Reactive Synchronization Algorithms
for Multiprocessors
by
Beng-Hong Lim
B.S., Electrical Engineering and Computer Science
Massachusetts | nstitute of Technology, 1986

M.S., Electrical Engineering and Computer Science
Massachusetts | nstitute of Technology, 1991

Submitted to the
DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
in partial fulfillment of the requirements

for the degree of
DOCTOR OF PHILOSOPHY
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1995

(© 1995, Massachusetts I nstitute of Technology
All rights reserved

Signature of Author

Department of Electrical Engineering and Computer Science
October 28, 1994

Certified by

Anant Agarwal
Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by

Frederic R. Morgenthaler
Chairman, EECS Committee on Graduate Students

Reactive Synchronization Algorithms
for Multiprocessors

by
Beng-Hong Lim

Submitted to the Department of Electrical Engineering and Computer Science
on October 28, 1994 in partia fulfillment of the
reguirements for the Degree of

Doctor of Philosophy
in Electrical Engineering and Computer Science

ABSTRACT

Efficient synchronization algorithms are hard to design because their performance depends
on run-time factors that are hard to predict. In particular, the designer has a choice of protocols
to implement the synchronization operation, and a choice of waiting mechanisms to wait for
synchronization delays. Frequently, theright choice depends on run-time factors such as contention
and waiting time. As a solution, this thesis investigates reactive synchronization algorithms that
dynamically select protocol sand waiting mechanismsin responseto run-timefactors so asto achieve
better performance. Through analysis and experimentation, we show that reactive algorithms can
achieve close to optimal performance, while incurring minimal run-time overhead.

The first part of this thesis investigates reactive algorithms that dynamically select protocols.
We describe aframework for efficiently coordinating concurrent protocol executions with protocol
changes, and introduce the notion of consensus objectsthat help preserve correctness. Experiments
with reactive agorithms for spin-locks and fetch-and-op demonstrate that the reactive agorithms
perform close to the best static choice of protocols at any fixed level of contention. With mixed
levels of contention, the reactive algorithms can actually outperform a static choice of protocols.
M easurements of parallel applications show that a bad choice of protocols can result in three times
worse performance over the optimal choice. The reactive algorithmsare typically within 5% of the
best static choice of protocols, and outperform a static choice by 18% in one of the applications.

The second part of thisthesisinvestigates two-phase waiting a gorithmsfor dynamically select-
ing waiting mechanisms. A two-phase waiting algorithm first polls until the cost of polling reaches
alimit L,.; before blocking. We prove that under exponentially distributed waiting times, a static
choice of L,.; results in waiting costs that are at most 1.59 times the cost of an optimal off-line
algorithm. Under uniformly distributed waiting times, waiting costs are no more than 1.62 times
the cost of an optimal off-line agorithm. These performance bounds are close to the theoretical
limit for on-line waiting algorithms. Experimental measurements of several parallel applications
demonstrate the robustness of two-phase waiting algorithms, and corroborate the theoretical results.

Thesis Supervisor: Anant Agarwal
Title: Associate Professor of Electrical Engineering and Computer Science

Acknowledgments

This thesis marks the culmination of six years of graduate study, during which | have had
the privilege and pleasure of working with a very capable and highly motivated group of
people on the Alewife project. The process of participating in aproject to build acomplete
multiprocessing system is a unigue experience that has provided me with a rich source of
ideas for my thesis research.

Anant Agarwal, my thesis supervisor and also the Alewife project leader, has been
influential in many ways. This thesis would not have been possible without his invaluable
guidance and his ability to see thebig picture. Heisalso agreat source of motivation, which
is especialy important for completing a Ph.D. thesis. Thanks aso to Steve Ward and Bill
Weihl, my thesis readers, for their support, constructive criticisms, and fresh perspectives
on the value and limitations of my thesis research.

The Alewife group members provided me with a superb research environment. |
enjoyed working with David Kranz on Alewife’'s system software. John Kubiatowicz, our
chief architect, was an endless source of good ideas. Kirk Johnson, Ken Mackenzie, and
Donald Yeung were great colleagues and friendsfor bouncing half-baked research ideas of f
of. Itisaso safe to say that none of the Alewife group members would have been able to
functionwithout Anne McCarthy totakecareof us. Finally, David Chaiken, my office-mate
and friend through all these years, was one person | could alwaysturn to, literaly, for help.
When we entered graduate school together, we decided that we would graduate by thetime
our office plant reached the ceiling. It has, and we are both graduating.

Outside of the Alewife group, Maurice Herlihy and Nir Shavit were influential in my
work on synchronization algorithms. | gained valuable experience from working with them
on counting networks in particular, and on multiprocessor coordination in general. My
research has also benefited from fruitful discussions with Eric Brewer, Stuart Fiske, Wilson
Hsieh, and Debbie Wallach.

Many thanks to all my friends for caring for me and for constantly reminding me that
life exists outside of graduate school. | am also indebted to my in-laws for their love and
for providing me with a home away from home.

| am eternally grateful for the love, support, and encouragement of my parents and my
sister. They have seen me through all my years of education and have shared in all my
hardships and successes. | would never have been able to come so far and achieve so much
without them. | hopethat | can give as much back to them as they have given to me.

Lastly, and most importantly, | wish to acknowledge the unconditional love and support
of my wife, Angela (HB) Chang. She has been a great friend and a dependable pillar of
strength through all the hard times. Sheisthe main reason that | have been able to keep my
sanity during these last few years. Thisthesisisdedicated to her.

Contents

Introduction

1.1 Reactive Synchronization Algorithms
111 Protocol Selection Lo
1.1.2 Waiting Mechanism Selection

1.2 Contributionsof thisThess

1.3 Teminology

14 ThessOutline

Background

2.1 Competitive On-Line Algorithms
211 TaskSystems

2.2 Experimental Platform oL o oo
221 TheAlewifeMultiprocessor
222 NWO: TheAlewifeSimulator
223 SynchronizationSupport.
224 Run-TimeSystem Assumptions

Protocol Selection Algorithms

31 Motivation
311 PassveSpin-Lock Algorithms.
312 PassveFetch-and-Op Algorithms
3.1.3 TheProblemwith Passve Algorithms

3.2 TheDesign of Protocol Selection Algorithms
321 ConcurrentSyssemMode
3.2.2 Protocol Object Specification
3.23 A Concurrent Protocol Manager
3.24 Protocol Object Implementations
325 Serdizing Protocol Changes
3.26 PerformanceOptimizations

3.3 Reactive Spin-Lock and Fetch-and-Op Algorithms
3.3.1 TheReactive Spin-Lock Algorithm
3.3.2 TheReactive Fetch-and-Op Algorithm

3.4 Policiesfor Switching Protocols 55

341 A3-CompetitivePolicy 56
35 Experimental Results, 58
351 BasdineTest. 59
352 SpinLocksonAlewifeHardware 62
353 MultipleObjectTest 63
354 TimeVayingContentionTest 68
355 Alternative SwitchingPolicies. 69
356 ApplicationPerformance 74
3.6 Reactive Algorithmsand Message-Passing Protocols 77
3.7 Implementing aProtocol Selection Algorithm 79
3.7.1 Phasel: Implementing aCorrect Algorithm. 80
3.7.2 Phase2: Policy and PerformanceTuning 82
373 TheReactiveSpinLock 83
38 Summary. 86
Waiting Algorithms 88
41 WatingMechanisms. o 89
42 PollingversusSignaling L o 92
421 Pollingvs. SigndingasaTask System 92
4.3 Two-Phase Waiting Algorithms 9
43.1 Static Two-Phase Waiting Algorithms 94
44 Andyssof WaitingAlgorithms oo 95
44.1 Competitive Algorithmsand Adversaries 95
442 Expected WaitingCosts 97
4.4.3 Waiting Time Distributionsand Synchronization Types 98
4.5 Deriving Optimal Valuesfor L, o oo oo 99
451 Exponentialy Distributed Waiting Times 99
45.2 Uniformly Distributed Waiting Times 103
453 Summary 106
46 Experiments 107
4.6.1 SynchronizationConstructs 107
46.2 Benchmarks 109
47 Experimental Results 111
471 Wating-TimeProfiles 111
472 ApplicationPerformance L oL 114
473 Changing Lyoi - « - v v v v v e 121
4.8 SUMMAY o o oo e e 121
Related Work 123
51 Synchronization Algorithms L. 123
511 Scalable Synchronization Algorithms 123
512 WaitingAlgorithms Lo 124

513 AdaptiveMethods
52 Complementary Methods
521 ProgramRestructuring.o
522 Multithreading o
5.3 Concurrent Search Structure Algorithms.

Summary and Future Work
6.1 Summary.
6.2 FutureWork

An Overview of Spec

Specification of Protocol Selection Algorithms

B.1 A Sequential Specification of aProtocol Object
B.2 A (C-seria Specification of aProtocol Object
B.3 AnImplementation of a Protocol Manager
B.4 A C-seridizable Implementation of aProtocol Object
B.5 A Generic Protocol Selection Algorithm for Lock Protocols.

The Reactive Fetch-and-Op Algorithm
C.1 Goodman et al.’'s Combining Tree Algorithm
C.2 TheReactiveFetch-and-Op

List of Tables

41
4.2
4.3
44
45
4.6

Breakdown of the cost of blocking in Alewife.. 90
Benchmarks used for testing waiting algorithms. 109
Performance figures for producer-consumer synchronization. 119
Performance figuresfor barrier synchronization. 119
Performance figures for mutual-exclusion synchronization. 120
Performancefiguresfor L,,; =05B. 122

List of Figures

11
12

2.1
22
2.3

31
3.2
3.3
3.4
35
3.6
3.7
3.8
39
3.10
311
312
3.13
3.14
3.15
3.16

3.17
3.18
3.19
3.20

321
3.22

3.23

The tradeoff between spinlock algorithms. 11
The components of areactive synchronization algorithm. 13
An exampletask system with 2 statesand 3tasks. 21
AnAlewifenode. 23
Organization of the NWO smulation system for Alewife. 25
The MCS queue lock protocol by Mellor-Crummey and Scott. 30
Baseline performance of passive spin lock and fetch-and-op algorithms. . 32
A concurrent system model of a passive synchronization algorithm. 35
A concurrent system model of a protocol selection algorithm. 36
A specification of the operations of a protocol object. 38
A protocol manager. 40
A naive implementation of a protocol object based onlocks. 41
Example C-serial and non-C-serial histories. 43
Example C-serial history with multiple protocol objects. 44
Serializing protocol executions and changes with consensus objects. . . . 48
An implementation of aprotocol object for aprotocol with consensus objects. 49
Components of thereactivespinlock. 52
A task system that offers a choice between two protocols, A andB. 56
Worst-case scenario for a 3-competitive protocol switching policy. 57
Basealine performance of spin lock and fetch-and-op algorithms. 59
Baseline performance of spin lock algorithms on the 16-processor Alewife

prototype. 63
Elapsed times for the multiple lock test, contention patterns1-4. 65
Elapsed times for the multiple lock test, contention patterns5-8. 66
Elapsed times for the multiple lock test contention patterns9-12. 67
The time-varying contention test periodically varies the level of contention

to forcethe reactive lock to undergo protocol changes. 69
Elapsed times for the time-varying contentiontest. 70
Elapsed times for the time-varying contention test with a 3-competitive

protocol-switchingpolicy. oL 72
Elapsed timesfor thetime-varying contention test with aprotocol-switching

policy basedon hysteresis. 73

3.24
3.25
3.26

3.27
3.28
3.29

41
4.2
4.3
4.4
45
4.6
4.7
4.8
4.9
4.10
411
412
4.13
4.14

B.1
B.2
B.3
B.4
B.5
B.6

C1l
C.2
C3
C4
C5
C.6
C.7

Execution timesfor applications using different fetch-and-op agorithms. . 74

Execution timesfor applications using different spin lock algorithms. . . . 76
Baseline performance comparing shared-memory and message-passing pro-

tocolsfor spinlocksand fetch-and-op. 79
Reactive spin lock: data structures and top-level dispatchcode. 83
Reactive spin lock: component protocols. 84
Reactive spin lock: making protocol changes. 85
Switch-Spinning — time line of three active contexts sharing aprocessor. . 91
A task system that offersachoice between polling and signaling mechanisms. 93

Overview of method for analyzing the expected costs of waiting algorithms. 96
Expected competitive factors under exponentially distributed waiting times. 102
Expected competitive factors under uniformly distributed waiting times. . 104

Measured waiting timesfor J-structurereaders. 112
Measured waiting timesfor futures. 112
Measured barrier wait timesfor CGrad and Jacobi-Bar. 113
Measured barrier waiting timesfor Jacobi-Bar on an ideal memory system. 114
Semi-log plot of measured mutex waiting timesin FibHeap and Mutex. . 115
Measured mutex waiting timesin CountNet. 115
Execution timesfor producer-consumer synchronization benchmarks. . . . 116
Execution timesfor barrier synchronization benchmarks. 116
Execution times for mutual-exclusion synchronization benchmarks. 117
A sequential specification of aprotocol object. 140
A C-serial specification of aprotocol object. 141
A protocol manager. L. 142
A C-serializable implementation of aprotocol object. 143
A protocol selection algorithm for mutual-exclusionlocks. 145
A protocol selection algorithm for reader-writer locks. 146
Goodman et al.’s Combining Tree: PartsOneand Two. 148
Goodman et al.’s combining tree: PartsThreeandFour. 149
Reactive fetch-and-op: data structures and top-level dispatchcode. 151
Reactive fetch-and-op: test-and-test-and-set and queue lock-based protocols. 152
Reactive fetch-and-op: combining treeprotocol. 153
Reactive fetch-and-op: combining treeprotocol. 154
Reactive fetch-and-op: making protocol changes. 156

Chapter 1

| ntroduction

MIMD multiprocessors offer the most flexibility for executing paralel programs by not
forcing the hardware to adhere to any particular programming model. However, the asyn-
chrony of the processing nodesrequires parallel programs on such machinesto synchronize
to ensure correctness. For example, threads in ashared-memory parallel program typically
execute synchronization operations, such aslocks and barriers, to enforce mutual exclusion
and preserve data dependencies.

The overhead of synchronization can comprise a significant fraction of the execution
timeof aprogram. Furthermore, aswerun parallel programsonincreasingly larger numbers
of processors, we can expect the frequency of synchronization operations to increase and
comprise an even larger fraction of execution time. Synchronization also tends to serialize
computations and limit the achievable speedup of a paralel program. Therefore, it is
important to minimize the overhead of synchronization.

There exist several approaches to reducing the impact of synchronization in a parallel
program. This thesis focuses on designing efficient algorithms to minimize the overhead
of synchronization operations. Multiprocessors typically provide low-level synchroniza-
tion primitives in hardware, such as atomic read-modify-write instructions, and rely on
software synchronization agorithmsto synthes ze higher-level synchronization operations.
However, synchronization algorithms that are efficient and robust across a wide range of
operating conditionsare hard to design because their performance depends on unpredictable
run-time factors.

In particular, the designer of a synchronization agorithm has a choice of protocols to
implement the synchronization operation, and a choice of waiting mechanisms to wait for
synchronization conditions to be satisfied. Frequently, the best protocol depends on the
level of contention, while the best waiting mechanism depends on the length of the waiting

10

[¢)]

iy

N
1

N

a1

[e}]
T

128

Overhead (Cycles)

32+

Spin Locks

) —— Test&Test&Set w/ backoff
16+ / —— MCS Queue Lock
/ - ldeal

L
1 2 4 8 16 32 64
Contending Processors

Figure 1.1: The tradeoff between spin lock algorithms. “Overhead” represents the average
number of cyclesper completed synchronization operation that is dueto the synchronization
algorithmin use.

time. It is difficult to select the best protocol and waiting mechanism without a priori
knowledge of contention levels and waiting times that will be encountered during program
execution.

Choice of Protocols. Asan example of the choice of protocols, consider algorithms for
mutual-exclusion locks. One algorithm, commonly known as a test-and-set spin lock, uses
a protocol that acquires alock with a test& set instruction and releases a lock with a store
instruction. Although it is asimple and efficient protocol in the absence of contention, its
performance degrades drastically under high contention. A remedy is a queuing protocol
[43] that constructsasoftware queueof |ock waitersto reducememory contention. However,
gueuing comes at the price of a higher latency in the absence of contention. Anderson [5]
observes that the choi ce between the two protocol s depends on the level of lock contention.

Figure 1.1 illustrates the tradeoff between the test-and-set spin lock and the MCS queue
lock by Mellor-Crummey and Scott [43]. We measured the overhead incurred by these
spin lock algorithms on a ssimulation of the Alewife multiprocessor [4]. Each data point
represents the average overhead incurred by the synchronization algorithm for each critical
section with P processors contending for thelock. Onecan view the overhead asthe number
of cycles the locking algorithm adds to the execution of each critical section. Chapter 3

11

provides more details of this experimental measurement, but we present the results here to
motivate the need for dynamic protocol selection.

The results show that the best protocol to use depends on the level of contention. The
MCS gueue lock provides the best performance at high contention levels. However, it is
twice as expensive as the test-and-set lock when there is no contention due to the extra
overhead in maintaining the queue of lock waiters. We would like to design reactive
algorithmsthat dynamically select protocols so that its performancefollowstheidea curve.
As we will see in Chapter 3, our reactive spin-lock algorithm performs very close to this
ideal.

Choice of Waiting Mechanisms. A synchronization algorithm also faces a choice of
waiting mechanisms when waiting for synchronization conditions to be satisfied. Two
fundamental types of waiting mechanisms are polling and signaling. With a polling mech-
anism, the waiting thread periodically polls a synchronization variable and proceeds when
the variable attains a desired value. With a signaling mechanism, the waiting thread sus-
pends execution and allows another thread to use the processor. Commonly used waiting
mechanisms are spinning and blocking: spinning is a polling mechanism, while blocking
is a signaling mechanism. The Alewife multiprocessor provides additional polling and
signaling mechanisms through Sparcle, its multithreaded processor [3].

Since a polling mechanism incurs a cost that is proportional to the waiting time, while
a signaling mechanism incurs a fixed cost, the choice between a polling and a signaling
mechanism depends on the length of the waiting time [47]. Short waiting times favor
polling mechanisms while long waiting times favor signaling mechanisms. For example,
the cost of blocking a thread on the Alewife multiprocessor is about 500 cycles. Thus, if
the waiting timeisless than 500 cycles, spinning would be more efficient than blocking.

1.1 Reactive Synchronization Algorithms

The preceding discussion illustrates the difficulty of designing efficient synchronization
algorithms. The best choice depends on run-time factors that are hard to predict. Further-
more, a bad choice may result in unnecessarily high synchronization overheads. Given the
difficulty of making the right choice of protocols and waiting mechanisms, current practice
is to rely on the programmer to make the choice. However, this places an unnecessarily
heavy burden on the programmer, especially since the choice is run-time dependent.

When an optimal static choice of protocols and waiting mechanisms cannot be made,

12

Synchronization Algorithm

/\

Protocol Selection Algorithm Waiting Algorithm
Protocol A Protocol B Protocol C Spinning Switch—Spinning Blocking

Figure 1.2: The components of a reactive synchronization algorithm.

the obvious alternativeis to turn to run-time techniques for making the choice dynamically.
Thisthesisaddresses the question: Isit possibleto select protocolsand waiting mechanisms
dynamically and achieve close to optimal performance? The results of this thesis show that
thisgoal isindeed possible.

This thesis designs, implements and analyzes reactive synchronization algorithms that
automatically choose the best protocols and waiting mechanisms to use. Reactive syn-
chronization algorithms achieve this by monitoring and responding to run-time conditions.
Figure 1.2 illustratesthe componentsof areactive synchronization algorithm. Itiscomposed
of aprotocol selection agorithm and awaiting algorithm. The protocol selection algorithm
is responsible for choosing the best protocol to implement the synchronization operation,
while the waiting algorithm is responsible for choosing the best waiting mechanism to wait
for synchronization delays.

The main challenge in designing reactive synchronization algorithms is ensuring that
the run-time overhead of making the choices be kept to aminimum. Not only isit essential
that the run-time selection be correct, but it must also be performed with minimal overhead
and yield improved performance. This places alimit on the complexity of the algorithms
for detecting run-time conditions and deciding which protocol and waiting mechanism to
use.

Since dynamic protocol and waiting mechanism selection are instances of on-line prob-
lems, we rely on previous research on competitive algorithms [9, 41] to help design the
reactive algorithms. An on-line problem is one in which an agorithm must process a
sequence of requests without knowledge of future requests. Previous theoretical research
has designed competitive algorithms for solving on-line problemswith performancethat is
at most a constant factor worse than the performance of an optimal off-lineagorithm. This
constant is termed the competitive factor.

13

To demonstrate the performance benefits of reactive algorithms, this thesis implements
protocol selection agorithms and waiting algorithmsfor several common synchronization
operations. It evaluates their performance against the best known synchronization algo-
rithms. Experimental results demonstrate that the reactive synchronization algorithmsyield
robust performanceover awiderange of operating conditionswhileincurring minimal over-
head. In most cases, the reactive algorithms perform close to or better than the best static
choice of protocols and waiting mechanisms.

In designing and evaluating the performance of reactive algorithms, we were careful to
avoid relying on any specificfeaturesof the Alewifemultiprocessor. Thereactivea gorithms
rely only on conventional shared-memory primitives, and the results of thisthesis should be
applicabletomost multiprocessor architecturesthat support the shared-memory abstraction.

An important benefit of reactive synchronization algorithms is that they relieve the
programmer from the difficult, if not impossible, task of predicting run-time conditions to
minimize synchronization costs. The reactive synchronization algorithms can be provided
as alibrary of synchronization operations that a programmer can link with his program.
Although the protocol and waiting mechanism in use may change dynamically, theinterface
to the application program remains constant. Thus, the process of selecting the best proto-
cols and waiting mechanisms is entirely the responsibility of the reactive synchronization
algorithm, and is completely invisibleto the programmer using the synchronization library.

We subdivide this thesis into two major parts, each corresponding to one of the com-
ponents of a reactive synchronization algorithm. The first part is concerned with protocol
selection, while the second part is concerned with waiting mechanism selection. Dynamic
protocol selection and waiting mechanism selection involve different issues and problems.
Let us consider theissues involved in each of these partsin more detail.

1.1.1 Protocol Selection

There exists amultitude of protocolsfor common synchronization operations such aslocks,
barriers, and fetch-and-op. Recent research on synchronization algorithms has resulted in
protocols that are optimized for performance under high contention. Unfortunately, under
low contention, these so-called “ scalable’ protocols come at the price of higher overheads
than simpler protocols

Thistradeoff makesthe best choiceof protocol sdepend on run-timelevelsof contention.
To further complicate the choice, each of many synchronization objects in a program may
experience a different level of contention. For example, when traversing a directory data
structurethat isorganized as atree, locks at theroot of thetree arelikely to be more heavily

14

contended than locksthat are close to the leaves of thetree. Contention levels at each object
may also be data-dependent and may vary over time. Given the complexity of selecting
the best protocol for each synchronization object, current practiceis simply to use the same
protocol.

Our approach isto design run-timealgorithmsto select protocolsdynamically, based on
the level of contention. The goal isto use the best protocol for each synchronization object
even with time-varying contention levels. Although the idea of dynamically selecting
protocols is intuitively appealing, there has not been any experimental research on its
feasibility and performance benefits.

There aretwo main challenges to selecting protocolsdynamically. Firstisthe challenge
of designing efficient methods for selecting and changing protocols. That is, how do we
select and change protocols efficiently? Multiple processes may be trying to execute the
synchronization operation at the same time, and keeping them in constant agreement on
the protocol to use may be as hard as implementing the synchronization operation itself.
Before this thesis research, it was not clear if the overhead of managing the access of
multiple processes to multiple protocols would be prohibitively expensive. We provide
a framework for reasoning about dynamic protocol selection and introduce the notion of
consensus objects that our reactive algorithms use to help ensure correct operation in the
face of dynamic protocol changes.

Second is the challenge of designing an intelligent policy for changing protocols. That
is, when should we change protocols? A reactive algorithm that finds itself using a sub-
optimal protocol needsto decide if it should switch to a better protocol. Because switching
from one protocol to another incurs a significant fixed cost, a naive policy that switches
protocols immediately may thrash between protocols and perform badly. The decision to
switch protocols depends on the future behavior of contention levels. Thisisan instance of
an on-line problem, and we present a 3-competitive algorithm for deciding when to change
protocols.

We present empirical results that demonstrate that under fixed contention levels, the
reactive algorithms performs close to the best static choice of protocols at any level of
contention. Furthermore, with mixed levels of contention, either across multiple synchro-
nization objects or over time, the reactive agorithms outperform conventional agorithms
with fixed protocols, unless extremely frequent protocol changes are required.

Measurements of the running times of several parallel applications show that the bad
choice of protocols can result in three times worse performance over the optimal choice.
The application running times with the reactive algorithms are typically within 5% of the

15

performance of the best static choice. In one of the applications, the reactive algorithm
outperformed a static choice of protocols by 18%.

1.1.2 Waiting Mechanism Selection

Waiting is a fundamental part of synchronization, regardless of the protocol being used
to implement the synchronization operation. While waiting for synchronization delays, a
thread has a choice of polling or signaling waiting mechanisms to use. Multiprocessors
traditionally provide spinning and blocking as waiting mechanisms, and rely on the pro-
grammer to make the right choice. Spinning, a polling mechanism, consumes processor
cycles that could be used for executing other threads. Blocking, a signaling mechanism,
incurs a significant fixed cost because of the need to save and restore processor state.

Since a polling mechanism incurs a cost that is proportional to the waiting time, while
a signaling mechanism incurs a fixed cost, short waiting times favor polling mechanisms
whilelong waiting timesfavor signaling mechanisms. However, it ishard to make a correct
choice without a priori knowledge of wait times, and run-time techniques are needed to
select the appropriate waiting mechanism.

Unlike switching among protocols, switching among waiting mechanisms is a local
operation that does not need to be coordinated among participating processes. It iseasy to
provide a mechanism for dynamically choosing waiting mechanisms, and existing multi-
processor systems provide the option of spinning vs. blocking.

The main challenge to dynamically selecting waiting mechanisms is in designing an
intelligent policy for deciding when to switch from a polling mechanism to a signaling
mechanism. Since this is another instance of an on-line problem, competitive techniques
can be used to bound the worst case cost of awaiting agorithm.

A popular algorithm for selecting waiting mechanisms is the two-phase waiting algo-
rithm [47], where awaiting thread first polls until the cost of polling reachesalimit ;. If
further waiting is necessary, the thread resorts to a signaling mechanism and incurs a fixed
cost. The choiceof L, iskey to the performance of atwo-phase waiting agorithm.

With appropriate choices of L,,;, we can prove that the cost of two-phase waiting is
not more than a small constant factor more than the cost of an optimal off-line algorithm.
For example, setting L,.; equal to the cost of blocking a thread yields a 2-competitive
waiting algorithm. Karlin et al. [26] present a randomized algorithm for selecting L,.;;
that achieves a competitive factor of 1.58. They also prove a lower bound of 1.58 on the
competitive factor of any on-line waiting algorithm.

Thisthes sinvestigatestwo-phase waiting algorithmsin the context of amultiprocessing

16

system with lightweight threads. 1n such asystem, the cost of blocking is small enough that
the run-time overhead of determining L,.; must be minimized. We show how to determine
the value of L,.; statically, and still achieve close to the optimal on-line competitive factor
of 1.58. We also measure waiting times and demonstrate the robustness of two-phase
waiting algorithmsin a number of parallel applications.

The choice of waiting mechanisms has a significant effect on the running time of the
applications that we studied. A bad choice of waiting mechanisms can result in 2.4 times
worse performance than the optimal choice. However, the two-phase waiting algorithm is
typically within 6.6% of the best static choice of waiting mechanisms.

1.2 Contributionsof thisThesis

Thisthesisisboth atheoretical and empirical study of using run-time adaptivity to reducethe
cost of synchronization. It demonstrates the performance benefits of tailoring the protocol
and waiting mechanism to run-time conditions. In performing the study, this thesis makes
the following contributions.

e It introduces and evaluates the idea of dynamically choosing synchronization proto-
cols in response to run-time conditions. Previous adaptive approaches to synchro-
nization have considered altering the waiting or scheduling policy of a protocol, but
have not considered actually changing the protocol in use.

o It presents aframework for designing and reasoning about algorithmsthat select and
change protocols dynamically. Dynamic protocol selection presents a coordination
problem that hasto be solved efficiently. Weintroducethe notion of consensus objects
that allows protocol selection to be implemented efficiently. With this method, the
overhead of protocol selection isonly as small as afew conditional branches in the
common case.

e |t presents reactive algorithms for spin locks and fetch-and-op. The reactive algo-
rithms are experimentally shown to be more robust than the best existing algorithms
for spin locks and fetch-and-op. Section 3.7 and Appendix C overview the imple-
mentation process and present pseudo-code listings of these algorithms.

e It significantly extends previous work on waiting algorithms, both analytically and
experimentally, by considering practical aspects of a scalable, parallel machine envi-

17

ronment. It introduces the notion of restricted adversaries, which isamoreredlistic
and useful model than traditionally assumed adversaries.

e |t provesthat under restricted adversaries, static choicesof ,,,; for two-phasewaiting
canyield closeto optimal on-linecompetitivefactors. Under exponentially distributed
wait times, setting ,.;; to 0.54 times the cost of blocking yields a 1.58-competitive
waiting algorithm, while under uniformly distributed waiting times, setting Z,,.;; to
0.62 times the cost of blocking yields a 1.62-competitive waiting a gorithm.

e |t evaluatesthe performance of two-phasewaitingin applicationsrunning on ascalable
multiprocessor architecture with a highly optimized run-time system. The analysis
considers a variety of synchronization types. It presents experimental results on
waiting times and execution times of severa applications under different waiting
algorithms,

1.3 Terminology

This thesis uses the following terminology to describe synchronization algorithms and the
sources of synchronization overhead.

Protocol — A synchronization protocol implements a synchronization operation. For ex-
ample, the MCS queue lock protocol [43] implements a mutual exclusion lock and a
combining-tree protocol [57] implements abarrier.

Waiting mechanism — A waiting mechanism waits for synchronization conditions to be
satisfied. Spinning and blocking are two common waiting mechanisms. A mul-
tithreaded processor may provide aternative waiting mechanisms, such as switch-
spinning and switch-blocking [39, 16].

Waiting time — Synchronization waiting time is the interval from when a thread begins
waiting on a synchronization condition to when the synchronization condition is
satisfied and the waiting thread is allowed to proceed.

Synchronization cost —We define synchronization cost as the number of processor cycles
consumed while performing synchronization operations. When synchronizing, a
processor is either busy executing the synchronization protocol, or waiting for some
synchronization condition to be satisfied. Thus, the cost of synchronization can be
subdivided into the following two costs.

18

Protocol cost —Thenumber of cycles spent executing the synchronization protocol in order
to perform a synchronization operation. This cost represents actual computation that
cannot be avoided when performing a synchronization operation.

Waiting cost — The cost of waiting for a synchronization condition to be satisfied during a
synchronization operation. This cost depends on the waiting time and on the waiting
mechanisms that are used. Since no useful computation is performed while waiting,
this cost can be reduced by switching processor execution to another thread.

1.4 ThessOQutline

The rest of this thesis is organized as follows. Chapter 2 provides relevant background
material on the theoretical analysis and the experimental platform used for designing and
evaluating the synchronization algorithms. Chapter 3 describes protocol selection algo-
rithms. It provides a framework for reasoning about and designing protocol selection
algorithms. It also presents and eval uates reactive a gorithms for spin locks and fetch-and-
op. Chapter 4 describes waiting algorithms. It presents theoretical and empirical analyses
of two-phase waiting algorithms. Chapter 5 reviews related research in designing efficient
synchronization algorithms, and reviews complementary approaches to reducing the cost
of synchronization. Chapter 6 summarizes the thesis and presents suggestions for future
work. Appendix A provides a brief description of the Spec language and Appendix B uses
Spec to provide precise descriptions of the framework for implementing protocol selection
algorithms. Finally, Appendix C presents pseudo-code listings of the reactive fetch-and-op
algorithm.

19

Chapter 2
Background

This chapter provides background material on the theoretical analysis and the experimen-
tal platform and methodology used in this thesis. It first overviews previous research on
competitive on-line algorithms and shows how they relate to the design of reactive synchro-
nization algorithms. It then describes the multiprocessing platform used for experimental
evaluation of the reactive algorithms. Specificaly, we describe relevant features of the
Alewife multiprocessor [4] and the organization of the Alewife simulator on which we ran
most of the experiments.

2.1 Competitive On-Line Algorithms

An on-line problem is one in which an algorithm must process a sequence of requests
without knowledge of futurerequests. Usually, each request can be satisfied in more than
one way, and an on-line algorithm must choose how to satisfy arequest so as to minimize
thetotal cost of satisfying asequence of requests. The difficulty isthat the on-linealgorithm
has to make a decision based only on knowledge of the current and past requests, although
the decision may affect the cost of satisfying future requests.

The amortized analysis of on-line a gorithms has been extensively studied in the theory
community in recent years[9, 41, 26]. The objective has been to design on-line algorithms
that are within a small constant factor of the performance of an optimal off-line algorithm
that has complete knowledge of future requests. Karlin et al. [27] coined the term c-
competitive to describe such algorithms. A c-competitive algorithm has a cost that is at
most ¢ times the cost of an optimal off-line algorithm plus a fixed constant term, for any
sequence of requests. ¢ istermed the competitive factor.

20

dio

d 21
1 2 1 2 3
1 0 di2 1] Ci1 | Cpp | Cy3
D= C=
2 dyy | O 2] Co1 | C22 | 3
State Transition Cost Matrix Task Cost Matrix

Example Request Sequence: 111111122222112233333...

Figure 2.1: An example task system with 2 states and 3 tasks.

