM is defined to be the

-4-
contents of the calls pius the contents of the count matrix. Each cell may
behave either like a passive merﬁory element or an active computing
element. An active cell, called a clerk, may perform a sequence of

transactions under the control of the scheduler. Each cell has its own

table of transactions. There are five types of transactions; two trans-
actions read and write on cells, three transactions modify the count
matrix. Reading of the count matrix is performed by the scheduler to
determine which clerk cells are enabled, i.e. can perform one transaction.
Van Horn has shown that the behavior of any MCM is asynchronously

reproducible.

R. M. Karp and R. E. Miller10 have introduced a model for

parallel computations, called computation graphs. A computation graph

is a directed graph in which nodes denote operations and branches denote
storage elements where results are placed in first-in-first-out queues.
Associated with each branch are four non-nega.tive intggers Ap' Up’ Wp.
and T_ where Tp > Wp. For a br‘anch directed'fro'm n;Jde n, to node nj, these
parameters are interpreted as follows: Ap is the number of data words
initially in the queues; Up is the number of words added to the queue upon
completion of the operation associated with ni; and Tp is a threshold giving
the minimum queue length of the branch before the operation of nj is
initiated. Karp and Miller show that computations represented by these
graphs are deterministic. They also give a test to determine whether a
computation terminates, and study properties of the data queues associated

with the branches, deriving ccenditions for the queue lengths to remain

bounded.

G. Estrin and R, Turn,6 and D. Martin14 have introduced a
directed graph model for computer programs in which the vertices
represent computational tasks and the arcs represent data dependency
between nodes. In this model, the conditions for the initiation of the
computation denoted by a vertex is expressed by writing a boolean ex-
pression in terms of boolean variables associated with the arcs incident
into the node. A boolean variable associated with an arc is true when
the data in that arc becomes available. A computation may be initiated
when the boolean expression of the corresponding node. called the vertex
input control, is true. There are three types of vertex input control:

1) Conjunctive, 2) disjunctive, and 3) compound. Vertices with conjunc-
tive input control may be initiated only when all input data are available.
Vertices with disjunctive input control may be initiated only when precisely
one sét of input data (i. e. one arc) becomes available. The compound
input control is a combination of the other two. Vertices also have output
control which is used to specify the program flow from a vertex to a subset
of its immediate successors. A vertex with conjunctive output control
simultaneously makes data available at all of the arcs incident out of the
vertex. A vertex with disjunctive output control makes data available at
precisely one of its output arcs. Thus, it may be seen that vertices with
disjunctive output control effectively perform data dependent decisions to
control the program flow, The model cé.n ‘ properly represent

only cycle free graphs. It has been used primarily as a tool for the

a-priori assignment and sequencing of computation in parallel processor

systems.

-6-

The model presented in this paper is a direct extension and formali-
zation of the model of Estrin and Turn using notational techniques intro-
duced by Petri. In extending the model of Estrin and Turn, the concept of
pure control information is introduced so that decision elements do not
transmit any data but only enabled or disable computations. Furthermore,
node types have been introduced which make possible the unambiguous
specification of cycles. The notational techniques of Petri have been
very useful for precisely describing the behavior of the model in terms
of local information alone. In this respect, the similarities between this
form of specification of events and that proposed by Holt should be noticed.

D. Muller and W, Bartky” have developed methods for the
analysis of asynchronous sequential circuits. These methods proved of

considerable value in the analysis of the determinism of program graphs.

C. OUTLINE

The material is organized as follows: in Chapter II the model is
presented and it is proved that every computation represented by fhe
model is deterministic. Chapter III begins with a detailed cénsideration
. of the function of each type of node together with reascns for the choices
made in the specification of their behavior. This is followed with the
introduction of the concept of hang-up state and a study of the conditions
which give rise to these states. Chapter IV formulates an equivalence
problem and presents a solution to it, This is followed with a brief con-
sideration of some simple equivalence preserving transformations. Finally,

Chapter V contains the conclusions and recommendations of this research,

II. THE MODEL

A. INTRODUCTION
This chapter presents a model for computational processes called

program graphs. A program graph is both a denotation of an algorithm

and a realization of this algorithm by a process. The linguistic device
used to denote operations and the links of the graph denote data and/or
control flow among the operations. The realization of the algorithm by

a process is accomplished by assigning certai'n rules of behavior to the
program graph elements (nodes and links). These rules of behavior are
such that each program graph is a special-purpose deterministic machine
which realizes an algorithmic process. The term deterministic machine
as used in this paper means that the behavior of the machine is.always the
same whenever identical data is presented to it at its input terminals.

The material is organized as follows: Section B gives background
for the model and the general viewpoint adopted in its formulation. Section
C gives some necessary notation and introduces the elements used in con-
structing program graphs. Section D specifies the syntax for constructing
program graphs. Section E specifies the interpretation of program graphs
and gives illustrative examples. Finally Section F contains a proof of the
determinism of program graphs.

B. BACKGROUND AND VIEWPOINT

The formulation of program graphs as a computational model has
been motivated by the common observation that a large fraction of the
sequential constraints of a process can be completely specified by explicitly

indicating the data dependency among the different parts of the process.

-7-

-8-

In other words, if the results of sub-process A are data for sub-process B,
then A must be performed before B. If control is defined as that quantity
which determines the sequencing aspects of a process, then data flow always
carries with it control flow information. An obvious advantage of this
manner of process specification is the absence of unnecessary sequential
constraints, and thus the immediate appearance of any parallelism inherent
in the process. This can be seen in the example of Figure 2.1 which shows
the represeatation of an algebraic computation by means of a directed graph
in which the nodes denote operations and the directed links denote the data
dependency. The potential parallelism of the two '+' nodes is clearly
evident.

Data dependency is not sufficient to specify all the sequential con-
straints of a process, however. Most computations include decisions which
affect the sequencing of the process without introducing explicit data
dependency. We can think of the simplest form of decision, a binary deci-
sion, as generating pure control information which selects one out of two
possible sequences. The decision does not affect the result of the computa-
tions of either sequence but only whether or not the sequences of any parts of
them should be performed. Figure 2.2 shows how we might represent an
ALGOL conditional expression. The diamond-shaped node denotes a decision
selecting one of the additions to be performed as a prelude to the multiplica-
tion operation. (Open arrowheads denote pure control flow.)

A computational model which exploits the control aspects of data
dependency and thereby places in sharp contrast the unique functions of
pure control information is a potentially useful base for exploring trans-
formations of algorithms which preserve input/output relations, loygical

design of asynchronous machines,: and similar areas.

(B+C)» (D+E)

8 C D £

Fig. 2.1 Representation of an Algebraic Computation
by o Program Graph

-10-

F % IFA THEN B+C ELSE D+E

Fig. 2.2 Representation of a Conditional Expression
by a Program Graph

-11-

Directed graphs are a natural choice for representing the
dependency relations we are interested in, but the static relationships
represented by a graph lare not sufficient to unambiguously determine
dynamic behavior, particularly when dealing with cycles. Dynamic be-
havior of the process represented by a graph is a crucial question which
cannot adequately be handled by introducing a series of ad hoc global rules
of interpretation. Therefore, it was decided to formalize a program graph
as a formal machine, by having well-defined rules of behavier associated
with each element of the graph, i.e. the nodes and links. By making these
rules depend ohly on local information, i.e. by making them independent
of the over-all structure of the graph, we achieve two things:

1. Any graph constructed following a minimum of local inter-
connection rules represents a process with una}mbiguous
behavior.

2. Each operation proceeds asynchronously with all others, so
that any degree of parallelism, anticipating computations or

control, can be expressed by the formalism.

-12-
C. THE CONSTITUENTS OF PROGRAM GRAPHS

A program graph formally represents a computing machine. The
computational elements of the machine are represented by the nodes of
the graph, and elements for storage and transmission of data and control
information aré represented by the links of the graph. In what follows
node shall be synonymous with computational element and link shall be
synonymous with storage-and-transmission element.

There are two types of links - a data link and a control link.
Associated with both data and control links is a quantity called the link-
status. At any given time the link-status of a link assumes precisely one
out of the four possible values -1, 0, 1, 2. These values will be called

disabled, idle, enabled, and blocked, respectively.

Data links have in addition to link status, a property called data

contents. No restrictions are placed on the nature of the data contents

of a link. In the representation of program graphs data links are shown
as heavy lines with black arrows, while control links are shown as light
lines with open arrows. '.

There are seven types of nodes differing from each other either in
the kind of computation performed or in the logic used to activate the node.
Nodes have specific points of attachment called connectors The connectors

of a node are distinguished as being either input or output connectors.

Furthermore an input or output connector may be a data connector or a
control connector, Data connectors are attached only to data links.
Similarly, control connectors are attached only to control links.

When the computation represented by a node is being performed, we
say that the node is active. The activation olf a node is determined by the
link status of the data and control links attached to the connectors of the

node. For brevity we often refer to the 'status of a connector' meaning the

-13-

link status of the link attached to the connector, even though a connector

does not properly have a status.

A nodeisinanactive configuration when the statuses of its connectors

is such that the node becomes active. The occurrence of an active configura-
tion initiates a transition of arbitrary time length. Upon completion of the
transition, the status of each connector (and perhaps the data contents of
attached data links as well) are changed in a way specified by the transition
table for that type of node.

The transition table for a type of node specifies all of the active
configurations of the node in terms of the statuses of the input and output
connectors, For each active configuration the transition table also specifies

the final configuration i. e., the status of each connector after completion

of the transition, and the change, if any, of the data contents of output data
links,

The specification of the transition table is simplified by certain
conventions and a notation adopted from the work of Petri.19 Each connector

of the node is assigned a sequential number. A configuration is then rep-

resented by writing the link status values from left to right in the sequence
determined by the ordering assigned to the set of connectors. Thus the
configuration 1 1 0 corresponds to a node with three connectors in which
connector number 1 is in status 1, connector number 2 is in status 1, and
connector number 3 is in status 0. A transition is denoted by writing the
active configuration followe.d by ' — ', followed by the final configuration.
If a transition changes the data contents of some link, an expression is
written after theifinal configuration defining the new new value. Thus the
expression $1 +— fl' ($2, $3) méans that the data conten:ts of connector 1 is
replaced with the result of applying function f1 to the data contents of

connectors 2 and 3.

Operator

Data operator

Function

Identity

Control operator

And

Selector

Junction

-14-

11
A 14
3 11

-1 -1

1, .
}g\ Lo
. -10
3
1) 11
.14
W
3 141

11
1-1
-11
-1 -1

110

141 0
110

-1-1 0
"\ ./
1-1

-I'1

j 14
5 |

0—001 $3—£($1,$2)
0—~00-1
0-—-00-
0—00-1

0—011 $2,$3-51
0— 0-1-1

0—-001
0—~00-
0—~00-
0—~00-

0—001
0— 001
0—=001
0—~00-

0 0-1 1 if B($1,$2ktrue
0-—.
0 01-1 if p($1,$2)Ffalse
0—+ 0 0-1-1
0— 0 0-1-1
0— 0 0--1
0—-001 $3-$1
0—-001 $3+-$2
0— 00-1

Table 2.1 The Transition Tables of Program Graph Nodes

-15-

0—2021 $4-51
02121 $4-8%1
0— 2-1 21 %451
0—~ 202
0— 21 241
0— 2-1 2-1

0= 20-11 $4~$2
0—-0010

10

[.oop Junction
11
1-)
-1 0
/ 401
-1 -1

3
21

2 -1
Loop Output 1\ /

3

o O o O Q

oo O

110—-001 $3 %1
1-1 0—~ 0 0-1
-1 10-+~200
-1-10—-200
210—-010
21 0—+0-10

Output Terminal

1
2
4
2
Input Terminal I

-1—+0

Table 2.1 The Transition Tables of Program Graph Nodes

-16-

Table 2.1 contains the transition tables for each type of node. A
brief description of the characteristics of each type follows.

1. Operators

Operator nodes denote functions of one or moreée input arguments and
one or more output values. An operator node all of whose inputs and out-

puts are data links is called a data operator. Similarly an operator all of

whoseinputsand outputs are control links is called a control operator.

Every operator is either a data or a control operator. The data operator

representing the identity function will always be denoted by the symbol 'I'.
The contrci\l operators representing logical disjunction and comjunction will
always be denoted by the symbols ' V! and 'A' respectively., These

are the only control operators allowed in a program graph.

2. Selectors s

Selector nodes denote decision-making elements. A selector is
associated with a predicate function. All inputs of a selector are dat‘a links
and there are precisely two control outputs. When the predicate associated
with a selector is applied to the data contents of the inputs the result is to
place one output connector in enabled status and the other in disabled status.

Selectors and data operators may have a control input connector in
addition to their data connectors. The function denoted by a gselector or
data operator is applied only for those active configurations in which all
input connectors are in enabled status.

3. Junctions

Junction nodes merge two or more sources of data. A junction
transmits the data contents of at most one of its data inputs to its unique

data output.

-17-

4. Loop Junction

Loop junction nodes are used to form cyclic structures in a program
graph. Their function can be roughly described as follows: Suppose one
has an iterative process and A, B, C represent the quantities on which the
iteration depends, then to every oneof these variables there will correspond
a loop junction. Input connector ! is used to 'assign' the initial value of the
variable and input connector 2 is used to 'assign' the new value of the
variable on every iteration. I shall often refer to input connectors 1 and 2
as the initial and feedback connectors of the loop junction.

5. Loop Output

Loop output nodes are used in conjunction with loop junctions to
preciself define what is to be considered the result of an iterative process.
Proper usage of loop output nodes requires that their control input connector
be attached to the control output connector of a loop junction. Some of the
examples in the next section will serve to clarify the relationship between
loop junctions and loop outputs.

6. Input Terminals

Input terminals are nodes with no inputs and precisely one output.

7. Output Terminals

Output terminals are nodes with no outputs and precisely one input.
D. THE CONSTRUCTION OF PROGRAM GR APHS

This section sets forth the rules for constructing program graphs
and provides a few examples of the use and abuse of these rules.

A program graph is a finite set of input terminals, output terminals,
and nodes interconnected by data links and control links according to the

following rules:

-18-

|. The root of a data link must be attached to an input terminal
or to a data output connector and its tip must be attached to
an output terminal or to a data ir{put connector.

2. The root of a control link must be attached to a control output
connector and its tip must be attached to a control input
connector,

3. Every input connector of a node must be attached to some link,

Figures 2.3, 2.4, 2.5, and 2, 6 are examples of program graphs,

Each example is provided with an Algol-like description of the algorithm,
Figure 2. 3 illustrates how functional composition is represented by
the interconnection of data operators., Figure 2.4 illustrates the use of
loop junctions and loop outputs in a simple iterative proceés. The arrange-
ment illustrated in the figure is used whenever an output value, ‘e.g.'"ans"
is desired only upon completion of the iterative process. Quite often itera-
tive processes are used which do not behave this way, but instead output
values are produced on every iteration. A common example of this type of
iteration is that of a program producing lines of output. Figure 2.5 shows
another example of this situation which is perhaps not as obvious as the
'output feeder' case. The flow chart representation of this algorithm shows
a single loop however, upon separating the data flow from the control flow
in the program graph representation, two distinct loops arise: a counting
loop (loop junction labelled i) apd a summation loop (loop junction labellet t)
with the counting loop effectiveiy controlling the iterations of the summation
loop. It should be noted that this type of relationship between two or more
loops often gives a clue to one of two forms of parallelism among sub-parts

of the process:

-19-

Sqrt (Sin{X 72) + COS (I—ton(Y)fZ))

Fig. 2.3 Functicnal Composition in a Program Graph

-20-

t = fl (l);
zs fa(”;
v-fs(ﬂi‘
f.if;il(:) then £4(v)olso fs(z);
uﬁz(t)thon begin
t=f,(1);
goto £ end
ons-fs(n;

Fig. 2.4 A Simple Iterative Process

Z21-

1. Horizontal parallelism meaning simultaneous operation of

individual computations without imposing requirements on
the sequence of using the results.

