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Abstract

This thesis presents flexible abstractions for specifying resource management policies, together
with efficient mechanisms for implementing those abstractions. Several novel scheduling tech-
niques are introduced, including both randomized and deterministic algorithms that provide
proportional-share control over resource consumption rates. Such control is beyond the capa-
bilities of conventional schedulers, and is desirable across a broad spectrum of systems that
service clients of varying importance. Proportional-share scheduling is examined for several
diverse resources, including processor time, memory, access to locks, and disk bandwidth.

Resource rights are encapsulated by abstract, first-class objects called tickets. An active
client consumes resources at a rate proportional to the number of tickets that it holds. Tickets
can be issued in different amounts and may be transferred between clients. A modular currency
abstraction is also introduced to flexibly name, share, and protect sets of tickets. Currencies
can be used to isolate or group sets of clients, enabling the modular composition of arbitrary
resource management policies.

Two different underlying mechanisms are introduced to support these abstractions. Lottery
scheduling is a novel randomized resource allocation mechanism. An allocation is performed
by holding a lottery, and the resource is granted to the client with the winning ticket. Stride
scheduling is a deterministic resource allocation mechanism that computes a representation
of the time interval, or stride, that each client must wait between successive allocations.
Stride scheduling cross-applies and generalizes elements of rate-based flow control algorithms
designed for networks to dynamically schedule other resources such as processor time. A novel
hierarchical stride algorithm is also introduced that achieves better throughput accuracy than
prior schemes, and can reduce response-time variability for some workloads.

The proposed techniques are compared and evaluated using a variety of quantitative ex-
periments. Simulation results and prototype implementations for operating system kernels
demonstrate flexible control over a wide range of resources and applications.
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Chapter 1

Introduction

Scheduling computations in concurrent systems is a complex, challenging problem. Resources

must be multiplexed to service requests of varying importance, and the policy chosen to manage

this multiplexing can have an enormous impact on throughput and response time. Effective

resource management requires knowledge of both user preferences and application-specific per-

formance characteristics. Unfortunately, users, applications, and other clients of resources are

typically given very limited control over resource management policies. Traditional operating

systems centrally manage machine resources within the kernel [EKO95]. Clients are commonly

afforded only crude control through poorly understood, ad-hoc scheduling parameters. Worse

yet, such parameters do not offer the encapsulation or modularity properties required for the

engineering of large software systems.

This thesis advocates a radically different approach to computational resource management.

Resource rights are treated as first-class objects representing well-defined resource shares.

Clients are permitted to directly redistribute their resource rights in order to control computation

rates. In addition, a simple, powerful abstraction is provided to facilitate modular composition

of resource management policies. As a result, custom policies can be expressed conveniently

at various levels of abstraction. The role of the operating system in resource management is

reduced to one of enforcement, ensuring that no client is able to consume more than its entitled

share of resources.

This chapter presents a high-level synopsis of the thesis. The next section contains a basic

overview of the key thesis components. This is followed by highlights of the main contributions

of the thesis, and a brief summary of related research. The chapter closes with a description of

the overall organization for the rest of the thesis.
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1.1 Overview

Accurate control over service rates is desirable across a broad spectrum of systems that process

requests of varying importance. For long-running computations such as scientific applications

and simulations, the consumption of computing resources that are shared among different users

and applications must be regulated. For interactive computations such as databases and media-

based applications, programmers and users need the ability to rapidly focus available resources

on tasks that are currently important.

This thesis proposes a general framework for specifying dynamic resource management

policies, together with efficient mechanisms for implementing that framework. Resource rights

are encapsulated by abstract, first-class objects called tickets. An active client is entitled to

consume resources at a rate proportional to the number of tickets that it holds. Tickets can

be issued in different amounts and may be transferred between clients. A modular currency

abstraction is also introduced to flexibly name, share, and protect sets of tickets. Currencies

can be used to isolate or group sets of clients, enabling the modular composition of arbitrary

resource management policies.

Two different underlying proportional-share mechanisms are introduced to support this

framework. Lottery scheduling is a novel randomized resource allocation mechanism. An

allocation is performed by holding a lottery, and the resource is granted to the client with

the winning ticket. Stride scheduling is a deterministic resource allocation mechanism that

computes a representation of the time interval, or stride, that each client must wait between

successive allocations. Stride scheduling cross-applies and generalizes elements of rate-based

flow control algorithms designed for networks [DKS90, Zha91, ZK91, PG93] to dynamically

schedule other resources such as processor time. Novel variants of these core mechanisms

are also introduced to provide improved proportional-share accuracy for many workloads. In

addition, a number of new resource-specific techniques are proposed for proportional-share

management of diverse resources including memory, access to locks, and disk bandwidth.

The proposed proportional-share techniques are compared and evaluated using a variety

of quantitative experiments. Extensive simulation results and prototype process-scheduler

implementations for real operating system kernels demonstrate flexible control over a wide

range of resources and applications. The overall system overhead imposed by these unoptimized

prototypes is comparable to that of the default timesharing policies that they replaced.
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1.2 Contributions

This thesis makes several research contributions: a versatile new framework for specifying

resource management policies, novel algorithms for proportional-share control over time-

shared resources, and specialized techniques for managing other resource classes. The general

resource management framework is based on direct, proportional-share control over service

rates using tickets and currencies. Its principal features include:

� Simplicity: An intuitive notion of relative resource shares is used instead of complex,

non-linear, or ad-hoc scheduling parameters. Resource rights vary smoothly with ticket

allocations, allowing precise control over computation rates. The resource rights repre-

sented by tickets also aggregate in a natural additive manner.

� Modularity: Modularity is key to good software engineering practices. Currencies pro-

vide explicit support for modular abstraction of resource rights. The currency abstraction

is analogous to class-based abstraction of data in object-oriented languages with multiple

inheritance. Collections of tickets can be named, shared, and protected in a modular way.

This enables the resource management policies of concurrent modules to be insulated

from one another, facilitating modular decomposition.

� Flexibility: Sophisticated patterns of sharing and protection can be conveniently ex-

pressed for resource rights, including hierarchical organizations and relationships de-

fined by more general acyclic graphs. Resource management policies can be defined for

clients at various levels of abstraction, such as threads, applications, users, and groups.