2.1.1 Task Systems

Borodin, Linial and Saks [9] formalized the definition of an on-line problem and called it
atask system. They aso designed a 2n < 1-competitive algorithm for task systems, where
n isthe number of states in the task system. To paraphrase the definition of a task system
from[41],

A task system consists of a set of n states, a set of m tasks, an n by n state
transition cost matrix D, where d;; isthe cost of changing from state: to state
J, and ann by m task cost matrix C', where ¢;; is the cost of processing task j
in state:.

A sequence of requests o = o(1),0(2),...,0(N) isto be processed by the
system. Each request, o(¢), isone of the tasks. An algorithm for atask system
chooses which state to use to satisfy each of the requests.

Figure 2.1 illustrates a task system with 2 states and 3 tasks. The cost incurred by an
on-linealgorithmisthe sumtotal of the costs of processing thetasksand the costs of the state
trangitions. An on-line algorithm attempts to prescribe a schedule of state transitions such
that the cost of the on-linea gorithmisminimized. We assume |ookahead-onetask systems,
where the agorithm is allowed to change states before servicing the current request.

A protocol selection algorithm can be thought of as an on-line algorithm for processing
asequence of synchronization requests. It must choose which of several protocolsto useto

21

satisfy each synchronization request. We can easily map the problem of protocol selection
onto atask system. Each state of atask system representsaprotocol and each task represents
a synchronization request under a particular run-time condition. The state transition cost
matrix represents the costs of switching protocols, and the task cost matrix represents the
cost of satisfying a synchronization request with a given protocol under different run-time
conditions.

A waiting algorithm can also be thought of as an on-line algorithm for processing a
sequence of wait requests. It must choose which of several waiting mechanisms to satisfy
each request. Again, we can map the problem of waiting mechanism selection onto a task
system. Each state of atask system represents awaiting mechanism and each task represents
arequest to wait. The state transition cost matrix represents the costs of switching from a
polling to a signaling waiting mechanism, and the task cost matrix represents the cost of
waiting under different waiting mechanisms.

This observation alowsusto use the results of previousresearch on competitive on-line
algorithmsto help design competitive protocol selection algorithmsand waiting algorithms.
In Chapters 3 and 4, we will construct task systems that represent the on-line problem of
choosing among protocols and waiting mechanisms. In Chapter 3, we use an on-line
algorithm by Borodin, Linial and Saks to design a 3-competitive algorithm for deciding
when to change protocols. In Chapter 4, based on work by Karlin et al. [26], we will use
probabilistic analysis to design a 1.58-competitive algorithm for deciding between polling
and signaling waiting mechanisms.

2.2 Experimental Platform

To investigate the performance characteristics of reactive synchronization agorithms, we
run a set of synthetic and application benchmarks that exercise the synchronization ago-
rithms. The primary goals of the experiments are to corroborate the theoretical analysis
and to measure the performance characteristics of the algorithms. We compare the per-
formance of the reactive algorithms with the best existing algorithms, both in synthetic
and application benchmarks. These experiments were run on a simulation of the Alewife
multiprocessor. The Alewife multiprocessor is representative of a scalable shared-memory
architecture based on distributed nodes that communicate via an interconnection network.

22

Sparcle

N Alewife Machine

Alewife
CMMU

Alewife Node

Figure2.2: An Alewife node.

2.21 The Alewife M ultiprocessor

The MIT Alewife multiprocessor [4] isa cache-coherent, distributed-memory multiproces-
sor that supports the shared-memory programming abstraction. Figure 2.2 illustrates the
high-level organization of an Alewife node. Each node consists of a Sparcle processor
[3], an FPU, 64KB of cache memory, a4MB portion of globally-addressable memory, the
Caltech MRC network router, and the Alewife Communications and Memory Management
Unit (CMMU) [32]. The current prototype is designed to run at 33MHz.

Sparcle isamodified SPARC processor that supports multithreading. Multiple threads
can be resident on the processor at once, and the processor can context switch from one
processor-resident thread to another in 14 cycles. It allows usto consider multithreading as
providing additional waiting mechanismsin our research on waiting algorithms,

The CMMU implements acache-coherent globally-shared address space with the Limit-
L ESS cache-coherence protocol [12]. The LimitLESS cache-coherence protocol maintains
a small, fixed number of directory pointersin hardware, and relies on software trap han-
dlers to handle cache-coherence actions when the number of read copies of a cache block
exceeds the limited number of hardware directory pointers. The current implementation of
the Alewife CMMU has 5 hardware directory pointers per cache line.

The CMMU aso interfaces the Sparcle processor to the interconnection network, al-
lowing the use of an efficient message-passing interface for communication [31]. The
LimitLESS protocol relies on this interface to handle coherence operations in software.
The message interface also allows us to use message-passing operations to implement
synchronization operations.

23

2.2.2 NWO: The Alewife Simulator

Atthetimethat thisthes sresearch wasperformed, the Alewife CMMU wasin the process of
being fabricated. Sincetheactual hardwarewasnot availablethen, most of the experimental
datapresented in thisthesiswere gathered from an accurate cycle-by-cycle ssmulation of the
machine. The Alewife simulator, dubbed NWO, has been used extensively for validating
the hardware design and for development of system software and applications. NWO is
binary-compatiblewith the Alewifemachine: object code generated by the compiler can be
run unmodified on either the simulator or on the actual machine. NWO is faithful enough
to the hardware design that it exposed many Alewife hardware errors during the design
phase. It aso alowed us to implement Alewife's run-time system even before hardware
was available.

Figure 2.3 illustrates the organization of the ssimulator, which is coupled with a pro-
gramming system that supports C and Mul-T (adialect of Lisp). All codeis compiled with
the ORBIT [29] compiler, an optimizing compiler for Scheme. The ORBIT compiler was
extended for generating parallel code.

The primary drawback of NWO isits slow simulation speed: it provides accuracy at
the price of smulation speed. On a SPARCstation 10, it smulates approximately 2000
processor cycles per second. Fortunately, a parallel verson of NWO runs on a Thinking
Machines Corporation CM-5 [37], allowing us to smulate a large number of processing
nodes in areasonable amount of time.

A 16-node Alewife prototype recently became operational in June, 1994. We will
present data from the real machine that validates some of the results gathered from the
simulations. The prototype currently runsreliably at a clock speed of 20MHz.

2.2.3 Synchronization Support

The Alewife multiprocessor was designed to provide a variety of mechanisms to help
implement synchronization operations efficiently.

e Alewife provides two basic hardware primitives for synchronization: an atomic
fetch& store instruction, and a set of instructions that manipulate full-empty bitg[53,
28] associated with each memory word. These instructions are directly supported by
the Alewife CMMU, and are cache-coherent.

¢ Alewife supports automatic detection of unresolved futures [22] by using the least
significant bit of adataword as atag bit, and by trapping on misaligned addressesin

24

Mul-T program Parallel C program

Run-Time System
C parser and Library code ©)

T intermediate form

ORBIT | Run-Time System
Compiler and Library code (M

Sparcle Object Code

Sparcle _ _
SiF;nuIator Alewife Machine

N TN TN

AT AT P
(e

e e o

Memory Requests/Acknowledgements

CMMU
Simulator

pd

etwork Transactions

Y

Network
Simulator

Figure 2.3: Organization of the NWO simulation system for Alewife.

25

memory access instructions.

e Alewife alows software to directly access the underlying message layer [31], pro-
viding the opportunity for software to use messages to implement shared-memory
synchronization operations.

e Lastly, Alewife's processor implements a coarse-grained version of multithreading,
called block multithreading [33], that can be used to lessen the cost of waiting for
synchronization.

Except for fetch& store to serve as an atomic read-modify-write primitive, the contribu-
tions and conclusions of this research do not depend on the availability of these synchro-
nization features of the Alewife multiprocessor. We were careful to avoid using any esoteric
features of the Alewife architecture so that the results of thisthesis are applicable to other
multiprocessor architectures.

Nevertheless, we do investigate the implications of having such support. In research on
protocol selection algorithms, we study the benefits of using message passing to implement
synchronization protocols and the tradeoffs that arise. In research on waiting algorithms,
we consider additional waiting mechanismsthat are made possible through multithreading.
We also consider the performance of waiting algorithms for several synchronization types,
such as futures [22] and I-structures[6], that are implemented with tagging and full-empty
bits.

2.24 Run-Time System Assumptions

The scheduling policy and the run-time overhead of thread management have a significant
impact on the performance of waiting algorithms. In Alewife's run-time system, thread
scheduling is non-preemptive so that spin-waiting indefinitely may starve processes that
have been swapped out. The run-time system implements a very streamlined and minimal
thread management system, such that the cost of loading and unloading a thread is very
small. The cost of blocking a thread in the current implementation is less than 500 cycles.
This places a limit on the complexity of a run-time algorithm to decide between waiting
mechanisms.

26

Chapter 3

Protocol Selection Algorithms

This chapter focuses on the design and analysis of protocol selection algorithms. Pro-
tocol selection algorithms promise the potential for reducing the cost of synchronization
by dynamically selecting the best protocol to use in response to the run-time conditions
experienced by each synchronization operation. However, in order to realize this potential,
we have to overcome two hurdles.

First, we have to ensure that the run-time cost of coordinating concurrent access to
multiple protocolsin the face of dynamic protocol changes does not overwhelm the benefits
of using the best protocol. Second, we have to make intelligent on-line decisions of when
to change protocols. Thischapter will describe our solutionsto each of these problems, and
demonstrate the benefits of dynamically selecting protocols.

As an example of the potential benefits of dynamic protocol selection, we first review
several protocolsfor spin locks and fetch-and-op, and show how the most efficient protocol
depends on the level of contention experienced at run time. We then describe a framework
for designing efficient protocol selection agorithms. Using the design framework, we
implement reactive spin lock and fetch-and-op algorithms that choose among several well-
known shared-memory and message-passing protocols.

Experimental measurements demonstrate that the reactive algorithms perform close to
the best static choiceof protocolsat all levelsof contention. Furthermore, with mixed levels
of contention, the reactive a gorithms outperform passive a gorithms with fixed protocols,
provided that contention levels do not change too frequently. Measurements of the running
times of several paralel applications show that a bad choice of protocols can result in three
times worse performance over the optimal choice. The application running times with the
reactive algorithms are typically within 5% of the performance of the best static choice, and
are at worst 18% longer. In one of the applications, the reactive algorithm outperformed

27

the best static choice by 18%.

3.1 Motivation

To motivate the need for dynamic protocol selection, wefirst review existing algorithmsfor
spin locks and fetch-and-op. These algorithmsare passive in the sense that they use afixed
protocol regardlessof therun-timelevel of contention. Thisreview providesadescription of
the performance characteristics of the passive algorithms and of the tradeoffs among them.
Performance measurements of these passive agorithms on the Alewife multiprocessor
demonstrate how the best protocol depends on the level of contention.

3.1.1 Passive Spin-Lock Algorithms

The test-and-set Algorithm This algorithm uses a very ssimple protocol. A process
requests a lock by repeatedly executing a test& set instruction on a boolean flag until it
successfully changes the flag from false to true. A process releases a lock by setting the
flag to false.

procedure lock(l) procedure unlock(1l)
repeat while test_and_set (1) 1° := false

The primary problem with a test-and-set protocol is that its performance degrades
drastically in the presence of contention: waiting processes continuously poll the lock,
resulting in an overwhelming amount of bus or network traffic.

The test-and-test-and-set Algorithm Segall and Rudolph [50] proposed the test-and-
test-and-set algorithm for reducing bus or network traffic on cache-coherent machines. It
uses a protocol that waits by read-polling the lock:

procedure lock(l)
repeat while (1° or test_and_set(1))

On a cache-coherent machine, the lock variable will be read-cached, thus avoiding
communication while the lock is held. However a significant amount of communication
trafficis still generated when the lock isreleased due to the ensuing cache invalidations and
updates. With small critical sections, this transient behavior dominates and read-polling
can generate as much communication traffic as polling with test& set [5].

Recent research has resulted in more sophisticated protocols that alleviate the detri-
mental effects of contention [5, 19, 43]. The research demonstrates that test-and-set with
randomized exponential backoff and queuing are the most promising spin-lock protocols.

28

Exponential Backoff Anderson [5] proposed exponential backoff as a way of reducing
contention for spin locks. Agarwal and Cherian [2] independently proposed exponential
backoff for reducing contention at barriers. The idea is to have each waiting process
introduce some delay between lock accesses in the test-and-set or test-and-test-and-set
algorithms. Thisreducestheamount of unsuccessful test& set attemptsand avoidsexcessive
communication traffic under high contention.

procedure lock(l)
delay : integer := INITIAL_DELAY
repeat while test_and_set (1)
pause (random(delay))
delay := MAX(delay#*2, MAX_DELAY)

Anderson found that the best performance is achieved with randomized exponential
backoff, where the mean delay is doubled after each failed attempt and halved after each
successful attempt. There also needs to be a maximum bound on the mean delay, propor-
tiona to the level of lock contention. Otherwise, a waiting processor may back off to an
arbitrarily large delay, leading to poor response time when the lock becomes free. The
maximum bound should be large enough to accommodate the maximum possible number
of contending processors.

Randomized exponential backoff can be thought of as providing “probabilistic” queuing
of lock waiters: through adaptivity and randomization, it attempts to spread out waiting
processes in time. Henceforth, we will refer to test-and-set with exponential backoff
simply as test-and-set locks, and test-and-test-and-set with exponential backoff smply as
test-and-test-and-set locks.

Queue Locks Queue locks explicitly construct a queue of waiters in software. Memory
contention is reduced because each waiter spins on a different memory location and only
one lock waiter is signaled when the lock is released. Queue locks have the additional
advantage of providingfair accesstothelock. Several queuelock protocolswere devel oped
independently by Anderson [5], Graunkeand Thakkar [19], and Mellor-Crummey and Scott
[43].

All three protocolsscale well with thelevel of contention. However, thefirst two queue
locks require space per lock proportional to the number of processors, and Anderson’s
gueue lock has a high single-processor latency on machines that do not support atomic
fetch&increment directly in hardware. Inthisthess, we use the Mellor-Crummey and Scott
(MCYS) protocol for queue locks because it has the best performance among the queuing
protocols on our system.

29

type qnode = record
next : “gnode
locked : boolean

type lock = “gnode

procedure lock(L: " lock, I:"qgnode) procedure unlock(L :"lock, I : “qnode)
I->next = nil; if I->next = nil
pred:“qnode := fetch_and_store(L, I) if compare_and_swap(L, I, nil)
if pred !'= nil return
I->locked := true repeat while I->next = nil
pred->next := I I->next->locked := false

repeat while I->locked

Figure 3.1: The MCS queue lock protocol by Mélor-Crummey and Scott.

The MCS queue lock protocol appearsin Figure 3.1. The protocol maintains a pointer
to the tail of a queue of lock waiters. The lock is freeif it pointsto an empty queue, and
is busy otherwise. The process at the head of the queue owns the lock, and each process
on the queue has a pointer to its successor. To acquire a lock, a process appends itself to
the tail of the queue with a fetch& store instruction. If the queue was empty, the process
owns the lock; otherwise it waits for a signal from its predecessor. To release a lock, a
process checksto seeif it hasawaiting successor. If so, it signals that successor, otherwise
it empties the queue with a compare& swap instruction. An aternative version emptiesthe
gueue with a fetch& store instruction, but requires more complicated code to handle arace
condition. See [43] for a more complete description of the MCS lock. In our experiments,
we use the version of the MCS lock that does not rely on compare-and-swap since Alewife
does not have a compare& swap instruction.

3.1.2 Passive Fetch-and-Op Algorithms

Fetch-and-op is a useful primitive for implementing higher-level synchronization opera-
tions. When the operation iscombinable[30], e.g., in fetch-and-add, combining techniques
can be used to compute the operation in parallel. Fetch-and-op was deemed important
enough for the designers of the NYU Ultracomputer [17] to include hardware support
in its interconnection network for combining fetch-and-op requests to the same memory

30

location. The Stanford DA SH multiprocessor [38] supports fetch-and-increment and fetch-
and-decrement directly in its cache coherence protocol, although without combining.

In the absence of special hardware support, several software algorithms can be used to
implement fetch-and-op. We consider the following in this paper.

L ock-Based Fetch-and-Op A straightforward implementation of fetch-and-opisto pro-
tect access to the fetch-and-op variable with a mutual exclusion lock. In particular, either
the test-and-set lock or the queue lock described above can be used here. To execute a
fetch-and-op, a process acquires the lock, updates the value of the fetch-and-op variable,
and releases the lock.

Software Combining Tree A drawback of a centralized, lock-based implementation
of fetch-and-op is that it may unnecessarily serialize fetch-and-op operations. Software
combining protocols [57] can be used to compute the fetch-and-op in parallel. Theideais
to combine multiple operations from different processes into a single operation whenever
possible.

The fetch-and-op variable is stored in the root of a software combining tree, and com-
bining takes place at the internal nodes of the tree. If two processes arrive ssmultaneously
at a node in the tree, their operations are combined. One of the processes proceeds up
the tree with the combined operation while the other waits at that node. When a process
reaches the root of the combining tree, it updates the value of the fetch-and-op variable and
proceeds down the combining tree, distributing results to processes that it combined with
while ascending the tree.

In thisthesis, we use the software combining tree algorithm for fetch-and-op presented
by Goodman, Vernon and Woest in [15]. We present the pseudo-code of the agorithmin
Appendix C sinceit istoo long to reproduce here.

3.1.3 TheProblem with Passive Algorithms

The problem with a passive algorithm is that it fixes its choice of protocols, and is thus
optimized for acertain level of contention/concurrency at each synchronization operation.
We measured the performance of the above spin lock and fetch-and-op agorithms by
having each processor loop continuously, performing a synchronization operation on the
same synchronization object at each iteration.

We compare the performance of the algorithms by measuring the average elapsed time
in between successive synchronization operations at that object. Part of thistimeisdueto

31

[¢)]

iy

N
1

N

a1

[e}]
T

128

Overhead (Cycles)

32+

16 |+

R

Spin Locks

Test&Set w/ backoff
Test&Test&Set w/ backoff
MCS Queue Lock

Ideal

L
8 16 32 64
Contending Processors

Overhead (Cycles)

1024

512

256

128

64

32

16

Fetch-and-Op

Test&Test&Set Lock Based
Queue Lock Based
Software Combining Tree
Ideal

8 16 32 64
Contending Processors

Figure 3.2: Baseline performance of passive spinlock and fetch-and-op algorithms. *Over-
head” represents the average number of cycles per completed synchronization operation
that is due to the synchronization algorithm in use.

the latency introduced by the test loop itself. We filter out the test loop overhead from our
measurements by subtracting the time the test would have taken, given zero-overhead syn-
chronization operations, from the actual measured time. The resulting overhead represents
the average number of cycles per synchronization operation that is due to the synchroniza-
tion algorithm in use. Section 3.5.1 provides more details on the experiment and on how
the measurements are derived.

Figure 3.2 presentsthe results of running this experiment on the Alewife ssimulator. For
spin locks, each data point represents the average number of cycles due to the spin lock
algorithm for each critical section with P processors contending for the lock. For fetch-
and-op, each data point represents the average number of cycles due to the fetch-and-op
algorithm for each fetch-and-op with P processors attempting to perform the operation.

Spin Locks The spin-lock results show that the MCS queue lock provides the best per-
formance at high contention levels. However, it is twice as expensive as the test-and-set
lock when there is no contention. Thisis due to the protocol cost of maintaining the queue
of lock waiters. The resultsindicate that no single protocol has the best performance across
contention levels. These measurements are consistent with previously reported results
in [5, 43, 19]. It is clear that a reactive spin lock algorithm should select the test-and-

32

test-and-set protocol when contention is low and the queue protocol when contention is
high.

The test-and-test-and-set protocol has the lowest overhead at low contention levels,
and outperforms the test-and-set protocol. This is due to the interaction of exponential
backoff and the two protocols. Recall that with exponential backoff, the backoff interval
isdoubled after each failed test& set attempt. Since the test-and-set protocol pollsthe lock
with test& set, while the test-and-test-and-set protocol pollsthelock with reads, the test-and-
set protocol experiences more failed test& set attempts. This has the effect of making the
test-and-set protocol back off to alarger delay than the test-and-test-and-set protocol. Since
the backoff limit is set to accommodate the maximum possible number of lock requesters,
lock waiters back off too far under test-and-set at low contention levels, leading to poor
response times when the lock is released. In the experiments, the backoff limit was set to
accommodate 64 contending processors.

However, the test-and-test-and-set protocol does not scale as well as the test-and-set
protocol. This is because Alewife uses a directory-based cache coherence protocol that
issues cache invalidations sequentially. The test-and-test-and-set protocol has the effect of
delaying a lock release as read-cached copies of the lock are invalidated sequentially. In
fact, thisprotocol would scale poorly on any cache-coherent architecture without hardware-
supported broadcast for similar reasons.

Another reason for the poor scalability of the test-and-test-and-set protocol in Alewife
is the limited number of hardware directory pointers for keeping track of cached copies.
When theworker set of acache line exceeds the number of hardware pointers, atrap handler
isinvoked to extend the directory in software. To investigate the performance penalty of a
limited number of hardware pointers, we also simulated test-and-test-and-set on afull-map
directory architecture which handles all coherence actionsin hardware. We plot the results
asthe curve labeled Diry N B. The results show that while the full-map directory reduces
the overhead of the test-and-test-and-set protocol at high contention levels, it still does not
scale well.

Fetch-and-Op The fetch-and-op results show that software combining succeedsin paral-
lelizing the overhead of fetch-and-op: as contention (and hence parallelism) increases, the
overhead drops. This happens because the overhead of traversing atreeis amortized among
the processes participating in the combining tree. In contrast, the overhead increases with
contention for the lock-based agorithms.

However, when contention is low, software combining incurs an unnecessarily large

33

overhead from requiring a process to traverse the combining tree, even when there are no
other processes to combine fetch-and-op operations with. Here, the lock-based algorithms
perform better because they have a much smaller protocol cost. The tradeoff between
the two lock-based fetch-and-op algorithmsis similar to the tradeoff between the test-and-
test-and-set lock and queue lock protocols, as can be expected from the results on spin
locks.

Thus, we have a contention-dependent choice of protocols for fetch-and-op. When
contention is low, we should use the lock-based protocols for minimal latency. When
contention ishigh, we should use the combining tree protocol for higher throughput. In fact
the right choice of protocols is even more important for fetch-and-op than for spin locks.
The performance difference between the best and worst protocols spans several orders of
magnitude.

In summary, these results demonstrate how the best choice of protocols depends on
the level of contention. They emphasize the need for algorithms that automatically select
protocols according to thelevel of contention. We would like to design reactive algorithms
with performance that follows the ideal curves. Aswe will see in Section 3.5, our reactive
algorithms perform very closely to thisideal.

3.2 TheDesign of Protocol Selection Algorithms

This section develops a framework for designing and reasoning about correct and efficient
protocol selection algorithms. Recall that thetwo mainissuesin designing protocol selection
algorithms are i) providing efficient methods for selecting and changing protocols, and ii)
designing intelligent policiesfor deciding when to change protocols. This section addresses
thefirst of these issues.

The difficulty of designing a protocol selection algorithm liesin the need to coordinate
concurrent protocol executions with protocol changes. For performance reasons, the algo-
rithm should allow protocol executions and changes to run concurrently. However, there
needs to be some form of concurrency control to maintain correctness. Conceptually, the
algorithm has to ensure that all synchronizing processes agree on which protocol to usein
the face of dynamic protocol changes.

To ease the design effort, we would like to modify the existing protocols as little as
possible. We present a set of conditionsthat aprotocol selection agorithm should satisfy in
order to preserve correctness, while allowing concurrent protocol executions and changes.

DoSynchOp Response

Protocol
Object

Figure 3.3: A concurrent system model of a passive synchronization algorithm.

We then introduce the notion of consensus objects' that help satisfy these conditions
efficiently, with minor modifications to the original protocols.

3.21 Concurrent System Model

When designing a protocol selection algorithm, we are given a set of protocols that imple-
ment a synchronization operation. We assume that these protocols have been designed to
handle concurrent synchronization requests correctly, according to the specification of the
synchronization operation. Thus, we model a passive synchronization algorithm as a con-
current object that supports concurrent requests to perform synchronization operations, as
illustrated in Figure 3.3. The concurrent object encapsul ates the state of the synchronization
protocol, and a process synchronizes by issuing a synchronization request (DoSynchOp) to
the concurrent object.

In contrast to a passive algorithm that uses asingle, fixed protocol, areactive algorithm
uses a protocol selection algorithm to select among multiple protocols. The protocol
selection algorithm implements a concurrent object that supports operations to perform
the synchronization operation and to change protocols. We model a protocol selection
algorithm as a protocol manager and a set of concurrent protocol objects, as illustrated in
Figure 3.4. Each protocol object represents a synchronization protocol and supportsaset of
operations that allowsit to be selected by a protocol manager. We define these operations
further below.

1These consensus objects are unrelated to Herlihy’s wait-free consensus objectsin [42].

35

Process

1

DoSynchOp Response

DoChange

Protocol
Changer

Protocol
Manager

Response

DoProtocol /
DoChange
Response
Protocol A’s Protocol B's
Object Object

Reactive Synchronization Object

Figure 3.4: A concurrent system model of a protocol selection algorithm.

The protocol manager mediates concurrent access to the protocol objects and presentsa
conventional interface to the synchronizing processes. There are multiple instances of the
protocol manager, one for each process. Informally, one can view the protocol manager
as a procedure that is called by a synchronizing process. A synchronizing process issues
a synchronization request (DoSynch0p) to the protocol manager. The protocol manager
servicestherequest by interacting with the protocol objects and returning the response from
one of the protocol objects. A process may aso request a protocol change by issuing a
change request (DoChange) to the protocol manager. We model protocol changes as being
generated by an internal process, athough in principle any process can issue a change
request. Again, the manager services the change request by interacting with the protocol
objects. It is important to note that all communication occurs via the protocol objects:
protocol managers do not communicate with each other. Thus, we can restrict the task of
concurrency control to the protocol objects.

Execution Histories

We use the following notation for describing concurrent executions at a protocol object. A
protocol manager executing on behalf of process P issues arequest (P, op,) to object «
to perform the operation named op. A protocol manager receives a response (P, res, x)

36

from object x, where res isthe result value. We assume that process and object names are
unique so that we can match requests and responses. arequest matches aresponse if their
process and object names agree.

A concurrent execution consists of an interleaving of requests and responses from
multiple processes at each object. However, only a subset of these possible interleavings
represent correct executions. To aid in describing correct executions, wefollow the example
of Herlihy and Wing in [23], and model a concurrent execution by a history.

A history is afinite sequence of request and response events. A process history, H | P,
of ahistory H isthe subsequence of eventsin H whose processnamesare . Similarly, an
object history, H |z, isthe subsequence of eventsin H whose object names are x.

A history H represents an execution if each of its process histories H| P follows the
real-time order of requests and responses seen by each process P, and each of its object
histories H |« follows the real-time order of requests and responses seen by each object x.
Two histories H and H' are equivalent if for every process P, H|P = H'|P.

A history is sequential if itsfirst event is arequest, and it alternates matching requests
and responses. A history H iswell-formed if each process history H|P is sequentia. In
thismodel, we assume well-formed histories to capture the notion that a process represents
a sequential thread of control.

A history H induces apartial order < onitsoperations. opy < op; if response(op1)
precedes request(opz) in the history. Two operations are concurrent if they are unordered
by <.

In the following sections, we first provide a specification of a protocol object, and an
implementation of a protocol manager that relies on that specification. We then address
the problem of implementing a protocol object so as to satisfy its specification in the face
of concurrency. We use pseudo-code to provide readable descriptions of the specifications
and implementations. However, since pseudo-code can be somewhat imprecise, we also
provide more precise specifications and implementations of protocol objects and managers
using the Spec language [36] in Appendix B.

3.2.2 Protocol Object Specification

To allow a protocol manager to select and change protocols, we require that each protocol
object supportsoperationsto “validate” and “invalidate” itself, in addition to an operation to
execute the synchronization protocol. The high-level ideaisto allow the protocol manager
to designate a single protocol as the protocol to be used for synchronization by validating

37

type prot_obj = record

valid : boolean // is protocol valid?

RunProtocol : procedure // runs the original protocol
UpdateProtocol : procedure // resets protocol to a consistent state
state : prot_state // state of the protocol

procedure DoProtocol(p : prot_obj) returns (V, invalid)
if p.valid = true
return p.RunProtocol(p)
else
return invalid

procedure Invalidate(p : prot_obj) returns boolean
if p.valid = true
p.valid := false
return true
else
return false

procedure Validate(p : prot_obj)
if p.valid = false
p-UpdateProtocol(p)
p.valid := true

procedure IsValid(p : prot_obj) returns boolean
return p.valid

Figure 3.5: A specification of the operations of a protocol object.

one protocol and invalidating the others. To this end, we require that each protocol object
supports the following operations:

DoProtocol — Performsthe synchronization operation with the protocol
associated with the protocol object.

Invalidate — Invalidatesthe protocol object.

Validate — Updates the protocol object to a consistent state and validatesit.

IsValid — Returns“true” if the protocol object isvalid, “false” otherwise.

In the following discussion, we term the DoProtocol operation as a protocol execution,
and the Invalidate and Validate operations as protocol change operations.

In order to present a general framework that is independent of the specification of the

38

synchronization operation to be implemented, we specify protocol objects operationaly in
terms of the original protocols. Figure 3.5 presents a specification of a protocol object in
terms of the original protocol (viaRunProtocol). We require that an implementation of
a protocol object exhibits object histories that are equivalent to some sequential execution
of the specification. The specification constrains the allowable histories of requests and
responses at a protocol object, and any implementation of a protocol object is required to
exhibit only a subset of these allowable histories.

3.2.3 A Concurrent Protocol M anager

A protocol manager provides two interface procedures, DoSynchOp and DoChange, for
concurrent processes to execute the synchronization operation and to change the protocol in
use, respectively. The responsibility of the protocol manager is to manipulate the protocol
objectsin order to synthesize the synchronization operation, while allowing concurrent pro-
tocol change requests. With the above specification of protocol objects, itisstraightforward
to implement aprotocol manager: for correct execution, the protocol manager ssmply needs
to satisfy the following two conditions:

1. It should return results only from valid protocol executions.

2. It should maintain the invariant that there exists at most one valid protocol object.

Figure 3.6 presentsaprotocol manager that relies on the specification of protocol objects
presented above to satisfy the two requirements. The protocol manager selects between
two protocols, P1 and P2, although it should be straightforward to extend it to more than
two protocols. The protocol manager usesDoProtocol to execute the protocol associated
with the object, and Validate and Invalidate to change protocols.

To perform a synchronization operation, the protocol manager checks which protocol
object isvalid and executes the protocol associated with it. Sincethe check and the protocol
execution are not an atomic unit, the protocol manager can never be sure that the protocol
will remainvalid throughout the execution. The protocol manager relieson theflag returned
by DoProtocol toindicate whether the protocol execution was performed on avalid object.
It loops until DoProtocol indicates a valid execution. In this way, the protocol manager
returns results only from valid protocol executions.

To perform a protocol change, the protocol manager first attempts to invalidate a pro-
tocol. If it succeeds in invalidating a valid protocol, signified by Invalidate returning
true, it validates the other protocol. This preserves the invariant that there exists at most
one valid protocol, assuming that the system initially has only one valid protocol.

39

type prot_objs = record
pl : prot_obj // protocol object for Protocol 1
p2 : prot_obj // protocol object for Protocol 2

procedure DoSynchOp(ps : prot_objs) returns V
v : (V, invalid) := invalid
repeat while v = invalid
if IsValid(ps.pl)
v := DoProtocol(ps.pl)
else if IsValid(ps.p2)
v := DoProtocol(ps.p2)
return v

procedure DoChange(ps : prot_objs)
if Invalidate(ps.pl)
Validate(ps.p2)
else if Invalidate(ps.p2)
Validate(ps.pl)

Figure 3.6: A protocol manager.

3.2.4 Protocol Object | mplementations

Now that we have an implementation of a protocol manager, we explore possibleimplemen-
tations of protocol objects. We begin with a straightforward approach that relies on locks
to ensure that the history of concurrent operations at each protocol object is equivalent to
some sequential execution of the specification. Unfortunately, the implementation suffers
from poor performance and is unsuitable for implementing reactive locks. To improve per-
formance, we exploit properties of the original protocols that allow concurrent operations.
Specifically, we describe the notion of consensus objects that allow a protocol object to
ensure that protocol changes are serializable.

A Naive | mplementation

A simple approach to implementing a protocol object is to use locks to ensure that the
protocol object operations execute atomically. This would immediately satisfy the sequen-
tial specification of a protocol object by serializing al operations. One can think of the
locks as placing atomicity brackets around the body of each procedure in the specification.

40

procedure DoProtocol(p : prot_obj) returns (V, invalid)
v : (V, invalid) := invalid
Lock()
if p.valid = true
v := p.RunProtocol(p) // run the original protocol
Unlock()
return v

procedure Invalidate(p : prot_obj) returns boolean
b : boolean := false
Lock()
if p.valid = true
p.valid := false; b := true
Unlock()
return b

procedure Validate(p : prot_obj)
Lock()
if p.valid = false
p-UpdateProtocol(p) // reset protocol to a consistent state
p.valid := true
Unlock()

procedure IsValid(p : prot_obj) returns boolean
return p.valid

Figure 3.7: A naive implementation of aprotocol object based on locks.

Figure 3.7 presents such an implementation. Unfortunately, there are several problemswith
thisimplementation that preclude it from being a practical implementation.

1. Theuseof locksaround callsto RunProtocol havetheundesired effect of serializing
protocol executions, hurting the performance of protocols like software combining
treesthat rely on concurrent execution for performance.

2. Each synchronization operation now involves acquiring and releasing a lock in ad-
dition to executing a protocol. This may add a significant cost to the execution of a
synchronization operation, especially if the protocol costs of the original protocols
are comparable to the cost of acquiring and releasing alock.