2. Vertical parallelism meaning simultaneous computations

with certain sequential constraints as to the use of the results
of each computation.

In the example of Figure 2.5 horizontal parallelism will be possible
given the extra knowledge that addition is commutative and associative,
otherwise we have to be content with vertical parallelism, i. e. initiation
of as many functions as possible, but adding them in the specified sequence.

The final example of this section, shown in Figure 2. 6, illustrates
one single loop (in the flowchart sense) with more than one loop junction.

" Recall that each loop junction represents one variable of the iterative pro-
cess and a loop junction is required even for those quantities which are not
changed within the loop because there is no permanent storage in a program
graph, as is the case with the quantity denoted by A in Figure 2. 6.

E. THE EXECUTION OF PROGRAM GRAPHS

The transition tables for program graph nodes determine the dynamic
behavior of a program graph by specifying whether or not a node should be
activated, and if it is activated, whether or not certain data transformations
should take place.

Unless otherwise specified, all links are initially in the IDLE(O)
status. Execution of a program graph begins when enough input terminals
have been placed in ENABLED(1) status to produce an active configuration
on some node of the graph. For simplicity, however, we usually ass.ume

that there is time, to’ at which all input terminals are placed in ENABLED

status simultaneously.

r

}=SUD

g8

~2

59001 RATIEXL

o o
[T

—

1] UB I0 1ITRUTY 0T

i

1 pue uydean weiiorg <

SuUb

o

S =1 4

..

(]
¥
o

-23-

ans £: y=zoavg(x+A/x);

if x#y then begin
K=Y,
goto £end;

ans=y;

Fig. 2.6 A Single Loop with Multiple Loop Junctions

_24-

A simple example will serve to illustrate how the execution of a
graph takes place. Figure 2.7 shows a program graph at various stages
of execution. In these figures, the number written to the right of each

| link is the link-status at the time of the snapshot; the data contents of the
link is written to the left of the link as a functional expregsion. A '¥' next
to a node signifies that the node is in an active configuration.

Figure 2. 7a shows the state of the graph shortly after time, t, with
operators labelled fl and f2 active. In Figure 2. 7b operator fl has com-
pleted its transition enabling f3 to become active while fz still has not
finished. The final snapshot Figure 2. 7d shows the state of the graph upon
operator f6 having completed its transition. Note that all links have been
restored to the IDLE status.

Figure 2.8 shows a complex situation, arising due to the presence
of a loop. Figure 2.8a,b, c are snapshots during the execution of a non-
final iteration showing the state of the graph before the activation of selector
B, at two successive time intervals after the completion of the selector
transition which enables the output link labelled '~', Figure 2.8d,e, and {
is a similar sequence, but in this case BZ has enabled the output link labelled
'+' signalling the end of the iterative loop. These sequences serve to clarify
the purpose of the link-~status value blocked which only affects loop
junctions and loop outputs. While the loop is in prégreas, the initial con-
nector of the loop junction is in blocked status, effeétively blocking any
attempt to initiate a new loop before finishing the current one. In the mean-
time the loop output blocks any signals to the outside world. When the loop
junction receives an indication that the cycle has finished (DISABLED status
of the feedback connector), it signals the loop output that it is alright to allow
an output to be produced. Again, note in Figure 2. 8f that upon completion of
the iterative process all link-status values have been restored to the IDLE

status,

3

Fig.

-25-

'S“t()

LTS MR
(5(0.(1.'2((X))

(c} (¢)

2.7 States During the Execution of a Cycle
Free Program Graph

ydean ureaoag 211949 ® jo uomndexy ayj Suring s93eIs g7 ‘B3

(®) »

12§
wn'5*n®s wWnHcH%

-26-

STVEN

-27-

F. THE DETERMINISM OF PROGRAM GRAPHS

The rules for interconnecting nodes set forth in Section D do not
place any restriction on the topology of the resulting program graph.
Furthermore, it has been specifically assumed that we have no knowledge
of the time elapsed between the initiation ana the completion of a transition.
These two situations combined can result in the specification of a process
whose behavior is unpredictable in the sense that two distinct executions of
the process with the same set of data values supplied at the input terminals
may produce a different set of results.

The behavior of a program graph is determined by the link-status
and the data contents of the links of the graph. We shall denote these two
properties of a data link by an ordered pair (s, d) where s can take any of
the link-status values -1, 0, 1, 2 and d is a functional expression, e.g.
fl (x, fz _(y, z)) denoting the value of the data contents. In the case of al
control link, data contents is not defined so that only the link-status value
8 will be used.

If nis the number of links in a graph,then the state of the graph is

an ordered n-tuple A = (al, Ay eoe an) where each state variable a, is
either an (s, d) pair or an s depending on whether a; is associated with a
data link or a control link. Two states A and B are equal if and only if fof
all 1<i<n, 8, =8 and d) =db The state determines which nodes of
the graph are i; an ;ctive colnfigu:'ation. ‘We make this explicit by
associating with each npde an n-tuple as follows:
The ith elerﬁent of the n-tuple for a node f is zero unle;s
the link associated with the corresponding element of the

state is attached to f. In this case the ith element is the

number of the connector of f to which the link is attached.

-28-
For example if the third, fourth,and sixth links of the state vector are
attached to the second, third,and first connectors of f, the n-tuple for f is
(0,0,2,3,0,1,0,...). The n-tuple associated with a node f will be called

the connectivity vector of f and is denoted by Cf.

A state A changes into a state A' upon completion of the transition
of one of the active nodes of A, The components of the new state A' are
determined by those of the old state A and the transition table for the node.
If f is any node, the notation A' = A x Cf is interpreted as follows:
1. If the ith element of Cf is zero then the ith element of A' is
the same as the corresponding element of A,

2. If elements of A corresponding to non-zero elements of Cf
form an active configuration of f, the corresponding elements
of A' are obtained by using thé applicable transition of f.

3. Otherwise these elements are not changed and A' = A,

We now introduce the concept of the possible ""next' states A' of
a state A by means of the relation A .

Definition 2.1 A state A' follows a state A iff A' results from the

completion of the transition of none, one, or more active nodes of A. If
A' follows A we write AL A', We say A' is a next state of A.

Definition 2.2 A final state of a program graph is a state in which

no node is active.

From the definition of & and final state it is clear that a state A
is final if and only if A& A' implies A = A",

During execution, a program graph passes successively from one
state to one of its next states.

Definition 2.3 An execution sequence of a graph is a sequence of

states Ay, A, ... A_such that A, ﬂZAi+ and A, # AL,

1

-29-

Definition 2.4 An execution sequence AO’ A1 . e Ak is terminal

if Ak is a final state. If 0 is an execution sequence, the length of 0
denoted by £(0) is the number of states in the sequence.

For a given initial state, a program graph may exhibit several
execution sequences depending on the relativ.e speeds of the nodes. The
problem of the speed-independence of the final state (when it exists) of a
program graph with respect to an initial state A0 is crucial to the justifica-
tion of the model. The only requirement that we place on the behavior of
a program graph is that every node transition is an indivisible operation,

i. e., once a transition begine the indicated changes of status take place
simultaneously. This assumption does not say that a node placed in

active configuration performs the corresponding transition irnmediately.
Quite to the contrary, we do not place any restrictions in the time interval
elapsed from the time an active configu;cation occurs to the time a transition
is actually performed. This of course raises, among others, the possibility
of a node entering and leaving an active configuration without performing

any transition.

Theorem 2.1 establishes a property of the #, relation which, as
we shall see, is sufficient to guarantee the uniqueness of the final state of
a program graph for any assignment .of elapsed times to the nodes 6f the
graph. This property of the & relation is closely connected to that existing
" among the states of semimodular asynchronous circuits as described by
Muller and Bartky.

L.emma 2.1 Let AO be a non-final state of a program graph P and

let A, and A, be any two states of P such that A, = A, x Cs s)

1
1
A.=A_ x C. . Then, there exists a state A gsuch that A, R A
0 £, 3 i 3
0< i< 2,

_—

-30-

’roof: From the definition of the A relation, if Ao = A1 = A2

then Aj satisfies the requirements for A3. Similarly if Ao # A1 = A2

then A1 = A, = A, satisfies the conditions of the lemma. Therefore assume

2773
that AO’ Al’ and A2 are distinct. This means that there are at least two
active r.odes fl and f2 in AO' We claim that the state arising from the
simultaneous completion of the transitions of fl and fz satisfies the conditions
for A3.

First we note that the active configurations of program graph nodes
as shown in Table 2,1 place certain restrictions on the possible inter-
connection of nodes which are simultaneously active. Specifically, we
have the following:

1. The status of an output connector is IDLE for any active

configuration.

2. The only input connector which can be in IDLE status when a

node is active is the feedback connector of a loop junction.

These two observations tell us that if two nodes are in an active
configuration in the same state then either they do not have a common link
or they have a common link which is attached to the feedback connector of
a loop junction.

If the nodes f, and £2 in Ag do not have a common link it is clear
that the state Aj resulting from the simultaneous completion of their
transitions is identical to the states A1 x sz and A2 X Cfl.

Thus all it remains to show is that when 1'1 or fZ or both are loop
junctions sharing a link, the order in which these nodes complete their
transitions does not matter. Figure 2, 9a and 2. 9b show the two possible
connections that may exist between fl and fz up to symmetry. In both of

these cases an output of fl ‘is attached to the feedback connector ‘of fZ and

since f1 is active this link must be in idle status. The only active

-31-

(a) (b)

The Possible Configurations of Two Active Nodes

Mige 2.9
Sharing a Link

-32-
configurations of loop junctions with a feedback link in idle status are,

from Table 2.1, 1 000 and -1 00 0. By a straightforward use of Table 2.1

it can now be checked that the value and status of all links attached to fl and

£

completed.

are identical independently of the sequence in which their transitions are

Q. E. D.
Lemma 2.2 Let AO be a non-final state of a program graph P
and let A; = Ay x Cf_ . A ¢ A, for 1< i<k. Then there exists a-
y 0< i<k

state A such that Ai ﬂA

k+1 k+1’
Proof: Since A, # A, A, has at least }(-active.nodes f10 50000 60

From the proof of Lemma 2. 1, the completion of a transition of an active
node cannot place any other active node in a non-active configuration. .
We claim that state resulting from the simultaneous transitions of £, 1,
oo fk satisfies the conditions of fhe state A'k+1'
From Lemma 2,],there exists a state Anm such that AO eAnm’ An V74 Anm?
and A_ #Z A forall 1< n, m<kandn#m. States A . and A, are

m nm = - ni im
obtained from state A, by the completion of precisely one transition,
consequently by Lemma 2.1 we again conclude that there exists a state

A_. such that Ao &Ani

nim , AneA . Amﬁ A AioZA) A .%Ani

nim, nim, “n,
and A, A forall 1<i<k, i#n, i#m, andn+ m. By
mm nim - . !

m m

repeating this process, we must eventually reach a state Al 2 Kk
.) s 0 e

satisfying the conditions of the theorem.
Q. E. D,

The construction of Lemma 2, 2 is illustrated in Figure 2.10 for
the case k = 3, In the process of proving this lemma we also proved the

following,

Theorem 2,1 Let Ao be a non-final state of a program graph P

and let A, Azs... A, be states of P such that A, @Ai, 1<i<k.

Then there exists a state Ak+1 such that Ai @A-lﬂl for 0<i<k,

1
—~

-33-

Fig. 2.10 The Relation Among the 'Next' States of a State Ag

-34.

Theorem 2.2 Let AO be the initial state of a program graph.

If there exists an execution sequence 0; = Aq Al coe Ay such

that A, is a final state then A, is unique.

k

Proof: To prove the theorem we will show that for any other
execution sequence with the same initial state as 0, €. 8 0 = Ao Bl' .o
B , if B # A then B__ is not a final state. !

m m k m j

The proof consists of constructing two new execution sequences

0'1 and U:Z such that l(o"z)< 2(0’2) and every state in 0:2 is also a state of

g,- Since (72 is a finite sequence, successive applications of the construc-

. . 1 ' " " r r __. r _ r
tion yields sequences 0;, 0,, 0, 0, .. -0} o, with o, = Bm A1 N Ak'

r _ . T
o'Z-B , i.e. A

is a next state of B__.
m 1 m

To construct the execution sequences °|1 and 0'2 we proceed as
follows:

Let Aj be the last state in o which also appears in a,. There
is at least one such common state, namely Ao.

A, RAj 41 in 0}
and

Aj RBJ.+1 in g,
From Theorem 2.1, there exists a state q such that AjHaZ q and Bn+l aq.
The state q can be either in sequence g, or in sequence 0, or in neither
sequence. Specifically, we must consider the following three cases,
(Figure 2.11):

1. q=Bn for somen 1<n<m

2. q=A for somen j+ 1< n<k
n o——

3. q# A, q # B_ for any n.

-35.

Caose 3

Fig. 2.11 The Three Cases in.the Proof of Theorem 2.2

-36-

Casec 1
] 1

Set o', = AJJrl AJ+2 cee AL 1(01)< 1(01)
1 [}
0, = Ay B By By L{0,) < £{0,)

This case cannot occur indefinitely for if it did we could find two
se P 4P
quences 07, 05 such that
P_
o] = Ak

P .
UZ'Ak"'Bm

which contradicts the assumption that Ak is a final state.

Case 2
Set o) =By | AL ... A Lo 2 2(0))
] -] <
02 =By Biyoor o By Lo3) < £{0,)
Case 3

By repeated application of Theorem 2.1 there must exist states

Cl’ CZ’ ... such that

qﬁclﬂcz... /gAk

where C1 is a state such that Aj+2ﬁcl’ q‘ec1

C., is a state such that A, ﬂC , C & C. etc. This must
j+3 2 1 2

2
stop at Ak because it is terminal.

Thus we set

BquC1 CZ"' Ak

- U
o, ..BJ.+1 By B t(oz)< 1(02)
1

Since Case 1 must eventually produce sequences a'l, o, such that either

0"
1
1

Case 2 or Case 3 applies, and in both cases 1(0"2)< 2(0’2) we conclude

that eventually sequence 0; will be Bm alone.
Q. E. D.

-37-

Theorem 2.3 Let A, be the initial state of a program graph. If

0

there exists an execution sequence o, = A0 A1 AZ ce Ak such that

A, is a final state, then every sequence with initial state Ao is

k
terminal on A.k
Proof: All we need to show is that every execution sequence is

terminal and by Theorem 2. 2 it will follow that the final state is Ak’

Assume that there exists a non-terminal execution sequence

p— ' !
o, = Aq A1 A2 An....
Then we construct two new execution sequences 0"1 and a'z such that
2(0"1) <1(01) and 0'1 and 0'2 have the same initial state. Successive appli-

. . . . r_ r_ '
cations of the construct‘xon yields sequences o, = Ak and g, = Ak .o AI' v

[y

contradicting the assumption that Ak is a final state.
To construct the execution sequences 0'1 and 0'2 we proceed in a
similar way as in the proof of Theorem 2. 2.

Let A, be the last state common to sequences o, and 0‘2.

Aj @Aﬂl in 0}
] .
Aj ﬁAj+l in 0,
By Theorem 2.1 there exists state q such that Aj+l ﬁq and A.'i+1 ﬂq

consider the three cases (Figure 2, 12):

1. q=A' for somen, j+l1<n
n —

2, gq=A for some n, j+t1<n<k
n —

1
3. q;éAnq#Anfora.nyn

Case 1

1 1
Set 0'1 Aj+1 Aj+2... Ak 1(0'1)< 1(01)

1] 1
0'2 Aj+1 An An+1

Aj+1 # A;x since Aj is the last common state in both sequences.

