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Abstract

Recent developments in the �eld of digital design and hardware veri�cation have

found great use for restricted forms of branching programs. In particular, oblivious

read-once branching programs (also called \OBDD's") are central to a very common

technique for verifying circuits. These programs are useful because they are easily

manipulated and compared for equivalence. However, their utility is limited because

they cannot compute in polynomial size several simple functions|most notably, integer

multiplication. This limitation has prompted the consideration of alternative models,

usually restricted classes of branching programs, in the hope of �nding one with greater

computational power but also easily manipulated and tested for equivalence.

Read-once (non-oblivious) branching programs can to some degree be manipulated

and tested for equivalence, but it has been an open question whether they can compute

integer multiplication in polynomial size. The main result of this thesis proves that

they cannot|multiplication requires size 2
(
p
n). This is the �rst lower bound for

multiplication on non-oblivious branching programs. By de�ning the appropriate kind

of problem reduction, which we call read-once reductions, we are able to show that our

result implies the same asymptotic lower bound for other arithmetic functions.

We also survey known results about the various alternative models, describing the

main techniques used for thinking about their computation and for proving lower

bounds. These techniques are illustrated with two proofs that have not appeared

in the literature. We summarize the known results by taking a structural approach of

comparing the complexity classes corresponding to the various models.

Keywords: branching programs, read-once, read-k-times, oblivious, OBDD, multipli-

cation, problem reduction, projection reduction.
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C h a p t e r 1

Introduction

Branching programs have recently been found very useful in the �eld of hardware

veri�cation. The central problem of veri�cation is to check whether a combinational

hardware circuit has been correctly designed. One approach commonly employed today

is to convert independently the circuit description and the function speci�cation to a

common intermediate representation and then test whether the two representations are

equivalent (e.g., [Br92, We94]). The use of restricted forms of branching programs for

the intermediate representation has made this approach feasible and very popular|

several software packages are available for implementing this very strategy [Kr94, Br92].

This application raises several issues of computational complexity, renewing interest

in the low-level complexity of branching programs. This thesis explores some of these

issues from a computational complexity-theoretic point of view.

1.1 The role of branching programs in hardware veri�cation

Most of the computational models considered as candidates for the intermediate rep-

resentation are restricted classes of branching programs. A branching program is a

directed acyclic graph with a distinguished root node and two sink nodes. The sink

nodes are labeled 0 and 1 and each non-sink node is labeled with an input variable xi,

i 2 [n], and has two outgoing edges, labeled 0 and 1. A branching program computes

9



10 Introduction

a Boolean function f : f0; 1gn ! f0; 1g in the natural manner: each assignment of

Boolean values to the variables xi de�nes a unique path through the graph from the

root to one of the sinks; the label of that sink de�nes the value of the function on

that input. The size of a branching program is its number of nodes. Since branching

programs are a non-uniform model of computation, asymptotic statements about size

refer to families of branching programs containing one program for each input size.

The circuit to be veri�ed is assumed to be an ordinary combinational single-output

circuit, built up from a standard basis of Boolean functions such as f^;_;:g. The

typical algorithm for constructing the intermediate representation from the circuit is

to work bottom-up through the circuit, from the inputs to the output, combining the

representations appropriately at each gate. Thus, the algorithm need only compute a

representation for f ^ g, f _ g, and :f , when given representations for f and g. In the

literature, these are called the \synthesis operations". It is easy to see that arbitrary

polynomial-size branching programs are closed under these operations.

This strategy for veri�cation has several shortcomings that are immediately ap-

parent. First, unrestricted polynomial-size branching programs compute exactly those

functions in non-uniform logspace. Therefore, if the intermediate representation is a

restricted form of branching program, we clearly cannot hope for a general algorithm

to compute a polynomial-size representation (polynomial in the size of the original cir-

cuit) unless L/poly = P/poly. This di�culty has largely been accepted as inherent and

not critical, since functions computed at level of hardware are not generally complex

and are in fact in L anyway. A second observation is that e�cient algorithms for the

individual synthesis operations do not imply that the resulting bottom-up algorithm for

computing a representation is e�cient: for example, if the output of each operation has

size that is the product of the input representations, the �nal representation will have

size exponential in the size of the original circuit. Despite this problem, researchers

have been content with the bottom-up algorithm as long as each synthesis operation

can be performed e�ciently.

Finally, there is the problem of testing whether the two branching programs, cor-

responding to the circuit and the speci�cation, are equivalent. It is easy to see that

this problem is co-NP-complete: Given a 3-CNF with variables fx1; : : : ; xng, we may
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to construct a branching program on the same variables which accepts exactly when

the formula is satis�ed. A polynomial-time algorithm for equivalence then clearly gives

a polynomial-time algorithm for 3-SAT by comparing this program with the trivial

branching program that always rejects; to say they are not equivalent is to say the

formula is satis�able.

1.2 Restricted branching programs

Because of the di�culty of comparing arbitrary branching programs for equivalence,

the intermediate representation is instead chosen to be a restricted class of branching

programs. These are oblivious read-once branching programs, or OBDD's (\ordered

binary decision diagrams").

De�nition 1 A branching program is read-once if on every path from the source to a

sink, each variable appears at most once as the label of a vertex.

De�nition 2 A branching program is oblivious if on every path from the source to a

sink, the variables appear in the same order.

Our de�nition of oblivious is slightly di�erent from the usual de�nition, which requires

the branching program to be leveled (for each node, all paths from the sink have the

same length) with each node at a given level labeled with the same variable. Our

de�nition does not require leveling; it is easy to see that any oblivious program may

be leveled at a cost in size of a factor of n, the number of variables. Since we will

primarily be concerned with polynomial versus exponential growth, we will or will not

assume leveled programs as convenient.

Thus, OBDD's may be thought of as non-uniform acyclic �nite-state automata. No-

tice that the read-once property implies that an OBDD is satis�able exactly when there

exists a path from the source to the accepting sink|since no variable appears more

than once on any path, there is a consistent assignment to the variables corresponding

to that path. An OBDD for :f is trivially constructed by exchanging the accepting

and rejecting sinks. Given two OBDD's for f and g that obey the same ordering of the
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variables, an OBDD for f ^ g or f _ g is easily constructed using the standard product

constructions for �nite automata. (This last statement is not true if the two OBDD's

do not obey the same ordering|see Section 2.2.1.) It follows that two OBDD's are

easily tested for equivalence by testing their exclusive-or for satis�ability.

Because of the tractability of these operations on OBDD's, they have been the in-

termediate representation of choice. However, OBDD's are clearly a very weak model

of computation, and the question arises whether they are su�ciently powerful to meet

the needs at hand. The answer is yes, for the most part|OBDD's can compute in

polynomial size such functions as integer addition, symmetric Boolean functions, and

many of the benchmark functions used by the veri�cation community [BF85]|but with

a very important exception: exponential size is required to compute integer multiplica-

tion [Br91]. This is an serious setback to the viability of OBDD's, since the hardware

to be tested typically contains circuits that perform multiplication. Today, the largest

multipliers that can be checked using this method have 12-bit inputs; ideally, circuit

designers would like to check multipliers of 32 or even 64 bits.

Thus, despite the success of this approach, there has also been great e�ort expended

to �nd another model that is likewise manipulated, but with greater computational

power [SDG94, SW95, e.g.]. Most of these models|k-OBDD's, k-IBDD's, nondeter-

ministic OBDD's|have proven too weak to compute multiplication in polynomial size

(see Chapter 2). A common feature of these models is that they are all oblivious

branching programs. It is therefore natural to consider non-oblivious programs, the

simplest of these being read-once programs.

Unfortunately, read-once programs do not enjoy quite the same degree of manip-

ulability as OBDD's. Determining whether a read-once program is satis�able is as

simple as for an OBDD, since the read-once property implies that the program is sat-

is�able exactly when there is a path from the source to the accepting sink. Also,

testing equivalence is reasonably tractable: although it is not known how to do so in

deterministic polynomial time, there is a randomized polynomial-time algorithm with

one-sided error due to Blum, Chandra, and Wegman [BCW80]. The synthesis opera-

tions, however, are provably not tractable: there exist functions f and g that each have

polynomial-size read-once programs but whose conjunction f ^ g requires exponential-
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size read-once programs. Despite their relative recalcitrance, read-once programs have

been considered by some researchers for possible use in hardware veri�cation [GM94].

Until now, however, very little was known about the complexity of multiplication with

any non-oblivious programs.

In this thesis, we prove that multiplication requires (non-oblivious) read-once branch-

ing programs of size 2
(
p
n). This is the �rst superpolynomial lower bound for multi-

plication on non-oblivious branching programs. This result demonstrates that relaxing

the ordering restriction of OBDD's is insu�cient to gain the desired computational

power, and thus further strengthening of the model is needed. By de�ning the ap-

propriate kind of problem reduction, which we call read-once reductions, we are able

to show that our result implies the same asymptotic lower bound for other arithmetic

functions.

Chapter 2 considers in some detail the other models, all essentially generalizations

of OBDD's. In addition to summarizing the lower bounds are known for functions in the

various models, we compare the classes of functions that are computable in polynomial

size by the models, and also describe the techniques available for proving lower bounds

in the di�erent models. Included are two simple proofs that have not appeared in

the literature. Chapter 3 gives the lower bound for multiplication and the problem

reductions; Chapter 4 concludes with statements of the interesting open problems.
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C h a p t e r 2

Related models

In the search for alternatives to OBDD's, many models have been considered. In

addition to their relevance for hardware veri�cation, they are interesting also for the

questions of structural complexity that they raise.

This chapter begins by summarizing the various extensions to OBDD's and read-

once programs, including adding nondeterminism and allowing variables to be read k

times. These di�erent models are compared in two respects: (1) the ease with which

such programs are manipulated, and (2) their computational power.

Section 2.3 summarizes the known lower bounds. We then take a structural view of

the relationships between the classes of functions computable in polynomial size for the

various models. We will see that the two restrictions obliviousness and restricted reading

are orthogonal to each other: With respect to polynomial size, there are functions

that can be computed with read-once programs but cannot be computed by oblivious

read-k-times programs for any constant k; yet at the same time, there are functions

computable by oblivious read-k-times programs that cannot be computed by (non-

oblivious) read-once programs. We will also consider the hierarchies with respect to k

in the various models.

Section 2.5 brie
y outlines the primary techniques for proving lower bounds, in-

cluding two proofs that have not appeared in the literature. In Section 2.6 we discuss

15
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the problem of integer multiplication and describe the known lower bounds. Finally,

in Section 2.7 we mention two related issues.

2.1 De�nitions

We begin with the de�nitions of the various extensions to the basic models. Recall that

in a read-once branching program, each variable appears at most once on every path

from the source to a sink; an OBDD is an oblivious read-once branching program|each

path through the program inspects the variables in the same order, each at most once.

Two recently proposed models, which we shall not consider here, are \graph-driven

BDD's" [SW95] and \binary moment diagrams" [BC94]. The latter are not branching

programs, and do not compute a function, but they do allow polynomial-size represen-

tation of multiplication. Also, in [S95] lower bounds are proved on branching programs

in which for each path, the number of variables appearing more than once is bounded

by k. In [MW95], lower bounds are proved for nondeterministic programs in which

each path obeys a bound on the number of alternations between sets of variables.

2.1.1 Reading each variable k times

There are essentially three models of branching programs in which each variable may

be read multiple times:

1. k-OBDD's (also known as k-BDD's [BSSW93]). On each path the variables appear

at most k times each in an order that is the same permutation repeated k times.

2. k-IBDD's. On each path the variables appear at most k times each in an order

that is the concatenation of k (possibly di�erent) permutations.

3. Read-k-times programs. On each path the variables appear at most k times each.

We remark that our de�nition of read-k-times programs prevents a variable from ap-

pearing more than k times on any path from the source to either sink. These are

sometimes referred to as syntactic read-k-times programs, in contrast to semantic
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read-k-times programs in which the limited reading need hold only for those paths

which some input may follow|un-traversable paths need not obey the read-k-times

restriction. (The two de�ntions are equivalent for k = 1.) While the \semantic" def-

inition is perhaps more natural from the point of view of algorithms (upper bounds),

the \syntactic" de�nition is more combinatorial and more amenable to proving lower

bounds. No lower bounds (for explicit functions) are known for semantic read-k-times

programs.

2.1.2 Nondeterminism

The simplest and most common way to introduce nondeterminism is to permit some

nodes to be unlabeled and allow either of the two outgoing edges to be traversed on

any input. Such a program is said to accept if the input may follow some path from

the root to an accepting sink|that is, there exists a path in the subgraph induced

by removing edges that are not traversable. It is not surprising that polynomial-size

nondeterministic branching programs accept exactly those languages in (nonuniform)

NL, nondeterministic logspace.

We may think of the unlabeled nodes of a nondeterministic branching program as

being OR nodes. A standard generalization introduces nodes corresponding to other

binary functions. Allowing AND nodes, for example, naturally enables polynomial-size

programs to accept languages in co-NL. As NL = co-NL, it happens that allowing

AND nodes results in the same power as OR nodes for polynomial-size programs1.

Allowing both AND nodes and OR nodes enables polynomial-size programs to recog-

nize alternating logspace, which is equal to P. By allowing parity nodes, polynomial

programs recognize �L, a logspace analogue to �P [KW93]. Meinel [Me89] explores

the range of all possibilities and concludes that allowing nodes of other binary Boolean

functions does not give classes di�erent from L, NL, P, or �L.