3. When designing a reactive algorithm for mutual-exclusion locks, the use of locksin

41

the protocol manager itself leads to the recursive problem of what protocols to use
for these locks.

We could solve the first problem of unnecessarily serializing protocol executions by
using reader-writer locks [14] instead of mutual-exclusion locks. DoProtocol would
acquireareadlock, whileInvalidate andValidate wouldacquirewritelocks. However,
the other two problems persist.

3.2.5 Serializing Protocol Changes

Theneed to allow concurrent protocol executionsat aprotocol object bringsup aninteresting
observation: animplementation of aprotocol object needsto serialize only protocol change
operations (Validate and Invalidate) with respect to other operations. That is, at each
object, weonly need to ensure that a protocol change operation never runsconcurrently with
any other operation. We can (and should) allow protocol executionsto execute concurrently
because the original protocolswere designed to handle concurrent executions correctly. We
term aconcurrent execution that satisfiesthisrestrictionaC-serial execution. (C for change.)
C-serid executions are modeled by C-serial histories:

Definition 1 Ahistory H isC-serial if for each protocol object «, for all pairsof operations,
op1, opz inthe object histories H |,
opname(opy) = Invalidate V Validate = op; <g op2 V opz <m ops.

As an illustration, Figure 3.8 presents some example histories. History H1 isC-serial
since protocol changes at an object are serialized. History H2 is not C-seria because
(@, Invalidate, x) overlaps (R, DoSynchOp, x). Finaly, history H3isC-serial athough
(@, Invalidate, x) overlaps (R, DoSynchOp, y) because they represent operations at dif-
ferent objects.

InaC-seria execution, protocol changes partition the operations at each protocol object
into phases of concurrent protocol executions. The motivation for restricting ourselves to
C-serial executionsisthat it allowsthe protocol selection algorithmto rely onthe correctness
of the original protocols for the correctness of concurrent protocol executions in between
protocol changes.

Figure 3.9 illustrates an example history with the protocol manager of Figure 3.6 and
multiple protocol objects that observe C-seria histories. The protocol manager and the

42

(P,DoProtocol,x) (P,Validate,x)

—

I

I

I

(Q,DoProtocol,x) |
i I

I

I

I

I

(Q,Invalidate,x) (Q,DoProtocol,x)

(R,DoProtocol,x)

(R,DoProtocol,x) (R, DoProtocol,x)

—

H1: C-serial

(P,DoProtocol,x)

(Q,DoProtocol,x) . . (Q,Invalidate,x) . . (Q,DoProtocol,x) .
[| [| [|
(R,DoProtocol,x) . . (R,DoProtocol,x)
[| [|
H2: Not C-serial
(P,DoProtocol,x) . (P,Validate,x)
I |
(Q,DoProtocol,x) . . (Q,Invalidate,x) . . (Q,DoProtocol,x) .
[| [| [|
(R,DoProtocol,x) . . (R,DoProtocol,y)

H3: C-serial

(PI OpI X)

b

request response

An Operation: Process "P" requests Object "x" to perform "op".

Figure 3.8: ExampleC-serial and non-C-serid histories.

43

PL IW:
p2 — Protocol
p— | : : p— Object A
P3 j— | | —
| |
P1
Protocol
P2 Object B
P3 —

—» Time

_ Valid Protocol Execution W Validate

F—— Invalid Protocol Execution Invalidate

Figure 3.9: Example C-serial history with multiple protocol objects under the protocol
manager. Initially, protocol A is valid. Process 2 performs a protocol change to protocol
B. Process 1 then performs a protocol change back to protocol A.

protocol objects cooperate to ensure that at most one protocol isvalid at any time and that
results are returned only from executions of valid protocols.

The concept of C-serial executions alows us to relax our specification of protocol
objects. Recall that in Section 3.2.2, we require an implementation to exhibit histories that
are equivalent to some sequential execution of the protocol object specification in Figure
3.5. Inthe relaxed specification, we require an implementation to exhibit histories that are
equivalent to some C-serial execution of the specification. We term a history derived from
aC-serial execution of the specification alegal C-seria history.

An implementation may allow concurrent protocol changes, as long as the protocol
changes are serializable with al other operations, and protocol executions use the original
protocol. Two concurrent operations are serializable if the behavior of the operations is
“equivalent” to the behavior of executing the operations sequentially, one after the other.
Animplementation isC-serializableif it satisfies these conditions. More formally,

Definition 2 A protocol selection algorithmis C-serializable if for each history H, there
exists a legal C-serial history H' such that

(1) forall P, H|P = H'|P.

(2) <y C =g

Condition (1) ensuresthat H and H' are equivalent histories, and Condition (2) ensuresthat
the equivalent legal C-seria history, H', respects the real-time precedence ordering of the
operationsin H.

With a C-serializable execution, a protocol execution that runs concurrently with a
protocol change is well-defined: it is ordered either before or after a protocol change, and
iseither avalid or invalid execution.

A C-serializable Implementation with Consensus Objects

We have defined C-serializability as a correctness condition for implementing protocol
selection algorithms. Now we need to address the question of how an implementation can
enforce C-serializable executions. Aswe observed, the explicit use of locksis unacceptable
due to performance reasons. Fortunately, as we will see below, some protocols allow us to
serialize protocol executions and changes quite naturally.

What properties of a protocol can we exploit for efficiently ensuring C-seridizable
executions? It turns out that there is a property present in any protocol for locks, and also
in combining tree protocols, that we can use to serialize protocol changes quite naturally.

Each of these protocols has the property that there isa unique object that some synchro-
nizing process must access atomically, exactly once, in order to complete the protocol. We
term such an object a consensus object. A process executing a protocol has to either access
that protocol’s consensus object, or communicate with some other process that accesses the
consensus object.

For descriptive reasons, we subdivide the execution of such protocolsinto four phases: a
pre-consensus phase, an in-consensus phase, await-consensus phase, and a post-consensus
phase. Thuswe can canonically describe the execution of aprotocol with consensus objects
as such:

procedure RunProtocol(p)

if PreConsensus(p) % pre-consensus phase
AcquireConsensus(p);
InConsensus(p); % in-consensus phase
ReleaseConsensus(p);
else
WaitConsensus(p); % wait-consensus phase
PostConsensus (p) % post-consensus phase

In other words, each protocol execution either goes through the sequence PreConsensus;;
AcquireConsensus; InConsensus; ReleaseConsensus; PostConsensus, Or these-

quence PreConsensus; WaitConsensus; PostConsensus. PreConsensus returns

45

true if a process should go to the in-consensus phase, or false if the process should
go to the wait-consensus phase.

For example, in a combining-tree protocol, ascending the tree represents the pre-
consensus phase, and descending the tree represents the post-consensus phase. A process
that acquires exclusive access to the root isin the in-consensus phase, while a process that
walits at the intermediate nodes is in the wait-consensus phase.

Wecan consider AcquireConsensus andReleaseConsensus asacquiringand releas-
ing alock. However, thisis not necessarily the case. Aswe will see when we investigate
protocol selection algorithmsfor message-passing protocol s, aprocessreachesin-consensus
when executing inside an atomic message handler, and requiresno locking. Weonly require
that there exist a critical section to which we can add some code.

Besides the existence of a consensus object, we also require the protocols to satisfy the
following properties:

1. A process in wait-consensus must be waiting for a process that reaches the in-
consensus phase, possibly through some dependency chain of waiting processes.

2. Once a process has reached the post-consensus phase, it must be able to complete
execution of the protocol, and is unaffected by future modifications to the consensus
object.

3. A protocol can be updated consistently by a process that has atomic access to that
protocol’s consensus obj ect.

These properties allow a protocol selection algorithm to execute and change protocols
concurrently while maintaining C-serializability. We mark a consensus object as valid or
invalid to indicatewhether itsprotocol isvalid or not. Changing from protocol A to protocol
B involvesatomically accessing Protocol A'svalid consensus object and invalidating it, then
atomically accessing Protocol B’s consensus object, updating the protocol, and validating
its consensus object.

Since a protocol change involves acquiring atomic access to the consensus object,
concurrent protocol changes are automatically serialized. Furthermore, since protocol
executions have to access the consensus object in order to complete, concurrent protocol
changes and protocol executions are also serialized. To see how this serialization occurs,
consider a pair of concurrent protocol executions and protocol changes. The protocol
execution can overlap the protocol change in the following two ways:

46

1. The protocol change overlaps a protocol execution that isin its pre-consensus phase.
If the protocol changeisan invalidate operation, the protocol execution will encounter
an invalid consensus object and retry. If the protocol change is a validate operation,
the protocol execution will terminate normally. In either case, the protocol execution
behaves asif it is serialized after the protocol change.

2. The protocol change overlapsa protocol execution that isin its post-consensus phase.
In this case, the protocol execution has aready accessed the consensus object, and
is unaffected by the protocol change. The protocol execution behaves as if it is
serialized before the protocol change.

Figure 3.10 illustrates these two cases and shows how they are serialized.

Figure 3.11 presents an implementation of aprotocol object for protocol swith consensus
objects. This implementation interfaces with the protocol manager in Figure 3.6, thus
completing the implementation of the protocol selection algorithm. The implementation
makes some minor modifications to the original protocol. It modifies PostConsensus to
signal waiting processes (in the wait-consensus phase) that the protocol is valid. Thereis
anew procedure, PostConsensusFail, that isidentical to PostConsensus except that it
signals waiting processes that the protocol isinvalid. WaitConsensus returns faseif it
receives an invalid signal.

With this protocol object implementation, the protocol manager maintains the invari-
ant that at most one protocol is valid by allowing only processes that have successfully
invalidated a valid consensus object to validate another protocol. A process that executes
an invalid protocol will either access that protocol’s consensus object and notice that the
protocol isinvalid, or be informed of the fact through some other process that does. Upon
detecting an invalid protocol, a process goes into the post-consensus phase to compl ete ex-
ecution of the protocol and returns false to the protocol manager. The protocol manager
will then retry the synchronization operation.

Asaconcrete example, wecan apply theabove framework to implement generic protocol
selection algorithmsfor mutual -exclusion locks (mutexes) and reader-writer locks. Figures
B.5 and B.6 in Appendix B present these algorithms.

Summary

We have presented a framework for designing correct and efficient protocol selection
algorithmsfor protocol sthat exhibit consensusobjects. Theframework exploitsthe property
of consensus objects to allow a process to execute any of the available protocols without

47

Case 1:

Protocol change occurs
while protocol execution
is in pre—consensus

(Q, Invalidate,x)

Case 2:

(P, DoProtocol, x)

TN

(Q, Invalidate,x)

(P, DoProtocol, x)

R

(P, DoProtocol, x)

Protocol change occurs

ST

while protocol execution
is in post-consensus

(Q, Invalidate,x)

(P, DoProtocol, x)

SRR

(Q, Invalidate,x)

Actual Schedule

I

Serialization

Actual Schedule

I

Serialization

F

\

777 Pre-Consensus

Il '~ Consensus
SRy Post-Consensus

Figure 3.10: Serializing protocol executions and changes with consensus objects.

48

procedure DoProtocol(p : prot_obj) returns (V, invalid)
if PreConsensus(p)
AcquireConsensus(p)
InConsensus(p)
if p.valid
ReleaseConsensus(p);
return PostConsensus(p);
else
ReleaseConsensus(p);
PostConsensusFail(p);
return invalid
else
if WaitConsensus(p)
return PostConsensus(p);
else
PostConsensusFail(p);
return invalid

procedure Invalidate(p : prot_obj) returns boolean

b : boolean := false
AcquireConsensus(p)
if p.valid

p.valid := false; b := true
ReleaseConsensus(p)
return b

procedure Validate(p : prot_obj)
AcquireConsensus(p)
if p.valid = false
p-UpdateProtocol(p)
p.valid := true
ReleaseConsensus(p)

procedure IsValid(p : prot_obj) returns boolean
return p.valid

Figure3.11: Animplementation of aprotocol object for a protocol with consensus objects.

49

prior coordination with other concurrent processes. The consensus objects ensure that
concurrent protocol executions and protocol changes are serializable. Most importantly,
the protocol selection algorithm adds very little overhead to the critical path of a protocol
execution in the case where the protocol isvalid. No extrasynchronization is needed in this
common case.

3.2.6 Performance Optimizations

While the above framework gives us a correct and efficient method for selecting protocols,
there are a number of performance enhancing modifications that can be made. We did not
include these enhancementsin describing the framework because that would only obfuscate
thediscussion and detract the reader from the essential mechanismsthat preserve correctness
while alowing concurrent protocol changes. We discuss these performance enhancements
here.

Inlining the protocol changer as part of protocol execution. Inthe system model, the
protocol changer is modeled as a separate process that decides when to change protocols.
Instead of relying on a separate process to initiate changes, we can make the protocol
changer part of the protocol execution. Specifically, we can monitor run-time conditions
as part of executing a protocol. This allows usto use otherwise idle spin-waiting cycles to
perform useful work. For example, while spin-waiting for atest-and-set lock, a process can
estimate contention levels by counting the number of failed attempts.

Combining the protocol manager with protocol executions. In the framework, the
protocol manager and protocol executions were separate control structures. In particular,
whenever an exceptional conditionisdetected, such as executing aninvalid protocol, control
has to return to the protocol manager. This interaction can be streamlined if we break the
abstraction between the protocol manager and the protocol object and implement them in a
single layer.

A mode variable for faster dispatching. The protocol manager checks the valid bit of
each protocol to decide which protocol to execute. We can speed up this dispatch by using
a mode variable to indicate which protocol is currently valid. The mode variable can be
updated consistently during a protocol change. The use of a mode variable will allow
faster dispatches, especialy in the case where more than two protocols are being selected.

50

Moreover, on cache-coherent machines, the mode variable can be placed in a separate
mostly-read cache line so that it can be read-cached by participating processors.

Protocol Specific Optimizations. The semantics of some protocols may allow us to
further optimize the algorithms. One optimization that can be used when implementing
reactive locks is to use the state of the lock to indicate whether the lock isvalid or invalid.
Instead of having a separate valid field, we can leave invalid locks in a locked state to
indicate that they are invalid. The implementation of a reactive spin lock presented in
the next section uses this trick to remove the need to check a valid field when using the
test-and-test-and-set protocol.

3.3 Reactive Spin-Lock and Fetch-and-Op Algorithms

This section presents a high-level description of practical implementations of reactive spin
locks and fetch-and-op that are largely based on the design framework outlined above.
The agorithms have been further optimized with performance enhancements in order to
minimize overheads in the steady-state case when protocol changes are not occurring. This
section also describes how the reactive agorithms monitor run-time conditions to decide
which protocol should be used. For further implementation details and an overview of the
implementation process, refer to Section 3.7 and Appendix C.

3.3.1 TheReactive Spin-Lock Algorithm

The reactive spin-lock agorithm combines the low latency of a test-and-test-and-set lock
with the scalability and fairness properties of the MCS queue lock by dynamically selecting
between the test-and-test-and-set protocol and the MCS queue lock protocol. Figure 3.12
illustrates the components of the reactive lock. It is composed of two sub-locks (a test-
and-test-and-set lock and an MCS queue lock), and a mode variable. Section 3.7 presents
a pseudo-code listing of the reactive spin-lock agorithm. The algorithm uses the test-and-
test-and-set spin lock itself as a consensus object, and the tail pointer of the MCSlock asa
consensus object.

Intuitively, the reactive spin-lock algorithm works as follows. Initialy, the test-and-
test-and-set lock is free, the queue lock is busy, and the mode variable is set to TTS. A
process acquires the reactive lock by acquiring either the test-and-test-and-set lock or the
gueue lock. The algorithm ensures that the test-and-test-and-set lock and queue lock are

51

TTS QUEUE

O O

Test&Test&Set Lock Queue Lock

Figure 3.12: Components of the reactive spin lock: a test-and-test-and-set lock, a queue
lock, and a mode variable. The mode variable provides a hint to lock requesters on which
sub-lock to use.

never free at the sametime, so that at most one process can successfully acquire a sub-lock.
A process releasing the reactivelock can choose to free either the test-and-test-and-set lock
or the queue lock, independent of which sub-lock it acquired.

The mode variable provides a hint on which sub-lock to acquire. On a cache-coherent
multiprocessor, and assuming infrequent mode changes, the mode variable will usualy be
read-cached so that checking it incurs very little overhead. If the mode variable is TTS, a
process attemptsto acquirethe test-and-test-and-set lock. Otherwise, if themodevariableis
QUEUE, aprocess attempts to acquire the queue lock. To optimizefor latency in the absence
of contention, the reactive algorithm avoids checking the mode variable by optimistically
attempting to acquire the test-and-test-and-set lock. The mode variable is checked only if
the attempt fails.

The mode variable acts only a hint because there exists a race condition whereby the
correct protocol to use can change in between when a process reads the mode variable and
when that process executes the protocol indicated by the mode variable. However, since the
reactive algorithm ensuresthat the test-and-test-and-set |ock and queuelock are never freeat
the sametime, processes that execute the wrong protocol will ssmply find the corresponding
sub-lock to be busy. Such processes will either re-check the mode variable, or receive a
retry signal whilewaiting, and retry the synchronization operation with adifferent protocol.

Changing protocols. We restrict protocol changes to a process that has successfully
acquired a valid lock, thus ensuring atomicity while changing protocols. When changing
from TTS mode to QUEUE mode, the reactive lock holder changes the value of the mode
variable to QUEUE, then releases the queue lock, leaving the test-and-test-and-set lock in a

52

busy state. When changing from QUEUE mode to TTS mode, the lock holder changes the
value of the mode variable to TTS, signals any waiters on the queue to retry, then releases
the test-and-test-and-set lock, leaving the queue lock in abusy state.

Detectingcontentionlevels. Thereactivea gorithm estimatesthelevel of lock contention
to decide if the current lock protocol is unsuitable. In TTS mode, the reactive algorithm
monitorsthe number of failed test-and-set attempts experienced by aprocesswhileacquiring
thelock. This number indicates the number of times a process failed to acquire alock after
that lock was released, and is an indication of the level of lock contention. The reactive
spin lock changes from the test-and-test-and-set protocol to the queuing protocol when the
number of failed test-and-set attempts during alock acquisition exceeds a threshold.

In QUEUE mode, the reactive algorithm monitors the number of times the MCS lock’s
gueue is empty during a lock acquisition. Empty queues indicate low levels of lock
contention. The reactive spin lock changes from the queuing protocol to the test-and-test-
and-set protocol if a process finds the queue to be empty for some number of consecutive
lock acquisitions.

3.3.2 The Reactive Fetch-and-Op Algorithm

The reactive agorithm for fetch-and-op chooses among the following three protocols:
1. A variable protected by a test-and-test-and-set lock.
2. A variable protected by a queue lock.
3. A software combining tree by Goodman et al. [15].

In the first two protocols, the consensus objects are the locks protecting the centralized
variables. In the combining tree, the consensus object is the root of the combining tree.
Appendix C presents a pseudo-code listing of the reactive fetch-and-op agorithm.

As in the reactive spin lock algorithm, a mode variable ushers processes to the fetch-
and-op protocol currently in use. The reactive algorithm ensures that at most one of the
fetch-and-op protocols consensus objectsis valid at any time. A process that accesses an
invalid lock while executing one of the centralized protocolssimply retriesthe fetch-and-op
with another protocol. Unlike the reactive lock, we cannot optimistically try the test-and-
test-and-set lock-based counter since this will have the effect of serializing accesses to the
combining tree when contention is high, negating the potential benefitsof parallelisminthe
combining tree.

53

For the combining tree, a process that accesses an invalid root has a set of processes it
combined with that are waiting for areturn value. These waiting processes are in the wait-
consensus phase. Thus, the process that reaches the invalid root completes the combining
tree protocol by descending the combining tree and notifying the processes that it combined
with to retry the fetch-and-op operation. These waiting processes will in turn descend the
tree and notify processes waiting farther down the tree to retry the operation.

Changingprotocols. Only aprocesswithexclusiveaccesstothe currently valid consensus
object is alowed to change protocols. Recall that when changing to another protocol,

the state of the target protocol needs to be updated to represent the current state of the
synchronization operation. For fetch-and-op, the state of the synchronization operation is
the current value of the fetch-and-op variable. In each of the three protocols, this state
is represented by a variable that is modified only by processes with exclusive access to a
protocol’s consensus object. Thus the state of the target protocol can be easily updated by

updating the value of this variable. As an optimization, the reactive algorithm keeps this
variable in acommon location so that updates are not necessary.

Detecting contention levels. Asin the reactive spin lock, the reactive fetch-and-op algo-
rithm changes from the test-and-test-and-set lock protocol to the queue lock protocol after
some number of failed test-and-set attempts, and changes from the queue lock protocol
to the test-and-test-and-set protocol if the queue lock’s queue is empty for a number of
successive fetch-and-op requests.

To decide whether to use the combining tree protocol, the reactive algorithm monitors
the waiting time on the queue. Since the queue is FIFO, the waiting time on the queue
providesagood estimate of the level of contention. If thewaiting time exceeds atimelimit,
the algorithm changes from the queue lock protocol to the combining tree protocol.

To decide whether to return to the queuelock protocol from the combining tree protocol,
the reactive algorithm monitors the number of combined requests in a process that reaches
the root. This amounts to computing a fetch-and-increment along with the fetch-and-op,
and seeing how large of an increment reaches the root. If the combining rate fallsbelow a
threshold, the reactive algorithm decides to switch back to the queue lock protocol.

3.4 Policiesfor Switching Protocols

In this section, we address the issue of designing intelligent policies for deciding when to
switch protocols. First of al, aprotocol selection algorithm hasto determineif the protocol
in use is not optimal by monitoring run-time conditions while executing a protocol. The
available mechanisms for monitoring run-time conditions are protocol-specific, and were
discussed in the preceding description of the reactive spin lock and fetch-and-op algorithms.

With an estimate of the run-time condition, a reactive algorithm must determine which
protocol is optimal for that run-time condition. However, since the tradeoff between
different protocolsis architecture-dependent, the designer of a protocol selection algorithm
needs to profile the execution of each protocol under different run-time conditions, as was
done when compiling the results of Figure 3.2. Fortunately, this performance tuning is
application-independent, and only needs to be done once per machine architecture.

Once a protocol selection algorithm has determined that another protocol is optimal,
it needs to decide whether to switch to that protocol. Since switching protocols incurs a
significant cost, this decision depends on the future behavior of run-time conditions, such
as contention levels.

The default policy in our reactive algorithms is to switch protocols immediately upon
detecting that the current protocol is not optimal. This has the advantage of tracking
contention levels as closely as possible, but has the potential for pathologically bad perfor-
mance. Specifically, contention levels can oscillate in such away as to cause the policy to
thrash and spend all itstime switching protocols.

A more robust policy would avoid tracking temporary fluctuationsin contention levels.
A possible method is to compute a weighted average of the history of contention levels,
and select the protocol that is optimal for the average contention level. Aging isacommon
operating system technique that can be used to compute the weighted average efficiently.
Using aweighted average hasthedesired effect of ignoring temporary changesin contention
levels.

Another possible approach is to use hysteresis to reduce the probability of thrashing
among protocols. The idea here is to monitor the number of consecutive synchronization
requests that have been serviced with a sub-optimal protocol. This congtitutes a “bad
streak”, and the policy would be to switch protocols whenever the length of a bad streak
exceeds athreshold. A larger threshold would result in more hysteresis,

The most promising approach we found is a policy that results in competitive perfor-
mance. The policy is closely related to hysteresis. The ideais to maintain the cumulative

55

AB

d BA
A B low high
A 0 dag A 0 [CAnhigh
B d BA 0 B [€ B,low 0
State Transition Cost Matrix Task Cost Matrix

Request Sequence: (low | high)*

Figure 3.13: A task system that offers a choice between two protocols, A and B.

cost of using a sub-optimal protocol, and change protocols only when the cost exceeds a
threshold. In contrast to hysteresisthat requires an unbroken streak of sub-optimal protocol
executions before switching protocols, this policy maintains the cumulative cost across
breaksin streaks. We now describe this competitive policy in more detail.

3.4.1 A 3-Competitive Policy

We arrive at a 3-competitive policy for deciding when to switch between two protocols by
mapping the problem onto atask system. (See Chapter 2 for a definition of task systems.)
We model each protocol asa statein atwo-statetask system. The state transition cost matrix
iscomposed of the costs of changing from one protocol to another. Sinceweareinterestedin
the performance penalty of servicing asynchronization request with asub-optimal protocol,
the task cost matrix is composed of the residual costs of using a sub-optimal protocol over
the optimal protocol. For example, if the optimal protocol costs 200 cycles to process a
synchronization request while the sub-optimal protocol costs 500 cycles, then the residual
cost of processing the request with the sub-optimal protocol is 300 cycles.

Figure 3.13 illustrates such a task system for two protocols. Protocol A is optimal
under low contention, while Protocol B isoptimal under high contention. d 45 isthe cost of
switching from protocol A to protocol B, while dg 4 isthe cost of switching from protocol
B to protocol A. C4 1,4 iStheresidual cost of servicing a high-contention synchronization

56

Contention

A
Protocol B
high = ——qy——— -~ —
| [deeten |
| J |
Y dABl d BA\:/ [X N]
| | |
l Protocol A | |
low piri——————— — — — 4 S
dap+ dgp
» Time
Reactive cost, C_ =
R™ 3(dpg+dy,) R
. c <3
Optimal cost, Cpy= (d 5 +d BA) Opt

Figure 3.14: Worst-case scenario for a 3-competitive protocol switching policy. The solid
line plots the level of contention over time, and the dashed line indicates the protocol
selected to satisfy the synchronization requests.

request with Protocol A instead of Protocol B, while C's ..., istheresidual cost of servicing
alow-contention request with Protocol B instead of Protocol A.

In[9], Borodin et al. present an algorithm for such atask system that has a competitive
factor of (2n <1)1 (D). They termtheir algorithm anearly oblivious algorithm. They aso
show that the competitive factor of (2n < 1)1 (D) isalower bound. (D) isthe maximum
ratio of the cost of traversing some cycle of a subset of task system states in one direction
over the cost of traversing the same states in the other direction.

For a two-state system, n = 2 and /(D) = 1, and the nearly oblivious agorithm
prescribes a state transition from state 1 to state 2 whenever the total task cost incurred
since entering state 1 exceeds the total cost of changing to state 2 and back to state 1.
This suggests that a protocol selection algorithm should switch from the current protocol
to the other protocol whenever the cumulative residual cost of processing synchronization
requests with the current protocol exceeds the cost of switching to the other protocol and
back. Such apolicy has a competitive factor of 2n <1 = 3.

To get an intuitive feel of why this policy resultsin 3-competitive performance, refer to
Figure 3.14. The graph plots aworst-case scenario for areactive algorithm that followsthe
switching policy described above. In this scenario, contention levels are chosen such that
the reactive algorithm always uses the wrong protocol to service synchronization requests.
As soon as the algorithm switches to a new protocol, the level of contention changes to
favor the other protocol.

57

The residual cost incurred by the reactive algorithm over a period of two transitionsis
3(dap + dp4). Anoptimal off-line algorithm would either choose to track the contention
level and switch protocolstwice, or choose not to switch protocols at al. In either case, it
would incur aresidua cost of (d4p + dp4). Thusthe reactive algorithm incurs aresidual
cost that is at most three times that of an optimal off-line agorithm.

3.5 Experimental Results

To demonstrate the benefits of dynamic protocol selection, we measure the performance of
the reactive spin lock and fetch-and-op algorithmsthat we designed in the previous section,
and compare them with the best known passive algorithms. These measurements are mostly
obtained from the Alewife smulator. We also present measurements from a 16-processor
Alewife machine prototype to validate the simulation results.

There are two performance characteristics of reactive agorithmsthat we would like to
investigate. First, for agiven level of contention, we would like to see how close areactive
algorithm can approach the performance of the best static choice of protocolsfor that level
of contention. Thiswill indicate how small (or large) the run-time overhead of the reactive
algorithm s, once it has settled down on the optimal protocol to use.

Second, when contention levels vary over time, a reactive algorithm may be able to
outperform a passive algorithm. This will depend on the overhead of switching protocols,
and on how frequently protocol changes areneeded. If contention levelsvary infrequently in
comparison to the overhead of changing protocols, then areactivealgorithmwill outperform
apassive agorithm. However, time-varying contention levels are a double-edged sword. If
contention levels vary too frequently, areactive algorithm may thrash and perform badly.

To investigate the performance characteristics of reactive algorithms, we ran the foll ow-
ing types of experiments.

Baseline Test Thistest precisely characterizes the cost of a synchronization agorithm for
agiven level of contention. It fixesthelevel of contention and measuresthe resulting
cost of an algorithm in terms of processor cycles. This test exposes the overhead of
detecting which protocol to use in areactive algorithm. However, it does not expose
the cost of changing protocols.

Multiple Object Test A typical parallel application has multiple synchronization objects,
each with potentially different levels of contention. This test demonstrates the ability

58

[¢)]

iy

N
1

B ‘@ 1024 |
2 53
Q 256} o
= = 512}
3 3
c (4]
5 128 | B 6
4 B
3 3
64 t
128 |
321+ . |
Spin Locks 64 Fetch-and-Op
—-o— Test&Set w/ backoff -o- Test&Test&Set Lock Based
16 t+ —— Test&Test&Set w/ backoff 32} —— Queue Lock Based
—— MCS Queue Lock —A— Software Combining Tree
gl -m Reactive Lock 16t -m Reactive Fetch-and-Op
L . L 1 L L . L | L L | L .
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Contending Processors Contending Processors

Figure 3.15: Baseline performance of spin lock and fetch-and-op algorithms. “Overhead”
represents the average number of cycles per completed synchronization operation that is
due to the synchronization algorithm in use.

of areactive agorithm to select the best protocol for each synchronization object in
aprogram.

Time-Varying Contention Test The level of contention at a synchronization object in a
parallel application may vary over time. This test investigates the performance of
reactive algorithms under time varying contention levels. It exposes the overhead of
changing protocols and also the benefit of adapting to changing contention levels.
Since this test requires only 16 processors, we ran it on the 16-processor Alewife
prototype.

Application M easurements Weimplemented and ported several parallel applicationsthat
use spin locks and fetch-and-op in order to measure the effect of using different
synchronization algorithms on the running time of applications.

3.5.1 Basdine Test

In this experiment, we compare the performance of the synchronization algorithms by
measuring the average overhead per synchronization operation incurred by an algorithm
at different levels of contention. This overhead representsthe number of cyclesin between

59

successive synchronization operations at a single synchronization object that is due to the
synchronization algorithm in use.

Wederivetheoverhead by first measuring the average el apsed timein between successive
synchronization operations. A fraction of thistime is due to the latency introduced by the
test loop itself. Thistest-loop latency can be computed from the parameters of thetest [oop,
e.g., the length of the critical section in the test loop. To arrive at the overhead due to the
synchronization algorithm, we subtract the test-loop latency from the measured time.

The motivation for filtering out the test-loop latency from the average time in between
successive synchronization operations is to make the results less dependent on the param-
eters of the test loop, and to focus on the overhead due to the synchronization protocol in
use.

Figure 3.15 compares the baseline performance of the algorithms. The results show
that the reactive algorithms succeed in selecting the best protocol to use, and are close to
the performance of the best passive algorithmsat all levels of contention.

Spin Locks Each processor executes aloop that acquires the lock, executes a 100-cycle
critical section, releases thelock, and delaysfor arandom period between 0 and 500 cycles.

procedure test_lock (1 : "“lock)
repeat while true
lock(1)
delay(100) // critical section
unlock(1l)
delay(random(0, 500)) // think time

The 100-cyclecritical section modelsareasonably small critical sectionwhen contention
isinvolved: protected data has to migrate between caches, and it takes about 50 cycles to
servicearemotecachemiss. Thedelay between lock acquisitionsmodel ssome computation
(think time) in between accesses to thelock, and it forcesthelock to migrate between caches
when there is contention. Otherwise, a single processor may hog the spin lock when using
the test-and-set or test-and-test-and-set protocols, unfairly favoring their performance. This
test programis similar to that used by Anderson [5].

Each data point represents the average lock overhead per critical section with P pro-
cessors contending for the lock. To arrive at this measure, we first compute the average
elapsed time per critical section by dividing the actual el apsed time by the number of critical
sections. We then derive the test-loop latency per critical section from the length of the
critical section (100 cycles) and the average think time (250 cycles). The test-loop latency

60

should be 350 cycles at the one-processor data point, 175 cycles at the two-processor data
point, and 100 cycles at the four-processor data point and beyond.

The average lock overhead per critical section is the difference between the average
elapsed time and the test-loop latency per critical section. One can view the overhead
as the number of cycles the spin lock algorithm adds to each critical section. Without
contention, the average lock overhead represents the latency of an acquire-release pair.
With contention, the average lock overhead represents the time to pass ownership of the
lock from one process to another.

The results indicate that the reactive algorithm succeeds in selecting the test-and-test-
and-set protocol at the one- and two-processor data points, and the queuing protocol at all
other data points. They also show that the reactive algorithm adds very little overhead over
statically selecting the best protocol.

Fetch-and-Op We use fetch-and-increment as a representative of a combinable fetch-
and-op operation. Each processor executes a loop that executes a fetch-and-increment (a
combinable instance of fetch-and-op), then delays for a random period between 0 and 500
cycles.
procedure test_fetch_and_incr (c : “counter)
repeat while true
fetch_and_increment (c)
delay(random(0, 500)) // think time

As in the baseline test for spin locks, the delay between increment requests forces the
fetch-and-increment variable to migrate between caches when thereis contention. We used
aradix-2 combining tree with 64 leaves for the combining-tree protocol.

