
QuickStep:

A System for Performance
Monitoring and Debugging

Parallel Applications
on the Alewife Multiprocessor

by

Sramana Mitra

A.B., Computer Science and Economics
Smith College, 1993

Submitted to the
DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1995

c
 1995, Massachusetts Institute of Technology

All rights reserved

Signature of Author:
Department of Electrical Engineering and Computer Science

November 28, 1994

Certified by:
Anant Agarwal

Associate Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by:
Frederic. R. Morgenthaler

Chairman, EECS Committee on Graduate Students

QuickStep:

A System for Performance
Monitoring and Debugging

Parallel Applications
on the Alewife Multiprocessor

by

Sramana Mitra

Submitted to the Department of Electrical Engineering and Computer Science
on November 30, 1994 in partial fulfillment of the

requirements for the Degree of

Master of Science

in Electrical Engineering and Computer Science

ABSTRACT

In Alewife, a large-scale multiprocessor with distributed shared memory, many sophisticated fea-
tures have been incorporated to enhance performance. However for most parallel programs, the
initial implementation usually produces sub-optimal performance. Alewife hardware offers features
to monitor events that provide important information about program behavior. QuickStep is a tool
that offers a software interface for monitoring such eventsand a graphical interface for viewing
the results. The actual monitoring of the data takes place in hardware. This thesis will describe
QuickStep’s features and implementation details, evaluate the overhead due to the inclusion of the
performance monitoring probesand look at case studies of parallel application optimization using
QuickStep.

Thesis Supervisor: Anant Agarwal

Title: Associate Professor of Computer Science and Engineering

Acknowledgments
MIT would have been a very rough, unidimensional experience had it not been for

ballroom dancing. I acknowledge first, therefore, dancing. I have named my system
QuickStep after a dance that is fast and fun!

Of course, none of my work would have gained form if not for the constant guidance
and influx of ideas from John Kubiatowicz. My deepest appreciation to Kubi, although I
think I have successfully resisted his very convincing attempts to have me stay for a Phd.
Thanks Kubi — indeed, it is flattering!

Thanks to my advisor — Professor Anant Agarwal — for giving me the high level
direction. Thanks also for being extremely receptive and supportive of my long-term career
goals and ambitions.

Ken and Don — my officemates have kept me in constant good humor. I could not have
asked for better officemates. Thank you for making MIT warm for me.

I appreciate Ricardo Bianchini’s help with the application chapter, as well as with the
thesis in general.

Thanks to David Kranz, David Chaiken, Beng Hong Lim, Kirk Johnson and Rajeev
Barua for the useful feedback and Silvina Hannono for the support.

Nate — my house-mate — has been a source of enormous comfort and friendship and
Ellen has been there for me from day one (actually day negative something). My sincere
appreciation to both.

Finally, thanks to all my friends from dancing and elsewhere for keeping me going.

To my parents: See you soon!

3

Contents

1 Introduction 9
1.1 Performance Monitoring and Debugging Methods: Background : : : : : 11

1.1.1 Static Analysis : 11
1.1.2 Simulation : 11
1.1.3 Emulation : 11
1.1.4 Software Instrumentation : 12
1.1.5 Hardware Instrumentation : 13

1.2 Goals of the Thesis : 15
1.3 Overview : 15

2 Features of QuickStep 16
2.1 Timesliced Statistics : 16
2.2 Overall Statistics : 18
2.3 Network Usage Statistics : 19
2.4 Checkpoints : 20
2.5 Additional Features : 26

3 Implementation 27
3.1 User Interface : 27
3.2 Resource Allocation : 29

3.2.1 Alewife’s Performance Monitoring Architecture : : : : : : : : : 29
3.2.2 Hardware Mask Configuration : : : : : : : : : : : : : : : : : : : 30
3.2.3 The Resource Allocator : 31
3.2.4 The Configuration File : 33

3.3 The Machine Side : 36
3.3.1 Data Collection and Reporting : : : : : : : : : : : : : : : : : : : 36
3.3.2 Instrumentation Overhead due to TimeSlicing : : : : : : : : : : : 38

3.4 Post-Processing : 40
3.5 Summary : 41

4 Validation of the System 42
4.1 Overview of the Benchmark Suite : 42
4.2 Examples : 42

4

4.2.1 Example 1: Cached Reads : 42
4.2.2 Example 2: Remote Accesses : : : : : : : : : : : : : : : : : : : 43
4.2.3 Example 3: Timesliced Statistics : : : : : : : : : : : : : : : : : 43

4.3 Summary : 47

5 Case Studies Using QuickStep 49
5.1 Case Study 1: MP3D : 49

5.1.1 Description : 49
5.1.2 Analysis Using QuickStep : 50
5.1.3 Summary : 57

5.2 Case Study 2: SOR : 57
5.2.1 Description : 57
5.2.2 Analysis Using QuickStep : 57
5.2.3 Summary : 59

6 Conclusions 60
6.1 Summary : 60
6.2 Future Work : 61

A Code Listings 63
A.1 Proc1: A Procedure Annotated with Checkpoints : : : : : : : : : : : : : 63
A.2 Bench1.c: A Program for Validating Hit Ratios : : : : : : : : : : : : : : 64
A.3 Bench5.c: A Program for Validating Remote Access Patterns : : : : : : : 65
A.4 Bench11.c: A Program for Validating the Timesliced Mode : : : : : : : : 67

B Tables for Graphs 69

5

List of Tables

2.1 Data obtained from the raw data file for the classwise and single checkpoint graphs. 24
2.2 Data obtained from the raw data file for the checkpoint histogram. : : : : : : : 25

4.1 Results of running bench1.c on a 16-node Alewife machine. : : : : : : : : : : 44

5.1 Average data cache hit ratios for running the 3 versions of Mp3d on a 16-node
Alewife machine. : 50

5.2 Data distribution for running the 3 versions of Mp3d on a 16-node Alewife machine. 55
5.3 Execution times for the three versions of SOR on a 16-node Alewife machine. : 59

B.1 Water on 16 processors: Per processor distribution of remote shared data accesses. 69
B.2 Water on 16 processors: Counts of packet headers passing through output queues. 70
B.3 Water on 16 processors: Histogram of distances of memory-to-cache input packets. 70
B.4 Orig Mp3d: Per processor distribution of remote distances travelled by read

invalidation packets. : 71
B.5 Mp3d: Per processor distribution of remote distances travelled by read invalidation

packets. : 71
B.6 MMp3d: Per processor distribution of remote distances travelled by read invali-

dation packets. : 72
B.7 Orig Mp3d: Average remote access latencies. : : : : : : : : : : : : : : : : : 72
B.8 Mp3d: Average remote access latencies. : : : : : : : : : : : : : : : : : : : 73
B.9 MMp3d: Average remote access latencies. : : : : : : : : : : : : : : : : : : 73
B.10 Orig Mp3d: Packet headers passing through output queue. : : : : : : : : : : : 74
B.11 Mp3d: Packet headers passing through output queue. : : : : : : : : : : : : : 74
B.12 MMp3d: Packet headers passing through output queue. : : : : : : : : : : : : 75
B.13 ZGRID: Data cache hit ratios. : 75
B.14 MGRID: Data cache hit ratios. : 76
B.15 CGRID: Data cache hit ratios. : 76

6

List of Figures

1.1 An Alewife processor node. : 10
1.2 Flow chart of tuning the performance of an application using QuickStep. : 14

2.1 The Alewife user interface with pull-down menus for selecting the different
statistics to be monitored. : 17

2.2 Water on 16 processors: Per processor data cache hit ratio. : : : : : : : : 18
2.3 Water on 16 processors: Per processor distribution of remote shared data

accesses [Table B.1]. : 19
2.4 Water on 16 processors: Counts of packet headers passing through output

queues [Table B.2]. : 20
2.5 Water on 16 processors: Histogram of distances of memory-to-cache input

packets [Table B.3]. : 21
2.6 Result of monitoring Checkgr2:Check2. : : : : : : : : : : : : : : : : : : 23
2.7 Result of monitoring Checkgr2. : 23
2.8 Result of monitoring Checkgr3. : 24

3.1 Flow chart of the QuickStep system. : 28
3.2 Software layers in Alewife. : 30
3.3 Statistics counter mask fields. : 32
3.4 The configuration language. : 34
3.5 The operation keywords. : 35
3.6 A sample configuration file. : 37
3.7 Data structure for storing counter values. : : : : : : : : : : : : : : : : : 39
3.8 Instrumentation overhead due to timeslicing: Monitoring timesliced data

and instruction cache hit ratios for 3 applications. : : : : : : : : : : : : : 40
3.9 Excerpt from a sample data file. : 41

4.1 Numbering scheme for the mesh of Alewife nodes. : : : : : : : : : : : : 45
4.2 Bench5.c on 16 processors: Per processor distribution of distances travelled

by RREQ packets going from caches of each processor to the memory of
processor 0. : 45

4.3 Bench5.c on 16 processors: Per processor distribution of distances travelled
by RDATA packets going from the memory of processor 0 to the caches of
each processor. : 46

7

4.4 Bench11.c on 8 processors: Per processor distribution of remote accesses
over time. : 46

4.5 Status of validation and testing of QuickStep. : : : : : : : : : : : : : : : 48

5.1 Orig Mp3d: Per processor distribution of remote distances travelled by read
invalidation packets [Table B.4]. : 51

5.2 Mp3d: Per processor distribution of remote distances travelled by read
invalidation packets [Table B.5]. : 51

5.3 MMp3d: Per processor distribution of remote distances travelled by read
invalidation packets [Table B.6]. : 52

5.4 Orig Mp3d: Average remote access latencies [Table B.7]. : : : : : : : : : 53
5.5 Mp3d: Average remote access latencies [Table B.8]. : : : : : : : : : : : 53
5.6 MMp3d: Average remote access latencies [Table B.9]. : : : : : : : : : : 54
5.7 Orig Mp3d: Percentage of remote global accesses. : : : : : : : : : : : : 54
5.8 Orig Mp3d: Packet headers passing through output queue [Table B.10]. : 55
5.9 Mp3d: Packet headers passing through output queue [Table B.11]. : : : : 56
5.10 MMp3d: Packet headers passing through output queue [Table B.12]. : : : 56
5.11 ZGRID: Data cache hit ratios [Table B.13]. : : : : : : : : : : : : : : : : 58
5.12 MGRID: Data cache hit ratios [Table B.14]. : : : : : : : : : : : : : : : : 58
5.13 CGRID: Data cache hit ratios [Table B.15]. : : : : : : : : : : : : : : : : 59

8

Chapter 1

Introduction

Even though the peak performance rating of multiprocessor systems has improved sub-

stantially over the past several years, the initial implementation of parallel applications

almost never harnesses the full processing power. Performance bottlenecks abound and it

is difficult for the programmer to keep track of all aspects of performance optimization.

Consequently, there is the need for tools to assist in performance debugging.

The Alewife machine is a large-scale multiprocessor with distributed shared memory

built at the MIT Laboratory for Computer Science [1]. Alewife consists of a group of

processing nodes connected by a two-dimensional mesh interconnection network. Each

processing node consists of SPARCLE - a 33MHz processor, a floating point unit, 64Kbytes

of static direct-mapped cache, 4 Mbytes of global shared memory, a network routing chip

and a cache controller chip which enforces cache coherence between caches from different

processing nodes, and provides a shared memory abstract view of distributed main memory

(see Figure 1.1). Currently, the first batch of the Alewife Communications and Memory

Management Unit (CMMU) chip is being tested by the members of the Alewife team and

various software efforts in compiler and performance evaluation technology are in progress.

QuickStep is one such project which explores the issue of performance debugging of parallel

applications on the Alewife machine.

The Alewife CMMU has features to support performance monitoring in hardware.

QuickStep utilizes these features to provide a performance monitoring and debugging

platform.

9

Cache

DataX:

Distributed Shared Memory

FPU

X: C

Distributed Directory

Cache
Controller

Network
Router DataX:

X:

Alewife node

Alewife machine

SPARCLE

Figure 1.1: An Alewife processor node.

10

1.1 Performance Monitoring and Debugging Methods: Back-

ground

Several efforts have been directed at identifying performance bottlenecks in parallel pro-

grams. The popular techniques are Static Analysis, Simulation, Emulation, Hardware

Instrumentation and Software Instrumentation [10].