-39-

Case 2

Setol = A' . A, A

17 Ve B
v A !
OZ'Aj+1Aj+2"‘
t
AjH;éA

Case 3

. 2(0))< £(0,)

2 since Aj is the last common state in both sequences.

By Theorem 2.1, there exists states Cl, CZ’ ... 8uch that

q %CIQCZ... . Therefore, set:

1 . [}
o, = Aj+1 AJ.+2 Ak 1(0'1)< 1(01)
02=Aj_‘_1qC1 Cz...

To complete the proof, we show that the condition 1(0"1) = 1(0‘1) in Case 2

cannot occur indefinitely. From the construction of the sequences 0"1 and

0‘2. if 1(0"1) = 1(0‘1) indefinitely, then there exists a state Aj+1 in Oy and

. 1 ' . ' ﬁ 1 '
states Aj+1’ Aj+2"" in 0, such that Aj-\ﬁAj_‘_l, Aj‘ Aj+1" Aj+1gA

1]
Aa @AJ.

j+l’
170 However, this implies that there are an infinite number

of active nodes in state Aj which is impossible. Therefore, either there
. 1 o 1

is a state Aj+r in 0, such that Aj+r ﬂAﬁ_B, s >1, or Cases 1 or 3 apply.
Whichever alternative occurs, l(o'l) < 1(01). Therefore, o, rrust be
terminal in Ak

Q. E.D.

II1. ANALYSIS OF PROGRAM GRAPHS

A. INTRODUCTION

The resuits of Chapter II tell us that every program graph represents
a deterministic process., It is possible, however, to construct program
graphs such that for some or all sets of input values no complete set of
output values is ever produced, even when all execution sequences are
terminal. If we view a useful computational process as a transformation
of a set of input values into a set of output values, then not every program
graph represents a useful computation.

The failure of a program graph to produce output values may be
caused either by a never-ending cycle or by entering a final state pre-

maturely. It is this second condition, which we call a hang-up state, that

we are interested in because it is peculiar to program graphs, and because
a study of the structure of graphs where it occurs provides insightinto the pro-
perties of the model.

| The 'occﬁrrence of a hang-up state during an execution sequence is
due to structural anomalies of the graph. These anomalies can arise from
obvious misuse of a node for a purpose for which it was not intended, e. g.
connecting a loop output control connector to a node other than a loop junction.
Less obvious and more interesting structural anomalies arise in connec-
tion with communicating cycles. Section B introduces terminology and
notation. In Section C we present several examples illustrating the proper
use and the misuse of the various node types. Section D considers hang-up
states in cycle free graphs. Finally Section E studies hang-up states in

cyclic graphs.

-40-

-41-

B. NOTATION AND TERMINOLOGY

1. Notation

In this and subsequent chapters we will use the following notation
when referring to nodes of program graphs:

Input terminals will be denoted by the letter a .

Output terminals will be denoted by the letter w.

Data operators will be denoted by the letter f.

Selectors will be denoted by the letter 8. The output connectors
of a selector will be distinguished by writing B+ or B .

Junctions will be denoted by the letter j.

Loop junctions will be denoted by the letter g.

Loop outputs will be denoted by the letter h.

Links will be denoted by the letter {.

Each of the above symbols will be used with a number subscripts
when it is necessary to distinguish among two or more instances of a type,
e.g. fl’ fZ' [31. ﬁz. The letter a will be used to denote a node without
specification of its type.

2. Paths, Cycles, and Connectivity

The following concepts and terms associated with directed graphs
have been adapted from Busacker and Sa.a.ty.l

A finite sequence of links ‘1’ Lye.. ‘tk is said to constitute a path
of length k in a program graph P if there are nodes ajr@yseer g in P
such that L, is a link from an output connector of a, to an input connector

of a, ;. The path is said to_pass through the nodes a;, a,,.. 'ba’k+l' The

nodes a; and a,,; are said to be the initial and final nodes of the path.
respectively, and it is said that there is a path from atoa - If

a; T a the path is said to be a cycle. If all the k+1 nodes are distinct,

-42-

the path is called a proper path, Ifa, = LR but otherwise all nodes are

distinct, the path is said to be a proper cycle. Clearly, all links of a

proper path or cycle & re distinct. If all the k links are data links the

path is called a data path. Similarly, a control path consists solely of

control links. A program graph is said to be cyclic if it contains at least
one cycle and cycle free otherwise.

Given two nodes a, and aj of a cycle free program graph P, it is
said that a; is an ancestor of aj, or alternatively that a.j is a descendant of
a;, if there exists a proper path from a; to aj. 1f a, is an ancestor
(descendant) of aj and there is a path of length 1 from a.i(aj) to aj(ai) it is

said that a, is a direct ancestor (descendant) of aj.

A subgraph P' of a graph P is a subset of the set of nodes of P
together with all the links connected to these nodes. If for every pair of

distinct nodes a, and 3 of P! there is a path from a, to aj as well as one

from a; to a,, it is said that the subgraph is strongly connected. If, in
addition, this condition is not satisfied for any pair of nodes a; and a, when
a, but not a, is contained in P!, then it is said that P' is a maximal

strongly connected subgraph (abbreviated mscs).

Two subgraphs P! and P" of a program graph P are said to be
disjoint if they do not share a common node.

3. Normal Sequences and Hang-up States

The last two definitions in this section are concerned with certain
properties of the initial and final state of execution sequences of a program
graph. In order to study the behavior of program grapns it is convenient
to concentrate our a;tention to a limited, yet useful, class of execution

sequences by normaiizing the initial state of these sequences as follows:

-43-

Definition 3.1 A normal execution sequence of a program graph

is an execution sequence with an initial state in which all links of the graph
are in idle status except for those links attached to the input terminals.
Henceforth, execution sequence will be used interchangeably with normal
execution sequence. Furthermore, unless otherwise specified we will
assume that the links attached to the input terminals are in enahled status
in the initial state.

The final state of a terminal execution sequence will be called a
hang-up state or a normal state according to whether or not it satisfies the
following: .

Definition 3.2 A state of a program graph is a hang-up state if

1. No node is in an active configuration.
2. At least one link is not in idle status.
C. EXAMPLES OF PROGRAM GRAPHS

1. Properties of Transition Tables

In this section we will consider in detail several examples of
program graphs. We do this with a dual purpose. First, we want to
acquaint the reader as much as possible with the manner of execution of
a program graph. Second, we want to provide a better understanding of
the properties of each type of node and how they should and should not be
used. Concurrently we will indicate some of the reasons for the choices
made in the specification of the transition tables.

During execution, the state of a graph changes as a result of the
transitions specified by the active configurations of each type of node.

The active configurations of a node are determined only by the status of
the input and output connectors of the node. Upon completion of any transi-
tion these statuses are always changed. For some transitions the value of

the output connectors may also be changed.

-44-

An examination of Table 2.1 reveals the following facts:

1. In all active configurations of every node type except loop
junctions the‘ status of every input connector is never IDLE(0).

2. In all active configurations the status of every output connector
is always IDLE,

3. Upon completion of each transition, except for loop outputs, the
status of every output connector is always non-IDLE.

4. Upon completion of each transition, except for loop junctions,
the status of every input connector is always IDLE.

5. Selectors are the only nodes which place one of their output

' connectors in disahledstatus when none of their inputs are
DISABLED. *

6. The function and predicate associated with operators and selectors
respectively are applied to the input values only if no input is
DISABLED.

7. The application of the function associated with a data operator
to oﬁtain a new value for an output link always results in placing
the link in ENABLED status.

Items 1 and 3 suggest viewing the execution of a graph as effecting

the flow of status axj'xd data information from one node to another in thé

| J
direction indicated by the oriented links. The IDLE status signifies either

|
that no activity has taken place on a link or that previous activity on a link
has been properly accounted for. As a rule, activity must occur at each
input to a node before the node can perform any action. The only exception
to this rule is the loop junction which under some circumstances, only
requires one of its input connectors to be in non-IDLE status to become

active. Effectively this means that each node waits to receive information

from each of its ancestors before it takes any action.

-45-

Items 2, 3, and 4 point out that new activation of a node cannot
occur until the information transmitted to the immediate descendants of
the node has been used by these descendants. This observation together
with items 6 and 7 imply that, as a rule, both the status andvdata of a link
attached to an input connector of a node are effective for precisely one
activation of the node. The only exception to this rule can be found in loop
junctions and loop outputs both of which have provisions for 'remembering'
status and data information. This property of loop junctions and outputs
appears to be needed in order to obtain a deterministic model in the
presence of cycles.

Finally, items 5 and 6 point out the unigue function of selectors as
the arbiters which determine the functions and predicates that should be
applied during the cburse of an execution sequence. Note that application
of a function or predicate requires that the associated node be active,
however the converse is not true. In fact, most of the active configurations
shown in Table 2.1 do not require application of a function, predicate, or
effecting a data transmission operation., Instead, their only purpose is to
propagate through the graph the necessary status information. The enable
and disable statuses get their names from the effect that a link exhibiting
these statuses have anthe data transformation and transmission action of the
nodes to which the link is attached.

2. The Use of Selectors and Junctions

Selectors and junctions have complementary functions. If we view
the action of a selector as choosing between two alternative sequences of
data transformations, then the purpose of a junction is to transmit the
result of whichever seqﬁence was chosen to succeeding computations,

Figure 3, l1a illustrates the simplest form that this rzlationship between

(b)

-46-
Use of Selectors and Junctions

(o)
Fig. 3.1

(b)

(a)

Fig. 3.2 Junctions Creating Hang-Up States

—47-

sclectors and junctions can take. Clearly one selector can be used to
choose one alternative from ;amy number of pairs of sequences. Further-
more, several selectors may have to be invoked, either sequentially or
in parallel, when more than two alternatives exist or when complex
decision rules are needed. Figure 3. 1b illustrates some of these points.
Figure 3, 2a illustrates a typical misuse of a junction, In this
graph, data junction jl will never become active, since Table 2.1 requires
that one or the other (or both) of its inputs be in the disabled status for
any active configuration, Note that if the junction transition table did not
have this characteristic, then the output of junction j; would depend on the
relative speed of operators fl and fz. Figure 3.2b shows another example
of this situation. In this case, junction j1 is placed in a hang-up configura-
tion if during an execution sequence the parallel selectors ﬁl and {32 enable
their respective '+' connectors. Compare this with the arrangement of
selectors B, and ;32 in Figure 3.1b where no hang-up configuration arises.
The need for this type of behavior in junctions imply that in order to
guarantee determinism we have to:
1. have three distinct link status values.

2. propagate a disable status throughout the graph.

3. The Use of Loop Junctions and Loop Outputs

Now let us turn our attention to the use of loop junctions and loop
outputs. Loop junctions allow us to constru;:t cycles in a program graph
without necessarily introducing hang-up states. To see the necessity of
loop junctions, consider the glraph in Figure 3.7. If all links are initially
in idle status, operators fz and f3 will never become active because the
idle output status of each prevents activation of the other. Clearly what

is needed is a type of node which does not require each of its inputs to be

-48-

in non-idle status before it can become active. We have already seen in
the case of junctions that if the inputs of such a node were symmetric,
non-deterministic behavior would arise even in the absence of cycles, It
is not hard to convince ourselves that in order to have deterministic
behavior given an n input node with an asymmetric transition table, the
inputs must be arranged in a priority scheme. This priority must
effectively dictate that an input cannot place the node in an active configura-
tion unless the node had been previously activated by an input with a higher
priority. . For, unless this condition is satisfied the sequences of values at
the outputs of the node would depend on the sequence of arrival of values at
each of the inputs.

In order to implement this priority in a transition table it is neces-
sary to introduce a fourth link status whose function is to remember the
history of the activations of the node until such a time as this history

becomes irrelevant. The link status blocked(2) serves this purpose in a

program graph. Examination of the transition table for loop junctions reveals

that the high priority input is the one labelled 1 which we call the initial

input. The low priority input, labelled 2 will be called the feedback input.

The behavior of a loop junction can be described as follows: The node becomes

active as soon as the initial input becomes enabled or disabled independently

of what the status of the feedback input is. The next active configuration
of the node must be one in which the feedback input is enabled or disabled
while the initial input is blocked.

Now we have to make a choice as to when to forget the history of
activations of a loop junction. Since we want to allow an arbitrary number
of repetitions of a cycle, the cue for this transition must come from the

feedback input to the loop junction. The only two information

-49-

(a) (b)

Fig. 3.3 ‘Single and Parallel Cycles

-50-

statuses possible on a link attached to the feedback input are enabled and
disabled., The obvious choice is the disabled status.

Figure 3. 3a shows a simple example of a cyclic graph. Loop
junction g, forms a cycle together with operators f1 and fZ' and selector
By- The cycle is initiated by enabling the input terminal a. Each time [341’
is enabled, f,,g,, fl’ and B, are reactivated. Note that since enabling
ﬂ;r implies disabling B;. operator f3, which is not a part of the cycle, will
be activated on every iteration as well. This secondary effect may or may
not be desirable. Figure 3.3b illustrates a cyclic graph with two parallel
cycles. The cycle on the left, nodes g; and fl’ receives inputs from the
cycle on the right. Both cycles repeat as long as ;31; is enabled. When {3.;
is disabled, both cycles terminate. Operator f3 is in neither cycle, yet it
becomes active during each iteratibn, in this case performing a useful
function. In the example of Figure 3. 3a, the repeated activation of f3 causes
a sequence of disable statuses to appear at the output terminal w. Upon
termination of the cycle, the output terminal is enabled. In this instance,
it is desirable to prevent the activation of f3 while the cycle is in progress.
In fact, if it is not possible to exert this type of control, we cannot construct
graphs with nested cycles which are free of hang-up states. This difficulty
is illustrated in Figure 3. 4a where after four repetitions of the 'inr'.aer' cycle,
formed by nodes g, fz, ﬁl’ and f3, _every node is unable to enter an active
configuration because the output of B(1+)) f4, f5 are in non-idle status and
the initial input of g is in idle status.

Loop output nodes have been introduced to avoid such situations.
Figure 3. 4b shows the proper use of loop outputs to avoid hang-up states in
the example of Figure 3.4a. A loc;p output should be connected only to a

loop junction. The proper form of this connection is illustrated in Figure 3. 5.

o~

5]~

jw

Fig. 3.4 Nested Cycles with and without Loop Output Nodes

-52-

By examining Table 2.1 we can verify that in this arrangement the output

link of a loop output becomes non-idle only when the feedback input of the

loop junction becomes disabled (provided the initial input had been enabled

or disabled), i. e. when the cycle formed by the loop junction terminates. -~
D, ANALYSIS OF CYCLE FREE GRAPHS

1. The Role of Cycle Free Graphs

In this section we study certain properties of cycle free program
graphs. The simplicity of this class of graphs relative to cyclic graphs
makes them a natural starting point in the analysis of program graphs,
Furthermore, some of the questions about cyclic graphs raised in the next
section can be satisfactorily resolved by reducing them to similar questions
about cycle free graphs,

2. Properties of Execution Sequences

Intuitively we expect each execution sequence of a cycle free graph
to be terminal. In fact, at this point such a statement should not take us
by surprise. However, the method we have chosen to specify the behavior
of each node, i.e. the transition table, does not make this property obvious
or even necessary. The following theorem and its corollaries are a justi-
fication for the choice of directed graphs for our representation.