Each data point represents the average overhead per fetch-and-increment operation with
P processors contending for the operation. To arrive at this measure, we first compute
the average elapsed time per fetch-and-increment by dividing the actual elapsed time by
the number of increments. We then compute the test-loop latency per increment, given
zero-overhead fetch-and-increment operations. This latency is 250/ P cycles, where 250
is the think time, and P is the number of contending processors. The average overhead
per fetch-and-increment operation is the difference between the average elapsed time and
the test-loop latency. One can view the overhead as the number of cycles the fetch-and-op
algorithm adds to the generation of each increment.

The results indicate that the reactive algorithm succeeds in selecting the test-and-test-
and-set lock-based protocol for the one- and two-processor data points, the queue-based
protocol for the 416 processor data points, and the combining tree protocol for the 32- and

61

64-processor data points. The resultsalso show that itiscrucial to have areactive algorithm
for fetch-and-op. There exists a difference of several orders of magnitude in between the
centralized and combining tree protocols. The reactive fetch-and-op algorithm combines
the advantages of each of its component protocols: it has low latency when contention is
low and high throughput when contention is high.

3.5.2 Spin Lockson Alewife Hardware

To verify the results from the simulator, we ran the baseline test for spin locks on the 16-
processor Alewife prototype. The test is similar to the baseline test on the simulator. Each
processor executes aloop that acquiresalock, executes a 100-cyclecritical section, releases
the lock, and delays for 250 cycles. Each processor loops 1,000,000/P times. Unlike the
test on the simulator, we didn’t use arandom delay because computing rand () on Alewife
consumes afew hundred cyclesin itself. Thisis primarily due to the fact that Sparcle does
not have hardware instructions for integer multiply and divide. On the simulator, we had
the luxury of escaping to the simulator to compute the random del ay.

We compute the average time per critical section by dividing the actual elapsed time by
1,000,000. We then subtract the ideal time per critical section (see description of baseline
test for spin locks above) from the average time to arrive at the average lock overhead per
critical section.

Figure 3.16 presentstheresults of thistest. Again, we can see the contention-dependent
tradeoff between thetest-and-set lock and the M CS queue lock. We also see that thereactive
lock managesto track the performance of the best protocol at different levels of contention.
There are a couple of differences compared to the smulation results that we explain here.

The first difference is that the test-and-set lock performs better than predicted by the
simulations with two processors contending for the lock. This difference is due to the
unfairness property of the test-and-set lock. In the simulations, we observed that with
two processors, the test-and-set lock isinitialy fair, and the lock bounces back and forth
between the processors. However, eventually one of the processors gains control of the
lock and the other processor ssmply backs off to the maximum delay. This has the effect
of lowering the test-and-set lock overhead since the lock is no longer migrating between
processors for each critical section. In the simulations, we measured lock overhead only
during the initial period when the lock is fairly shared among the processors, while on the
real hardware, we measured lock overhead for the entire duration of the test.

The second differenceis that the lock overhead under high contention is smaller on the
real machine than predicted by the simulation. This lock overhead represents the time it

62

[¢)]

iy

N
1

N

a1

[e}]
T

128

Overhead (Cycles)

32+

Spin Locks

—— Test&Set w/ backoff
16 |+ —— Test&Test&Set w/ backoff
—— MCS Queue Lock
——

Reactive

1 2 4 8 16
Contending Processors

Figure 3.16: Basdline performance of spin lock algorithms on the 16-processor Alewife
prototype.

takesto pass alock from one processor to another. The reason for the lower overhead isthat
the Alewife prototype currently runs at 20MHz while the simul ations assume a clock speed
of 33MHz. Because Alewife uses an asynchronous network, and we measure overhead in
terms of processor cycles, communication latencies appear shorter onthe Alewifehardware.

Despite these minor differences, the results confirm that the reactive lock succeeds in
choosing theright protocol at different levels of contention on the actual Alewife hardware.

3.5.3 Multiple Object Test

The baseline performance figures measure the performance of the reactive synchronization
algorithmsfor a given level of contention at a single synchronization object. In practice, a
parallel program may have multiple synchronization objects, each with different levels of
contention. Since areactive algorithm should select the best protocol to use at each of these
objects, we can expect it to outperform a passive algorithm that uses the same protocol
across all the objects.

To demonstrate thisfeature of reactiveal gorithms, we use asynthetic benchmark with 64
processors attempting to acquire and rel ease a set of spin locks. We statically predetermine
the contention level at each spin lock by assigning each of the 64 processors to one of the
spin locks.

63

Each processor executes a loop that acquires a lock, increments a double precision
floating point value associated with the lock, releases the lock, and delays for a random
period between 0 and 500 cycles. Thus, the loop is identical to the one in the baseline
test, except the critical section represents some actual computation instead of afixed delay
of 100 cycles. We measure the time for the processors to perform a total of 16,384 lock
acquisitions and releases.

We compare four synchronization algorithms: i) a test-and-set spin lock agorithm, ii)
an MCS queue lock algorithm, iii) our reactive spin lock algorithm, and iv) a smulated
optimal agorithm. The simulated optimal algorithm queries the smulator for the best
protocol to use at each lock. From the baseline results, we know that the test-and-set
lock is optimal with less than four contending processors, while the MCS queue lock is
optimal with four or more contending processors. The simulated optimal algorithm does
not performany run-time monitoring of contention levels nor doesit attempt to perform any
protocol changes. It provides a measure of how well an optimal static choice of protocols
might perform, modulo the overhead of a conditional branch for querying the smulator at
each synchronization operation.

Figures 3.17-3.19 present the results of running this test on a set of 12 different con-
tention patterns. We illustrate each contention pattern as a histogram of lock contention.
For example, Pattern 1 has one lock with 32 processors contending for it, and 32 locks with
only one processor contending for each of them. Pattern 2 has two locks, each with 16
processors contending for it, and 32 locks with only one processor contending for each of
them. The elapsed times are normalized to the simulated optimal algorithm.

The results show that when thereisamix of low and high contention locks, the reactive
algorithmis ableto outperform a passive algorithm that uses the same protocol for all of the
locks. We can also see that it is difficult to predict from the mix of contention levelswhich
passive algorithm to use. The reactive agorithm automatically selects the best protocol to
use at each lock and performswithin 8% of the simulated optimal algorithm.

Itisinteresting to consider the performance of theM CSlock under Patterns5-8. Patterns
5-8 are smilar to Patterns 1-4 except that the low-contention locks have two processors
contending for them instead of one. Thus, we might expect the relative performance of
the MCS lock to improve for Patterns 5-8 over Patterns 1-4. However, its performance
actually degrades for Patterns 5-8. This is due to arace condition that inflates the cost of
the MCS protocol under conditions of low, but non-zero contention.

This race condition occurs when aprocessreleasing alock sees that it has no successors
and proceeds to empty the queue. However, before the queue is emptied, another process

64

Contention

Contention

2 c 32r
30k S 30f
Y] 2 c 28}
26 f 2 %t
24k S 24k
2k O 2f
20k
18
16
14
12§
10
sk
sk
+F
b
0 LML
Pattern 1 Pattern 2
2 c 32r
30k S 30f
Y] 2 c 28}
26 f 2 %t
24k S 24k
2k O 2f
20k 20k
18 18
16 16
14 14
12§ 12§
10 10
] g] g
A 3 A 3
a4 a4
2F 2F
0 BEEEEEBEBERLERE 0 BEEEEEBEBERLERE
Pattern 3 Pattern 4
o 14
=
'_
o 12
1%2]
g
o 1.0
?
N
< 0.8
E
(e}
Z 06 Optimal (Simulated)
Test&Set Lock
MCS Queue Lock
0.4 H Reactive Lock
0.2
0.0
Pattern 1 Pattern 2 Pattern 3 Pattern 4

Figure 3.17: Normalized elapsed times for the multiple lock test, contention patterns 1-4.

65

Contention

Contention

Contention

Pattern 5

Pattern 6

Contention

Pattern 7

14

12

1.0

0.8

Normalized Elapsed Time

0.6

0.4

0.2

0.0

Pattern 8

Optimal (Simulated)

Test&Set Lock

MCS Queue Lock
Hm Reactive Lock

Pattern 5 Pattern 6 Pattern 7 Pattern 8

Figure 3.18: Normalized elapsed times for the multiple lock test, contention patterns 5-8.

66

Contention

Contention

2 c 32r
k0] o © 30f
Y] 2 c 28}
26 f 2 %t
24 2
2k O 2f
20§
18
16
14F
12F
10
sk
sk
+F
5 IIII
Pattern 9 Pattern 10
2 c 32r
k0] o o 30f
Y] 2 c 28}
26 f g 26 f
24 o 24F
2k O 2f
20§ 20§
18 18
16 16
14F 14F
12F 12F
10 10
] §] §
6 6
B4 ((1TI LAy
2k 2k
5 i 5 |
Pattern 11 Pattern 12
2.42
o 20y
=
= 18}
k5
§ 16}
Woiaf
g
= 1.2 f
1S))
5 1O0F Optimal (Simulated)
z Test&Set Lock
08 F MCS Queue Lock
I Reactive Lock
0.6 f
04F
0.2 F
0.0
Pattern 9 Pattern 10 Pattern 11 Pattern 12

Figure 3.19: Normalized elapsed times for the multiple lock test contention patterns 9—12.

67

arrives and adds itself to the end of the queue, thereby violating the releasing process's
assumption that no other processes are waiting for the lock. If this occurs, the MCS
protocol executes some clean-up code that restores the queue.

In this test, the race condition occurs when there are two processors contending for a
lock, and Patterns 5-8 have a large number of locks with two contending processors. This
leads to the unexpectedly poor performance of the MCS queue lock. By selecting the test-
and-set protocol when two processors are contending for the lock, the reactive agorithm
avoids this pitfall.

3.54 Time-Varying Contention Test

While the preceding tests expose the run-time overhead of selecting protocols, they do not
expose the overhead of changing protocols. To expose this overhead, we ran atest program
that periodically switches between phases of no contention and high contention. Besides
demonstrating the benefits of adapting to the level of contention, it also shows how badly a
reactive algorithm might perform with frequently changing contention levels.

Figure 3.20 illustrates how the level of contention varies during the test. In the low-
contention phase, a single processor executes a loop that acquires the lock, executes a
10-cycle critical section, releases the lock, and delaysfor 20 cycles. In the high contention
phase, 16 processors concurrently execute a loop that acquires the lock, executes a 100-
cycle critical section, releasesthe lock, and delays for 250 cycles. We measure the time for
the test program to execute 10 periods. Since thistest requires only 16 processors, we ran
thistest on the 16-processor Alewife prototype.

We compare the performance of our reactive lock with the test-and-set lock and the
MCS lock. Figure 3.21 presents the results of this experiment, normalized to the execution
time for the MCS lock. We vary the test program along two dimensions: i) the length of
a period, measured as the number of locks per period, and ii) the percentage of locks that
are acquired under high contention (% contention). The length of a period controls how
frequently the reactive lock may have to switch protocols. Each period should cause the
reactive lock to switch protocolstwice.

First, consider the case when contention levels do not vary too frequently (towardsthe
right end of each graph). Asexpected, theresultsshow that thetest-and-set |ock outperforms
the MCS queuelock when contention israre (10% contention). When contention dominates
(90% contention), the MCS queue lock outperformsthe test-and-set lock. In both cases, the
reactive lock approachesthe performance of the better of the two passive agorithms. When
thereis some mix of low and high contention (30% contention), neither the test-and-set lock

68

{4— 1 period —D}

5
2 16 —
[]
<
8 high low
contention | contention
phase phase

Time

Figure 3.20: The time-varying contention test periodically varies the level of contention to
force the reactive lock to undergo protocol changes.

nor the MCS queuelock has a clear advantage over the other. By continuously selecting the
better protocol, the reactive lock outperforms both the test-and-set and MCS queue locks.

Next, consider the case when contention levels vary frequently (towards the left end
of each graph). The results show that the overhead of switching protocols dominates and
the performance of the reactive lock suffers. In the experiments, the performance of the
reactive spin lock begins to deteriorate when forced to change protocols as frequently as
every 1000 critical sections. However, the reactive lock is still always better than the worst
static choice of protocols even under such extreme circumstances. It isinteresting to note
that the performance of the test-and-set protocol deteriorateswhen contention levels change
frequently. Thisis because the test-and-set protocol does not handle bursty arrivals of lock
requesters as well as the MCS queue lock protocol.

3.5.5 Alternative Switching Policies

The policy in the reactive spin-locks and fetch-and-op thusfar has been to switch protocols
immediately after detecting that it should be using another protocol. If contention levels
vary across protocol breakeven points too frequently, this policy might cause a reactive
algorithm to thrash and switch protocols needlessly. While we do not expect contention
levels to vary so frequently in practice, we might want to use more intelligent policies for
switching protocols to protect against such pathological behavior. We described several
such policiesin Section 3.2. Here, we use the time-varying contention test to measure the
effect of using competitive techniques and hysteresis to decide when to switch protocols.
Recall that the competitive algorithm switches protocols after the cumulative cost of
using the sub-optimal protocol exceeds the cost of switching to the other protocol and
back. For the reactive spin lock, we assume a cost of 150 cyclesfor using the test-and-test-
and-set protocol under high contention, and a cost of 15 cycles for using the MCS queue

69

20 20
g 10% contention g 30% contention
= 18¢ = 18¢
o °
8 16t 8 16t
g g
o 14t o 14t
1.2 + 1.2 +
1.0 % * < B B * 1.0 +
08} 08}
0.6 | —o— Test&Set w/ backoff 0.6 |+ —o— Test&Set w/ backoff
—%— MCS Queue Lock —%— MCS Queue Lock
04 —&— Reactive 04 —&— Reactive
0.2} 0.2}
0.0 L L L L L | 0.0 L L L L L |
256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192
Period Length Period Length
20
g 50% contention
= 18¢
°
8 16t
5
o 14t
1.2 +
1.0 +
08
0.6 | —o— Test&Set w/ backoff
—%— MCS Queue Lock
04 —m— Reactive
0.2}
0.0 L L L L L
256 512 1024 2048 4096 8192
Period Length
20 20
g 70% contention g 90% contention
= 18¢ = 18¢
o o
8 16t 8 16t
5 5
o 14t o 14t
1.2 + 1.2 +
1.0 % * ¥ L = —u 1.0 % * * * * L4
08 08
0.6 | —o— Test&Set w/ backoff 0.6 |+ —o— Test&Set w/ backoff
—%— MCS Queue Lock —%— MCS Queue Lock
04 —&— Reactive 04 —&— Reactive
0.2} 0.2}
0.0 L L L L L | 0.0 L L L L L |
256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192
Period Length Period Length

Figure 3.21: Elapsed times for the time-varying contention test, normalized to the MCS
Queue Lock. Period Length is measured as the number of |ocks acquired per period.

70

lock protocol under low contention. The cost of changing from the test-and-test-and-set
protocol to the MCS protocol is empirically observed to be about 8000 cycles, while the
cost of changing from the MCS protocol to the test-and-test-and-set protocol is about 800
cycles. With these parameters, we implemented a 3-competitive policy for deciding when
to switch protocols in the reactive spin-lock. The policy switches protocols whenever the
cumulative cost of being in a sub-optimal protocol exceeds 8800 cycles.

Figure 3.22 presents the results of using a 3-competitive policy for switching spin-lock
protocols in the time-varying contention test. The curve labeled Reactive, Always is the
default policy of switching immediately upon detecting that it is using the sub-optimal
protocol. The curve labeled Reactive, 3-competitive isthe 3-competitive policy described
above.

Theresultsshow that the competitive al gorithm improvesthe performance of thereactive
lock when switching frequencies are high, especially when contention is predominantly
high (cf. curves for 70% and 90% contention with a period length of 256 locks per
period). However, this comes at the price of lower performance at intermediate switching
frequencies. Asexpected, at |ow switching frequencies(towardstheright end of thegraphs),
the switching policies do not make much difference, except to add some constant overhead.

An alternative switching policy we explore is using hysteresis to reduce the probability
of thrashing between protocols. Figure 3.23 presents the results of this experiment. We
experimented with severa settings of hysteresis levels. We use the following notation to
describe the hysteresislevels: Hysteresis(x, y) means that the algorithm switches from the
test-and-test-and-set protocol to the MCS protocol after x consecutive high-contention lock
requests, and switchesfrom the the MCS protocol to the test-and-test-and-set protocol after
y consecutive low-contention lock-requests.

We measured the performance of the reactive spin lock algorithm under Hysteresis(20,
55), Hysteresis(500, 4), and Hysteresis(4, 500). Hysteresis(20, 55) matchesthe switching
thresholds of the 3-competitive algorithm. Recall that the policy of hysteresis differs
from the 3-competitive algorithm only in not maintaining the cumulative cost of servicing
requests across breaks in bad streaks. Hysteresis(500, 4) and Hysteresis(4, 500) favor
using the test-and-test-and-set protocol and MCS protocol, respectively.

Theresultswererather disappointing. Maintaining hysteresis adds a significant amount
of run-time overhead to the reactive agorithm. The main problem is that the reactive
algorithm always incurs an overhead to maintain statistics for hysteresis, even when the
currently selected protocol is the optimal protocol. Contrast this with the 3-competitive
algorithm that incurs an overhead to maintain statistics only when using a sub-optimal

71

2.0
1.8
1.6
14
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Elapsed Time

2.0
1.8
1.6
14
1.2
1.0
0.8
0.6
0.4
0.2
0.0

Elapsed Time

T
*

10% contention

*

&;

—— Test&Set w/ backoff
—%— MCS Queue Lock
—a— Reactive, Always
—— Reactive, 3-competitive

256

L L 1
512 1024 2048 4096 8192
Period Length

2.0
1.8
16t
14t
1.2
1.0
0.8
0.6 |-
0.4
0.2
0.0 .= .

Elapsed Time

bhxd

20

g 30% contention
= 18¢t
o
2 16}
&
o 14t
12 F
10}
0.8+
—— Test&Set w/ backoff
0.6 —%— MCS Queue Lock
04} —m— Reactive, Always
: —— Reactive, 3-competitive
0.2+
00 L L L

L L 1
256 512 1024 2048 4096 8192
Period Length

50% contention

Test&Set w/ backoff
MCS Queue Lock
Reactive, Always
Reactive, 3-competitive

256 512

70% contention

Test&Set w/ backoff
MCS Queue Lock
Reactive, Always
Reactive, 3-competitive

bhxd

256

L L 1
512 1024 2048 4096 8192
Period Length

1024 2048 4096 8192
Period Length

20 .

g 90% contention

= 18¢t

o

2 16}

&

o 14t
12 F
1.0 % * * * * L4
0.8+

—— Test&Set w/ backoff

0.6 —%— MCS Queue Lock
04} —m— Reactive, Always
: —— Reactive, 3-competitive
0.2+
00 L L L

L L 1
256 512 1024 2048 4096 8192
Period Length

Figure 3.22: Elapsed times for the time-varying contention test (normalized to the MCS
Queue Lock) with a 3-competitive protocol-switching policy. Period Length is measured
as the number of locks acquired per period.

72

g 22 10% contention g 22 30% contention
= 20t = 20t
° °
§ 18 | § 1.8
ﬁ 16} ﬁ 1.6t
14 14
1.2 + 1.2}
10| 1.0 +
0.8 08} —o— Test&Set w/ backoff
06l —o— Test&Set w/ backoff 06} —%— MCS Queue Lock
' —%— MCS Queue Lock ! —o— Hysteresis(20, 55)
04+ —o— Hysteresis(20, 55) 041 — Hysteresis(500, 4)
02} —<— Hysteresis(500, 4) 02} —— Hysteresis(4, 500)
’ —— Hysteresis(4, 500) ’
0 L L L L L 1 00 L L L L L 1
256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192
Period Length Period Length
g 22 50% contention
= 20t
°
g 18}
aQ
8 16t
(]
14
1.2 +
1.0 % * * ¥ ¥ =
08} —o— Test&Set w/ backoff
06l —%— MCS Queue Lock
! —— Hysteresis(20, 55)
04t —<— Hysteresis(500, 4)
ozl —+— Hysteresis(4, 500)
0 L L L L L 1
256 512 1024 2048 4096 8192
Period Length
g 22 70% contention g 22 90% contention
5 5 o20r M
° °
2 S 18 \M
aQ aQ
< 8 16t
(] (]
14
L2y T
1.0 % * * B B = 1.0 % * * * B *
08} —o— Test&Set w/ backoff 0.8 —o— Test&Set w/ backoff
06l —%— MCS Queue Lock 06l —%— MCS Queue Lock
! —— Hysteresis(20, 55) ! —— Hysteresis(20, 55)
04+t —<— Hysteresis(500, 4) 04t —<— Hysteresis(500, 4)
02l —— Hysteresis(4, 500) 02l —+— Hysteresis(4, 500)
0 L L L L L 1 00 L L L L L 1
256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192
Period Length Period Length

Figure 3.23: Elgpsed times for the time-varying contention test (normalized to the MCS
Queue Lock) with a protocol-switching policy based on hysteresis. Hysteresis(x, y)
switches from the test-and-test-and-set protocol to the MCS protocol after x consecutive
high-contention lock requests, and switches from the the M CS protocol to the test-and-test-
and-set protocol aftery consecutive low-contention lock-requests.

73

20 15¢

Queue Lock
Combining Tree
I Reactive

Queue Lock
Combining Tree
El Reactive

Queue Lock
Combining Tree
I Reactive

200

15

15.0 1.0

10.0

10
05}F
05F 50F |
0.0 0.0 0.0
32 64 16 32 64 128 16 32 64

128
Processors Processors Processors

Elapsed Time (MCycles)
Elapsed Time (MCycles)
Elapsed Time (MCycles)

o

Gamteb TSP AQ

Figure 3.24: Execution times for goplications using different fetch-and-op algorithms.

protocol. Among the hysteresis settings, we find that the best setting is Hysteresis(4, 500)
that favorsthe MCS protocol under varying contention levels.

In summary, theseresultson alternative switching policiessuggest that the 3-competitive
algorithm isagood policy for deciding when to switch protocols. Moreover, itsworst case
performanceis at most a constant factor worse that the performance of an optimal off-line
algorithm. However, the pricefor guaranteeing thisworst case bound islower performance
at intermediate switching frequencies.

These results also suggest that apolicy that always switches protocolsimmediately after
detecting that it is using a sub-optimal protocol works quite well, even though it has the
potential for performing very poorly. To forcetheaways-switch policy to thrash, contention
levels would have to change rapidly. In practice however, contention levels cannot change
arbitrarily rapidly. Once contention levels have built up, it takes awhile for the contention
to dissipate.

3.5.6 Application Performance

The synthetic benchmarks provide a precise characterization of the performance of the syn-
chronization algorithms. We now investigate the impact of the synchronization algorithms
on several parallel applications that use spin locks and fetch-and-op. The applications are
written in C and parallelized with library calls. For each application, we vary the synchro-
nization algorithm and measure the execution time on various numbers of processors.

Fetch-and-Op Figure 3.24 presents the execution times for applications that use fetch-
and-op. We exclude the execution times for the test-and-test-and-set lock based fetch-and-

74

op protocol: they are either dightly better or much worse than the execution times for the
gueue-based protocol. The combining trees are radix-2, and have as many leaves as the
number of processorsin each experiment.

Overadl, the results show that the choice of fetch-and-op algorithms has a significant
impact on the execution times, and that the reactive fetch-and-op a gorithm selects the right
protocol to executein all cases. They demonstrate the utility of having areactive algorithm
select the protocol to use. To better understand the results, we describe the characteristics
of each application

Gamteb Gamteb [11] isaphoton transport simulation based on the Monte Carlo method.
In this simulation, we used an input parameter of 2048 particles. Gamteb updates a set of
nine interaction counters using fetch-and-increment.

On 32 and 64 processors, contention at all nine interaction counters are such that the
gueue-based protocol for fetch-and-op exhibits the best performance. The reactive algo-
rithm sel ects the queue-based protocol for all the counters. On 128 processors, contention at
one of the countersis high enough to warrant a combining tree. The reactive algorithm se-
lects the combining tree protocol for that counter and the queue-based protocol for the other
eight counters. Thisallowsthe reactive algorithm to outperform the passive algorithmsthat
use the same protocol for all of the counters.

Traveling Salesman Problem (TSP) TSP solves the traveling salesman problem with
a branch-and-bound algorithm. Processes extract partialy explored tours from a global
gueue and expand them, possibly generating more partial tours and inserting them into the
queue. In this simulation, TSP solves an 11-city tour. To ensure a deterministic amount
of work, we seed the best path value with the optimal path. The global queue is based
on an agorithm for a concurrent queue described in [18] that allows multiple processes
simultaneous access to the queue. Fetch-and-increment operations synchronize access to
the queue.

Contention for the fetch-and-increment operation in this application depends on the
number of processors. With 16 and 32 processors, the queue-based fetch-and-op protocol
is superior to the combining tree, but the opposite is true with 64 and 128 processors.
The reactive algorithm selects the queue-based protocol at 16 and 32 processors, and the
combining tree protocol at 64 and 128 processors.

75

20 ¢ Test&Set Lock

Elapsed Time (MCycles)

w Test&Set Lock w 10.0 Test&Set Lock
MCS Lock o MCS Lock o MCS Lock
Em ReactivelLock £ 30f Em Reactive Lock & Em Reactive Lock
(6] (6]
80
15} =3 2
[} [}
£ £
= = L
2 20k = 6.0
10} b3 b3
& &
o o 40F
o5}t Loy
20F
0.0 0.0 0.0
16 64 16 64 4 16
Processors Processors Processors
MP3D (3000 particles) MP3D (10000 particles) Cholesky

Figure 3.25: Execution times for applications using different spin lock algorithms.

Adaptive Quadrature (AQ) AQ performs numerical integration of a function with the
adaptive quadrature algorithm. It proceeds by continualy subdividing the range to be
integrated into smaller ranges. A free processor dequeues a range to be integrated from a
global queue. Depending on the behavior of the function in that range, the processor may
subdivide the range into two halves, evaluating one half and inserting the other into the
queue. In this simulation, AQ integrates the function (sin(x4))* in the range (0, 30).

The queue implementation is the same as the one in TSP. However, computation grain
sizes represented by each object in the parallel queue are larger compared to TSP, resulting
in lower contention for the fetch-and-increment operation. At 16 and 32 processors, the
gueue-based fetch-and-op protocol is superior to the combining tree, but at 64 processors,
both the queue-based and combining-tree protocols perform about equally. The reactive
algorithm selects the queue-based protocol at 16 and 32 processors, and the combining tree
protocol at 64 processors.

Spin Locks Figure 3.25 presents the execution times for applications with spin locks.
Overdll, the results show that while high contention levels might be a problem for the
test-and-set lock, the higher latency of the MCS queue lock at low contention levelsisnot a
significant factor. Computation grain sizesin between critical sectionsfor these applications
are large enough to render the higher latency of the queue lock insignificant. Thus, the
reactive spin lock yields limited performance benefits over the MCS queue lock.

Nevertheless, thereactive spinlock achieves performancethat iscloseto the best passive
algorithm, and should be useful for applications that perform locking frequently and at a
very fine grain such that lock |atencies becomes a concern.

76

MP3D MP3D ispart of the SPLASH parallel benchmark suite [52]. For thissimulation,
we use problem sizes of 3,000 and 10,000 particlesand turn on thelocking optionin MP3D.
We measure the time taken for 5 iterations. MP3D uses locks for atomic updating for cell
parameters, where a cell represents a discretization of space. Contention at these locks is
typically low. MP3D also uses alock for atomic updating of collision counts at the end of
each iteration. Depending on load balancing, contention at this lock can be high.

The higher latency of the MCS queue lock under low contention is not significant. On
the other hand, the poor scalability of the test-and-set lock for updating collision counts
significantly increases execution time for 3,000 particles on 64 processors. The reactive
lock selects the test-and-test-and-set protocol for atomic updating of cell parameters, and
selects the queue lock for updating collision counts.

Cholesky Cholesky is also part of the SPLASH parallel benchmark suite. 1t performs
Cholesky factorization of sparse, positive definite matrices. Due to speed and space limita-
tions of the Alewife simulator, we could only factorize small matrices with limited amounts
of paralelism. In this smulation, we factorize an 866x866 matrix with 3,189 non-zero
elements. We do not intend this simulation to be indicative of the behavior of the SPLASH
benchmark, but rather as a test for comparing the spin lock algorithms. Asin MP3D, we
see that the higher latency of the MCS lock has a negligible impact on execution times.

3.6 Reactive Algorithmsand M essage-Passing Protocols

In this section, we consider reactive algorithms that select between shared-memory and
message-passi ng protocols. Recent architecturesfor scal able shared-memory multiprocessors
[31, 34, 48] implement the shared-memory abstraction on top of a collection of processing
nodes that communicate via messages through an interconnection network. They allow
software to bypass the shared-memory abstraction and directly access the message layer .
This provides an opportunity for software to use message-passing protocols to implement
synchronization operations.

The advantage of using message-passing to implement synchronization operations over
shared-memory is that under high contention, message-passing results in more efficient
communication patterns, and atomicity is easily provided by making message handlers
atomic with respect to other message handlers [54]. For example, fetch-and-op can be
implemented by allocating the fetch-and-op variable in a private memory location of some
processing node. To perform a fetch-and-op, a process sends a message to the processor

77

associated with that memory location. The message handler computes the operation using
that memory location and returns the result with its reply. This results in the theoretical
minimum of two messages to perform afetch-and-op: arequest and areply. Contrast this
with shared-memory protocols for fetch-and-op that require multiple messages to ensure
atomic updating of the fetch-and-op variable.

With more efficient communication patterns and atomic message handling, message-
passing protocol s can outperform corresponding shared-memory protocol swhen contention
is high. On the other hand, the fixed overheads of message sends and receives make
message-passing protocols more expensive than corresponding shared-memory protocols
when contention islow. Thisdiminishesthe advantage of message-passing protocolsunless
thelevel of contention can be predicted. Once again, we haveacontention-dependent choice
to make between protocols. Fortunately, reactive algorithms will allow a run-time choice
between shared-memory and message-passing protocols.

Using the framework based on consensus objects, we designed reactive algorithms
for spin locks and fetch-and-op that select between shared-memory and message-passing
protocols. Unlike the shared-memory protocols that reach the in-consensus phase by
acquiring and releasing locks to access a consensus object, the message-passing protocols
reach the in-consensus phase as part of an atomic message handler. For example, in a
message-passing based combining tree, a message ultimately gets sent to the root of the
combining tree. The message handler for the root represents a process that is in the
in-consensus phase.

The reactive spin-lock algorithm selects between a test-and-test-and-set lock protocol
and a message-passing queue lock protocol. The message-passing queue lock is imple-
mented by designating a processor as alock manager. To request alock, a process sends a
message to the lock manager and waits for areply granting it the lock. The lock manager
maintains a queue of lock requesters and responds to lock request and reply messages in
the obvious way.

The reactive fetch-and-op algorithm selects between a test-and-test-and-set lock based
protocol, a centralized message-passing fetch-and-op protocol (described above), and a
message-passing combining-tree protocol. The message-passing combining tree protocol
uses messages to traverse the combining tree. To execute a fetch-and-op, a process sends
a message to a leaf of the tree. After polling the network to detect messages to combine
with, a message handler relays a message to its parent. In this way, messages combine
and propagate up to the root of the combining tree where the operation is performed on the
fetch-and-op variable.

78

[¢)]

iy

N
1

m —
i é 1024 +
>
% 26 S s
s 3
g g
2 128 | 5] B
> 256
o 8
64 } 128 +
32} Spin Locks 64 1
—— Test and Test&Set w/ backoff Fetch-and-Op
- Messa}ge—Passing Queue Lock 32 —o— Test&Test&Set Lock Based
161 - Reactive Lock — Message-Passing, Centralized
16l —a— Message-Passing, Combining Tree
-a- Reactive
8L, J I ; I) I ! ! ! ! ! ! !
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Contending Processors Contending Processors

Figure 3.26: Basedline performance comparing shared-memory and message-passing pro-
tocols for spin locks and fetch-and-op. The reactive algorithms select between the shared-
memory and message-passing protocols.

Figure 3.26 presents the baseline performance of the reactive algorithms that select
between shared-memory and message-passing protocols. Like the reactive algorithms that
select between purely shared-memory protocols, these reactive algorithms also succeed
in selecting the right protocol for a given level of contention. As a demonstration of
the advantage of using message-passing over shared-memory protocols, note that under
high contention, the message-passing fetch-and-op protocols result in lower overhead and
correspondingly higher throughput than the shared-memory fetch-and-op protocols. The
numbersal so show that on Alewife, the message-passing queuelock isalwaysinferior to the
shared-memory MCS queuelock. However, on architectures with different communication
overheads and levels of support for shared-memory, the reverse might be true.

3.7 Implementing a Protocol Selection Algorithm

This section overviews the steps involved in the practica implementation of a protocol
selection agorithm, and presents pseudo-code for the reactive spin lock as a concrete
example. Thissection isintended to guide the reader inimplementing his/her own protocol
selection algorithms. It is hard to quantify the effort necessary for implementing new
protocol selection algorithms. As an example of the level of effort, it took about a week to

79

profile the component protocols and to implement and tune the performance of each of the
reactive spin lock and fetch-and-op algorithms.

The design and implementation process proceeds in two phases. In the first phase,
we obtain a correct implementation of a protocol selection algorithm, using some dummy
policy for selecting protocols. We will describe a possible structurefor the implementation
by subdividing it into four distinct parts. In the second phase, we implement the policy
module for selecting protocols and tune the policy for a given machine architecture.

3.7.1 Phasel: Implementing a Correct Algorithm

The implementation process is largely based on the framework presented in Section 3.2
for designing protocol selection algorithms. We are given a set of pre-existing protocols
that exhibit a tradeoff that depends on some run-time condition, and the task is to design
and implement a correct algorithm for selecting among them. We begin by identifying the
consensus object in each of the protocols. If a protocol does not have a consensus object
and does not satisfy the properties associated with consensus objects described in Section
3.2, then some other method must be found for serializing protocol changes at the protocol.
Once the consensus obj ects have been identified, we can proceed to implement the protocol
selection agorithm.