1.1.1 Static Analysis

Static analysis although fast, has limited applicability. The most extensive research in

static analysis was done at the University of Illinois as a part of the Cedar multiprocessor

project [16]. Static analysis involves predicting the performance of loops, counts of local

and global memory references, estimates of MFLOPS, etc. based on simple models of

instruction latencies and memory hierarchies. The Illinois project later went on to use more

sophisticated techniques like exploiting compiler dependency analysis in the predictive

models. However, the static analysis techniques are in general inaccurate and hence, are

inadequate means of providing performance debugging solutions.

1.1.2 Simulation

Simulation is a slow but precise method. In execution driven simulation, a program is

instrumented so that each operation causes a call to a routine which simulates the effects of

that operation. While reasonably accurate, simulation is a very slow process and it is not

even realistic to simulate the behavior of an entire large program. Therefore, simulation is

hardly an effective tool for performance debugging. It is used more for detailed analysis of

architectural tradeoffs and is important because it allows evaluation without real hardware.

Simulation has been used extensively in the Stanford DASH [17] project, as well as in

Alewife during the architectural design phase.

1.1.3 Emulation

Emulation is a method of hardware system debugging that is becoming increasingly popu-

lar. Field-programmable gate arrays have made possible an implementation technology that

is ideal for full system prototyping, yet does not require the construction of actual silicon

chips [23]. Emulation, also called Computer Aided Prototyping, combines CAE translation

11

and synthesis software with FPGA technology to automatically produce hardware proto-

types of chip designs from netlists. It enables concurrent debugging and verification of all

aspects of a system including hardware, software and external interfaces, leading to a faster

design cycle. Using emulation for performance debugging of applications, however, is not

very common.

1.1.4 Software Instrumentation

Software instrumentation is fast and flexible. Manually done, it involves instrumenting a

program with write statements to print out special purpose information. More sophisticated

tools involve automatic instrumentation. The common types of software instrumentation

are accumulating an aggregate value (for example, time spent in a procedure) and tracing an

event (a new trace event, usually time-stamped, is output each time it is executed). Software

instrumentation, however, introduces inaccuracies due to their intrusive nature.

One of the earliest attempts at performance debugging in the sequential domain was

gprof - an execution profiler that outputs data concerning execution timings in different

routines [12]. Gprof monitors the number of times each profiled routine is called (Call

Count) and the time spent in each profiled routine. The arcs of a dynamic call graph

traversed by an execution of the program are also monitored and the call graph is built by

post processing this data. The execution times are propagated along the edges of this graph

to attribute times for routines to the routines that invoke them.

In the parallel world, a debugger called Parasight was developed at Encore Computer

Corporation [2]. Parasight implements high-level debugging facilities as separate programs

that are linked dynamically to a target program. Parasight was implemented on Multimax,

a shared memory multiprocessor.

IPS is a performance measurement system for parallel and distributed programs that

uses knowledge about the semantics of a program’s structure to provide a large amount

of easily accessible performance data and analysis techniques that guide programmers to

performance bottlenecks [19]. IPS is based on the software instrumentation technique.

Quartz is another tool for tuning parallel program performance on shared memory

multiprocessors. The principal metric in Quartz is normalized processor time: the total

processor time spent in each section of the code divided by the number of other processors

that are concurrently busy when that section of code is being executed.

Other related works can be found in [6], [7], [8] and [20]. A tool called Memspy

is described in [18] that offers the additional feature of extremely detailed information to

identify and fix memory bottlenecks. Memspy isolates causes of cache misses like cold

12

start misses, interference misses, etc. which is very useful.

Mtool is a software tool for analyzing performance loss by isolating memory and

synchronization overheads [11]. Mtool provides a platform for scanning where a parallel

program spends its execution time. The taxonomy includes four categories: Compute

Time, Synchronization Overhead, Memory Hierarchy Losses, and Extra Work in Parallel

Program (versus Sequential). Mtool is a fairly general implementation that runs on MIPS-

chip based systems like DEC workstations, SGI multiprocessors and the Stanford DASH

machine. Mtool’s approach is distinct in that where most performance debugging tools

lump the compute time and memory overhead together as “work”, Mtool offers important

information about the behavior of the memory system. Studies have shown that this is

critical to optimizing the performance of parallel applications. Mtool is typically estimated

to slow down programs by less than 10%.

1.1.5 Hardware Instrumentation

Hardware instrumentation involves using dedicated counters and registers to monitor events.

Monitoring of events occurs in hardware and hence is virtually unintrusive. The biggest

advantages of hardware instrumentation are its accuracy and speed.

The drawback of hardware instrumentation is that it is not widely available and it may

not be as flexible as simulation. In our case, availability is not an issue since Alewife

hardware was designed to support instrumentation counters. However, it is only possible

to provide a finite amount of instrumentation support in hardware, so it is not as flexible

as software. In Alewife, for example, we have 4 statistics counters that monitor a subset

of all events. Therefore, only a finite set of events can be monitored during a single run.

However, since runs can happen fast, multiple runs allow monitoring of larger sets of

statistics. Furthermore, the event monitoring hardware was carefully architected so that

most key events could be captured.

QuickStep takes a hybrid of hardware and software approaches and provides a friendly

interface for viewing the data collected by the kernel. As is true for most hardware

instrumentation based performance monitors, it is not trivial to directly port QuickStep

to some other hardware platform. However, the concepts are general and portable. The

features of QuickStep will include Gprof like execution profiling facilities, as well as means

of monitoring memory system behavior and network traffic patterns.

13

Write an application.

Modify application to
tune the performance,
concentrating on
eliminating the bottlenecks.

What’s useful?

Local and Remote access latencies

Memory access patterns

Network traffic scenario

Cache behavior

Ability to profile how many times a
piece of code has been executed −−−>
notion of CHECKPOINTS

Ability to get a dynamic view of what
is happening in the system −−−>
notion of TIMESLICING [monitoring
statistics at regular, user−defined
intervals]

Execution profiler to get distribution of
time spent in different procedures

Per procedure statistics

Distribution of distances travelled by
packets

Run Quickstep on the
application and look at
various statistics to identify
performance bottlenecks.

Statistics

Figure 1.2: Flow chart of tuning the performance of an application using QuickStep.

14

1.2 Goals of the Thesis

The main goal of this work is to develop the QuickStep system with adequate features

to provide a vehicle of further research on the Alewife machine. QuickStep provides a

platform for monitoring cache and memory statistics, network statistics, various latencies

and message frequencies, etc. for applications that are run on Alewife. It thus enables users

to analyze the performance characteristics, bottlenecks and enhancement potentials and to

accordingly fine-tune applications. Figure 1.2 shows a flow chart of tuning the performance

of an application using QuickStep. It also shows what kind of statistics are useful for

performance debugging. In principle, QuickStep is capable of providing all those features,

although some of the profiling features have not been implemented yet.

The Alewife CMMU provides basic hardware support for monitoring events. 11% of the

total chip area of the CMMU is dedicated to performance monitoring hardware. However, it

is not possible to utilize this feature without a well-developed software interface which can

handle the bit manipulations and produce comprehensible information. QuickStep provides

this interface, as well as a graphical display environment for the information gathered.

1.3 Overview

The rest of this thesis proceeds as follows: Chapter 2 describes the features of QuickStep

and illustrates the features that have been implemented so far with examples. This chapter

also outlines other features that will be implemented in the next version of the system

without too much modification of the existing model. Chapter 3 describes the principles

followed in implementing QuickStep. Chapter 4 discusses the suite of programs used to

test the validity of the system. Chapter 5 demonstrates the effectiveness of QuickStep by

using it to analyze and optimize a few large parallel applications from the SPLASH suite.

Finally, Chapter 6 summarizes the thesis.

15

Chapter 2

Features of QuickStep

In QuickStep, the menu-driven interface through which different statistics are requested is a

friendly environment [Figure 2.1]. This chapter describes the different classes of statistics

that can be monitored and gives examples of sample outputs. Besides the major categories

described here, the interface offers the additional facility of specifying pre-collated groups

of statistics that are commonly used. The user can select one or more of these groups without

having to look through the detailed menus. The groups are named in a self-explanatory

way, for example, Data and Instruction Cache Ratios, Distribution on Local and Remote

Accesses, Read and Write Latencies, Header Frequency through Network Queues, etc.

2.1 Timesliced Statistics

Statistics can either be recorded at the end of the run, or at regular intervals during the

run. QuickStep provides both these options. allowing the user to get some amount of

profiling information. Chapter 6 discusses the more elaborate profiling capabilities that

will be provided in the next version of the system.

Figures 2.2 and 2.3 are examples of graphs obtained from the cache-statistics menu.

The ratio figures on the graphs are rounded up to integers, however, if the user wants to

look at more precise values, an easy-to-read raw datafile is available which provides figures

upto 14 decimal places. Both the graphs have been obtained by running Water from the

SPLASH suite on a 16-node Alewife machine, with timeslices of 10,000,000 cycles each.

Since the data cache hit ratios are more or less uniform over time, the timeslice mode

does not provide much extra information. Data cache hit ratios are uniformly 98-99%

for all processors and timeslices, with the exception of the second timeslice of processor

0. However, in Figure 2.3 we see clearly how the access pattern changes over time. For

16

Figure 2.1: The Alewife user interface with pull-down menus for selecting the different
statistics to be monitored.

17

DCACHE_HR

Time x 1000000

P
ro

ce
ss

o
r

0 - 96
97
98 - 99

0 4 8 12 16 20 24 28
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 2.2: Water on 16 processors: Per processor data cache hit ratio.

instance, during the first timeslice, all processors other than processor 0 are waiting for the

initialization to be completed. Hence, the number of remote data accesses are low for all

processors except processor 0. In the subsequent timeslices, all the processors are doing

real computation, and the access pattern reflects activity.

When statistics are collected in the timesliced mode, program behavior is perturbed

to some degree. Chapter 3 describes how the timesliced statistics are implemented and

discusses perturbation due to instrumentation. When statistics are to be collected at regular

intervals, the program has to stop running during the collection phases. This makes

timesliced instrumentation intrusive and hence comparatively inaccurate. On the other

hand, the timesliced mode does provide important information about program behavior

over time.

2.2 Overall Statistics

Often, however, the user simply wants an overall summary statistic for the run. In such

cases, the timesliced mode is turned off and the counter values are recorded at the end of

the run. Figure 2.4 shows an example of a statistic gathered at the end of the run, ie. in

the non-timesliced mode. It is possible to post-process data gathered in time-sliced mode

18

TOTAL_REMOTE_GLOBAL_DATA_ACCESSES

Time x 1000000

P
ro

ce
ss

o
r

0 - 539
540 - 15642
15643 - 16721
16722 - 17800

17801 - 18879
18880 - 19957
19958 - 107880

0 4 8 12 16 20 24 28
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 2.3: Water on 16 processors: Per processor distribution of remote shared data
accesses [Table B.1].

to obtain the overall statistics. However, as discussed in the previous section, timesliced

statistics perturb program behavior, while non-timesliced statistics do not. Furthermore,

non-timesliced mode is naturally faster than the timesliced mode. As always, there is a

trade-off between accuracy of statistics, perturbation of program and speed. Hence, we

provide both timesliced and non-timesliced modes of collecting statistics.

2.3 Network Usage Statistics

Two types of hardware statistics yield histograms of values: counts of packets and distribu-

tion of distances that packets have travelled. The counts of packets mode watches network

packets and whenever a packet appears in a designated direction (input or output), it is

checked to see if it matches the class of packets that is being tracked. If so, then the cor-

responding histogram counter is incremented [Chapter 3]. This class of statistics is useful

for tracking different classes of packets, especially from a low-level kernel programmer’s

point of view. Being able to track protocol packets, synchronization packets, boot packets,

etc. can help a runtime system designer.

The distribution of distances mode increments histogram counters based on the number

19

NOF_PACKET_HEADERS_PASSING_THROUGH_OUTPUT_QUEUE

Time

P
ro

ce
ss

o
r

0 - 25896
25897 - 27814
27815 - 29732
29733 - 191823

0 1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 2.4: Water on 16 processors: Counts of packet headers passing through output
queues [Table B.2].

of hops a packet of the specified class has travelled. Figure 2.5 gives an example of such a

statistic. The y-axis has the processor number and the x-axis has the number of hops. The

colors represent the numbers of packets in each category. This is very useful for debugging

application performance because it provides a way of judging whether the application is

showing good communication locality or not. Ideally, most of the communication ought to

be nearest neighbor and if the remote distance histogram reflects that this is not the case,

then the programmer can debug the application. It is easy to see the effect of debugging

some aspect of a program by simply comparing histograms obtained from running different

versions.