Theorem 3,1 Every execution sequence of a cycle free program

graph is a subsequence of a terminal sequence.
Prodf: Assume that the theorem is false. Then we can find an
execution sequence which never terminates. Since the number of active
configurations in the transition table of each node is finite, it follows that
there is at least one node which is placed in the same active configuration -
an infinite number of times. An examination of Table 2.1 indicates .that
after completion of the transition of most active configurations of a node,

a new active configuration can occur only if the status of the input

-53-

conncctors of the node are changed by its direct ancestors. The only
exceptions to this rule are the four active configurations of a loop

junctien: 1100,1-100,-11 0 0, and--l 0 0. For these configurations

two transitions may ocaur while the direct ancestors of the loop junction
are necessarily non-active. Thus, if a node is active an arbitrary num-
ber of times, the same is true of at least one of its direct ancestors.
Since the graph is cycle free, by repeatedly applying this reasoning it
must be that the initial terminal must be active an infinite number of times
against the definition of an execution sequence. This shows that every
node must be active a finite nu;xmber of times. Therefore each execution
sequence must eventually reach a final state and is a subsequence of a

terininal sequence.

Q. E.D.

Corollary 3.1 A program graph with an infinite execution

sequence must be cyclic,

Corollary 3.2 If a; and aj are two nodes of a cycle free program graph
and there is a proper path from a, to a.j which does not pass through any
loop junction (except for ai), then aj can become active only after a, has
completed a transition.

Proof: In order for aj to become active, all of its inputs must be
non-idle. Since initially all links are in idle status, this change can take
place only by completing a transition of all its immediate ancestors. By
repeating this process, the immediate ancestors of the immesdiate ancestors,
... etc. must also complete a transition. But a; is an ancestor of aj.

Thus eventually a; must be encountered in the chain of direct ancestors

which must complete transitions before a\‘j can become active.

Q. E.D.

-54.

Thecorem 3.1 applies to an arbitrary cycle free graph. However,
from a behavioral point of view, loop junctions and loop outputs do not
perform any useful function in a cyde free graph while unnecessarily com-
plicating the analysis., This motivates the following definition:

Definition 3.1 A simple cyde free program graph is a cycle free

program graph which does not contain any loop junctions or loop outputs.

In Section C it is mentioned that the effect of most acti\}e configura-
tions is to propagate the necessary status information throughout the graph
even if no functional application {(and presumably useful computations) take
place. The following theorem shows that this is a necessary condition for
the absence of hang-up states, .

Theorem 3.2 The final state of a terminal execution sequence of

a simple cycle free graph is not a hang-up state iff every node of:
the graph enters an active configuration exactly once during the
execution sequence.

Proof: Assume the final state is not a hang-up state. Then every
link is in idle status in the final state. Since initially all links attached to
input terminals are placed in non-idle status, it follows that every direct
descendant of an input terminal must have been in an active configuration.
But every transition of a node appearing in the graph, i. e. operator, selector,
and junction, places each of its outputs in non-idle status. Therefore the
direct descendants of these nodes must also have been in an active con-
figuration, This shows that every node becomes active at least once.
However, by Table 2.1, each active configuration requires all input
connectors in non-idle status,whereupon the completion of each transi.tion
reverts th?e status back to idle. Since there are no cycles, the status

must remain idle thereafter which shows that each node becomes active

at most once.

Q. E. D.

Fig. 3.5 The Proper Way of Connecting Loop Junctions
and Loop Outputs

Fig. 3.6 Initial States of Program Graphs that do not
Satiefy Theorem 3.2

Fig. 3.7 A Cycle that does not Pass Through a Loop Junction

-56 -

Corollary 3.3 A node of a simple cycle free graph becomes

active at most once during an execution sequence.

The simple characterization of hang-up states of Theorem 3.2
is not possible if we neither have a normal execution sequence nor are
loop junctions forbidden from the cycle free graph. Figure 3. 6a shows a
program graph with an initial state such that the final state of every
execution sequence is not a hang-up state, yet junction j1 is never in an
active configuration. In the program graph shown in Figure 3. 6b, all
nodes become active during each normal execution sequence, yet the
final state is a hang-~up state,

The following theorem shows that junctions constitute the source
of all hang-up states in simple cycle free graphs.

Theorem 3.3 A node of a simple cycle free graph does not enter

an active configuration during a terminal execution sequence iff

the node is, or has as an ancestor, a junction with at least two

input connectors in enabled status upon reaching the final state.

Proof: If a node is a junction and during the execution sequence
two of its inputs become enabled, then by the transition table for juhctions,
it will never become active. By corollary 3.2, any descendant of this
junction will never become active either.

Now assume that no two inputs of a junction are enabled during
the execution sequence and that some other node does not become active.
By the transition table of operators, selectors, and junctions this can
only occur if a blink remains in idle status throughout the execution
sequence. This in turn implies that one or more of the input links of -

the node to which that link is attached must have remained in idle status

also. DBy repeatedly applying this reasoning we must eventually reach

-57-
a link attached to an input terminal and this link must have been idle. But
this contradicts the definition of an execution sequence. Therefore every

node must have been active during the execution sequence.

Q. E.D.

Theorem 3.4 A simple cyde free program graph has a hang-up

state iff two or more input links of a junction are placed in

enabled status.

Proof: Immediate from Theorem 3.2, Corollary, 3. 3, and

Theorem 3. 3.
Q. E.D.

It is clear that the hang-up states of simple cycle free graphs
arise only as a result of improper specification of the relationship between
junctions and selectors.

3. The Enabling Function

The foregoing results suggest that it is desirable to have an easy
way of ascertaining whether or not two links can be placed in enabled status
during an execution sequence. To this end we associate with each link of

a simple cycle free graph a boolean function, called the enabling function,

with the property that the link cannot be enabled during an execution if its

enabling function has the valug false. The enabling function associated with
a link £, will be denoted by Ei' If El and EZ are enabling functions then
the union {or) is denoted by E1 v E2 and the intersection (and) is denoted
by E, A E,. If B is a boolean variable, then B denotes its complement.

To obtain the enabling functions associated with the links of a graph
we first assign a boolean variable Bi to each selector [Si*. The enabling

‘unction of a link £ is obtained by recursively applying the following rules:

% Throughout this discussion we assume that each selector in a graph has
a label distinct from every other selector label.

-58-
1. If £ is the output link of an initial terminal, assign to it the
identity element (t_r__xﬁ).
2. If £ is an output link of an n-ary operator, assign to it the

function E; A EZA. - /\En, where Ei is the enabling function

associated with the i111 input link,
3. If £ is the output link of an n-ary junction, assign to it the
function E,v E,V...VE .
1 2 n
4, If 7 is the '+' output link of n-ary selector pi' assign to it
the function B_AE. AE,A,..AE .
i 1 2 n
5. If £ is the '-' output link of an n-ary selector ﬂi, assign to it
the function BAE AE_A...AE_.
. i 1 2 n
Clearly, the enabling function associated with a link involves only
the variables Bi' their complement, and the identity element. In rules
4 and 5 we have effectively adopted the convention that a boolean variable
B, is true if the '+' output of the corresponding selector is enabled. We
now define the relationship between the values of the Bi and an execution
sequence. Let f,, (32, “en Bn be the selectors of a graph P, and let
B =(b;,b,,... bn) be an n-tuple where bi’ 1 <i<nis either true or false.
An execution sequence of P during which Bi+ is enabled only if bi = true
is said to match the n-tuple B. Note that this definition does not require
B; to be active during the execution sequence. If/, is a link of P, Ei(B)
denotes the value of the enabling function of 1 when bi is substituted for
B. in E..
i i
Theorem 3.5 LetP, ﬁi’ Bi’ B, li' and Ei be as above. If

Ei(B) = false then Ii cannot be enabled during any execution

sequence of P which matches B.

-59.

Prool: In the transition tables for operators,

junction in Table
digabled = false is consistent with rules 2, 3,4, and 5,
tabicen arce not completé in the
confignration 1 1 0,

an output link of a junction is included in rule 2 and vic

However every active configuration t

selector, and

2. 1 note that the assigmment enabled = true,

The transition

scnsce that junctions do not have an active

hat can disable

e versa. Thus, the

maost that can be said is that a link cannot be enabled when its enabling

function is false,

Q. E. D.

¥ rom theorems 3,4 and 3.5 it follows that a simple cycle free

praph does bot have hany

where £, and !j are inputs of the same junction, Eil\ Ej

~up states if for each pair of links £ and lj

= false.

- 60_

. ANALYSIS OF CYCLIC GRAPHS
Lo Cyele Pecomposition
In this section we undertake the study of cyclic graphs from the
point of view of relating the cyclic structure of the graph to its behavior.
The main results are that
1. for a large class of cyclic graphs necessary and sufficient
con(htmns for the absence of hang-up states can be obtained
based on propertics of strongly-connected eubgraph;;. and
2. co;-tam relations between cycles of a graph either introduce
hang-up states or can be replaced by cycle free graphs.
The basis for studying relations among cycles of a graph P is a
decomposition of the graph into certain strongly -connected subgraphs
Kl’ KZ‘ ce Kn' The decomposition is unique and has the property that for
any two strongly-connected subgraphs Ki and Kj' either* KiC Kj' KjC Ki’
or Kin Kj # . Thus the Ki are partially ordered under the relation of
proper set inclusion,
The decomposition of a graph P into its strongly-connected sub-

graphs Kl' K Kn is accomplished by the iterative application of a

PIRRE
procedure which at each step of the iteration breaks certain cycles of P.

If P’ is the graph after the rth iinration (P = P°), then each of the Kj is

a maximal strongly-connected subgraph (mscs) of some Pi. 0<i<r,

The choice of which cycles are broken at each step is based on the remarks
of section C that in order for a cycle of a program graph to be effective

it has to pass through a loop junction, This motivates the following

definttion:

* A nulmmph K is ¢ nni:unod in a subgraph K, if every node of K
also a node n'l' K;. We write K; € K, to denote inclusion and
Ky Ky to denote proper inclusion. The notation K; N K, denotes the
subgraph consisting of the nodes contained in both l% and K,. If K,

and K, are disjoint we write K|0} K, = 9.

-61-

Definition 3.2 Let K.l be a strongly-connected subgraph of a
program graph P. The G-set of K, is the set of lodp junctions of P such
that ge K, and the direct ancestor of the input conﬁector of g is not in Ki'
The G-set of Ki will be denoted by Gi'

In Figure 3.8, the G-set of mscs K, consists of g and 8 Now
we show that certain hang-up states of a graph can be directly related to
the G-sots of its strongly-connected subgraphs. First we need the

following two lemmas:

Lemma 3.1 Let a, and a‘i be two nodes of a program graph P.

If there is a path from A to aj and ﬂj becomes active during an
exccution sequence of P, then a, must have been active during

that sequence.

Proof: The proof is entirely analogous to Corollary 3. 2.

I.emma 3.2 If during a terminal execution sequence of a cyclic

graph some node a does not enter an active configuration, then

the final state is a hang-up state.

Proof: Assume the lemma is false. Then every link is in idle
status in the final state. Using the transition tables and modifying the
argument of Theorem 3. 2 to take loop output.s into consideration it follows
that every node must have been active at least once. Loop outputs deserve
special attention because for some of their active configurations the status
of the output link remains idle after the transition, However, these transi-
tions leave an input link enabled or disabled; the only way that this link can
become idle is if the active configuration enabling or disabling the output
link occurs. Thus, if the final state is not a hang-up state all nodes have

been active which contradicts the assumption.

Q. E.D.

-h2-

Theorem 3.6 Tet K be a strongly -connected subgraph of a

program graph P, If the G-set of K is empty then P has a hang-

up slate,

Proof: Since input terminals do not have any input connectors,
no cycle can pass through them. For any node of P, there is a path from ~
at least one input terminal to the node. Therefors, K has a node with a
direct ancestor not contained in K. Let a be such a node. Since K is
strongly -connected, there is a cycle { TEREE !k such that ll and lk are
respectively an output link and an input link of a. If ais a loop junction,
Ik must be attached to its initial input for, otherwise the G-set of K
would not e empty. Thus, for any a, lk must become enabled before ll -
does and by lemma 3.1, a can never become active. By lemma 3.2, it
follows that P has a hang-up state.

Q. E. D. |)

if K,. K . Krl are the maximal strongly-connected subgraphs of

2
P with non-empty G-sets GI’GZ’ e Gn' let Pl be the graph obtained from

P by disconnecting all links attached to the feedback connectors of each -
loop junction ge Gi' 1 <i<n., We say that Pl is derived from P.

Thecorem 3.7 Let P be a cyclic graph and Pl its derived graph.

Then _
1. Pl is unique.

2. p!

is cycle free or every mscs of P! is properly contained ; w
within precisely one mscs of P, ~

Proof: That Pl is unique follows directly from the fact that a |

directed graph can be uniquely decomposed into its maximal strongly:

connected subgraphs.

P

To show part 2, we nole that Pl must necegsarily have fewer
cyv-les than PP since every proper cycle of P which passes through
g ¢G., 1 <i<n does not exist in Pl. Thus, Pl may be cycle free.

1 — ——

. PSRN S 1.
Alternatively, if Pl is not cycle free, every proper cycle of P is also
a cycle of P and therefore every mscs of P‘ is contained in one mscs
of . The inclusion is proper because at least every ge G,] <i<n
‘ . : J1
is not contained in any mscs of P .

Q. E. D.

Given a cyclic graph P, we can obtain a sequence of graphs
S PO Pl. .. p" such that P ig derived from Pi. Since there are a
{inite number of proper cycles in P and each step of derivation destroys
one or more cycles, P" is either cycle free or it has an mscs with an
empty G-set, 1If p" is cycle free it is said that Y is gyclicgc_onsistent.

The process of obtaining the sequence POPI. .. P"™ will be called cycle

decomposition. If P is cyclic consistent, P" is the cycle free graph

BS_P_SL?}}ES by P. The mscs's of the graphs obtained during the cycle
decomposition of P can be arranged in a tree structure. The root of the
tree is labelled P and every other vertex of the tree is labelled with the
name of one mscs in such a way that there is a branch joining vertex Ki

to vertex Kj i ff KiC Kj. The tree obtained in this manner will be called

the cycle structure of P. A node a is said to belong to an mscs K of

the cycle structure iff K is the smallest mscs containing a. Figure 3.8
illustrates the application of the cycle decomposition procedure. The
sequence P = POPIP2 appears in Figures 3. 8a, b, and c respectively.
The cycle structure is shown in Figure 3.8c. Node fz belongs to K3.

while node f6 belongs to Kl'

N
hd
3
2
-g
[-%
3
=
8
O -~
v P
Q
>
L9
L
£
- s
2
B |
o
b
”
P
Ma

-6 H-

2. Simple Cyclic Graphs

The concept of cyclic consistent graphs suggests that we restrict
our attention to the study of cyclic graphs which meet certain minimal
atructural conditions in the formation of their cycles. In Section D we
defined simple cycle free graphs by disallowing the use of loop junctions
and loop outputs, Here we define simple graphs (scg) by only allowing
‘proper' use of loop junctions and loop outputs in cyclic graphs. Simple
graphs include simple cycle free graphs as a special case,

Definition 3,3 A graph P is simple iff

1. P is cyclic consistent.
2. Every loop junction of P is in the G-set of some mscs of
the cycle structure of I

3. Every loop output of P is properly connected to a loop junction,

From Theorem 3.2, we know that if all the paths from each ancestor
of a node to the node pass only through operators, selectors, and junctions,
then,in the absence of hang-up states.the node becomes active iff its
ancestors do. This suggests the following definition associating the links
of the graphs with the mscs of the cycle structure:

Definition 3.4 A link f£ belongs to an mscs K if there is a proper

path { 112. .. lkl passing through nodes A a8 A such that

1. a, 1 <i<k+1l is neither a loop junction or a loop output.

2. a, is a loop junction contained in the G-set of K, or

1

a, is a loop output having as direct ancestor a loop junction

1
whose initial input belongs to K.
A link may belong to zero, one, or more mscs's. For our purposes, ’

we will consider that all links which do not belong to any mscs do in fact

belong to a 'virtual' mscs.