For descriptive purposes, it will be convenient to organize the implementation code in
four parts:

1. The data structures.
2. The dispatch procedure.
3. The protocaols.

4. The protocol change procedures.

Thedata structures

Thedatastructuresare composed of the original datastructuresof each component protocol,
and amode variable. For example:
type reactive_data = record
mode : (PROT1, PROT2)

protl : protocoll_data
prot2 : protocol2_data

80

There may also need to be other slots for storing run-time statistics for use by the policy
module.

On a cache-coherent architecture, it may be necessary to place the mode slot of the
record in a separate cache line due to false-sharing concerns. We expect the mode variable
to be mostly read-only, and this may conflict with a frequently written portion of the
protocol data structures. An alternative approach is to use pointers to the original protocol
data structures so that the entire reactive_data record is mostly read-only.

Thedispatch procedure
The dispatch procedure uses the mode variable to dispatch to one of the protocolsin use:

procedure dispatch(r : "reactive_data) returns V
case r->mode
PROT1: return run_protl(r—>prot1)
PROT2: return run_prot2(r—>prot2)

Note that it is possible for the mode variable to change in between when it is read to
when the protocol is run. Therefore the mode variable exists only as a hint to expedite the
dispatch. We rely on the consensus object to detect invalid protocol executions.

In some cases, it may be possible to optimistically execute a protocol without checking
the modevariablein order to optimizefor latency in the absence of contention. Thereactive
spin lock pseudo-code presented below uses this optimization.

The protocols

The protocols need to be modified to monitor the run-time conditions that determine the
tradeoff among the protocols. This monitoring code is protocol specific. The pseudo-code
for the reactive spin lock presented below provides an example of how to monitor the
level of contention. We found that a small level of hysteresis is necessary to obtain a
reliable estimate of run-time conditions. For example, the reactive spin lock waits until 4
consecutive lock acquisitions find an empty queue before indicating to the policy module
that the test-and-test-and-set protocol should be used.

To minimize the impact on latency, one should avoid placing the monitoring codein a
critical paths of a protocol should be inserted. An ideal place to insert monitoring code is
in busy-wait loops.

We modify the in-consensus code of each protocol to check the mode variable to see
if the protocol isvalid. If not, the process will have to abort and retry the synchronization

81

operation, taking careto signal any other processesthat are waiting on it to abort also. After
aborting, the protocol can call the dispatch procedure directly instead of returning to it.

We al so add some code to the in-consensus phase of each protocol to decideif aprotocol
changeisnecessary, and to call the corresponding protocol change procedures. At thisstage
of the implementation process, we can defer the task of implementing a good policy by
inserting a dummy stub to change protocols. Infact, it isa useful debugging aid to insert
a stub that randomly requests protocol changes. This allowed us to exercise the protocol
change procedures and exposed a number of errorsin our initial implementations.

The protocol change procedures

As described in Section 3.2, changing protocols with consensus objects is straightforward.
As an optimization, the reactive algorithm guarantees to call a protocol change procedure
only from the in-consensus phase of a valid protocol execution. Therefore, a protocol
change procedure only needs to acquire the consensus object of the protocol to change to:
the consensus object of the current protocol has already been acquired. The protocol change
procedure needs to update the new protocol, update the mode variable to point to the new
protocol, and may also need to signal any processes |eft waiting in the old protocol.

3.7.2 Phase2: Policy and Performance Tuning

The next phase concerns implementing the policy for deciding when to change protocols.
Rather than being concerned with correctness, this phase concentrates on performance
tuning.

In order to determine the tradeoffs and the breakeven points between the protocols, the
implementor has to run a set of tests akin to the baseline test presented in Section 3.5.
Unfortunately, these tradeoffs are architecture dependent and thus have to be measured for
each target machine architecture. We expect thisto be the most time-consuming part of the
implementation process.

Based on these tradeoffs and the run-time statistics collected by the monitoring code,
the policy module can decide whether the current protocol is optimal or not. Here, we have
a choice between a straightforward, always-switch policy and the 3-competitive policy
described in Section 3.4.

Asaconcrete exampleof theimplementation process, | et usexaminetheimplementation
of areactive spin lock.

82

type release_mode = (TTS, TTS_TO_QUEUE, QUEUE, QUEUE_TO_TTS)

type qnode = record
next : “gnode
status : (WAITING, GO, INVALID)
empty_queue : int

// The mode slot should reside in a different cache line from the other slots
// Initial values are either {FREE, INVALID, TTS} or {BUSY, nil, QUEUE}
type lock = record

mode : (TTS, QUEUE) // mode variable
tts_lock : (FREE, BUSY) // slot for TTS lock
queue_tail : (INVALID, “gnode) // slot for queue lock
procedure acquire_lock (L : “lock, I : “qnode) returns release_mode
if test_and_set (&L->tts_lock) = FREE // optimistically try TTS lock
return TTS
else if L->mode = TTS
return acquire_tts (L, I) // try TTS lock
else
return acquire_queue (L, I) // try queue lock
procedure release_lock (L : “lock, I : “qnode, mode : release_mode)
case mode of
TTS: release_tts(L) // release TTS lock
QUEUE: release_queue (L, I) // release queue lock

TTS_TO_QUEUE: release_tts_to_queue (L, I) // change to QUEUE mode
QUEUE_TO_TTS: release_queue_to_tts (L, I) // change to TTS mode

Figure 3.27: Reactive spin lock: data structures and top-level dispatch code.

3.7.3 TheReactive Spin L ock

Figures 3.27-3.29 present the pseudo-code for our reactive spin lock. The reactive spin
lock selects between the test-and-test-and-set protocol and the MCS queue lock protocol.
Figure 3.27 presents the data structures and the top-level dispatch procedure. The data
structure is composed of the test-and-test-and-set lock and the MCS queue lock data struc-
tures, and a mode variable. The mode variable indicates which of the two locks is vaid.
acquire_lock and release_lock acquire and release the reactive lock, respectively.

The dispatch procedure, acquire_lock, attemptsto acquirethereactivelock by check-
ing the mode variable to decide which protocol to use. acquire_lock returns a vaue
that informsrelease_lock which protocol to usein releasing alock and whether a mode
changeisrequested. Alternatively, thisinformation can be communicated through the mode
variable or some other shared variable.

83

procedure acquire_tts (L : “lock, I: “gnode)

> mode : release_mode := TTS
> retries : integer := 0 //
repeat while TRUE
if L->tts_lock = FREE

if test_and_set (&L->tts_lock) =
> return mode

M,P> if retries++ > TTS_RETRY_LIMIT

> mode := TTS_TO_QUEUE /7
delay () //

> if L->mode !'= TTS

> return acquire_queue (L, I) //

procedure release_tts (L : “lock)

L->tts_lock := FREE

procedure acquire_queue (L :
I->next := nil
predecessor : “gnode
if predecessor = nil //
return QUEUE_TO_TTS
else
return QUEUE
else if predecessor != INVALID
I->status := WAITING
predecessor->next := I
I->empty_queue := 0
repeat while I->status = WAITING
if I->status = GO
return QUEUE
else
return acquire_tts (L, I)

//

//
//

//

//
//

else
invalidate_queue (L, I)
return acquire_tts (L, I)

vV VV V V V V

procedure release_queue (L :
if I->next = nil
old_tail : “gnode
if old_tail = I return
usurper : “gnode
repeat while I->next =
if usurper != nil
usurper->next :=
I->next->status := GO

“lock, I

nil

I->next; return

returns release_mode

count of number of failed attempts

FREE

change to QUEUE mode upon release

do backoff

mode changed to QUEUE

“lock, I: “qnode) returns release_mode

:= fetch_and_store (&L->queue_tail, I)

queue was empty, lock acquired

if I->empty_queue++ > EMPTY_QUEUE_LIMIT // switch mode?

queue was non-empty

wait for GO or INVALID signal
lock acquired

queue was invalid

queue was invalid
invalidate others on the queue

“qnode)

// no known successor

:= fetch_and_store (&L->queue_tail, nil)

// I really had no successor

:= fetch_and_store (&L->queue_tail, old_tail)

Figure 3.28: Reactive spin lock: component protocols. Modifications to the original pro-
tocols are marked by “>”. “M>" denotes modifications for monitoring run-time conditions,
while “P>" denotes modifications for implementing the policy for changing protocols.

84

procedure release_tts_to_queue (L, I)
acquire_invalid_queue (L, I)
L->mode := QUEUE
release_queue (L, I)

procedure release_queue_to_tts (L, I)
L->mode := TTS
invalidate_queue (L, I)
release_tts (L)

procedure acquire_invalid_queue (L : “lock, I: “qnode)
// L->queue_tail should be INVALID or point to tail of an invalid queue
repeat while TRUE
I->next := nil
predecessor : “qnode := fetch_and_store (&L->queue_tail, I)
if predecessor = INVALID return
// got on to tail of an invalid queue, wait for INVALID signal and retry
I->status := WAITING
predecessor->next := I
repeat while I->status = WAITING

procedure invalidate_queue (L : “lock, head : “gnode)
tail : “gnode := fetch_and_store (&L->queue_tail, INVALID)
repeat while head != tail
repeat while head->next = nil

next : “qnode := head->next
head->status := INVALID
head := next

head->status := INVALID

Figure3.29: Reactivespinlock: making protocol changes. Theseroutinesarecalled only by
processes that have successfully acquired one of the component locks. invalidate_queue
can only be called by a process that has acquired a queue lock, either in a valid or invalid
State.

85

To optimize for latency in the absence of contention, acquire_lock avoids checking
the modevariable by optimistically attempting to acquire the test-and-test-and-set lock. The
mode variableis checked only if the attempt fails. This potentially increases the amount of
work in acquiring alock when contention is high and the lock isin queue mode. However,
if we place both sub-locks in the same cache line, the optimistic test& set attempt will
pre-fetch the queuelock and avoid any further bus or network transactions when attempting
to acquire the queue lock. Furthermore, the optimistic attempt uses processor cycles that
would have been otherwise unproductively spent spin waiting.

Figure 3.28 presentsthe pseudo-code of the protocol sbeing selected. Theoriginal proto-
cols have been modified to detect mode changes, and to abort and retry the synchronization
operation upon detecting that the protocol is invalid. acquire tts and release_tts
implement the test-and-test-and-set protocol while acquire_queue and release_queue
implement the M CS queuelock protocol. Modificationsto theoriginal protocolsaremarked
by “>” on the left end of each line. Additionally, “M>" denotes modifications for monitor-
ing run-time conditions, while “P>" denotes modifications for implementing the policy for
changing protocols.

The original protocols have aso been modified to monitor run-time conditions, as
described in Section 3.3. TTS_RETRY_LIMIT and QUEUE_EMPTY_LIMIT are parametersthat
control when the reactive algorithm decides to switch modes. If a process fails to acquire
a test-and-test-and-set lock after TTS_RETRY LIMIT test& set attempts, it will change to
QUEUE mode the next time it acquires the lock. If a process detects an empty queue during
QUEUE_EMPTY _LIMIT consecutive lock acquisitions, it will change to TTS mode upon the
next lock release.

Finally, Figure 3.29 presents the pseudo-code for performing the mode changes.
release_tts_to_queue changesfrom the test-and-test-and-set protocol to the queue lock
protocol and release_queue_to_tts changesfromthequeuelock protocol to thetest-and-
test-and-set protocol. In order to ensure that protocol changes are serializable with respect
to other protocol executions and changes, these procedures are called only by processes that
have acquired avalid consensus object

3.8 Summary

This chapter explores the design and performance implications of dynamic protocol selec-
tion. It demonstrates how a reactive algorithm that dynamically selects synchronization
protocols in response to run-time conditions can outperform a passive algorithm that uses

86

afixed protocol.

We identified two main challengesin designing a protocol selection algorithm. Thefirst
isin designing an efficient method for selecting and changing protocols, and the second
is in providing intelligent policies for deciding when to change protocols. This chapter
describes a framework for designing and reasoning about protocol selection algorithms. It
introduces the notion of consensus objects that allows a reactive algorithm to select and
change protocolscorrectly and efficiently. Consensus objectsallow asynchronizing process
to optimistically execute a protocol without prior coordination with other synchronizing
processes. This chapter also describes several policies for changing protocols and presents
a 3-competitive policy.

Accordingly, the implementation of a protocol selection agorithm should proceed in
two parts. Inthefirst part, the algorithm should be designed so that protocol scan be selected
and changed efficiently. If the design framework presented in thischapter isapplicable, then
designing this part should be straightforward. In the second part, the tradeoffs among the
protocols need to be measured so that the policy for changing protocolscan beimplemented
and tuned.

To demonstrate the effectiveness of dynamic protocol selection, we designed and im-
plemented reactive spin-lock and fetch-and-op algorithms, and compared their performance
against the best passive agorithms on the Alewife multiprocessor. The performanceresults
show that reactive algorithms succeed in achieving performance that is close to the best
static choice of protocols, and that they do so with minimal run-time overhead. These
results suggest that run-time adaptation is an effective way for reducing synchronization
costs in aparallel program. This has the important advantage of relieving the programmer
from the difficult task of selecting the best protocol for synchronization operations.

87

Chapter 4
Waiting Algorithms

The previous chapter shows how a protocol selection algorithm can dynamically choose
among several protocol stoimplement asynchronization operation. By tailoring the protocol
to the level of contention experienced at run-time, a reactive algorithm achieves efficient
and robust performance.

In this chapter, we focus on waiting algorithmsthat dynamically choose among waiting
mechanismsto wait for synchronization. Waiting al gorithms can reduce the cost of waiting
by overlapping waiting time with other computation. This is achieved by invoking a sig-
naling mechanism that switches processor execution to another runnable thread. However,
since a signaling mechanism incurs a significant fixed cost, we have to be careful about
when to invoke it. Thus, a waiting algorithm has to make a run-time dependent choice
among waiting mechanisms.

Unlike dynamically changing protocols, dynamically changing waiting mechanismsis
alocal operation that does not need to be coordinated among other participating processes.
Thus, providing an efficient run-time method for changing waiting mechanisms does not
present a problem. The challengeisin designing intelligent policies for deciding when to
switch waiting mechanisms.

In thischapter we design and analyze two-phase waiting algorithmsthat choose between
polling and signaling waiting mechanisms. Recall that a waiting thread first polls until the
cost of polling reaches alimit L,.;. If further waiting is necessary, the thread resorts to
a signaling mechanism. We first describe severa common waiting mechanisms and their
associated costs. We then model the problem of choosing between waiting mechanisms
as a task system, and show how constraints on the inputs of the task system allow us to
improve the competitive factors of waiting algorithms. To thisend, we introduce the notion
of arestricted adversary that is constrained to choose waiting times from a predetermined

88

probability distribution.

We use competitive analysis to help design the waiting algorithms. We first develop a
probabilistic model of the expected costs of waiting algorithms. We then develop models
of waiting time distributions for several common synchronization types. The cost model,
together with the waiting time distributions, allows us to design waiting algorithms that
approach optimal performance against restricted adversaries.

We manage to improve upon the competitive factors of two-phase waiting algorithms
while minimizing the run-time cost of making the decision. In particular, we are able to
prescribe static choices of L,.; for atwo-phase waiting algorithm such that the resulting
waiting algorithm achieves close to the optimal on-line competitive factor of 1.58 against a
restricted adversary.

To corroboratethe theoretical analysis, we present experimental resultsthat measure the
distribution of waiting timesand the performance of two-phasewaiting algorithmsin severa
paralel applications. The results show that two-phase waiting is indeed a robust waiting
algorithm and achieves performance close to the best static choice of waiting mechanisms.

4.1 Waiting Mechanisms

Before we can model the cost of waiting, we need to model the costs of the waiting mech-
anismsthat are available to awaiting algorithm. We describe here the implementation and
thewaiting costs of spinning, blocking, switch-spinning, and switch-blocking. Spinningand
blocking are the most common waiting mechanisms used in multi process ng environments.
Switch-spinning and switch-blocking are additional waiting mechanismsthat multithreaded
multiprocessors, such as Alewife, may provide. We model the waiting costs as a function
of ¢, the waiting time.

Spinning A thread spin-waits by periodically reading the value of a memory location.
In cache-coherent multiprocessors the memory location is cached locally to avoid network
traffic while spinning. A change to the state of the memory location due to a write is
communicated to the waiting threads through the ensuing cache invalidations. Because
spin-waiting cycles are wasted, the waiting cost of spinning for ¢ cyclesis simply equal to
the waiting time, ¢.

Blocking Blocking a thread involves unloading it, and at a later time, reenabling and
reloading it. Thus, a blocked thread allows other threads to use the processor. Blocking

89

\ \ Action | Instructions | Base Cycles |

Unloading | Unload registers 21 stores 63
Enqueue thread 2 stores
2 loads

7 other 17
Book-keeping 6 stores
1load

6 other 26
Reenabling | Lock queue 2 loads
of blocked threads 1 store

6 other 13
Queue on processor 6 loads
ready queue 5 stores

12 other 39

Reloading | Reload registers 21 loads 42
Restore misc. 1load

state 6 other 8

Book-keeping 1 store

8 other 11

Total 114 219

Table 4.1: Breakdown of the cost of blocking in Alewife.

incurs afixed cost, B, that depends on the number of processor cycles needed to perform
the necessary thread scheduling and descheduling.

On Alewife, a blocked thread is placed on a software queue associated with the failed
synchronization. When signal ed to proceed, thethread isreenabled, and eventually resched-
uled and reloaded. In the experiments, the cost of blocking on Alewife is approximately
500 cycles.

Table4.1 givesabreakdown of the costs of unloading, reenabling, and reloading athread
in terms of instructions and base-cycle times in Alewife (base cycles assume cache hits).
In terms of base cycles, the cost of blocking is 219 cycles. However, the measured cost of
blocking is experimentally observed to be about 500 cycles because of cache misses. Of
the measured cycles, about 300 cycles are spent unloading the task, 100 cycles reenabling
it and 65 cycles reloading it. Loads and stores are observed to take 3 times longer than the
base-cycle time when unloading a thread due to cache misses. Since an unloaded thread
usually resides in the cache, reloading athread takes close to the base-cycle time.

90

R — round trip time T
C - context switch overhead

) - resume
wait X = run length wait

Figure 4.1: Switch-Spinning — time line of three active contexts sharing a processor. A
switch-spinning thread occupies context 1 and itswaiting timeisinterleaved with executions
of threads in context 2 and context 3.

Switch-Spinning On a multithreaded processor, a waiting thread can switch rapidly to
another processor-resident thread in a round-robin fashion, alowing the waiting time to
be overlapped with useful computation by other threads. Control eventually returnsto the
waiting thread and the synchronization variable isre-polled. Switch-spinningisthereforea
polling mechanism. Since other threads are allowed to utilize the processor, thisis a more
efficient polling mechanism than spinning.

We model the cost of switch-spinning for ¢ cyclesast /3, where 3 representstherelative
efficiency of switch-spinning over spinning. In other words, a switch-spinning thread that
waits for ¢ cycles wastes only ¢/ processor cycles. The following analysis models the
value of /3 in ablock-multithreaded processor.

Figure 4.1 illustrates a switch-spinning scenario with three hardware contexts. 3 de-
pends on the number of hardware contexts, N, the context switch overhead, ', and the run
length. Let = be the mean run length. Run length is the time between the instant a thread
starts executing on the processor to the instant it encounters a context switch. Let R be
the round-trip time, defined as the time between successive context switches to the same
switch-spinning thread. Thus, R ~ N(x + C).

Suppose that athread has to wait for ¢ cycles. Control will return to the waiting thread
[%] times before it can proceed. To simplify the analysis, assume that a switch-spinning
thread also has a mean run-length of = so that the cost of waiting is increased by = + C
cycles each time control returns to the waiting thread. Therefore, the waiting cost of
switch-spinning for ¢ cyclesis approximately [+ |(x + C') cycles. On Alewife, N = 4 and
C' = 14 cycles.

We now approximate 3. If ¢ is shorter than R, then 3 = ¢/C. Hence, in this case,
switch-spinning is more efficient than spinning if ¢ > . If ¢ islong compared to R,
we can ignore the ceiling operator and obtain 5 = N. Thisis commonly the case in our
simulations. Thus switch-spinning amortizes the cost of polling among the NV contexts.

91

Switch-Blocking Switch-blocking is a mechanism where a waiting thread disables the
hardware context in which it is resident, in addition to switching to another processor-
resident thread. Asin blocking, the waiting thread is placed on a queue associated with
the failed synchronization. Further context switches bypass the disabled context until it is
reenabled. Sincethereisno need to load and unload threads, switch-blockingisasignaling
mechanism with lower fixed cost than blocking.

We estimate the cost of switch-blocking in Alewife to be less than 100 cycles. We do
not analyze the performance of switch-blocking as a waiting mechanism in thisthesis. In
[16], Gopinath et al. present an analysis of switch-blocking on Alewife that shows that
the use of switch-blocking as a waiting mechanism does not yield much advantage over
switch-spinning, given the current parameters of the Alewife machine.

4.2 Polling versus Signaling

A waiting algorithm can use any of the above waiting mechanisms to wait for synchro-
nization. Due to significant differences between the waiting costs of waiting mechanisms,
this choice can be critical to performance. However, it is hard to make a correct choice
without knowledge of waiting times. Long waiting times hurt the performance of spinning
and switch-spinning. On the other hand, blocking incurs a significant fixed cost because
of the need to deschedul e and reschedul e waiting threads, and the need to save and restore
processor state.

It turns out that the fundamental choice of waiting mechanisms is between polling and
signaling mechanisms. Spinning and switch-spinning are examples of polling mechanisms,
while blocking and switch-blocking are examples of signaling mechanisms. We can model
the cost of any polling mechanism as proportional to waiting time, and the cost of any
signaling mechanism as a fixed constant, independent of waiting time. Thus, in our
analysis, we denote the cost of polling for ¢ cycles as ¢//3, and the cost of signaling as a
fixed cost B.

4.2.1 Pollingvs. Signaling asa Task System

Just as for the problem of choosing between protocols, we can model the problem of
choosing between apolling and signaling mechanism asatask system. Figure4.2illustrates
such atask system. Each of the two states represents each of the waiting mechanisms. A
request sequence for thistask system is composed of two types of tasks. wait and proceed.

92

poll signal wait proceed
1 0
poll 0 B poll B
signal | 0 0 signal| O ™
State Transition Cost Matrix Task Cost Matrix

Request sequence: (wait | proceed)*

Figure4.2: A task system that offers a choice between polling and signaling mechanisms.

For each input request, an on-linealgorithm hasto choose which state to processtherequest.
It is allowed to perform the state transition before servicing the request.

A synchronization wait of ¢ cycles presents the task system with a sequence of ¢ wait
requestsfollowed by aproceed request. Thus, arequest sequenceiscomposed of contiguous
sequences of wait requests, each followed by a proceed request, and can be described by
the regular expression (wait|proceed)™.

The work by Borodin, Linial and Saks [9] presents a 3-competitive algorithm for this
type of task system (See Chapter 2). Their work aso shows that the competitive factor of 3
isalower bound for ageneral two-state task system with unconstrained inputs. Fortunately,
the specid structure of thistask system allowson-linewaiting algorithmsto achieve smaller
competitive factors.

The task system’sinitial state is the polling state. To model the fact that each synchro-
nization wait is processed starting from the polling state, the task system must return to
the polling state at the end of each synchronization wait. To achieve this, we designate the
cost of processing a proceed request in the signaling state as infinite. Thus, any reasonable
algorithm returns to the polling state after each synchronization wait has been processed.

It iswell known that polling until the cost of polling equals the cost of signaling yields
a 2-competitive algorithm. In Section 4.4, we explore how constraints on the input request
sequences alow us to achieve even smaller competitive factors. We place constraints on
the distribution of waiting times, thus constraining the run-lengths of wait requests to be

93

selected from a probability distribution.

4.3 Two-Phase Waiting Algorithms

An on-line algorithm that chooses between polling and signaling mechanisms is the two-
phase waiting algorithm, first suggested by Ousterhout in [47]. In atwo-phase waiting
algorithm a waiting thread first uses a polling mechanism to wait until the cost of polling
reaches a limit L,,;. If further waiting is necessary at the end of the polling phase, the
thread resorts to a signaling mechanism, incurring a fixed cost 5.

The choice of L,,; determines the performance of two-phase waiting algorithms. In a
sense, two-phasewaiting isageneralization of theaways-spin and always-block algorithms:
it introduces a continuum of choices between always-block (L,.; = 0) and aways-spin
(Lpont = 00).

Thus, we transform the problem of deciding between polling and signaling into the
problem of deciding the value of L,; in atwo-phase agorithm. In other words, the task of
awaiting algorithmisto decide how long to poll beforeresorting to a signaling mechanism.
Because of the need to minimize run-time overhead, the method explored in thisthesisisto
choose L,.;; statically, based on knowledge of likely waiting-timedistributionsfor different
synchronization types.

4.3.1 Static Two-Phase Waiting Algorithms

The choice of L,.; can either be made statically at compile time, or dynamically at run-
time. In [26], Karlin et al. present randomized and adaptive methods for dynamically
determining L,.;. A drawback of these methods is that they incur a significant run-time
overhead. Minimizing the run-time overhead for determining L,,.;; iscrucia in large-scale
multiprocessors that support lightweight threads. In such systems, the cost of signaling
mechanisms can be as small as afew hundreds of cycles.

Inthisthesis, wefocuson static methodsfor determining L,.; So asto minimizetherun-
time overhead of choosing waiting mechanisms. Our approach exploits the randomization
inherent in the waiting times encountered in synchronization to improve the competitive
factors and achieve robust performance. In practice, we expect each synchronization
type to exhibit waiting times that are randomly distributed according to some waiting-
time distribution. For example, waiting times for producer-consumer synchronization are
exponentially distributed under Poisson arrivals of synchronizing threads.

94

The next section will provide a framework for analyzing the relative performance of
different static choices of L,.; under different waiting time distributions, and show that
we can use readily available knowledge of synchronization types and their characteristic
waiting time distributions to guide our choice of L,,;;.

4.4 Analysisof Waiting Algorithms

We transform the problem of choosing between waiting mechanisms to one of choosing
the right value of L, for atwo-phase waiting algorithm. In this section, we model the
expected waiting costs of various waiting algorithms and derive optimal values for L,.;.
Our analysis assumes that we can always find a runnabl e thread to replace a blocked thread.
We compare the performance of the following algorithms:

poll —aways-poll.

signal —aways-signal.

2phase/a —two-phase waiting with L,.; = aB.
Opt — optimal off-line.

The analysis proceeds as follows. We first describe the notion of adversaries and
observe how weaker adversaries alow on-line waiting agorithms to choose L,,,; SO as to
achieve better competitive factors. We then model the expected waiting cost of two-phase
waiting algorithmsas afunction of waiting time distributions and of the constituent waiting
mechanisms. We consider several common synchronization types and show how they
naturally lead to exponential and uniformly distributed waiting times.

From the cost model and the waiting time distributions, we derive values for L,.; such
that static two-phase waiting algorithms can achieve close to optimal on-line competitive
factors. In particular, we derive optimal values for L,,; under exponential and uniform
waiting-time distributions. Figure 4.3 illustrates the flow of the analysis. We summarize
the results of the analysisin Section 4.5.3.

4.4.1 Competitive Algorithms and Adversaries

As the preceding discussion on task systems observes, on-line waiting algorithms can
achieve competitive factorsthat are smaller than 3 because the pattern of input request se-
guences has to satisfy some constraints. It isuseful to model such constraintsasrestrictions
that are placed on an adversary, as explained below.

95

Synchronization Types

Cost of Waiting Mechanisms Waiting Time Distributions

Cost of Two—-Phase Waiting Algorithms Competitive Analysis

~,

Optimal Lpoll for Two—-Phase Waiting Algorithms

Figure 4.3: Overview of method for analyzing the expected costs of waiting algorithms.

An on-lineagorithm can be considered as playing agamewith an adversary that triesto
select waiting times so asto maximizethe cost of satisfying therequests. Usingterminology
in [26], astrong adversary is one that chooses regquests depending on the choices made by
thealgorithmin satisfying previousreguests. A weak adversary isonethat choosesregquests
without regard to the previous choices made by the algorithm. Below, we introduce another
form of adversary, called arestricted adversary, that is further constrained in its choice of
requests.

It iswell known that with a static choice of L,,; = B, atwo-phase waiting algorithm
IS 2-competitive against a strong adversary: the worst possible scenario is to block after
polling, incurring a cost of 28, when the optimal off-line agorithm would have blocked
immediately, incurring acost of B.

If we weaken the adversary and consider expected costs, a dynamic two-phase waiting
algorithm can achieve lower competitive factors. In [26], Karlin et al. present a dynamic,
randomi zed two-phase waiting al gorithm with an expected competitivefactor of ¢/ (e <1) ~
1.58 and prove this factor to be optimal for on-line algorithms against a weak adversary.
They al so provethat an adaptive algorithm that dynamically maintainswaiting-timestatistics
can approach a competitive factor of 1.58 against aweak adversary.

We can further weaken the adversary by fixing thewaiting time distribution and allowing
it to control only the parameters of the distribution. For example, we can constrain waiting
timesto be exponentially distributed and allow the adversary to control only the arrival rate

96

of the distribution. We term such an adversary arestricted adversary.

A restricted adversary models the situation where the waiting time distribution is fixed,
but the parameters of the distribution depend on run-timefactors. This situation commonly
arises in practice. For example, although waiting times for producer-consumer synchro-
nization may be exponentially distributed, the arrival rate of the exponentia distribution
may depend on the application and on run-time conditions.

Under restricted adversaries, static two-phasewaiting algorithmscan attain or approach
the optimal on-line competitive factor of e/(e <-1). Our analysis determines optimal static
choices of L,,; for exponentialy and uniformly distributed waiting times. It shows that
with exponentially distributed waiting times, astatic algorithmwith o = In(e <1) performs
aswell as any dynamic algorithm against arestricted adversary.

4.4.2 Expected Waiting Costs

In order to determine optimal settings of L,.;, we model the expected cost of a two-phase
waiting algorithm as a function of waiting-time distributions. In the following anaysis,
f(t) isthe probability density function (PDF) of waiting times. (f(¢) is nonzero only for
t > 0). L, isexpressed as amultiple « of the cost of signaling B. That is, L,.; = ab.
We denote the cost of algorithm « as C,, and its expected cost as E[C,].

The following equation gives the expected waiting cost for static two-phase waiting
algorithms, where apolling mechanismisused for thefirst phase and asignaling mechanism
for the second. A polling mechanism incurs a cost of ¢//3, while a signaling mechanism
incursafixed cost 5.
aBB ¢ 0o
E[Cophase/a] = /0 G0+ / LT a)BI(dr (4.1)

The first integra is the contribution to the expected waiting cost due to the probability
that waiting timesarelessthan o3 B cycles. Inthis case, the waiting cost is ssmply the cost
of polling, ¢/ 3. The second integral corresponds to the probability that the waiting timeis
more than a3 B cycles, such that the waiting cost is L. plus B. FE[C,] is derived by
Setting a t0 oo, and £[C;gn,] Is derived by setting o to O.

The following equation gives the expected cost of an optimal off-line algorithm that
chooses between polling and signaling, and is derived by observing that the optimal ago-
rithm pollsif ¢ < 3B, and signals otherwise.

BB ¢

FlCon = [5

F(t)dt + /ﬁ : Bf(t)dt (4.2)

97

4.4.3 Waiting Time Distributions and Synchronization Types

We consider three types of synchronization: producer-consumer, barrier, and mutual exclu-
sion. We argue herethat if we assume that arrivals of synchronizing threads are generated
by a Poisson process, these synchronization types naturally result in exponentially and
uniformly distributed waiting times. The Poisson assumption is a useful approximation of
the behavior of many complex systems, and helps to make analysis tractable.

Producer-Consumer Synchronization Producer-consumer synchronizationisperformed
between one producer and one or more consumers of the data produced. Examples of this
type of synchronization include futures [22] and I-structures [6]. This form of producer-
consumer synchronization is different from another form where only one consumer is
allowed to consume the data. This second form of producer-consumer synchronization can
be modeled as mutual -exclusion synchronization.

If we assume Poisson arrivals of producer threads, it immediately follows that waiting
timesfor producer-consumer synchronization are exponentially distributed.

Barrier Synchronization Barrier synchronization ensures that al threads participating
in abarrier have reached a point in a program before proceeding. The uniform distribution
is a reasonable model for barrier waiting times. Such waiting times would arise if inter-
barrier thread execution lengths are uniformly distributed within some time interval. We
also show in [39] that if barrier arrivals are generated by a Poisson process, then waiting
times approach a uniform distribution.

Mutual-Excluson Mutual-exclusion synchronization provides exclusive access to data
structures and critical sections of code. Assuming that lock waitersare not queued, waiting
timesat mutexes can be model ed by either an exponential or uniformdistribution, depending
on the distribution of lock-holding times. If lock-holding times are exponential, it follows
that lock waiting times are also exponential.

If lock-holding times are fixed and deterministic, we have to differentiate between new
waiters and repeat waiters. New waiters are freshly arrived lock requesters, and repest
waliters are lock requesters that re-contended unsuccessfully for the lock. These waiters
experience different waiting times.

New waiters arrive at any time during the fixed interval when the lock is busy. If
the new arrivals are Poisson, the waiting time for new waiters are uniformly distributed
between 0 and the fixed lock-holding time. In contrast, repeat waiters have to wait for

98

the entire duration of the lock holding time. Thus, the waiting time for repeat waitersis
smply the fixed lock holding time. If we keep a history of lock holding times, it should be
straightforward to decide whether to block repeat waiters.

If lock waitersare queued, wecanusean M/M/1//M queuing model to model waiting
time distributions. Unfortunately, the resulting PDF of waiting times from such a model
is sufficiently complex that it does not lend itself to a closed-form analysis. However,
we note that under conditions of low lock contention, the queuing model predicts close to
exponentially distributed waiting times. See [39] for amore detailed discussion.