� Adaptability: Client service rates degrade gracefully in overload situations, and active

clients benefit proportionally from extra resources when some allocations are not fully

utilized. These properties facilitate adaptive applications that can respond to changes in

resource availability.

� Generality: The framework is intended for general-purpose computer systems, and is

not dependent on restrictive assumptions about clients. The same general framework can

be applied to a wide range of diverse resources. It can also serve as a solid foundation

for simultaneously managing multiple heterogeneous resources.

An implementation of this general framework requires proportional-share scheduling al-

gorithms that efficiently support dynamic environments. Another contribution of this thesis is

the development of several new algorithms for proportional-share scheduling of time-shared

resources. Both randomized and deterministic mechanisms are introduced:

17



� Lottery scheduling: A novel randomized resource allocation mechanism that inherently

supports dynamic environments. Lottery scheduling is conceptually simple and easily

implemented. However, it exhibits poor throughput accuracy over short allocation

intervals, and produces high response-time variability for low-throughput clients.

� Multi-winner lottery scheduling: A variant of lottery scheduling that produces better

throughput accuracy and lower response-time variability for many workloads.

� Stride scheduling: A deterministic resource allocation mechanism that implements dy-

namic, proportional-share control over processor time and other resources. Compared

to the randomized lottery-based approaches, stride scheduling achieves significantly im-

proved accuracy over relative throughput rates, with significantly lower response-time

variability.

� Hierarchical stride scheduling: A novel recursive application of the basic stride schedul-

ing technique that provides a tighter bound on throughput accuracy than ordinary stride

scheduling. Hierarchical stride scheduling can also reduce response-time variability for

some workloads.

Additional contributions include new resource-specific techniques for dynamic,proportional-

share scheduling of diverse resources. The following mechanisms were developed to manage

synchronization resources, space-shared resources, and disk I/O bandwidth:

� Ticket inheritance: An extension to the basic algorithms for time-shared resources

to schedule synchronization resources such as lock accesses. This technique enables

proportional-share control over computation rates despite contention for locks.

� Inverse lottery scheduling: A variant of lottery scheduling for dynamic, revocation-based

management of space-shared resources such as memory. A randomized inverse lottery

selects a “loser” that is forced to relinquish a resource unit.

� Minimum-funding revocation: A simple deterministic scheme for proportional-share

control over space-shared resources. A resource unit is revoked from the client expending

the fewest tickets per resource unit. Compared to randomized inverse lottery scheduling,

minimum funding revocation is more efficient and converges toward proportional shares

more rapidly.

� Funded delay cost scheduling: A deterministic disk scheduling algorithm presented as a

first step toward proportional-share control over disk bandwidth.
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1.3 Related Work

This section places the research described in this thesis in context by presenting an overview

of related work. Computational resource management techniques from a variety of fields are

briefly summarized; a more complete discussion appears in Chapter 7.

The dominant processor scheduling paradigm in operating systems is priority schedul-

ing [Dei90, Tan92]. Conventional timesharing policies employ dynamic priority adjustment

schemes based on ad-hoc, non-linear functions that are poorly understood. Manipulating

scheduling parameters to achieve specific results in such systems is at best a black art.1 At-

tempts to control service rates using timesharing schedulers have been largely unsuccessful,

providing only coarse, limited control [Hel93, FS95]. Priority schedulers also lack desirable

modularity properties that are essential for good software engineering practices.

Fair share schedulers attempt to allocate resources so that users get fair machine shares over

long periods of time [Hen84, KL88, Hel93]. These schedulers are layered on top of conventional

priority schedulers, and dynamically adjust priorities to push actual usage closer to entitled

shares. The algorithms used by these systems are generally complex, requiring periodic usage

monitoring, complicated dynamic priority adjustments, and administrative parameter tuning to

ensure fairness on a time scale of minutes.

Despite their ad-hoc treatment in most operating systems, priorities are used in a clear

and consistent manner in the domain of real-time systems [BW90]. Real-time schedulers

must ensure that absolute scheduling deadlines are met in order to ensure correctness and

avoid catastrophic failures [Bur91]. The widely-used rate-monotonic scheduling technique

[LL73, SKG91] statically assigns priorities as a monotonic function of the rate of periodic

tasks. A task’s priority does not depend on its importance; tasks with shorter periods are always

assigned higher priorities. Another common technique is earliest deadline scheduling [LL73],

which always schedules the task with the closest deadline first. Higher-level abstractions

based on real-time scheduling have also been developed [MST93, MST94]. However, real-

time schedulers generally depend upon very restrictive assumptions, such as precise static

knowledge of task execution times and prohibitions on task interactions. Strict limits are also

placed on processor utilization, so that even transient overloads are disallowed.

A number of deterministic proportional-share scheduling algorithms have recently been

proposed [BGP95, FS95, Mah95, SAW95]. Several of these techniques [FS95, Mah95, SAW95]

make explicit comparisons to lottery scheduling [WW94], although none of them demonstrate

support for the higher-level abstractions introduced with lottery scheduling. In general, the

1Anyone who has had the misfortune of trying to implement precise scheduling behavior by setting Unix nice
values can attest to this fact.
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proportional-share accuracy of these schedulers is better than lottery scheduling, and compara-

ble to stride scheduling. However, the algorithms used by these schedulers require expensive

operations to transform client state in response to dynamic changes. Since dynamic operations

cannot be implemented efficiently, these approaches are not suitable for supporting the general

resource management framework proposed in this thesis.

Proportional-share algorithms have also been designed for rate-based flow control in packet-

switched networks [DKS90, Zha91, ZK91, PG93]. The core stride scheduling algorithm

presented in this thesis essentially cross-applies and extends elements of the virtual clock

[Zha91] and weighted fair queueing [DKS90] algorithms to the domain of dynamic processor

scheduling. To the best of my knowledge, stride scheduling is the first cross-application of

these techniques for scheduling resources other than network bandwidth. The hierarchical

stride scheduling algorithm introduced in this thesis is a novel recursive application of the

stride-based technique, extended for dynamic environments. An unrelated scheme from the

domain of network traffic management is also similar to randomized lottery scheduling. The

statistical matching technique proposed for the AN2 network exploits randomness to efficiently

support frequent dynamic changes in bandwidth allocations [AOST93].