1It is easy to see that the proof of [Im88] yields the same result in the non-uniform case: Given

a polynomial-size branching program with OR nodes, that proof constructs another polynomial-size

branching program with OR nodes that accepts exactly when the original program rejects. This OR-

program for f is easily converted to an AND-program for f by replacing the OR nodes with AND

nodes and switching the accepting and rejecting nodes.
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Note that we have not introduced nondeterminism as we would with circuits, where

we would allow nondeterministic variables as inputs. De�ning nondeterminism in this

manner immediately gives (nonuniform) NP for polynomial-size programs, since NP is

characterized by polynomial-size nondeterministic formulas.

We mention that Borodin, Razborov and Smolensky [BRS93] use a di�erent de�-

nition of nondeterminism: Nodes are unlabeled and each edge is either unlabeled or

labeled with a variable and a value. Unlabeled edges are considered \free" edges which

may be traversed by any input; labeled edges may of course be traversed only by inputs

consistent with the label. The measure of size is number of labeled edges, rather than

number of nodes. The di�erence in models is not of consequence for our purposes,

as it is easy to see that the two size measures are within a constant factor of each

other. Clearly, our nondeterministic branching programs are essentially a special case

of theirs, and the number of edges in one of our programs is at most twice the number

of nodes. Conversely, a program in their form is easily converted to one of our form in

which the number of nodes is at most the number of edges in the original program.

There is another model of nondeterministic branching programs, called recti�er-

and-switching networks, which is preferred by Razborov because of the combinatorial

characterization its size measure a�ords (see [Ra91, Ra90]). A recti�er-and-switching

network is essentially a nondeterministic branching program as [BRS93] de�nes them,

except that the (directed) graph may contain cycles. There is no \rejecting sink" and

the program accepts exactly when there exists at least one path from the source to

the (accepting) sink. The measure of size is the number of labeled edges. Again,

our nondeterministic programs are essentially a special case of recti�er-and-switching

networks. So for a given function, our programs may be larger, but not by more than

a quadratic factor, as the following transformation demonstrates. To make a network

of E edges acyclic, place E copies of it in sequence redirecting original \back edges"

(those edges which lead to a node that is not further from the root) to lead instead

to the copy of the destination node in the subsequent copy of the graph. At most E

copies are needed since any path contains at most E edges and an extra copy of the

graph is needed only for each back edge in the path. Thus at a cost of squaring the

size, we obtain a nondeterministic program in the sense of [BRS93]. It is not known if

this measure is within a constant factor of the other two [Ra91, Open Question #1].
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2.2 Manipulating branching programs

As explained in Chapter 1, OBDD's have the useful property that they are easily

manipulated: Given OBDD's for f and g that obey the same ordering of the variables,

it is easy to construct an OBDD for f ^ g or f _ g. Since the satis�ability of an OBDD

is equivalent to the reachability of the accepting sink, OBDD's are also easily tested for

satis�ability and thus equivalence. We remark that although the synthesis operations

of constructing OBDD's for f^g and f_g are intractable if the two givenOBDD's do not
obey the same ordering (as shown below), this condition is not necessary for testing

equivalence. There is a polynomial-time algorithm due to Fortune, Hopcroft, and

Schmidt [FHS78] for testing whether an OBDD is equivalent to a read-once program,

which can be used in this case.

2.2.1 Read-once programs

Read-once programs do not enjoy quite the same degree of manipulability as their

oblivious version, OBDD's. The read-once property implies that the program is satis-

�able exactly when there is a path from the source to the accepting sink. However,

the synthesis operations are provably not tractable: there exist functions f and g that

each have polynomial-size read-once programs but whose conjunction f ^ g requires

exponential-size read-once programs. Such an example is the function �-MATRIX of

determining whether an n � n (0; 1)-matrix is a permutation matrix|or equivalently,

whether a bipartite graph on nodes V �W , where jV j = jW j = n, is exactly a per-

fect matching (and no further edges). �-MATRIX requires exponential-size read-once

programs (see Section 2.3.3). On the other hand, it is easy to test that the each row

has exactly one 1 or that each column has exactly one 1|in fact, these two func-

tions are easily computed by OBDD's (with di�erent orderings of the variables)|and

�-MATRIX is true exactly when both of these functions are true.

It is not known how to determine the equivalence of two read-once programs in

polynomial time. Blum, Chandra, and Wegman [BCW80] give a co-RP algorithm

(that is, it may say \equivalent" when in fact the programs are not, but never vice

versa) which relies on randomly assigning to the literals values from a �nite �eld and

then computing the value of the DNF polynomial of the function.
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2.2.2 Nondeterministic read-once programs

Obviously, OR nodes trivialize the synthesis operation of constructing a program for f_
g. They do not help, however, with constructing f^g: the lower bound for �-MATRIX

is actually proved for read-once programs with OR nodes, so a nondeterministic read-

once program for f ^ g may require size exponential in the sizes of the programs for f

and g. This result may be contrasted with NL = co-NL, which says that polynomial-

size branching programs with OR nodes are equivalent to polynomial-size branching

programs with AND nodes. We now see that if we restrict the programs to be read-

once, OR nodes and AND nodes give di�erent computational power [KMW91]. The

same phenomenon occurs for linear-length oblivious programs [KMW92].

Determining the satis�ability of a program with AND nodes is NP-complete by

the example in Section 2.2.4. The case of OR nodes is trivially as least as hard as

determining the satis�ability of a deterministic read-once program, which is not known

to be in P. In the case of PARITY nodes, the algorithm of [BCW80] works as long

as the �eld used has characteristic 2 [SDG94]. In [SDG94], simple but very restrictive

conditions on the use of AND and OR gates are given so that the correctness of the

algorithm of [BCW80] is retained.

2.2.3 k-OBDD's

By restricting the order to be the same permutation repeated k times, we retain the

property that two programs with obeying the same ordering are easily combined|the

usual product construction works as before for OBDD's.

k-OBDD's are also testable for satis�ability though with a little more e�ort. Regard

the program as k separate segments corresponding to the k repetitions of the permu-

tation in which the variables are read. If the size and hence the width is polynomial

in n, then there are a polynomial number of nodes at the top of each segment. The

portion of a segment between a particular top node and a \bottom" node (at the top of

the subsequent segment) may be viewed as an OBDD. For an input to pass through a

given sequence of k \top nodes" it must satisfy the conjunction of the k corresponding

OBDD's (with source and accept nodes de�ned appropriately). To test whether these
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k OBDD's are simultaneously satis�able, we may construct an equivalent OBDD using

the synthesis operation for OBDD's (since these k OBDD's obey the same ordering) and

then check it for satis�ability. There are (poly)k = poly sequences of \top nodes" that

an input may follow and the k-OBDD is satis�able if one of these paths is satis�able.

Thus, to determine whether the k-OBDD is satis�able, we sequentially check whether

any of these sequences is traversable.

Other operations on k-OBDD's are considered in detail in [BSSW93].

2.2.4 k-IBDD's and read-k-times programs

Unlike for k-OBDD's, testing the satis�ability of even 2-IBDD's, and hence read-2-times

programs, is NP-complete. The reduction, from SAT, places in sequence two OBDD's,

one that checks the satis�ability of the formula with each variable uniquely renamed,

and another that checks whether the corresponding variables have the same value.

Since it includes satis�ability as a special case, testing the equivalence of two k-IBDD's

is also hard.

Since a 1-IBDD is simply an OBDD, the example �-MATRIX implies that the

synthesis operations on k-IBDD's are intractable even for k = 1 if the constructed

program must also be a k-IBDD. Naturally, the synthesis operations on a pair of

k-IBDD's are easy if we allow the constructed program to be a 2k-IBDD. The same

statements are true for read-k-times programs.

2.3 Previous lower bounds

The restriction of limited reading is severe enough that in contrast to the case of

arbitrary branching programs, many exponential lower bounds have been proved for

explicit functions, some of the functions quite simple.

2.3.1 For oblivious programs

Exponential lower bounds for the size of OBDD's are known for many functions, in

particular the functions HWB (\Hidden-Weighted-Bit"), ACH (\Achilles-Heel"), and
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integer multiplication,MULT, (all de�ned later), for which lower bounds were proved

speci�cally for OBDD's. Krause [Kr91] proves lower bounds for other functions. We

will have more to say about these lower bounds in Sections 2.4.2, 2.5, and 2.6. Of

course, all other lower bounds mentioned below for stronger models imply a fortiori

equally strong lower bounds for OBDD's.

Also, in a very di�erent vein, Alon and Maass [AM88] prove lower bounds for ar-

bitrary oblivious programs of linear length, which do not obey any restriction on the

number of times a variable is read. Their lower bound is discussed in Section 2.5.3.

In similar spirit, Krause and Waack [KW91] show that any oblivious program of lin-

ear length for the problem of directed s-t connectivity requires exponential size; in

[KMW92], similar lower bounds are proved for such programs with nondeterminism

added.

Using a lemma from [AM88], and the communication complexity arguments out-

lined in Section 2.5.1, Gergov [Ge94] proves that computing MULT requires size 2
(n)

for arbitrary oblivious programs of linear length, even with nondeterministic AND,

OR, or PARITY nodes.

2.3.2 For read-once programs

There has also been great success in proving lower bounds on the size of read-once

programs. Many of the functions that require exponential size are very simple; some

are easily computed with mere read-twice programs.

Masek [Ma76] was the �rst to consider read-once programs, proving a lower bound

of 
(m2) on the size of any program determining whether
Pn

i=1 xi = m. Zak [Za84] and

later Wegener [We88, We87] proved lower bounds of 2
(n) for the function n
2
-CLIQUE

of determining whether a graph on n nodes contains a clique of size n=2, and also for the

function n
2
-CLIQUE-ONLY, of determining whether a graph on n nodes contains an

n=2-clique and no further edges. (For comparison, there is a simple read-twice program

for n
2
-CLIQUE-ONLY of size O(n3).) Dunne [Du85] proved a lower bound of 2
(n) for

the problems of determining whether a graph on n nodes contains a hamiltonian cycle

and determining whether it contains a perfect matching. Simon and Szegedy [SS93],

in order to demonstrate their lower bound technique, proved a lower bound of 2
(n)
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for the problem of determining whether a graph on n nodes is (n=2)-regular. Note

that none of these bounds is fully exponential, since the number of input variables,

one for each edge, is
�
n

2

�
. Babai, Hajnal, Szemeredi and Turan [BHST87] proved an

asymptotically optimal lower bound of 2
(n
2) for computing the parity of the number

of triangles in a graph on n nodes; Simon and Szegedy [SS93] simplify and re�ne their

analysis, improving the constant in the exponent.

2.3.3 For nondeterministic programs, read-once and read-k-times

Exponential lower bounds for explicit functions have also been proved for nondetermin-

istic read-once branching programs. Krause, Meinel, and Waack [KMW91] (see also

[Ju89]) give a lower bound of n!=
�
n
2
!
�2

= 2
(n) for the function �-MATRIX. (It was

known earlier that this function required exponential-size deterministic read-once pro-

grams; see [Kr91, p. 10] and [Ju86].) Also, Borodin, Razborov and Smolensky [BRS93]

prove a lower bound of 2
(n) for the functions n
2
-CLIQUE and n

2
-CLIQUE-ONLY.

Note that the complement of n
2
-CLIQUE-ONLY can be computed by nondeterministic

read-once programs of polynomial size.

Okolnishnikova [Ok91] proves that computing the characteristic function of the

Bose-Chaudhuri codes requires deterministic read-k-times programs of size exponential

in 
(
p
n=kk). Borodin et. al. [BRS93] exhibit for any k, a function that requires

nondeterministic read-k-times programs of size exponential in 
(n=k4k). Jukna [Ju92]

extends the results of [BRS93] and [Ok91] to show that the function from [Ok91]

requires nondeterministic read-k-times programs of size exponential in 
(
p
n=k2k) even

though its complement can be computed by nondeterministic read-once programs of

polynomial size.

Also, in [MW95], lower bounds are proved for nondeterministic programs in which

each path obeys a bound on the number of alternations between sets of variables.

2.4 Comparing the models: classes and structural results

In this section, we will compare the classes of functions that are computable by

polynomial-size programs of the various types. We will use sans-serif font to denote the
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class of functions computable in polynomial size by the named model. For instance, we

will use OBDD to denote the class of functions computable by OBDD's of polynomial

size and READ-k for the functions computable by read-k-times programs of polynomial

size. We will also need a notation for the union over all constants k:

De�nition 3

C-OBDD 


[
k2N

k-OBDD

C-IBDD 


[
k2N

k-IBDD

READ-C 


[
k2N

READ-k

(where C is for \constant").

We will use OBLIV-LINEAR to denote the class of functions computable with oblivious

programs of linear length and polynomial size. Note that

k-OBDD � C-OBDD � C-IBDD � OBLIV-LINEAR:

The results presented in this section are summarized in Figure 2.1, which gives the

inclusion relations of these various classes.

2.4.1 Hierarchies in k

It is known that the hierarchy over k of functions computable by k-OBDD's of poly-

nomial size is strict: k-OBDD ( (k + 1)-OBDD [BSSW95]. For the case k = 1, we

may refer to the function HWB, described below, which is in 2-OBDD but not OBDD.

For k-IBDD's the hierarchy is also strict: k-IBDD ( (k + 1)-IBDD [BSSW95]. These

lower bounds are based on the well-known \rounds hierarchy" for communication com-

plexity exhibited by the \k-pointer-chasing" function, k-PTR, on bipartite graphs

[PS82, DGS84, Mc86, HR88, NW91] (in particular the result of [NW91]).