4.5 Deriving Optimal Valuesfor L,

The following analysis focuses on the exponential and uniform distributions as models for
waiting time distributions. Section 4.6 presents empirical measurements of waiting times
encountered in parallel applications that exhibit such waiting time distributions.

Using the equations for expected waiting costs and the model sfor waiting time distribu-
tions, we compute the expected competitive factors of static two-phase waiting algorithms.
This allows us to derive optimal static values for L,.; for different waiting time distribu-
tions. In the following analysis, we express L,,; asamultiple, «, of the cost of signaling,
B.

45.1 Exponentially Distributed Waiting Times

The following PDF models exponentially distributed waiting times,

F(t) = e (4.3)

where) isthe arrival rate of the synchronizing threads.

From Equations 4.1-4.3, we derive the following expressions for the expected costs
of the always-poll (poll), dways-signal (signal), static two-phase (2phase/«), and optimal
off-line (Opt) waiting algorithms.

ElCpon] = /OOO%AG_”C# = (4.4)

E[Csignal] = B (4.5)

99

afBB ¢ g 00 Y
E[CQphase/a] = /0 B)‘e dt‘|‘/a B(1‘|‘Oé)B)\€ dt
— %(1@6—AaﬁB) T Be—/\aﬁB (46)

B

8B ¢ 00
ElCop] = /0 e [B ar

_ %(1{:}6_/\5B) (4.7)

Comparing the expected performance of poll, signal and 2phase/« yields an interesting
result. We expect that when arrival rates are high, poll performs better than signal. Con-
versely, when arrival rates are low, signal performs better than poll. The equations show
that regardless of the arrival rate and L,,,; the expected performance of static two-phase
algorithms alwaysfallsin between the performance of poll and signal. More formally,

Theorem 1 Under exponentially distributed waiting times, the expected costs of the algo-
rithms poll, signal, and 2phase/« are ordered as

E[Csignal]
E[Csignal]

IA

E[Cthase/oz] S E[Cpoll] |f)\ﬂB S 1
E[Cthase/oz] > E[Cpoll] if AﬂB Z 1

Y

Proof: By inspection, £[Cgignall = E[Chon] When AZB > 1 and E[Cgignall < E[Cpll
when A\3B < 1. Comparing £[Cgignal] With E[Cophase;.] Yields

1 e .

& A3B> 1

Comparing £[Cpo)] With E[Cophase/.] Yields

1 —)\afB —)\afB 1
E[CQphase/a] < E[Cpoll] g %(1@6) + Be < %
& APB <1

a

Empirical measurements (see Section 4.6) further indicate that two-phase algorithms
areremarkably robust, and their performanceisusually closeto the better of poll and signal.

100

Next we observe that when A3 B = 1, the costs of all three algorithms are equal to B.
That is, at the breakeven point where the arrival rate A = 1/ B, the choice of L,.; has no
effect on the expected cost of the two-phase algorithm. More formally,

Theorem 2 Under exponentially distributed waiting timeswith A3 B = 1, the competitive
factor of 2phase/aise/(e <1), regardless of the value of «.

Proof: When A3 B = 1, we know from Theorem 1 that
E[Csignal] = E[CQphase/a] = E[Cpoll] =B

Therefore
E[CQphase/a] A\BB €

ElCom] (o)~ (col)

This leads to the following corollary:

Corollary 1 There exists a lower bound of ¢/(e <1) on the competitive factor of any
two-phase algorithm against strong, weak and restricted adversaries.

Proof: The adversary picks exponentially distributed waiting times with A = 1/(5B).
Regardless of the choice of o and regardless of whether the choice is made statically or
dynamically, Theorem 2 impliesthewaiting costise/(e<1) timesthat of an optimal off-line
algorithm. It follows that one cannot construct a two-phase algorithm with a competitive
factor lower than e/(e <1). This competitive factor matches the lower bound obtained
in [26] against aweak adversary. O

Inlight of thislower bound, the natural question to ask iswhether asingle static valuefor
« can attain this lower bound under exponentially distributed waiting times. Surprisingly,
the answer is yes, and the following theorem prescribes a value of « that yields optimal
performance for exponentially distributed waiting times.

Theorem 3 Under exponentially distributed waiting timeswith o = In(e 1), the compet-
itive factor of two-phase waiting, £/[Cophase/a |/ F[Copt], isat most ¢/ (e 1), regardless of
thearrival rate, A, of the distribution.

Proof: Set o = In(e 1) in the equation for E[Coppase/o]/ E[Copt)- This yields an
equation for the competitive factor for two-phase waiting as a function of A. Differentiate
this equation with respect to A to find the maximum. The resulting maximum competitive
factorise/(e < 1) at anarrival rateof A\ = 1/5B. 0

101

—~
S =
[e] < o
= 2§
7]
= N A
© —_ =
s — =
© Y o =
N—r 2 N—r
o o £ 48
1 1 1 I -
o] o] S OO
Q
1 <
™ -
]
©
nd
©
=
—
S
<
1<
N
.................. e
—
1
I
] | | il] | o
o
Q 0 I~ ool Q 0 Q
-
10104 aAnnadwo)d I
e
(Y]
=
(]

101084 aAnnadwo)

Arrival Rate,\3B

00 0.0

Polling Limit,a

Figure 4.4: Expected competitive factors under exponentially distributed waiting times,

varying A and a.

102

These theorems are best illustrated by Figure 4.4. The 2-D and 3-D graphs plot the
competitive factor of static two-phase waiting over arange of « and A. The horizontal axis
inthe 2-D graphisin the direction of increasing A and therefore shorter waiting times.

We see from the 2-D plot that the curves for finite non-zero values of « lie in between
those of always switch-spin (a« = o0) and always-block (o« = 0), asindicated by Theorem
1. We adso see that all the curves intersect at a competitive factor of e¢/(e < 1) when
A = 1/pB asindicated by Theorem 2. Lastly, we can see that the competitive factor is at
most e/(e < 1) when o = In(e < 1), as indicated by Theorem 3. Since actual values of)
are not relied on, this upper bound holds in the face of run-time uncertainty and feedback
effects of the waiting algorithm on the waiting time as long as the waiting-timedistributions
is exponential.

These theorems imply that when waiting times are exponential, we should choose our
waiting algorithm depending on knowledge of A. If we know that A < 1/3B, we should
choose signal, otherwise we should choose poll. However, if we cannot reliably predict A,
we should choose 2phase/0.54 to obtain the best competitive factor of 1.58.

4.5.2 Uniformly Distributed Waiting Times

Here, we assume that waiting times are uniformly distributed between 0 and /. Repeating
the previous analysis for exponentially distributed waiting times, we prove the following
theorem for uniformly distributed waiting times.

Theorem 4 Under uniformly distributed waiting times from¢ = 0to U, witha = (v/5 <
1)/2 ~ 0.62, the competitive factor of two-phase waiting, £[Cophase/a)/ £/[Copt], IS at most
(v/5+ 1)/2 ~ 1.62, regardiess of the parameter, U, of the distribution. Furthermore, if
a # (/5 <1)/2, then the competitive factor under uniformly distributed waiting timesis
larger than (v/5+ 1)/2.

In other words, under uniformly distributed waiting times, a static two-phase algorithm
with @ = (v/5 < 1)/2 has a competitive factor no larger than (/5 + 1)/2, and no other
value of « yields a lower competitive factor over the entire range of the parameter, U, of
the uniform distribution. Thisresult isillustrated in Figure 4.5. The horizontal axis of the
2-D graph isin the direction of decreasing {/ and therefore shorter waiting times.

Proof: Let waiting time be uniformly distributed from 0 to U/. From Equations 4.1-4.2,
we can derive the following expressions for the expected costs of static two-phase waiting
algorithms and the optimal off-line algorithm.

103

0 (always-block)

o=

 (always-poll)

a=

| l

2.0
BB/U

Q o
™ o

101084 annnadwo)d

!
i~
N

1.618

3.5

101084 aAnnadwo)

RB/U

00 0.0

a

Polling Limit

Figure4.5: Expected competitivefactorsunder waiting timesuniformly distributed between

Oand U, varyingU and «.

104

foU %%dt — % if U <apB
ElC =
[2phase/a] OaﬁB%%dt+fo%B(l+a)gdt —
21+ a)BU (14 $)apB?] otherwise
fOU%%dt:% ifU < BB
E[COpt] =
gE L Ldt + (5 Bdt = L[BU 1857 otherwise

Let us consider the case when o < 1. Substituting « = U/ 3B, we get the following
expressions for the expected competitive factor, ¢ = F[Cophase/a)/ E[Copt]-

1 if r <o

c=1 [2(1+ a)z Sala+ 2)] /«? ifa<z<1

21+ o)z ala+2)]/(2r 1) ifa>1
Also,
0 if r <o

%: 2[@(2+o¢)(:)(1—|—0z):1;]/:1;3 ifa<ax<1
x

2% +ae1)] /(20 ©1)? ifr>1

Intherange > 1, 5¢ = O when either 2 = oo or (a? + a <1) = 0. Thisimpliesthat
when o = (V5 <1)/2, thevalueof cis(v/5+ 1)/2 over theentirerange = > 1.

Intherangea < = < 1, 2 = Owheneitherx = co or z = a(2+a)/(1+a). Also, 25
isnegative. Theseimply that when a = (v/51)/2, ¢ hasamaximum value of (v/54-1)/2
a = = 1. Therefore, ¢ < (V5 + 1)/2whena = (v5<1)/2.

We now have to show that no other setting of « yields a competitive factor of less than
1.62 over the entire range of U, so that « is the optimal setting for uniformly distributed
waiting times.

As r — oo, ¢ approaches 1 + «. Therefore the competitive factor is larger than
(vV5+1)/2whena > (V5 <1)/2.

105

Now consider the case when a < (V5 <1)/2. Intherangez > 1, 22 < Osothat ¢
monotonically decreases with x. Thereforethe maximum valueof cinthisrangeis(2<a?)
whenz = 1. Sincea < (vV5&1)/2 & (2<a?) > (V54 1)/2, the theorem also holds
foral o < (VB e1)/2. O

The theorem says that we should choose our waiting algorithm using our knowledge of
U. If weknow that U > 23 B, we should choose signal, otherwise we should choose poll.
Therefore, with accurate information about U/ we can attain a competitive factor of 4/3 as
illustrated in Figure 4.5.

However, it is hard to predict U since barrier waiting times are highly dependent on
run-time factors [58]. If we cannot reliably predict U/, we should choose 2phase/0.62 to
obtain the best competitive factor of 1.62 (the golden ratio), as prescribed by Theorem 4,
and asillustrated in Figure 4.5. This s close to the optimal on-line competitive factor of
1.58 against weak adversaries.

453 Summary

Let us summarize the results of the preceding analysis. The analysis shows that for
exponentially distributed waiting times,

1. The performance of two-phase waiting awayslies in between those of always-block
and always-spin.

2. When arestricted adversary get to choose) (the arrival rate), the competitive factor
of static two-phase waiting has alower bound of e /(e <1). Furthermore, no dynamic
algorithm can attain alower competitive factor. Recall that this competitive factor is
also optimal for on-line algorithms against weak adversaries.

3. A datic value of In(e < 1)B for L,.; resultsin an agorithm that attains this lower
bound of ¢/ (e <1) against arestricted adversary.

4. We should choose L,.; based on . If we know that A < 1/3B, we should choose
signal, otherwise we should choose poll. However, if we cannot predict A, we should
choose 2phase/0.54 to obtain the best competitive factor of ¢/(e <1) ~ 1.58.

For uniformly distributed waiting times, the analysis shows that

1. When a restricted adversary gets to choose U, the parameter of the uniform dis-
tribution, the competitive factor of static two-phase waiting has a lower bound of

(VB+1)/2.

106

2. A static value of 1(v/5<1)B for L, resultsin an algorithm that attains this lower
bound of (/5 + 1)/2 against a restricted adversary. Furthermore, no other static
choiceof L, attainsthis competitive factor.

3. We should choose L,,; based on U. If we know that U/ > 23 B, we should choose
signal, otherwise we should choose poll. If we cannot predict U/, we should choose
2phase/0.62 to obtain the best competitive factor of (v/5+ 1)/2 ~ 1.62.

4.6 Experiments

To show that static two-phase waiting algorithms work well in practice, and to corroborate
the analysis of the previous section, we profiled the executions of several benchmark
programs using various synchronization types on the Alewife simulator. Before describing
theresults of the experiments, wefirst describe the datathat were collected, the benchmarks
that were run, and the synchronization constructs that they used.

We collected severa statistics from the smulations. First, we compiled waiting-time
profiles that record the synchronization waiting times encountered in a program. These
waiting-time profiles corroborate the waiting-time models that were developed in the pre-
vious section. They show that the exponential and uniform distributions are reasonable
models for waiting times.

Second, we measured the total number of cycles consumed by the blocking routines.
For an aways-block waiting algorithm these cycles correspond to the waiting cost incurred
while running a program. This statistic is useful in estimating the potentia effect of a
waiting agorithm on the running time of a benchmark, and allows us to speculate on
the performance of waiting algorithms on larger machines where waiting overheads are
expected to be more significant.

Third, we keep a count of the number of threads blocked during the execution of the
program. We expect atwo-phase algorithmto reduce the number of blocked threads, giving
us some insight on how well the two-phase algorithm is performing relative to an aways-
block algorithm. Fourth, we measured the program execution time under each waiting
algorithm.

4.6.1 Synchronization Constructs

The benchmarks use the following synchronization constructs that are representative of
producer-consumer, barrier, and mutual -exclusion synchronization.

107

J-structures (Reusable | -structures)
A Jdtructure is a data structure for producer-consumer-style synchronization on vector
elementswhich enables efficient fine-grained, data-level synchronization. Itisimplemented
asavector with full/empty bits associated with each vector slot. See[28] for further details.
A reader of a J-structure slot waits until the slot is full before returning the value. A
writer of a J-structure slot writes a value to the slot, sets it to full, and releases all waiters
for thedot. An empty vector dot doubles as the queue pointer for waiting readers. A write
to afull dot signals an error. We alow a J-structure dot to be reset. A reset empties the
dot, permitting multiple assignments. Reusing J-structure dotsin thisway allows efficient
cache performance. J-structures can be used to implement I-structure [6] semantics.

Futures

Futures [22] are a method for specifying control parallelism. The expression (future X)
specifies that the expresson X may be executed in paralel with the current thread. If a
thread is forked to evaluate X, the return value of (future X) is a placeholder for the value
that will be eventually determined when the forked thread terminates.

Futuresare aform of producer-consumer synchronization. The forked thread isrespon-
sible for producing the result of evaluating X. Consumer threads that need the result of X
need to wait for the producer thread. The placeholder is an object that initialy holds the
gueue of waiting consumers and eventually holds the result of evaluating X .

L-structures (Lock-able structures)
Like J-structures, an L-structure isimplemented as a vector with full/empty bits associated
with each vector dot. L-structures support three operations. a locking read, an unlocking
write, and a non-locking read. A locking read waits until adot isfull before emptying the
dlot and returning the value. An unlocking write writes a value to an empty sot, and sets
it to full, releasing any waiters. It isan error to perform an unlocking write to a full sot.
A non-locking read returns the value found in a dot if full; otherwise it returns an invalid
value.

An L-structuretherefore allows mutually exclusive access to each of itsslots. The lock-
ing and unlocking L-structure reads and writes are sufficient to implement M-structures[8].
L-structuresare different from M-structuresin that they allow multiple non-locking readers.

Semaphores

Semaphores are used to implement mutual-exclusion. A semaphore is implemented as a
one-element L-structure. semaphore-P and semaphore-V are easly implemented using
L-structure reads and writes.

108

Name of Synchronization Matched/
Benchmark | Type Unmatched
MGrid producer-consumer | settable
Jacobi producer-consumer | settable
Factor producer-consumer | unmatched
Queens producer-consumer | unmatched
CGrad barrier settable
Jacobi-Bar | barrier settable
FibHeap mutual exclusion settable
Mutex mutual exclusion settable

Table 4.2: Benchmarks used for testing waiting a gorithms.

Barriers

Barriers ensure that al participating threads have reached a point in a program before
proceeding. To avoid excessive traffic to a single location, and to distribute the enqueuing
and release operations, we use software combining trees [57] to implement barriers.

4.6.2 Benchmarks

The experiments use benchmarks that are representative of producer-consumer, barrier,
and mutual-exclusion synchronization. Table 4.2 lists the benchmarks and indicates the
synchronization typesin each of the benchmarks.

Blocking only makes sense if there is another runnable thread to execute. Therefore
we differentiate between the case where the number of threads is perfectly matched to the
number of processors, and the case where there are more threads than processors. To ease
discussion, let us say that a program is matched if the number of concurrently runnable
threads assigned to any processor never exceeds the number of hardware contexts on that
processor; otherwise the program is unmatched. Table 4.2 indicates whether a benchmark
is matched or unmatched.

We describe the communication and synchronization characteristics of each of the
benchmarks bel ow.

MGrid appliesthe multigrid algorithm to solving Poisson’s equation on a2-D grid. Com-

munication is nearest-neighbor except during shrink and expand phases. The 2-D grid is
partitioned into subgrids, and athread is assigned to each subgrid. Borders of each subgrid

109

are implemented as J-structures to alow fine grain synchronization with neighbors. The
J-structures are reset between iterations.

Jacobi performs Jacobi relaxation for solving Poisson’s equation on a 2-D grid. Each
thread is responsible for one grid point, and neighboring grid points are mapped onto
neighboring processors. The grid is alocated uniformly so that only nearest-neighbor
communicationis necessary. J-structures are used to synchronize neighboring threads. The
grain size of each thread is purposely made very small in order to expose the effects of
synchronization as they become significant.

Factor computes the largest prime factors of each integer in a given range of integers,
and accumulates them. The synchronization structure of the program can be most easily
viewed as arecursive function call tree with synchronization occurring at each node of the
tree. The program was dynamically partitioned with lazy task creation [44].

Queens solves the n-queens problem: given an n x n chess board, place n queens such
that no two queens are on the same row, column, or diagonal. A search of al possible
solutions is made and this particular benchmark was run with n» = 9 and with lazy task
creation. Queens has similar synchronization characteristics to Factor.

CGrad isthe conjugate gradient numerical algorithm for solving systems of linear equa-
tions. In this benchmark, the algorithm is used to solve Poisson’s equation on a 2-D grid.
Each iteration of CGrad involves global accumulates and broadcastswhich areimplemented
using a software combining tree. These accumulates and broadcasts also serve as barriers
between phases.

Jacobi-Bar solves exactly the same problem as Jacobi, but uses a global barrier between
iterationsfor synchronization instead of J-structures. Likein Jacobi, only nearest neighbor
communication is necessary within an iteration.

CountNet tests an implementation of a counting network [7]. Threads repeatedly try
to increment the value of a counter through a bitonic counting network so as to reduce
contention and allow paralelism. Threads acquire and release mutexes at each network
node as they traverse the network.

110

FibHeap tests an implementation of a scalable priority queue based on a Fibonacci
heap [24]. Mutexes are used to ensure atomic updates to the heap. Scalability is achieved
by distributing mutexes throughout the data structure. This avoids points of high lock
contention and allows parallelism. The test involves repeatedly executing insert and
extract-min operationson the priority queue.

Mutex isasynthetic benchmark that monitors the performance of mutexes under varying
loads. Worker threads are distributed evenly throughout the machine and each thread runs
aloop that with some fixed probability acquires a mutex, executes a critical section, then
releases the mutex.

4.7 Experimental Results

This section presents the results of executing the benchmarks on a ssimulation of a 64-
processor Alewife machine. Switch-spinning was used as the polling mechanism, while
blocking was used as the signaling mechanism. We first present the waiting-time profiles
and compare them with the proposed models for the three synchronization types. We then
present the resulting program execution times under different waiting algorithms.

4.7.1 Waiting-Time Profiles

The waiting-time profiles are gathered by monitoring the waiting timesfor each failed syn-
chronization. A number of the profiles approximate an exponentia distribution. Whenever
thisis so, asemi-log plot is used so that the exponential distribution is easily recognizable
asalinear set of points. Linear regressionson thelog values of the waiting timefrequencies
are also plotted. This corresponds to fitting exponential curves through the original set of
points. Outlierswith frequencies|ess than 10 were pruned in the regressions.

Producer-Consumer Synchronization Figures 4.6 and 4.7 present semi-log plots of
waiting-time profiles obtained from benchmarks with producer-consumer synchronization.
These profiles support the use of exponential waiting times in our competitive analysis of
waiting algorithms.

We see from the plotsthat thewaiting times areindeed largely exponentially distributed.
However, thereissome deviationfor short waiting timesin theunmatched versionsof MGrid
and Jacobi. We believe this is due to the effect of blocking on waiting times. Blocked

111

Frequency

1000

MGrid matched
MGrid unmatched
Jacobi matched
Jacobi unmatched

> o + ©

100
10 |
0 5 10 15 20 25 30 35 40
Wait Cycles
(x 1000)

Figure 4.6: Measured waiting times for J-structure readers.

Frequency

/
/
>

Factor unmatched
Queens unmatched

+

200

10

Wait Cycles
(x 1000)

Figure4.7: Measured waiting times for futures.

112

z
e 2000
)
35
5
i + CGrad matched
o CGrad unmatched
1500 o e o JacobiBar unmatched
+
1000 | L+
N
.
(o)
+O
500 RS
. o o
N Oo e Oo%o%
o° O 0,
0 @8&0? e L% 2 220 | "
0 10 20 30 40 50 60 70
Wait Cycles

(x 1000)
Figure 4.8: Measured barrier wait times for CGrad and Jacobi-Bar.

threads experience some delay before resuming execution. Since a blocked thread might
be a producer that is waited on by some consumer threads, this delay can cause a fraction
of waiting times to be skewed upward.

Although it would be premature to conclude from these results that producer-consumer
waiting times are exponentially distributed, the data show the existence of parallel programs
that exhibit such waiting times. In such cases, astatic setting of L,.; = 0.54 should yield
better performance.

Barrier Synchronization Figure 4.8 presents the waiting-time profiles for CGrad and
Jacobi-Bar. Although our model suggests that barrier waiting times should be uniformly
distributed, the waiting-time profiles do not support this hypothesis. This deviation is due
to the overhead of the software combining tree barrier in this experiment. An arrival at a
combining tree barrier has to traverse some part of the combining tree beforewaiting. The
traversal is not considered as waiting time.

Tofilter out this software overhead, weran aversion of Jacobi-Bar withasimple counter
implementation of barriers, thereby eliminating the combining tree. We executed this
benchmark on a simulation of an idealized, one-cycle access memory system to eliminate
the effect of hardware contention on thissimple barrier implementation. Figure4.9 presents
the resulting waiting-time profilewhich is close to uniform except at the tails.

113

+ JacobiBar
ideal

gt T
2000 - ++++H—H—H e

+ +

Frequency

1500 + *

1000 }-,

500 t+

+

0 | YRR PR

0 2000 4000 6000
Cycles

Figure 4.9: Measured barrier waiting times for Jacobi-Bar on an ideal memory system.

Mutual Excluson Synchronization Figures4.10 and 4.11 present the measured waiting
times for the mutual-exclusion benchmarks. The waiting time is measured asthe timefrom
when athread first failsto acquire the mutex to when that same thread successfully acquires
the mutex.

Thewaitingtimesfor FibHeap and Mutex appear to be exponential. However, although
the waiting times for CountNet have exponentia tails, the shorter waiting times in that
benchmark deviate from an exponential distribution.

4.7.2 Application Performance

Thissection presentsthe program execution statisticsof thebenchmarks. Thesebenchmarks
were run on a smulation of a 64-processor Alewife machine with multiple hardware
contexts. We compare the execution times of the benchmarks under the following waiting
algorithms: two-phase waiting with Z,.; = B (2phase/1), dways-poll (poll), and always-
signal (signal). (For poll, L,.; is actually limited to 50000 cycles to implement a timeout
mechanism for deadlock avoidance.)

Figures 4.12-4.14 present the execution times of the benchmarks for each of the syn-
chronization types, normalized to the always-block waiting algorithm. We see from the

LAnother possible measure of lock waiting time woul d be the time from when athread first failsto acquire
the mutex to when the mutex isreleased by the lock holder.

114

+ Mutex
o FibHeap

Frequency

100

10
150 200
Wait Cycles
(x 1000)

Figure 4.10: Semi-log plot of measured mutex waiting timesin FibHeap and Mutex.

>
[S]
c
[} +
=
o 2000 - + + CountNet matched
w * o CountNet unmatched
N
1500 f-°
o +
1000 °
.
500 |- ¢
N
° +
) +
0 ! o ! R J
0 2 4 6 8
Wait Cycles
(x 1000)

Figure4.11: Measured mutex waiting times in CountNet.

115

3.90 8.45

[} 20 B
£
= always-poll
3 always-signal
3 Hm 2phase, a=1
8 15}
w
=
@
N
©
£
s 1O0F
zZ
05 F | ‘ ‘
0.0

MGrid MGrid Jacobi Jacobi Queens Factor
matched unmatched matched unmatched unmatched unmatched

Figure 4.12: Execution times for producer-consumer synchronization benchmarks under
different waiting algorithms.

3.73 2.20
[} 20 [
E
|_
e]
(0]
s always-poll
‘_uj 15} always-signal
- H 2phase, a=1
(O]
N
©
€
s 1O0F
Z
05F
0.0
CGrad CGrad Jacobi-Bar
matched unmatched unmatched

Figure4.13: Execution times for barrier synchronization benchmarks under different wait-
ing agorithms.

116

()
£
|_
k5
© 10F
o
]
w
3 always-poll
= always-signal
g Hm 2phase, a=1
S
pd
05 F
0.0
CountNet CountNet FibHeap Mutex
matched unmatched matched unmatched

Figure 4.14: Execution times for mutual-exclusion synchronization benchmarks under
different waiting algorithms.

graphsthat the choi ce of waiting mechanisms makesasubstantial differenceinthe execution
times of the benchmarks.

Always-poll results in pathological performancein the unmatched producer-consumer
and barrier synchronization benchmarks because polling threads can monopolize the pro-
cessor and prevent a unloaded producer thread or barrier arrival from running. Mutual
exclusion synchronization does not face this problem because Alewife's run-time system
never unloads alock holder. Even ignoring these pathological cases, the choice of waiting
mechanisms can result in a performance difference of nearly 2.4 times between the best and
worst cases (cf. Jacobi unmatched).

Degspite the wide variance of run-time conditions across al the benchmarks, the two-
phase waiting algorithmis awayswithin 53% of the best waiting algorithm. If we disregard
thematched program runs, where blocking isnot beneficial, thetwo-phasewaiting a gorithm
iswithin 6.6% of the best algorithm. Thisshowsthat two-phase waiting is extremely robust
and performscloseto the best stati c choi ce of waiting mechanismsacrossall the benchmarks.
Most importantly, it never results in pathologically bad performance.

Let us consider the results for each of the synchronization typesin more detail.

117

Producer-Consumer Synchronization Table 4.3 summarizes the detailed ssimulation
results for barrier synchronization. Since waiting-time profiles for producer-consumer
synchronization approximate an exponential distribution, we expect the performance of
2phase/1 to lie in between signal and poll (see Theorem 1). This is indeed the case?,
but more importantly, the measured performance of 2phase/1 is not far from the best
algorithmin each case. 2phase/1 hasthe best overall performance among the three waiting
algorithms.

poll encounters deadlock and times out in unmatched MGrid and Jacobi and thus per-
formspoorly. This problem with deadlock is not present for unmatched Queens and Factor
because they are dynamically partitioned with lazy task creation [44]. signal performs
reasonably well except for matched Jacobi which has very short waiting times.

Barrier Synchronization Table 4.4 summarizesthedetailed simulation resultsfor barrier
synchronization. Because of the nature of barrier synchronization, waiting times at barriers
are likely to be long: a waiting thread is likely to be held up for a large number of other
threads. I1n the benchmarks, the waiting-time profiles presented above indicate that most of
the waiting times were longer than the blocking overhead. We see the effect of thisin the
performance figures in Table 4.4, where signal performs best in the unmatched programs.
The number of blocked tasks also confirm that most of the waiting times are longer than
B. This suggests that we should use signal at barriers unless we know that the program is
matched. poll runsinto deadlock for the unmatched programs.

Nevertheless, 2phase/1 performs quite well and is within 6.6% of the performance of
signal. We can do better if we have some indication of the number of arrivalsat the barrier.
We cannot rely on the availability of a global count of arrivals in large-scale machines
because that would limit the scalability of the barrier algorithm. However, for tournament-
style tree barriers, we know that waits near the root of the tree should be shorter than waits
near the leaves. Accordingly, we can use an dways-signal algorithm for the lower sections
of the tree and a two-phase algorithm for the upper sections.

Mutual Excluson Table 4.5 summarizes the detailed simulation results for mutual-
exclusion synchronization. In the mutual-exclusion benchmarks, deadlock is not an issue,
even in unmatched conditions, because lock holders are never descheduled. 2phase/1 per-
forms well in both matched and unmatched CountNet and performs best in FibHeap and

22phase/1 performs best in Queens because of an interaction with the scheduler and lazy task creation
which resulted in a better partitioning of the program.

118

Benchmark | Con- | Waiting Runtime | Normalized | Wait | Blocked
texts | Algorithm | (Kcycles) Runtime | Ovh.! | Threads

MGrid 4 signal 2,251 1.0 5% 6,365
matched 4 2phase/1 1,918 0.85 1,769
4 poll 1,731 0.77 4

MGnd 2 signal 1,865 1.0 7% 6,953
unmatched 2 2phase/1 1,885 1.01 5,150
2 poll 7,273 3.90 4,613

Jacobi 4 signal 930 10| 21% | 12,818
matched 4 2phase/1 524 0.56 1,144
4 poll 390 0.42 440

Jacobi 4 signal 719 10| 21% 9,931
unmatched 4 2phase/1 757 1.05 7,756
4 poll 6,075 8.45 4,399

Queens 4 signal 458 1.0 3% 655
unmatched | 4 | 2phase/1 434 0.95 300
4 poll 467 1.02 0

Factor 4 signal 769 1.0 5% 1,561
unmatched | 4 | 2phase/1 790 1.03 913
4 poll 841 1.09 19

Las percentage of runtime

Table 4.3: Performancefigures for producer-consumer synchronization.

Benchmark | Con- | Waiting Runtime | Normalized | Wait | Blocked
texts | Algorithm | (Kcycles) Runtime | Ovh.! | Threads

CGrad 4 signal 1,052 10| 11% 7,478
matched 4 | 2phase/1 999 0.95 7,161
4 poll 654 0.62 2

CGrad 2 signal 1,048 10| 11% 7,625
unmatched 2 2phase/1 1,118 1.07 7,309
2 poll 3,905 3.73 3,714

Jacobi-Bar 4 signal 1,592 10| 23% | 26,880
unmatched 4 2phase/1 1,617 1.02 25,820
4 poll 3,497 2.20 14,395

Las percentage of runtime

Table 4.4: Performancefigures for barrier synchronization.

119

Benchmark | Con- | Waiting Runtime | Normalized | Wait | Blocked
texts | Algorithm | (Kcycles) Runtime | Ovh.! | Threads

CountNet 4 signal 1,378 1.0 9% | 10,502
matched 4 2phase/1 1,293 0.94 1,913
4 poll 1,242 0.90 276

CountNet 2 signal 1,298 1.0 8% 7,646
unmatched 2 2phase/1 1,241 0.95 1,202
2 poll 1,224 0.94 43

FibHeap 4 signal 2,430 10| 23% 7,882
matched 4 2phase/1 2,117 0.87 7,332
4 poll 2,617 1.08 581

Mutex 4 signal 612 10| 19% 4.429
unmatched 4 2phase/1 583 0.95 1,652
4 poll 678 111 0

Las percentage of runtime

Table 4.5: Performance figures for mutual-exclusion synchronization.

Mutex. Again, this demonstrates the robustness of two-phase waiting. poll unexpectedly
performsworst even in matched conditionsin FibHeap. We will explain these observations
here.

Lock contention waslow in CountNet, and we know that alarge number of waitswere
short from the waiting-time profiles above and by comparing the number of blocked threads
for signal and 2phase /1. Under such conditions, poll performs best and signal worst, with
2phase/1 close to poll. However, since the waiting times are not exponential nor uniform,
we cannot match these performance results with our theoretical analysis.

Lock contention was highin FibHeap and Mutex. The bad performance of poll in these
benchmarks is due to the effect of contention. Because of the use of non-queuing locks
in the benchmarks, alock release immediately causes all polling waitersto re-contend for
the lock, causing detrimental hot-spot contention. All the released waiters try to acquire
the lock at once, exacerbating the waiting times at that lock. Thisis an example where an
intelligent protocol selection algorithm would have improved the performance of poll by
choosing a queuing protocol.

Because blocked waiters have to be rescheduled before they re-contend for the lock,
signal actually helps avoid the detrimental effect of bursty lock requests. This allows
signal to actually perform better than poll, even in matched FibHeap. 2phase/1 works best

120

because it naturally pollson lightly contended locks and blocks on highly contended locks,
combining the best of both worlds, an advantage not predicted by the theoretical models.

4.7.3 Changing L.

Intheaboveresults, L,.; wasset to beequal to the cost of blocking. However, the preceding
theoretical analysisindicates that setting L,.;; to 0.5458 will yield a more robust algorithm
when waiting times are exponential, while setting L,,,;; to 0.628 will yield a more robust
algorithm when waiting times are uniform.

While we would like to empirically confirm that the prescribed settings for L,,.; lead
to optimal competitive factors, doing so would require an infeasible amount of simulation.
We would have to run alarge set of benchmarks ranging over the possible values of the
waiting-time distribution parameters. However, we attempt to lend some support to the
theoretical results by taking some measurements with L,,.; = 0.55.