Microeconomic schedulers are based on resource allocation techniques in real economic

systems [MD88, HH95a, Wel95]. Money encapsulates resource rights, and a price mechanism

is used to allocate resources. Microeconomic schedulers [DM88, Fer89, WHH+92, Wel93,

Bog94] typically use auctions to determine prices and allocate resources among clients that

bid monetary funds. However, auction dynamics can be unexpectedly volatile, and bidding

overhead limits the applicability of auctions to relatively coarse-grained tasks. Other market-

based approaches that do not rely upon auctions have also been applied to managing processor

and memory resources [Ell75, HC92, CH93]. The framework and mechanisms proposed in

this thesis are compatible with a market-based resource management philosophy.

1.4 Organization

This section previews the remaining chapters, and describes the overall organization of the

thesis. The next chapter presents a general framework for specifying resource management

policies in concurrent systems. The use of tickets and currencies is shown to facilitate flexible,

modular control over resource management. Chapter 3 introduces several scheduling algo-

rithms that can be used as a substrate for implementing this framework. Both randomized

lottery-based techniques and deterministic stride-based approaches are presented for achieving

proportional-share control over resource consumption rates. Chapter 4 examines and com-

pares the performance of these scheduling techniques in both static and dynamic environments.
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Performance is evaluated by deriving basic analytical results and by conducting a wide range

of quantitative simulation experiments.

Prototype implementations of proportional-share process schedulers for real operating sys-

tem kernels are described in Chapter 5. The results of quantitative experiments involving a

variety of user-level applications are presented to demonstrate flexible, responsive control over

application service rates. Chapter 6 considers the application of proportional-share scheduling

techniques to diverse resources, including memory, disk bandwidth, and access to locks. Ex-

tensions to the core scheduling techniques are presented, and several novel resource-specific

algorithms are also introduced. Chapter 7 discusses a wide variety of research related to

computational resource management in much greater detail than the brief summary presented

in this chapter. Finally, Chapter 8 summarizes the conclusions of this thesis and highlights

opportunities for additional research.
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Chapter 2

Resource Management Framework

This chapter presents a general,flexible framework for specifying resource management policies

in concurrent systems. Resource rights are encapsulated by abstract, first-class objects called

tickets. Ticket-based policies are expressed using two basic techniques: ticket transfers and

ticket inflation. Ticket transfers allow resource rights to be directly transferred and redistributed

among clients. Ticket inflation allows resource rights to be changed by manipulating the overall

supply of tickets. A powerful currency abstraction provides flexible, modular control over

ticket inflation. Currencies also support the sharing, protecting, and naming of resource rights.

Several example resource management policies are presented to demonstrate the versatility of

this framework.

2.1 Tickets

Resource rights are encapsulated by first-class objects called tickets. Tickets can be issued

in different amounts, so that a single physical ticket may represent any number of logical

tickets. In this respect, tickets are similar to monetary notes which are also issued in different

denominations. For example, a single ticket object may represent one hundred tickets, just as

a single $100 bill represents one hundred separate $1 bills.

Tickets are owned by clients that consume resources. A client is considered to be active

while it is competing to acquire more resources. An active client is entitled to consume resources

at a rate proportional to the number of tickets that it has been allocated. Thus, a client with

twice as many tickets as another is entitled to receive twice as much of a resource in a given time

interval. The number of tickets allocated to a client also determines its entitled response time.

Client response times are defined to be inversely proportional to ticket allocations. Therefore, a

client with twice as many tickets as another is entitled to wait only half as long before acquiring

a resource.
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call

reply

Figure 2-1: Example Ticket Transfer. A client performs a ticket transfer to a server during a
synchronous remote procedure call (RPC). The server executes with the resource rights of the client,
and then returns those rights during the RPC reply.

Tickets encapsulate resource rights that are abstract, relative, and uniform. Tickets are

abstract because they quantify resource rights independently of machine details. Tickets are

relative since the fraction of a resource that they represent varies dynamically in proportion to

the contention for that resource. Thus, a client will obtain more of a lightly contended resource

than one that is highly contended. In the worst case, a client will receive a share proportional

to its share of tickets in the system. This property facilitates adaptive clients that can benefit

from extra resources when other clients do not fully utilize their allocations. Finally, tickets

are uniform because rights for heterogeneous resources can be homogeneously represented as

tickets. This property permits clients to use quantitative comparisons when making decisions

that involve tradeoffs between different resources.

In general, tickets have properties that are similar to those of money in computational

economies [WHH+92]. The only significant difference is that tickets are not consumed when

they are used to acquire resources. A client may reuse a ticket any number of times, but a ticket

may only be used to compete for one resource at a time. In economic terms, a ticket behaves

much like a constant monetary income stream.

2.2 Ticket Transfers

A ticket transfer is an explicit transfer of first-class ticket objects from one client to

another. Ticket transfers can be used to implement resource management policies by directly

redistributing resource rights. Transfers are useful in any situation where one client blocks

waiting for another. For example, Figure 2-1 illustrates the use of a ticket transfer during a

synchronous remote procedure call (RPC). A client performs a temporary ticket transfer to loan

its resource rights to the server computing on its behalf.
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Ticket transfers also provide a convenient solution to the conventional priority inversion

problem in a manner that is similar to priority inheritance [SRL90]. For example, clients waiting

to acquire a lock can temporarily transfer tickets to the current lock owner. This provides the

lock owner with additional resource rights, helping it to obtain a larger share of processor time

so that it can more quickly release the lock. Unlike priority inheritance, transfers from multiple

clients are additive. A client also has the flexibility to split ticket transfers across multiple

clients on which it may be waiting. These features would not make sense in a priority-based

system, since resource rights do not vary smoothly with priorities.

Ticket transfers are capable of specifying any ticket-based resource management policy,

since transfers can be used to implement any arbitrary distribution of tickets to clients. However,

ticket transfers are often too low-level to conveniently express policies. The exclusive use of

ticket transfers imposes a conservation constraint: tickets may be redistributed, but they cannot

be created or destroyed. This constraint ensures that no client can deprive another of resources

without its permission. However, it also complicates the specification of many natural policies.

