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ABSTRACT

In Alewife, alarge-scale multiprocessor with distributed shared memory, many sophisticated fea-
tures have been incorporated to enhance performance. However for most parallel programs, the
initial implementation usually produces sub-optimal performance. Alewife hardware offersfeatures
to monitor events that provide important information about program behavior. QuickStep isatool
that offers a software interface for monitoring such eventsand a graphica interface for viewing
the results. The actual monitoring of the data takes place in hardware. This thesis will describe
QuickStep’s features and implementation detail s, evaluate the overhead due to the inclusion of the
performance monitoring probesand look at case studies of parallel application optimization using
QuickStep.
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Chapter 1
| ntroduction

Even though the peak performance rating of multiprocessor systems has improved sub-
stantially over the past severa years, the initial implementation of parallel applications
almost never harnesses the full processing power. Performance bottlenecks abound and it
is difficult for the programmer to keep track of all aspects of performance optimization.
Consequently, there isthe need for toolsto assist in performance debugging.

The Alewife machine is a large-scale multiprocessor with distributed shared memory
built at the MIT Laboratory for Computer Science [1]. Alewife consists of a group of
processing nodes connected by a two-dimensional mesh interconnection network. Each
processing node consists of SPARCLE - a33MHz processor, afloating point unit, 64K bytes
of static direct-mapped cache, 4 Mbytes of global shared memory, a network routing chip
and a cache controller chip which enforces cache coherence between caches from different
processing nodes, and provides ashared memory abstract view of distributed main memory
(see Figure 1.1). Currently, the first batch of the Alewife Communications and Memory
Management Unit (CMMU) chip is being tested by the members of the Alewife team and
various software effortsin compiler and performance eval uation technol ogy arein progress.
Quick Step isonesuch project which explorestheissueof performancedebugging of parallel
applications on the Alewife machine.

The Alewife CMMU has features to support performance monitoring in hardware.
QuickStep utilizes these features to provide a performance monitoring and debugging
platform.



Alewife node

Distributed Shared Memory

x| Data
X:..C%

!
Distributed Directory \

Network
Router

Alewife machine

Figure1.1: An Alewife processor node.
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1.1 PerformanceM onitoringand DebuggingM ethods. Back-
ground

Several efforts have been directed at identifying performance bottlenecks in parallel pro-
grams. The popular techniques are Satic Analysis, Smulation, Emulation, Hardware
Instrumentation and Software Instrumentation [10].

1.1.1 Static Analysis

Static analysis although fast, has limited applicability. The most extensive research in
static analysis was done at the University of Illinois as a part of the Cedar multiprocessor
project [16]. Static analysis involves predicting the performance of loops, counts of local
and global memory references, estimates of MFLOPS, etc. based on ssimple models of
instruction latencies and memory hierarchies. The lllinoisproject later went on to use more
sophisticated techniques like exploiting compiler dependency analysis in the predictive
models. However, the static analysis techniques are in general inaccurate and hence, are
inadequate means of providing performance debugging solutions.

1.1.2 Simulation

Simulation is a slow but precise method. In execution driven smulation, a program is
instrumented so that each operation causes a call to aroutinewhich ssimulates the effects of
that operation. While reasonably accurate, smulation is a very slow process and it is not
even redlistic to simulate the behavior of an entire large program. Therefore, smulationis
hardly an effective tool for performance debugging. Itisused morefor detailed analysis of
architectural tradeoffs and isimportant because it allows evaluation without real hardware.
Simulation has been used extensively in the Stanford DASH [17] project, as well as in
Alewife during the architectural design phase.

1.1.3 Emulation

Emulation is amethod of hardware system debugging that is becoming increasingly popu-
lar. Field-programmablegate arrays have made possible an implementation technol ogy that
isideal for full system prototyping, yet does not require the construction of actual silicon
chips[23]. Emulation, also called Computer Aided Prototyping, combines CAE trandation
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and synthesis software with FPGA technology to automatically produce hardware proto-
types of chip designs from netlists. It enables concurrent debugging and verification of all
aspects of a system including hardware, software and external interfaces, leading to afaster
design cycle. Using emulation for performance debugging of applications, however, is not
very common.

1.1.4 Software Instrumentation

Software instrumentation is fast and flexible. Manually done, it involves instrumenting a
program with write statements to print out special purpose information. More sophisticated
tools involve automatic instrumentation. The common types of software instrumentation
are accumulating an aggregate val ue (for example, time spent in aprocedure) and tracing an
event (anew trace event, usually time-stamped, is output each timeit isexecuted). Software
instrumentation, however, introduces inaccuracies due to their intrusive nature.

One of the earliest attempts at performance debugging in the sequential domain was
gprof - an execution profiler that outputs data concerning execution timings in different
routines [12]. Gprof monitors the number of times each profiled routine is called (Call
Count) and the time spent in each profiled routine. The arcs of a dynamic call graph
traversed by an execution of the program are a'so monitored and the call graph is built by
post processing thisdata. The execution times are propagated along the edges of this graph
to attribute times for routines to the routines that invoke them.

In the parallel world, a debugger called Parasight was developed at Encore Computer
Corporation[2]. Parasight implements high-level debugging facilitiesas separate programs
that are linked dynamically to atarget program. Parasight was implemented on Multimax,
a shared memory multiprocessor.

IPS is a performance measurement system for paralel and distributed programs that
uses knowledge about the semantics of a program’s structure to provide a large amount
of easily accessible performance data and analysis techniques that guide programmers to
performance bottlenecks [19]. IPSis based on the software instrumentation technique.

Quartz is another tool for tuning parallel program performance on shared memory
multiprocessors. The principal metric in Quartz is normalized processor time: the total
processor time spent in each section of the code divided by the number of other processors
that are concurrently busy when that section of code is being executed.

Other related works can be found in [6], [7], [8] and [20]. A tool called Memspy
isdescribed in [18] that offers the additional feature of extremely detailed information to
identify and fix memory bottlenecks. Memspy isolates causes of cache misses like cold

12



start misses, interference misses, etc. which isvery useful.

Mtool is a software tool for analyzing performance loss by isolating memory and
synchronization overheads [11]. Mtool provides a platform for scanning where a parallel
program spends its execution time. The taxonomy includes four categories: Compute
Time, Synchronization Overhead, Memory Hierarchy Losses, and Extra Work in Parallel
Program (versus Sequential). Mtool isafairly general implementation that runs on MI1PS-
chip based systems like DEC workstations, SGI multiprocessors and the Stanford DASH
machine. Mtool’'s approach is distinct in that where most performance debugging tools
lump the compute time and memory overhead together as “work”, Mtool offersimportant
information about the behavior of the memory system. Studies have shown that this is
critical to optimizing the performance of parallel applications. Mtool istypically estimated
to slow down programs by less than 10%.

1.1.5 Hardware lnstrumentation

Hardwareinstrumentation invol ves using dedi cated countersand registersto monitor events.
Monitoring of events occurs in hardware and hence is virtually unintrusive. The biggest
advantages of hardware instrumentation are its accuracy and speed.

The drawback of hardware instrumentation is that it is not widely available and it may
not be as flexible as simulation. In our case, availability is not an issue since Alewife
hardware was designed to support instrumentation counters. However, it is only possible
to provide a finite amount of instrumentation support in hardware, so it is not as flexible
as software. In Alewife, for example, we have 4 statistics counters that monitor a subset
of al events. Therefore, only afinite set of events can be monitored during a single run.
However, since runs can happen fast, multiple runs alow monitoring of larger sets of
statistics. Furthermore, the event monitoring hardware was carefully architected so that
most key events could be captured.

QuickStep takes ahybrid of hardware and software approaches and provides afriendly
interface for viewing the data collected by the kernel. As is true for most hardware
instrumentation based performance monitors, it is not trivial to directly port QuickStep
to some other hardware platform. However, the concepts are general and portable. The
features of QuickStep will include Gprof likeexecution profiling facilities, aswell as means
of monitoring memory system behavior and network traffic patterns.

13
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piece of code has been executed ———>
notion of CHECKPOINTS

Ability to get a dynamic view of what
is happening in the system ———>
notion of TIMESLICING [monitoring
statistics at regular, user—defined
intervals]

Execution profiler to get distribution of
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Figure 1.2: Flow chart of tuning the performance of an application using QuickStep.



1.2 Goalsof the Thedss

The main goa of this work is to develop the QuickStep system with adequate features
to provide a vehicle of further research on the Alewife machine. QuickStep provides a
platform for monitoring cache and memory statistics, network statistics, various latencies
and message frequencies, etc. for applicationsthat arerun on Alewife. It thus enables users
to analyze the performance characteristics, bottlenecks and enhancement potentials and to
accordingly fine-tune applications. Figure 1.2 showsaflow chart of tuning the performance
of an application using QuickStep. It also shows what kind of statistics are useful for
performance debugging. In principle, QuickStep is capable of providing all those features,
although some of the profiling features have not been implemented yet.

The Alewife CMMU providesbasic hardware support for monitoring events. 11% of the
total chip areaof the CMMU isdedicated to performance monitoring hardware. However, it
isnot possible to utilize thisfeature without a well-devel oped software interface which can
handl e the bit mani pulationsand produce comprehensibleinformation. QuickStep provides
thisinterface, aswell as agraphica display environment for the information gathered.

1.3 Oveview

The rest of thisthesis proceeds as follows: Chapter 2 describes the features of QuickStep
and illustrates the features that have been implemented so far with examples. This chapter
also outlines other features that will be implemented in the next version of the system
without too much modification of the existing model. Chapter 3 describes the principles
followed in implementing QuickStep. Chapter 4 discusses the suite of programs used to
test the validity of the system. Chapter 5 demonstrates the effectiveness of QuickStep by
using it to analyze and optimize afew large parallel applications from the SPLASH suite.
Finally, Chapter 6 summarizes the thesis.