-66-
The hang-up states of simple graphs can be characterized in

terms of a counting property of links belonging to the same mscs and

links attached to loop junction - loop output pairs. Figure 3.9 defines

the link names used in Theorem 3.6, If { is a link, (¢] denotes the number

of times that £ is enabled or disabled during an execution sequence.

Theorem 3.8 The final state of a terminal execution sequence of

a simple program graph is not a hang-up state iff the following two

conditions are satisfied:. |

1. For each loop junction - loop output pair {1,] ={ 13] =] 14] =

YR EITNE

2. M1, and lj belong to the same mscs then| li]‘ = [lj]

Proof: If Pis cycle free, condition 1 does not apply and condition 2
becomes the statement of Theorem 3.2. Thus, it gsuffices to assume that
P is cyclic. The proof invokes certain properties of the transition tables
obtained by exhaustive case analysis. Because performing the case
analysis each time becomes extremely tedious, we will jusf list t‘hese
properties here and defer their det;iled verification to Appendix B. The

properties are grouped according to the node types to which they apply.

Loop junctions - loop output pair

a, |ll]=-[!6]iff1l and £, are idle
Loop junctions
b, If ’l is idle then:
UZ]:[14 iff| 12] =[l3], L, and £, are idle.
c. If£,, L, LY 1, are idlethen[12]=[13]=[!4]

Operators, selectors, junctions, and loop outputs

d. Each input link has been enabled or disabled n times iff

either all input links are idle or all are non-idle,

-67 -

Fig. 3.9 The Link Names of Loop Junction-Loop Output Hairs

N
")

£,

Fig. 3.10 The Link Names of Operators, Selectors, and Jurne i

-68-

Operators, selectors, and junctions

e, If Ii and l.i are input and output links respectively then:
| Ii]r [lj] iff !i is idle,

To show that conditions 1 and 2 imply that all links are idle in the
final state, we divide the nodes into two classes: 1) operators, selectors,
and junctions, and 2) loop junctions and loop outputs. For each class we
show that each of their input links has the desired property and thereby

cover all the links of the graph, since links attached to output terminals

are inconsequential.

In Figure 3. 10, let the node represent an operator, selector, or

junction. If the input links li and lj belong to mscs's Kl and K2 respectively,

then lj, the output link, belongs to both K, and KZ' By condition 2,

(4771 4,]= [lj Jand by property e both £, and lj must be idle., Clearly, the
same argument can be applied for any number of inputs. Now consider
Figure 3.9. Since the graph is simple, every loop output is paired with
precisely one loop junction as illustrated in the Figure. By Definition 3.

ll and 16 belong to the same mscs, and by condition 2, [¢ l] ={ 16].
Therefore, by property a both £, and £, are idle. By condition 1,{£,] ={ 1,]
and by property b, [12] = [13] and 12 and 1, are idle. This shows that
both inputs of the loop junction are idle. We also have that 13 is idle and
by condition 1, (13] = (£ 51 Therefore, by property d, 15 must also be idle
and this completes the first half of the proof,

Next, we show that conditions 1 and 2 are necessary as well. Thus,
assume that all links are in idle status. In particular, for any loop junction
L L POLEY 1, are idle. Thus, by property a, [ll] =L 6]and by property ‘i
[lz] = !3] =[l4]. Finally, by property d| 13] =[1 5] and thus follows
condition 1. .Tbo show that condition 2 is also implied, we just reverse

the argument using Figure 3. 10 and condition e. This completes the proof.

Q. E. D.

-66-

Corollary 3.3 Let g and g, be loop junctions contained in the

G-set of an mscs of the cycle structure of a simple graph P. The final
state of a terminal execution sequence is not a hang-up state, only if

* :
(2,080 =240 = 11,80 =11 4(g))] and (£, (g,)] =1£,(g;)].

Proof: Immediate by observing that lz(gl) and Iz(gz) belong to

the same mscs.

Q. E.D.

Corollary 3.4 Let g, and g, be loop junctions contained in the

G-sets of mscs's Kl and K2 of a simple graph P respectively. If there
exists a link £ in P which belongs to both Kl and KZ’ then the final state
of a ferminal execution sequence is not a hang-up state only if
[1,(8)] = [£,(g) 1= U(e))] = [£508,)) =[4408 = [L4(er)]

Proof: f must be the output connector of a node as shown in
Figure 3. 106. By first applying condition 2 and then 1 we obtain the desired

result.
Q.E.D.

If we view the links of the graph as providing channels for the
flow of control information, Theorem 3. 6 says that there must exist a
certain balance of in-flow and out-flow at each node and at each cycle.
The next theorem shows that in order to preserve this balance, and there-
by avoid hang -up states, communication between cfcles should be restricted
when the cycles are not contained within msc s's of the cycle structure
gharing common nodes (i, e. mscs's that are not disjoint). The essence of
this constraint is shown in the proof of Lemma 3.5. We need two pre-
liminary lemmas relating the initial and feedback inputs of loop junctions

to the cycle structure of simple graphs.

% f(g) denotes the named link of loop junction g with reference to
Figure 3.9. '

- 70-

Lemma 3.3 Let P be a simple graph, K1 an mscs of its cycle

structure and g 2 member of the G-set of Kl' If 11 is the

initial input of gy then tl belongs to an mscs KZ’ where Kl c K2

orxan2=0.

Proof: Assume the lemma is false, then KZE Kl' This implies

that there is a path from g to every g, € KZ' Since ll belongs to KZ,

there is a path from some g, to g, and the last link in this path is

1 1" Therefore, there is a cycle in Kl involving L) and either g, is not in
the G-set of Kl or P is not simple. In either case we obtain a contradiction,

Thus, either K, C K, or Kln Kz = @,
Q. E. D,

Lemma 3.4 Let P, K, and g, be as in Lemma 3.3. If L, is

the feedback link of By then {, belongs to K,, where KZ_C_ Kl.

Proof: If K, C KZ or Kl n K2 = @, both inputs of) have direct

ancestors not contained in Kl' Consequently g€ Kl which contradicts

the hypothesis, Thus, KZE Kl'
Q. E. D.

"Lemma 3.5 Let L, and !j be links belonging to msacs's K, and
K. of a simple program graph P. Let g be a loop junction con-
tained in the G-set of K.. If KiCKj and | ‘i], = lj], the final
state of an execution sequence is not a hanglup state only if
(£,(g;)] = 14,(g)].
Proof: Since Kic Kj’ there must exist a loop junction gr € Gi
and an msce K' such that ¢ 1(gl_) belongs to K'B and KS,C_I Kj' For,

by lemma 3. 3, if such g, did not exist it follows that Kls n Ki = § and-

therefore Ki = Kj' Now by Theorem 3.8 we have: (See Figure 3.11)

[lz(gr)] > [£,(g))] (1)
if,(e)] [14(gr)} (2)

-71-

If gls is a loop junction in the G-set of Kls , since 14(gls) belongs to the
same mscs as [l(gr) it follows that:
1
[£,(g)] = [L408)] (3)
1f Ks # Ki' we can apply the same process yielding at the mth step the

relations (see Figure 3.11).

m-1 m-1l

[t(eg)1 21 £ g) (4)
LLETTD = e (5)
|1l(g;“'l)1 = 14(5’,’3n)] (6)

At the nth step Kj is reached, by Theorem 3.8
n
[li]=[1j1=[14(gs)] (7)
Substituting back into each set of relations ueing (4), (6), and (7)

we obtain:

[2,0m 1 214 (8)
Using (8), (5), and (3) we obtain:

-2

(£, () N2> 141 (9)
This process is repeated as often as needed using the appropriate
instances of (4), (5), and (3), finally yielding:

[Lp(e 2 11){8,)] 2 [45] (10)
But

[2;]= (246 = [1,08))] (11)
which when substituted in (10) yields

(1,081 = [£,(8)] | (12)
By Corollary 3.3

[£5(8,01 = [L,(g))] and [£,(8)] = if,(g;)]
From these two equalities and (12) we obtain

[2,0g)] = [£,(g)]

as required.

-72-

Fig. 3.11 The Link Names in the Iteration Step of Lemma 3.5

e73-

Theorem 3.9 Let g, and g, be loop junctions contained in the

G-sets of mscs's Kl and K2 respectively, where K] CKZ. If
there exists a link £ which belongs to both Kl and KZ, then the
final state of a terminal execution sequence of P is not a hang-up
state only if { lz(gl)] = [£,(g)]:

Proof: There must be an operator, selector, or junction which

has inputs belonging to K, and K2 respectively. Then the theorem follows
immediately from Lemma 3. 5.

The following corollaries of Theorem 3.9 relate the cycle structure
to sources of hang-up states. The cycle structures are sketched in Figure

3.12 where each circle denotes an mscs.

Corollary 3,5 If a simple graph P has a node other than a loop

junction with input links belonging to mscs's Kl and KZ and Kl c KZ'
then either no cycle of Kl is ever effective or P has a hang-up state
for some execﬁtion sequence.

Proof: By Theorem 3.9, for each loop junction g, of Kl
{ lz(gl)] =[1 1(gl)] or there is a hang-up state. But this condition
merely says that the feedback link of a loop junction is enabled or disabled
the same number of times. This must occur for every execution sequence.
Thus, for no execution sequence does the cycle repeat.

Q. E. D.

The proof of the remaining corollaries is completely analogous and will
not be given. |

Corollary 3. 6 If a simple graph P has two nodes a, and a, with

input links belonging to mscs's K, and K3, and K2 and K4 respectively,
where KlC K2 and K4g K3, then either no cycle of Kl is ever effective or

P has a hang-up state for some execution sequence.

-74-

(a) (b)

(c)

Fig. 3.12 Diagram of Paths Between mscs's which
May Cause Hang-Up States

.75 -

Corollary 3.7 Let P be a simple graph, K, an mscs of P, and

B, @ loop junction in the G-set of K,. If the feedback link of g belongs to
an mscs Kl and ch KZ’ then either no cycle of Kl is ever effective or P
has a hang-up state for some execution sequence.

Combining Lemma 3.4 and Corollary 3. 6 we obtain:

Corollary 3.8 Let P, K,. and g, be as in Corollary 3. 6. If the
feedback link of g, does not belong to KZ’ then either no cycle of any mscs
Kl where KlC KZ is ever effective or P has a hang-up state for some
execution sequence,

GCorollaries 3.5 and 3. 6 tell us that a node in an inner cycle should
not depend directly on a node in a containing cycle unless the node in the
inner cycle is a loop junction, Corollary 3.7 tells us that loop outputs
have to be used in order to nest cycles. For example, in the graph of
Figure 3.4a loop junction g, does not satisfy the condition of Corollary
3.7. We have already seen in Section C how the hang-up states of this
graph arise.

3. Graphs of Typel

We will now restrict our attention to a class of program graphs
having the property that a hang-up state can arise only if two input links
of a junction are placed in enabled status during an execution sequence.

Graphs with this property will be called graphs of type I. Under suitable

assumptions on the behavior of the selectors, we will give a procedure to
test whether or not hang-up states can arise in graphs of Type L.

The motivation for the following defini.tion comes from Corollary
3.8 which states that if the feedback input of a loop junction in the G-set
of an mscs does not belong to the mscs, then all cycles of inner mscs's

are uneless. Thus, if we require that the feedback input of a loop junction

-76-
belong to the same mscs as the outputs of g, we do not seriously restrict

the class of program graphs. If, in addition, we require that both inputs to

a loop output belong to the same mscs, then condition 2 of Theorem 3. 6

implies condition 1.

Definition 3.5 A simple graph is said to be of Type I only if:

1. The initial inputs of all loop junctions in the same G-set belong
to the same mscs.

2. If a link £ belongs to mscs's Kl and KZ’ then the initial inputs
of g, and gy where g, € Gl and g€ GZ’ belong to the same
mscs.

3. The input links of every loop output belong to the same mscs.

Corollary 3.9 The final state of a terminal execution sequence of

a graph of Type I is not a hang-up state iff whenever Ii and lj belong to the
game mscs, [!i] =1 lj] .

Proof: Immediate from the definition and Theorem 3. 8.

If P is a graph of Type I, we associate enabling functioris with the
links of P in the following manner: Let P" be the cycle free graph generated
by the cycle decompositicn of Pi Every link of P is also a link of P".
To obtain the enabling functions, we apply, in P”, rules 1 through 5 of
Section C. 3 plus the following three additional rules to deal with loop
junction and loop outputs.

6. If # is the data output link of a loop junction g assign to it the

function E1 associated with the initial input of g.

7. 1If { is the control output link of a loop junction g assign to

it the function E, associated with the feedback input* of g.-

%* The feedback input of g is not attached to the loop junction in the graph
pn,

-77-

Fig. 3.13 The Enabling Functions of a Cyclic Graph

-78-
8. 1If £ is the output link of a loop output assign to it the function

El v E, where El and E2 are the enabling functions associated

2
with the input links.

Rules 7 and 8 define the enabling function of the output link of a loop output
in terms of the function of the feedback input of the associated loop junction.
Since the definition of graphs of Types I require that the initial and feed-
back inputs of a loop junction belong to different mscs's, it follows, by
Lemma 3. 3, that the enabling function of each link is uniquely defined, i.e.
application of rules 6, 7, and 8 will not give rise to an eﬁdless loop.
Figure 3. 13 illustrates the application of these rules for the graph previously
decomposed in Figure 3.8. The interpretation of the enabling function
associated with links of loop outputs by rule 8 is, as with all other enabling
functions, that the link cannot be enabled when the value of the function is
false. By checking the transition table for loop outputs and keeping in mind
rule 7, it can be verified that the assignment of rule 8 is consistent with this
interpretation and the conventions established in Section C. 3.

Strictly speaking, the enabling functions associated with the links of
P" are applicable only to those execution sequences during which no cycle
of P repeats. However, in order to guarantee that no hang-up states can
occur, the enabling functions of feedback inputs of loop junctions covered
by 1 and 2 of Definition 3.5 have to be equivalent (i. e. they must be false,
and therefore the link disabled, under the same conditions). For, it is
clear that if this condition is not met, then we could find execution
sequences for which corollary 3.9 is not satisfied. This is illustrated in
the example of Figure 3. 14 where the output link of the operator labelled
fs belongs to both mscs of the graph., The cycles of each mscs are indepen-
dent of the other., Thus, during some execution sequence one cycle is

enabled more times than the other and a hang-up state thereby arises.

-79-

Fig. 3,14 A Possible Hang-Up State Arising from mscs with
Different Feedback Enabling Functions

-80-
We formalize this observation as follows:

Lemma 3. 6 The final state of each terminal execution sequence

of a graph of Type I is not a hang-up state only if the enabling

functions of the feedback input linl\<s of loop junction satisfying

1 and/or 2 of Definition 3.5 are equivalent,

It is convenient to introduCe the term G¥*-set to denote the union
of the G-sets of the mscs's K, and K2 such that there exists a linlf,: be-
longing to both K, and KZ' Clearly, any two G’f‘-sets are disjoint. To
extend the enabling function to those execution sequences where cycles
repeat, we obgserve that whenever the feedback input of the loop junctions
of a G*-set become enabled, the next value of the enabling function can be
obtained by simply setting the data output link of all members of the G¥-set
to the identity function. The enabling functions so obtained applies to all
succeeding repetitions of the cycies, and should also satisfy Lemma 3. 6.

1
We will call these functions the P" enabling functions.

Theorem 3.8 Let P be a graph of Type I. The final state of all

terminal execution sequences of P is not a hang-up state only if*:

1. The P" and Pn' enabling functions of the feedback inputs of
all members of each G*-set are equivalent and different from
the identity element.

2. If Ei and Ej are the Pn(Pn') enabling functions of two inputs
of a junction, then Ei A Ej =false,

Proof: The first half of part 1 follows directly from Lemma 3. 6.