For example, consider a set of processes, each a client of a time-shared processor resource.

Suppose that a parent process spawns child subprocesses and wants to allocate resource rights

equally to each child. To achieve this goal, the parent must explicitly coordinate ticket transfers

among its children whenever a child process is created or destroyed. Although ticket transfers

alone are capable of supporting arbitrary resource management policies, their specification is

often unnecessarily complex.

2.3 Ticket Inflation and Deflation

Ticket inflation and deflation are alternatives to explicit ticket transfers. Client resource rights

can be escalated by creating more tickets, inflating the total number of tickets in the system.

Similarly, client resource rights can be reduced by destroying tickets, deflating the overall

number of tickets. Ticket inflation and deflation are useful among mutually trusting clients,

since they permit resource rights to be reallocated without explicitly reshuffling tickets among

clients. This can greatly simplify the specification of many resource management policies. For

example, a parent process can allocate resource rights equally to child subprocesses simply by

creating and assigning a fixed number of tickets to each child that is spawned, and destroying

the tickets owned by each child when it terminates.

However, uncontrolled ticket inflation is dangerous, since a client can monopolize a resource

by creating a large number of tickets. Viewed from an economic perspective, inflation is a form

of theft, since it devalues the tickets owned by all clients. Because inflation can violate desirable

modularity and insulation properties, it must be either prohibited or strictly controlled.
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Figure 2-2: Ticket and Currency Objects. A ticket object contains an amount denominated in
some currency. A currency object contains a name, a list of backing tickets that fund the currency, a list
of all tickets issued in the currency, and an amount that contains the total number of active tickets issued
in the currency.

A key observation is that the desirability of inflation and deflation hinges on trust. Trust

implies permission to appropriate resources without explicit authorization. When trust is

present, explicit ticket transfers are often more cumbersome and restrictive than simple, local

ticket inflation. When trust is absent, misbehaving clients can use inflation to plunder resources.

Distilled into a single principle, ticket inflation and deflation should be allowed only within

logical trust boundaries. The next section introduces a powerful abstraction that can be used

to define trust boundaries and safely exploit ticket inflation.

2.4 Ticket Currencies

A ticket currency is a resource management abstraction that contains the effects of ticket

inflation in a modular way. The basic concept of a ticket is extended to include a currency in

which the ticket is denominated. Since each ticket is denominated in a currency, resource rights

can be expressed in units that are local to each group of mutually trusting clients. A currency

derives its value from backing tickets that are denominated in more primitive currencies. The

tickets that back a currency are said to fund that currency. The value of a currency can be used to

fund other currencies or clients by issuing tickets denominated in that currency. The effects of

inflation are locally contained by effectively maintaining an exchange rate between each local

currency and a common base currency that is conserved. The values of tickets denominated in

different currencies are compared by first converting them into units of the base currency.

Figure 2-2 depicts key aspects of ticket and currency objects. A ticket object consists of

an amount denominated in some currency; the notation amount.currency will be used to refer
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Figure 2-3: Example Currency Graph. Two users compete for computing resources. Alice is
executing two tasks, task1 and task2. Bob is executing a single task, task3. The current values in base
units for these tasks are task1 = 2000, task2 = 1000, and task3 = 2000. In general, currency relationships
may form an acyclic graph instead of a strict hierarchy.

to a ticket. A currency object consists of a unique name, a list of backing tickets that fund the

currency, a list of tickets issued in the currency, and an amount that contains the total number

of active tickets issued in the currency. In addition, each currency should maintain permissions

that determine which clients have the right to create and destroy tickets denominated in that

currency. A variety of well-known schemes can be used to implement permissions [Tan92].

For example, an access control list can be associated with each currency to specify those clients

that have permission to inflate it by creating new tickets.

Currency relationships may form an arbitrary acyclic graph, enabling a wide variety of

different resource management policies. One useful currency configuration is a hierarchy of

currencies. Each currency divides its value into subcurrencies that recursively subdivide and

distribute that value by issuing tickets. Figure 2-3 presents an example currency graph with

a hierarchical tree structure. In addition to the common base currency at the root of the tree,

distinct currencies are associated with each user and task. Two users, Alice and Bob, are

competing for computing resources. The alice currency is backed by 3000 tickets denominated

in the base currency (3000.base), and the bob currency is backed by 2000 tickets denominated

in the base currency (2000.base). Thus, Alice is entitled to 50% more resources than Bob,

since their currencies are funded at a 3 : 2 ratio.
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Alice is executing two tasks, task1 and task2. She subdivides her allocation between these

tasks in a 2 : 1 ratio using tickets denominated in her own currency – 200.alice and 100.alice.

Since a total of 300 tickets are issued in the alice currency, backed by a total of 3000 base

tickets, the exchange rate between the alice and base currencies is 1 : 10. Bob is executing a

single task, task3, and uses his entire allocation to fund it via a single 100.bob ticket. Since a

total of 100 tickets are issued in the bob currency, backed by a total of 2000 base tickets, the

bob : base exchange rate is 1 : 20. If Bob were to create a second task with equal funding by

issuing another 100.bob ticket, this exchange rate would become 1 : 10.

The currency abstraction is useful for flexibly sharing, protecting, and naming resource

rights. Sharing is supported by allowing clients with proper permissions to inflate or deflate a

currency by creating or destroying tickets. For example, a group of mutually trusting clients

can form a currency that pools its collective resource rights in order to simplify resource

management. Protection is guaranteed by maintaining exchange rates that automatically adjust

for intra-currency fluctuations that result from internal inflation or deflation. Currencies also

provide a convenient way to name resource rights at various levels of abstraction. For example,

currencies can be used to name the resource rights allocated to arbitrary collections of threads,

tasks, applications, or users.

Since there is nothing comparable to a currency abstraction in conventional operating

systems, it is instructive to examine similar abstractions that are provided in the domain of

programming languages. Various aspects of currencies can be related to features of object-

oriented systems, including data abstraction, class definitions, and multiple inheritance.