We experiment with two of the producer-consumer benchmarks (MGrid and Jacobi)
under unmatched conditions. Table4.6 reproducestheresultspresented earlier, andincludes
resultsfor 2phase /0.5. We observethat ashorter polling phase resultsin better performance
than 2phase/1 in MGrid and Jacobi because producer arrival rates were low. Under such
conditions, i.e, when A < 1/5B, our theoretical analysis predicts that 2phase/0.5 will
perform better than 2phase/1. Karlin et al. [25] also observe by analyzing measured
waiting-time profilesthat setting L,.; to 0.55 can result in lower waiting costs.

Surprisingly, 2phase /0.5 aso performed better than signal. We think that this effect is
due to the possibility of not finding a runnable thread to execute after blocking a thread,
which violates the assumption made in the theoretical analysis. This would cause signal
to unnecessarily block more threads compared to two-phase waiting. Also, the waiting
algorithm itself may affect the waiting times.

4.8 Summary

This chapter explores the possibility of reducing the cost of waiting for synchronization by
using a signaling waiting mechanism to overlap the waiting time with other computation.
However, since signaling incurs a significant fixed cost, a run-time algorithm is needed to
choose between polling and signaling mechanisms.

We transform the problem of choosing between waiting mechanismsinto one of choos-
ing theright value of L, for atwo-phase waiting algorithm. In the interest of minimizing

121

Benchmark | Con- | Waiting Runtime | Normalized | Wait | Blocked
texts | Algorithm | (Kcycles) Runtime | Ovh.! | Threads

MGnd 2 signal 1,865 1.0 7% 6,953

unmatched 2 2phase/0.5 1,817 0.97 5,488
2 2phase/1 1,885 1.01 5,150

2 poll 7,273 3.90 4,613

Jacobi 4 signal 719 10| 21% 9,931

unmatched 4 2phase/0.5 699 0.97 8,437
4 2phase/1 757 1.05 7,756

4 poll 6,075 8.45 4,399

Las percentage of runtime

Table 4.6: Performancefiguresfor L,.; = 0.5B.

the run-time overhead of two-phase waiting, we focus on methodsto choose L,,,; Statically.

Exploiting the fact that waiting times tend to be randomly distributed according to
some waiting-time distribution, this chapter prescribes static values of L,,; that result
in close to optimal competitive factors. In particular, it proves that if waiting times are
exponentially distributed, then a static choice of L,,; = 0.54B yields a 1.58-competitive
waiting algorithm. It also proves that if waiting times are uniformly distributed, then a
static choice of L,.,; = 0.625 yields a 1.62-competitive waiting algorithm. In practice,
these results indicate that a static two-phase waiting algorithm should poll for about half
the cost of signaling rather than the entire cost of signaling.

We ran some application programs on a simulation of the Alewife machine, and mea
sured synchronization waiting times and program execution times under various waiting
algorithms. The waiting-time profiles of a number of the programs are exponentialy dis-
tributed. The execution time statistics show that two-phase waiting results in performance
that is close to the best static choice of waiting mechanisms. The experiments also show
that always-block is an acceptable waiting algorithm, and that always-poll isapoor waiting
algorithm when there are more threads than processors.

122

Chapter 5

Related Work

The field of multiprocessor synchronization has been extensively studied. This chapter
overviews related research on reducing synchronization costs. It first describes research
on designing efficient algorithms for synchronization operations. It then describes other
complementary approaches to reducing the cost of synchronization. Such approaches
include program restructuring and multithreading. Finally, it describes research that uses
aconcept similar to C-serializability and consensus objects for enhancing the performance
of concurrent dictionary search operations.

5.1 Synchronization Algorithms

Previous research on designing efficient algorithmsto minimizethe cost of synchronization
operations focuses on three approaches:

1. Scalable synchronization algorithmsthat perform well under high contention.
2. Waiting algorithmsto minimize the cost of waiting for synchronization.

3. Adaptive, run-time methods.

We describe research in each of these areas in turn.

5.1.1 Scalable Synchronization Algorithms

Spin locks and barriers are commonly used to synchronize shared-memory programs. With
the advent of larger multiprocessors, it became apparent that simple, centralized algorithms

123

for spin locks and barriers scale poorly. The problem is twofold. First, contention at the
centralized memory locations causes memory latenciesto increase drastically. Second, the
centralized nature of the algorithmsremoves any opportunity for parallelism by sequential-
izing accesses. In response to this problem of scaling to high contention levels, a recent
area of research focuses on designing scalable algorithms that perform well under high
contention.

Research on spin locks by Anderson [5], Mellor-Crummey and Scott [43], and Graunke
and Thakkar [19] show that the best approach to implementing spin locks under high
contention is to enqueue lock waiters and service them one at atime. This prevents lock
waiters from simultaneously recontending for the lock and reduces the detrimental effects
of memory contention.

Mellor-Crummey and Scott measured the performance of a number of scalable spin-
barrier algorithms in [43]. Their results prescribe using a combining tree or butterfly
network to combine arrival information and to signal barrier completion. Combining
reduces contention and allows the algorithm to proceed in parallel.

Observing that mutual exclusion has the undesired effect of serializing processes, Got-
tliebetal. [18] suggest amethod of avoiding serialization by using afetch-and-op operation.
The advantage of fetch-and-opisthat concurrent fetch-and-op operationsto asinglevariable
can be combined and can proceed in parallel. Goodman et al. [15] present a combining
tree algorithm to compute fetch-and-op in parallel.

The price of using these scal able algorithmsisthat they typically have ahigher protocol
cost than simpler algorithms under low contention. In effect, these algorithms trade off
performance at low contention for performance under high contention. These scalable
algorithms are optimized for high contention although, in practice, the level of contention
can (and should) be much less than the maximum number of processors. Nevertheless, this
research has been useful in providing synchronization protocolsto be selected at run-time
by a protocol selection algorithm.

The experimental datain the research on scalable synchronization algorithms are based
on purely synthetic benchmarks with static levels of contention. Thisthesis provides addi-
tional data on the performance these scalable algorithmsin benchmarks with dynamically
changing contention levels and in application programs.

5.1.2 Waiting Algorithms

Another area of research focuses on reducing waiting cost by overlapping waiting timewith
other useful computation. Research in this area has designed waiting algorithms that make

124

intelligent run-time choices between spinning and blocking.

Ousterhout first proposed the two-phase waiting algorithm in his Medusa operating
system [47]. The operating system implements two-phase waiting with a user-settable
L. Inastudy of multiprocessor scheduling agorithms, Lo and Gligor [40] found that
use of two-phase waiting improves the performance of group scheduling when L,,; is set
in between B and 25, where B isthe cost of blocking.

This thesis shows that the effectiveness of two-phase waiting depends on both the
distribution of waiting times and the setting of L,,;. Zahorjan et al. [58] studied the
effect of data dependence and multiprogramming on waiting times for locks and barrier
synchronization, and showed that waiting times can be highly dependent on run-time
factors. They conclude that data dependence and multiprogramming does not significantly
alter lock waiting times. However, for barrier synchronization, both data dependence and
multiprogramming lead to sharply increased waiting times.

Research by Karlin et al. [26] focuses on selecting ,.; to optimize the performance
of two-phase waiting. They present a randomized two-phase waiting algorithm, where the
length of the polling phaseisrandomly picked from apredetermined probability distribution.
The randomized agorithm achieves an expected competitive factor of e¢/(e < 1) ~ 1.58.
In a separate paper [25], Karlin et al. performed an empirical study of several techniques
for determining L ,.; in two-phase waiting algorithms for mutual exclusion locks. In this
thesis, we show how to statically select L,.;; S0 as to achieve close to the optimal on-line
competitive factor of ¢/(e <1).

5.1.3 Adaptive Methods

Certainly, the idea of run-time adaptivity to optimize performance is not new. Here, we
describe some recent research in using adaptivity to improve the performance of operating
system functions and synchronization operations.

Reconfigurable Operating Systems Mukherjee and Schwan [45] provide an overview
of reconfigurable operating systems. The general ideaisto provide hooksinto an operating
system so that application programscan dynamically control certain parametersof operating
system services and improve performance. Mukherjee and Schwan present a model for
adaptive operating system objects that adapt to run-time conditions, either automatically, or
through user control. As an example, they implement a class of multiprocessor locks that
they term adaptive locks and show that the added run-time cost of dynamic configuration
is outweighed by the ensuing performance gains.

125

While Mukherjee and Schwan'’s adaptive lock and the reactive lock algorithm in this
thesis both attempt to improve the performance of locks through adaptivity, there is a
significant difference in the two approaches. Their adaptive lock allows scheduling and
waiting policies of the lock to be reconfigured, but they do not go so far as to change the
protocol in use. Reactive synchronization algorithms take a more general approach and
deal with the harder problem of allowing the synchronization protocol itself to be changed.

AdaptiveMutual Excluson Recent research by Yang and Anderson [55], and Choy and
Singh [13] designed adaptive algorithms for mutual exclusion in the context of shared-
memory multiprocessors that provide only atomic read and write primitives. They tackle
the classic mutual exclusion problem of reducing the time complexity of implementing
mutual exclusion with only atomic reads and writes. With this constraint, the best known
mutual exclusion algorithmsare either fast in the absence of contention but scale poorly, or
slow in the absence of contention but scale well.

Yang and Anderson designed an algorithm that adaptively selects between Lamport’s
fast mutual exclusion agorithm [35] and a scalable algorithm of their design. It selects
Lamport’s algorithm when there is absolutely no contention, and the scalable algorithm
when any contention is detected.

Choy and Singh use a filter as a building block for constructing mutual exclusion
algorithms. When two processes access a filter, it chooses one of two processes to be a
winner. In their algorithms, the number of filters that a process has to access in order to
acquire alock depends on the degree of contention. The higher the contention, the more
filtersthat haveto be accessed. Inthisway, their agorithm adaptsto thelevel of contention.

Through adaptivity, Yang and Anderson, and Singh and Choy wereableto improveupon
the time complexity of previously known mutual exclusion algorithmswithin the constraint
of atomic reads and writes. However, since reducing time complexity was the objective,
the research largely ignored the constant factorsinvolved in using adaptivity. Furthermore,
although an improvement over previous algorithms, their adaptive algorithms are ill
inferior to mutual exclusion algorithmsthat utilize atomic read-modify-write primitives.

This thesis considers the best known agorithms that take advantage of atomic read-
modify-write primitives, and presents agorithms that improve upon them through adap-
tivity. From a practical standpoint, this approach is more relevant since almost all current
shared-memory systems provide atomic read-modify-write primitives. This thesisis aso
concerned with the added run-time costs for dynamically selecting protocols.

Instead of crafting protocol-specific methods for selecting between locking protocols,

126

this thesis provides generic protocol selection algorithm that can be used to select among
any locking protocols.

AdaptiveBarriers Themost scalablea gorithmsfor barriersrely on asoftware combining
treeto achieve O(log V') barrier latency. However, if barrier arrival timesare skewed, the use
of a combining tree to accumulate barrier arrivals leads to a higher latency than a ssimple,
centralized counter. This observation led Gupta and Hill [20] to propose an adaptive
combining tree barrier that adapts the shape of the combining tree to the arrival patterns
of the participating processes. They show that their algorithm leads to improved time
complexities. However, their analysis of the algorithm ignores the run-time overhead of
reconfiguring the combining tree.

In later work [49], Scott and Mellor-Crummey investigated the performance of Gupta
and Hill’ s adaptive combining-tree barriers and found that the adaptive combining treefails
to outperform conventional tree and dissemination barriers. If processes arrive simultane-
oudy at a barrier, anon-adaptive combining tree barrier will perform better because it does
not have to pay the run-time overhead of adaptivity. If processes arrive skewed in time,
the length of time in between barrier episodes will be sufficiently long that the reductionin
latency for detecting the last processis insignificant.

The adaptive combining tree does however show a performance advantage when used
asafuzzy barrier [20]. In afuzzy barrier, aprocesswaiting at the barrier can perform some
useful computation that does not rely on completion of the barrier. This shows that the
main advantage of the adaptive combining tree barriers comes from allowing the waiting
processes to perform more useful work while waiting.

5.2 Complementary Methods

Besides the approach in this thesis of designing efficient algorithms for synchronization
operations, there exist other complementary methods for reducing synchronization costs.
These methods can be used together with reactive synchronization algorithmsfor reducing
synchronization costs.

5.2.1 Program Restructuring

This approach restructures the synchronization pattern of a program to minimize data-
dependencies and avoid any unnecessary synchronization delays. For example, barrier

127

synchronization is frequently used to enforce data-dependencies across phases of a pro-
gram. However, barrier synchronization presents two major drawbacks: it requires global
communication and it unnecessarily delays computation. Instead of barriers, programs can
use data-level or point-to-point synchronization to enforce data dependencies.

Kranz et al. [28] and Yeung and Agarwal [56] investigated the performance benefits
of restructuring a program to use fine-grained synchronization. They also investigated
the benefits of providing hardware support for efficient data-level synchronization. They
found that restructuring the program to use fine-grained synchronization instead of barriers
improves performance by a factor of three due to increased parallelism. Hardware support
for fine-grained, data-level synchronization in the form of full/empty bits [53] yields an
additional 40% performance improvement.

Nguyen [46] used compiler analysisto transform statically partitioned DOALL loopsto
use point-to-point communication between processors instead of global barriers. Conven-
tional implementations of DOALL loops use a barrier at the end of each DOALL loop to
enforce data-dependencies across DOALL loops. However, barriers enforce unnecessary
dependencies across all the processors. To avoid over-constraining the processors, com-
piler analysis identifies the essential inter-processor dependencies and enforces them with
point-to-point synchronization operations instead of barriers. Experimental results show
about afactor of two improvement in execution times.

An effect of restructuring programsto synchronize at afiner granularity isto increasethe
freguency of synchronization operations, whilereducing contention at each synchronization
operation and shortening waiting times. This makes the right choice of protocols and
waiting mechanisms even more important, and further motivates the need for reactive
synchronization algorithms.

5.2.2 Multithreading

Multithreading is commonly prescribed as a method for tolerating latencies and increasing
processor utilization in alarge-scale multiprocessor. 1t accomplishesthisby rapidly switch-
ing the processor to a different thread whenever a high-latency operation is encountered.
While previous multithreaded designs switch contexts at every cycle [53, 21], Alewife's
multithreaded processor [1] switches contexts only on synchronization faults and remote
cache misses. This style is caled block multithreading [33] and has the advantage of
high single thread performance. In this thes's, we considered multithreaded processors as
providing additional waiting mechanismsto be selected by awaiting algorithm.

128

5.3 Concurrent Search Structure Algorithms

A search structure algorithm implements the dictionary abstract datatype. In [51], Shasha
and Goodman present a framework for designing and verifying concurrent search structure
algorithms. They exploit the semantics of the dictionary abstract data type to design and
verify highly concurrent search structure algorithms. In their model, a search structure
algorithm stores dictionary entries in the nodes of a graph, and dictionary member, insert
and delete operations traverse the graph and manipulate the graph nodes to perform the
operation.

A concurrent search structure algorithm avoidslocking in order to increase concurrency.
Shasha and Goodman propose a give-up technique that achieves this objective. In this
technique, an process may arrive at a graph node, expecting to find a particular member in
that node. However, another concurrent dictionary operation may violate that expectation.
If this happens, the algorithm simply gives up and retries the search. Shasha and Goodman
observethat s mulation studies show that the give-up technique resultsin better performance
than techniques that another technique that requires more locking.

We observe that the give-up techniqueis similar to our technique of serializing protocol
changes with consensus objects. As in the give-up technigque, our technique also attempts
to permit more concurrency by reducing locking requirements and allowing the algorithm
to execute an invalid protocol. An invalid protocol execution causes the reactive agorithm
to give-up and retry the synchronization operation.

129

Chapter 6

Summary and Future Work

6.1 Summary

Thisthesis exploresthe performance implications of using run-timeinformation to enhance
the performance of synchronization operations. It first identifies the potential benefits
of selecting protocols and waiting mechanisms based on contention and waiting times.
However, in order to redlize the potential benefits, we have to minimize the run-time cost of
making the choice. Thisthesisdesignsreactive synchronization algorithmsthat performthe
run-time sel ection with minimal overhead, given reasonable assumptions about the run-time
behavior of parallel applications.

Protocol Selection Algorithms The first part of this thesis deals with the problem of
selecting protocols correctly and efficiently. It presents a framework for reasoning about
and designing efficient protocol selection algorithms with minimal run-time cost. We
assume that run-time contention levels do not vary in such a way as to require frequent
protocol changes, and optimize for the case when the currently selected protocol isoptimal.
We permit the maximum amount of concurrency in the presence of dynamic protocol
changes by optimistically executing protocols and detecting later if the protocol was the
correct protocol to use.

The design framework shows how minor modifications to a synchronization protocol
allowsit to be dynamically disabled and enabled. We definedC-seridizability as a correct-
ness condition and introduced the notion of consensus objects as a method of satisfying
C-seriadizability. We aso presented a 3-competitive policy for deciding when to change
synchronization protocols.

Using the framework, we designed and implemented reactive algorithmsfor spin locks

130

and fetch-and-op that are based on consensus objects for correctness. These agorithms
require minor modifications to the original protocols and are implemented in C. Since
the reactive algorithms rely only on the existence of shared-memory read-modify-write
operations, they will run on any platform that supports a shared-memory abstraction.
Experimental results on both a smulated and real Alewife multiprocessor demonstrate
that the reactive spin lock and fetch-and-op algorithms can approach and even outperform
the performance of conventional passive agorithms.

This thesis shows how a protocol selection algorithm can dynamically select between
shared-memory and message-passing protocols. The advantage of using message-passing
is that it is typically more efficient than using shared-memory under high contention.
Unfortunately, the fixed overheads of message sends and receives make message-passing
protocols more expensive than shared-memory protocols under low contention. Reactive
algorithms provide a solution by deferring the choice of protocolsto run-time.

The reactive spin lock algorithm removes the need for special hardware support for
gueue locks. For example, the Stanford DASH multiprocessor [38] and the Wisconsin
Multicube [15] both include hardware support for queuing lock waiters. Software queuing
algorithms provide the same scal abl e performance as hardware queue locks, but they come
at aprice of higher lock latency in the absence of contention. Our reactive spin lock solves
the latency problem, thus eliminating the incentive of providing queuing in hardware.

Thereactivefetch-and-op algorithm providesaviableaternativeto hardwarecombining
networks. For example, the NYU Ultracomputer [17] includes combining in its intercon-
nection network. While software combining algorithms offer an alternative, they come at
aprice of extremely high latency at low contention levels. Our reactive fetch-and-op ago-
rithm solves the latency problem at low contention levels and provides scalable throughput.
Although a hardware combining network will result in higher throughput, its additional
complexity and cost will have to be justified against a reactive fetch-and-op algorithm.

Waiting Algorithms The second part of thisthesis dealswith the problem of dynamically
sel ecting waiting mechanisms. Thisthesisdivideswaiting mechanismsinto two fundamen-
tal classes: polling and signaling mechanisms. The waiting cost of polling is proportional
to the waiting time, while the waiting cost of signalingisafixed cost, B. Previousresearch
designed two-phase waiting algorithms that poll until the cost of polling reaches a limit,
L,.u, before resorting to a signaling mechanism. Previous research aso designed methods
of choosing L,.;; dynamically so asto achieve an optimal on-line competitivefactor of 1.58.
However, they incur a significant run-time overhead in deciding 7 ,.; dynamically.

131

Thisthesis attemptsto minimizethe run-timecost of deciding Z.,.;; by relyingonwaiting
times to follow some probability distribution. We argue that exponentially and uniformly
distributed waiting times are common, assuming Poisson arrivals of synchronizing threads.
Experimental measurements corroboratethishypothesis. Wederived theoretical resultsthat
show that under exponentially distributed waiting times, a static choice of L,.; = 0.54B
yields a 1.58-competitive waiting algorithm, and that under uniformly distributed waiting
times, a static choice of ,.; = 0.62B yields a 1.62-competitive waiting algorithm. These
competitivefactorsarevery closeto thetheoretical minimumfor on-linewaiting algorithms.
In practice, these results indicate that a static two-phase waiting algorithm should poll for
about half the cost of signaling rather than the entire cost of signaling.

Measurements of parallel applications confirm that two-phase waiting algorithms are
very robust, and that polling for about half the cost of signaling can yield improved perfor-
mance. Interestingly, the results also show that blocking is a good waiting mechanism in
Alewife. Thisisduetolow blocking overheadsin Alewife s streamlined and minimal run-
time thread management system. Thisfact re-emphasizesthe importance of minimizing the
cost of blocking. When the cost of blocking is comparable to waiting times, any reduction
in the cost of blocking will immediately show up as a reduction in the cost of waiting.

6.2 FutureWork

This thesis demonstrates the possibility of dynamically selecting protocols and waiting
mechanisms to improve the performance of synchronization algorithms. It would be in-
teresting to see if the techniques developed in this thesis can be applied to the design of
reactive algorithmsfor other synchronization operations that exhibit a run-time choice be-
tween protocols. Other synchronization operationsthat may benefit from dynamic protocol
selection are reader-writer locks and barriers.

This thesis also raises interesting issues for future research. In the rest of this section,
we outline several areas that may be worth investigating.

Combining Protocol Selection and Waiting M echanism Selection

The reactive algorithmsin this thesis select protocols and waiting mechanisms separately.
Thisignoresan opportunity to performtherun-timeselection at the sametime. Therationale
behind thisisthe observation that contention level sand waiting times are usually correl ated.
Thus, run-time conditionsthat favor aparticular protocol may also favor aparticular waiting
mechanism. For example, in designing the reactive spin lock, a better approach may be to

132

use a polling mechanism for the test-and-test-and-set protocol, and a signaling mechanism
for the queuing protocol.

Verifying Protocol Selection Algorithms

Chapter 3 definesC-serializability as a correctness condition that an implementation should
satisfy to allow it to be selected dynamically. It also introduces the notion of consensus
objectsasameans of satisfying it. There may be other means of satisfying C-seridizability,
and it would be useful to further develop the theory to allow a designer to verify whether
his/her protocol satisfiesit.

A possible approach is to restrict our attention to linearizable implementations of
concurrent objects [23]. Such objects can be specified using standard sequential axiomatic
specifications. We can extend a sequential specification of a linearizable object in the
followingway. We add aterm to the precondition of each axiom in the original specification
that statesthat if aprotocol’sobject isinvalid, then the operation on that object should return
an exceptionvalue. Wethen specify two new operationsto validate and invalidatethe object.
An implementation of this extended specification would need to serialize protocol changes,
thus satisfying C-serializability. An agorithm designer can then use the methodology
developed in [23] to determine if an implementation satisfies the extended specification.

Policies for Switching Protocols

Recall that a policy for deciding when to switch protocols first needs to monitor run-time
conditionsto decide which protocol is optimal for the current conditions. If it findsthat the
protocol in useisnot optimal, it must then decide whether to switch to the optimal protocol.

We currently require the designer of a protocol selection agorithm to profile the execu-
tion of each protocol to determine which protocol isoptimal for agiven level of contention.
Although this process needs to be performed only once for each machine architecture, it
would beinteresting to seeif it can beautomated. One approachisto model the performance
of each protocol in terms of some relevant architectural parameters so that the tradeoffs
between different protocols can be easily predicted for a given architecture[10].

It may also be possible to design more sophisticated policies for deciding when to
switch protocols. The primary goa isto defend against the possibility of thrashing between
protocols. In this thesis, we explored using hysteresis and competitive techniques for
deciding when to switch protocols. These policiesessentially set some thresholdsfor using
a sub-optimal protocol before switching to another protocol. A possible extension to these
policies would be to detect thrashing and dynamically adjust the thresholds accordingly.
The switching thresholds should be increased when thrashing is detected and decreased

133

otherwise. The objectiveis to adapt the policy to the evolution of run-time conditions.

Feedback to a Compiler or Programmer

Contentionlevelsand waitingtimesin aparallel program may behard to predict by statically
analyzing the program text. However, for programswhere contention and waitingtimesat a
synchronization object remain cons stent across multiple program runs, it may be worth the
effort to profilethe run-timebehavior of the synchronization objectsand report the resultsto
acompiler or aprogrammer. For example, while analyzing the results of protocol selection
algorithmsin Section 3.5, weidentified two types of locks used in MP3D: alow-contention
lock for updating cell parameters, and a high-contention lock for updating collision counts.
Appropriate feedback may allow the programmer or compiler to fix the choice of protocols
for these two different types of locksin MP3D.

134

Appendix A

An Overview of Spec

This appendix gives a brief overview of the Spec language [36] that is used in Appendix B
for specifying and describing several implementations of protocol selection agorithms.

Spec is alanguage designed by Butler Lampson and William Weihl for writing specifi-
cations and the first few stages of successive refinement towards practical implementations
of digital systems, all in a common syntax. Spec provides a succinct notation for writing
precise descriptions of sequential or concurrent systems, both sequential and concurrent. It
isessentially anotation for describing allowabl e sequences of transitions of astate machine.
A complete description of Spec’s syntax and semanticsis presented in [36].

This purpose of this overview isto aid the reader in understanding the Spec code. We
concentrate on the features of Spec that are different from, or absent from conventional
programming languages. The overview is largely derived from the handouts describing
Specin [36].

Expressions and Commands
The Spec language has two main constructs: an expression that describes how to compute
avalue as afunction of other values (literal constants, or current values of state variables)
without any side-effects, and acommand that describes possible transitionsof the state vari-
ables. They loosely correspond to expressions and statements in a conventional language.
Spec expressions are atomic, while commands can be atomic or non-atomic.

An atomic command is specified using atomicity brackets << and >>. A non-atomic
command is a sequence of atomic commands that can be interleaved with some other
concurrent computation.

Program Organization
In addition to expressions and commands, Spec has three constructs that are useful for

135

organizing a program.

¢ A routine, which is an abstraction of a piece of computation. There are three kinds
of routines: 1) afunction (defined with FUNC) that is an abstraction of an expression,
2) an atomic procedure (defined with APROC) that is an abstraction of an atomic
command, and 3) a general procedure (defined with PROC) that is an abstraction of a
non-atomic command.

e A type, which is an assertion about the set of values that a name can assume. Spec
includesthe most of the standard types of a conventional language, and also includes
sets and sequences as additional built-in types to ease specification.

e A module, that structures the name space into a two-level hierarchy. Anidentifier i
declared in amodulem has the namem . i throughout the program.

A Spec program is organized as a set of modules and some global declarations. Each
modul e defines a number of types, variables, and routines.

Type Naming Convention

Spec is strongly typed, and requires the user to declare the types of al variables, just asin
Pascal. Thereisaconvention, however, that allowsauser to omit explicit type declarations.
If Foo is atype, it can be omitted in a declaration of the variables foo, fool, foo’, €fc.
That is, the type of a variable whose type has not been explicitly declared is derived by
dropping al trailing digits and ’ s from the name and using the type with the same name
except for capitalization.

Expression Operators

Spec expressionsincludethe standard arithmetic and | ogical operatorsfor combining expres-
sions into larger ones. Spec uses mostly conventional symbols to denote them. However,
it uses unconventional symbols for the following operators. /\ denotes conditional “and”,
and \ / denotes conditional “or”. # denotes “not equal”.

Quantifiers

Spec hasexistential and universal quantifiers(ALL and EXISTS) that makeit easy to describe
properties without explicitly stating how to test for them in a practical way. For instance,
the following expression is trueiff the sequence s is sorted:

(ALL i : INT | 0 <= i /\ i < s.size-1 ==> g[i] <= s[i+1])

136

The expressionisread as, “for al i suchthat 0 < i < s.size <1, s[i] < s[i+ 1]”. The
==> symbol islogical implication.

Pointers and Dereferencing
If x isan object of type T, then x . new returnsa pointer to that object. The returned pointer
hastype REF [T]. p~ dereferences pointer p and returns the object pointed to by p.

Command Operators

Spec has several operators for combining primitive commands into larger ones. The main
primitive commands are assignment and routine invocation. There are also primitive
commands to return aresult from aroutine (RET) and to do nothing (SKIP). The operators
used in thisthesis are:

e A conditional operator: a => b, whichisreadas*if athenb”. aiscalledtheguard of
the command. If a isfalse, the command fails and simply waits until a becomes true
sometime in the future. Contrast thiswith “if” statementsin conventional languages
that continues execution of the next statement if the predicate fails.

e Choiceoperators: c1 [] c2andcil [*] c2.c1 [] <2 makesanon-deterministic
choice between c1 and c2. It chooses one that doesn’t fail. Usually c1 and c2 will
be guarded with a conditional operator. c1 [*] c2 executes c1 unless c1 fails, in
which case it executes c2. Thus, one canread [] as“or”, and [*] as“else’.

For example,

0
1

x=1 =>y3:
(1] x> 1=>y:

setsy to1if x > 1, non-deterministically setsy to O or 1 if x = 1, and does nothing
ifx <1
Also,

x =1
[*x] x >= 1

>y 0

>y 1
setsytolifx > 1,setsy toOif x = 1, and does nothing if x < 1.

e A sequencing operator: c1; c2, which meansto execute c1 followed by c2.

e A loopingoperator: DO command 0D, which meansto execute command until it fails.
The most common useisD0 P => Q 0D, whichisread as“whileP istruedo Q”.

137

e Variable introduction: VAR id | command, which means to choose a variable id
such that command. The most common use is the form VAR x:T | P(x) => Q,
whichisread as* choose some x of type T such that P(x), and do Q”. It failsif there
isno x for which P(x) istrue.

Example
Hereis an example specification for a procedure to search a sequence for a given element:

APROC Search (a:SEQ[INT], x:INT) -> UNION(INT, NULL) =
<< VAR i:INT | (0 <= i /\ i < a.size /\ a[i] = x) => RET i
[*] RET nil >>

The specification says that the Search procedure should return any index i for which
ali] = x. If there isno such index, then Search should return nil. Hereisan imple-
mentation of the above specification that returnsthe smallest index i for whichal[i] = x,
or nil if thereisno suchindex.

APROC Search (a:SEQ[INT], x:INT) -> UNION(INT, NULL) =
<< VAR 1:INT := 0 |

DO
i < a.size /\ al[i]l # x => i := i+1
0D;
i = a.size => RET nil
[*] RET i

>>

138

Appendix B

Specification of Protocol Selection
Algorithms

This appendix supplements the description of the framework for designing and reasoning
about protocol selection agorithms presented in Chapter 3 by providing specifications and
implementationsof protocol objects and managersin the Spec language. The motivationfor
using Spec isthat it providesamore precise and succinct description than the pseudo-code
in Chapter 3. Obvioudly, the primary drawback of using Specisthat it requiresthe reader to
understand the semantics of Spec. Appendix A givesabrief overview of the Spec language.

B.1 A Sequential Specification of a Protocol Object

Figure B.1 presents the sequential specification of a protocol object. This corresponds
to a sequential execution of the specification in Figure 3.5. The specification exhibits only
sequential behavior because each of the proceduresin the specification are atomic (APROC).

DoProtocol returns the result of executing the protocol associated with the protocol
object if p.valid isStrue. Otherwiseit returnsnil. We assumethat nil isnot one of the
return values of P.RunProtocol.

Invalidate changesp.valid tofalse and returnstrue if p.valid istrue. Other-
wiseitreturnsfalse.

Validate assumesthat p.valid isfalsewhenitiscaled. Otherwise, itsbehavior is
undefined. It resets the protocol to a consistent state by calling P. UpdateProtocol and
setsp.valid totrue.

IsValid smply returnsthevalueof p.valid.

139

MODULE ProtocolObject[P, V] =

APROC DoProtocol(p) -> UNION[V, NULL] =
<< p.valid => VAR v := P.RunProtocol(p) | RET v
[*] RET nil >>

APROC Invalidate(p) -> BOOL =
<< p.valid => p.valid := false; RET true
[*] RET false >>
APROC Validate(p) =
<< p.valid => HAVOC
[#*] P.UpdateProtocol(p); p.valid := true >>
FUNC IsValid(p) -> BOOL = RET p.valid

END ProtocolObject

Figure B.1: A sequential specification of a protocol object.

B.2 A (C-serial Specification of a Protocol Object

Figure B.2 presents a C-serial specification of a protocol object. This specification
provides an alternative method of defining of a C-serial execution, without the use of
histories. The specification allows only executions where protocol changes are serialized
with respect to other operations by detecting concurrent protocol changes. A concurrent
protocol change operation indicatesaviolation of aC-seria execution and causes al further
protocol executions and changes to block. This specification is equivalent to a C-seria
execution of the specification in Figure 3.5

Unlike the sequential specification, this specification does not use atomic procedures,
allowing the procedures to be executed concurrently. The specification ensures C-serial ex-
ecutionsby callingBegin and End at the beginning and end of each operation, respectively.
It uses unique id’s and a map of unique id’s to operation types to keep track of the type of
each operation in progress. Begin adds an operation to the set of pending operationsin
pending. End checksif aprotocol change is concurrent with another operation by calling
thefunction CSerial. CSerial returnsfalse if aprotocol changeisconcurrent with any
other operation. End blocksif CSerial returnsfalse.

140

MODULE ProtocolObject[P, V, ID] =

TYPE OPTYPE = UNION[EXEC, CHANGE] % operation type

Y = ID -> OPTYPE % map of op ids to op types
VAR yoO = Y{} % initial map

pending : SET[ID] := {} % pending operations

APROC Begin(optype) -> ID =
<< VAR id | ~ id IN pending =>
y0(id) := optype;
pending := pending ++ id;
RET id >>

APROC End(id, v) = % blocks if another change op is concurrent
<< CSerial(y0, id) => pending := pending -- id; >>

FUNC Cserial(y, id) -> BOOL =
RET (ALL id’ in pending |
y(id) = CHANGE ==> id = id’ /\
y(id) = EXEC ==> y(id’) = EXEC)

% Interface procedures
PROC DoProtocol(p) -> UNION[V, NULL] =
VAR v : UNION[V, NULL] := nil,
id := Begin(EXEC)
BEGIN p.valid => v := P.RunProtocol(p) [*] SKIP END;
End(id, EXEC);
RET v

PROC Invalidate(p) -> BOOL =
VAR b : BOOL := false,
id := Begin(CHANGE) |
BEGIN p.valid => p.valid := false; b := true [*] SKIP END;
End(id, CHANGE);
RET b

PROC Validate(p) =
p.valid => HAVOC
[*] VAR id := Begin(CHANGE) |
P.UpdateProtocol(p);
p.valid := true;
End(id, CHANGE)

FUNC IsValid(p) -> BOOL = RET p.valid

Figure B.2: A C-serid specification of a protocol object.