2.4 Checkpoints

Checkpoints are a set of useful debugging features offered by QuickStep. They are single

cycle instructions that can be included at different points in a program and useful profiling

information can be obtained by looking at the counts of the checkpoints. For instance,

information can be obtained about how many times a procedure is called, or how often a

particular section of code is executed.

20

Histogram of Remote Distances of Memory to Cache input packets

Histogram Index [Number of Hops]

P
r
o

c
e

s
s

o
r

0 - 65
66 - 196
197 - 1503
1504 - 2417

2418 - 6731
6732 - 13070

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 2.5: Water on 16 processors: Histogram of distances of memory-to-cache input
packets [Table B.3].

21

To use the checkpoint facility of QuickStep the program being run needs to be annotated

with the checkpoint instruction. This section gives an example of using checkpoints. The

checkpoint instruction takes one argument, with two parts separated by a colon. The first

part is the checkpoint group name and the second part is the checkpoint name. Checkpoint

group is an abstraction which is used to group several checkpoints together. [A maximum

of 16 checkpoints are allowed per group.] The argument translates to a 12-bit checkpoint

address.

The three different checkpoint modes operate as follows:

� Classwise: In this mode, only the checkpoint group name to be tracked needs to

be specified through the user interface. The address translation works such that the

corresponding counter is incremented when the first 8 bits of the translated address

matches a checkpoint.

� Single: In this mode, both the checkpoint group name and the checkpoint name to be

tracked need to be specified through the user interface. The address translation works

such that the corresponding counter is incremented when all 12 bits of the translated

address matches a checkpoint.

� Histogram: In this mode, only the checkpoint group name to be tracked needs to be

specified through the user interface. The histogram mode of checkpoint monitoring

gives a distribution of accesses for checkpoints of a certain class.

Figures 2.6, 2.7 and 2.8 use the checkpoint features of QuickStep to monitor the pro-

cedure Proc1 listed in Appendix A. Proc1 is annotated with some checkpoints and when

those checkpoints are tracked using QuickStep, the expected frequencies are obtained.

The procedure Proc1 is started up on all 16 processors with arguments 10 and 200.

Checkgr2:Check2 is monitored in Figure 2.6 and rightly comes out to be (10�ProcessorId)

on each processor. [The graph shows the ranges of frequencies and table 2.1 shows the

exact numbers.]

Checkgr2 is monitored in Figure 2.7 and rightly comes out to be (10�ProcessorId+2)

on each processor. [The graph shows the ranges of frequencies, while table 2.1 shows the

exact numbers.]

Checkgr3 is monitored in Figure 2.8 and rightly comes out to be 1 each for Check1

(Histogram Id = 0) and Check3 (Histogram Id = 2) and (200 � (10 � ProcessorId)) for

Check2 (Histogram Id = 1) on each processor. [The graph shows the ranges of frequencies

and table 2.2 shows the exact numbers. Data for processors 0 through 6 only are represented

in the table, but the rest of the data from the raw file have been verified to be consistent.]

22

CHECKGR2_CHECK2

Time

Pr
oc

es
so

r

0
1 - 8
9 - 18
19 - 27

28 - 38
39 - 48
49 - 57
58 - 68

69 - 78
79 - 87
88 - 98
99 - 108

109 - 117
118 - 128
129 - 138
139 - 150

0 1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 2.6: Result of monitoring Checkgr2:Check2.

CHECKGR2

Time

Pr
oc

es
so

r

0 - 8
9 - 17
18 - 26
27 - 37

38 - 46
47 - 55
56 - 64
65 - 75

76 - 84
85 - 93
94 - 102
103 - 113

114 - 122
123 - 131
132 - 140
141 - 152

0 1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 2.7: Result of monitoring Checkgr2.

23

Processor Id Checkgr2 Checkgr2:Check2

0 2 0
1 12 10
2 22 20
3 32 30
4 42 40
5 52 50
6 62 60
7 72 70
8 82 80
9 92 90
10 102 100
11 112 110
12 122 120
13 132 130
14 142 140
15 152 150

Table 2.1: Data obtained from the raw data file for the classwise and single checkpoint graphs.

CHECKGR3

Histogram Index

Pr
oc

es
so

r

0 - 11
12 - 23
24 - 35
36 - 49

50 - 61
62 - 73
74 - 85
86 - 99

100 - 111
112 - 123
124 - 135
136 - 149

150 - 161
162 - 173
174 - 185
186 - 200

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 2.8: Result of monitoring Checkgr3.

24

Processor Id Checkgr3 Histogram Id

0 1 0
0 200 1
0 1 2
1 1 0
1 190 1
1 1 2
2 1 0
2 180 1
2 1 2
3 1 0
3 170 1
3 1 2
4 1 0
4 160 1
4 1 2
5 1 0
5 150 1
5 1 2
6 1 0
6 140 1
6 1 2

Table 2.2: Data obtained from the raw data file for the checkpoint histogram.

25

2.5 Additional Features

The first major addition that is planned for the next version of QuickStep is a profiling

feature. Currently, statistics gathering cannot be turned on or off in the middle of a run.

However, this is a feature that would be of enormous usefulness. For instance, users of

the QuickStep system have commented that it would be useful if a certain set of statistics

could be computed on a per procedure basis. The statistics could be of various types: the

amount of time spent in the procedure, the cache behavior and the network statistics for the

procedure, etc.

This feature can be incorporated easily, by encoding the turning on and off of statistics

counters into a function. Ideally, the user should be able to specify the name of the procedure

and the statistics to be monitored. The compiler/linker would then incorporate the function

in that procedure automatically, the process being transparent to the user.

Furthermore, there are several classes of statistics that the CMMU supports which have

not been implemented in this version. These include synchronous trap statistics, hitmiss

statistics, remote transaction statistics, memory controller statistics and transaction buffer

statistics.

From a presentation point of view, we are currently using the Proteus Stats program as

the display environment. Most of the data we are presenting would be easier to read in a

3-dimensional graphical display environment, which stats does not support. There is room

for improvement in the way the statistics are represented through graphical displays.

26

Chapter 3

Implementation

In this chapter, we discuss the implementation details of the QuickStep performance mon-

itoring system. Figure 3.1 shows a flow chart of the QuickStep system. This chapter is

organized according to the flow chart as follows: We first describe the user interface in

Section 3.1. Next, the Alewife architechtural support for performance monitoring and the

resource allocation procedure are described in Section 3.2. Finally, the data collection and

reporting is described in Section 3.3, and the graphical display is discussed in Section 3.4.

3.1 User Interface

The high-level interface for the QuickStep system is an integrated part of the general

Alewife interface developed by Patrick Chan. Figure 2.1 shows a snapshot of the interface.

It consists of menu items for:

� Connecting to the Alewife machine or to the NWO simulator (NWO is a simulator

that has been developed as a part of the Alewife design process by David Chaiken)

� For selecting the statistics to monitor and display the graphical output of QuickStep

� For running Parastat— a graphical monitor of the status of the individual nodes of

the Alewife machine (also developed by David Chaiken)

The code for the interface is written in Tcl, an X-windows programming environment.

The user requests the statistics that he or she wants to monitor by clicking on the rel-

evant menu items. The major classes of statistics that are currently offered are the following:

27

User requests statistics
through a menu−driven
 interface

QuickStep allocates the
 hardware resources

Statistics are collected
 and reported to the
 host

Statistics are displayed
 through a graphical
 interface

Figure 3.1: Flow chart of the QuickStep system.

28

� Cache Statistics

� Checkpoints for profiling

� Histograms of Remote Distances of cache to memory and memory to cache packets

� Network Statistics

� Latency Statistics for different types of memory accesses

This information is then passed on to the host[Figure 3.2] by selecting Send to Alewife

from the Statistics menu. Internally, this transfer of information happens through the

exchange of a message which is decoded by the host running QuickStep.

3.2 Resource Allocation

In this section, we first describe the hardware support that Alewife provides for performance

monitoring. Then, we discuss the resource allocation problem, and how it is solved

in QuickStep. We also describe the configuration file in which resource requirement

information for different statistics are stored.

3.2.1 Alewife’s Performance Monitoring Architecture

Alewife, being a vehicle for research in parallel computation, has several built-in features

that assist in monitoring events like data and instruction cache hit ratios, read accesses,

write accesses, distances travelled by packets, etc. In particular, the CMMU has 4 dedi-

cated 32-bit statistics counters, and 16 20-bit histogram registers. The histogram registers

are also counters that are incremented when certain events occur. The histogram registers

monitor events like histograms of checkpoints, packet distributions and packet distances.

The histogram control field of the statistics control register [Figure 3.3] is used to config-

ure the histogram registers as a unit to count different events. Each statistics counter is

independently configured with a 32-bit event mask.

When an overflow of the statistics or histogram counters occurs, the hardware takes a

trap. A 32-bit overflow counter for each statistics and histogram counter is implemented in

software, which are then incremented. 64-bit resolution is thus achieved by extension into

software.

The user interacts with the machine through the host (see Figure 3.2). The host is

attached to processing node 15 of the mesh, and supports an interactive user interface.

29

Alewife machine

Alewife node
Software Layers

Kernel software

User Program

Host
Client

Software

Figure 3.2: Software layers in Alewife.

The user can boot the machine, load and run programs via this interface. The code for

instrumenting the statistics gathering facility is included as a part of the Alewife kernel and

the statistics monitoring mode is activated by adding features to the host interface. The

Alewife kernel supports a message-passing interface [15] which is used to communicate

between the host and the machine.

Alewife also supports a timer interrupt facility which is used to interrupt processors

at specified times to collect statistics for a certain interval. This feature of the Alewife

architecture is utilized in QuickStep to provide snapshot views of the behavior of a program

over time, as described in Chapter 2.

3.2.2 Hardware Mask Configuration

As mentioned before, the CMMU has registers dedicated to monitor statistics. These

registers are divided into two sets: the statistics counters and the histogram registers. Each

set is controlled by one or more control registers. The statistics and histogram registers can

work independently, or work together (to compute latency statistics).

The histogram registers are controlled as a single unit by the StatCR (statistics control)

register. The registers work together as bins (except when computing latencies) to keep a

30

histogram of different events. Chapter 2 provides examples of this mode. The StatCR also

controls other aspects of the statistics registers such as traps.

The counter registers work independently of each other and each has an associated 32

bit control register called its mask. These masks can be used to make the counters count a

general set of events, or a subset of events. For instance, a counter can be set up to count

cache hit ratios, or just data cache hit ratios.

Figure 3.3 shows the fields of the StatCR register and of a typical statistics counter

mask. The histogram control field of the StatCR register holds the histogram mask, the

StatCounter0 Control, StatCounter1 Control, StatCounter2 Control and StatCounter3 Con-

trol fields are responsible for enabling and disabling statistics counters 0 through 3.

The statistics counter masks have a 4-bit major function specifier and a 28-bit minor

function specifier each. The major function specifier bits determine the class of statistics to

be monitored (eg. checkpoints, network statistics, etc.) The minor function specifier fields

determine the specifics within a class of statistics.

Let us look at a counter mask from the configuration file in Figure 3.6. 201EFF20 is

the hexadecimal mask for counting number of cached data accesses. The major function

specifier is 2, which represents the cache statistics. Bits 17 through 21 represent the type

of processor request. Bit 21, for instance, denotes an instruction match. Since we are

counting data accesses specifically, bit 21 is turned off. Bits 17 through 20 are read and

write requests and are hence turned on. Bit 5 represents cached accesses and hence needs

to be on. The rest of the bits are configured accordingly.

3.2.3 The Resource Allocator

As mentioned before, the Alewife CMMU has only 4 statistics counters and 1 set of 16

histogram registers. Consequently, only a small number of events can be monitored during

a single run. Hence, when the user requests a large number of statistics, several runs are

needed to satisfy such requests. In such cases, allocation of counters need to take place

across runs.