15



Chapter 2
Features of QuickStep

In QuickStep, the menu-driven interface through which different statisticsarerequested isa
friendly environment [Figure 2.1]. This chapter describes the different classes of statistics
that can be monitored and gives examples of sample outputs. Besides the magjor categories
described here, the interface offersthe additional facility of specifying pre-collated groups
of statisticsthat arecommonly used. The user can select oneor more of these groupswithout
having to look through the detailed menus. The groups are named in a self-explanatory
way, for example, Data and Instruction Cache Ratios, Distribution on Local and Remote
Accesses, Read and Write Latencies, Header Frequency through Network Queues, etc.

2.1 Timediced Statistics

Statistics can either be recorded at the end of the run, or at regular intervals during the
run. QuickStep provides both these options. alowing the user to get some amount of
profiling information. Chapter 6 discusses the more elaborate profiling capabilities that
will be provided in the next version of the system.

Figures 2.2 and 2.3 are examples of graphs obtained from the cache-statistics menu.
The ratio figures on the graphs are rounded up to integers, however, if the user wants to
look at more precise values, an easy-to-read raw datefileis available which providesfigures
upto 14 decimal places. Both the graphs have been obtained by running Water from the
SPLASH suite on a 16-node Alewife machine, with timedlices of 10,000,000 cycles each.
Since the data cache hit ratios are more or less uniform over time, the timeslice mode
does not provide much extra information. Data cache hit ratios are uniformly 98-99%
for al processors and timedlices, with the exception of the second timedlice of processor
0. However, in Figure 2.3 we see clearly how the access pattern changes over time. For

16
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Figure 2.2: Water on 16 processors. Per processor data cache hit ratio.

instance, during thefirst timedlice, all processors other than processor 0 are waiting for the
initialization to be completed. Hence, the number of remote data accesses are low for all
processors except processor 0. In the subsequent timedlices, all the processors are doing
real computation, and the access pattern reflects activity.

When dtatistics are collected in the timesliced mode, program behavior is perturbed
to some degree. Chapter 3 describes how the timediced statistics are implemented and
discusses perturbation due to instrumentation. When statistics are to be collected at regular
intervals, the program has to stop running during the collection phases. This makes
timediced instrumentation intrusive and hence comparatively inaccurate. On the other
hand, the timedsliced mode does provide important information about program behavior
over time.

2.2 Overall Statistics

Often, however, the user smply wants an overall summary statistic for the run. In such
cases, the timedliced mode is turned off and the counter values are recorded at the end of
the run. Figure 2.4 shows an example of a statistic gathered at the end of the run, ie. in
the non-timesliced mode. It is possible to post-process data gathered in time-sliced mode

18
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Figure 2.3: Water on 16 processors. Per processor distribution of remote shared data
accesses [Table B.1].

to obtain the overall statistics. However, as discussed in the previous section, timesliced
statistics perturb program behavior, while non-timesliced statistics do not. Furthermore,
non-timesliced mode is naturally faster than the timediced mode. As always, there is a
trade-off between accuracy of statistics, perturbation of program and speed. Hence, we
provide both timesliced and non-timesliced modes of collecting statistics.

2.3 Network Usage Statistics

Two types of hardware statistics yield histograms of values: counts of packets and distribu-
tion of distances that packets have travelled. The counts of packets mode watches network
packets and whenever a packet appears in a designated direction (input or output), it is
checked to seeif it matches the class of packets that is being tracked. If so, then the cor-
responding histogram counter isincremented [Chapter 3]. Thisclass of statistics is useful
for tracking different classes of packets, especially from alow-level kernel programmer’s
point of view. Being ableto track protocol packets, synchronization packets, boot packets,
etc. can help aruntime system designer.

The distribution of distances mode increments histogram counters based on the number
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Figure 2.4: Water on 16 processors. Counts of packet headers passing through output
queues [Table B.2].

of hops a packet of the specified class has travelled. Figure 2.5 gives an example of such a
statistic. The y-axis has the processor number and the x-axis has the number of hops. The
colorsrepresent the numbers of packetsin each category. Thisisvery useful for debugging
application performance because it provides a way of judging whether the application is
showing good communication locality or not. Ideally, most of the communication ought to
be nearest neighbor and if the remote distance histogram reflects that this is not the case,
then the programmer can debug the application. It is easy to see the effect of debugging
some aspect of a program by simply comparing histograms obtained from running different
versions.

2.4 Checkpoints

Checkpoints are a set of useful debugging features offered by QuickStep. They are single
cycleinstructions that can be included at different pointsin a program and useful profiling
information can be obtained by looking at the counts of the checkpoints. For instance,
information can be obtained about how many times a procedure is called, or how often a
particular section of codeis executed.
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Figure 2.5: Water on 16 processors. Histogram of distances of memory-to-cache input
packets [ Table B.3].
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To use the checkpoint facility of QuickStep the program being run needsto be annotated
with the checkpoint instruction. This section gives an example of using checkpoints. The
checkpoint instruction takes one argument, with two parts separated by a colon. The first
part is the checkpoint group name and the second part is the checkpoint name. Checkpoint
group is an abstraction which is used to group several checkpoints together. [A maximum
of 16 checkpoints are allowed per group.] The argument translates to a 12-bit checkpoint
address.

The three different checkpoint modes operate as follows:

e Classwise: In this mode, only the checkpoint group name to be tracked needs to
be specified through the user interface. The address trandation works such that the
corresponding counter is incremented when the first 8 bits of the trandated address
matches a checkpoint.

¢ Single: Inthismode, both the checkpoint group name and the checkpoint nameto be
tracked need to be specified through the user interface. The addresstrandation works
such that the corresponding counter is incremented when al 12 bits of the trand ated
address matches a checkpoint.

e Histogram: Inthis mode, only the checkpoint group name to be tracked needs to be
specified through the user interface. The histogram mode of checkpoint monitoring
gives adistribution of accesses for checkpoints of a certain class.

Figures 2.6, 2.7 and 2.8 use the checkpoint features of QuickStep to monitor the pro-
cedure Procl listed in Appendix A. Procl is annotated with some checkpoints and when
those checkpoints are tracked using QuickStep, the expected frequencies are obtained.

The procedure Procl is started up on all 16 processors with arguments 10 and 200.
Checkgr2:Check2ismonitoredin Figure 2.6 and rightly comesout to be (10« Processorld)
on each processor. [The graph shows the ranges of frequencies and table 2.1 shows the
exact numbers.]

Checkgr2ismonitoredin Figure 2.7 and rightly comesout to be (10 Processorld+2)
on each processor. [The graph shows the ranges of frequencies, while table 2.1 shows the
exact numbers.]

Checkgr3 is monitored in Figure 2.8 and rightly comes out to be 1 each for Checkl
(Histogram Id = 0) and Check3 (Histogram Id = 2) and (200 — (10 * Processorld)) for
Check?2 (Histogram Id = 1) on each processor. [ The graph shows the ranges of frequencies
and table 2.2 showsthe exact numbers. Datafor processors 0 through 6 only arerepresented
in the table, but the rest of the data from the raw file have been verified to be consistent.
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| Processor Id | Checkgr2 | Checkgr2:Check? |

0 2 0

1 12 10
2 22 20
3 32 30
4 42 40
5 52 50
6 62 60
7 72 70
8 82 80
9 92 90
10 102 100
11 112 110
12 122 120
13 132 130
14 142 140
15 152 150

Table 2.1: Dataobtained from the raw datafile for the classwise and single checkpoint graphs.
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Figure 2.8: Result of monitoring Checkgr3.
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| Processor Id | Checkgr3 | Histogram Id |

0 1 0
0 200 1
0 1 2
1 1 0
1 190 1
1 1 2
2 1 0
2 180 1
2 1 2
3 1 0
3 170 1
3 1 2
4 1 0
4 160 1
4 1 2
5 1 0
5 150 1
5 1 2
6 1 0
6 140 1
6 1 2

Table 2.2: Data obtained from the raw datafile for the checkpoint histogram.

25



2.5 Additional Features

The first major addition that is planned for the next version of QuickStep is a profiling
feature. Currently, statistics gathering cannot be turned on or off in the middle of a run.
However, this is a feature that would be of enormous usefulness. For instance, users of
the QuickStep system have commented that it would be useful if a certain set of statistics
could be computed on a per procedure basis. The statistics could be of various types. the
amount of time spent in the procedure, the cache behavior and the network statistics for the
procedure, etc.

This feature can be incorporated easily, by encoding the turning on and off of statistics
countersinto afunction. Ideally, the user should be ableto specify the name of the procedure
and the statistics to be monitored. The compiler/linker would then incorporate the function
in that procedure automatically, the process being transparent to the user.

Furthermore, there are several classes of statistics that the CMMU supports which have
not been implemented in this version. These include synchronous trap statistics, hitmiss
statistics, remote transaction statistics, memory controller statistics and transaction buffer
statistics.

From a presentation point of view, we are currently using the Proteus Stats program as
the display environment. Most of the data we are presenting would be easier to read in a
3-dimensional graphical display environment, which stats does not support. Thereisroom
for improvement in the way the statistics are represented through graphical displays.
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Chapter 3

| mplementation

In this chapter, we discuss the implementation details of the QuickStep performance mon-
itoring system. Figure 3.1 shows a flow chart of the QuickStep system. This chapter is
organized according to the flow chart as follows. We first describe the user interface in
Section 3.1. Next, the Alewife architechtural support for performance monitoring and the
resource allocation procedure are described in Section 3.2. Finally, the data collection and
reporting is described in Section 3.3, and the graphical display is discussed in Section 3.4.