For example, currency abstractions for resource rights resemble data abstractions for data

objects. Data abstractions hide and protect representations by restricting access to an abstract

data type. By default, access is provided only through abstract operations exported by the

data type. The code that implements those abstract operations, however, is free to directly

manipulate the underlying representation of the abstract data type. Thus, an abstraction

barrier is said to exist between the abstract data type and its underlying representation [LG86].

A currency defines a resource management abstraction barrier that provides similar properties

for resource rights. By default, clients are not trusted, and are restricted from interfering with

resource management policies that distribute resource rights within a currency. The clients that

implement a currency’s resource management policy, however, are free to directly manipulate

and redistribute the resource rights associated with that currency.

The use of currencies to structure resource-right relationships also resembles the use of

classes to structure object relationships in object-oriented systems that support multiple inheri-

tance. A class inherits its behavior from a set of superclasses, which are combined and modified

to specify new behaviors for instances of that class. A currency inherits its funding from a set
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of backing tickets, which are combined and then redistributed to specify allocations for tickets

denominated in that currency. However, one difference between currencies and classes is the

relationship among the objects that they instantiate. When a currency issues a new ticket, it

effectively dilutes the value of all existing tickets denominated in that currency. In contrast, the

objects instantiated by a class need not affect one another.

2.5 Example Policies

A wide variety of resource management policies can be specified using the general frame-

work presented in this chapter. This section examines several different resource management

scenarios, and demonstrates how appropriate policies can be specified.

2.5.1 Basic Policies

Unlike priorities which specify absolute precedence constraints, tickets are specifically designed

to specify relative service rates. Thus, the most basic examples of ticket-based resource

management policies are simple service rate specifications. If the total number of tickets in

a system is fixed, then a ticket allocation directly specifies an absolute share of a resource.

For example, a client with 125 tickets in a system with a total of 1000 tickets will receive a

12.5% resource share. Ticket allocations can also be used to specify relative importance. For

example, a client that is twice as important as another is simply given twice as many tickets.

Ticket inflation and deflation provide a convenient way for concurrent clients to implement

resource management policies. For example, cooperative (AND-parallel) clients can indepen-

dently adjust their ticket allocations based upon application-specific estimates of remaining

work. Similarly, competitive (OR-parallel) clients can independently adjust their ticket al-

locations based on application-specific metrics for progress. One concrete example is the

management of concurrent computations that perform heuristic searches. Such computations

typically assign numerical values to summarize the progress made along each search path.

These values can be used directly as ticket assignments, focusing resources on those paths

which are most promising, without starving the exploration of alternative paths.

Tickets can also be used to fund speculative computations that have the potential to accel-

erate a program’s execution, but are not required for correctness. With relatively small ticket

allocations, speculative computations will be scheduled most frequently when there is little

contention for resources. During periods of high resource contention, they will be scheduled

very infrequently. Thus, very low service rate specifications can exploit unused resources while

limiting the impact of speculation on more important computations.
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If desired, tickets can also be used to approximate absolute priority levels. For example, a

series of currencies c1, c2, : : :, cn can be defined such that currency ci has 100 times the funding

of currency ci�1. A client with emulated priority level i is allocated a single ticket denominated

in currency ci. Clients at priority level i will be serviced 100 times more frequently than clients

at level i� 1, approximating a strict priority ordering.

2.5.2 Administrative Policies

For long-running computations such as those found in engineering and scientific environments,

there is a need to regulate the consumption of computing resources that are shared among users

and applications of varying importance [Hel93]. Currencies can be used to isolate the policies

of projects, users, and applications from one another, and relative funding levels can be used to

specify importance.

For example, a system administrator can allocate ticket levels to different groups based

on criteria such as project importance, resource needs, or real monetary funding. Groups

can subdivide their allocations among users based upon need or status within the group; an

egalitarian approach would give each user an equal allocation. Users can directly allocate their

own resource rights to applications based upon factors such as relative importance or impending

deadlines. Since currency relationships need not follow a strict hierarchy, users may belong to

multiple groups. It is also possible for one group to subsidize another. For example, if group

A is waiting for results from group B, it can issue a ticket denominated in currency A, and use

it to fund group B.

2.5.3 Interactive Application Policies

For interactive computations such as databases and media-based applications, programmers

and users need the ability to rapidly focus resources on those tasks that are currently important.

In fact, research in computer-human interaction has demonstrated that responsiveness is often

the most significant factor in determining user productivity [DJ90].

Many interactive systems, such as databases and the World Wide Web, are structured

using a client-server framework. Servers process requests from a wide variety of clients that

may demand different levels of service. Some requests may be inherently more important

or time-critical than others. Users may also vary in importance or willingness to pay a

monetary premium for better service. In such scenarios, ticket allocations can be used to

specify importance, and ticket transfers can be used to allow servers to compute using the

resource rights of requesting clients.
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Another scenario that is becoming increasingly common is the need to control the quality of

service when two or more video viewers are displayed [CT94]. Adaptive viewers are capable

of dynamically altering image resolution and frame rates to match current resource availability.

Coupled with dynamic ticket inflation, adaptive viewers permit users to selectively improve

the quality of those video streams to which they are currently paying the most attention. For

example, a graphical control associated with each viewer could be manipulated to smoothly

improve or degrade a viewer’s quality of service by inflating or deflating its ticket allocation.

Alternatively, a preset number of tickets could be associated with the window that owns the

current input focus. Dynamic ticket transfers make it possible to shift resources as the focus

changes, e.g., in response to mouse movements. With an input device capable of tracking eye

movements, a similar technique could even be used to automatically adjust the performance of

applications based upon the user’s visual focal point.

In addition to user-directed control over resource management, programmatic application-

level control can also be used to improve responsiveness despite resource limitations [DJ90,

TL93]. For example, a graphics-intensive program could devote a large share of its processing

resources to a rendering operation until it has displayed a crude but usable outline or wire-

frame. The share of resources devoted to rendering could then be reduced via ticket deflation,

allowing a more polished image to be computed while most resources are devoted to improving

the responsiveness of more critical operations.
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Chapter 3

Proportional-Share Mechanisms

This chapter presents mechanisms that can be used to efficiently implement the resource

management framework described in Chapter 2. Several novel scheduling algorithms are

introduced, including both randomized and deterministic techniques that provide proportional-

share control over time-shared resources. The algorithms are presented in the order that

they were developed, followed by a discussion of their application to the general resource

management framework.