It is not known whether the corresponding hierarchy for read-k-times programs is

strict, except for the case k = 1, where we have seen that �-MATRIX 62 READ-1
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but �-MATRIX 2 2-IBDD � READ-2. Simon and Szegedy [SS93] conjecture that

the problem of testing the regularity of hypergraphs, which (for the case of ordinary

graphs) they showed separates READ-1 from READ-2, will separate the levels of this

hierarchy. We reconsider this question in Chapter 4.

2.4.2 Comparing the classes across models

OBDD ( READ-1; OBDD ( 2-OBDD

It can be shown that the inclusion OBDD � READ-1 is proper|that is, the ordering

restriction does in fact limit the computational power of read-once programs. Demon-

strating this separation is the function HWB(x) (\Hidden-Weighted-Bit"), which re-

turns xi if there are i ones in x and 0 otherwise. HWB is computable in READ-1 by

a clever algorithm that works its way in from the outermost bits of x; it is also easily

computed in 2-OBDD. A standard lower bound argument shows that HWB 62 OBDD

([Br91], see Section 2.5.1).

Also, it is shown in [BHR95] (see also [BSSW93]) that ISA 62 OBDD, where

ISA(x; y) : f0; 1gn�f0; 1glgn ! f0; 1g is the \Indirect-Storage-Access" function which

returns xi, where i is the integer represented by the y'th block of lg n bits of x if

0 � y < n= lg n, and returns 0 if n= lg n � y < n. It is easy to see that ISA 2 READ-1

and ISA 2 2-OBDD.

k-OBDD 6� READ-1 for k > 1.

Furthermore, the classes READ-1 and k-OBDD are incomparable (for any constant

k > 1); their models may be thought of as orthogonal restrictions of read-k-times

programs. 2-OBDD is separated from READ-1 by the function MHWB (\Multiple-

Hidden-Weighted-Bit"), de�ned on 3 n-bit vectors x, y, and z as xjyj+jzj�yjxj+jzj�zjxj+jyj
where jxj is the hamming weight of x and the sums are computed modulo n. MHWB

has a natural read-twice algorithm where the variables may be read in order each time,

so MHWB 2 2-OBDD. In [BHR95], it is shown that MHWB 62 READ-1. Krause

[Kr91, Remark 5.3] gives a di�erent function which separates 2-OBDD from READ-1.
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Figure 2.1: The inclusion relations among the classes. \C�!D" means class C is con-

tained in class D; inclusions that can be inferred by transitivity are not shown. Arrows

labeled with problems denote proper inclusions, where the labeling problem separates the

two classes. (Problems in parentheses denote separations that can be inferred from others.)

The separations denoted with dotted lines show that further inclusions do not hold.
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This result is in a sense best possible since 2-OBDD � READ-2. In the other

direction, we have

READ-1 6� C-OBDD.

In [BSSW93], an exponential lower bound is proved for the size of k-OBDD's for the

function ACH (\Achilles-Heel"), de�ned on 2n + lgn Boolean variables as

ACH(x0; : : : ; xn�1; y0; : : : ; yn�1; z1; : : : ; zlgn) =

8>><
>>:

_
1�j�n

(xj ^ yj) if z = 0

^
1�j�n

(xj _ yj+z) if z 6= 0

where z is the integer represented in binary by z1 : : : zlgn and the sum j+z is computed

modulo n. ACH is easily seen to be in READ-1, but a standard lower bound argument

shows ACH is not in k-OBDD for any constant k [AGD91, BSSW93].

Krause [Kr91, Remark 5.4] gives a di�erent function which separates C-OBDD from

READ-1.

The separation READ-1 6� C-OBDD is subsumed by the following result:

READ-1 6� OBLIV-LINEAR.

This very strong separation is shown using the powerful technique of Alon and Maass

[AM88]. They exhibit a function SEQ of 4n bits th at is easily in READ-1, but cannot

be computed by any oblivious program of length O(n) (see Section 2.5.3). This result

exhibits most strongly how severe a computational restriction obliviousness is.

This result is also best possible since OBLIV-LINEAR is the largest of our classes

not containing READ-1.

2-IBDD 6� C-OBDD.

Clearly, k-OBDD � k-IBDD for each k; conversely, however, 2-IBDD 6� C-OBDD.

Again, the separating function is �-MATRIX: �-MATRIX 2 2-IBDD easily, but

�-MATRIX 62 C-OBDD. This lower bound is claimed in [Kr91, Remark 5.5], but
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to the best of our knowledge no proof has appeared, so we give one in Section 2.5.1

(Theorem 1).

This result indicates it really is a computational restriction to restrict the order to

be the same permutation repeated k times rather than k di�erent permutations.

Finally, we mention that some functions that are provably outside these classes are

easily contained in some of their nondeterministic counterparts. HWB, for example,

while not in OBDD, is easily computed by a nondeterministic OBDD that initially

branches into n di�erent deterministic OBDD's, all with a common ordering.

2.5 Lower bound techniques

In this section, we describe the techniques that have been used to prove lower bounds

in the various oblivious models: OBDD's, both deterministic and nondeterministic,

k-OBDD's and k-IBDD's, and arbitrary oblivious programs of linear length. For com-

pleteness as well as for demonstration, we supply a proof of Theorem 1, announced

in [Kr91] without proof, and also prove Theorem 2, extending in a simple way the

result of [BSSW93]. We compare these methods with lower bounds for non-oblivious

programs, but defer a detailed description of the latter until the presentation of our

own lower bound in Chapter 3. The technique of [BRS93] for proving lower bound

for read-k-times programs will bemention only brie
y in Chapter 4, when we outline

approaches to some open problems.

2.5.1 For OBDD's, k-OBDD's, and k-IBDD's

Lower bounds for OBDD's follow a simple strategy: Show that for any Y � X of some

�xed size (say m = m(n)), there are many (say 2
(n)) subfunctions on Y . If the �rst

n�m variables read by an OBDD are Y , clearly any two assignments to Y that induce

di�erent subfunctions on Y must lead to di�erent nodes. Since this lower bound holds

for any set Y of size m, 2
(n) is a lower bound on the number of nodes for any OBDD.

Most lower bounds for OBDD's show explicitly that there are many subfunctions by

exhibiting for any Y of the stated size an exponential number of settings to Y such

that for any two, there is a setting to Y on which the respective subfunctions di�er.
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This argument may be nicely interpreted in terms of communication complexity:

one party gets the values of the bits in Y and the other party the bits in Y . The second

party must compute the value of the function based on a single message sent by the

�rst party. An OBDD gives a communication protocol where Y is the �rst m variables

in its ordering. If the program has w nodes at the level immediately following the nodes

of Y , then the message has lgw bits. Thus, if the one-way communication complexity

is linear for every Y of size m, then the function requires OBDD's of exponential

size. Bryant [Br91] uses a simple argument of this form to prove that HWB requires

exponential-size OBDD's.

Commonly, it is proved that in fact the unlimited-round, two-way communication

complexity of the function is linear for any Y of size m. This argument is sometimes

made in terms of what is called a \fooling set" for the function f with respect to Y .

For Y � X, and x; x0 2 f0; 1gn, let x
Y
denote the value of x on the variables in Y ,

and let x
Y
x0
Y
denote the n-bit input string equal to x on the variables in Y and equal

to x0 on the variables in Y . A fooling set F � f0; 1gn for f with respect to Y has

the property that for all x 6= x0 2 F , f(x) = f(x0) = 1 and either f(x
Y
x0
Y
) = 0 or

f(x0
Y
x
Y
) = 0. Thus, if an OBDD obeys an ordering in which the variables in Y are

read �rst, the setting x
Y
cannot lead to the same node at level m as the setting x0

Y

since either f(x
Y
x
Y
) 6= f(x

Y
x0
Y
) or f(x0

Y
x0
Y
) = 1 6= f(x0

Y
x
Y
). If for every Y of size

m there is a fooling set of exponential size, then the function requires exponential-

size OBDD's. Furthermore, the existence of a fooling set F for Y implies that the

(unrestricted) communication complexity with respect to the partition Y _[ Y is lg jF j.
This is seen by inspecting the associated matrix Mij where i (resp., j) ranges over

all values of x
Y
for x 2 F (resp., of x

Y
) and Mx

Y
x0
Y

= f(x
Y
x0
Y
). Note that the

de�nition of F implies that x
Y
6= x0

Y
and x

Y
6= x0

Y
for x 6= x0, so M is a square matrix

of dimension jF j. M has 1's on its diagonal because f(x
Y
x
Y
) = 1, and since either

Mij = 0 or Mji = 0, no two 1's on the diagonal can appear in the same all-1's minor.

Since a communication protocol of b bits partitions the 1's of the matrix into 2b all-1's

minors, the communication complexity is at least lg jF j.
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For k-OBDD's

If, for any set Y of size m, there exists a fooling set of size 2
(n), then it is also easy

to see that the function requires k-OBDD's of size 2
(n)=2k [Kr91]. A k-OBDD gives a

communication protocol of 2k rounds; the total communication is 2k lg(width), which

must be at least 
(n), giving the desired bound on the width and hence the size.

For example, we give a simple proof that �-MATRIX 62 k-OBDD for any constant k.

Theorem 1 �-MATRIX 62 C-OBDD

Proof: We will show that for any partition of the n2 variables into two sets X and X

of equal size, 2
(n) is a lower bound on the rank of the matrix of the communication

complexity game where player I gets X and player II gets X .

First notice that for certain partitions, the proof is easy. For example, consider the

partition where player I gets the variables in rows 1; : : : ; n=2 and player II gets the

variables in rows n=2+1; : : : ; n. We may even restrict our attention to only those inputs

where each row has exactly one 1 and each player gets exactly n=2 1's. The inputs to

the two players then correspond merely to subsets of the columns; the players accept if

the subsets are disjoint and reject otherwise. It is easy to see that this problem requires

lg
�

n

n=2

�
bits of communication, since the

�
n

n=2

�
-by-

�
n

n=2

�
matrix of the communication

game is diagonal.

Our proof will follow the spirit of this strategy for arbitrary partitions. Let ri be

the number of X-variables in row i. Order the rows so that r1 � r2 � � � � � rn. We

have jXj =
P

i ri = n2=2. Let rows n=2 + 1; : : : ; n be the \top half" of the matrix.

First consider the case that the top half contains at least 3=4 of the X-variables:Pn

i=n=2+1 ri � 3
4
n2

2
. In this case, at least 2=3 of the columns have at least n=8 X-

variables in their top halves: otherwise, the number of X variables in the top half is

less than

2n

3

n

2
+
n

3

n

8
=

3n2

8
;

a contradiction. Since the top half contains exactly half of all the variables, the \bottom

half" (rows 1; : : : ; n=2) has at least 3=4 of the variables in X. It follows that at least
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2=3 of the columns have at least n=8 X -variables in their bottom halves. Therefore

at least n=3 columns contain at least n=8 X-variables in the top half and at least n=8

X-variables in the bottom half. Let C be any subset of n=4 of these columns.

For any subset C 0 of half the columns of C, there is a setting to X in which exactly

one X-variable in the top half of each column of C 0 is 1 and each such 1 appears in

a di�erent row. This is because jC 0j = n=8 and there are at least n=8 X-variables in

the top half of each column of C. Let us restrict attention to particular settings to

the variables in C. On X, these settings shall be as described above (for some C 0) in

the top half, and shall be 0 in the bottom half. On X, these settings shall be 0 in the

top half, and in the bottom half shall contain 1's in n=8 di�erent rows and di�erent

columns C 00.

If these two subsets C 0 and C 00 of columns are complementary (C 0 [ C 00 = C),

then there is a setting to the remaining variables for which the input is a permutation

matrix, making the function 1. If these two subsets of columns are not complementary

(C 0 [ C 00 ( C), some column in C contains both a 1 in its top half and a 1 in its

bottom half, so that for all settings to the remaining variables, the function is 0. We

partition these settings to X (I's inputs) into
�
n=4
n=8

�
blocks, according to which subset

of C contains the 1's in X. Similarly, we partition the settings to X (II's inputs).

Thus the communication complexity matrix associated with these inputs is comprised

of
�
n=4
n=8

�2
minors, and only the minors on the diagonal contain 1's. This matrix clearly

has rank at least
�
n=4
n=8

�
= 2
(n).

Now consider the case that
Pn

i=n=2 ri <
3
4
n2

2
. In this case, the bottom half has at

least 1
4
n2

2
X-variables, implying that

rn=2 � n2=8

n=2
= n=4:

Since ri � rn=2 for i � n=2, it follows that there are at least 4n=10 rows in the top half

with at most 7n=8 X-variables: otherwise, there are more than

4n

10

7n

8
+

n

10

n

4
=

3n2

8

X-variables in the top half, a contradiction. Let R be these 2n=5 rows, each containing

at least n=4 and at most 7n=8 X-variables.
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Let CL be columns 1; : : : ; n=2 (the \left half") and CR be columns n=2 + 1; : : : ; n

(the \right half"). Since each row in R has either more X-variables in CL or CR, at

least half of the rows in R have most of their X-variables in one, say CL. Each of these

n=5 rows has at least n=8 X-variables in the left half and at most 7n=16 X-variables

in the right half. Alternatively, each of these rows has at least n=8 X-variables in the

left half and at least n=16 X-variables in the right half.

We now �x some n=8 of these rows and the rest of the proof proceeds as in the �rst

case, yielding a lower bound of
�
n=8
n=16

�
= 2
(n).