The second half, i.e. that the erabling function be different from the
identity element, is also needed. For, otherwise the feedback links of
the corresponding G¥*-set will never be disabled and therefore they

could not be in idle status in the final state.

% As in Section C. 3, here we assume that no two selectors of P have the
same label.

-81-

In order to show the necessity of part 2, consider the possible
execution sequences of a graph in the light of its cycle structure. First,
if the condition Ei Ej false is not satisfied for some junction in P",
then, by Theorem 3.5, there is at least one execution sequence during
which a hang-up state occurs, i.e. that sequence during which no cycle
of the graph repeats. Now, let Kl' KZ’ e Kr be the mscs's in the first
level of the cycle structure. Set the output links of the loop junctions in
their G-sets and compute the Pn' enabling functions for all links belonging
to an mscs K, where K Ki’ 1 <i<r. Allother links of the graph are
discarded. By the defimition of the G*-sets, the result is a set of disjoint
graphs such that the data output links of a G*-set obtained from Gl’ GZ' "'Gr
correspond to the input terminals of a graph. The argument used for the
p" enabling function is valid for each of these graphs and consequently
Ei A EjE false at each junction as well. This process is repeated until

the cycle structure is exhausted.

Q. E.D.
The proof of Theorem 3.8 contains the essence of a procedure to
test whether a graph of Type I has hang-up states under the assumptions

that all selectors are distinct and independent of one another.

1IV. AN EQUIVALENCE PROBLEM

A. INTRODUCTION

The determinism of program graphs guarantee not only the unique-
ness of the final state of terminal execution sequences with the same initial
state, but also the uniqueness of the sequence of value and status pairs at any
link. It is often the case that we are interested in observing identical
value and status pairs in a subset of the links of the graph. Under these
circumstances, the following two problems are of interest:

1. To determine of two program graphs Pl and F’2 whether or

not the value and status of a given link of P'l is the same as
the value and status of a given link of PZ.

2. To determine what kind of transformations can be performed

on a program graph Pl so that the transformed graph P2 is
equivalent (in the sense of 1) to the original graph Pl'

In this chapter we consider both of these problems when two values
are to be considered the same if and only if they have identical functional
expressions after elimination of identity functions. For example, if I denotes
the identity function, then

f,(If,(x, y)), 2) = £ (f,(x, y), I(z))

Section B presents a solution to the equivalence problem for graphs
with a known, simple structure. Section C formalizes and generalizes the
reasoning of Section B to program graphs with almost arbitrary structure.
Theorem 4.1 in that section establishes necessary and sufficient conditions
for the equivalence of two program’ graphs. Finally, Section D considers

certain simple equivalence-preserving transformations.

-82-

_83-

B. A SIMPLE EQUIVALENCE PROBLEM

Let us consider the following problem: we are given two program
graphs Pl and Pz -- whose structure is known and is as shpwn in Figure
4. 1. Specifically, we know that both graphs have precisély one maximal

strongly -connected subgraph, i.e. the boxes labelled H,, H,, Fro Fs

Gl' GZ’ Vl, and VZ in Figure 4. 1 are cycle free. Furthermore, we know
that a cycle occurs in either graph only if the selectors labelled ﬁ} and 6?
respectively enable the connectors labelled '+'. Both graphs have the same

number of input terminals and loop junctions, and there are no hang-up
states in either one. We are asked to determine whether or not the value
and status of the links labelled £, and 12 in P, and F’2 respectively are the
gsame for all sets of input values when the input terminals of both graphs
are identified as indicated by the dotted lines in the figure. Assume for
the moment that pll and [3? are the only selectors in both Pl and PZ' Now
assume that it is possible to find execution sequences of P2 which yields
a value at 12 identical to the value obtained at ll when the first activation
of ﬁ} in Pl enables the connector labelled '-', and when the first activation
of B: enables its '+' connector and the second activation enables its '-'
connector. Similarly, assume the same thing holds true when the roles
of Pl and P2 are reversed, We claim that these two conditions imply

the following:

1. F H, (x)= F,H,(x)
2. F G (y)= FZGZ(Y)
3. V,(z) EVZ(Z)

and it is clear that 1,2, and 3 imply that to each execution sequence of P1
producing any value at ll there corresponds an execution sequence of PZ

producing the same value at £, and vice versa.

-84-

Fig., 4. 1 Cyclic Graphs with the Same Cycle Structure

-85-

Let 01, OZ denote the two chosen execution sequences of P1 and

1 1
Oé. 0§ those of PZ.

For each of those sequences let us write the expression corres-

ponding to the value and status of 11, !2 as follows:

o} + By(F (H (x)) =V (F (H (x)) (1)
0% ¢ BY(F (H () A B (F (G (F (H, ()= V, (F| (G, (F| (H (x))) (2)
o) 1 B (F,(H,(x))) =V, (F,(H, (x))) (3)
o2 ¢ BYF, (Hy(x)) A B (F (G (Fy (Hy (D))= V,(F 5 (G, (F (Hy (x))) (4)

The expression on the left hand side of the arrow denotes what
sequence of selector outputs must be enabled in order for the value on the
right hand side of the arrow to appear at the chosen link,

Now suppose that 0}

2 iie., V (F(H,(x))) = V,(F,(H,(x))) and V| (F (G, (F (H, (xN) = V,(F,

(G (F 5 (Hy (x)))).

In order for the left hand side of the arrows in (1) ard (3) to be

is matched with oé and (J? is matched with

o

enabled under all circumstances we must have FlHl = FZHZ' From this
identity and the identity of th;e right hand sides it follows that Vl = VZ'
A similar argument using the identity of (2) and (4) yi:elds F},Gl = FZGZ'
On the other hand, if FIHIE FZHZ then (1) and (3) caﬁnot be
matched even if Vl(Fl(Hl(x))l:) = VZ(FZ(HZ(x))) for we have no assurance
that B;(Fl(Hl(x))) = ﬂl-(FZ(HZ(x))). Analogously, (1) and (4) cannot be
matched either; in fact (1) cannot be matched with any execution sequence
of PZ. Similarly if FIGIE FZGZ' (2) cannot be matched with any
execution sequence of Pz either. This, however, ‘contradicts the hyp.othesis |

and we must conclude that the only possible match is (1) with (3) and (2)

with (4) which proves our original claim,

-86-

If we now allow Hl' HZ' F1 , FZ’ Gl’ GZ’ V1 , and VZ to be arbitrary
cycle free graphs, the séme reasoning still holds by considerfng every
execution sequence which results in a different combination of selector
connectors being enabled. The detailed justification of this assertion is
best left to the next section. | |
C. THE EQUIVALENCE PROBLEM FOR ARBITRARY GRAPHS

In order to appl;r the foregoing reasoning to arbitrary program
graphs we must be able to express the same concepts without any know -

lege of the cycle structure. The concept of base sequences is introduced

with this aim.

Definition 4.1 A base Qéquence of a program graph P is a normal

execution sequence during which at least one link of every proper cycle of

P is enabled at most once.

Corollary 4.1 Every program graph has a finite number of base

sequences.
Proof: Immediate from the definition and the fact that there are
a finite number of proper cycles in a program graph. |
The definition of base sequences immediately yields the following:

Corollary 4.2 If a;, a, are two nodes of a program graph P and

there exists a proper path from a toa, all of whose links are enabled for
some execution sequence of P then there is a base sequence of P during

which these links are also enabled.

Corollary 4.3 Every execution sequence of a cycle free program

graph is a base sequence,

Definition 4,2 An infinite cycle is a data cycle all of whose links

are enabled for all execution sequences.

-87-

A program graph with an infinite cycle never reaches a final
state. Infinite cycles can be detected by examining the relationship between
the cycles and selectors of a graph.

Appendix A contains an algorithm to determine whether or not a
program graph has infinite cycles and/or hang-up states. Furthermore
the algorithm generates all the base sequences of the graph if neither of
the above conditions are present.

We shall henceforth consider program graphs without infinite
cycles and/or hang-up states.

If £ is any link of a program graph, its value and status are,
according to Theorem 2. 2, uniquely defined for every execution sequence.
Accordingly, the execution sequences can be grouped into equivalence
classes with respect to £ as follows:

Definition 4. 3 Two execution sequences are in the same equiva-

lence class with respect ta a link £ if and only if the value and status of £

are identical upon completion of both sequences.

Since the value of a link is considered to be undefined when the
link status is not the enabled status, there is one equivalence class for
all sequences during which the link is not enabled.

In order to study the equivalence between program graphs we
need only consider a suitable representative of each equivalence class.
For this purpose we need a precise description of the circumstances
under which a particular value is assigned to a link. It is rot enough to
know that the link is enabled. We also need to know what selector
terminals are enabled when a value is obtained at the link. We will
represent each equivalence class of execution sequences by a pair of
functional expressions. The first member of the pair denotes the condition
under which that value is ob£ained. The second member of the pair denotes '

the value assigned to the link, The condition part is a boolean expres sion

-88-

using the connectives ' A' (AND) and ' ' (OR) among terms of the form:
(3+(yl, e yn) or 5'(yl, ce yn) where y; are any functional expressions de-
noting the values of the input links of the n-place selector .

The notation is best clarified by an example. The pair:
+ - -
£: B (@) nB;(f,(a, . ay)) v B (f5a)) = £, (£ (e, ap), 3(a)))

denotes that link £ is assigned the value fl(fz(al,uz), f3(al)) if either

selector B, enables its '+' connector when its input has the value ay and

selector ﬁz enables its '-' connector when its input has a value fz(al , uz).
or when selector Bl enables its '-' connector when its input has a value
f3(ul).

N‘ote that the first member of the pair is closely related to the
enabling function used in Chapter III. There it was specifically assumed
that all selectors of a program graph were distinct and therefore it was
sufficient to consider only the selector label. In the context of this
chapter such an assumption is too restrictive, yet the need to uniquely
distinguish each selector value is preserved by the use of the functional
notation as above.

The two members of a pair characterizing an equivalence class

of execution sequences will be called dynamic enabling function (def)

and value respectively.

Given two dynamic enabling functions it is possible to determine
whether or not they are equivalent by replacing each expression of the
form p; (...)s ﬂi-(. ..) with single boolean variables according to the
following rules:

1 T . 3t £ ' 1

. wo expressions ﬂi (yl VY e e yn) and ﬂj (yl, Yoo yn) are
t

{
assigned the same variable iff i = j, Y= Yy 1 <cic¢ n,

I S,

~-89-

+ . . .
2. If pi(yl. Ypreo- yn) is assigned the variable Bi' then
ﬁi-(yl. Yoreee yn) is assigned its negation Ei
From the foregoing and the definition of equivalence class we
obtain:

Corollary 4.4 Two execution sequences belong to the same

equivalence class with respect to a link £ iff their characterizing pairs
exhibit identical values and equivalent dynamic enabling functions.

Now we give a precise f(;rrr;ulation of the equivalence problem for
program graphs.

Let Pl and P2 be two program graphs without infinite cycles and/
or hang-up states. Nodes of P, and P, tagged with the same label denote
the same function or predicate. Furthermore, we assume that if ﬂi is
an n-place predicate and Yy and y, are n-place value expressions, the’
only constraint on the value of B, is that {3: (yl) and Bi-(yz) may occur during
the same execution sequence only if Y, # Yoo Let the input terminals of

P"'l and P, be denoted by a8y .0y and a'l, ah, ... ux"n , respectively. If

2
11 and 12 ax.'e links of P1 and PZ’ the notation { l(Cl,l, as, . an) and

1 l(a'l , 0"2’ . u;n) denotes the value assigned to the links as a function of

the values assigned to the input terminals of Pl and PZ’ respectively.

Let X denote the set of values which can be assigned to these input terminals

1
and @ a mapping which associates each a;, a, with a member of X.

Definition 4. 4 Pl and P2 are equivalent with respect to ll and !2

under the mapping & iff to every equivalence class of the execution

sequences of Pl there corresponds an equivalence class of the sequences
' 1 1 1

of P, such that { 1(<I>(¢11). @(02), e @(an)).= Iz(Q(ul).ﬁ’ (02), ... P (o.m)) and

the corresponding dynamic enabling functions are equivalent.

-90-

This is a very strong definition of equivalence. It requires that
to each sequence of functional applications of one graph there corresponds
an identical sequence of the other graph. Furthermore, it assumes that
it is always possible to assign to a selector B a predicate function such
that if y, and y, are suitable arguments of this predicate and y, # y, then
either p+(y1) or ﬁ-(yl) may be enabled concurrently with B+(y2) or ﬂ-(yz).

This form of equivalence is closely related to the equivalence of
program schemata as defined by Ianov. There are two important dif-
ferences, however, which makes our definition a non-trivial generaliza-
tion of Ianov's., First, ;ve specéifically require that during no ‘execution
sequence it occurs that [3+i(x) and ﬁ;(x) are enabled; second, we allow
functions of any number of arguments and parallel evaluation of functions.

Neither of these situations can be expressed in Ianov's program
schemata which ca\'n oniy represent strictly sequential application of
single -input, single-output functions and where the predicate variables,
which perform the selection function in program schemata, are distinct
and their values at any one time areindependent of the past history of the
process. In fact, Rutledge has shown that program schemata are equiva-
lent to finite state devices whose inputs are sequences of allowable predi-
cate variable vectors and whose outputs are sequences of operators (i. e.
values so defined by Ianov). This implies that the allowable input and
output sequences of program schemata are regular sets. This assertion
does not hold, in general, for program graphs even if the first condition
mentioned above were not required.

The following theorem gives necessary and sufficient conditions

for the equivalence of two program graphs in terms of the base sequences

of each graph,

-9} -

Theorem 4.1 Let Pl, PZ’ D, ll, and 12 be as before. Pl and

P, are equivalent iff to every equivalence class of the base
sequences of P1 there can be found an equivalent class of execu-

tion sequences of P2 and vice versa.

Proof: If P, and P, are equivalent, the condition of the theorem

1 2

must be satisfied since otherwise we would have found an execution

sequence of P1 not equivalent to any execution sequence of P2 or vice
versa.

Next, we show that if the condition of the theorem is satisfied, to
every execution sequence of Pl, there can be found an gquivalent execu-
tion sequence of P‘2 and vice versa.

If none of the links of P1 and P2 are enabled more than once for
any of their base sequences, then by Corollary 4. 2, neither P1 nor P2
have any effective cycleé and by Corollary 4. 3 it follows that the condition
of the theorem considers all execution sequenéea.

Now assume that there is a base sequence of P1 during which some
link is enabled more than once.

We recall from Chapter III that every cycle of a program graph with-
out hang-up states must pass through a loop junction., Since all inputs of
loop junctions are data links, it follows that every cyclic graph without
hang-up states does not have control cycles. If during any execution
sequence any link is enabled more than once, all links of some cycle must
have been enabled.

Pl and P2

for each proper cycle there is at least one selector capable of disablir.lg

do not have any infinite cycles. This can occur only if

(and therefore also enabling) a link of the cycle.

-g2-

Let B = ﬁil. cees ﬁin be fhe set of selectors of Pl which has the
afore mentioned property for a given cycle.

From the definition of base sequences, there are such sequences
during which the values assumed by members of B disable this cycle,
and there are other base sequences during which the cycle is first enabled,
then disabled. We shall refer to these base sequences as acyclic and
cyclic respectively. Note that a sequence acyclic with respe‘ct to a cycle
may be acyclic or cyclic with respect to another cycle. If a cyclic base
sequence is in the same equivalence class as an acyclic one, then the're
is no execution sequence during which all links of the corresponding
cycle are enabled more than once, i.e., all execution sequences involving
the cycle are base sequences (e.g., the example of Figure 4.3). On the
other hand, if a cyclic base sequence is not in the same equivalence class
as any acyclic one then the cycle may repeat any number of times.

Our first task is to shm;v that the condition of the theorem implies
that to every such cycle in P, there corresponds an identical cycle in PZ'
The dynamic enabling function of the cyclic base sequence of Pl must
have two instances of each of the members of the set B of selectors.