One common theme is the desire to achieve proportional sharing with a high degree of

accuracy. The throughput accuracy of a proportional-share scheduler can be characterized

by measuring the difference between the specified and actual number of allocations that a

client receives during a series of allocations. If a client has t tickets in a system with a total

of T tickets, then its specified allocation after na consecutive allocations is nat=T . Due to

quantization, it is typically impossible to achieve this ideal exactly. A client’s absolute error

is defined as the absolute value of the difference between its specified and actual number of

allocations. The pairwise relative error between clients ci and cj is defined as the absolute

error for the subsystem containing only ci and cj, where T = ti+ tj , and na is the total number

of allocations received by both clients.

Another key issue is the challenge of providing efficient, systematic support for dynamic

operations, such as modifications to ticket allocations, and changes in the number of clients

competing for a resource. Support for fast dynamic operations is also required for low-overhead

implementations of higher-level abstractions such as ticket transfers, ticket inflation, and ticket

currencies. Many proportional-share mechanisms that are perfectly reasonable for static envi-

ronments exhibit ad-hoc behavior or unacceptable performance in dynamic environments.

After initial experimentation with a variety of different techniques, I discovered that ran-

domization could be exploited to avoid most of the complexity associated with dynamic op-

erations. This realization led to the development of lottery scheduling, a new randomized
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resource allocation mechanism [WW94]. Lottery scheduling performs an allocation by hold-

ing a lottery; the resource is granted to the client with the winning ticket. Due to its inherent use

of randomization, a client’s expected relative error and expected absolute error under lottery

scheduling are both O(
p
na). Thus, lottery scheduling can exhibit substantial variability over

small numbers of allocations. Attempts to limit this variability resulted in an investigation of

multi-winner lottery scheduling, a hybrid technique with both randomized and deterministic

components.

A desire for even more predictable behavior over shorter time scales prompted a renewed

effort to develop a deterministic algorithm with efficient support for dynamic operations.

Optimization of an inefficient algorithm that I originally developed before the conception of

lottery scheduling resulted in stride scheduling [WW95]. Stride scheduling is a deterministic

algorithm that computes a representation of the time interval, or stride, that each client must

wait between successive allocations. Under stride scheduling, the relative error for any pair of

clients is never greater than one, independent of na. However, for skewed ticket distributions

it is still possible for a client to have O(nc) absolute error, where nc is the number of clients.

I later discovered that the core allocation algorithm used in stride scheduling is nearly iden-

tical to elements of rate-based flow-control algorithms designed for packet-switched networks

[DKS90, Zha91, ZK91, PG93]. Thus, stride scheduling can be viewed as a cross-application

of these networking algorithms to schedule other resources such as processor time. However,

the original network-oriented algorithms did not address the issue of dynamic operations, such

as changes to ticket allocations. Since these operations are extremely important in domains

such as processor scheduling, I developed new techniques to efficiently support them. These

techniques can also be used to support frequent changes in bandwidth allocations for networks.

Finally, dissatisfaction with the schedules produced by stride scheduling for skewed ticket

distributions led to an improved hierarchical stride scheduling algorithm that provides a tighter

O(lgnc) bound on each client’s absolute error. Hierarchical stride scheduling is a novel

recursive application of the basic technique that achieves better throughput accuracy than

previous schemes, and can reduce response-time variability for some workloads.

The remainder of this chapter presents lottery scheduling, multi-winner lottery scheduling,

stride scheduling, and hierarchical stride scheduling. Each mechanism is described in a separate

section that begins with a description of the basic algorithm, followed by a discussion of

extensions that support dynamic operations and irregular quantum sizes. Source code and

examples are included to illustrate each mechanism. The chapter concludes by demonstrating

that each presented mechanism is capable of serving as a substrate for the general resource

management framework presented in Chapter 2. Detailed simulation results, performance

analyses, and comparisons of the mechanisms are presented in Chapter 4.
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3.1 Lottery Scheduling

Lottery scheduling is a randomized resource allocation mechanism for time-shared resources.

Each allocation is determined by holding a lottery that randomly selects a winning ticket from

the set of all tickets competing for a resource. The resource is granted to the client that holds

the winning ticket. This simple operation effectively allocates resources to competing clients

in proportion to the number of tickets that they hold. This section first presents the basic

lottery scheduling algorithm, and then introduces extensions that support dynamic operations

and nonuniform quanta.

3.1.1 Basic Algorithm

The core lottery scheduling idea is to randomly select a ticket from the set of all tickets

competing for a resource. Since each ticket has an equal probability of being selected, the

probability that a particular client will be selected is directly proportional to the number of

tickets that it has been assigned.

In general, there are nc clients competing for a resource, and each client ci has ti tickets.

Thus, there are a total of T =
Pnc

i=1 ti tickets competing for the resource. The probability pi

that client ci will win a particular lottery is simply ti=T . After na identical allocations, the

expected number of wins wi for client ci is E[wi] = na pi, with variance �2wi

= napi(1� pi).

Thus, the expected allocation of resources to clients is proportional to the number of tickets

that they hold. Since the scheduling algorithm is randomized, the actual allocated proportions

are not guaranteed to match the expected proportions exactly. However, the disparity between

them decreases as the number of allocations increases. More precisely, a client’s expected

relative error and expected absolute error are both O(
p
na). Since error increases slowly with

na, accuracy steadily improves when error is measured as a percentage of na.

One straightforward way to implement a lottery scheduler is to randomly select a winning

ticket, and then search a list of clients to locate the client holding that ticket. Figure 3-1 presents

an example list-based lottery. Five clients are competing for a resource with a total of 20 tickets.

The thirteenth ticket is randomly chosen, and the client list is searched to determine the client

holding the winning ticket. In this example, the third client is the winner, since its region of

the ticket space contains the winning ticket.

Figure 3-2 lists ANSI C code for a basic list-based lottery scheduler. For simplicity, it is

assumed that the set of clients is static, and that client ticket assignments are fixed. These

restrictions will be relaxed in subsequent sections to permit more dynamic behavior. Each

client must be initialized via client init() before any allocations are performed by allocate().