It is easy to see that �-MATRIX has OBDD's of size O(n2n): the variables are

read column-wise, easily ensuring that each column has exactly one 1; furthermore,

the OBDD keeps track of the subset of the rows in which 1's have appeared, requiring

width O(2n). Interestingly, for k-OBDD's, just as the lower bound degrades roughly

by a factor of k in the exponent, yielding 2
(n=k), similarly the upper bound can be

improved by a factor of k in the exponent. Construct a k-OBDD of width 2
(n=k)

by reading the variables column-wise, but keeping track only of n=k rows at a time:

Partition the rows into k sets of size n=k each, and in segment i = 1; : : : ; k, keep track

of the subset of the ith set of rows in which 1's have appeared. Accept only if in each

segment, each of the i rows is found to contain exactly one 1.

For k-IBDD's

The only lower bound that is proved speci�cally for IBDD's (i.e., which does not apply

to linear length oblivious programs more generally) is the lower bound of [BSSW95].

They reduce the problem to one of communication complexity in the following manner.

Given an IBDD, they construct two disjoint subsets of the variables by considering the

levels of the IBDD one at a time. Each level disquali�es at most one-half of the variables

in each set, so that after a constant number of levels, still a constant fraction 2�k of

the variables are retained. They argue that the problem restricted to these variables

is a smaller version of the original problem, and hence the known linear lower bound

on the communication complexity applies.

To demonstrate, we give an easy lower bound which has not appeared in the liter-

ature. The proof is very similar to the lower bounds of [BSSW95] and [Ge94]. Recall
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that [BSSW93] showed ACH 62 C-OBDD; we will show that ACH 62 C-IBDD.

Theorem 2 ACH 62 C-IBDD.

Proof: Consider a k-IBDD G computing ACH. We will show that G has size at least

2n=k2
k

. Recall from Section 2.4.2 that

ACH(x; y; z) =
V

1�j�n(xj _ yj+z) if z 6= 0, and
W

1�j�n(xj ^ yj) if z = 0.

We think of G as being composed of k segments, each with n levels corresponding

to a permutation of the variables. Suppose we could show that for some z there are

subsets of variables

XS = fxi : i 2 Sg � X and YS = fyi+z : i 2 Sg � Y

of size at least n=22k such that for each segment of G, either all variables of XS appear

before YS or vice-versa. Then we may invoke the communication complexity argument

in which the players get 2k rounds or fewer. If z > 0, we get a fooling set of size

2jXSj with respect to XS by taking inputs ranging over all settings to XS and where

yi+z = xi = 1 for i 62 S and yi+z = xi for i 2 S. For each such input w = (x; y; z),

we have ACH(w) = 1, but for two di�erent such inputs, w 6= w0, we have either

ACH(w
XS
w0

XS
) = 0 or ACH(w0

XS
w
XS
) = 0. Similarly, if z = 0, letting yi+z = xi = 0

for i 62 S and yi+z = xi for i 2 S, for each such input w = (x; y; z), we have ACH(w) =

0, but for two di�erent such inputs w 6= w0 we have either ACH(w
XS
w0

XS
) = 1 or

ACH(w0
XS
w
XS
) = 1. If we can �nd such a z, XS and YS for any given G, then

the communication complexity argument implies that the width of G is exponential

in (n=22k)2k.

We now show that there exist z, XS , and YS as desired. Without loss of generality,

suppose the �rst half of the �rst segment of G has more X variables than Y variables.

Let X1 � X appear in the �rst half and Y1 � Y appear in the second half so that

jX1j = jY1j � n=2. Now partition the second segment of G in \half" with respect to the

n variables X1 [ Y1 only. If the �rst half contains more X variables than Y variables,

let X2 � X1 appear in the �rst half and Y2 � Y1 appear in the second half, so that

jX2j = jY2j � n=4. Otherwise, let X2 � X1 appear in the second half and Y2 � Y1

appear in the �rst half. Repeating this process for the k segments, we �nally obtain
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Xk and Yk of size n=2k with the desired alternation property. Since Xk � Yk has size

at least n2=22k, it contains at least n=22k pairs (xi; yi+z) for some value of z between 0

and n� 1. The xi in these pairs constitute XS .

Note that �-MATRIX does not enjoy the same self-reducibility property: the above

proof applied to the 2-IBDD for computing �-MATRIX �nds X2 equal to the variables

in one quadrant of the matrix and Y2 equal to the variables in the diagonally opposite

quadrant. Indeed, for any setting to the remaining variables, only one bit of communi-

cation between the players is necessary to compute the function: player I checks that

the top rows and left columns are okay, and player II checks that the bottom rows and

right columns are okay.

2.5.2 For nondeterministic BDD's

Lower bounds for nondeterministic BDD's also follow from the existence of exponential-

size fooling sets: they imply that the function requires exponential-size nondetermin-

istic OBDD's, when OR gates2 or PARITY gates are allowed.

For example, consider an OBDD with OR nodes. We may view the corresponding

communication protocol as containing nondeterministic choices by the players, giving

in e�ect the OR of many deterministic protocols. Each such deterministic protocol

determines some 1-rectangles (all-1's minors); together, the 1-rectangles of all the pro-

tocols must cover all the 1's of the matrix without covering any of the 0's. Thus the

communication required is at least the logarithm of the \cover number" (the number

of 1-rectangles needed), or equivalently, the logarithm of the rank3 over the Boolean

semiring B (f0; 1g with ^ and _; it is a semiring because 1 has no additive inverse).

As discussed earlier, the matrix corresponding to a fooling set of size jF j has all 1's
on its diagonal, no two of which may appear in the same all 1's minor, so the cover

number, or the rank over B , is jF j.
2The asymmetry with respect to OR/AND occurs because of the choice f(x) = 1 rather than

f(x) = 0 in the de�nition of fooling sets.
3The rank of a matrix over a semiring is the fewest number of pairs of (column) vectors (v; w) such

that M =
P

i viw
T
i . This specializes to the \cover number" in the case of B and to the dimension of

the column space in the case of a �eld.
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Similarly, with PARITY nodes, the communication required in the corresponding

communication game is the logarithm of the rank of the matrix over GF(2). Since

column operations make the matrix lower triangular, it has full rank over GF(2) as

well.

With AND nodes we have the dual of OR nodes: the communication complexity

is equal to the nondeterministic communication complexity of the complement of the

function, or the rank over B of the matrix with 0's and 1's reversed. Note that for a

particular partition of the variables, this may be exponentially less than the case of

OR nodes: the function EQUAL?(x; y) with respect to the partition X _[ Y requires

nondeterministic complexity jxj = jyj whereas its complement has nondeterministic

complexity 2 lg jxj.

2.5.3 For arbitrary oblivious programs

Alon and Maass [AM88] prove strong lower bounds for arbitrary 3-way oblivious pro-

grams by analyzing the sequence S in which the variables are read by the levels of

the program. In particular, for any two disjoint subsets of variables S and T , they

consider the number of times this sequence alternates between reading variables of S

and variables of T . They prove a theorem that says if for every two subsets S � X and

T � Y with jSj = jT j = n=2m (where jXj = jY j = n) there are at least m alternations

between S and T , then the sequence must be of length at least 
(nm).

They use this theorem to prove a superlinear lower bound on the length of oblivious

branching programs for the \sequence equality function" SEQ, de�ned on two ternary

vectors x and y of length n where each xi and yi may be 0, 1, or 2. SEQ(x; y) = 1

if the subsequence of x obtained by removing the 2's is equal to the subsequence of

y obtained in the same manner. A standard \cut-and-paste" (or \crossing-sequence")

argument shows that in any 3-way branching program4 for SEQ and for any S and T

as above, the number ` of alternations between S and T must satisfy w` � 2jSj where

w is the width of the program. So for w = 2n=2
2m

, this yields ` � 2m. In particular

` > m, and so the theorem gives a lower bound of 
(nm) on the length of the program.

4This is a branching program in which each node has 3 edges leaving it.



36 Related models

Thus any oblivious program for SEQ of size 2o(n) must have superlinear length.

This lower bound for 3-way programs clearly implies the same lower bound for ordi-

nary branching programs, where each ternary variable xi is represented by two binary

variables. This implies, for instance, that SEQ 62 C-IBDD. For comparison, SEQ has

very easy read-once programs, which are non-oblivious, of length n.

In [KMW92], this lower bound for SEQ is extended to nondeterministic oblivious

programs of linear length. At the same time, a simple co-nondeterministic oblivious

program (with AND nodes) of linear length is given, showing that as for read-once

programs (Section 2.2.2), the two types of nondeterminismgive di�erent computational

power.

Babai, Nisan, and Szegedy [BNS92] in the same spirit improve this length/width

tradeo�, using their lower bound for multiparty communication complexity to raise

the lower bound on the length of polynomial-size oblivious programs (for a di�erent

function) by a factor of lg n.

2.5.4 For read-once programs

Note �rst that the lower bound method for OBDD's is insu�cient for read-once pro-

grams. Even though there may be many subfunctions arising from the settings to any

Y � X of a given size, it may also be that for each Y there is one subfunction that

arises from many of the settings to Y . Since di�erent paths may read the variables of

X in di�erent orders, di�erent sets Y 0 may be the \�rst" ones read depending upon

the values of the variables. In this case, we have not excluded the possibility that the

�rst m input bits are read in such a way that the program needs nodes for only the

\large" subfunctions on the various Y of size n�m.

For example, we saw that for the function ACH, there is a fooling set of size 2n=4

for any subset of half the X and Y variables (Theorem 2, specialized to OBDD's).

However, there is a simple read-once program that reads the z variables �rst and then

reads the X and Y variables in the appropriate order, pair by pair. Looking closely

at this program, we see that there are n di�erent subsets of half the X,Y variables

that may be read �rst. For each subset there is a large fooling set, implying that there

are many possible subfunctions on the remaining variables. However, the values of
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the variables (speci�cally, of the z variables) that give rise to these many subfunctions

cause other paths to be taken through the program. For the path that leads to a given

subset of X;Y , there are only two subfunctions (either the 0 function or the induced

ACH function) arising from the many settings to the variables (in Z and the rest of

X;Y ) read so far.

In order to prove lower bounds for read-once programs, we must show that not

only are there many subfunctions, but that each arises in very few ways. Simon and

Szegedy [SS93] distill this idea into a lemma which may be considered a paradigm

for proving read-once lower bounds. This technique appears implicitly in the read-

once lower bounds of [We88, Za84] and explicitly in those of [Ju88, Kr88, Du85]; the

generalization in [SS93] enables an easier proof of the lower bound of [BHST87] and

others [We87, Du85, Ju88]. Simon and Szegedy use this technique to reprove a theorem

of Babai et. al. [BHST87], that read-once programs require size 2
(n
2) to count modulo

2 the number of triangles in an n-node graph. They also give a simple proof that size

2n=10 is required to tell whether an n-node graph is n
2
-regular. Since the lemma is a

central part of our lower bound for multiplication, we provide a proof in Chapter 3.

2.6 Integer multiplication

By integer multiplication, we will refer to the Boolean function MULT : f0; 1g2n !
f0; 1g that computes the middle bit in the product of two n-bit integers. That is,

MULT(x; y) = zn�1 where x = xn�1 � � �x0, y = yn�1 � � � y0, and z2n�1 � � � z0 = z = xy

is the product of the integers represented in binary by x and y. The middle bit is the

\hardest" bit, in the sense that if it can be computed by read-once branching programs

(or most any computational model) of size s(n), then any other bit can be computed

with size at most s(2n).

2.6.1 Bryant's lower bound

Bryant [Br91] gives the following lower bound for MULT; Gergov [Ge94] notices that

the proof holds also for nondeterministic OBDD's, as noted the end of the proof below.
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Theorem 3 MULT 62 OBDD.

Proof: We will show that with respect to any subset S � fx1; : : : ; xng of size n=2

(corresponding to the �rst n=2 variables of X read by an OBDD), MULT has a fooling

set of size 2n=8. The elements of the fooling set di�er only in their settings to the xi; the

yi are �xed so that the multiplication is reduced to computing the sum of two integers,

one corresponding to a subsequence of x1; : : : ; xn=2 and the other corresponding to a

subsequence of xn=2+1; : : : ; xn. The nth bit of the product is the high-order bit in this

sum.

Choose these two subsequences so that for each i, the ith bit of one is in S and the

ith bit of the other is in S, and they are equally far apart in x for all i. To do this, let

SL = S \
�
x1; : : : ; xn=2

	
and SR = S \

�
xn=2+1; : : : ; xn

	
and similarly de�ne SL and SR for S. It is easy to show that

jSL � SRj+ jSL � SRj � n2=8

and since 1 � jxi�xjj � n for each (xi; xj) 2 (SL�SR)[ (SL�SR), we see that there

is a subset of size n=8 with the desired property.

Exactly two bits of Y are set to 1 in such a way that these two subsequences \line

up" and so that the carry out of their high-order bit corresponds to the nth bit in the

product of x and y. The bits of X not contained in either subsequence are set to 0

unless they are in
�
xn=2+1; : : : ; xn

	
and lie \in between" the bits of the subsequence.

This causes carry bits of the addition to propagate as desired and thereby reduce

the multiplication of x and y to the addition of the two integers determined by the

subsequences. See Figure 2.2.

We may think of the addition of these two integers as the addition of an integer

determined by the setting to S and an integer determined by the setting to S. The

fooling set ranges over all settings to the integer determined by S. Each of these two

integers may take on any value between 0 and 2n=8 � 1, in turn making the nth bit of

the product is 1 if their sum is at least 2n=8 and 0 otherwise.