3.1 User Interface

The high-level interface for the QuickStep system is an integrated part of the general
Alewifeinterface devel oped by Patrick Chan. Figure 2.1 shows a snapshot of the interface.
It consists of menu itemsfor:

¢ Connecting to the Alewife machine or to the NWO simulator (NWO is a simulator
that has been developed as a part of the Alewife design process by David Chaiken)

e For selecting the statistics to monitor and display the graphical output of QuickStep

e For running Parastat— a graphical monitor of the status of the individual nodes of
the Alewife machine (also developed by David Chaiken)

The code for the interface iswritten in Tcl, an X-windows programming environment.
The user requests the statistics that he or she wants to monitor by clicking on the rel-
evant menu items. Themajor classes of statisticsthat are currently offered arethefollowing:
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User requests statistics
through a menu—driven
interface

QuickStep allocates the
hardware resources

Statistics are collected
and reported to the
host

Statistics are displayed
through a graphical
interface

Figure 3.1: Flow chart of the QuickStep system.
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Cache Statistics

Checkpoints for profiling

Histograms of Remote Distances of cache to memory and memory to cache packets
e Network Statistics
e Latency Statisticsfor different types of memory accesses

Thisinformation is then passed on to the host[Figure 3.2] by selecting Send to Alewife
from the Satistics menu. Internally, this transfer of information happens through the
exchange of amessage which is decoded by the host running QuickStep.

3.2 Resource Allocation

Inthissection, wefirst describe the hardware support that Alewife providesfor performance
monitoring. Then, we discuss the resource alocation problem, and how it is solved
in QuickStep. We also describe the configuration file in which resource regquirement
information for different statistics are stored.

3.2.1 Alewife's Performance Monitoring Architecture

Alewife, being a vehicle for research in parallel computation, has several built-in features
that assist in monitoring events like data and instruction cache hit ratios, read accesses,
write accesses, distances travelled by packets, etc. In particular, the CMMU has 4 dedi-
cated 32-bit statistics counters, and 16 20-bit histogram registers. The histogram registers
are also counters that are incremented when certain events occur. The histogram registers
monitor events like histograms of checkpoints, packet distributions and packet distances.
The histogram control field of the statistics control register [Figure 3.3] is used to config-
ure the histogram registers as a unit to count different events. Each statistics counter is
independently configured with a 32-bit event mask.

When an overflow of the statistics or histogram counters occurs, the hardware takes a
trap. A 32-bit overflow counter for each statistics and histogram counter isimplemented in
software, which are then incremented. 64-bit resolution is thus achieved by extension into
software.

The user interacts with the machine through the host (see Figure 3.2). The host is
attached to processing node 15 of the mesh, and supports an interactive user interface.
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Alewife node
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Host Software

Alewife machine

Figure 3.2: Softwarelayersin Alewife.

The user can boot the machine, load and run programs via this interface. The code for
instrumenting the statistics gathering facility isincluded as a part of the Alewife kernel and
the statistics monitoring mode is activated by adding features to the host interface. The
Alewife kernel supports a message-passing interface [15] which is used to communicate
between the host and the machine.

Alewife also supports a timer interrupt facility which is used to interrupt processors
at specified times to collect statistics for a certain interval. This feature of the Alewife
architectureisutilized in QuickStep to provide snapshot views of the behavior of aprogram
over time, as described in Chapter 2.

3.2.2 Hardware Mask Configuration

As mentioned before, the CMMU has registers dedicated to monitor statistics. These
registers are divided into two sets: the statistics counters and the histogram registers. Each
set iscontrolled by one or more control registers. The statistics and histogram registers can
work independently, or work together (to compute latency statistics).

The histogram registers are controlled as a single unit by the StatCR (statistics control)
register. The registers work together as bins (except when computing latencies) to keep a
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histogram of different events. Chapter 2 provides examples of this mode. The StatCR also
controls other aspects of the statistics registers such as traps.

The counter registers work independently of each other and each has an associated 32
bit control register called its mask. These masks can be used to make the counters count a
genera set of events, or a subset of events. For instance, a counter can be set up to count
cache hit ratios, or just data cache hit ratios.

Figure 3.3 shows the fields of the StatCR register and of a typical statistics counter
mask. The histogram control field of the StatCR register holds the histogram mask, the
SatCounter0 Control, StatCounter1 Control, StatCounter 2 Control and StatCounter3 Con-
trol fields are responsible for enabling and disabling statistics counters O through 3.

The statistics counter masks have a 4-bit major function specifier and a 28-bit minor
function specifier each. The major function specifier bits determine the class of statisticsto
be monitored (eg. checkpoints, network statistics, etc.) The minor function specifier fields
determine the specifics within a class of statistics.

Let uslook at a counter mask from the configuration file in Figure 3.6. 201EFF20 is
the hexadecimal mask for counting number of cached data accesses. The major function
specifier is 2, which represents the cache statistics. Bits 17 through 21 represent the type
of processor request. Bit 21, for instance, denotes an instruction match. Since we are
counting data accesses specifically, bit 21 is turned off. Bits 17 through 20 are read and
write requests and are hence turned on. Bit 5 represents cached accesses and hence needs
to be on. The rest of the bits are configured accordingly.

3.2.3 TheResourceAllocator

As mentioned before, the Alewife CMMU has only 4 statistics counters and 1 set of 16
histogram registers. Consequently, only asmall number of events can be monitored during
asingle run. Hence, when the user requests a large number of statistics, several runs are
needed to satisfy such requests. In such cases, allocation of counters need to take place
across runs.

QuickStep has aresource allocator to take care of thistask. Say, the user has requested
3 statistics: Data Cache Hit Ratios, Cached Unshared Data A ccesses, Cached Loca Shared
Data Accesses and Cached Remote Shared Data Accesses. For Data Cache Hit Ratios
we need 2 counters to count number of cached data accesses and total number of data
accesses. For Cached Unshared Data Accesses we need 2 counters to count number of
cached unshared data accesses and total number of unshared data accesses. For Cached
Local Shared Data accesses we need 2 counters to count number of cached local shared

31



The STATCR Register

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

L] [
i v
Histogram Control Enable Histogfam Trap
v .
SyncStatControl Statlstlcsgounter Control

Statisticsgounte Contrpl
StatisticsCounterlContrpl
StatisticsCounter0Control
Reserved

Timer Control

Statistics Counter Mask

313029282726252423222120191817161514131211109 8 7 6 5 4 3 21 0

|

Minor Function

—

Major Function

Figure 3.3: Statistics counter mask fields.
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data accesses and total number of local shared data accesses. For Cached Remote Shared
Data accesses we need 2 counters to count number of cached remote shared data accesses
and total number of remote shared data accesses. That isatotal of 8 events and 8 statistics
counters are needed to compute them.

The resource allocator is intelligent enough to be able to figure out how many counters
will be needed and how many runswill be required given the counter requirement. It can
also eliminate duplicate events and optimize the number of runs required to satisfy the
requested set of statistics. In this case, the resource allocator assigns number of cached
data accesses, total number of data accesses, number of cached unshared data accesses
and total number of unshared data accesses to the first run. The number of cached local
shared data accesses, total number of local shared data accesses, number of cached remote
shared data accesses and total number of remote shared data accesses are assigned to the
second run.

Thefact that all the requested stati stics cannot be computed in one run dueto limitations
intheavailability of hardwareresources, implies, thereis alwaysawindow of error. Hence,
each statistic needsto be gathered several timesand averaged over all datapointsto eliminate
thiseffect. Since the hardware can only provide afinite set of resources, thiseffect is pretty
much unavoidable.

3.24 The Configuration File

The information about what the mask values are for each event to be monitored is stored
in a configuration file that is read by the resource allocator. The configuration file uses a
configuration language described in Figure 3.4.

The operations that are to be performed on the counters to get the requested statistics
are specified by the Counter Operations keyword. The specific operations that are allowed
aredescribed in Figure 3.5

Example of a Confidfile

Figure 3.6 shows a sample configuration file with four records.

Thefirst record providesthe resource specificationsfor Data Cache Hit Ratio of statistics
class Cache Statistics. The 2 counter masks provide mask-configurations for monitoring
thetotal number of cached data accesses and the total number of data accesses. Therecord
assumes that counter O will be monitoring the number of cached accesses and counter 1 will
be monitoring the total number of accesses. The statistics that are reported if this record
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The Configfile reserved words are the following:

Name : Name of the statistic, with dots separating each menu subclass for
the main user interface.

CounterMasks : Masks necessary for the relevant events;
represented as hexadecimal values (preceeded by #Xx)

CounterOperation :  Operations to be performed on the counter values;
the set of operations allowed are described below

HeaderStrings : Headers describing each statistic that is obtained by
computing the result of each CounterOperation

HistogramMask . Histogram Mask necessary for the relevant events;
HistogramHeaderStrings : Headers describing the result of the
Histogram Operation

HistogramOperation : Currently, "Histogram" is the only operation allowed
which reports the value of the histogram counters.

TimeFlag : TimeFlag = 0 means timeslicing is not implemented,
TimeFlag = 1 means it is.
Help : Describes the details of what are available as a part of the statistic

Accumulator :  Accumulator = 1 implies latency statistics are being computed,
and counter zero will need to be used as an accumulator

GroupNames : Name of statistics group

StatisticsNames : If a statistics group has been defined, then the statistics
constituting that group are referenced here

EndRecord : An"EndRecord"is placed at the end of each statistics record

EndOfFile : Needed at the end of the file

Figure 3.4: The configuration language.




List of Operations allowed by the Configuration File Language

Value

Div :

Sum

Mul

Sub :

DivMul

Note

Takes 1 argument;
Reports value of the counter which is passed as the argument.

Takes 2 arguments;

Reports result of dividing the value of the counter that is passed
as the first argument by the value of the counter that is passed
as the second argument.

Takes multiple arguments;
Adds all the counter values that are passed as arguments.

Takes multiple arguments;
Reports the product of all the counter values that are passed
as arguments.

Takes 2 arguments;
Reports the difference of the 2 counter values that are passed
as arguments.

Takes 3 arguments;

Reports the result of multiplying the first argument (a number)
with the result of dividing the value of the counter that is passed
as the second argument by the value of the counter that is passed
as the third argument.