141

MODULE ProtocolManager[P1, P2, V] =
TYPE PS = SEQ[PROTOCOL_OBJECT]

PROC Create() -> PS =
VAR ps := PS{ P1.Create(), P2.Create() } |
Invalidate(ps[1]);
RET p

PROC DoSynchOp(ps) —> V =
VAR v : UNION[V, NULL] := nil |
DO v = nil =>
DoProtocol(ps[0])
DoProtocol(ps[1])

v o
[1v:
0D;

RET v

PROC DoChange(ps) =
Invalidate(ps[0]) => Validate(ps[1])
[Invalidate(ps[1]) => Validate(ps[0])

Figure B.3: A protocol manager.

B.3 An Implementation of a Protocol Manager

Figure B.3 provides essentially the same implementation of a protocol manager as in
Figure 3.6, except that it isin Spec. DoSynchOp non-deterministically chooses one of the
protocols to execute until it succeeds in executing a valid protocol. It returns the result
of the valid execution. DoChange validates a protocol only if it succeeds in invalidating a
valid protocol.

B.4 A C-serializable Implementation of a Protocol Object

As observed in Chapter 3 we canonically describe the execution of a protocol with
consensus objects as such:

142

MODULE ProtocolObject[P, V] =

PROC DoProtocol(p) -> UNION(V, NULL) =
VAR v |
P.PreConsensus(p) =>
BEGIN
P.AcquireConsensus(p);
P.InConsensus(p);
p~.valid => P.ReleaseConsensus(p);
RET P.PostConsensus(p);
[#] P.ReleaseConsensus(p);
P.PostConsensusFail(p); RET nil
END
[#*] P.WaitConsensus(p) => RET P.PostConsensus(p);
[#] P.PostConsensusFail(p); RET nil

PROC Validate(p) = PROC Invalidate(p) -> BOOL =
P.AcquireConsensus(p); P.AcquireConsensus(p);
p~.valid => HAVOC % should not happen p~.valid =>

[#*] P.Update(p); p~.valid := false;
p~.valid := true; P.ReleaseConsensus(p);
P.ReleaseConsensus(p) RET true

[#] P.ReleaseConsensus(p);

FUNC IsValid(p) -> BOOL = RET false

RET p~.valid

END ProtocolObject

Figure B.4: A C-serializable implementation of a protocol object based on consensus
objects.

PROC RunProtocol(p) =

PreConsensus(p) => % pre-consensus phase
AcquireConsensus(p);
InConsensus(p); % in-consensus phase

ReleaseConsensus(p);
PostConsensus (p)
[*] WaitConsensus(p); % wait-consensus phase
PostConsensus (p) % post-consensus phase

Thisstructureallowsustoimplement C-serializable protocol objectswithout theexplicit
use of locks. Figure B.4 provides an implementation of a protocol object that relies on the
atomicity provided by consensus objects to ensure that protocol changes are C-seriaizable.

143

This implementation corresponds to the pseudo-code in Figure 3.11.

B.5 A Generic Protocol Selection Algorithm for Lock Pro-
tocols

As a concrete example, we use the design framework to implement generic protocol se-
lection algorithms for mutual-exclusion locks (mutexes) and reader-writer locks. Locking
protocols trivially satisfy the property of consensus objects. we use the locks themselves
as the consensus objects. PreConsensus(), InConsensus(), WaitConsensus() and
PostConsensus () arenull functions. For mutexes, AcquireConsensus () isequivaent
to acquiring the mutex, and ReleaseConsensus () IS equivaent to releasing the mutex.
For reader-writer locks, AcquireConsensus () iSequivalent to acquiring awrite-lock, and
ReleaseConsensus () isequivaent to releasing awrite-lock.

Figure B.5 presents an implementation of a protocol manager and a protocol object
for mutual-exclusion lock protocols. In the protocol manager, DoSynchQp is split into
Acquire and Release. We omit the type declarations and the definition of Create: they
areidentical to the onesin Figure B.3. In the protocol object, P.Lock and P.Unlock are
the original mutex protocols for acquiring and releasing a lock, respectively. Thus, one
can smply plug in any existing mutex protocol in thistemplate to get an initial design of a
protocol selection algorithm for mutex protocols.

Similarly, Figure B.6 presents an implementation of a protocol manager and a pro-
tocol object for reader-writer lock protocols. DoSynchOp is split into AcquireRead,
AcquireWrite, ReleaseRead, and ReleaselWrite.

P.ReadLock,P.ReadUnlock, P.WriteLock,andP.WriteUnlock aretheoriginal reader-
writer lock protocols.

144

MODULE MutexManager[P1, P2] =

PROC Acquire(ps) =

VAR b : BOOL := fail |

DO b = fail =>

IsValid(ps[0]) => b := Acquire(ps[0])
[1 IsValid(ps[1]) => b := Acquire(ps[1])

0D

PROC Release(ps) =
IsValid(ps[0]) =>
[0 IsValid(ps[1]) =>

PROC DoChange(ps) =
Invalidate(ps[0])
[1 Invalidate(ps[1])

Release(ps[0])
Release(ps[1])

=> Validate(ps[1])
=> Validate(ps[0])

END MutexManager

MODULE MutexObject[P]

PROC Acquire(p) -> BOOL =
P.Lock(p);
p~.valid => RET success
[*] P.Unlock(p);
RET fail

PROC Validate(p) =
P.Lock(p);
p~.valid => HAVOC

[*] p~.valid := true;
P.Unlock(p)

FUNC IsValid(p) -> BOOL =
RET p~.valid

END MutexObject

PROC Release(p) =
P.Unlock(p)

PROC Invalidate(p) -> BOOL =
P.Lock(p);
p~.valid =>
p~.valid := false;
P.Unlock(p);
RET true
[*] P.Unlock(p);
RET false

FigureB.5: A protocol selection algorithm for mutual-exclusion locks, based on consensus

objects.

MODULE RWLockManager[P1, P2] =

PROC AcquireRead(ps) =
VAR b : BOOL := fail |
DO b = fail =>
IsValid(ps[0]) =>
b := AcquireRead(ps[0])
[l IsValid(ps[1]l) =>
b := AcquireRead(ps[1]) OD

PROC ReleaseRead(ps) =

IsValid(ps[0]) =>
ReleaseRead(ps[0])

[1 IsValid(ps[1]) =>
ReleaseRead(ps[1])

PROC DoChange(ps) =

Invalidate(ps[0]) => Validate(ps[1])
[J Invalidate(ps[1]) => Validate(ps[0])

END RWLockManager
MODULE RWLockObject[P] =

PROC AcquireRead(p) -> BOOL =
P.ReadLock(p);
p~.valid => RET success
[#] P.ReadUnlock(p);
RET fail

PROC ReleaseRead(p) =
P.ReadUnlock(p)

PROC Validate(p) =
P.WriteLock(p);
p~.valid => HAVOC

[*] p~.valid := true;
P.WriteUnlock(p)

FUNC IsValid(p) -> BOOL =
RET p~.valid

END RWLockObject

PROC AcquireWrite(ps) =
VAR b : BOOL := fail |
DO b = fail =>
IsValid(ps[0]) =>
b := AcquireWrite(ps[0])
[1 IsValid(ps[1]) =>
b := AcquireWrite(ps[1]) OD

PROC ReleaselWrite(ps) =
IsValid(ps[0]) =>
ReleaseWrite(ps[0])
[l IsValid(ps[1]l) =>
ReleaseWrite(ps[1])

PROC AcquireWrite(p) -> BOOL =
P.WriteLock(p);
p~.valid => RET success
[#] P.WriteUnlock(p);
RET fail

PROC ReleaseWrite(p) =
P.WriteUnlock(p)

PROC Invalidate(p) -> BOOL =
P.WriteLock(p);
p~.valid =>
p~.valid := false;
P.WriteUnlock(p);
RET true
[#] P.WriteUnlock(p);
RET false

Figure B.6: A protocol selection algorithm for reader-writer locks, based on consensus
objects.

146

Appendix C

The Reactive Fetch-and-Op Algorithm

This appendix presents the pseudo-code for our reactive fetch-and-op algorithm. We begin
by describing Goodman et al.’s combining tree agorithm, one of the protocols selected
by the reactive fetch-and-op algorithm, before presenting the pseudo-code for the reactive
fetch-and-op.

C.1 Goodman et al.’s Combining Tree Algorithm

FiguresC.1 and C.2 present the pseudo-codefor Goodman et al.’salgorithm. Thealgorithm
computes fetch-and-add, although it can be easily modified to compute any associative
operation. The value of the fetch-and-op operation is stored in the root of the combining
tree, and processes traverse the tree in order to update the value.

The algorithm consists of three phases. In the first phase, a process moves up the tree
“claiming ownership” of each visited node until it reaches a node that has been claimed by
some other process. Call thisnodethe process' final node. 1n the second phase, the process
revisits the nodes it has claimed, combining operations with later arrivals at those nodes
along the way, and posting its combined value at the final node. In the third phase, the
process waits for the owner of that final node to post its result. The process then descends
the tree, distributing its result to waiters at the nodes it owns.

In the pseudo-code, Parts One and Two correspond to the first and second phase,
respectively, while Parts Three and Four correspond to the third phase. Each node in the
tree consists of six fields: status, wait, first_incr, second_incr, result, parent and children.
The wait field indicates if a process is in phase three and waiting for a result at that
node. first_incr stores the combined value of the subtree visited by the owner of the node.
second_incr stores the combined value of the subtree visited by the waiting process (waiting

147

type node = record // combining tree node
status : (FREE, COMBINE, RESULT)
wait : boolean
first_incr : integer
second_incr : integer
result : integer
parent : "node
children : “node

procedure fetch_and_add(counter : tree, value : integer) returns integer
saved_result : integer
leaf : “node := get_leaf(counter, pid)
node : "node := leaf

// Part One, find path up to first COMBINE or ROOT node (pre-consensus)
going_up : boolean := TRUE
repeat while going_up
lock(node)
if node->status = RESULT
unlock(node)
repeat while node->status = RESULT
else if node->status = FREE
node->status := COMBINE
unlock(node)
node := node->parent
else // COMBINE or ROOT node
going_up := FALSE

// Part Two, lock path from Part 1, combining values along the way (pre-consensus)

total : integer := value
visited : “node := leaf
repeat while visited != node
lock(visited)
visited->first_incr := total
if visited->wait // do combining
total := total + visited->second_incr
visited := visited->parent

Figure C.1: Goodman et al.’s Combining Tree: Parts One and Two.

148

// Part Three, operate on last visited node (in-consensus or wait-consensus)
if node->status = COMBINE
node->second_incr := total
node->wait := TRUE
repeat while node->status = COMBINE
unlock(node)
repeat while node->status = COMBINE
lock (node)
node->wait := FALSE
saved_result :
node->status :

node->result
FREE

else
saved_result :
node->result :

node->result
result + total

// Part Four, descend tree and distribute results (post-consensus)

unlock(node)
repeat until is_leaf_node(node)
node := get_child(node, pid)

if node->wait

RESULT
saved_result + node->first_incr

node->status :

node->result :
else

node->status :
unlock(node)

FREE

return saved_result

Figure C.2: Goodman et al.’s combining tree: Parts Three and Four.

149

in phase three) at that node. result communicates to a waiting process the result to be
distributed down the subtree visited by that process. Finally parent and children point to
the parent and children of the node.

Thefollowingisamodified excerpt from [15] describing their algorithm. In Part One, a
process progresses up the combining tree, marking each FREE node as a COMBINE node.
If the process finds a RESULT node, it must wait until the node becomes either FREE or
COMBINE before continuing up the tree. When a ROOT or COMBINE node is reached,
that final node islocked, and the algorithm continues to Part Two.

In Part Two, the process locks each node previoudy visited, bottom up, and tallies the
nodes second.incr values. Along the way, the tally for the previous subtree is stored in
first_incr. The revisited nodes remain locked until Part Four when results are distributed.

In Part Three, if the final node was a COMBINE node, then the final tally is added to
second_incr for that node, the wait field is set to true, and the process spin waits until the
node becomes a RESULT node. If the fina node was a ROOT node, the result field is
incremented by the total tally, essentially performing the fetch-and-add on the counter.

In Part Four, the process reverses its path down the tree, distributing results along the
way. At each node, if there is a waiting process, the node's result field is set to the result
from Part Three, plus its own subtree’s increment first_incr, and the node’s status is set to
RESULT. Otherwise the nodeisre-initialized to FREE.

C.2 TheReactive Fetch-and-Op

Figures C.3—C.7 present the pseudo-code for our reactive fetch-and-op algorithm. The
reactive algorithm computes fetch-and-add, although it can be easily modified to compute
any associative operation. It is composed of a test-and-test-and-set |ock-based counter, an
MCS queue lock-based counter, and Goodman et al.’s software combining tree counter.
Figure C.3 presents the data structures and the top-level dispatch code. The datastructureis
composed of the data structures of the component protocolsand amodevariable. The mode
variable indicates which of the three protocols is valid. As an optimization, the counter
value associated with each protocol is kept in a common location.

The dispatch procedure, fetch_and_add, checks the mode variable to decide which
protocol to use. Unlikethereactive lock, we cannot optimistically try the test-and-test-and-
set lock-based counter sincethiswill have the effect of serializing accessesto the combining
tree, negating the benefits of parallelism under high contention.

Figures C.4-C.6 present the pseudo-code of the protocols being selected. faa tts

150

type qnode = record
next : “gnode
status : (WAITING, GO, INVALID)

type node = record // combining tree node
status : (FREE, COMBINE, RESULT, ROOT, INVALID)
wait : boolean
first_incr : integer
second_incr : integer
result : integer
parent : "node
children : “node

// The mode slot of the counter record should reside in a different
// cache line from the other slots
type counter = record

mode : (TTS, QUEUE, TREE) // mode variable

tts_lock : (FREE, BUSY) // slot for TTS lock

queue_tail : (INVALID, “qnode) // slot for queue lock

tree : “combining_tree // slot for combining tree

count : integer // the fetch-and-op variable
procedure fetch_and_add (C : “counter, value : integer) returns integer

if L->mode = TTS

return faa_tts (C, value)
else if L->mode = QUEUE

return faa_queue (C, value)
else

return faa_tree (C, value)

Figure C.3: Reactive fetch-and-op: data structures and top-level dispatch code.

implementsthe test-and-test-and-set |ock-based counter, faa_queue implementsthe queue
lock-based counter, and faa_tree implements the combining tree counter. Modifications
to the original protocols are marked by “>” on the left end of each line. Additionaly,
“P>" denotes modifications for implementing the policy for changing protocols. Asinthe
reactive spin lock, the original protocols have been modified to detect mode changes, and
to abort and retry the synchronization operation upon detecting that the protocol isinvalid.
However, we omit the code for monitoring run-time conditions.

The policy for changing between the two lock-based protocolsis similar to the one for
the reactive spin lock. The policy for changing from the queue lock-based counter to the
combining tree counter is based on queue waiting time. If the waiting time on the queue
exceeds alimit for asmall number of consecutive fetch-and-op operations. Sincethe queue

151

procedure faa_tts (C : “counter, value : integer) returns integer
repeat while TRUE
if C->tts_lock = FREE
if test_and_set (&C->tts_lock) = FREE

count : integer := C->count

C->count := count + value
P> if change_tts_to_queue_mode() // in consensus, change protocols?
> tts_to_queue_mode(C)
> else

C->tts_lock := FREE
return count

delay () // do backoff
> if C->mode != TTS
> return fetch_and_add (C, value)

procedure faa_queue (C : “counter, value : integer) returns integer
I : “gnode := make_qgnode()

I->next := nil
predecessor : “qnode := fetch_and_store (&C->queue_tail, I)
if predecessor != nil
> if predecessor != INVALID // queue was non-empty
I->status := WAITING
predecessor->next := I
repeat while I->status = WAITING // wait for GO or INVALID signal
> if I->status = INVALID // queue was invalid
> return fetch_and_add (C, value)
> else // queue was invalid
> invalidate_queue (C, I) // invalidate others on the queue
> return fetch_and_add (C, value)
count : integer := C->count // do the add
C->count := count + value
P> if change_to_tts_mode() // in consensus, change protocols?
> queue_to_tts_mode(C, I)
P> else if change_to_tree_mode()
> queue_to_tree_mode(C, I)
> else

release_queue(C, I)
return count

Figure C.4: Reactive fetch-and-op: test-and-test-and-set and queue lock-based protocols.
Madifications to the original protocols are marked by “>”. “P>" denotes modifications for
implementing the policy for changing protocols. release_queue andinvalidate_queue
areidentical to the ones defined in the pseudo-code for the reactive spin lock.

152

procedure faa_tree(C : “counter, value : integer) returns integer
saved_result : integer
leaf : “node := get_leaf(counter->tree, pid)
node : "node := leaf

// Part One, find path up to first COMBINE or ROOT node (pre-consensus)
going_up : boolean := TRUE
repeat while going_up
lock(node)
if node->status = RESULT
unlock(node)
repeat while node->status = RESULT
else if node->status = FREE
node->status := COMBINE
unlock(node)
node := node->parent
else // COMBINE or ROOT node
going_up := FALSE

// Part Two, lock path from Part 1, combining values along the way (pre-consensus)

total : integer := value
visited : “node := leaf
repeat while visited != node
lock(visited)
visited->first_incr := total
if visited->wait // do combining
total := total + visited->second_incr
visited := visited->parent

Figure C.5: Reactive fetch-and-op: combining tree protocol, pre-consensus.

153

// Part Three, operate on last visited node (in-consensus or wait-consensus)
if node->status = COMBINE // wait-consensus
node->second_incr := total
node->wait := TRUE
repeat while node->status = COMBINE

unlock(node)
repeat while node->status = COMBINE
lock(node)
node->wait := FALSE
> if node->status = RESULT
> saved_result := node->result
node->status := FREE
> part4(node, saved_result, RESULT)

return saved_result

> else // node->status = INVALID, invalid root detected
> node->status := FREE
> part4(node, O, INVALID)
> return fetch_and_add(C, value)
> else if node->status = ROOT // in-consensus
saved_result := C->count
C->count := saved_result + total
P> if change_tree_to_queue_mode() // change protocols?
> tree_to_queue_mode(C, node)
> part4(node, saved_result, RESULT)
return saved_result
> else // node->status = INVALID, invalid root reached
> part4(node, O, INVALID)
> return fetch_and_add(C, value)

// Part Four, descend tree and distribute results (post-consensus)
procedure part4(node : “node, result : integer, status : integer)
unlock(node)
repeat until is_leaf_node(node)
node := get_child(node, pid)
if node->wait

node->status := status
node->result := result + node->first_incr
else

node->status := FREE

unlock(node)

Figure C.6: Reactive fetch-and-op: combining tree protocol, in-consensus, wait-consensus
and post consensus. Modificationsto the original protocol aremarked by “>”. “P>” denotes
modifications for implementing the policy for changing protocols.

154

is amost always FIFO, the waiting time is directly proportional to the level of contention
at the counter. Itisequal to the number of waiting processes multiplied by thetime it takes
to increment the counter and pass ownership of the queue lock to the next waiter. This has
to be tuned for each different machine architecture.

The policy for changing from the combining tree to the queue lock-based counter is
based on the number of combined requests reaching the root. The monitoring code, not
shown in the pseudo-code, amounts to computing a fetch-and-increment along with the
fetch-and-op, and seeing how large of an increment reaches the root. If the number of
combined requestsis below athreshold for some number of consecutive arrivalsat theroot,
the algorithm initiates a switch back to the queue lock-based counter. Again, thishasto be
tuned for each machine architecture.

For the combining tree protocol, Parts One and Two correspond to the pre-consensus
phase, Part Three corresponds to the in-consensus or wait-consensus phase, and Part Four
correspondsto the post-consensus phase. In thisprotocol, aprocessthat accesses an invalid
root hasaset of processesit combined with that arewaiting for areturnvalue. Thesewaiting
processes are in the wait-consensus phase. Thus, the process that reaches the invalid root
completes the combining tree protocol by descending the combining tree and notifying the
processes that it combined with to retry the fetch-and-op operation. This isimplemented
by setting node->status t0 INVALID in phase4.

Finally, Figure C.7 presents the pseudo-code for performing the mode changes. The
names of the procedures are self-explanatory. In order to ensure that protocol changes are
serializable with respect to other protocol executions and changes, these procedures are
called only by processes that have successfully acquired avalid consensus object.

155

procedure tts_to_queue_mode(C : “counter)
I : “gnode := make_qgnode()
acquire_invalid_queue(C, I)
C->mode := QUEUE
release_queue(C, I)

procedure queue_to_tts_mode(C : “counter, I : “gnode)
C->mode := TTS
C->tts_lock := FREE
invalidate_queue(C, I)

procedure queue_to_tree_mode(C : “counter, I : “qnode)
C->mode := TREE
root : “node := get_root(C)
lock(root)
root->status := ROOT
unlock(root)
invalidate_queue(C, I)

procedure tree_to_queue_mode(C : “counter, root : “node)
// root is locked when called
root->status := INVALID
I : “gnode := make_qgnode()
acquire_invalid_queue(C, I)
C->mode := QUEUE
release_queue(C, I)

Figure C.7: Reactive fetch-and-op: making protocol changes. These routines are called
only by processes that have acquired a valid consensus object. acquire_invalid queue,
release_queue and invalidate_queue areidentical to the ones defined in the pseudo-
code for the reactive spin lock.

156

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. APRIL: A Processor Archi-
tecture for Multiprocessing. In Proceedings 17th Annual International Symposiumon
Computer Architecture, pages 104-114, June 1990.

Anant Agarwal and Mathews Cherian. Adaptive Backoff Synchronization Techniques.
In Proceedings 16th Annual International Symposium on Computer Architecture,
pages 396406, New York, June 1989. IEEE. Also as MIT-LCS TM-396.

Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald Yeung,
Godfrey D’ Souza, and Mike Parkin. Sparcle: An Evolutionary Processor Design for
Multiprocessors. |EEE Micro, 13(3):48-61, June 1993.

A. Agarwal et al. The MIT Alewife Machine: A Large-Scale Distributed-Memory
Multiprocessor. In Proceedings of Workshop on Scalable Shared Memory Multi-
processors. Kluwer Academic Publishers, 1991. An extended version of this paper
appears as MIT/LCS Memo TM-454, 1991.

Thomas E. Anderson. The Performance Implications of Spin Lock Alternatives for
Shared-Memory Multiprocessors. IEEE Transactions on Parallel and Distributed
Systems, 1(1):6-16, January 1990.

Arvind, R. S. Nikhil, and K. K. Pingali. |-Structures. Data Structures for Parallel
Computing. In Proceedings of the Workshop on Graph Reduction, (Springer-\Verlag
Lecture Notesin Computer Science 279), pages 336—369, September/October 1986.

J. Aspnes, M.P. Herlihy, and N. Shavit. Counting Networks and Multi-Processor
Coordination. In Proceedings of the 23rd Annual Symposiumon Theory of Computing,
pages 348-358, May 1991.

Paul S. Barth, Rishiyur S. Nikhil, and Arvind. M-structures. Extending a paralldl,
non-strict, functional language with state. 1n Proceedings of the 5th ACM Conference
on Functional Programming Languages and Computer Architecture, pages 538-568,
August 1991.

157

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Allan Borodin, Nathan Linial, and Michael Saks. An Optimal Online Algorithm for
Metrical Task Systems. In Proceedings of the 19th ACM Symposium on Theory of
Computing, pages 373-382, New York, May 1987. ACM.

Eric A. Brewer. Portable High-Performance Supercomputing: High-Level
Architecture-Dependent Optimization. PhD thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA, September 1994.

PJ. Burns et al. Vectorization of Monte-Carlo Particle Transport: An Architectural
Study using the LANL Benchmark "Gamteb". In Proc. Supercomputing ' 89, New
York, NY, November 1989. IEEE/ACM.

David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS Directories. A
Scalable Cache Coherence Scheme. In Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS1V),
pages 224-234. ACM, April 1991.

Manhoi Choy and Ambuj K. Singh. Adaptive Solutions to the Mutual Exclusion
Problem. In 12th Symposiumon Principles of Distributed Computing (PODC), Ithaca,
NY, 1993. ACM.

PJ. Courtois, F. Heymans, and D.L. Parnas. Concurrent Control with ‘ Readers and
‘Writers . Communications of the ACM, 14(10):667-668, October 1971.

James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient Synchronization
Primitives for Large-Scale Cache-Coherent Multiprocessors. In Third International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOSI 1), pages 64—75, April 1989.

K. Gopinath, Krishna Narasimhan M. K., Beng-Hong Lim, and Anant Agarwal.
Performance of Switch-Blocking in Multithreaded Processors. In Proceedings of the
23rd International Conference on Parallel Processing, Chicago, IL, August 1994.

A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir.
The NYU Ultracomputer — Designing a MIMD Shared-Memory Parallel Machine.
| EEE Transactions on Computers, C-32(2):175-189, February 1983.

Allan Gottlieb, B. D. Lubachevsky, and Larry Rudolph. Basic Techniques for the
Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors.
ACM Transactions on Programming Languages and Systems, 5(2):164-189, April
1983.

Gary Graunke and Shreekant Thakkar. Synchronization Algorithms for Shared-
Memory Multiprocessors. |EEE Computer, pages 60—70, June 1990.

158

[20] Rajiv Guptaand CharlesR. Hill. A Scalable Implementation of Barrier Synchroniza-
tion Using an Adaptive Combining Tree. International Journal of Parallel Program-
ming, 18(3):161-180, 1989.

[21] R.H. Hastead and T. Fujita MASA: A Multithreaded Processor Architecture for
Parallel Symbolic Computing. In Proceedings of the 15th Annual International Sym-
posium on Computer Architecture, pages 443-451, New York, June 1988. |EEE.

[22] Robert H. Halstead. Multilisp: A Language for Parallel Symbolic Computation. ACM
Transactions on Programming Languages and Systems, 7(4):501-539, October 1985.

[23] MauriceP. Herlihy and Jeanette M. Wing. Linearizability: A CorrectnessConditionfor
Concurrent Objects. Technical Report CMU-CS-88-120, Carnegie-Mellon University,
March 1988.

[24] Qin Huang. An Analysis of Concurrent Priority Queue Algorithms. Master’s thesis,
EECS Department, Massachusetts Institute of Technology, Cambridge, MA, August
1990.

[25] AnnaKarlin, Kai Li, Mark Manasse, and Susan Owicki. Empirical Studies of Com-
petitive Spinning for A Shared-Memory Multiprocessor. In 13th ACM Symposium on
Operating Systems Principles (SOSP), pages 41-55, October 1991.

[26] AnnaKarlin, Mark Manasse, Lyle McGeoch, and Susan Owicki. Competitive Ran-
domized Algorithms for Non-Uniform Problems. In Proceedings 1st Annual ACM-
S AM Symposium on Discrete Algorithms, pages 301-309, January 1990.

[27] AnnaKarlin, Mark Manasse, Larry Rudolph, and Daniel Sleator. Competitive Snoopy
Caching. Algorithmica, 3(1):79-119, 1988.

[28] David Kranz, Beng-Hong Lim, Anant Agarwal, and Donald Yeung. Low-cost Sup-
port for Fine-Grain Synchronization in Multiprocessors. In Multithreaded Computer
Architecture: A Summary of the State of the Art, chapter 7, pages 139-166. Kluwer
Academic Publishers, 1994. Also availableas MIT Laboratory for Computer Science
TM-470, June 1992.

[29] David A. Kranz et al. ORBIT: An Optimizing Compiler for Scheme. In Proceedings
of SGPLAN 86, Symposium on Compiler Construction, June 1986.

[30] Clyde Kruskal, Larry Rudolph, and Marc Snir. Efficient Synchronization on Multi-
processors with Shared Memory. ACM Transactions on Programming Languagesand
Systems, 10(4):579-601, October 1988.

[31] John Kubiatowicz and Anant Agarwal. Anatomy of a Message in the Alewife Mul-
tiprocessor. In International Supercomputing Conference (1CS) 1993, Tokyo, Japan,
July 1993. |IEEE.

159

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

John Kubiatowicz, David Chaiken, and Anant Agarwal. The Alewife CMMU: Ad-
dressing the Multiprocessor Communications Gap. In HOTCHIPS, August 1994.

Kiyoshi Kurihara, David Chaiken, and Anant Agarwal. Latency Tolerance through
Multithreading in Large-Scale Multiprocessors. In Proceedings International Sympo-
sium on Shared Memory Multiprocessing, Japan, April 1991. IPS Press.

J. Kuskin et al. The Stanford FLASH Multiprocessor. In Proceedings of the 21st
Annual International Symposium on Computer Architecture (ISCA), Chicago, IL,
April 1994. |IEEE.

LedieLamport. A Fast Mutual Exclusion Algorithm. ACM Transactions on Computer
Systems, 5(1):1-11, February 1987.

Butler Lampson, William Weihl, and Eric Brewer. 6.826 Principles of Computer
Systems. Research Seminar Series MIT/LCS/RSS 19, Massachusetts Ingtitute of
Technology, July 1992.

CharlesE. Leiserson et al. The Network Architectureof the Connection Machine CM -
5. In The Fourth Annual ACM Symposium on Parallel Algorithms and Architectures.
ACM, 1992.

D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. Lam. The Stanford Dash Multiprocessor. |EEE Computer,
25(3):63-79, March 1992.

Beng-Hong Lim and Anant Agarwal. Waiting Algorithms for Synchronization in
Large-Scale Multiprocessors. ACM Transactions on Computer Systems, 11(3):253—
294, August 1993.

S. Lo and V. Gligor. A Comparative Analysis of Multiprocessor Scheduling Algo-
rithms. In 7th International Conference on Distributed Computing Systems, pages
356-363. |IEEE, Sept. 1987.

Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. Competitive Algorithms
for On-line Problems. In Proceedings of the 20th Annual Symposium on Theory of
Computing, pages 322—-333, Chicago, IL, May 1988. ACM.

Maurice Herlihy. Wait-Free Synchronization. ACM Transactions on Programming
Languages and Systems, 11(1):124-149, January 1991.

John M. Méllor-Crummey and Michael L. Scott. Algorithmsfor Scalable Synchroniza-
tion on Shared-Memory Multiprocessors. ACM Transactions on Computer Systems,
9(1):21-65, February 1991.

160

[44] EricMohr, David A. Kranz, and Robert H. Halstead. Lazy Task Creation: A Technique
for Increasing the Granularity of Parallel Programs. |EEE Transactions on Parallel
and Distributed Systems, 2(3):264-280, Jul 1991.

[45] Bodhisattwa Mukherjee and Karsten Schwan. Improving Performance by Use of
Adaptive Objects. Experimentation with a Configurable Multiprocessor Thread Pack-
age. In Proceedings of the 2nd International Symposium on High Performance Dis-
tributed Computing, pages 59-66, July 1993. Also available as Technical Report
GIT-CC-93/17, Georgia Institute of Technology.

[46] John Nguyen. Compiler Analysis to Implement Point-To-Point Synchronization in
Parallel Programs. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, August 1993.

[47] John K. Ousterhout. Scheduling Techniques for Concurrent Systems. In 3rd Interna-
tional Conference on Distributed Computing Systems, pages 22-30, 1982.

[48] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon:
User-Level Shared Memory. In Proceedings of the 21st Annual International Sympo-
sium on Computer Architecture (I1SCA), Chicago, IL, April 1994. |IEEE.

[49] Michael L. Scott and John M. Mellor-Crummey. Fast, Contention-Free Combining
Tree Barriers. Technical Report TR-429, University of Rochester, June 1992.

[50] Z. Segall and L. Rudolph. Dynamic Decentralized Cache Schemesfor MIMD Parallel
Processors. In11th Annual International Symposiumon Computer Architecture, pages
340-347. |EEE, June 1984.

[51] Dennis Shashaand Nathan Goodman. Concurrent Search Structure Algorithms. ACM
Transactions on Database Systems, 13(1):53-90, March 1988.

[52] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for
Shared-Memory. Technical Report CSL-TR-92-526, Stanford University, June 1992.

[53] B.J. Smith. Architecture and Applications of the HEP Multiprocessor Computer
System. Society of Photocoptical Instrumentation Engineers, 298:241-248, 1981.

[54] Thorsten von Eicken, David Culler, Seth Goldstein, and Klaus Schauser. Active
Messages. A Mechanism for Integrated Communication and Computation. In 19th
International Symposium on Computer Architecture, May 1992.

[55] Jae-Heon Yang and James H. Anderson. Fast, Scalable Synchronization with Mini-
mal Hardware Support. In 12th Symposium on Principles of Distributed Computing
(PODC), Ithaca, N, 1993. ACM.

161

[56] Donad Yeung and Anant Agarwal. Experience with Fine-Grain Synchronization in
MIMD Machinesfor Preconditioned Conjugate Gradient. In Symposiumon Principles
and Practice of Parallel Programming (PPoPP), San Diego, CA, May 1993. ACM.

[57] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing Hot-Spot
Addressing in Large-Scale Multiprocessors. |EEE Transactions on Computers, C-
36(4):388-395, April 1987.

[58] J. Zahorjan and E. Lazowska. Spinning Versus Blocking in Parallel Systems with
Uncertainty. Technical Report TR-88-03-01, Dept. of Computer Science, University
of Washington, Sesttle, WA, Mar 1988.

162