The corresponding matrix has rows indexed by all 2n=8 settings to S's integer and

columns indexed by all 2n=8 settings to S's integer. After deleting the 0-column and
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0 0 xi 1 xj 1 1 xk 0 xp 0 xq 0 0 xr 0 0 0 = x

� 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 = y

0 0 xi 1 xj 1 1 xk 0 xp 0 xq 0 0 xr 0 0 0

� � � xk 0 xp 0 xq 0 0 xr 0 0 0

� � � �
"

MULT(x; y)

Figure 2.2: The multiplication of x and y is reduced to computing the carry bit

in the sum of the integers represented by the two subsequences xixjxk

and xpxqxr. For each corresponding pair (xi; xp), (xj; xq), and (xk; xr),

one variable is in S and the other in S. The fooling set ranges over all

settings to the variables in S, with each variable's \partner" getting the

complementary setting. The remaining variables are set as shown in order

to achieve the desired reduction.

0-row and indexing appropriately, this matrix is lower-triangular with all 1's in the

lower half. It thus has full rank over B and over GF(2), and so does its complement.

It follows that MULT requires exponential-size OBDD's and k-OBDD's even if OR,

PARITY, or AND nodes are present.

Gergov [Ge94] further generalizes Bryant's lower bound for MULT to arbitrary

oblivious programs of linear length by using the main lemma from [AM88]. For any

program of length kn, the lemma implies the existence of two \large" disjoint subsets

of X (size n=k22k) such that there are few (O(k)) levels where the program changes

from reading variables of one set to reading variables of the other set. Now reduced to

a problem of communication complexity with 2k rounds, it is easy to carry though the

rest of Bryant's proof to �nd a fooling set of size 2n=k
224k . Thus, the program has size

at least 2n=2k
324k . As reasoned above, this bound holds even if nondeterministic nodes

are present.
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2.6.2 The decision problem DMULT|the graph of multiplication

Although it is not directly related to the issue of veri�cation, another Boolean function

that has been considered is the decision problem DMULT of recognizing the graph of

multiplication. That is, DMULT(x; y; z) = 1 if xy = z. Note that it is not readily

apparent which problem is \harder", MULT or DMULT. On the one hand, DMULT

seems to require practically computing all the bits of xy; however, an algorithm for

DMULT has the advantage of inspecting all the bits of z, the putative product. Buss

[Bu92] proves that DMULT 62 AC0 by reducing it to counting the number of 1's in the

input (and therefore toMULT and to PARITY by results of [CSV84]); for comparison,

[FSS84] gives an easy reduction of MULT to PARITY to show MULT 62 AC0.

A simple argument [We94] shows that computingDMULT with read-once programs

is as hard as factoring. Given a polynomial-size read-once program for DMULT and

any integer n, the following procedure will either factor n or determine that it is prime.

First instantiate n as the bits of z in the read-once program where jzj = 2 lg n and

jxj = jyj = lg n. There is a satisfying assignment to the remaining input bits since

1z = z. Now attempt to construct a nontrivial factor by instantiating the bits of x

one at a time, maintaining the satis�ability of the program after each bit. If the only

successful instantiations for x are 1 and z, then z is prime; otherwise, a nontrivial

factor is determined. Since we can test the satis�ability of a read-once program in

polynomial time, the entire procedure can be executed in polynomial time.

Jukna [Ju94] proves a lower bound of 2n
1=4=k2k for DMULT on non-deterministic

read-k-times branching programs. His lower bound follows the framework of [BRS93],

and gives a simple reduction of DMULT to the problem of recognizing codewords of a

linear code, for which a lower bound of 2
p
n=k2k is proved in [Ju92].

2.7 Related issues

2.7.1 The ordering problem for OBDD's

When using OBDD's for veri�cation, it is naturally desired to minimize their size.

For a given function, the order in which the variables are read greatly a�ects the
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number of nodes required|it is easy to exhibit functions which have small OBDD's

for good orderings but require exponential size for poor orderings. Thus, an important

and interesting question is how to determine the ordering that minimizes size for a

given function. The decision problem is: Given an OBDD and an integer k, determine

whether there is an OBDD (possibly obeying a di�erent ordering of the variables)

with fewer than k nodes that computes the same function. This problem was recently

proved to be NP-complete in [BW95], extending the work of [BW95, THY93], via a

nice reduction to OPTIMAL-LINEAR-ARRANGEMENT [GJ79].

It would be useful to �nd an e�cient algorithm to determine an approximately

optimal ordering. Many heuristics for improving an ordering can be found in the

literature (see [BW95]). It is worth mentioning that the use of randomization has

not been explored, either in helping to determine good variable orderings or in the

veri�cation strategy more generally.

2.7.2 The Fourier spectrum

The Fourier spectrum of Boolean functions has been widely studied over the past few

years. Properties of the Fourier spectrum have been used in a variety of applications,

perhaps most strikingly in deriving e�cient algorithms for learning (e.g., [KM91]).

Two properties of the spectrum that have proven useful for this purpose are small

L1-norm (that is, the sum of the absolute values of the coe�cients) and a knowledge

of which coe�cients are the largest. For example, [KM91] gives an e�cient algorithm

for functions whose spectrum is either sparse or has polynomial L1-norm.

It is easy to show that the L1-norm of a function is bounded by the number of

leaves in any decision tree for that function, even if the nodes may query the parity

of arbitrary subsets of the variables. And [LMN89] proves that functions in AC0 have

most of the weight of their spectrum in the coe�cients of small sets. These results

are used to derive e�cient learning algorithms for functions in AC0 and functions with

shallow decision trees.

Since OBDD's are such a constrained model of computation, perhaps interesting and

useful properties can be derived about the spectrum of the functions in OBDD they

compute. Some negative results are known: Bruck and Smolensky [BS90] demonstrate
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a function in AC0 that has exponential L1-norm; this function is easily computed

by polynomial-size OBDD's. They also exhibit a function (inner product modulo 2),

also easily computed by an OBDD, whose transform has L1-norm less than 1=2log
O(1) n.

This is an an even stronger result and further implies that any polynomial p(x1; : : : ; xn)

whose sign represents this function (i.e., whose is negative exactly when the function

is 1) must have 2log
O(1) n non-zero coe�cients.

Comparing OBDD's with constant-depth circuits, we note that PARITY, though

not in AC0, is easily computed by small OBDD's, while �-MATRIX is easily in AC0

but requires exponential-size OBDD's.

2.7.3 Read-once programs and resolution proofs

If we consider branching programs for computing multi-valued functions, we may �nd

a nice correspondence with resolution proofs.

A resolution proof for a CNF formula � is a straightline program for proving that �

is not satis�able. At each step, two previously obtained clauses, (xi _ �) and (xi _ �),
are \resolved on xi" to obtain a new clause (� _ �) which is satis�able if the previous

clauses are (� and � are disjunctions of literals). The proof is complete when the empty

clause is obtained. Such a proof is naturally viewed as a directed acyclic graph where

the clauses correspond to the nodes of the graph: the original clauses of � are \input"

nodes with indegree 0, the newly obtained clauses are \internal" nodes with indegree 2,

and the empty clause is the \output" node with outdegree 0. Such a resolution proof

is called regular if on every directed path from an input node to an output node, each

variable is resolved at most once.

We may consider a branching program for an unsatis�able CNF formula � that

solves the following \search" problem: given an assignment x, �nd a clause of � that

is not satis�ed. It is an observation of Chvatal and Szemeredi (see [LNNW95]) that

read-once programs for this problem are isomorphic to regular resolution proofs. Taken

together with the fact that a decision tree is a read-once branching program, [LNNW95]

notes that D(�) � lgRRES(�), where D(�) is the depth of the shallowest decision

tree for this search problem and RRES(�) is the fewest number of steps in a regular

resolution proof of �.
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In general, an arbitrary resolution proof for � yields a branching program for this

search problem, but not vice-versa: in fact, there are formulas for which RES(�) is

exponential [CS88, e.g.], even though there is always a branching program of sizeO(j�j)
for the search problem.
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C h a p t e r 3

A lower bound for multiplication

with read-once programs

This chapter describes a lower bound of 2
(
p
n) on the size of read-once branching

programs for the function MULT. This is the �rst superpolynomial lower bound for

multiplication on non-oblivious branching programs. This result demonstrates that

relaxing the ordering restriction of OBDD's is insu�cient to gain the computational

power desired for the purpose of hardware veri�cation.

The lower bound for multiplication is motivated by the work of Simon and Szegedy

[SS93], who give a basic lemma for proving lower bounds on the size of read-once

branching programs. The lemma involves Neciporuk's method of counting the subfunc-

tions that are possible when some subset of input bits is �xed. We begin by describing

this lemma in Section 3.1. For ease of presentation we �rst prove a lower bound of

2
(
3
p
n) in Section 3.2, and then extend the proof to achieve 2
(

p
n) in Section 3.3.

In Section 3.4, we de�ne the notion of read-once reductions in order to deduce

similar lower bounds for other arithmetic functions.

3.1 A paradigm for read-once lower bounds

Let f be a Boolean function, f : f0; 1gn ! f0; 1g, and let X = fx0; : : : ; xn�1g be its

n binary input variables. Let F be a �lter on X. (That is, F � 2X and F is closed

45
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upward|if S 2 F , then all supersets of S are in F .) A subset B � X is said to be

in the boundary of F if B 62 F but (B [ xi) 2 F for some xi. By setting the values of

B = X n B, we naturally induce a function on B. The lemma is stated below in the

form we will need it; it appears in [SS93] in slightly more generalized form.

Lemma 1 (Simon and Szegedy) If for any B in the boundary of F , at most 2jBj=L

settings to B induce the same subfunction on B, then any read-once branching program

computing f has size at least L.

For completeness, we now provide a proof of this lemma.

Proof: The idea is to identify a \frontier" of edges in the branching program|a cut

containing exactly one edge from each source-to-sink path|in which every edge allows

only a fraction 1=L of the inputs in f0; 1gn to pass through it. Since the path of every

input passes through some frontier edge, there must be at least L such edges. Having

fan-out 2 and only one root, the program also has at least L nodes. This is because

if the endvertices of the frontier edges were distinct, they would be the leaves of an

embedded binary tree which must contain L� 1 distinct internal nodes. Since the two

sinks are not among these internal nodes, there are at least L+1 nodes in the program.

In order to characterize a frontier, we �rst associate with each node of the program

the set of variables appearing in the subprogram rooted there|that is, those variables

appearing on nodes that are reachable from the given node. Clearly, along any path

through the program, the variable-sets of later nodes are subsets of the variable-sets

of earlier nodes. A frontier consists of those edges going from nodes with \large" sets

of variables to nodes with \small" sets. \Large" sets are de�ned to be those that are

in the �lter F . Clearly there is exactly one frontier edge on each source-to-sink path,

as (for nontrivial �lters F) the root has the variable-set X 2 F and the sinks have the

variable-set ; 62 F . With each frontier edge we associate a set B � X in the boundary

of F .

Suppose boundary set B is associated with a given frontier edge. Because the

program is read-once, these variables do not appear on any path from the root to this

edge. In fact, the inputs x 2 f0; 1gn that reach this edge are characterized exactly by

their settings to B. Each setting to B that reaches this edge clearly induces the same
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subfunction on B, as de�ned by the subprogram rooted there. Since at most 2jBj=L

settings to B give the same subfunction on B, at most (2jBj=L) � 2jBj = 2n=L inputs in

f0; 1gn may pass through this frontier edge. The lower bound of L then follows.

3.2 A lower bound of 2
(
3
p
n)

Theorem 4 Any read-once branching program for MULT has size 2
(
3
p
n).

Proof: Letm = 3
p
n=4 and letX and Y denote the sets of variablesX = fx0; : : : ; xn�1g

and Y = fy0; : : : ; yn�1g. De�ne the �lter

F = fV � (X [ Y ) : jV \Xj > n�m and jV \ Y j > n �mg:

Roughly speaking this �lter marks the frontier of the program where at most m bits

of X and at most m bits of Y have been read.1

We will show that for any B in the boundary of F , at most 2jBj�m settings to B give

the same subfunction on B. By Lemma 1, this gives the desired lower bound of 2m. Fix

any B in the boundary of F and let S = B. Think of S as being the variables already

read by the branching program. Since B is in the boundary of F , either jS\Xj = m or

jS \ Y j = m. We will show that there is a subset S0 � S of size at least m such that if

two settings to S di�er on S0 then they induce di�erent subfunctions on S = B. Thus

at most 2jSj�m settings to S = B induce the same subfunction on S = B, as desired.

We will show that the two subfunctions are di�erent by explicitly demonstrating a

single setting to the bits of S where the induced subfunctions of MULT di�er.

Suppose without loss of generality that jS \ Xj = m (and jS \ Y j < m). Let

i 2 f0; : : : ; n� 1g be the smallest index such that yi 62 S. Let

S0 = fy0; : : : ; yi�1g [
�
S \ fx0; : : : ; xn�1�ig

�
:

Note that because fy0; : : : ; yi�1g � S and jS \Xj = m, we have jS0j � m.

1In order for this notion to be strictly correct, \have been read" must be interpreted to mean

\appear on any path from the root".
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Let us adopt the following notation for the integers obtained from partial settings

to the variables. For a setting � to W � X[Y (i.e., � :W ! f0; 1g), let x� denote the
integer that is represented in binary when the variables of X \W have the value given

by � and the variables of X \W are each 0. De�ne y� similarly. For a single variable

z 62 W , let \� + z" denote the setting to W [ fzg that further sets z = 1. For two

settings � and � to disjoint subsets W and V , let \� [ �" denote the setting equal to

� on W and to � on V . Finally, let (x)i denote the ith bit in the binary representation

of integer x, so x =
Pn�1

i=0 (x)i 2
i.

Let � and � be two settings to S that di�er on some bit in S0. Our goal is thus to

�nd a setting � to the bits of S so that (x�[�y�[�)n�1 6= (x�[�y�[�)n�1.