The Counter arguments are passed as numbers: 0, 1, 2 and
3 - referring to Counter 0, Counter 1, Counter 2, and
Counter 3.

Figure 3.5: The operation keywords.
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is chosen by the user are specified by the header strings. number of cached data accesses,
total number of data accesses and data cache hit ratio. The CounterOperation keyword
gives the operations required to get those statistics. For example, the number of cached
data accesses is the value of counter O and the total data accesses is the value of counter 1.
The data cache hit ratio is obtained by dividing the value of counter O with that of counter
1 and multiplying the quotient by 100. TimeFlag = 1 impliesthat this statistic is available
in the timesliced mode as well.

Theother 3records provideresource specificationsfor Cached Unshared Data A ccesses,
Cached Local Shared Data Accesses and Cached Remote Shared Data Accesses.

The configuration fileis read by aparser which getsall the argumentsrelated to the sets
of statistics that have been requested. It then passes that information on to the resource-
allocator, which determines the number of runs required and assigns the masks for each
run.

Currently the configuration file is hand-generated, thereby leaving room for errors. In
the next implementation of QuickStep, we would like to modify the configfile language
somewhat, so as to allow for a more automated procedure for generating the configfile.

3.3 TheMachine Side

Since al the resource alocation information is processed by the host, the task on the
machine side is very simple. The host passes al the information for a particular run in
a message to the machine. The machine (kernel) configures the statistics counter masks
and the histogram control mask accordingly[Figure 3.3]. It also clears all the counters. If
timediced mode is requested, then the timer is programmed to go off at regular intervals.
Finally, the counters are enabled at the beginning of the run. If timesliced modeis off, then
statistics are gathered at the end of the run and the datais sent back in packets to the host.

3.3.1 Data Collection and Reporting

When timedlicing is not used, the counter values are smply collected at the end of the run
and sent back to the host in packets.

However, as described in Chapter 2, QuickStep offers the option of monitoring times-
liced statistics. This feature is implemented by using a timer interrupt facility supported
by the Alewife hardware. In our first implementation, the timesliced mode would cause an
interrupt to happen at regular intervals. The interrupt handler would then disable al the
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Name "Cache_Statistics.Data_Cache_Hit_Ratio"
CounterMasks #x201EFF20 #x201EFF3F
CounterOperation Value 0 Value 1 DivMul 100 0 1
HeaderStrings "#ofCachedDataAcc" "#ofDataAcc" "DCache-HR"
TimeFlag 1
Help "Offers 3 figures: Number of Cached Data Accesses,
Number of Total Data Accesses, and
Data Cache Hit Ratio"
EndRecord

Name "Cache_Statistics.Cached_Local_Local_Data_Accesses"
CounterMasks #x201EF320 #x201EF33F
CounterOperation Value 0 Value 1 DivMul 100 0 1
HeaderStrings "Cached Local-Local-Data Accesses"
"Total Local-Local-Data Accesses"
"Cached-Local-Local-Data"
TimeFlag 1
Help "Offers 3 figures: Cached Local-Local-Data Accesses,
Total Local-Local-Data Accesses, and
Cached Local-Local-Data Ratio"
EndRecord

Name "Cache_Statistics.Cached_Local_Global_Data_Accesses"
CounterMasks #x201EF520 #x201EF53F
CounterOperation Value 0 Value 1 DivMul 100 0 1
HeaderStrings "Cached Local-Global-Data Accesses"”
"Total Local-Global-Data Accesses"
"Cached-Local-Global-Data"
TimeFlag 1
Help "Offers 3 figures: Cached Local-Global-Data Accesses,
Total Local-Global-Data Accesses, and
Cached Local-Global-Data Ratio"
EndRecord

Name "Cache_Statistics.Cached_Remote_Global_Data_Accesses"
CounterMasks #x201EF920 #x201EF93F
CounterOperation Value 0 Value 1 DivMul 100 0 1
HeaderStrings "Cached Remote-Global-Data Accesses"
"Total Remote-Global-Data Accesses"
"Cached-Remote—-Global-Data"
TimeFlag 1
Help "Offers 3 figures: Cached Remote-Global-Data Accesses,
Total Remote-Global-Data Accesses, and
Cached Remote—-Global-Data Ratio"
EndRecord

Figure 3.6: A sample configuration file.
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statistics and histogram counters and a packet reporting the counter/histogram information
would be sent to the host. This protocol created a problem since whenever alarge number
of processors were involved, too many messages were going towards the host, thereby
clogging up the network. We solved this problem by buffering the statistics counter values
in arrays of structures (described in Figure 3.7). Note, the statistics counters are 32-bits
in length and the histogram registers are 20-bits in length. However, additional overflow
handling mechanism implemented in software provides 64-bit resolution for each register.
Hence, when the counter values need to be stored, both the upper 32-bits and the lower 32-
bits need to be recorded. The data-structures shown in Figure 3.7 demonstrate provisons
for handling this task. We staggered the reporting of data to the host by ensuring that no
two processors are reporting data during the same timedlice and thereby lightened the load
on the network. The number of messages was reduced by sending large chunks of the array
in asingle message.

3.3.2 Instrumentation Overhead dueto TimeSlicing

Interrupting a program every so often is expected to perturb aprogram in terms of memory
behavior, execution times, etc. We have done an experiment with perturbation characteris-
tics regarding execution times. Figure 3.8 shows the results of the experiment. We ran 3
applications (namely, Water, SOR and Mergesort) first without timedlicing, and then times-
licing with decreasing intervals (ie. increasing number of times the system is interrupted).
We found that the slowdown factor (ratio of execution time with timeslicing to execution
time without timedlicing) is nominal for upto about 180 interruptions. It was not possible
to get measurements with higher numbers of interruptions because the current network
overflow softwarefor Alewife cannot handle a higher degree of network congestion.

In our implementation of the timesliced mode of statistics gathering, we have faced
some problems. When data reporting messages are sent to the host too often, the network
clogs up. However, if very large buffers are used for storing the data, then the memory
requirement on each processor limits the memory available to the application, and hence
causes capacity misses, thereby deteriorating its performance. There are a couple of
solutions to this problem:

¢ Increasing the memory on each node
¢ Adding I/0 nodes to decrease network congestion

We expect these features to be available in later versions of Alewife.
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Statistics Counter O Least Significant Word

Statistics Counter O Most Significant Word

Statistics Counter 1 Least Significant Word

Statistics Counter 1 Most Significant Word

Statistics Counter 2 Least Significant Word

Statistics Counter 2 Most Significant Word

Statistics Counter 3 Least Significant Word

Statistics Counter 3 Most Significant Word

Timeslice Index

Data structure used for storing the
statistics counter values

Histogram Register 0 Least Significant Word

Histogram Register 0 Most Significant Word

Histogram Register 1 Least Significant Word

Histogram Register 1 Most Significant Word

Histogram Register 15 Least Significant Word
Histogram Register 15 Most Significant Word

Timeslice Index

Data structure for storing the
histogram counter values

Figure 3.7: Datastructure for storing counter values.
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Figure 3.8 Instrumentation overhead due to timedicing: Monitoring timesliced data and
instruction cache hit ratios for 3 applications.

3.4 Post-Processing

The data packets are received by the host and stored in memory until the end of the run. At
the end of the run, they are output into araw datafile in asimple column format. A sample
datafileisgivenin Figure3.9. Theraw fileisthen processed to generate abinary filethat is
in the Proteus [5] tracefile format, that can be viewed with a graphical interface supported
by the Proteus Stats program. Chapter 2 shows examples of graphs obtained as outputs of
the QuickStep system. The column headings from the raw data file are used to generate
headings and menusfor the graphs. The graphs give approximate ranges that are helpful as
an easy-to-grasp summary. However, the datafile values are available if a user would like
to look at more precise statistics. The Index column represents the processor number and
the timestamp field represents the timedlice id. [In Figure 3.9, a small program was run on
a 16-node Alewife machine and only overall statistics were gathered.]
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CntRecord

"#ofCachedDataAcc" "#ofDataAcc" "DCache-HR" "Cached Local-Local-Data Accesses”
"Total Local-Local-Data Accesses" "Cached-Local-Local-Data" Index Timestamp
331 332 99.69879518072288 331 332 99.69879518072288 3 0

330 331 99.69788519637463 330 331 99.69788519637463 6 0

330 331 99.69788519637463 330 331 99.69788519637463 9 0

332 333 99.69969969969969 332 333 99.69969969969969 4 0

329 330 99.69696969696969 329 330 99.69696969696969 7 0

329 330 99.69696969696969 329 330 99.69696969696969 12 0

330 331 99.69788519637463 330 331 99.69788519637463 10 0

331 332 99.69879518072288 331 332 99.698795180722885 0

328 329 99.69604863221885328 329 99.69604863221885 13 0

328 329 99.69604863221885328 329 99.69604863221885 14 0

332 333 99.69969969969969 332 333 99.69969969969969 2 0

327 328 99.6951219512195 327 328 99.6951219512195 150

331 332 99.69879518072288 331 332 99.69879518072288 8 0

329 330 99.69696969696969 329 330 99.69696969696969 11 0

333 334 99.7005988023952 333 334 99.7005988023952 1 0
EndRecord

Figure 3.9: Excerpt from asample datafile.

3.5 Summary

User-friendliness is the main principle that has been followed in the design of QuickStep.
Wehaveal so ensured that it iseasy to add new recordsto the configuration filefor monitoring
new statistics. Another design principlethat we have followed isto keep most of the task of
resource allocation outside the main kernel. Consequently, the resource allocation is done
on the host side and minimum amount of work is left for the kernel. Of course, the actual
reading and storing of counter valuesis donein the kernel.
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Chapter 4

Validation of the System

4.1 Overview of the Benchmark Suite

The Quick Step system can be used to obtain various statistics. However, the statistics can
be utilized to analyze and fine-tune performance of applicationsonly if the system has been
validated and there is some guarantee that the data is authentic. For this purpose, a suite
of small programs with predictable behavior has been put together. This set of synthetic
benchmarks have been run on the Alewife machine and the statistics gathered have been
foundtotally with the expected figures. Inthenext section, we give examples of some of the
benchmark programs and the output graphsthat verify the correctness of the corresponding
statistics class.