QuickStep has a resource allocator to take care of this task. Say, the user has requested

3 statistics: Data Cache Hit Ratios, Cached Unshared Data Accesses, Cached Local Shared

Data Accesses and Cached Remote Shared Data Accesses. For Data Cache Hit Ratios

we need 2 counters to count number of cached data accesses and total number of data

accesses. For Cached Unshared Data Accesses we need 2 counters to count number of

cached unshared data accesses and total number of unshared data accesses. For Cached

Local Shared Data accesses we need 2 counters to count number of cached local shared

31

012345678910111213141516171819202122232425262728293031

SyncStatControl

Histogram Control Enable Histogram Trap

StatisticsCounter3 Control

StatisticsCounter2 Control

StatisticsCounter1Control

StatisticsCounter0Control

Reserved

Timer Control

The STATCR Register

012345678910111213141516171819202122232425262728293031

Major Function Minor Function

Statistics Counter Mask

Figure 3.3: Statistics counter mask fields.

32

data accesses and total number of local shared data accesses. For Cached Remote Shared

Data accesses we need 2 counters to count number of cached remote shared data accesses

and total number of remote shared data accesses. That is a total of 8 events and 8 statistics

counters are needed to compute them.

The resource allocator is intelligent enough to be able to figure out how many counters

will be needed and how many runs will be required given the counter requirement. It can

also eliminate duplicate events and optimize the number of runs required to satisfy the

requested set of statistics. In this case, the resource allocator assigns number of cached

data accesses, total number of data accesses, number of cached unshared data accesses

and total number of unshared data accesses to the first run. The number of cached local

shared data accesses, total number of local shared data accesses, number of cached remote

shared data accesses and total number of remote shared data accesses are assigned to the

second run.

The fact that all the requested statistics cannot be computed in one run due to limitations

in the availability of hardware resources, implies, there is always a window of error. Hence,

each statistic needs to be gathered several times and averaged over all data points to eliminate

this effect. Since the hardware can only provide a finite set of resources, this effect is pretty

much unavoidable.

3.2.4 The Configuration File

The information about what the mask values are for each event to be monitored is stored

in a configuration file that is read by the resource allocator. The configuration file uses a

configuration language described in Figure 3.4.

The operations that are to be performed on the counters to get the requested statistics

are specified by the CounterOperations keyword. The specific operations that are allowed

are described in Figure 3.5

Example of a Configfile

Figure 3.6 shows a sample configuration file with four records.

The first record provides the resource specifications for Data Cache Hit Ratio of statistics

class Cache Statistics. The 2 counter masks provide mask-configurations for monitoring

the total number of cached data accesses and the total number of data accesses. The record

assumes that counter 0 will be monitoring the number of cached accesses and counter 1 will

be monitoring the total number of accesses. The statistics that are reported if this record

33

The Configfile reserved words are the following:

Name :

CounterMasks :

CounterOperation :

HeaderStrings :

HistogramMask :

HistogramHeaderStrings :

HistogramOperation :

TimeFlag :

Help :

Accumulator :

Name of the statistic, with dots separating each menu subclass for
the main user interface.

 Masks necessary for the relevant events;
represented as hexadecimal values (preceeded by #x)

Operations to be performed on the counter values;
the set of operations allowed are described below

Headers describing each statistic that is obtained by
computing the result of each CounterOperation

Histogram Mask necessary for the relevant events;

Headers describing the result of the
Histogram Operation

Currently, "Histogram" is the only operation allowed
which reports the value of the histogram counters.

TimeFlag = 0 means timeslicing is not implemented,
TimeFlag = 1 means it is.

Describes the details of what are available as a part of the statistic

Accumulator = 1 implies latency statistics are being computed,
and counter zero will need to be used as an accumulator

GroupNames :

StatisticsNames :

EndRecord :

EndOfFile :

Name of statistics group

If a statistics group has been defined, then the statistics
constituting that group are referenced here

An "EndRecord" is placed at the end of each statistics record

Needed at the end of the file

Figure 3.4: The configuration language.

34

List of Operations allowed by the Configuration File Language

Value :

Div :

Sum :

Mul :

Sub :

DivMul :

Takes 1 argument;
Reports value of the counter which is passed as the argument.

Takes 2 arguments;
Reports result of dividing the value of the counter that is passed
as the first argument by the value of the counter that is passed
as the second argument.

Takes multiple arguments;
Adds all the counter values that are passed as arguments.

Takes multiple arguments;
Reports the product of all the counter values that are passed
as arguments.

Takes 2 arguments;
Reports the difference of the 2 counter values that are passed
as arguments.

Takes 3 arguments;
Reports the result of multiplying the first argument (a number)
with the result of dividing the value of the counter that is passed
as the second argument by the value of the counter that is passed
as the third argument.

Note : The Counter arguments are passed as numbers: 0, 1, 2 and
3 − referring to Counter 0, Counter 1, Counter 2, and
Counter 3.

Figure 3.5: The operation keywords.

35

is chosen by the user are specified by the header strings: number of cached data accesses,

total number of data accesses and data cache hit ratio. The CounterOperation keyword

gives the operations required to get those statistics. For example, the number of cached

data accesses is the value of counter 0 and the total data accesses is the value of counter 1.

The data cache hit ratio is obtained by dividing the value of counter 0 with that of counter

1 and multiplying the quotient by 100. TimeFlag = 1 implies that this statistic is available

in the timesliced mode as well.

The other 3 records provide resource specifications for Cached Unshared Data Accesses,

Cached Local Shared Data Accesses and Cached Remote Shared Data Accesses.

The configuration file is read by a parser which gets all the arguments related to the sets

of statistics that have been requested. It then passes that information on to the resource-

allocator, which determines the number of runs required and assigns the masks for each

run.

Currently the configuration file is hand-generated, thereby leaving room for errors. In

the next implementation of QuickStep, we would like to modify the configfile language

somewhat, so as to allow for a more automated procedure for generating the configfile.

3.3 The Machine Side

Since all the resource allocation information is processed by the host, the task on the

machine side is very simple. The host passes all the information for a particular run in

a message to the machine. The machine (kernel) configures the statistics counter masks

and the histogram control mask accordingly[Figure 3.3]. It also clears all the counters. If

timesliced mode is requested, then the timer is programmed to go off at regular intervals.

Finally, the counters are enabled at the beginning of the run. If timesliced mode is off, then

statistics are gathered at the end of the run and the data is sent back in packets to the host.

3.3.1 Data Collection and Reporting

When timeslicing is not used, the counter values are simply collected at the end of the run

and sent back to the host in packets.

However, as described in Chapter 2, QuickStep offers the option of monitoring times-

liced statistics. This feature is implemented by using a timer interrupt facility supported

by the Alewife hardware. In our first implementation, the timesliced mode would cause an

interrupt to happen at regular intervals. The interrupt handler would then disable all the

36

Name "Cache_Statistics.Data_Cache_Hit_Ratio"
CounterMasks #x201EFF20 #x201EFF3F
CounterOperation Value 0 Value 1 DivMul 100 0 1
HeaderStrings "#ofCachedDataAcc" "#ofDataAcc" "DCache−HR"
TimeFlag 1
Help "Offers 3 figures: Number of Cached Data Accesses,

Number of Total Data Accesses, and
Data Cache Hit Ratio"

EndRecord

Name "Cache_Statistics.Cached_Local_Local_Data_Accesses"
CounterMasks #x201EF320 #x201EF33F
CounterOperation Value 0 Value 1 DivMul 100 0 1
HeaderStrings "Cached Local−Local−Data Accesses"
 "Total Local−Local−Data Accesses"
 "Cached−Local−Local−Data"
TimeFlag 1
Help "Offers 3 figures: Cached Local−Local−Data Accesses,

Total Local−Local−Data Accesses, and
Cached Local−Local−Data Ratio"

EndRecord

Name "Cache_Statistics.Cached_Local_Global_Data_Accesses"
CounterMasks #x201EF520 #x201EF53F
CounterOperation Value 0 Value 1 DivMul 100 0 1
HeaderStrings "Cached Local−Global−Data Accesses"
 "Total Local−Global−Data Accesses"
 "Cached−Local−Global−Data"
TimeFlag 1
Help "Offers 3 figures: Cached Local−Global−Data Accesses,

Total Local−Global−Data Accesses, and
Cached Local−Global−Data Ratio"

EndRecord

Name "Cache_Statistics.Cached_Remote_Global_Data_Accesses"
CounterMasks #x201EF920 #x201EF93F
CounterOperation Value 0 Value 1 DivMul 100 0 1
HeaderStrings "Cached Remote−Global−Data Accesses"
 "Total Remote−Global−Data Accesses"
 "Cached−Remote−Global−Data"
TimeFlag 1
Help "Offers 3 figures: Cached Remote−Global−Data Accesses,

Total Remote−Global−Data Accesses, and
Cached Remote−Global−Data Ratio"

EndRecord

Figure 3.6: A sample configuration file.

37

statistics and histogram counters and a packet reporting the counter/histogram information

would be sent to the host. This protocol created a problem since whenever a large number

of processors were involved, too many messages were going towards the host, thereby

clogging up the network. We solved this problem by buffering the statistics counter values

in arrays of structures (described in Figure 3.7). Note, the statistics counters are 32-bits

in length and the histogram registers are 20-bits in length. However, additional overflow

handling mechanism implemented in software provides 64-bit resolution for each register.

Hence, when the counter values need to be stored, both the upper 32-bits and the lower 32-

bits need to be recorded. The data-structures shown in Figure 3.7 demonstrate provisions

for handling this task. We staggered the reporting of data to the host by ensuring that no

two processors are reporting data during the same timeslice and thereby lightened the load

on the network. The number of messages was reduced by sending large chunks of the array

in a single message.

3.3.2 Instrumentation Overhead due to TimeSlicing

Interrupting a program every so often is expected to perturb a program in terms of memory

behavior, execution times, etc. We have done an experiment with perturbation characteris-

tics regarding execution times. Figure 3.8 shows the results of the experiment. We ran 3

applications (namely, Water, SOR and Mergesort) first without timeslicing, and then times-

licing with decreasing intervals (ie. increasing number of times the system is interrupted).

We found that the slowdown factor (ratio of execution time with timeslicing to execution

time without timeslicing) is nominal for upto about 180 interruptions. It was not possible

to get measurements with higher numbers of interruptions because the current network

overflow software for Alewife cannot handle a higher degree of network congestion.

In our implementation of the timesliced mode of statistics gathering, we have faced

some problems. When data reporting messages are sent to the host too often, the network

clogs up. However, if very large buffers are used for storing the data, then the memory

requirement on each processor limits the memory available to the application, and hence

causes capacity misses, thereby deteriorating its performance. There are a couple of

solutions to this problem:

� Increasing the memory on each node

� Adding I/O nodes to decrease network congestion

We expect these features to be available in later versions of Alewife.

38

Statistics Counter 0 Least Significant Word

Statistics Counter 0 Most Significant Word

Statistics Counter 1 Least Significant Word

Statistics Counter 1 Most Significant Word

Statistics Counter 2 Least Significant Word

Statistics Counter 2 Most Significant Word

Statistics Counter 3 Least Significant Word

Statistics Counter 3 Most Significant Word

Timeslice Index

Data structure used for storing the
 statistics counter values

Data structure for storing the
 histogram counter values

Timeslice Index

.

.

.

Histogram Register 0 Least Significant Word

Histogram Register 0 Most Significant Word

Histogram Register 1 Least Significant Word

Histogram Register 1 Most Significant Word

Histogram Register 15 Least Significant Word

Histogram Register 15 Most Significant Word

.

.

Figure 3.7: Data structure for storing counter values.

39

� Water
� SOR
� Mergesort

|
0

|
30

|
60

|
90

|
120

|
150

|

0.96

|

0.98

|

1.00

|

1.02

|

1.04

|

1.06

|

1.08

|

1.10

|

1.12

|

1.14

|

1.16

|

1.18

 Number of times statistics have been sampled

 Sl
ow

do
wn

�

�

�
�

�

�
�

�
�

�

�

�

�

Figure 3.8: Instrumentation overhead due to timeslicing: Monitoring timesliced data and
instruction cache hit ratios for 3 applications.