We proceed in two stages, according to Lemmas 2 and 3. First we ensure, by

setting to 1 (if necessary) a single variable z of S, that the two products x�+zy�+z and

x�+zy�+z di�er in a \high-order" bit|a bit position in the range [n � m � 3; n � 1]

(we aren't concerned with higher bit positions). In the second stage, we set to 1 a pair

of variables of S, one in X and one in Y , so that the resulting product di�ers in a

higher high-order bit position. We iterate this second stage, repeatedly setting a pair

of variables until the resulting products di�er in bit position n � 1. It follows that �

and � induce di�erent subfunctions on S|the subfunctions di�er when S has z and

the pairs from the second stage all set to 1 and the remaining bits of S set to 0.

Lemma 2 If for all i 2 [n�m� 3; n � 1] we have (x�y�)i = (x�y�)i, then there is a

single variable z 2 S such that

(x�+zy�+z)i 6= (x�+zy�+z)i

for some i 2 [n�m� 3; n� 1].

Lemma 3 Let T � X[Y , and � and � be two settings to T . Let d be the greatest index

in [0; n�2] such that (x�y�)d 6= (x�y�)d. If d � n�m�3 and max(jT \Xj; jT \ Y j) =
t � 3m, then there are two variables, xu 2 X \ T and yv 2 Y \ T , such that

(x�0y�0)d+1 6= (x�0y�0)
d+1

where �0 = � + xu + yv and �0 = � + xu + yv.
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Theorem 4 follows from these lemmas as outlined above. Notice that Lemma 3 is

�rst applied with t � m+ 1, and since we must apply Lemma 3 at most m+ 3 times,

each time setting one more variable of X and Y , we maintain t � 2m + 4 � 3m as

required.

We now give the proofs of Lemmas 2 and 3.

Proof of Lemma 2: The settings � and � di�er on S0 � S; suppose �rst that they

di�er in a bit of S0 \X.

0 � 2n

2n�m�3

x�y�

�

x�y�

?

x�+yky�+yk

x�+yky�+yk

�

+

2kx�

2kx�

Figure 3.1: The integers modulo 2n. In order for x�+yky�+yk and x�+yky�+yk to fall

into di�erent segments, we must choose k so that 2k(x� � x�) has large

magnitude.

The proof is most easily explained by picturing the integers modulo 2n on a circle.

Partition the circle into 2m+3 equal-sized segments according to the values of the m+3

highest bits, so each segment contains 2n�m�3 consecutive integers, as depicted in

Figure 3.1. The hypothesis of the lemma is that x�y� and x�y� fall into the same

segment. If we set bit yk 2 S\Y to 1, we obtain the products x�+yky�+yk = x�y�+x�2
k

and x�+yky�+yk = x�y� + x�2
k. The product x�+yky�+yk is obtained by a translation

of 2kx� along the circle from x�y�, and x�+yky�+yk is obtained by a translation of

2kx� from x�y�. If, modulo 2n, their di�erence 2k(x� � x�) is at least 2
n�m�2, or two
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segments long, and at most 2n � 2n�m�2, or \negative two" segments long, then it

is clear that the translates x�+yky�+yk and x�+yky�+yk fall into di�erent segments. It

follows that the products x�+yky�+yk and x�+yky�+yk di�er in a high-order bit position.

It only remains to show how to choose yk 2 S \ Y so that 2n�m�2 � 2k(x�� x�) �
2n � 2n�m�2 modulo 2n. Let x = x� � x�. It is useful now to think in terms of the

table generated by the usual grade-school algorithm for multiplying x by y, as shown

in Figure 3.2.

=x�
n�
1

�
n�
1�
i

�
n�
1�
m

j

���1 00 00 00 0

i62S

(n�1)�m
(n�1)�j

(n�1)�j�m o
�nd
k 62S

Figure 3.2: The table generated by the grade-school algorithm for multiplying x =

x� � x� by y. We choose a bit yk to set to 1 so that the least signi�cant

1 in x is shifted into a \high-order" bit position.

In this table, the rows are the partial products, indexed by y0; : : : ; yn�1. The

diagonals are indexed by xn�1; : : : ; x0. Since � and � di�er in a bit of S0 \ X �
fx0; : : : ; xn�1�ig, the di�erence x = x� � x� must have a 1 somewhere in the range of

bit positions [0; n� 1� i]. Let j be the position of the least signi�cant 1 in x, so that

either there is a 0 in position j � 1, or j = 0. We now choose any variable of S \ Y

with index k in the range [(n � 1) � j �m; (n � 1) � j]. This range must contain a

variable yk 2 S \ Y because if j � n �m � 1, the range has at least m + 1 elements

but jS \ Y j < m; if j � n�m, we may choose k = i (by de�nition, yi 62 S), which lies

in the range [0; n� 1� j] since j � n� i� 1. This ensures that 2kx has a 1 in position
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j + k and a 0 in position j + k � 1, where n� 1 �m � j + k � n� 1. It follows that

modulo 2n, we have 2n�m�1 � 2kx � 2n � 1 � 2n�m�2, the upper bound attained if

all bits except bit j + k � 1 are 1's and j + k = n � 1 �m. This satis�es the desired

bounds.

If � and � di�er in a bit of S0\Y � fy0; : : : ; yi�1g the proof is essentially the same.

We have to choose xk 2 S \X so that 2n�m�1 � 2k(y��y�) � 2n�2n�m�2�1 modulo

2n. In this case, we know y = y� � y� has a 1 in the range [0; i� 1]. Again letting j

be the least signi�cant 1 of y in this range, we simply choose k anywhere in the range

[n� 1 � j; n � 1 � j �m]. Since j � i� 1 � m and n � 3
p
n � 1 + j +m, this range

always has m+1 elements. It follows as before that 2ky satis�es the desired inequality.

This completes the proof.

Lemma 3 Let T � X[Y , and � and � be two settings to T . Let d be the greatest index

in [0; n�2] such that (x�y�)d 6= (x�y�)d. If d � n�m�3 and max(jT \Xj; jT \ Y j) =
t � 3m, then there are two variables, xu 2 X \ T and yv 2 Y \ T , such that

(x�0y�0)d+1 6= (x�0y�0)
d+1

where �0 = � + xu + yv and �0 = � + xu + yv.

Proof of Lemma 3: We will consider all pairs of variables (xu; yv) such that u+v = d.

We want (x�0y�0)d+1 6= (x�0y�0)d+1, where

x�0y�0 = (x� + 2u) (y� + 2v)

=
�
x�y� + 2d

�
+ (2vx� + 2uy�) ;

and x�0y�0 = (x� + 2u) (y� + 2v)

=
�
x�y� + 2d

�
+ (2vx� + 2uy�) :

Since d is the highest bit in which x�y� and x�y� di�er, clearly
�
x�y� + 2d

�
d+1

6=�
x�y� + 2d

�
d+1

. We will choose u and v so that the addition of the \cross terms"

2vx�+ 2uy� to x�y�+ 2d does not a�ect bits d or d+1 of x�y�+ 2d (and similarly for

�). In order to do this, we choose u and v so that in each case, the cross terms have

0's in bit positions d and d + 1 and furthermore, in the addition of the two integers,

there is no carry bit into position d.
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xu

yv|{z}|{z
}

Choose u and

v so these bits

are all 0's.

� 11 11 0 ��� = x�y��
n�1 d i

2vx�

2
u y�

Figure 3.3: In Lemma 3, we choose xu and yv to set to 1 so that u+v = d and also so

that the products 2uy� and 2vx� have 0's in bit positions d� 1; : : : ; i� 1

so that when added to x�y� + 2d, they do not cause a carry to propagate

into position d + 1.

To accomplish this, we �rst �nd the largest bit position i less than d where x�y�

has a 0 (so positions i + 1 through d � 1 are all 1's). We will choose u and v so that

2vx� and 2uy� each has 0's in positions i� 1 through d + 1. It follows that their sum

then has 0's in positions i through d+1, and so, when added to x�y�+2d which has a

0 in position i, causes no carry into any position i+ 1 through d (see Figure 3.3). We

will choose u and v so that the same conditions hold for � as well.

A simple counting argument now shows that there exist u and v as desired. First,

we claim that x�y� (and x�y�) has 1's in at most t2 bit positions, so that (d�1)�i � t2.

In general, if the binary representations of integers p and q have w(p) and w(q) 1's in

them respectively, then clearly p+ q has at most w(p)+w(q) 1's in it. Recall � sets at

most t bits in X or Y . We may therefore view x�y� as the addition of at most t shifts

of x�, and the claim follows.

We require (2vx�)j = (2vx�)j = 0 in at most t2 + 4 positions j: j = d+ 1; d; d � 1;

: : : ; i; i � 1. There are at most t bit positions in which either x� or x� has a 1, and

for each such 1, there are at most t2 + 4 \bad" values of v 2 [0; n� 1] that shift the 1
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to a position we require to be 0. Thus, x� and x� rule out at most t(t2 + 4) values

of v. Furthermore, there are up to t variables of Y that are in T , making a total of

t(t2+4)+t values of v that we may not choose. Similarly, a total of at most t(t2+4)+t

values of u are ruled out by y�, y�, and T . The number of pairs (xu; yv) in which either

xu or yv has been ruled out is thus at most

2(t3 + 5t) � 2
�
27m3 + 15m

�
� 2

�
27n

64
+
15 3
p
n

4

�

since t � 3m and m = 3
p
n=4. There are at least d+ 1 � n�m� 2 pairs (xu; yv) such

that u+ v = d. Thus we retain at least

n�
3
p
n

4
� 2�

�
54

64
n+

30

4
3
p
n

�
= 
(n)

good pairs satisfying the desired requirements for xu and yv. For n � 378, this expres-

sion is greater than 1, implying that there exists a pair as desired.

3.3 Improving the bound to 2
(
p
n)

We can improve the lower bound to 2
(
p
n) by analyzing more closely how we iterate

Lemma 3 in the proof of the theorem. We begin with the observation that we needed

m = O( 3
p
n) because in Lemma 3, we used t2 = O(m2) as an upper bound on the

number of consecutive 1's to the right of position d in x�y� or x�y�. We then required

0's in these O(m2) positions in the cross terms 2vx� + 2uy� and 2vx� + 2uy�. Since

each of the O(m) 1's in x� may then rule out O(m2) values of v, we needed O(m3) < n

in order not to rule out all values of v. In order to allow m = O(
p
n), we will reduce

to O(m) the number of positions in which we require 0's in the cross terms. For the

rest of this section, we let m =
p
n=3.

For example, if we knew that x�y� and x�y� looked like2
x�y� = � � � 1

d
0 � � �

x�y� = � � � 0
d
0 � � �

, then

we would need to require 0's in the cross terms in only three positions: d + 1, d,

and d � 1. This is su�cient to ensure that the addition of cross term 2vx� + 2uy� to

2Here and henceforth, \� � �" denotes an arbitrary string of 0's and 1's; thus x�y� = � � � 1
d
0 � � � has

a 1 in bit d, a 0 in bit d� 1, and may have any values in other bit positions.
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x�y� + 2d does not generate a carry into position d and does not a�ect bits d or d+ 1

of x�y� + 2d. The same holds for � and we get (x�0y�0)d+1 6= (x�0y�0)d+1. With only

these three positions required to be 0's, the total number of v's ruled out by x� and x�

is proportional to the number of 1's they contain, which is O(m). Similarly, the cases

x�y� = � � � 1
d
1 � � �

x�y� = � � � 0
d
0 � � �

and
x�y� = � � � 1

d
1 � � �

x�y� = � � � 0
d
1 � � �

can be handled with only a few constraints by choosing u + v = d � 1 (this will be

proved in Lemma 5). In fact, there is really only one case in which we need to require

(2vx� + 2uy�) or (2
vx� + 2uy�) to have many 0's:

De�nition 4 Let d be the greatest index less than n in which (x�y�)d 6= (x�y�)d. We

say that x�y� and x�y� are k-bad if d � n�m� 4 and the products look like

x�y� = � � � 1
d
0 � � � � � �

x�y� = � � � 0
d
1 1 1 1

"

n�m�6
1 1 1 1 1 1| {z }

k

� � �

or vice versa (exchanging � and �).

In this case, say x�y� = � � � 0
d
1 1 1 1

"

n�m�6
1 1 1 1 1 1| {z }

k

� � � , we must require 2vx� + 2uy� to be

0 in the positions of each of these 1's in order to prevent a carry into position d + 1

when we add it to x�y� + 2d. In order to allow m = O(
p
n), we will ensure that the

products are not k-bad for k > m+ 4. Then the number of v's ruled out by each 1 of

x� and x� is 2m+ 10, and as long as the number of 1's in x� or x� is O(m), the total

number of v's ruled out is O(m2).

We will �rst show that we may begin with products that di�er in a high-order bit

but are not 1-bad, and then prove a version of Lemma 3 in which each application

allows the \badness" to grow by at most 1.

Lemma 4 For any two settings � and � to S that di�er on a bit of S0, there are three

(or fewer) variables xu; yv; z 2 S such that for �0 = �+xu+yv+z and �
0 = �+xu+yv+z,

the products x�0y�0 and x�0y�0 di�er in a high-order bit (in the range [n�m�4; n�1])

and moreover, are not 1-bad.
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(The comment \or fewer" refers to the fact that we may not need to set some or any

of these three variables.)