4.2 Examples

4.2.1 Examplel: Cached Reads

Benchl.c from Appendix A is an example of a synthetic program that is used to verify the
statistic cached reads. Itisrunwith arguments40 asthe probability of misses and 10000 as
theloopbound. The expected hit ratio for read accesses is 60%. Table 4.1 shows the values
obtained from the data file in which the result of monitoring cached reads are recorded
[Results from two separate runs are presented]. As expected, the cached read ratio does
turn out to be around 60%. The variation is due to the fact that there is a brief shutdown
phase at the end of each program which causes afew extra accesses, thereby introducing a
dight inaccuracy. Since the statistics counters are user programmable, it would be easy to
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turn them on and off right before and after the critical loop, thereby getting the hit ratios for
the loop only. However, thiswould involve not using the capabilities offered by QuickStep.

4.2.2 Example 2: Remote Accesses

Bench5.c from Appendix A is another synthetic benchmark which flushes the cache of the
local processor before each read access [; = tmp— > d1]. The actua data resides in
processor 0 and hence every access in thefirst loop is aremote access. For instance, if the
program is run with arguments 40 and 10000, 4000 of those accesses ought to be remote
accesses on al the processors except on processor 0. Furthermore, the number of cached
remote accesses ought to be 0 on every single node. We do see this behavior in the graphs
obtained by running QuickStep on the program (graphs are not included).

We also use this program to validate histograms of remote distances. For instance,
figure 4.2 showsthat each of the other processors have sent out 4000 Read Request (RREQ)
packets to processor 0 and are represented in the graph according to the number of hops
they each have travelled. Figure 4.1 shows the numbering scheme of processors on the
mesh, from which we see that processors 1 and 2 are 1 hop away from node 0, processors
3, 4 and 8 are 2 hops away, processors 5, 6, 9 and 10 are 3 hops away, processors 7, 11 and
12 are 4 hops away, processors 13 and 14 are 5 hops away and processor 15 is 6 hops away
from processor 0. Figure 4.2 reflects this information by showing, for example, processors
5, 6, 9 and 10 have sent out 4000 packets each that have travelled 4 hops.

Figure4.3 showsthereverseof figure4.2inthat it showsthat 8000 packets havetravelled
1 hop, 12000 packets have travelled 2 hops, 16000 packets have travelled 3 hops, 12000
packets have travelled 4 hops, 8000 packets have travelled 5 hops and 4000 packets have
travelled 1 hop from processor O, to go out to the caches of the other processors carrying
the data requested by each of them. Each node had sent out 4000 read requests and 2 of
these are 5 hops away from processor 0. The rest of the data represented in the two graphs
is aso consistent.

4.2.3 Example3: Timesliced Statistics

Benchll.c from Appendix A isamodified version of bench5.c in which the first and third
loops of reads do not require any remote access, however, all accesses in the second and
fourth loops are to data stored in the memory of processor 0. Consequently, when the
programisrun, the output reflectsthisinformationin Figure4.4. The programwasrunwith
arguments 1 and 1000. Hence, initially, for al processors except node 0, 900 accesses are
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| Runld| Cached Read Ratio | Processor Number | Mean
60.43912570467808 3
60.41563582384958 6
60.60665747488675 4
60.41563582384958 9
60.396039603960396 7
60.39211803148826 12
60.57948162018331 5
1 60.396039603960396 11 60.5046871656633
60.36857227781631 13
60.36857227781631 14
60.68796068796068 2
60.344998512937444 15
60.664765463664075 8
60.64154285152023 10
60.62604587065656 1
60.73180302138513 0
60.43912570467808 3
60.41563582384958 6
60.60665747488675 4
60.41955274094597 9
60.396039603960396 7
60.39996039996039 12
60.57948162018331 5
2 60.396039603960396 11 60.50713018408938

60.3724985139687 13
60.3724985139687 14
60.68796068796068 2
60.35285955000496 15
60.66863323500492 8
60.645415190869734 10
60.629921259842526 1
60.73180302138513 0

Table 4.1: Results of running benchl.c on a 16-node Alewife machine.




2A | 2B |2E |2F | 3A | 3B | 3E | 3F
28 |29 |2C | 2D |38 |39 | 3C| 3D
22 | 23 | 26 | 27 | 32 | 33 | 36 | 37
20 |21 | 24 | 25|30 |31 |34 | 35
OA | OB |OE |OF | 1A | 1B | 1E | 1F
08 |09 |OC |OD | 18 | 19 | 1C | 1D
02 | 03|06 |07 |12 |13 | 16 | 17
00 |01 |04 |05| 10|11 |14 | 15

Figure 4.1: Numbering scheme for the mesh of Alewife nodes.
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Figure 4.2: Bench5.c on 16 processors. Per processor distribution of distances travelled by
RREQ packets going from caches of each processor to the memory of processor O.
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Figure 4.3: Bench5.c on 16 processors. Per processor distribution of distances travelled by
RDATA packets going from the memory of processor O to the caches of each processor.
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Figure 4.4: Benchll.c on 8 processors. Per processor distribution of remote accesses over
time.
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local and 100 accesses are remote. Then, another 900 local accesses take place, followed
by a second set of 100 remote accesses. In the graph, we see the remote accesses showing
up in the third, fifth and sixth timedlices. The first timedlice covers the initialization phase,
the second timeslice covers the first loop, the fourth timedlice (in case of processor 7, the
fourth and fifth timedlices) cover the third loop.

4.3 Summary

The different modules of QuickStep have been tested individualy. Figure 4.5 gives a
summary of the status of testing. The hardware (module 1) has been tested during the
smulation and testing phase of the CMMU. Modules 2 through 8 have been tested by
printing out the output of each module on a phase by phase basis and comparing them with
results obtained by doing the same task by hand. Finally, the validation suite has been used
to test the authenticity of the actual statistics.

The synthetic benchmark suite that is used to validate the different statistics supported
by QuickStep, however, is by no means complete, since the number of statisticsavailableis
huge. Only a small subset of these have been validated. The classes of statistics that have
been tested include cache statistics, histograms of remote distances and latency statistics,
although not all subclasses have been validated under these categories. The validation suite
covers a sample of statistics from each of these classes. We have done adequate validation
and testing to think that the hardware is counting the right events and that the full vertical
dice of the software is processing the information correctly. Of course, bugs are likely to
be present in the system. We expect to get more feedback and bug-reports from the users
of the system, which will make the system increasingly solid.
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Individual Modules of Quickstep:
(Marked modules have been tested Individually)

Statistics and Histogram Counting HardwareC]j/

Software Resource Allocator “
Software Message Passing mechanism /

for transferring configuration information 4|
from host to machine

Software decoding mechanism to /
read messages sent from host to machine@/

Software interrupt handlers/ /
Counter reporting mechanisms @ AV
I
Software Message passing mechanism to /
report recorded values of counters @ “

Software processing mechanism to receive
messages reporting counter values and
generating raw datafile from the packets @

Software post—processing mechanism

for generating Proteus tracefiles from V/

the raw datafile

Figure 4.5: Status of validation and testing of QuickStep.
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Chapter 5
Case Studies Using QuickStep

QuickStep has been developed as avehicle for analyzing parallel program performance on
the Alewife multiprocessor system. The main goal of the system is to aid in identifying
performance bottlenecks and tuning programs to reduce the effect of such bottlenecks.
Furthermore, it can a so be used to analyze effects of optimization of application code. We
use MP3D and SOR— two large paralléel applications [3] to demonstrate appilcations of

Quickstep.

51 CaseStudy 1. MP3D

5.1.1 Description

In this chapter, we use MP3D— an application from the SPLASH suite to demonstrate how
QuickStep provides useful insight into program behavior as aresult of optimization. Mp3d
simul ates the interactions between particles flowing through a rectangular wind tunnel and
a solid object placed inside the tunnel. The tunnel is represented as a 3D space array of
unit-sized cells. Particles move through the space array and can only collide with particles
occupying the same cell in the sametime step. A compl ete description of this program can
befoundin [21].

Ricardo Bianchini has done a study on the performance of large parallel applications
on Alewife. Ricardo’s study includes experimentation with multiple implementations of
Mp3d. Inthischapter, we have used three different implementations of Mp3d and run each
on a 16-node Alewife machine, with 18000 particlesfor 6 iterations. A 15MHz clock has
been used for each set of runs.

The 3 versions of Mp3d that will be compared are described bel ow:
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1. Orig Mp3d: Thisisthe original SPLASH implementation.

2. Mp3d: Thisisamodified version of the original programin which some useless code
(variables updated but never read) has been eliminated.

3. MMp3d: This is another modified version in which the partitioning of the data has
been altered. This version reduces sharing by allocating particles to processors in
such away that acertain processor’s particlesrarely move through cellsused by other
processors.

5.1.2 AnalysisUsing QuickStep

This section compares the 3 versions of Mp3d based on some specific statistics: cache hit
ratios, invalidations, remote accesses, etc. We will show how the modifications affect the
origina program using QuickStep.

Data Cache Hit Ratios

| Program | Data Cache Hit Ratio Range |

Orig Mp3d 93%
Mp3d 95-96%
MMp3d 96-97%

Table5.1: Average datacache hit ratios for running the 3 versions of Mp3d on a 16-node Alewife
machine.

Table 5.1 shows the data cache hit ratios across processors for Orig Mp3d, Mp3d and
MMp3d respectively. Orig Mp3d has an average data cache hit ratio of 93%, while Mp3d
and MMp3d have hit ratios of 95-96% and 96-97% respectively. Although theimprovement
ismarginal, the modifications do enhance cache performance.