3.4 Post-Processing

The data packets are received by the host and stored in memory until the end of the run. At

the end of the run, they are output into a raw data file in a simple column format. A sample

data file is given in Figure 3.9. The raw file is then processed to generate a binary file that is

in the Proteus [5] trace file format, that can be viewed with a graphical interface supported

by the Proteus Stats program. Chapter 2 shows examples of graphs obtained as outputs of

the QuickStep system. The column headings from the raw data file are used to generate

headings and menus for the graphs. The graphs give approximate ranges that are helpful as

an easy-to-grasp summary. However, the datafile values are available if a user would like

to look at more precise statistics. The Index column represents the processor number and

the timestamp field represents the timeslice id. [In Figure 3.9, a small program was run on

a 16-node Alewife machine and only overall statistics were gathered.]

40

CntRecord
"#ofCachedDataAcc" "#ofDataAcc" "DCache−HR" "Cached Local−Local−Data Accesses"
"Total Local−Local−Data Accesses" "Cached−Local−Local−Data" Index Timestamp
331 332 99.69879518072288 331 332 99.69879518072288 3 0
330 331 99.69788519637463 330 331 99.69788519637463 6 0
330 331 99.69788519637463 330 331 99.69788519637463 9 0
332 333 99.69969969969969 332 333 99.69969969969969 4 0
329 330 99.69696969696969 329 330 99.69696969696969 7 0
329 330 99.69696969696969 329 330 99.69696969696969 12 0
330 331 99.69788519637463 330 331 99.69788519637463 10 0
331 332 99.69879518072288 331 332 99.69879518072288 5 0
328 329 99.69604863221885 328 329 99.69604863221885 13 0
328 329 99.69604863221885 328 329 99.69604863221885 14 0
332 333 99.69969969969969 332 333 99.69969969969969 2 0
327 328 99.6951219512195 327 328 99.6951219512195 15 0
331 332 99.69879518072288 331 332 99.69879518072288 8 0
329 330 99.69696969696969 329 330 99.69696969696969 11 0
333 334 99.7005988023952 333 334 99.7005988023952 1 0
EndRecord

Figure 3.9: Excerpt from a sample data file.

3.5 Summary

User-friendliness is the main principle that has been followed in the design of QuickStep.

We have also ensured that it is easy to add new records to the configuration file for monitoring

new statistics. Another design principle that we have followed is to keep most of the task of

resource allocation outside the main kernel. Consequently, the resource allocation is done

on the host side and minimum amount of work is left for the kernel. Of course, the actual

reading and storing of counter values is done in the kernel.

41

Chapter 4

Validation of the System

4.1 Overview of the Benchmark Suite

The QuickStep system can be used to obtain various statistics. However, the statistics can

be utilized to analyze and fine-tune performance of applications only if the system has been

validated and there is some guarantee that the data is authentic. For this purpose, a suite

of small programs with predictable behavior has been put together. This set of synthetic

benchmarks have been run on the Alewife machine and the statistics gathered have been

found to tally with the expected figures. In the next section, we give examples of some of the

benchmark programs and the output graphs that verify the correctness of the corresponding

statistics class.

4.2 Examples

4.2.1 Example 1: Cached Reads

Bench1.c from Appendix A is an example of a synthetic program that is used to verify the

statistic cached reads. It is run with arguments 40 as the probability of misses and 10000 as

the loopbound. The expected hit ratio for read accesses is 60%. Table 4.1 shows the values

obtained from the data file in which the result of monitoring cached reads are recorded

[Results from two separate runs are presented]. As expected, the cached read ratio does

turn out to be around 60%. The variation is due to the fact that there is a brief shutdown

phase at the end of each program which causes a few extra accesses, thereby introducing a

slight inaccuracy. Since the statistics counters are user programmable, it would be easy to

42

turn them on and off right before and after the critical loop, thereby getting the hit ratios for

the loop only. However, this would involve not using the capabilities offered by QuickStep.

4.2.2 Example 2: Remote Accesses

Bench5.c from Appendix A is another synthetic benchmark which flushes the cache of the

local processor before each read access [j = tmp� > d1]. The actual data resides in

processor 0 and hence every access in the first loop is a remote access. For instance, if the

program is run with arguments 40 and 10000, 4000 of those accesses ought to be remote

accesses on all the processors except on processor 0. Furthermore, the number of cached

remote accesses ought to be 0 on every single node. We do see this behavior in the graphs

obtained by running QuickStep on the program (graphs are not included).

We also use this program to validate histograms of remote distances. For instance,

figure 4.2 shows that each of the other processors have sent out 4000 Read Request (RREQ)

packets to processor 0 and are represented in the graph according to the number of hops

they each have travelled. Figure 4.1 shows the numbering scheme of processors on the

mesh, from which we see that processors 1 and 2 are 1 hop away from node 0, processors

3, 4 and 8 are 2 hops away, processors 5, 6, 9 and 10 are 3 hops away, processors 7, 11 and

12 are 4 hops away, processors 13 and 14 are 5 hops away and processor 15 is 6 hops away

from processor 0. Figure 4.2 reflects this information by showing, for example, processors

5, 6, 9 and 10 have sent out 4000 packets each that have travelled 4 hops.

Figure 4.3 shows the reverse of figure 4.2 in that it shows that 8000 packets have travelled

1 hop, 12000 packets have travelled 2 hops, 16000 packets have travelled 3 hops, 12000

packets have travelled 4 hops, 8000 packets have travelled 5 hops and 4000 packets have

travelled 1 hop from processor 0, to go out to the caches of the other processors carrying

the data requested by each of them. Each node had sent out 4000 read requests and 2 of

these are 5 hops away from processor 0. The rest of the data represented in the two graphs

is also consistent.

4.2.3 Example 3: Timesliced Statistics

Bench11.c from Appendix A is a modified version of bench5.c in which the first and third

loops of reads do not require any remote access, however, all accesses in the second and

fourth loops are to data stored in the memory of processor 0. Consequently, when the

program is run, the output reflects this information in Figure 4.4. The program was run with

arguments 1 and 1000. Hence, initially, for all processors except node 0, 900 accesses are

43

Run Id Cached Read Ratio Processor Number Mean

60.43912570467808 3
60.41563582384958 6
60.60665747488675 4
60.41563582384958 9

60.396039603960396 7
60.39211803148826 12
60.57948162018331 5

1 60.396039603960396 11 60.5046871656633
60.36857227781631 13
60.36857227781631 14
60.68796068796068 2

60.344998512937444 15
60.664765463664075 8
60.64154285152023 10
60.62604587065656 1
60.73180302138513 0
60.43912570467808 3
60.41563582384958 6
60.60665747488675 4
60.41955274094597 9

60.396039603960396 7
60.39996039996039 12
60.57948162018331 5

2 60.396039603960396 11 60.50713018408938
60.3724985139687 13
60.3724985139687 14

60.68796068796068 2
60.35285955000496 15
60.66863323500492 8

60.645415190869734 10
60.629921259842526 1
60.73180302138513 0

Table 4.1: Results of running bench1.c on a 16-node Alewife machine.

44

00 01 04 05

02 03 06 07

08 09 0C 0D

0A 0B 0E 0F

10 11 14 15

12 13 16 17

18 19 1C 1D

1A 1B 1E 1F

20 21 24 25

22 23 26 27

28 29 2C 2D

2A 2B 2E 2F

30 31 34 35

32 33 36 37

38 39 3C 3D

3A 3B 3E 3F

Figure 4.1: Numbering scheme for the mesh of Alewife nodes.

CACHE_TO_MEMORY_OUTPUT_PACKET__RREQ__BINMODE0

Histogram Index

P
ro

ce
ss

o
r

0 - 220
221 - 460
461 - 700
701 - 980

981 - 1220
1221 - 1460
1461 - 1700
1701 - 1980

1981 - 2220
2221 - 2460
2461 - 2700
2701 - 2980

2981 - 3220
3221 - 3460
3461 - 3700
3701 - 4000

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 4.2: Bench5.c on 16 processors: Per processor distribution of distances travelled by
RREQ packets going from caches of each processor to the memory of processor 0.

45

MEMORY_TO_CACHE_OUTPUT_PACKET__RDATA__BINMODE0

Histogram Index

P
ro

ce
ss

o
r

0 - 880
881 - 1840
1841 - 2800
2801 - 3920

3921 - 4880
4881 - 5840
5841 - 6800
6801 - 7920

7921 - 8880
8881 - 9840
9841 - 10800
10801 - 11920

11921 - 12880
12881 - 13840
13841 - 14800
14801 - 16000

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 4.3: Bench5.c on 16 processors: Per processor distribution of distances travelled by
RDATA packets going from the memory of processor 0 to the caches of each processor.

TOTAL_REMOTE_GLOBAL_DATA_ACCESSES

Time x 10000

P
ro

ce
ss

o
r

0 - 5
6 - 11
12 - 17
18 - 24

25 - 30
31 - 36
37 - 42
43 - 49

50 - 55
56 - 61
62 - 67
68 - 74

75 - 80
81 - 86
87 - 92
93 - 100

0 4 8 12 16 20 24
0

1

2

3

4

5

6

7

8

Figure 4.4: Bench11.c on 8 processors: Per processor distribution of remote accesses over
time.

46

local and 100 accesses are remote. Then, another 900 local accesses take place, followed

by a second set of 100 remote accesses. In the graph, we see the remote accesses showing

up in the third, fifth and sixth timeslices. The first timeslice covers the initialization phase,

the second timeslice covers the first loop, the fourth timeslice (in case of processor 7, the

fourth and fifth timeslices) cover the third loop.

4.3 Summary

The different modules of QuickStep have been tested individually. Figure 4.5 gives a

summary of the status of testing. The hardware (module 1) has been tested during the

simulation and testing phase of the CMMU. Modules 2 through 8 have been tested by

printing out the output of each module on a phase by phase basis and comparing them with

results obtained by doing the same task by hand. Finally, the validation suite has been used

to test the authenticity of the actual statistics.

The synthetic benchmark suite that is used to validate the different statistics supported

by QuickStep, however, is by no means complete, since the number of statistics available is

huge. Only a small subset of these have been validated. The classes of statistics that have

been tested include cache statistics, histograms of remote distances and latency statistics,

although not all subclasses have been validated under these categories. The validation suite

covers a sample of statistics from each of these classes. We have done adequate validation

and testing to think that the hardware is counting the right events and that the full vertical

slice of the software is processing the information correctly. Of course, bugs are likely to

be present in the system. We expect to get more feedback and bug-reports from the users

of the system, which will make the system increasingly solid.

47

 Individual Modules of Quickstep:
(Marked modules have been tested Individually)

Statistics and Histogram Counting Hardware

Software Resource Allocator

Software Message Passing mechanism
for transferring configuration information
from host to machine

Software decoding mechanism to
read messages sent from host to machine

Software Message passing mechanism to
report recorded values of counters

Software processing mechanism to receive
messages reporting counter values and
generating raw datafile from the packets

Software post−processing mechanism
for generating Proteus tracefiles from
the raw datafile

Software interrupt handlers/
Counter reporting mechanisms

1

2

3

5

8

6

77

4

Figure 4.5: Status of validation and testing of QuickStep.

48

Chapter 5

Case Studies Using QuickStep

QuickStep has been developed as a vehicle for analyzing parallel program performance on

the Alewife multiprocessor system. The main goal of the system is to aid in identifying

performance bottlenecks and tuning programs to reduce the effect of such bottlenecks.

Furthermore, it can also be used to analyze effects of optimization of application code. We

use MP3D and SOR— two large parallel applications [3] to demonstrate appilcations of

Quickstep.

5.1 Case Study 1: MP3D

5.1.1 Description

In this chapter, we use MP3D— an application from the SPLASH suite to demonstrate how

QuickStep provides useful insight into program behavior as a result of optimization. Mp3d

simulates the interactions between particles flowing through a rectangular wind tunnel and

a solid object placed inside the tunnel. The tunnel is represented as a 3D space array of

unit-sized cells. Particles move through the space array and can only collide with particles

occupying the same cell in the same time step. A complete description of this program can

be found in [21].

Ricardo Bianchini has done a study on the performance of large parallel applications

on Alewife. Ricardo’s study includes experimentation with multiple implementations of

Mp3d. In this chapter, we have used three different implementations of Mp3d and run each

on a 16-node Alewife machine, with 18000 particles for 6 iterations. A 15MHz clock has

been used for each set of runs.

The 3 versions of Mp3d that will be compared are described below:

49

1. Orig Mp3d: This is the original SPLASH implementation.

2. Mp3d: This is a modified version of the original program in which some useless code

(variables updated but never read) has been eliminated.