Each of these instances must have at least one of its arguments different
from the corresponding argument of the other, for otherwise the graph

has infinite cycles, Since by hypothesis we have found an equivalent execu-
tion sequence ¢ of PZ’ there are instances of members of B in P2 which
either are in cycles having the same relationship to a cycle as in Pl or

are not contained in any cycles. If it is the latter case, then there must
exist a base sequence of 1’-‘2 identical to the sequence 0 up to the second
activation of members of B at which po‘int, one or more members of B

enable the complementary connectors instead. This second activation,

.

-93.

therefore, yields values corresponding to the repetition of the cycle of Pl.
It follows that the sequence of Pl equivalent to this base sequence of P2
enables the cycle once more and therefore the corresponding def

has a third distinct instance of members of B. By repeating this argu-
ment as often as needed we conclude that either there are an infinite
number of instances\of B in P2 or there is a set of these instances con-
tained in some cycle. But the first alternative is not possible since a
program graph is finite.

An entirely parallel argument can be used when the set B deter-
mines a data cycle of PZ'

The foregoing construction also shows that to any execution
sequence of P1 which enables a cycle any number of times, there corres-
ponds an equivalent sequence of PZ and vice versa. Thus, now we have
s-hown that in addition to the base sequences, all.sequences of one graph
enabling one of the cycles an arbitrary number of times and all other
cycles at most once have an equivalent sequence ih the other graph, Using
the correspondence of cycles and an analogous reasoning we conclude
that the set of equivalence sequences can be extended to include those in
which two cycles are repeated an arbitrary number of times and so on

until all cycles are considered and therefore all possible execution

sequences,
Q. E. D

We illustrate the application of Theorem 4.1 by working out several
examples. Throughout these examples we shall omit parentheses from
functional expressions, .

Example 1. We want to determine whether or not the graphs

P1 and P2

and W, .

shown in Figure 4.2 are equivalent with respect to the links Wy

-94 -

-9 5~

Pl has two base sequences corresponding to the proper cycle

passing through nodes g;. fl’ and f,.

1, -
0, ﬁlfla»f6f5f3fluf4f3f1a
and
2 + -
oy ¢ ﬁlflaAplflfzfla»f6f5f3fzf1af3f1fzf1a
P2 has four possible base sequences corresponding to the proper
cycles passing through nodes g5 fl’ and 8> and g3 fl' and fz.

1 .- N
0, Blflu/\ﬁlflu f6f5f3flaf4f3fla
2 .- " ;
0% : ByE 1,6 anBlf aAB]E a—E Lol if £yl af S50 a
3 - ; " '
03 ¢ BIf anBIE T,f anBiT o= fTof af 5T £ a
od BTE anpTE £ £ anptf o a—f £ £ £ £,f af ff 560
o @ Bifjenpfiffiang fifHf e i1 N ¢etshT2h

However, Ug and 0; can not be execution sequences since both
ﬁ:fla and B-lf'la occur in their defs. It is readily checked that o: E= 0;

and of = og and thus Pl and P2 are equivalent.

Example 2. P, and P, are as shown in Figure 4. 3. Pl has eight

possible base sequences corresponding to the proper cycles passing through
nodes g,, f,.1 and g,, f2’ f3.

g, ﬁ;a/\ﬁtfla—-ft*fla

2 - - ‘
a,* Bzal\ﬁlflo./\ﬂlfzflua-—f-fl}fzflaa
o : gtanpf anpt e f aaABTIE, £ aa—=f,If,f aa
1 F P2 P 0P N 17271 412%1
04: [3+u/>[3-f o./\p+f f aaAB If,f aaAB f,If, f aaf,f,f aa
1 P2ePih1e% P 20 1721 R A2 Rtk b A Rttt

— f4fZIf2f1 aa£3f2f1 aaa

» = + —
: [32&/\[31 flu f4f1a

: [520./\ ﬁlfl aA ﬁlfzflaa—'f4f2f1aa

-97-

7 - - + ¥ .
g, ﬂza/\ ﬁlflu/\ ﬁlfzflaa/\ﬁllfzfl aa -—»f4112f10.a

- - + - -
: ﬁza/\ﬁlflu/\ﬁlfzflaa ABlIfzflau BleIfolaafoZfluua

-0

— f4f21fzf1°'°f3f2f1 aaa

After eliminating identity fuactions (I) from all expressions, there results

the following equivalence classes:

1 5, .
{0y, 0, }: Blfla—+f4f1a (1)
2 3 6 7 -
{01,01,01,01}. ﬁlfla»f4f2f1aa (2)
4 8 L + -
where 0y and 0, have been eliminated because both Blfzflaa and ﬁlfzflaa

appear in their defs. The equivalence classes in (1) and (2) are in one to
one correspondence with the two base sequences of PZ’

In order to establish that the equivalence problem is solvable,
all that remains is to show that there is an effective procedure to test
the conditions of Theorem 4. 1. |

The algorithm of Appendix A generates all the base sequences of
a program graph. Determinihg the equivalence of two dynamic enabling
functions is a solved problem of the propositional calculus. The only re-
maining difficulty is to find an execution sequence of a graph equivalent
to a base sequence of the other. If such a sequence cannot be found, it
is conceivable that we may never know when to stop the search. That this
is not the case is easily discernible from the fact that for two sequences
to be equivalent, their values have to be identical. Therefore, all we have
to do is generate all possible values whose lengths are less than or equal
to the length of the longest value in any base sequence. By a simple ’
modification, the algorithm of Appendix A can be used for this purpose. All

thais needed is to place a higher upper bound in the number of times a

-G8~

28 43

Fig. 4.4 Transformations to Identify Common Subgraphs
Disregarding Selectors and Junctions

-99.-

g0y

suoioun(pup s10493ag Buipn|ou| sydoiBgng uowwor Ajluap| o4 suoijpuiiogsuol) Gy “Biy

-100-

cycle is allowed to repeat. If L. is the length of the longest value in any
basc sequence and £ is the length of the shortest cycle in the program
graph then L/ £ + 1 is a suitable ﬁpper bound.

We formalize these observations in the following theorém.

Theorem 4.2 The equivalence problem for program graphs

is solvable.
D. SIMPLE TRANSFORMATIONS

In this section we will briefly indicate by means of examples
the application of the results of the previous section to obtain equivalence
preserving transformations of program graphs. In general, we seek to
transform a graph in order to optimize a given criterion, For example,
we may wish to minimize the number of operators and selectors associated
with function;s and predicates by identifying all identical subcomputations,
or we may wish to transform a graph so that a function or predicate is |
applied only if the results of each application will actually be used by
another computation during the course of the execution sequence; alternatively,
we may want to speed up the average time of an execution sequence by per-
forming as many computations as possible in anticipation of the possible
utilization of their results, etc.

Ideally, we would like to obtain a set of elementary transformation

schemes such that : 1) each scheme can be applied independently of each

other to yield an equivalent graph, 2) the value of the criterion function in
the transformed graph is not less (greater) than the corresponding value

in the original graph, 3) each transformation is local, and 4) the set of
transformations is complete. A transformation is said to be local if it

can be applied to any subgraph without any knowledge of the structure with -
in which the graph is embedded. Otherwise we gay that the transformation

is global. A set of transformations is said to be complete if whenever the

-101 -

Fig. 4. 6 Alternative Form of a Transformation Scheme
Which Does Not Preserve Equivalence

N

904D ® saon
poiju] g °
9 "§ 2an81 g Jo uoljeWIIOJSURIL
ay3 yorym ut
T 1 ydead3qng
Ly

(©)

-102-

-103~

criterion function has a minimum (maximum), there is a sequence of
transformations which obtains a graph exhibiting this minimum (maximum)
value.

The transformation schema shown in Figure 4, 4 satisfy each of the
above conditions when the proble;.m is to minimize the number of functional
data operators in a simple cycle free graph consisting solely of nodes
with one output ahd either one or two inputs. In order to include cycle free
graphs with selectors and junctions, we may augment the set of transforma-
tions to include subgraphs with control links with or without selector nodes.
The transformation scheme 4 in Figure 4.5 serves to illustrate a case in
which care should be exercised in order to guarantee that the transforma-
tions are in fact local. An apparently reasonable alternative to this scheme
is shown in Figure 4. 6, however, this transformation is not local as can
be verified by considering the graph of Figure 4. 7. When transformation
4 is applied to both instances of selector |31, there results the graph of
Figure 4. 7b which obviously cannot be equivalent to the original since it
contains a cycle without any loop junction and therefore has hang-up states.
Scheme 4 in Figure 4. 5 avoids this difficulty by applying the control links
labelled 3 and 4 in such a way that every path of the transformed graph is
also a path of the original.

As an example of a problem which appears to be inherently global
consider the transformation of a graph with the objective that a function or
predicate is applied in an execution sequence only if the results of its
application will be used by another computation during the execution. This
objective can be achieved simply by moving the point of application of
chosen control links, For example, in the graph of Figure 4.8a, operators

f. and f, will be applied under all circumstances. However, their results

1 2

<104 -

(a)

Fig. 4.8 Two Equivalent Program Graphs Differing on
the Way a Control Link is Applied to Operators

-105-

will be used by operator f3 only if (3; is enabled. To eliminate this
condition, the control link [3; is applied at both fl and fz as shown in
Figure 4.8b. The equivalence of both graphs is readily established. To
see that this transformation is in fact global, imagine that there is a path
from fz to ﬁl. 1f thié is the case, applying the control link ﬁ; to fz creates
a cycle and the resulting graph is not equivalent to the original. Since the
path from fz to Bl can be of arbitrary length, there is no single finite rule

that can accomplish this transformation.

V. CONCLUSIONS AND RECOMMENDATIONS

We have presented a deterministic modél for the representation of
parallel computations on non-structured data. The model incorporates
data-dependent decisions and sufficient apparatus for precisely defining
cyclic structures. Methods of analysis have been developed and a simple
characterization of the hang-up states of a computation has been given.

An equivalence problem for the model has been formulated and solved.

The main weakness -of the model is its inability to represent
computation‘s on structured data, Further research ié needed to determine
whether the same conceptual framework used in this paper can be adap;ed
to represent relations between an unbounded memory and a finite sequencing
and control structure.

The results obtained in Chapter IV regarding the equivalence of
program graphs suggest several areas of future research. McCarthy1 has
proposed that the formulation of a theory of equivalence is a basic step
towards the development of a theory of programming. Very little progress
has been made towards a sétisfactory gelection of this problem. Undoubtedly
the difficulty of the general problem is related to the known unsolvability
results of every computational model so far proposed, e.g. Turing
machines, \ -calculus, Markov algorithms, etc. If we separate the
computational aspects of a program from the pure control aspects, we can
identify at least two sources of unsolvable problems. On one hand, it may
be that the decision problem of the functional calculus for a given set of
primitive functions and predicates is itself unsolvable. In this case, the
equivalence problem is unsolvable even for the simplest programs, i. e.
cycle-free programs. On the other hand, even if the aforementioned

decision problem is solvable, it may be that the iterative or recursive

-106-

-107 -

structures expressible in the model give rise to unsolvable combinational
problems. We have often looked at the comt?inatior} of these two effects
as permitting just too many ways of representing processes that do nothing.
In our formulation both of these difficulties are avoided by 1) defining
equivalence in terms of the identity of certain strings, and 2) allowing just
one way of doing nothing, the identity funétion, and thi; in a manner which
ig easily detected. Tﬁe equivalence obtained is too strong a{nd ways must
be sought to obtain weaker conditions.

It appears that under certain circumstances, the criterion given
in Chapter IV may supply sufficient conditions for weaker forms of equiva-
lence, i.e. if one can show that to each base sequence of one graph one
can find an equivalent sequence of the other and vice versa, then the two
programs are equivalent. It would be of interest to determine under what
circumstances, if any, this conjecture holds. Also, there are some
similarities between that criterion and the recursion-induction principle
formulated by McCarthy.1 5

From the point of view of computational linguistics, a program
graph may be considered as the definition of a grammar whose terminal
symbols are the labels associated with the operators of the graph. The
languages generated by these grammars include the finite-state languages
but are not limited to that class. McNaughton16 has studied the class of
languages generated by parentheses grammars which are in turn a subset
of the backward deterministic grammars. He has shown that the equiva-
lence problem for parentheses grammafs is solvable. it would be of
interest to investigate the relationship between program graph-like

grammars and either parentheses or backwards deterministic grammars.

-108-

Finally, the model and methods of analysis developed in this
;iper should be useful in the study of problems arising in the design of

zsynchronous multiprocessor computer systems. In particular, the

h determinism is achieved

relatively small number of node types with whic
3,18,22

-onatitute a workable basis for the design of macromodular systems.

AN ALGORITHM TO GENERATE BASE SEQUENCES

APPENDIX A

The algorithm described in this section generates all base
sequences of a program graph without hang-up states and/or infinite
cycles. If the program graph does not satisfy these conditions, an
appropriate diagnostic is produced and the algorithm stops.

The generation of the base sequences is accomplished by simula-
ting all possible execution sequences during which no proper cycle is
reported more than once. The finiteness of the graph guarantees that the
process eventually stops.

We assume a suitable representation of the program graph which
allows for storing the state of the graph, i.e. the value and status of every
link. In addition, five separate structures are used to keep track of the
state of the simulation. These five structures are:

1. The selector choice list (C-list).

2. The selector value list (V-list).

3, The proper cycle list (P-list).

4. The dynamic enabling function (DEF).

5. The environment stack (E-stack).

C-list The C-list contains an entry for every selector in the graph.
Associated with each entry is a list containing the possible outcomes of fhe
application of the selector function, i.e. which output connector to enable.
Initially, this list contains '+' and '-' for every entry in the C-list.

Vv -list The V-list contains an entry for every distinct selector

label in the graph. Associated with each entry is a list of all outcomes of
a selector having this label. The entries of these sublists also contain the

input values corresponding to the outcome, e.g. +Q_f1(f2(x, y), z). Initially,

i

these sublists are erﬁpty for every entry in the V-list.

-109 -

-110 -
P-list The P-list contains an entry for every proper cycle of the

graph. Associated with each entr& is a list of all links contained in the

cycle. Each entry in these sublists have a count field which is initially set

to zero.

DEF The DEF is a variable containing the dynamic enabling function

for the simulated execution sequence.

The state of the graph, C-list, V-list, P-list, and DEF are collectively

referred to as the environment,

F-stack The E-stack is a last-in-first-out list.. Each entry in

the E-stack is an environment,

It is convenient to define the following operations:

1. Scan i, n,

This operation scans the graph looking for a node in an active
configuration, For this purpose it is assumed that the nodes
are ordered. The scan always starts at the first node. When
an active node is found, the variable i is set to point to this
node and control is transferred to the step following the scan.

If no active node is found, control is transferred to the step

labelled n;.

2. Stack o

This operation obtains a copy of the environment and places it

on top of the E-stack. The current environment remains

unchanged.

3. &Rnl, n,
This operation removes the top element from the E-stack and
installg it as the current environment. A successful performance
of the operation transfers control to the step labellled‘nl. If the
operation cannot be performed because the E-stack is empty,

control is transferred to the step labelled n,.

-11}-
Outcome i, n;, n,
This operation picks a number from the list of outcomes found
in the entry of the C-list corresponding to i which must point
to a selector. If the list of outcomes is empty, control is trans-
ferred to the step labelled n,. Otherwise, the outcome chosen is
deleted from the list and the V-list is checked to verify that it is
an allowable outcome for the selector i, i.e. if the outcome

chosen is '+' and the input value is y, -(y) should not appear in

the V-list., If the outcome is not allowed, the process is repeated.