Read Invalidations

Figures5.1, 5.2 and 5.3 show the distances travelled by memory-to-cacheread invalidation
packets for Orig Mp3d, Mp3d and MMp3d respectively. The y-axis has the processor
number and the x-axis has the number of hops travelled by packets before coming into a
processor. The colors represent the number of packetsthat have travelled that many hops.
The overal conclusion that can be drawn from these graphs is that the number of
invalidation packets that are floating around in the system is much greater in the case of
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Figure 5.1: Orig Mp3d: Per processor distribution of remote distances travelled by read
invalidation packets [ Table B.4].
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Figure 5.2: Mp3d: Per processor distribution of remote distances travelled by read invali-
dation packets [Table B.5].
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Figure 5.3: MMp3d: Per processor distribution of remote distances travelled by read
invalidation packets [ Table B.6].

Orig Mp3d than Mp3d and MMp3d performsthe best in thisregard. Thisis expected since
the modification in MMp3d is designed to reduce sharing of data. From a locality point
of view, in al 3 cases, the mgjority of the packets travel either 2 or 3 hops. However, in
absolute terms, the number of packetsin the systemislower in case of MMp3d than Mp3d,
whichinturnislower than Orig Mp3d.

Remote Access L atencies

Figures 5.4, 5.5 and 5.6 show the average of remote access latencies for Orig Mp3d, Mp3d
and MMp3d respectively. For Orig Mp3d, latencies are in the range 53-66 cycles. For
Mp3d, average latencies vary between 54-72 cycles. For MMp3d, latencies range between
34-56 cycles. Hence, it can be concluded that taking out the useless code sections does not
affect latencies, but the modification in the data partitioning does have a significant effect.

Data Distribution

Figure 5.7 represents the data distribution graphs that have been used to obtain results
presented in Table 5.2. Figure 5.7 shows the percentage of data accesses that are to remote
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Figure 5.4: Orig Mp3d: Average remote access latencies[Table B.7].
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Figure5.5: Mp3d: Average remote access latencies [Table B.8].
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Figure 5.6: MMp3d: Average remote access latencies [Table B.9)].
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Figure 5.8: Orig Mp3d: Packet headers passing through output queue [Table B.10].

shared memory for each processor. Table 5.2 summarizes the data collected from several
graphs of the same type. The table shows that a higher percentage of data accesses are to
remote shared memory in case of Orig Mp3d. Datalocality is much better exploited in the
modified versions of Mp3d than in the original version.

Program % of Remote % of Local | % of Unshared
Shared Accesses | Shared Accesses Accesses

Orig Mp3d 8-10% 36-38% 51-53%
Mp3d 4-5% 33-35% 58-60%
MMp3d 4-5% 32-35% 58-61%

Table 5.2: Datadistribution for running the 3 versions of Mp3d on a 16-node Alewife machine.

Network Traffic

Figures 5.8, 5.9 and 5.10 show the network traffic passing through output queues for Orig
Mp3d, Mp3d and MMp3d respectively, as afunction of processor number. For Orig Mp3d,
traffic is much higher (92,000-280,000 packets). For Mp3d and MMp3d, traffic is a lot
lower, ranging between 46,000-124,000 packets and 27,000-63,000 packets respectively.
Hence, network performanceis significantly affected by the modifications.
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Figure5.9: Mp3d: Packet headers passing through output queue [Table B.11].
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513 Summary

We conclude that the performance of Mp3d is enhanced by the modifications in al the
categories that we consider. Mp3d and MMp3d do not perform much differently as far as
datadistribution is concerned, but MMp3d performssignificantly better than Mp3d asfar as
network traffic, remote access latencies and read invalidations are concerned. Data cache
hit ratios show only marginal variation.

5.2 CaseStudy 2. SOR

5.2.1 Description

SOR (Straightforward 2D successive over-rel axation) can be used to computethe successive
over-relaxation of the temperature of a metal sheet. In each step of the algorithm, the
temperature of a certain point in the sheet is calculated based on the temperature of its
neighboring points. This application is implemented using two matrices (called “odd” and
“even”) for representing the metal sheet. During even-numbered steps, processors read
from the odd matrix and write to the even matrix. During odd-numbered steps, processors
read from the even matrix and write to the odd matrix.

In the next section, we will analyze the behavior of SOR based on cache miss ratios
and show how we achieved improved performance using QuickStep. All experiments
correspond to a 256 x 256 SOR running for 10 iterations.

5.2.2 AnalysisUsing QuickStep

In the first version of SOR that we have considered (henceforth referred to as zgrid),
processors take turnsin getting a row index from a central pool. The index represents the
next row the processor must update. Figure 5.11 shows the data cache hit ratios for this
implementation. We see that zgrid achieves good load balancing but lousy locality [data
cache hit ratios are in the 69-86% range], as processors are likely to update a different set
of rowsin each phase of the computation.

We identified the source of bad performance and changed the way row indices are
assigned in the next version of SOR (mgrid) to around-robin scheme. Asaresult, locality
improved significantly [datacachehit ratiosshot up to the 92-97% range], asisdemonstrated
in Figure 5.12. However, we found that there is still room for further improvement.
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Figure5.12: MGRID: Data cache hit ratios [ Table B.14].

58



DCACHE_HR

L S
o r M W M o o

Processor

o P N W N OO N ®© ©

0 4 8 12 16 20 24 28 32 36 40
Time x 100000
C—o-9%

I o5 - 99

Figure5.13: CGRID: Data cache hit ratios [Table B.15].

We did a coarse-grained implementation of SOR (cgrid), assigning a group of consec-
utive rows of each of the matrices to each processor. Since this row assignment persists
throughout the whole computation, thisimplementation exhibits excellent locality of refer-
ence [data cache hit ratios are in the 98-99% range (Figure 5.13)]. Only the boundary rows
must be communicated between neighboring processors once the cold start misses are over.

52.3 Summary

| Program | Execution Times |
Zgrid | 5542931 cycles

Mgrid | 5200530 cycles
Cgorid | 3565709 cycles

Table 5.3: Execution timesfor the three versions of SOR on a 16-node Alewife machine,

In this section, we have used QuickStep to identify performance problems in SOR and
subsequently modified the program to achieve better performance. Table 5.3 summarizes
the improvement in overall performance by showing the execution times for each version
of SOR.
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Chapter 6

Conclusions

6.1 Summary

The QuickStep performance monitoring system has been developed to aid performance
tuning and debugging of parallel applications on the Alewife multiprocessor. With the
CMMU providing hardware instrumentation support, general instrumentation overhead is
low, although not absent. The main limitation of QuickStep comes from the fact that there
areonly 4 statistics counters and if more than 4 events are to be monitored, then the events
have to be split over several runs. The strength of the system, however, is that it is smart
enough to handle the resource allocation process efficiently and without any help from the
user.

The members of the Alewife team are presently using QuickStep in various areas like
paralel application studies, compiler research, etc. The system will also aid in analyz-
ing/justifying the design decisions made during the Alewife design process and evaluating
architectural design trade-offs for our next machine. The general feedback is that people
have found it easy to use, and the information gathering capabilities have been found to be
useful. Suggestions for additional features have been outlined in the next section. With
those features, QuickStep will be amore powerful vehicle for performance monitoring and
debugging for the Alewife family of machines.

Aslong as a system has some means of gathering the statistics that we have discussed
in this thesis through either software or hardware instrumentation, the higher level design
principles of the QuickStep system are quite general. For instance, the resource alocator,
the configuration file and parser and the message-passing platform are all genera concepts
that can be used in any system of asimilar nature. If statistics are gathered by using software
instrumentation, obviously, they would be less accurate. Hence, if making decisions about
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the hardware design is an option and if the designers know in advance that providing
performance optimization support isagoal of the system, then having dedicated hardware
for monitoring statistics is a very good idea. No other method would be as accurate and
non-intrusive. Thus, the accuracy of the reported statisticsis the most impressive feature of
the QuickStep system.

6.2 FutureWork

As mentioned in Chapter 2, there are several features that we would like to add to the
system. Inthissection, we discuss those features, along with some detail s about the support
that the current version of QuickStep provides to enable a reasonably easy implementation
of those features.

e Execution Profiler: User feedback has indicated the need to be able to profile
programson aper procedure basis. For instance, it would be convenient to be ableto
monitor statistics for a particular procedure. It would also be useful to get Gprof like
graphs describing how much time has been spent in each procedure. The checkpoint
feature already provides an equivalent of the call count feature of Gprof.

QuickStep aready has provisions for allocating resources and configuring statistics
counter masks. The statistics counters can be enabled and disabled by the user.
Therefore, in principle, all that is required is a couple of procedures encapsulating
the different operations which can be included at the beginning and end of the piece
of code to be profiled. Idedly, we would like to have the compiler/linker do this
automatically and the user would only need to specify the name of the procedure
he/she would like to profile. We have the string trandation and message decoding
mechanisms that would be required to support this feature. The compiler/linker
support can also be provided.

e Additional Statistics Classes: The major function specifier field of the statistics
counter masks represent the following classification of statistics (This classification
is how the hardware views the statistics classes and is therefore somewhat |ow-level):

1. Checkpoints
2. Processor Bus Traffic

3. Synchronous Statistics
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Hit-Miss Scheduling

Remote-TXN Statistics
Memory-side Statistics/Scheduling
Multiphase Transactions

Transaction Buffer Statistics

© © N o g &

Network Statistics

Out of these, major functions 1, 2 and 9 have been implemented. Major function 7,
together with the histogram registers congtitute the latency statistics, which have also
been implemented. Major functions 3, 4, 5, 6 and 8 have not been implemented as
yet, although all that is required is to set up the appropriate resource recordsin the
configuration file. The resource alocation, mask configuration, data collection, etc.
are exactly similar to the ones that have been implemented.