3. MMp3d: This is another modified version in which the partitioning of the data has

been altered. This version reduces sharing by allocating particles to processors in

such a way that a certain processor’s particles rarely move through cells used by other

processors.

5.1.2 Analysis Using QuickStep

This section compares the 3 versions of Mp3d based on some specific statistics: cache hit

ratios, invalidations, remote accesses, etc. We will show how the modifications affect the

original program using QuickStep.

Data Cache Hit Ratios

Program Data Cache Hit Ratio Range

Orig Mp3d 93%
Mp3d 95-96%

MMp3d 96-97%

Table 5.1: Average data cache hit ratios for running the 3 versions of Mp3d on a 16-node Alewife
machine.

Table 5.1 shows the data cache hit ratios across processors for Orig Mp3d, Mp3d and

MMp3d respectively. Orig Mp3d has an average data cache hit ratio of 93%, while Mp3d

and MMp3d have hit ratios of 95-96% and 96-97% respectively. Although the improvement

is marginal, the modifications do enhance cache performance.

Read Invalidations

Figures 5.1, 5.2 and 5.3 show the distances travelled by memory-to-cache read invalidation

packets for Orig Mp3d, Mp3d and MMp3d respectively. The y-axis has the processor

number and the x-axis has the number of hops travelled by packets before coming into a

processor. The colors represent the number of packets that have travelled that many hops.

The overall conclusion that can be drawn from these graphs is that the number of

invalidation packets that are floating around in the system is much greater in the case of

50

MEMORY_TO_CACHE_INPUT_PACKET__INVR__BINMODE0

Histogram Index

P
ro

ce
ss

o
r

0 - 267
268 - 1873
1874 - 9903
9904 - 18468

18469 - 24891
24892 - 53531

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.1: Orig Mp3d: Per processor distribution of remote distances travelled by read
invalidation packets [Table B.4].

MEMORY_TO_CACHE_INPUT_PACKET__INVR__BINMODE0

Histogram Index

P
ro

ce
ss

o
r

0 - 117
118 - 1989
1990 - 4564
4565 - 8310

8311 - 11822
11823 - 23410

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.2: Mp3d: Per processor distribution of remote distances travelled by read invali-
dation packets [Table B.5].

51

MEMORY_TO_CACHE_INPUT_PACKET__INVR__BINMODE0

Histogram Index

P
ro

ce
ss

o
r

0 - 75
76 - 1284
1285 - 2946
2947 - 4306

4307 - 6119
6120 - 15111

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.3: MMp3d: Per processor distribution of remote distances travelled by read
invalidation packets [Table B.6].

Orig Mp3d than Mp3d and MMp3d performs the best in this regard. This is expected since

the modification in MMp3d is designed to reduce sharing of data. From a locality point

of view, in all 3 cases, the majority of the packets travel either 2 or 3 hops. However, in

absolute terms, the number of packets in the system is lower in case of MMp3d than Mp3d,

which in turn is lower than Orig Mp3d.

Remote Access Latencies

Figures 5.4, 5.5 and 5.6 show the average of remote access latencies for Orig Mp3d, Mp3d

and MMp3d respectively. For Orig Mp3d, latencies are in the range 53-66 cycles. For

Mp3d, average latencies vary between 54-72 cycles. For MMp3d, latencies range between

34-56 cycles. Hence, it can be concluded that taking out the useless code sections does not

affect latencies, but the modification in the data partitioning does have a significant effect.

Data Distribution

Figure 5.7 represents the data distribution graphs that have been used to obtain results

presented in Table 5.2. Figure 5.7 shows the percentage of data accesses that are to remote

52

AVERAGE_NON_OVERFLOW_LATENCY__REMOTE_ACCESSES_

Time

P
ro

ce
ss

o
r

0 - 52
53
54
55

56
57
58
59 - 66

0 1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.4: Orig Mp3d: Average remote access latencies [Table B.7].

AVERAGE_NON_OVERFLOW_LATENCY__REMOTE_ACCESSES_

Time

P
ro

ce
ss

o
r

0 - 53
54
55
56

57
58 - 59
60 - 61
62 - 63

64 - 72

0 1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.5: Mp3d: Average remote access latencies [Table B.8].

53

AVERAGE_NON_OVERFLOW_LATENCY__REMOTE_ACCESSES_

Time

P
ro

ce
ss

o
r

0 - 33
34 - 43
44
45

46
47
48
49

50
51
52 - 53
54 - 56

0 1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.6: MMp3d: Average remote access latencies [Table B.9].

REMOTEGLOBALDATAPC

Time

P
ro

ce
ss

o
r

0 - 7
8
9
10

0 1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.7: Orig Mp3d: Percentage of remote global accesses.

54

NOF_PACKET_HEADERS_PASSING_THROUGH_INPUT_QUEUE

Time

P
ro

ce
ss

o
r

0 - 92122
92123 - 94872
94873 - 114122
114123 - 160871

160872 - 169121
169122 - 171871
171872 - 174621
174622 - 177371

177372 - 182871
182872 - 265369
265370 - 274994

0 1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.8: Orig Mp3d: Packet headers passing through output queue [Table B.10].

shared memory for each processor. Table 5.2 summarizes the data collected from several

graphs of the same type. The table shows that a higher percentage of data accesses are to

remote shared memory in case of Orig Mp3d. Data locality is much better exploited in the

modified versions of Mp3d than in the original version.

Program % of Remote % of Local % of Unshared
Shared Accesses Shared Accesses Accesses

Orig Mp3d 8-10% 36-38% 51-53%
Mp3d 4-5% 33-35% 58-60%

MMp3d 4-5% 32-35% 58-61%

Table 5.2: Data distribution for running the 3 versions of Mp3d on a 16-node Alewife machine.

Network Traffic

Figures 5.8, 5.9 and 5.10 show the network traffic passing through output queues for Orig

Mp3d, Mp3d and MMp3d respectively, as a function of processor number. For Orig Mp3d,

traffic is much higher (92,000-280,000 packets). For Mp3d and MMp3d, traffic is a lot

lower, ranging between 46,000-124,000 packets and 27,000-63,000 packets respectively.

Hence, network performance is significantly affected by the modifications.

55

NOF_PACKET_HEADERS_PASSING_THROUGH_INPUT_QUEUE

Time

P
ro

ce
ss

o
r

0 - 46338
46339 - 67344
67345 - 74758
74759 - 78465

78466 - 79701
79702 - 80937
80938 - 82172
82173 - 84644

84645 - 119243
119244 - 123568

0 1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.9: Mp3d: Packet headers passing through output queue [Table B.11].

NOF_PACKET_HEADERS_PASSING_THROUGH_OUTPUT_QUEUE

Time

P
ro

ce
ss

o
r

0 - 27975
27976 - 29232
29233 - 38033
38034 - 39291

39292 - 39919
39920 - 40548
40549 - 41805
41806 - 42434

42435 - 47463
47464 - 56893
56894 - 61923
61924 - 62866

0 1
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.10: MMp3d: Packet headers passing through output queue [Table B.12].

56

5.1.3 Summary

We conclude that the performance of Mp3d is enhanced by the modifications in all the

categories that we consider. Mp3d and MMp3d do not perform much differently as far as

data distribution is concerned, but MMp3d performs significantly better than Mp3d as far as

network traffic, remote access latencies and read invalidations are concerned. Data cache

hit ratios show only marginal variation.

5.2 Case Study 2: SOR

5.2.1 Description

SOR (Straightforward2D successive over-relaxation) can be used to compute the successive

over-relaxation of the temperature of a metal sheet. In each step of the algorithm, the

temperature of a certain point in the sheet is calculated based on the temperature of its

neighboring points. This application is implemented using two matrices (called “odd” and

“even”) for representing the metal sheet. During even-numbered steps, processors read

from the odd matrix and write to the even matrix. During odd-numbered steps, processors

read from the even matrix and write to the odd matrix.

In the next section, we will analyze the behavior of SOR based on cache miss ratios

and show how we achieved improved performance using QuickStep. All experiments

correspond to a 256 x 256 SOR running for 10 iterations.

5.2.2 Analysis Using QuickStep

In the first version of SOR that we have considered (henceforth referred to as zgrid),

processors take turns in getting a row index from a central pool. The index represents the

next row the processor must update. Figure 5.11 shows the data cache hit ratios for this

implementation. We see that zgrid achieves good load balancing but lousy locality [data

cache hit ratios are in the 69-86% range], as processors are likely to update a different set

of rows in each phase of the computation.

We identified the source of bad performance and changed the way row indices are

assigned in the next version of SOR (mgrid) to a round-robin scheme. As a result, locality

improved significantly [data cache hit ratios shot up to the 92-97% range], as is demonstrated

in Figure 5.12. However, we found that there is still room for further improvement.

57

DCACHE_HR

Time x 100000

P
ro

ce
ss

o
r

0 - 68
69
70
71

72
73
74 - 79
80 - 81

82 - 86
87 - 97
98 - 99

0 6 12 18 24 30 36 42 48 54 60
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.11: ZGRID: Data cache hit ratios [Table B.13].

DCACHE_HR

Time x 100000

P
ro

ce
ss

o
r

0 - 91
92
93
94 - 97

98 - 99

0 6 12 18 24 30 36 42 48 54 60
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.12: MGRID: Data cache hit ratios [Table B.14].

58

DCACHE_HR

Time x 100000

P
ro

ce
ss

o
r

0 - 96
97
98 - 99

0 4 8 12 16 20 24 28 32 36 40
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.13: CGRID: Data cache hit ratios [Table B.15].

We did a coarse-grained implementation of SOR (cgrid), assigning a group of consec-

utive rows of each of the matrices to each processor. Since this row assignment persists

throughout the whole computation, this implementation exhibits excellent locality of refer-

ence [data cache hit ratios are in the 98-99% range (Figure 5.13)]. Only the boundary rows

must be communicated between neighboring processors once the cold start misses are over.

5.2.3 Summary

Program Execution Times

Zgrid 5542931 cycles
Mgrid 5200530 cycles
Cgrid 3565709 cycles

Table 5.3: Execution times for the three versions of SOR on a 16-node Alewife machine.

In this section, we have used QuickStep to identify performance problems in SOR and

subsequently modified the program to achieve better performance. Table 5.3 summarizes

the improvement in overall performance by showing the execution times for each version

of SOR.

59

Chapter 6

Conclusions

6.1 Summary

The QuickStep performance monitoring system has been developed to aid performance

tuning and debugging of parallel applications on the Alewife multiprocessor. With the

CMMU providing hardware instrumentation support, general instrumentation overhead is

low, although not absent. The main limitation of QuickStep comes from the fact that there

are only 4 statistics counters and if more than 4 events are to be monitored, then the events

have to be split over several runs. The strength of the system, however, is that it is smart

enough to handle the resource allocation process efficiently and without any help from the

user.

The members of the Alewife team are presently using QuickStep in various areas like

parallel application studies, compiler research, etc. The system will also aid in analyz-

ing/justifying the design decisions made during the Alewife design process and evaluating

architectural design trade-offs for our next machine. The general feedback is that people

have found it easy to use, and the information gathering capabilities have been found to be

useful. Suggestions for additional features have been outlined in the next section. With

those features, QuickStep will be a more powerful vehicle for performance monitoring and

debugging for the Alewife family of machines.

As long as a system has some means of gathering the statistics that we have discussed

in this thesis through either software or hardware instrumentation, the higher level design

principles of the QuickStep system are quite general. For instance, the resource allocator,

the configuration file and parser and the message-passing platform are all general concepts

that can be used in any system of a similar nature. If statistics are gathered by using software

instrumentation, obviously, they would be less accurate. Hence, if making decisions about

60

the hardware design is an option and if the designers know in advance that providing

performance optimization support is a goal of the system, then having dedicated hardware

for monitoring statistics is a very good idea. No other method would be as accurate and

non-intrusive. Thus, the accuracy of the reported statistics is the most impressive feature of

the QuickStep system.

6.2 Future Work

As mentioned in Chapter 2, there are several features that we would like to add to the

system. In this section, we discuss those features, along with some details about the support

that the current version of QuickStep provides to enable a reasonably easy implementation

of those features.

� Execution Profiler: User feedback has indicated the need to be able to profile

programs on a per procedure basis. For instance, it would be convenient to be able to

monitor statistics for a particular procedure. It would also be useful to get Gprof like

graphs describing how much time has been spent in each procedure. The checkpoint

feature already provides an equivalent of the call count feature of Gprof.