Lemma 5 Let T � X [ Y , and � and � be two settings to T . Let d be the great-

est index in [0; n � 2] such that (x�y�)d 6= (x�y�)d. Suppose d � n � m � 4 and

max(jT \Xj; jT \ Y j) = t � 2m + 5 and also that x�y� and x�y� are not k-bad, for

some k � m+ 4. Then there are two variables, xu; yv 2 T , such that

(x�0y�0)d+1 6= (x�0y�0)
d+1

for �0 = � + xu + yv and �0 = � + xu + yv, and moreover, x�0y�0 and x�0y�0 are not

(k + 1)-bad.

We now have

Theorem 5 Any read-once branching program for MULT has size 2
(
p
n).

Proof: The proof is exactly the same as the proof of Theorem 4 except for the lemmas.

We start with products that di�er in a high-order bit but are not 1-bad, as provided by

Lemma 4. The number of variables in X or Y set in these products is at most m+ 2.

We obtain a di�erence in bit n � 1 by iterating Lemma 5 at most m + 3 times, each

time setting at most one variable in X and in Y . This maintains t � (m+2)+(m+3)

and k � 1 + (m+ 3) as required.

We now give the proofs of Lemmas 4 and 5, which we restate for convenience.

Lemma 4 For any two settings � and � to S that di�er on a bit of S0, there are three

(or fewer) variables xu; yv; z 2 S such that for �0 = �+xu+yv+z and �
0 = �+xu+yv+z,

the products x�0y�0 and x�0y�0 di�er in a high-order bit (in the range [n�m�4; n�1])

and moreover, are not 1-bad.

Proof: Either x�y� and x�y� di�er (modulo 2n) by at least 2n�m�3 or not. If they

do, then they must di�er in a high-order bit (in the range [n �m� 4; n � 1]). If not,

we proceed just as in Lemma 2 to �nd a variable z such that x�+zy�+z and x�+zy�+z
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di�er by at least 2n�m�3: As in Lemma 2, when � and � di�er in a bit of S0 \X, it is

su�cient to set to 1 a variable yk 2 S \ Y such that 2k(x� � x�) is at least 2
n�m�2, or

two segments long, and at most 2n � 2n�m�2, or \negative two" segments long. Since

x�y� and x�y� di�er by less than one segment (2n�m�3), the translates x�+yky�+yk and

x�+yky�+yk di�er by more than 2n�m�3 and must fall into di�erent segments. The rest

of the proof follows exactly as before. In order to avoid overly cumbersome notation,

let us abuse it slightly by calling the products x�y� and x�y�, even though they should

possibly be called x�+zy�+z and x�+zy�+z.

Now that we know the products di�er in a high-order bit, it remains to ensure that

they are not 1-bad. Assume they are. Let d be the greatest index less than n of a bit

position in which x�y� and x�y� di�er.

First, we claim that if the products are 1-bad, then in fact d � n�m� 2. Because

if, say d = n � m � 3, then the products look like3
x�y� = � � � 1 0 � � �
x�y� = � � � 0

d
1 1 1

"

n�m�6
1 � � � and

therefore they di�er modulo 2n by at most 2n�m�7 + (2n�m�4 � 1) (since they agree in

bits d+1 through n�1), but we know they di�er by at least 2n�m�3. Furthermore, by

the same reasoning, not only is d � n�m�2, but x�y� must have a 1 in some position

between d� 2 and n�m� 4 inclusive (note that (x�y�)d�1 = 0; else the products are

not 1-bad). For otherwise, the products look like

x�y� = � � � 1
d
0 0 0 0 0 � � �

x�y� = � � � 0
d
1 1 1 1 1 1 1

"

n�m�6
1 � � � and

thus they di�er modulo 2n by at most 2n�m�7 + 2n�m�4 � 1, a contradiction.

So we are reduced to the case that the products are 1-bad, di�er in position d �
n�m� 2, and x�y� has a 1 in some position between d � 2 and n�m� 4. Let ` be

the highest index of a 1 in this range: x�y� = � � � 1
d
0 0 0 1

`
� � � . We will �nd a pair of

variables (xu; yv) with u+ v = n�m� 6 so that the cross terms 2vx�; 2
vx�; 2

uy�; 2
uy�

all have 0's in positions n � m � 8 through n � 1. Then (2u+v + 2vx� + 2uy�) and

(2u+v + 2vx� + 2uy�) both look like � � � 0
"

n�1
0 0 0 0 0 0 1

"

n�m�6
0 � � � . We see that x�0y�0 looks

like either � � � 1
d
0 0 0 1

`
� � � if there is no carry into position ` when 2u+v + 2vx� + 2uy�

3Without loss of generality, let us assume that in position d, x�y� has a 1 and x�y� has a 0.
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is added to x�y�, or � � � 1
d
0 0 1 0

`
� � � if there is a carry into position `. Meanwhile,

x�0y�0 =

� � � 0
d
1 1 1 1 1 1 1 1 � � �

+ � � � 0 0 0 0 0 0 0 1 0 � � �
looks like � � � 1

d
0 0 0 0 0 0 0

"

n�m�6
� � � or � � � 1

d
0 0 0 0 0 0 1

"

n�m�6
� � �

depending on whether there is a carry into position n�m� 6 in this addition.

Since x�0y�0 has 0's in positions ` � d � 2 and ` � 1 � n � m � 5, we see that

x�0y�0 and x�0y�0 look like
x�0y�0 = � � � 1

d
0 0 0 0 1

d0
� � �

x�0y�0 = � � � 1
d
0 0 0 0 0

d0
0 � � �

where d0 is either ` or ` + 1.

Furthermore, the products agree in all higher bits up to n�1 because by the de�nition

of d, x�y� and x�y� agree in bits d + 1 through n � 1 and we chose xu and yv so that

the cross terms have 0's in these positions. Since ` � n�m� 4, it follows that x�0y�0

and x�0y�0 di�er in a high-order bit and are not even 1-bad.

A counting argument like that for Lemma 3 shows that we may choose xu and yv

as needed. We require the cross terms to have 0's in at most m + 8 positions. Since

at most m+ 1 bits are set to 1 in x� or x�, the total number of values v that we may

not choose is (m+ 1)(m + 8) + (m+ 1). The same number of values u are ruled out,

making a total of at most 2(m+1)(m+ 9) = 2n
9
+O(

p
n) pairs (xu; yv) that are ruled

out. Since there are n�m� 5 pairs to choose from initially, we retain 
(n) pairs.

Lemma 5 Let T � X [ Y , and � and � be two settings to T . Let d be the great-

est index in [0; n � 2] such that (x�y�)d 6= (x�y�)d. Suppose d � n � m � 4 and

max(jT \Xj; jT \ Y j) = t � 2m + 5 and also that x�y� and x�y� are not k-bad, for

some k � m+ 4. Then there are two variables, xu; yv 2 T , such that

(x�0y�0)d+1 6= (x�0y�0)
d+1

for �0 = � + xu + yv and �0 = � + xu + yv, and moreover, x�0y�0 and x�0y�0 are not

(k + 1)-bad.

Proof: We have four possible cases (up to switching � and �):

x�y� =

x�y� =

(1): � � � 1
d
0 � � �

� � � 0
d
0 � � �

(2): � � � 1
d
1 � � �

� � � 0
d
0 � � �

(3): � � � 1
d
1 � � �

� � � 0
d
1 � � �

or (4): � � � 1
d
0 � � �

� � � 0
d
1 1 1 1 1 0 � � �
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By assumption, d � n�m� 4.

Case 1: x�y� = � � � 1
d
0 � � �

x�y� = � � � 0
d
0 � � �

It is su�cient to choose (xu; yv) so that u + v = d and each of the cross terms

2vx�; 2
uy�; 2

vx�, and 2uy� has 0's in positions d � 3 through d + 1. Then the sums

2vx� + 2uy� and 2vx� + 2uy� have 0's in positions d � 2 through d + 1. Adding these

to x�y� and x�y� respectively therefore causes no carry into position d and thus the

addition of 2u+v = 2d causes a carry into bit d+1 for � but not for �. Since x�y� and

x�y� agree in bits d+1 through n� 1, this carry bit causes them to di�er in bit d+ 1

and possibly higher bits as well.

We now verify that x�0y�0 and x�0y�0 are not 1-bad. We know that 2u+v+2vx�+2uy�

looks like � � � 0 1
d
0 0 � � � . Thus x�0y�0 =

� � � 0
d
0 � � �

+ � � � 0 1 0 0 � � �
looks like either � � � 1

d
0 � � � or

� � � 1
d
1 0 � � � , depending on whether there is a carry into position d�1. Thus x�0y�0 does

not have a string of 1's extending past position d�1 � n�m�5 and cannot make the

products even 1-bad. Since the products di�er in position d + 1 or higher and x�0y�0

has a 0 in position d, the products cannot be 1-bad due to a string of 1's in x�0y�0.

To see that we can choose (xu; yv) as desired, we argue as in the proof of Lemma 3.

The number of positions required to be 0 is 5, ruling out 5t values of v. Of the

d+1 = n�O(
p
n) pairs (xu; yv) such that u+ v = d, the number of pairs ruled out is

at most 2(5t + t) = 12t � 12(2m + 5) = O(
p
n), so there are 
(n) remaining pairs to

choose from.

Cases 2: x�y� = � � � 1
d
1 � � �

x�y� = � � � 0
d
0 � � �

and 3: x�y� = � � � 1
d
1 � � �

x�y� = � � � 0
d
1 � � �

It is su�cient to choose (xu; yv) as in Case 1 except that u+ v = d � 1. Adding 2d�1

will cause a carry to propagate into position d+1 for � but not for �, causing them to

di�er in bit d+1 and possibly higher bits as well. The counting argument for choosing
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(xu; yv) is exactly the same as in Case 1 except that there is one fewer pair (xu; yv)

with u+ v = d� 1.

It only remains to show that in fact x�0y�0 and x�0y�0 are not 1-bad. Now 2u+v +

2vx� + 2uy� looks like � � � 0 0
d
1 0 � � � and so does 2u+v + 2vx� + 2uy�. Thus x�0y�0 =

� � � 1
d
1 � � �

+ � � � 0 0 1 0 � � �
, and we see that it has a 0 in bit d.

Looking now at x�0y�0, we see that in Case 2, x�0y�0 =

� � � 0
d
0 � � �

+ � � � 0 0 1 0 � � �
looks like

either � � � 0
d
1 � � � or � � � 1

d
0 � � � , depending on whether there is a carry into position d�

1. In Case 3, x�0y�0 =

� � � 0
d
1 � � �

+ � � � 0 0 1 0 � � �
looks like either � � � 1

d
0 � � � or � � � 1

d
1 0 � � � ,

depending on whether there is a carry into position d� 1. In any case, x�0y�0 does not

have a string of 1's extending past d� 2 � n�m� 6, and so x�0y�0 and x�0y�0 are not

even 1-bad.

Case 4: x�y� = � � � 1
d
0 � � �

x�y� = � � � 0
d
1 1 1 1

"

n�m�6

k�1z }| {
1 1 1 1 0 � � �

Without loss of generality, let us say that x�y� contains the maximumnumber, k�1, of

consecutive 1's extending past position n�m�6. We choose (xu; yv) so that u+v = d

and the cross terms 2vx�, 2
uy�, 2

vx� and 2uy� have 0's in positions (n�m�6)�k�2

through n� 1. This will ensure that from 2d we get a carry into position d+ 1 for �0

but not for �0, causing the products to di�er in bit d + 1 and possibly higher bits as

well.

The sum 2vx� + 2uy� has 0's in positions (n � m � 6) � k � 1 through n � 1,

so x�0y�0 =

� � � 0
d
1 1 1 1

k�1z }| {
1 1 1 1 0 � � �

+ � � � 0 1 0 0 0 0 0 0 0 0 0 0 � � �
looks like either � � � 1

d
1 1 1 1

k�1z }| {
1 1 1 1 0 � � � or
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� � � 1
d
1 1 1 1

k�1z }| {
1 1 1 1 1 0 � � � , depending on whether there is a carry into position (n�m�

6) � k. So x�0y�0 has at most k 1's extending past position n � m � 6. The pair of

products cannot be worse than k-bad because of a longer string of 1's in x�0y�0 because

the products di�er in position d + 1 or higher and x�0y�0 has a 0 in position d. Thus

x�0y�0 and x�0y�0 are at worst k-bad.

The number of positions in which we require 2vx� or 2
ux� to be 0 is m+6+k+2 �

2m + 12. Together, x� and x� may rule out t(2m + 12) values v in addition to the t

variables yv already in T . Taking into account the same number of values u ruled out

by y� and y�, there are at most 2(t(2m + 12) + t)) pairs (xu; yv) that could be ruled

out. Of the d+1 = n�O(
p
n) possible pairs (xu; yv) with u+v = d, a total of at most

2(2m+ 5)(2m + 13) = 8
n

9
+O(

p
n)

pairs are ruled out, leaving n
9
�O(

p
n) = 
(n) pairs to choose from. For n � 56; 000,

we can say there is at least one pair left.

For preciseness, we have given explicit values of n above which our proofs hold; these

numbers are most likely a re
ection of our proofs rather than the true complexity, and

should not be taken very seriously.
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3.4 Problem reductions

We may deduce similar lower bounds for other boolean functions by the standard

technique of problem reduction. In order to preserve read-once complexity, we will

consider a very restrictive type of problem reduction. We begin with the notion of

projection reductions [SV81], as de�ned in [CSV84]:

De�nition 5 A function f = ffngn2N is projection reducible to a function g = fgngn2N,
written f �proj g, if there is a mapping

� : fy1; : : : ; yp(n)g ! f0; 1; x1; : : : ; xn; x1; : : : ; xng

such that

fn(x1; : : : ; xn) = gp(n)(�(y1); : : : ; �(yp(n)))

for some function p(n) bounded above by a polynomial in n.