The allocate() operation begins by calling fast random() to generate a uniformly-distributed
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Figure 3-1: Example List-Based Lottery. Five clients compete in a list-based lottery with a total
of 20 tickets. The thirteenth ticket is randomly selected, and the client list is searched for the winner. In
this example, the third client is the winner.

/* per-client state */
typedef struct f

: : :

int tickets;
g *client t;

/* current resource owner */
client t current;

/* list of clients competing for resource */
list t list;

/* global ticket sum */
int global tickets = 0;

/* initialize client with specified allocation */
void client init(client t c, int tickets)
f

/* initialize client state, update global sum */
c->tickets = tickets;
global tickets += tickets;

/* join competition for resource */
list insert(list, c);

g

/* proportional-share resource allocation */
void allocate()
f
int winner, sum;
client t c;

/* randomly select winning ticket */
winner = fast random() % global_tickets;

/* search list to find client with winning ticket */
sum = 0;
for (c = list first(list);

c != NULL;
c = list next(list, c))

f
/* update running sum, stop at winner */
sum += c->tickets;
if (sum > winner)
break;

g

/* grant resource to winner for quantum */
current = c;
use resource(current);

g

Figure 3-2: List-Based Lottery Scheduling Algorithm. ANSI C code for scheduling a static set
of clients using a list-based lottery. An allocation requiresO(n

c
) time to search the list of clients for the

winning ticket. A simple doubly-linked list can be used to implement constant-time list operations.
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pseudo-random integer. Numerous techniques exist for generating random numbers. For

example, the Park-Miller generator efficiently produces high-quality random numbers that are

uniformly distributed between 0 and 231 � 1 [PM88, Car90]. The random number produced

by fast random() is then scaled1 to reside in the interval [0, global tickets�1], which will be

referred to as the ticket space. The scaled random number, winner, represents the offset of the

winning ticket in the ticket space. The ticket space is then scanned by traversing the client list,

accumulating a running ticket sum until the winning offset is reached. The client holding the

ticket at the winning offset is selected as the winner.

Performing an allocation using the simple list-based lottery algorithm in Figure 3-2 requires

O(nc) time to traverse the list of clients. Various optimizations can reduce the average number

of clients that must be examined. For example, if the distribution of tickets to clients is uneven,

ordering the clients by decreasing ticket counts can substantially reduce the average search

length. Since those clients with the largest number of tickets will be selected most frequently,

a simple “move-to-front” heuristic can also be very effective.

For large nc, a tree-based implementation is more efficient, requiring only O(lgnc) opera-

tions to perform an allocation. A tree-based implementation would also be more appropriate for

a distributed lottery scheduler. Figure 3-3 lists ANSI C code for a tree-based lottery scheduling

algorithm. Although many tree-based data structures are possible, a balanced binary tree is used

to illustrate the algorithm. Every node has the usual tree links to its parent, left child, and right

child, as well as a ticket count. Each leaf node represents an individual client. Each internal

node represents the group of clients (leaf nodes) that it covers, and contains their aggregate

ticket sum. An allocation is performed by tracing a path from the root of the tree to a leaf. At

each level, the child that covers the region of the ticket space which contains the winning ticket

is followed. When a leaf node is reached, it is selected as the winning client.

Figure 3-4 illustrates an example tree-based lottery. Eight clients are competing for a

resource with a total of 48 tickets. The twenty-fifth ticket is randomly chosen, and a root-to-

leaf path is traversed to locate the winning client. Since the winning offset does not appear in

the region of the ticket space covered by the root’s left child, its right child is followed. The

winning offset is adjusted from 25 to 15 to reflect the new subregion of the ticket space that

excludes the first ten tickets. At this second level, the adjusted offset of 15 falls within the left

child’s region of the ticket space. Finally, its right child is followed, with an adjusted winning

offset of 3. Since this node is a leaf, it is selected as the winning client.

1An exact scaling method would convert the random number from an integer to a floating-point number
between 0 and 1, multiply it by global tickets, and then convert the result back to the nearest integer. A more
efficient scaling method, used in Figure 3-2, is to simply compute the remainder of the random number modulo
global tickets. This method works extremely well under the reasonable assumption that global tickets� 2

31.
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/* binary tree node */
typedef struct f

: : :

struct node *left, *right, *parent;
int tickets;

g *node t;

/* current resource owner */
node t current;

/* tree of clients competing for resource */
node t root;

/* initialize client with specified allocation */
void client init(node t c, int tickets)
f

node t n;

/* attach client to tree as leaf */
tree insert(root, c);

/* initialize client state, update ancestor ticket sums */
c->tickets = tickets;
for (n = c->parent;

n != NULL;
n = n->parent)

n->tickets += tickets;

g

/* proportional-share resource allocation */
void allocate()
f
int winner;
node t n;

/* randomly select winning ticket */
winner = fast random() % root->tickets;

/* traverse root-to-leaf path to find winner */
for (n = root; !node is leaf(n); )
if (n->left != NULL &&

n->left->tickets > winner)
n = n->left;

else
f

/* adjust relative offset for winner */
n = n->right;
winner -= n->left->tickets;

g

/* use resource */
current = n;
use resource(current);

g

Figure 3-3: Tree-Based Lottery Scheduling Algorithm. ANSI C code for scheduling a static
set of clients using a tree-based lottery. The main data structure is a binary tree of nodes. Each node
represents either a client (leaf) or a group of clients and their aggregate ticket sum (internal node). An
allocation requires O(lgn

c
) time to locate the winning ticket.
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Figure 3-4: Example Tree-Based Lottery. Eight clients compete in a tree-based lottery with a total
of 48 tickets. Each square leaf node represents a client and its associated ticket allocation. Each round
internal node contains the ticket sum for the leaves that it covers. In this example, the winning ticket
number is 25, and the winning client is found by traversing the root-to-leaf path indicated by the arrows.

3.1.2 Dynamic Operations

The basic algorithms presented in Figures 3-2 and 3-3 do not support dynamic operations,

such as changes in the number of clients competing for a resource, and modifications to client

ticket allocations. Fortunately, the use of randomization makes adding such support trivial.