LifelineGraph: A lifelinegraph representing what the processor is spendingitstime
on at agiven point intimewill be anice addition to QuickStep’srepertoire. However,
thisis acomplicated addition and does not fit asreadily into the model that has been
developed so far.

Display Environment: At present, the display environment for QuickStep is the
Proteus Stats program. Stats does offer quite a flashy and sophisticated graphical
display incolor. But, alot of the data generated by QuickStep would be easier to read
with a full-fledged 3-dimensional display. In the next version, it would be useful to
spend some time on thisissue.

Since araw datéfile is generated anyway and the Proteus trace file is generated from
thedatafile, thereisevery reasonto believethat writing adifferent filter to post-process
the datafile will be easy. Therefore, whatever format the new display environment
may require the data to bein can be easily incorporated.

L oad Balancing Aid and Synchronization TimeMonitor: Thesetwo features have
been requested by users, although the hardware is not capable of supporting them.
Future modifications to the hardware may be able to incorporate these features.
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Appendix A

CodeListings

A.1 Procl: A Procedure Annotated with Checkpoints

voi d procl(int mss_prob, int |oopbound)

checkpoi nt (" Checkgr 2: Check1");

k = mss_prob*ny_pid();

| = (1 oopbound-Kk);

for (i =0; i <Kk; i++){
checkpoi nt (" Checkgr 2: Check2");
sof tfl ush(&un;
num = i;

}

checkpoi nt (" Checkgr 2: Check3");

checkpoi nt (" Checkgr 3: Check1");

for (i =0; i <|I; i++){
checkpoi nt (" Checkgr 3: Check2");
num = i;

}

checkpoi nt (" Checkgr 3: Check3");
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A.2 Benchl.c. A Program for Validating Hit Ratios

/*
Sranmana Mtra
Sept enber 26, 1994
benchl.c: A synthetic benchmark programto
test cache hit-mss statistics; verifiers for
cached reads and overall data cache hit-ratio
statistics.

*/

#i ncl ude <pri nops. h>
#i ncl ude <stdio. h>
#i ncl ude <parallel.h>

int num= 9;
voi d procl();
voi d cl ear_counters();

mai n(int argc, char *argv[])

{

i nt m ssprob, | oopbound;

m ssprob = atoi (argv[1]);
| oopbound = atoi (argv[2]);

do_in_parallel (procl, mssprob, |oopbound);

}

voi d procl(int mss_prob, int |oopbound)
{

int i, j;

int k, |;

k
I

/*
Counters are cleared so that the data can be obtai ned
for this section of the code only.

*/

cl ear _counters();

(int)((float)mss_prob*0.01*(fl oat)| oopbound+0. 5);
(1 oopbound- k) ;



for (i =0; i <Kk; i++){
sof tfl ush(&um ;

] = num

}

for (i =0; 1 <1; i++4)
j = num

voi d cl ear_counters()
{
int i;
unsi gned A dCCR = CReg- >Cont CR;

t r ap( SUPERVI SOR_MODE_TRAP) ;

di si nt ( STATI STI CS_MASK)

cl rstat (CLEAR _STAT_CNT_ALL_MASK) ;

for (i =0; 1 < 4; i++) {
CReg->Stat Array[i]. Count = O;

}

slink->StatCnt 0_MSW = 0;

slink->StatCnt1l MSW= 0;

sl i nk->StatCnt2_MSW= O0;

slink->StatCnt3 MSW= 0;

CReg- >Cont CR = A dCCR;

A.3 Bench5.c. A Program for Validating Remote Access
Patterns

/*
Sramana Mtra
Sept enber 27, 1994
bench5.c: A synthetic benchmark programto test
uncached renote accesses. The cache hit
rati os on renote accesses ought to be 0
due to flushing of the cache before each

access on every node except O.
*/
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#i ncl ude <pri nops. h>
#i ncl ude <stdio. h>
#i ncl ude <parallel.h>

int num= 9;

voi d procl();

[* struct for dynam c allocation */
typedef struct dummy {

unsi gned

unsi gned

unsi gned

unsi gned

unsi gned
} DUMWY;

di;
dz;
d3;
d4;
d5;

t ypedef DUMWY * DUMW_PTR

mai n(i nt argc,

{

char *argv[])

i nt m ssprob, | oopbound;

DUMMWY_PTR

tenp;

m ssprob = atoi (argv[1]);

| oopbound

atoi (argv[2])

tenmp = (DUMW *)shmal | oc(si zeof (DUMW)) ;

tenp->dl
t enp->d2
t enp- >d3
t enp- >d4
t enp- >d5

TRWNE

do_in_parallel (procl, tenp, m ssprob, | oopbound);

}

voi d procl(DUMW_PTR tnp, int mssprob, int |oopbound)

{
int i, j;
int k, I;

(int)((float)mssprob*0.01*(fl oat)!| oopbound+0. 5);
(1 oopbound- k) ;
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for (i =0; i <Kk; i++){
softflush(tnp);
j = tnp->di;

}

for (i =0; i <1; i++4)
num = i;

A.4 Benchll.c: A Program for Validating the Timedliced
Mode

/*
Sramana Mtra
Sept enber 27, 1994
benchll.c: A synthetic benchmark program
to test uncached renpte accesses.
*/

#i ncl ude <pri nops. h>
#i ncl ude <stdio. h>
#i ncl ude <parallel.h>

int num= 9;
void procl();
/[* struct for dynam c allocation */
typedef struct dummy {
unsi gned di;
unsi gned d2;
unsi gned d3;
unsi gned d4;
unsi gned d5;
} DUMWY;
t ypedef DUMMY * DUMWY_PTR

mai n(int argc, char *argv[])

{
i nt m ssprob, | oopbound;
DUMW_PTR tenp;
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m ssprob = atoi (argv[1]);
| oopbound = atoi (argv[2]);

tenp = (DUMMY *)shmal | oc(si zeof ( DUMMY) ) ;
t enp->dl
t enp->d2
t enp- >d3
t enp- >d4
t enp- >d5 ;

do_in_parallel (procl, tenp, m ssprob, |oopbound);

TR TR
ghROMR

}

voi d procl(DUMW_PTR tnp, int mssprob, int |oopbound)
{

int i, j;

int k, |;

k (int)((float)mssprob*0.01*(fl oat)!| oopbound+0. 5);

I (1 oopbound- k) ;

for (i =0; i <1I; i++4)
num = i;

for (i =0; i <k; i++){
softflush(tnp);
] = tnp->di,;

}

for (i =0; i <1I; i++)
num = i;

for (i =0; i <k; i++){
softflush(tnp);
] = tnp->di;

}

}
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Appendix B
Tablesfor Graphs

This chapter provides tables for graphs in chapters 2, 4 and 5 to aid readers who have a
black and white copy of the thesis.

‘ Proc#‘ TimesliceO ‘ Timeslicel ‘ Timeslice2 ‘
0 19958-107880 | 19958-107880 17801-18879
1 0-539 17801-18879 19958-107880
2 0-539 16722-17800 18880-19957
3 0-539 15643-16721 17801-18879
4 0-539 17801-18879 19958-107880
5 0-539 17801-18879 19958-107880
6 0-539 17801-18879 18880-19957
7 0-539 16722-17800 17801-18879
8 0-539 17801-18879 19958-107880
9 0-539 16722-17800 19958-107880
10 0-539 16722-17800 18880-19957
11 0-539 16722-17800 17801-18879
12 0-539 15643-16721 19958-107880
13 0-539 16722-17800 19958-107880
14 0-539 15643-16721 18880-19957
15 0-539 15643-16721 17801-18879

Table B.1: Water on 16 processors: Per processor distribution of remote shared data accesses.
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‘ Proc# ‘ # of packet headers

0 29733-191823
1 27815-29732
2 29733-191823
3 29733-191823
4 27815-29732
5 29733-191823
6 29733-191823
7 29733-191823
8 29733-191823
9 29733-191823
10 29733-191823
11 27815-29732
12 27815-29732
13 29733-191823
14 27815-29732
15 27815-29732

Table B.2: Water on 16 processors. Counts of packet headers passing through output queues.

‘ Proc# ‘ 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops
0 2418-6731 6732-13070 6732-13070 6732-13070 2418-6731 1504-2417
1 6732-13070 2418-6731 1504-2417 0-65 0-65 0-65
2 6732-13070 2418-6731 2418-6731 197-1503 0-65 0-65
3 1504-2417 6732-13070 1504-2417 0-65 0-65 0-65
4 2418-6731 6732-13070 197-1503 2418-6731 197-1503 0-65
5 197-1503 1504-2417 6732-13070 197-1503 2418-6731 1504-2417
6 1504-2417 2418-6731 6732-13070 197-1503 0-65 0-65
7 197-1503 197-1503 1504-2417 6732-13070 1504-2417 0-65
8 2418-6731 6732-13070 2418-6731 1504-2417 0-65 0-65
9 2418-6731 2418-6731 6732-13070 0-65 0-65 0-65
10 1504-2417 1504-2417 6732-13070 1504-2417 0-65 0-65
11 1504-2417 2418-6731 1504-2417 6732-13070 0-65 0-65
12 2418-6731 2418-6731 1504-2417 6732-13070 0-65 0-65
13 197-1503 197-1503 1504-2417 2418-6731 6732-13070 0-65
14 197-1503 1504-2417 1504-2417 2418-6731 6732-13070 0-65
15 0-65 197-1503 1504-2417 1504-2417 2418-6731 6732-13070

70

Table B.3: Water on 16 processors: Histogram of distances of memory-to-cache input packets.