QuickStep already has provisions for allocating resources and configuring statistics

counter masks. The statistics counters can be enabled and disabled by the user.

Therefore, in principle, all that is required is a couple of procedures encapsulating

the different operations which can be included at the beginning and end of the piece

of code to be profiled. Ideally, we would like to have the compiler/linker do this

automatically and the user would only need to specify the name of the procedure

he/she would like to profile. We have the string translation and message decoding

mechanisms that would be required to support this feature. The compiler/linker

support can also be provided.

� Additional Statistics Classes: The major function specifier field of the statistics

counter masks represent the following classification of statistics (This classification

is how the hardware views the statistics classes and is therefore somewhat low-level):

1. Checkpoints

2. Processor Bus Traffic

3. Synchronous Statistics

61

4. Hit-Miss Scheduling

5. Remote-TXN Statistics

6. Memory-side Statistics/Scheduling

7. Multiphase Transactions

8. Transaction Buffer Statistics

9. Network Statistics

Out of these, major functions 1, 2 and 9 have been implemented. Major function 7,

together with the histogram registers constitute the latency statistics, which have also

been implemented. Major functions 3, 4, 5, 6 and 8 have not been implemented as

yet, although all that is required is to set up the appropriate resource records in the

configuration file. The resource allocation, mask configuration, data collection, etc.

are exactly similar to the ones that have been implemented.

� Lifeline Graph: A lifeline graph representing what the processor is spending its time

on at a given point in time will be a nice addition to QuickStep’s repertoire. However,

this is a complicated addition and does not fit as readily into the model that has been

developed so far.

� Display Environment: At present, the display environment for QuickStep is the

Proteus Stats program. Stats does offer quite a flashy and sophisticated graphical

display in color. But, a lot of the data generated by QuickStep would be easier to read

with a full-fledged 3-dimensional display. In the next version, it would be useful to

spend some time on this issue.

Since a raw datafile is generated anyway and the Proteus trace file is generated from

the datafile, there is every reason to believe that writing a different filter to post-process

the datafile will be easy. Therefore, whatever format the new display environment

may require the data to be in can be easily incorporated.

� Load Balancing Aid and Synchronization Time Monitor: These two features have

been requested by users, although the hardware is not capable of supporting them.

Future modifications to the hardware may be able to incorporate these features.

62

Appendix A

Code Listings

A.1 Proc1: A Procedure Annotated with Checkpoints

void proc1(int miss_prob, int loopbound)
{

int i, j;
int k, l;

checkpoint("Checkgr2:Check1");
k = miss_prob*my_pid();
l = (loopbound-k);
for (i = 0; i < k; i++){

checkpoint("Checkgr2:Check2");
softflush(&num);
num = i;

}
checkpoint("Checkgr2:Check3");

checkpoint("Checkgr3:Check1");
for (i = 0; i < l; i++){

checkpoint("Checkgr3:Check2");
num = i;

}
checkpoint("Checkgr3:Check3");

}

63

A.2 Bench1.c: A Program for Validating Hit Ratios

/*
Sramana Mitra
September 26, 1994
bench1.c: A synthetic benchmark program to
test cache hit-miss statistics; verifiers for
cached reads and overall data cache hit-ratio
statistics.

*/

#include <primops.h>
#include <stdio.h>
#include <parallel.h>

int num = 9;
void proc1();
void clear_counters();

main(int argc, char *argv[])
{

int missprob, loopbound;

missprob = atoi(argv[1]);
loopbound = atoi(argv[2]);

do_in_parallel(proc1, missprob, loopbound);
}

void proc1(int miss_prob, int loopbound)
{

int i, j;
int k, l;

k = (int)((float)miss_prob*0.01*(float)loopbound+0.5);
l = (loopbound-k);
/*
Counters are cleared so that the data can be obtained
for this section of the code only.
*/
clear_counters();

64

for (i = 0; i < k; i++){
softflush(&num);
j = num;

}
for (i = 0; i < l; i++)

j = num;
}

void clear_counters()
{

int i;
unsigned OldCCR = CReg->ContCR;

trap(SUPERVISOR_MODE_TRAP);
disint(STATISTICS_MASK);
clrstat(CLEAR_STAT_CNT_ALL_MASK);
for (i = 0; i < 4; i++) {

CReg->StatArray[i].Count = 0;
}
slink->StatCnt0_MSW = 0;
slink->StatCnt1_MSW = 0;
slink->StatCnt2_MSW = 0;
slink->StatCnt3_MSW = 0;
CReg->ContCR = OldCCR;

}

A.3 Bench5.c: A Program for Validating Remote Access
Patterns

/*
Sramana Mitra
September 27, 1994
bench5.c: A synthetic benchmark program to test

uncached remote accesses. The cache hit
ratios on remote accesses ought to be 0
due to flushing of the cache before each
access on every node except 0.

*/

65

#include <primops.h>
#include <stdio.h>
#include <parallel.h>

int num = 9;
void proc1();
/* struct for dynamic allocation */
typedef struct dummy {

unsigned d1;
unsigned d2;
unsigned d3;
unsigned d4;
unsigned d5;

} DUMMY;
typedef DUMMY *DUMMY_PTR;

main(int argc, char *argv[])
{

int missprob, loopbound;
DUMMY_PTR temp;

missprob = atoi(argv[1]);
loopbound = atoi(argv[2]);

temp = (DUMMY *)shmalloc(sizeof(DUMMY));
temp->d1 = 1;
temp->d2 = 2;
temp->d3 = 3;
temp->d4 = 4;
temp->d5 = 5;
do_in_parallel(proc1, temp, missprob, loopbound);

}

void proc1(DUMMY_PTR tmp, int missprob, int loopbound)
{

int i, j;
int k, l;

k = (int)((float)missprob*0.01*(float)loopbound+0.5);
l = (loopbound-k);

66

for (i = 0; i < k; i++){
softflush(tmp);
j = tmp->d1;

}
for (i = 0; i < l; i++)

num = i;
}

A.4 Bench11.c: A Program for Validating the Timesliced
Mode

/*
Sramana Mitra
September 27, 1994
bench11.c: A synthetic benchmark program

to test uncached remote accesses.
*/

#include <primops.h>
#include <stdio.h>
#include <parallel.h>

int num = 9;
void proc1();
/* struct for dynamic allocation */
typedef struct dummy {

unsigned d1;
unsigned d2;
unsigned d3;
unsigned d4;
unsigned d5;

} DUMMY;
typedef DUMMY *DUMMY_PTR;

main(int argc, char *argv[])
{

int missprob, loopbound;
DUMMY_PTR temp;

67

missprob = atoi(argv[1]);
loopbound = atoi(argv[2]);

temp = (DUMMY *)shmalloc(sizeof(DUMMY));
temp->d1 = 1;
temp->d2 = 2;
temp->d3 = 3;
temp->d4 = 4;
temp->d5 = 5;
do_in_parallel(proc1, temp, missprob, loopbound);

}

void proc1(DUMMY_PTR tmp, int missprob, int loopbound)
{

int i, j;
int k, l;

k = (int)((float)missprob*0.01*(float)loopbound+0.5);
l = (loopbound-k);
for (i = 0; i < l; i++)

num = i;
for (i = 0; i < k; i++){

softflush(tmp);
j = tmp->d1;

}
for (i = 0; i < l; i++)

num = i;
for (i = 0; i < k; i++){

softflush(tmp);
j = tmp->d1;

}
}

68

Appendix B

Tables for Graphs

This chapter provides tables for graphs in chapters 2, 4 and 5 to aid readers who have a
black and white copy of the thesis.

Proc# Timeslice0 Timeslice1 Timeslice2

0 19958-107880 19958-107880 17801-18879

1 0-539 17801-18879 19958-107880

2 0-539 16722-17800 18880-19957

3 0-539 15643-16721 17801-18879

4 0-539 17801-18879 19958-107880

5 0-539 17801-18879 19958-107880

6 0-539 17801-18879 18880-19957

7 0-539 16722-17800 17801-18879

8 0-539 17801-18879 19958-107880

9 0-539 16722-17800 19958-107880

10 0-539 16722-17800 18880-19957

11 0-539 16722-17800 17801-18879

12 0-539 15643-16721 19958-107880

13 0-539 16722-17800 19958-107880

14 0-539 15643-16721 18880-19957

15 0-539 15643-16721 17801-18879

Table B.1: Water on 16 processors: Per processor distribution of remote shared data accesses.

69

Proc# # of packet headers

0 29733-191823

1 27815-29732

2 29733-191823

3 29733-191823

4 27815-29732

5 29733-191823

6 29733-191823

7 29733-191823

8 29733-191823

9 29733-191823

10 29733-191823

11 27815-29732

12 27815-29732

13 29733-191823

14 27815-29732

15 27815-29732

Table B.2: Water on 16 processors: Counts of packet headers passing through output queues.

Proc# 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops

0 2418-6731 6732-13070 6732-13070 6732-13070 2418-6731 1504-2417

1 6732-13070 2418-6731 1504-2417 0-65 0-65 0-65

2 6732-13070 2418-6731 2418-6731 197-1503 0-65 0-65

3 1504-2417 6732-13070 1504-2417 0-65 0-65 0-65

4 2418-6731 6732-13070 197-1503 2418-6731 197-1503 0-65

5 197-1503 1504-2417 6732-13070 197-1503 2418-6731 1504-2417

6 1504-2417 2418-6731 6732-13070 197-1503 0-65 0-65

7 197-1503 197-1503 1504-2417 6732-13070 1504-2417 0-65

8 2418-6731 6732-13070 2418-6731 1504-2417 0-65 0-65

9 2418-6731 2418-6731 6732-13070 0-65 0-65 0-65

10 1504-2417 1504-2417 6732-13070 1504-2417 0-65 0-65

11 1504-2417 2418-6731 1504-2417 6732-13070 0-65 0-65

12 2418-6731 2418-6731 1504-2417 6732-13070 0-65 0-65

13 197-1503 197-1503 1504-2417 2418-6731 6732-13070 0-65

14 197-1503 1504-2417 1504-2417 2418-6731 6732-13070 0-65

15 0-65 197-1503 1504-2417 1504-2417 2418-6731 6732-13070

Table B.3: Water on 16 processors: Histogram of distances of memory-to-cache input packets.

70

Proc# 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops

0 1874-9903 1874-9903 1874-9903 1874-9903 1874-9903 268-1873

1 1874-9903 268-1873 268-1873 268-1873 0-267 0-267

2 1874-9903 268-1873 268-1873 268-1873 268-1873 0-267

3 24892-53531 24892-53531 24892-53531 1874-9903 0-267 0-267

4 18469-24891 24892-53531 18469-24891 9904-18468 1874-9903 0-267

5 9904-18468 9904-18468 18469-24891 9904-18468 9904-18468 1874-9903

6 24892-53531 24892-53531 24892-53531 1874-9903 0-267 0-267

7 24892-53531 24892-53531 24892-53531 24892-53531 9904-18468 0-267

8 18469-24891 24892-53531 18469-24891 18469-24891 1874-9903 0-267

9 18469-24891 24892-53531 18469-24891 1874-9903 0-267 0-267

10 9904-18468 18469-24891 18469-24891 18469-24891 9904-18468 1874-9903

11 24892-53531 24892-53531 24892-53531 24892-53531 9904-18468 0-267

12 18469-24891 24892-53531 18469-24891 1874-9903 0-267 0-267

13 9904-18468 18469-24891 18469-24891 9904-18468 1874-9903 0-267

14 18469-24891 24892-53531 24892-53531 18469-24891 1874-9903 0-267

15 9904-18468 9904-18468 18469-24891 18469-24891 9904-18468 1874-9903

Table B.4: Orig Mp3d: Per processor distribution of remote distances travelled by read invalidation
packets.