In other words, f�projg if one can use as a black box an algorithm (circuit, branching

program) for g(y1; : : : ; yp(n)) simply by substituting the inputs to f for the inputs to g

and then taking the output of the algorithm as the output for f . These reductions were

used by Chandra, Stockmeyer, and Vishkin [CSV84] in their study of constant-depth

reducibility|clearly, given that f �proj g, if g 2 AC0 then f 2 AC0.

We would like a reduction�0 that allows us to deduce that if f �0 g and g 2 READ-1

then f 2 READ-1. It is easy to see that projection reductions satisfy this condition if

the mapping � is injective with respect to the x variables:

De�nition 6 A function f is read-once reducible to a function g, denoted f �r-o g, if

there is a projection reduction � from f to g in which for i 6= j,

�(yi) 6= �(yj) and �(yi) 6= �(yj):

It follows that a read-once branching program for f(x1; : : : ; xn) is obtained by rela-

belling the nodes of a read-once program for g(y1; : : : ; yn).
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3.4.1 Reductions to other arithmetic functions

Projection reductions have also been used to deduce tight lower bounds on the depth of

polynomial-size threshold circuits. It was originally proved in [HMPST93] that INNER-

PRODUCT-MODULO-2 cannot be computed in polynomial-size by threshold circuits

of depth 2. It was also noted there that the projection reduction to multiplication (�rst

given in [FSS84], from PARITY to MULT) shows that MULT obeys the same lower

bound.

Wegener [We93] gives projection reductions from MULT to squaring and inversion

in order to show that these functions also require depth 3 polynomial-size threshold

circuits. The lower bound for the middle bit of multiplication implies a lower bound

for the appropriate bit of these two functions. We phrase the reductions in [We93] in

terms of the following Boolean functions:

� SQUARING : f0; 1gn ! f0; 1g; computes \the" middle bit (here, bit n rather

than bit n� 1 which we chose for MULT) in the square of an n-bit integer:

SQUARING(z) = (z2)n:

� INVERSION : f0; 1gn ! f0; 1g; computes the ones' bit in the reciprocal of an

n-bit number between 0 and 1:

INVERSION(x) = y0

where x represents the number 0 : x1x2 � � �xn =
P

i xi2
�i and y = yn � � � y0 is the

integral part of 1=x. (Note that 1 < y � 2n.) De�ne the function to be 0 if all xi

are 0.

Wegener actually shows that

MULT �proj SQUARING �proj INVERSION;

except that the reductions are given for all bits of multiplication, squaring, and in-

version. Though it is not noted there, we shall see that each reduction is actually

a read-once reduction. The polynomial p(n) of the reduction is linear in both cases,

implying that if each bit of the function is computable with a read-once program of

size f(n), then MULT is computable with a read-once program of size f(cn) for some

constant c. This gives the following corollaries to Theorem 5:



x3.4 Problem reductions 63

Corollary 1 Any read-once branching program for computing the function SQUARING

has size at least 2
(
p
n).

Proof: We verify that the reduction in [We93] shows MULT�r-o SQUARING with a

polynomial p(n) = 3n + 2. In addition to verifying p(n), we must also check that the

reduction is indeed between these two Boolean functions and also that the mapping � is

injective. The reduction simply maps the n-bit inputs x; y (of MULT) to the (3n+2)-

bit input z = x22(n+1) + y (of SQUARING), so that z2 = x224(n+1) + xy22(n+1)+1 + y2.

The middle bit of the product xy is found in the middle bit of z2: (xy)n�1 = (z2)3n+2.

Thus p(n) = 3n+ 2. It is clear that the mapping � is injective since

�(zi) =

8>><
>>:

yi if 0 � i < n;

0 if n � i < 2(n + 1);

xi�2(n+1) if 2(n + 1) � i < 2(n + 1) + n:

Corollary 2 Any read-once branching program for computing the function INVERSION

has size at least 2
(
p
n).

Proof: We verify that the reduction in [We93] shows SQUARING �r-o INVERSION

with polynomial p(n) = 17n + 1.

The reduction SQUARING�projINVERSION reduces the problem of computing the

square of an n-bit integerm to the problem of computing 1=(1�x) = 1+x+x2+x3+� � �
where

1� x = 1�m 2�4n � 2�10n;

which is a 10n-bit number slightly less than 1. The proof in [We93] shows that the

product m2 lies in bit positions �6n�1 through �8n in 1=(1�x), its middle bit being

in position �7n. By instead computing the inverse of 2�7n(1 � x), a 17n-bit number,

we �nd the middle bit of m2 in position 0.

For example, working in decimal, we may compute 52 (so n = 1) by letting 1�x =

1� 5 � 10�4 � 10�10 and calculating

�
1 � 5 � 10�4 � 10�10

��1
= 1:000500250225 � � �
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from which we may recover 52 = 25 in positions �7 and �8. By instead calculating

(10�7 � (1� 5 � 10�4 � 10�10))�1, we may �nd the middle digit, 2, of 25 in position 0.

To see that the mapping � is injective, simply notice that 1�x = 1�m 2�4n�2�10n

has 1's in all positions �1 through �10n, except in positions �3n � 1 through �4n
where it has exactly the complements of the bits of m. The number 2�7n(1 � x) is

similar, with extra 0's on the left.
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Discussion and further work

In this thesis, we have proved that integer multiplication requires exponential-size

read-once branching programs. This fact is important for the hardware veri�cation

community, which would like to �nd a simple model in which multiplication can be

computed with polynomial size. It was known already that most oblivious branching

programs, which are good candidates because of the ease with which they are manip-

ulated, require exponential size to compute multiplication.

In the course of understanding the relevant lower bounds and related models, we

have also assembled a survey of the structure of these low-level complexity classes,

and also of the main ideas that have been brought to bear in thinking about their

computation. This survey also includes a few simple proofs that have not yet appeared

in the literature.

Further work

There are many open questions surrounding the topics of this thesis, some of which

have already been mentioned. We will describe some of these problems that we consider

to be the most important, interesting, or tractable. The oldest of these problems,

open since [FHS78], is

65
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Open Question 1 Is there a deterministic polynomial-time algorithm for determining

the equivalence of two read-once programs?

The answer to this question loses some practical signi�cance in light of the lower bound

for multiplication and the intractability of the synthesis operations, which make read-

once programs less attractive as an alternative to OBDD's in hardware veri�cation.

Multiplication

Although perhaps not the most interesting question, there is the possibility of improv-

ing the lower bound for multiplication. We doubt that 2�(
p
n) is the true read-once

complexity of MULT (recall that Bryant's lower bound for OBDD's is 2n=8), but the

simple counting technique used in our proof seems limited to this lower bound. It is

curious that many of the lower bounds for read-once programs achieve only 2
(
p
n) if

n is the number of input bits|only the lower bound of [BHST87] achieves a fully ex-

ponential lower bound of 2
(n). This limitation is most likely an artifact of the proofs,

but it is not well understood.

In addition to improving the bound, it may also be possible to extend the argument

to show that a similar bound holds for nondeterministic read-once programs or for read-

k-times programs.

Open Question 2 Does MULT require superpolynomial nondeterministic read-once

programs? : : : superpolynomial read-k-times programs?

For nondeterministic read-once programs, we may de�ne frontier edges as before. Now,

however, it is not necessary for the inputs reaching an edge to induce the same sub-

function on the remaining input variables, since inputs may follow several di�erent

paths. We can say, however, that the inputs in MULT
�1(1) that pass through a fron-

tier edge are described by a function f1(X1; Y1) ^ f2(X2; Y2) where X1 [ Y1 is in the

boundary of the �lter F and X2 [ Y2 = (X [ Y ) n (X1 [ Y1). Thus MULT can be

written as the conjunction, over all frontier edges, of such functions. We would like to

show that since each of these functions must reject all of MULT
�1(0), it can accept

only an exponentially small fraction of MULT
�1(1).
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That is, we would like to show that given MULT(uv) = 1 for all u 2 f�11 (1) and

v 2 f�12 (1), it must be that jf�11 (1) � f�12 (1)j � 2�n
k � jMULT

�1(1)j for some k > 0.

(Here, u is a setting to X1[Y1 and v is a setting to X2[Y2.) For comparison, the proof

of our lower bound (Theorem 5) in e�ect shows that given MULT(uv) = MULT(u0v)

for all u; u0 2 f�11 (1) and for all inputs v, it must be that jf�11 (1)j � 2jvj is a fraction

2�
(
p
n) of the total number of inputs, 22n.

Finally, we mention that there seem to be no nontrivial upper bounds forMULT in

either nondeterministic or randomized read-k-times models, for k = o(n). Of course,

in all other models considered in this thesis|OBDD's, k-OBDD's, k-IBDD's, indeed

any linear-length oblivious programs, even nondeterministic, as well as non-oblivious

read-once programs|it is known that exponential size is required.

The read-k-times hierarchy

As mentioned in Section 2.4.1, it is not known whether the read-k-times hierarchy is

strict:

Open Question 3 For some k > 2, is there a function computable by polynomial-

size read-k-times programs but not computable by polynomial-size read-(k � 1)-times

programs?

In [SS93], it is conjectured that such a function is the problem of determining

whether a k-dimensional hypergraph on n nodes is r-regular for, say, r = n=2. (Re-

call that [SS93] proves that this problem on ordinary graphs (k = 2), while easily

computed by read-2-times programs, requires read-once programs of size 2
(n).) The

function �-MATRIX may be regarded as a special case of this problem: it is the case

of determining whether a bipartite n � n graph is 1-regular. We believe that higher

dimensional versions of this latter problem should separate the read-k-times hierarchy.

For example, consider the 3-dimensional version, \�-CUBE", de�ned on an n�n�n
cube of boolean variables, which has the value 1 exactly when each of the n planes

in each of the 3 dimensions contains exactly one 1. �-CUBE is easily computed with

read-3-times programs. Here is a possible strategy for showing it is not computable
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with polynomial-size read-2-times programs. According to Theorem 1 in [BRS93], a

read-2-times program for �-CUBE enables us to express the function as

�-CUBE =

poly(BPsize)_
i=1

fi1(Xi1) ^ fi2(Xi2) ^ fi3(Xi3) ^ fi4(Xi4)

where each Xij is a subset of half the n
3 variables and each variable appears in at most

two of Xi1;Xi2;Xi3;Xi4 for each i. We would like to show that a function of the form

fi1(Xi1) ^ fi2(Xi2) ^ fi3(Xi3) ^ fi4(Xi4), which rejects all of �-CUBE�1(0), can accept

only an exponentially small fraction of �-CUBE�1(1).

Since each variable is in two of theXi, one of the three partitionsXi1[Xi2 j Xi3[Xi4,

Xi1 [Xi3 j Xi2 [Xi4 and Xi1 [Xi4 j Xi2 [Xi3 contains that variable on only one side

of the partition (\fails to split" that variable). It follows that one of these partitions

fails to split at least 1=3 of the variables. From this, we may argue further that for one

of these partitions, there are at least 1=6 of the variables, S, that appear only on one

side of the partition and at least 1=6 of the variables, T , that appear only on the other

side. Thus, we may write (if the best partition is X1 [X2 j X3 [X4)

fi1(Xi1) ^ fi2(Xi2) ^ fi3(Xi3) ^ fi4(Xi4) = f 0i(Xi1 [Xi2) ^ f 00i (Xi3 [Xi4)

= f 0i(X n S) ^ f 00i (X n T ):

Since S and T each has more than 1=8 of all the variables, there must be many coplanar

pairs (s; t) 2 S � T . This function cannot accept two inputs x and y that have s = 1

and t = 1 respectively if x and y agree on the variables S [ T , since then it would

also accept the input (which should be rejected) that looks like x on S and like y

on T . Furthermore, the fraction of inputs in �-CUBE�1(1) that have all 0's in a given
n
c
� n

c
� n

c
subcube is exponentially small in n, for c constant. It should be possible to

combine these facts to obtain the desired lower bound.

Read-once reductions

Read-once reductions appear to be rather limited in their utility. It is not clear, for

example, how to use them even to show that directed s; t-connectivity does not have

polynomial-size read-once programs. (This function, being NL-complete, is not known
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to have polynomial-size branching programs at all, regardless of restrictions on reading

variables.) We may construct a branching program of size O(n3) for MULT in which

there is a s; t-path if and only ifMULT is 1, but since many edges are labelled with the

same MULT variable, a computation that reads each edge variable once in fact reads

the variables of MULT many times. In other words, this is a projection reduction in

which the variable mapping does not have the necessary injectivity property.

The Fourier spectrum

It is an interesting question whether there is any correlation between the Fourier spec-

trum of a function and the size of its OBDD's.

Open Question 4 Is there a nice correlation between some property of a functions

Fourier spectrum and the size of its OBDD's?

In particular, it would be useful to know which coe�cients are the largest, as this is

the information that is used in the remarkable algorithms for learning functions with

shallow decision trees or small constant-depth circuits. As explained in Section 2.7.2,

the correlations found between such functions and the properties of their spectrums do

not hold for OBDD's.

The ordering problem for OBDD's

One of the most useful research directions, as far as the hardware veri�cation com-

munity is concerned, is further analysis of the variable ordering problem described in

Section 2.7.1. Now that it is known to be NP-complete, approximation algorithms|or

results demonstrating the hardness of approximability|are of most interest.

Open Question 5 Is there a reasonable algorithm (in P, RP, or BPP) which, given

an OBDD, �nds another OBDD (possibly obeying a di�erent ordering of the variables)

with size that is within a bounded factor of optimal?

Randomized algorithms for this problem should also be considered.
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