‘ Proc# ‘ 1 hop 2 hops 3hops 4 hops 5 hops 6 hops
0 1874-9903 1874-9903 1874-9903 1874-9903 1874-9903 268-1873
1 1874-9903 268-1873 268-1873 268-1873 0-267 0-267
2 1874-9903 268-1873 268-1873 268-1873 268-1873 0-267
3 24892-53531 | 24892-53531 | 24892-53531 1874-9903 0-267 0-267
4 18469-24891 | 24892-53531 | 18469-24891 9904-18468 1874-9903 0-267
5 9904-18468 9904-18468 18469-24891 9904-18468 9904-18468 | 1874-9903
6 24892-53531 | 24892-53531 | 24892-53531 1874-9903 0-267 0-267
7 24802-53531 | 24892-53531 | 24892-53531 | 24892-53531 | 9904-18468 0-267
8 18469-24891 | 24892-53531 | 18469-24891 | 18469-24891 1874-9903 0-267
9 18469-24891 | 24892-53531 | 18469-24891 1874-9903 0-267 0-267
10 9904-18468 18469-24891 | 18469-24891 | 18469-24891 | 9904-18468 | 1874-9903
11 24892-53531 | 24892-53531 | 24892-53531 | 24892-53531 | 9904-18468 0-267
12 18469-24891 | 24892-53531 | 18469-24891 1874-9903 0-267 0-267
13 9904-18468 18469-24891 | 18469-24891 9904-18468 1874-9903 0-267
14 18469-24891 | 24892-53531 | 24892-53531 | 18469-24891 1874-9903 0-267
15 9904-18468 9904-18468 18469-24891 | 18469-24891 | 9904-18468 | 1874-9903

TableB.4: OrigMp3d: Per processor distribution of remotedistancestravelled by read invalidation
packets.

‘ Proc# ‘ 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops
0 1990-4564 1990-4564 4565-8310 1990-4564 1990-4564 118-1989
1 118-1989 118-1989 118-1989 118-1989 118-1989 0-117
2 1990-4564 118-1989 118-1989 118-1989 118-1989 0-117
3 11823-23410 11823-23410 11823-23410 1990-4564 0-117 0-117
4 8311-11822 11823-23410 8311-11822 4565-8310 1990-4564 0-117
5 1990-4564 4565-8310 8311-11822 4565-8310 4565-8310 | 1990-4564
6 8311-11822 11823-23410 11823-23410 1990-4564 0-117 0-117
7 11823-23410 11823-23410 11823-23410 11823-23410 4565-8310 0-117
8 8311-11822 11823-23410 8311-11822 8311-11822 1990-4564 0-117
9 8311-11822 11823-23410 8311-11822 1990-4564 0-117 0-117
10 4565-8310 8311-11822 11823-23410 8311-11822 4565-8310 | 1990-4564
11 11823-23410 11823-23410 11823-23410 11823-23410 4565-8310 0-117
12 8311-11822 11823-23410 8311-11822 1990-4564 0-117 0-117
13 4565-8310 8311-11822 8311-11822 4565-8310 1990-4564 0-117
14 8311-11822 8311-11822 11823-23410 8311-11822 1990-4564 0-117
15 4565-8310 4565-8310 8311-11822 8311-11822 4565-8310 | 4565-8310

Table B.5: Mp3d: Per processor distribution of remote distances travelled by read invalidation
packets.
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‘ Proc# ‘ 1 hop 2 hops 3hops 4 hops 5 hops 6 hops

0 1285-2946 2947-4306 2947-4306 2947-4306 1285-2946 76-1284
1 76-1284 76-1284 76-1284 76-1284 76-1284 0-75

2 76-1284 76-1284 76-1284 76-1284 76-1284 0-75

3 6120-15111 | 6120-15111 | 6120-15111 1285-2946 0-75 0-75

4 4307-6119 4307-6119 4307-6119 2947-4306 1285-2946 0-75

5 76-1284 2947-4306 4307-6119 2947-4306 1285-2946 | 1285-2946
6 4307-6119 6120-15111 4307-6119 76-1284 0-75 0-75

7 6120-15111 | 6120-15111 | 6120-15111 | 6120-15111 | 2947-4306 0-75

8 4307-6119 6120-15111 | 6120-15111 4307-6119 1285-2946 0-75

9 4307-6119 6120-15111 4307-6119 1285-2946 0-75 0-75

10 1285-2946 4307-6119 6120-15111 4307-6119 1285-2946 | 1285-2946
11 6120-15111 | 6120-15111 | 6120-15111 | 6120-15111 | 2947-4306 0-75
12 4307-6119 6120-15111 | 6120-15111 1285-2946 0-75 0-75
13 1285-2946 4307-6119 2947-4306 2947-4306 1285-2946 0-75
14 2947-4306 4307-6119 4307-6119 4307-6119 1285-2946 0-75
15 2947-4306 4307-6119 6120-15111 4307-6119 2947-4306 | 2947-4306

Table B.6: MMp3d: Per processor distribution of remote distances travelled by read invalidation
packets.

Proc# | Averageremote accesslatencies
(incycles)
59-66
53
54
54
56
55
54
58
56
54
57
59-66
58
56
56

15 55

© 0o N o o0 b~ W N P O

I <
A W N B O

Table B.7: Orig Mp3d: Average remote access latencies.
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Proc# | Averageremote accesslatencies
(incycles)
64-72
58-59
54
62-63
58-59
58-59
56
58-59
55
60-61
55
57
60-61
62-63
64-72

15 64-72

© O N o o0 b~ W N P O

I <
A W N B O

Table B.8: Mp3d: Average remote access |atencies.

Proc# | Averageremote accesslatencies
(incycles)
34-43
51
a7
46
46
52-53
54-56
46

© 0o N o o0 b~ W N P O

54-56
49
49
45
50
48

15 54-56

A <
A W N P O

Table B.9: MMp3d: Average remote access latencies.

73



Proc# | # of packet headers
(incycles)

114123-160871
94873-114122
92123-94872
182872-265369
174622-177371
160872-169121
177372-182871
265370-274994
177372-182871
160872-169121
171872-174621
265370-274994
177372-182871
160872-169121
177372-182871
15 177372-182871

© 0o N o o0 b~ W N P O

I <
A W N B O

Table B.10: Orig Mp3d: Packet headers passing through output queue.

Proc# | # of packet headers
(incycles)

67345-74758
46339-67344
46339-67344
84645-119243
80938-82172
74759-78465
82173-84644
119244-123568
82173-84644
74759-78465
79702-80937
119244-123568
82173-84644
74759-78465
82173-84644
15 80938-82172

© 0o N o o0 b~ W N P O

A <
A W N P O

Table B.11: Mp3d: Packet headers passing through output queue.
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Proct#

# of packet headers

(incycles)

© 0 N o o b~ W N B+ O

A < =
A W N P O

15

56894-61923
27976-29232
29233-38033
47464-56893
38034-39291
39920-40548
40549-41805
61924-62866
42435-47463
40549-41805
41806-42434
61924-62866
39292-39919
38034-39291
39920-40548
40549-41805

Table B.12: MMp3d: Packet headers passing through output queue.

| Proc# | Timesliceo | Timeslicel | Timeslice2 | Timesice3 | Timeslice4 | Timeslices
0 8797 80-81 80-81 80-81 80-81 80-81
1 82-86 73 71 72 71 73
2 82-86 7479 73 73 73 7479
3 8286 70 71 7479 73 7479
4 82-86 72 72 72 7479 7479
5 8286 71 7 73 70 73
6 8286 70 7479 7479 72 .
7 82-86 71 73 71 71 7479
8 8286 7 70 71 73 7479
9 8286 70 7 73 71 73
10 82-86 7479 72 71 72 73
11 82-86 70 71 71 71 72
12 82-86 7479 72 70 71 73
13 82-86 72 71 71 71 72
14 82-86 70 72 71 71 7479
15 82-86 72 70 71 72 73
Table B.13: ZGRID: Datacache hit ratios.
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| Proct | Timediceo | Timeslicel | Timedice2 | Timeslices | Timeslices | Timeslices
0 93 92 92 92 92 94-97
1 94-97 93 93 93 93 94-97
2 94-97 94-97 94-97 94-97 94-97 94-97
3 94-97 94-97 94-97 94-97 94-97 94-97
4 94-97 94-97 94-97 94-97 94-97 94-97
5 94-97 94-97 94-97 94-97 94-97 94-97
6 94-97 94-97 94-97 94-97 94-97 94-97
7 94-97 94-97 94-97 94-97 94-97 94-97
8 94-97 94-97 94-97 94-97 94-97 94-97
9 94-97 94-97 94-97 94-97 94-97 94-97
10 94-97 94-97 94-97 94-97 94-97 94-97
11 94-97 94-97 94-97 94-97 94-97 94-97
12 94-97 94-97 94-97 94-97 94-97 94-97
13 94-97 94-97 94-97 94-97 94-97 94-97
14 94-97 94-97 94-97 94-97 94-97 94-97
15 94-97 93 93 93 93 94-97
Table B.14: MGRID: Data cache hit ratios.
| Proct | Timediceo | Timeslicel | Timedice2 | Timeslices | Timeslices | Timeslices
0 98-99 98-99 98-99 98-99 98-99 98-99
1 98-99 98-99 98-99 98-99 98-99 98-99
2 98-99 98-99 98-99 98-99 98-99 98-99
3 98-99 98-99 98-99 98-99 98-99 98-99
4 98-99 98-99 98-99 98-99 98-99 98-99
5 98-99 98-99 98-99 98-99 98-99 98-99
6 98-99 98-99 98-99 98-99 98-99 98-99
7 98-99 98-99 98-99 98-99 98-99 98-99
8 98-99 98-99 98-99 98-99 98-99 98-99
9 98-99 98-99 98-99 98-99 98-99 98-99
10 98-99 98-99 98-99 98-99 98-99 98-99
11 98-99 98-99 98-99 98-99 98-99 98-99
12 98-99 98-99 98-99 98-99 98-99 98-99
13 98-99 98-99 98-99 98-99 98-99 98-99
14 98-99 98-99 98-99 98-99 98-99 98-99
15 98-99 98-99 98-99 98-99 98-99 98-99
Table B.15: CGRID: Data cache hit ratios.
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