If the outcome is allowed the following sequence of operations is

performed:
a. if outcome list is not empty, stack.
b. the outcome and input values are added to the V-list
entry of i.
c. the DEF is augmented with the chosen selector value.
d. an indication of the desired outcome is set in the node.

e. control is transferred to the step labelled n,.

Do transition i, n,, n,

This operation updates the state of the graph according to the
transition table for the node poinfed t§ byi. Ifiisa selectér.
the information set by step 4 of outcome is used. After updating
the status and possibly the value of the links involved, the sub- |
lists of the P-list are searched for all instances of links which
have been newly enabled. For each such instance found the count
field is incremented by one. If this causes all members of a
sublist to have a count gréater than one, control is transferred

to label n,. Otherwise, control goes to label n,.

In

follows:

11.
12,
13,
14,
15,

16.

-112 -

Reset C The list of outcomes for all members of the
C-list is initialized.
terms of the above operations the algorithm is written as

scan i, 13

if i is not a selector, loop junction, or final node, go to step 8
if i is a final node, go to step 11

if is is a loop junction, go to step 7

if the active configuration of the selector does not require a
functional application, go to step 8

outcome i, 8, 15

if the status of the loop junction inputs is blocked and enabled

respectively, reset C

do transition i, 1, 9

pop E 1, 15
popE 1, 16

write DEF and value as a base sequence

go to step 8

if all links are in IDLE status, go to step 10
report hang-up state and halt

report infinite cyclé and halt

report successful completion and halt.

The algorithm generates all the base sequences by trying all allow-

able combinations of selector, values. This is accomplished in step 6 by

stacking the environment as it existed prior to every selector application,

Before the stacking is performed, a note is made that a certain branch has

been taken by removing the chosen selector outcome from the corresponding

-113-

C-list entry. Upon successful completion of a b:;se sequence (step 13), the
environment is restored to the point of the last selector application and the
process continues. If at this point the E-stack is empty, all alternatives
have been tried. At step 7, all outcomes are rehabilitated upon the occur-~
rence of any cycle. All sequences which are not base sequences will
eventually be caught in step 8. When this occurs, step 9 discards the
current sequence and tries an alternative one. Note that if at this point no
alternative is present, it can only mean that under no circumstances can
the cycle be disabled and this is repo.rted as an infinite cycle.

A similar situation occurs if in step .6 no allowable outcome can be
found. In this case however, the infinite cycle may be caused by previously-
chosen selector outcomes and need not occur for all execution sequences. |

A hang-up state is reported whenever an active node cannot be found,

yet these are links in a status other than IDLE,

VERIFICATION OF PROPERTIES OF THE TRANSITION TABLES
APPENDIX B

In this Appendix we verify properties a, b, c, d, and e of the
transition tables in Table 2.1. These properties have been used in the
proof of Theorem 3.8. If £ is a link, [£] denotes the number of times
that £ is enabled or disabled during an execution sequence.

Property a. For every loop junction-loop output pair of a simple
graph (see Figure 3.9), [/ 1] = [le] iff £ and 13 are idle.

Proof: By lines 1 and 2 of the transition table for loop outputs,
L, can be enabled or disabled only if £, is enabled. By line 8 of the transi-
tion table for loop junctions, 13 can be enabled only if 12 is disabled and

£, is blocked. By lines 1 through 6 of this same table, ‘!l is enablpd or

1
disabled. Therefore, 16 is enabled or disabled at most once for each

time that ‘1 is enabled or disabled.

- First, assume that[lll =[16] . If [11] = 0 then ll and £, are
necessarily idle since their status must be identical to that occurring in
the initial state. Therefore, assume [11] = [16] # 0. The next to the
last status of 13 must have been enabled. For, otherwise, by lines 3,4,
5, and 6 of the loop output transition table and the argument of the previous
paragraph [1] =[¢ 6] + 1. Thus, the last transition of the loop output was
either line 1 or line 2 of the table and 13 is in idle status, Also,' if £3 was
last enabled, by line 8 of the loop junction table, ‘tl is also in idle status.
This verifies the first part of the property. Now assume both £, and 13
are in idle status., If 11 has been in enabled or disabled status at all,
the last transition of the loop junction must have been line 8 of its table,
which we have seen can occur at most once for every time £, is enabled

or disabled. Thus, the last transition of ‘the loop output must have been

-114-

-115-

either line 1 or line 2 of its table. Thus, 26 must have been enabled
or disabled once for each time £, has been enabled or disabled, i.e.
[£,1=12¢1- This verifies the second part of the property.
Q. E. D.
Property b. For every loop junction of a simple graph, if Ly
is idle, then [,] =[2,] iff [£,]1=1 £,] and both £, and f, are idle.
Proof: First, assume [12]=[24] = 0. By lines 1 through 6 of
the transition table, it is clear that [{ 1] = 0 and, therefore, | 13] = 0,
Furthermore, {, must be idle and since the graph is simple, by Lemma
3.4, there is a proper path containing £, and £,, and, by Corollary 3.2,

£, is idle. Now, assume [12] ={ 14] ¢ 0. By Lemma 3.4 and Corollary

2
3.2, 14 is enabled or disabled after 12, so that the only possible con-

figurations of the loop junction are 2-1 - -, 21--,0or00 -0, Butsince

ll is idle, only the last configurations, i.e. 00 00or 0010 are allowed.
In any event, £, is disabled or enabled and, by lines 2,3,5, 6,7, and 8 of
the loon junction table, 13 is enabled or disabled every time that

{. had been in those statuses., Therefore, [lz] = [13] and £, and £ are

2
idle. This shows the first part of the property. Next, assume [12] =[13]

and both L, and 14 are idle. By the transition table, the last transition
of the loop junction must have been line 8. Therefore, by the same
argument used above, [{,] =[2] .

Property c. For every loop junction of a simple graph, if / 1’ 12,
£3, and £, are idle, then[/£,]=[£,] = [£4]-

Proof: First, assume[{,;]~= 0. Then[f3]=[14,] = 0 and by

Lemma 3.4 and Corollary 3.2, [£,]= 0 also. Now, assume (2] £ 0,

Since 11, 12, and 14 are idle, the last transition of the loop junction

-116-

must have been line 8 of its table. By property b, [12] = 14] , and
by lines 2, 3,5, 6,7, and 8 of the loop junction table, [lz] =(13] . This
shows that[lzl | 13] = [14] .
Q. E.D.

Property d. All input links of an operator, selector, junction,
or loop oﬁtput have been enabled o‘r disabled the same number of times
iff each input link is idle or each is enabled or disabled.

Proof: For operators, selectors, and junctions the property is
easily verified by noting,in Table 2. 1, that all active configurations of
these nodes require all inputs to be enabled or disabled, and that the
completion of a transition places all the inputs in idle status.

In the case of loop outputs, lines 3,4, 5, and 6 do not have thi's
property. Lines 3 and 4 satisfy an equivalent condition since the transi-
tion places the input links in a status othe: than enabled or disabled.
Thus, all it remains is to verify the property for lines 5 and 6, i.e.

the active configurations 2 1 0 and 2-1 0. In both of these cases the link

in enabled or disabled status remains in that condition after the transition.

It follows that if all the input links are enabled or disabled the same numbgr

of times one of the active configufations 1,2,3, or 4 must eventually

occur. Conversely, if all input links are idle, or either enabled or dis-

abled this last condition must have occurred the same number of times,

since consecutive occurrences of the configurations of lines 5 or 6 must

eventually yield to one of the others. | ‘

Q. E. D.

Property e. If li and lj are input and output links, respective.ly,

of the same operator, selector, or junction, then “i] = “jl iff L is

idle.

-117-

Proof: An examination of Table 2.1 yields that an output link of
< pode can become enabled or disabled only if all inputs to that node have
been enabled or disabled. Furthermore, the transitions that effect a
change of output status place the input links in idle status, This is snf-

ficient to verify Loth parts of the property.

BIBLIOGRAPHY

Busacker, R. G. and Saaty, T. L., Finite Graphs and Networks.

McGraw Hill, New York (1965).

Bohm, E. and Jacopini, G., Flow Diagrams, Turing Machines

and Languages with Only Two Formation Rules, Comm. ACM

Vol. 9, No. 5 (May, 1966), pp. 366-371,

Clark, W. A., Macromodular Computer Systems, AFIPS Conference

Proceedings, (SJCC) Vol. 30, Thompson Books, Washington,

D.C. (1967) pp. 335-336.

Cooper, D. C., Computer Programs and Graph Transformations,

Center for the Study of Information Processing, Carnegie

Institute of Technology (1966).
Ershov, A. P., Operator Algorithms I, Problems of Cybernetics

III, Pergamon Press (1962) pp. 697-763.

Estrin G. and Turn, R., Automatic Assignment of Computations

in a Variable Structure Computer System, IEE Transactions

on Electronic Computers, Vol EC-12, No., 5 (Dec. 1963),

pp. 755-773.

Holt, A. W., Notes for Computer and Program Organization,
Engineering Summer Conference, University of Michigan.,

(June 1966).
Ianov, Y. I., On the Logical Schemata of Algorithms, Problems

of Cybernetics I, Pergamon Press (1960), pp. 75-127.
Karp, R. M., A Note on The Application of Graph Theory to

Digital Computer Programming, Information and Control, ~

Vol. I, (June, 1960), pp. 179-190.

-1]8-

10,

11.

12.

13.

14.

15,

16,

17,

-119-

Karp, R. M. and Miller, R. E., Properties of a Model for

Parallel Computations: Determinary, Termination, Queueing,

SIAM J. Appl. Math., Vol. 14, No. 6 (Nov. 1966), pp. 1390-

1411,

Kaluzhnin, L. A., Algorithmization of Mathematical Problems,

Problems of Cybernetics II, Pergamon Press (1961),

pp. 371-391.

Malhotra, A., Asynchronous Control of Computer Operations,

S.M. Thesis, Sloan School of Management, M.L. T. (Feb. 1967).

Marimout, R. B., Application of Graphs and Boolean Matrices

to Computer Programming, SIAM Review,. Vol. 2, No. 4

(Oct. 1960) pp. 259-268.

Martin, D. F., The Automatic Assignment and Sequencing of

Computations on Parallel Processor Systems, Report No. 66-4,

Department of Engineering, University of California, Los

Angeles, (January 1966).

McCarthy, J., A Basis for a Mathematical Theory of Computation,
ProcA. Western Joint Computer Conference, Vol. 19, (1961),

pp. 225-238.

McNaughton, R., Parenthesis Grammars, Journal ACM, Vol. 14,

No. 3 (July 1967), pp. 490-500.

Muller, D. E. and Bartky W. S., A Theory of Asynchronous

Circuits, Proc. of an International Symposium on The Theory
of Switching, The Annals of the Computation Laboratory of
Harvard University, Vol. 29, Part I, Harvard University Press

(1959), pp. 204-243,

18.

19.

20.

21.

22.

23.

-180-

Ornstein, S. M., Stucki, M. J., and Clark. W. A., A Functional

Description of Mac romodules, AFIPS Conference Proceedings

(8JCC) Vol. 30, Thompson Books, Washington, D.C. (1967),

pp. 337-355.

Petri, C. A., Communication with Automata, Memorandum

MAGC-M-212, Project MAC, M.1. T., Translation of:
Kommunikation mit Automaten, Institut fur Angewandte
Mathematik der Universitat Bonn, Wegelerstrasse 10, Bonn (1962).

Prosser, R. T., Application of Boolean Matrices to the Analysis

of Flow Diagrams, Proc. Eastern Joint Computer Conference

Spartan Books (1959), pp. 133-138.

Rutledge, J. D., On lanov's Program Schemata, Journal ACM,

Vol. 11, No. 1 (Jan. 1964), pp. 1-9.

Stucki, M.J., Ornstein, S. M., and Clark, W. A., Logical Design

of Macromodules, AFIPS Conference Proceedings (SJCC) Vol. 30,

Thompson Books, Washington, D. C. (1967), pp. 357-363.

Van Horn, E. C., Computer Design for Asynchronously Reproducible

Multiprocessing, Ph.D. Thesis, Department of Electrical

Engineering, M.I. T., (Sept. 1966), Also Report MAC-TR-34,

Project MAC, M.L T.

CS-TR Scanning Project 3
Document Control Form Date: * / &~ /34

L3

Report# _L<s T~ 64

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial Intellegence Laboratory (Al)
“JX Laboratory for Computer Science (LCS)

Document Type:
“IX Technical Report (TR) [Technical Memo (TM)
O other:

Document Information Number of pages: 130(13€-i mac %)

Ndbmmmofm,mm.dc...mmmly.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
X{ Double-sided 3 Double-sided
Print type:

] Typewriter [offsetPress [] Laser Print
[0 inkJet Printer Unknown [0 other

Check each if included with document:

K DOD Form O Funding Agent Form jz Cover Page
[0 spine O Printers Notes O Photo negatives
O Other:

Page Data:

Blank Page Sy sase nmbet:_Fol DS, TLE fRACE

Photographs/Tonal Material ey sege numbes

Other {note description/page number) .
Description : Page Number:

Trmace maf: () - 130) untteo TITLK & BLAN b PREES,
L[l *\() [- 1o
(131124) 5 camcpnTPol | Cous® oD TRETS (2)

Scanning Agent Signoff:
Date Received: _&l _9__/__7_6_ Date Scanned: _q_L_/ _9__ /j_‘_ Date Returned: _&_I_?_I_‘L(_

Scanning Agent Signature: W G(,L Rev o4 DSALCS Form catrform ved

Project MAC — Technical Report Abstract

1. ORIGINATING ACTIVITY N 2a. REPORT SECURITY CLASSIFICATION

Massachusetts Institute of Technology

Project MAC UNCLASSIFIED

3. REPORT TITLE

A Graph Model for Parallel Computations

4. DESCRIPTIVE NOTES

Technical Report(the unaltered MIT Doctor of Science thesis, submitted Sept. 1969)

5. AUTHORI(S)

Rodriguez, Jorge E.

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
September, 1969 133 23

8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR’S REPORT NUMBER
Office of Naval Research, Nonr-4102(01)

b. PROJECT NO. MAC TR-64 ESL-R-398
NR-048-189

c 9b. OTHER REPORT NO.
RR 003-09-01 AD 697 759

10- AVAILABILITY/LIMITATION NOTICES Defense Contractors may obtain from: Defense Documentation
Center, Defense Supply Agency, Cameron Station, Alexandria, VA 22314%

Others from: Clearinghouse for Federal Scientific and Technical Information (CFSTI)
Sills Building, 5285 Port Royal Road, Springfield, VA 22151

11. SUPPLEMENTARY NOTES " 12. SPONSORING MILITARY ACTIVITY
Air Force Manufacturing Advanced Research Projects
None Technology Laboratory, RID Agency, 3D-200 Pentagon
Wright-Patterson AFB Washington, D.C. 20301

13. ABSTRACT
This report presents a computational model called program graphs which

makes possible a precise description of parallel computations of arbitrary complexity
on non-structured data. In the model, the computation steps are represented by the
nodes of a directed graph whose links represent the elements of storage and trans-
mission of data and/or control information. The activation of the computation repre-
sented by a node depends only on the control information residing in each of the links
incident into and out of the node. At any given time any number of nodes may be
active, and there are no assumptions in the model regarding either the length of time
required to perform the computation represented by a node or the length of time re-
quired to transmit data or control information from one node to another. Data de-
pendent decisions are incorporated in the model in a novel way which makes a sharp
distinction between the local sequencing requirements arising from the data dependen-
cy of the computation steps and the global sequencing requirements determined by the
logical structure of the algorithm.

14. KEY WORDS

Program Graphs
Parallel Computations
Computation Models

*No copies are available from Project MAC.

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the ML.L.T
Libraries. Technical support for this project was
also provided by the M.I.T. Laboratory for
Computer Sciences.

darptrgt. wpw Rev. 9/94