Proc# 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops

0 1990-4564 1990-4564 4565-8310 1990-4564 1990-4564 118-1989

1 118-1989 118-1989 118-1989 118-1989 118-1989 0-117

2 1990-4564 118-1989 118-1989 118-1989 118-1989 0-117

3 11823-23410 11823-23410 11823-23410 1990-4564 0-117 0-117

4 8311-11822 11823-23410 8311-11822 4565-8310 1990-4564 0-117

5 1990-4564 4565-8310 8311-11822 4565-8310 4565-8310 1990-4564

6 8311-11822 11823-23410 11823-23410 1990-4564 0-117 0-117

7 11823-23410 11823-23410 11823-23410 11823-23410 4565-8310 0-117

8 8311-11822 11823-23410 8311-11822 8311-11822 1990-4564 0-117

9 8311-11822 11823-23410 8311-11822 1990-4564 0-117 0-117

10 4565-8310 8311-11822 11823-23410 8311-11822 4565-8310 1990-4564

11 11823-23410 11823-23410 11823-23410 11823-23410 4565-8310 0-117

12 8311-11822 11823-23410 8311-11822 1990-4564 0-117 0-117

13 4565-8310 8311-11822 8311-11822 4565-8310 1990-4564 0-117

14 8311-11822 8311-11822 11823-23410 8311-11822 1990-4564 0-117

15 4565-8310 4565-8310 8311-11822 8311-11822 4565-8310 4565-8310

Table B.5: Mp3d: Per processor distribution of remote distances travelled by read invalidation
packets.

71

Proc# 1 hop 2 hops 3 hops 4 hops 5 hops 6 hops

0 1285-2946 2947-4306 2947-4306 2947-4306 1285-2946 76-1284

1 76-1284 76-1284 76-1284 76-1284 76-1284 0-75

2 76-1284 76-1284 76-1284 76-1284 76-1284 0-75

3 6120-15111 6120-15111 6120-15111 1285-2946 0-75 0-75

4 4307-6119 4307-6119 4307-6119 2947-4306 1285-2946 0-75

5 76-1284 2947-4306 4307-6119 2947-4306 1285-2946 1285-2946

6 4307-6119 6120-15111 4307-6119 76-1284 0-75 0-75

7 6120-15111 6120-15111 6120-15111 6120-15111 2947-4306 0-75

8 4307-6119 6120-15111 6120-15111 4307-6119 1285-2946 0-75

9 4307-6119 6120-15111 4307-6119 1285-2946 0-75 0-75

10 1285-2946 4307-6119 6120-15111 4307-6119 1285-2946 1285-2946

11 6120-15111 6120-15111 6120-15111 6120-15111 2947-4306 0-75

12 4307-6119 6120-15111 6120-15111 1285-2946 0-75 0-75

13 1285-2946 4307-6119 2947-4306 2947-4306 1285-2946 0-75

14 2947-4306 4307-6119 4307-6119 4307-6119 1285-2946 0-75

15 2947-4306 4307-6119 6120-15111 4307-6119 2947-4306 2947-4306

Table B.6: MMp3d: Per processor distribution of remote distances travelled by read invalidation
packets.

Proc# Average remote access latencies

(in cycles)

0 59-66

1 53

2 54

3 54

4 56

5 55

6 54

7 58

8 56

9 54

10 57

11 59-66

12 58

13 56

14 56

15 55

Table B.7: Orig Mp3d: Average remote access latencies.

72

Proc# Average remote access latencies

(in cycles)

0 64-72

1 58-59

2 54

3 62-63

4 58-59

5 58-59

6 56

7 58-59

8 55

9 60-61

10 55

11 57

12 60-61

13 62-63

14 64-72

15 64-72

Table B.8: Mp3d: Average remote access latencies.

Proc# Average remote access latencies

(in cycles)

0 34-43

1 51

2 47

3 46

4 46

5 52-53

6 54-56

7 46

8 44

9 54-56

10 49

11 49

12 45

13 50

14 48

15 54-56

Table B.9: MMp3d: Average remote access latencies.

73

Proc# # of packet headers

(in cycles)

0 114123-160871

1 94873-114122

2 92123-94872

3 182872-265369

4 174622-177371

5 160872-169121

6 177372-182871

7 265370-274994

8 177372-182871

9 160872-169121

10 171872-174621

11 265370-274994

12 177372-182871

13 160872-169121

14 177372-182871

15 177372-182871

Table B.10: Orig Mp3d: Packet headers passing through output queue.

Proc# # of packet headers

(in cycles)

0 67345-74758

1 46339-67344

2 46339-67344

3 84645-119243

4 80938-82172

5 74759-78465

6 82173-84644

7 119244-123568

8 82173-84644

9 74759-78465

10 79702-80937

11 119244-123568

12 82173-84644

13 74759-78465

14 82173-84644

15 80938-82172

Table B.11: Mp3d: Packet headers passing through output queue.

74

Proc# # of packet headers

(in cycles)

0 56894-61923

1 27976-29232

2 29233-38033

3 47464-56893

4 38034-39291

5 39920-40548

6 40549-41805

7 61924-62866

8 42435-47463

9 40549-41805

10 41806-42434

11 61924-62866

12 39292-39919

13 38034-39291

14 39920-40548

15 40549-41805

Table B.12: MMp3d: Packet headers passing through output queue.

Proc# Timeslice0 Timeslice1 Timeslice2 Timeslice3 Timeslice4 Timeslice6

0 87-97 80-81 80-81 80-81 80-81 80-81

1 82-86 73 71 72 71 73

2 82-86 74-79 73 73 73 74-79

3 82-86 70 71 74-79 73 74-79

4 82-86 72 72 72 74-79 74-79

5 82-86 71 73 73 70 73

6 82-86 70 74-79 74-79 72 -

7 82-86 71 73 71 71 74-79

8 82-86 73 70 71 73 74-79

9 82-86 70 73 73 71 73

10 82-86 74-79 72 71 72 73

11 82-86 70 71 71 71 72

12 82-86 74-79 72 70 71 73

13 82-86 72 71 71 71 72

14 82-86 70 72 71 71 74-79

15 82-86 72 70 71 72 73

Table B.13: ZGRID: Data cache hit ratios.

75

Proc# Timeslice0 Timeslice1 Timeslice2 Timeslice3 Timeslice4 Timeslice6

0 93 92 92 92 92 94-97

1 94-97 93 93 93 93 94-97

2 94-97 94-97 94-97 94-97 94-97 94-97

3 94-97 94-97 94-97 94-97 94-97 94-97

4 94-97 94-97 94-97 94-97 94-97 94-97

5 94-97 94-97 94-97 94-97 94-97 94-97

6 94-97 94-97 94-97 94-97 94-97 94-97

7 94-97 94-97 94-97 94-97 94-97 94-97

8 94-97 94-97 94-97 94-97 94-97 94-97

9 94-97 94-97 94-97 94-97 94-97 94-97

10 94-97 94-97 94-97 94-97 94-97 94-97

11 94-97 94-97 94-97 94-97 94-97 94-97

12 94-97 94-97 94-97 94-97 94-97 94-97

13 94-97 94-97 94-97 94-97 94-97 94-97

14 94-97 94-97 94-97 94-97 94-97 94-97

15 94-97 93 93 93 93 94-97

Table B.14: MGRID: Data cache hit ratios.

Proc# Timeslice0 Timeslice1 Timeslice2 Timeslice3 Timeslice4 Timeslice6

0 98-99 98-99 98-99 98-99 98-99 98-99

1 98-99 98-99 98-99 98-99 98-99 98-99

2 98-99 98-99 98-99 98-99 98-99 98-99

3 98-99 98-99 98-99 98-99 98-99 98-99

4 98-99 98-99 98-99 98-99 98-99 98-99

5 98-99 98-99 98-99 98-99 98-99 98-99

6 98-99 98-99 98-99 98-99 98-99 98-99

7 98-99 98-99 98-99 98-99 98-99 98-99

8 98-99 98-99 98-99 98-99 98-99 98-99

9 98-99 98-99 98-99 98-99 98-99 98-99

10 98-99 98-99 98-99 98-99 98-99 98-99

11 98-99 98-99 98-99 98-99 98-99 98-99

12 98-99 98-99 98-99 98-99 98-99 98-99

13 98-99 98-99 98-99 98-99 98-99 98-99

14 98-99 98-99 98-99 98-99 98-99 98-99

15 98-99 98-99 98-99 98-99 98-99 98-99

Table B.15: CGRID: Data cache hit ratios.

76

Bibliography

[1] Anant Agarwal et. al. The MIT Alewife Machine: A Large-Scale Distributed-
Memory Multiprcoessor. Proceedings of Workshop on Scalable Shared Memory
Multiprocessors, 1991.

[2] Ziya Aral and Ilya Gertner. High-Level Debugging in Parasight. In Parallel and
distributed debugging. Proceedings of the ACM SIGPLAN/SIGACT workshop, May
5-6, 1988, Madison, Wisconsin, January 1989.

[3] Ricardo Bianchini. Alewife Systems Memo #43. Application Performance on the
Alewife Multiprocessor, September 1994.

[4] B. Bliss, M. C. Brunet and E. Gallopoulos. Automatic Parallel Program Instrumen-
tation with Applications in Performance and Error Analysis. University of Illinois
Technical Report No. CSRD-1025, June 1990.

[5] Eric A. Brewer and Chrysanthos N. Dellarocas. Proteus User Documentation.

[6] Helmar Burkhart and Roland Millen. Performance-Measurement Tools in a Multi-
processor Environment. In IEEE Transactions on Computers, Vol. 38, No. 5, May
1989.

[7] Jack Dongarra, Orlie Brewer, James Arthur Kohl and Samuel Fineberg. Tools to Aid
in the Design, Implementation, and Understanding of Matrix Algorithms for Parallel
Processors. In Journal for Parallel and Distributed Computing, 9, pp 185-202, 1990.

[8] Raymond R. Glenn and Daniel V. Pryor. Instrumentation for a Massively Parallel
MIMD Application. In Journal of Parallel and Distributed Computing, 12, pp 223-
236, 1991.

[9] Aaron J. Goldberg. Reducing Overhead in Counter-Based Execution Profiling. Stan-
ford Technical Report No. CSL-TR-91-495, October 1991.

[10] Aaron J. Goldberg. Multiprocessor Peformance Debugging and Memory Bottlenecks.
Stanford Technical Report No. CSL-TR-92-542, August 1992.

77

[11] Aaron J. Goldberg and John Hennessy. Mtool: An Integrated System for Peformance
Debugging Shared Memory Multiprocessor Applications. In IEEE Transactions on
Parallel and Distributed Systems, 4:1, pp 28-40, January 1993.

[12] S. Graham, P. Kessler and M. McKusick. Gprof: A call graph execution profiler. In
Proceedings of the ACM/SIGPLAN Symposium of Compiler Construction, pp 120-126,
1982.

[13] John Kubiatowicz, David Chaiken and Anant Agarwal. Closing the Window of Vulner-
ability in Multiphase Memory Transactions. In Proceedings of the Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS V), pp 274-284, October 1992.

[14] John Kubiatowicz. Alewife Systems Memo #19. Users Manual for the Alewife 1000
Controller, November 1991.

[15] John Kubiatowicz and Anant Agarwal. Anatomy of a Message in the Alewife Mul-
tiprocessor. In Proceedings of the International Supercomputing Conference (ISC)
1993, Tokyo, Japan, July 1993.

[16] A. Kwok and W. Abu-Sufah. Tcedar: A performance evaluation tool for cedar.
Technical Report CSRD 84, University of Illinois at Urbana-Champaign, 1984.

[17] Daniel Lenoski et. al. The Stanford Dash Multiprocessor. In IEEE Computer, pp
63-79, March 1992.

[18] Margaret Martonosi and Anoop Gupta. MemSpy: Analyzing Memory System Bot-
tlenecks in Programs. In Performance Evaluation Review, 20:1, pp 1-12, June 1992.

[19] Barton P. Miller et. al.. IPS-2: The Second Generation of a Parallel Program Mea-
surement System. In IEEE Transactions on Parallel and Distributed Systems, Vol. 1,
No. 2, April 1990.

[20] Zary Segall and Larry Rudolph. PIE: A Programming and Intrumentation Environment
for Parallel Processing. In IEEE Software, pp 22-37, November 1985.

[21] J. P. Singh, W. D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for
Shared-Memory. Computer Architecture News, 20(1):5–44, March 1992.

[22] SPARC Architecture Manual. 1988. SUN Microsystems, Mountain View, California.

[23] Stephen Walters. Computer-Aided Prototyping for ASIC-Based Systems. IEEE
Design and Test of Computers, 1991.

[24] Benson Wen. Foghorn: Parallel Performance Statistics on Alewife. Bachelor’s Thesis,
Massachusetts Institute of Technology, June 1993.

78