Since each random allocation is independent, there is no per-client state to update in response to

dynamic changes. Because lottery scheduling is effectively stateless, a great deal of complexity

is eliminated. For each allocation, every client is given a fair chance of winning proportional

to its share of the total number of tickets. Any dynamic changes are immediately reflected in

the next allocation decision, and no special actions are required.

Figure 3-5 lists ANSI C code that trivially extends the basic list-based algorithm to effi-

ciently handle dynamic changes. The time complexity of the client modify(), client leave(),

and client join() operations is O(1). Figure 3-6 lists the corresponding extensions for the

basic tree-based algorithm. These operations require O(lgnc) time to update the ticket sums

for each of a client’s ancestors. The list-based client modify() operation and the tree-based

node modify() operation update global scheduling state only for clients that are actively com-

peting for resources.2

2The client is active() predicate can be implemented simply by associating an explicit active flag with each
client. This flag should be set in client join() and reset in client leave(). An alternative implementation of
client is active() could simply check if the client’s list-link fields are NULL. Similar approaches can be employed
to define the node is active() predicate used in the tree-based implementation of node modify().
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/* dynamically modify client allocation by delta tickets */
void client modify(client t c, int delta)
f

/* update client tickets */
c->tickets += delta;

/* update global ticket sum if active */
if (client is active(c))
global tickets += delta;

g

/* join competition for resource */
void client join(client t c)
f

/* update global ticket sum, link into list */
global tickets += c->tickets;
list insert(list, c);

g

/* leave competition for resource */
void client leave(client t c)
f

/* update global ticket sum, unlink from list */
global tickets -= c->tickets;
list remove(list, c);

g

Figure 3-5: Dynamic Operations: List-Based Lottery. ANSI C code to support dynamic
operations for a list-based lottery scheduler. All operations execute in constant time.

/* dynamically modify node allocation by delta tickets */
void node modify(node t node, int delta)
f

node t n;

/* update node tickets */
node->tickets += delta;

/* propagate changes to ancestors if active */
if (node is active(node))
for (n = node->parent;

n != NULL;
n = n->parent)

n->tickets += delta;

g

/* join competition for resource */
void client join(node t c)
f

/* add node to tree, update ticket sums */
tree insert(root, c);
node modify(c->parent, c->tickets);

g

/* leave competition for resource */
void client leave(node t c)
f

/* update ticket sums, remove node from tree */
node modify(c->parent, - c->tickets);
tree remove(root, c);

g

Figure 3-6: Dynamic Operations: Tree-Based Lottery. ANSI C code to support dynamic
operations for a tree-based lottery scheduler. All operations requireO(lg n

c
) time to update ticket sums.
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3.1.3 Nonuniform Quanta

With the basic lottery scheduling algorithms presented in Figures 3-2 and 3-3, a client that does

not consume its entire allocated quantum will receive less than its entitled share. Similarly,

it may be possible for a client’s usage to exceed a standard quantum in some situations. For

example, under a non-preemptive scheduler, the amount of time that clients hold a resource can

vary considerably.

Fractional and variable-size quanta are handled by adjusting a client’s ticket allocation to

compensate for its nonuniform quantum usage. When a client consumes a fraction f of its

allocated time quantum, it is assigned transient compensation tickets that alter its overall ticket

value by 1=f until the client starts its next quantum. This ensures that a client’s expected

resource consumption, equal to f times its per-lottery win probability p, is adjusted by 1=f

to match its allocated share. If f < 1, then the client will receive positive compensation

tickets, inflating its effective ticket allocation. If f > 1, then the client will receive negative

compensation tickets, deflating its effective allocation.

To demonstrate that compensation tickets have the desired effect, consider a client that

owns t of the T tickets competing for a resource. Suppose that when the client next wins the

resource lottery, it uses a fraction f of its allocated quantum. The client is then assigned t=f� t

transient compensation tickets, changing its overall ticket value to t=f . These compensation

tickets persist only until the client wins another allocation.

Without any compensation, the client’s expected waiting time until its next allocation would

be T=t� 1 quanta. Compensation alters both the client’s ticket allocation and the total number

of tickets competing for the resource. With compensation, the client’s expected waiting time

becomes (T + t=f � t)=(t=f)� 1, which reduces to fT=t� f . Measured from the start of its

first allocation to the start of its next allocation, the client’s expected resource usage is f quanta

over a time period consisting of f + (fT=t � f) = fT=t quanta. Thus, the client receives a

resource share of f=(fT=t) = t=T , as desired.

Note that no assumptions were made regarding the client’s resource usage during its second

allocation. Compensation tickets produce the correct expected behavior even when f varies

dynamically, since the client’s waiting time is immediately adjusted after every allocation. A

malicious client is therefore unable to boost its resource share by varying f in an attempt to

“game” the system.

Figure 3-7 lists ANSI C code for compensating a client that uses elapsed resource time units

instead of a standard quantum, measured in the same time units. The per-client scheduling state

is extended to include a new compensate field that contains the current number of compensation

tickets associated with the client. The compensate() operation should be invoked immediately
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/* per-client state */
typedef struct f

: : :

int tickets, compensate;
g *client t;

/* standard quantum in real time units (e.g. 1M cycles) */
const int quantum = (1 << 20);

/* compensate client for nonuniform quantum usage */
void compensate(client t c, int elapsed)
f
int old, new, net change;

/* compute original allocation */
old = c->tickets - c->compensate;

/* compute current compensation */
new = (old * quantum) / elapsed;
c->compensate = new - old;

/* compute change, modify effective allocation */
net change = new - c->tickets;
client modify(c, net change);

g

Figure 3-7: Compensation Ticket Assignment. ANSI C code to compensate a client for consuming
elapsed time units of a resource instead of a standard time slice of quantum time units. This code assumes
a list-based lottery; a tree-based lottery would simply replace the invocation of client modify() with
node modify().

after every allocation; compensate(current, elapsed) should be added to the end of the allocate()

operation. Compensation tickets are transient, and only persist until the client starts its next

quantum. Thus, compensate() initially forgets any previous compensation, and computes a

new client compensation value based on elapsed. The client’s compensate field is updated,

and the overall difference between the previous compensated ticket value and its new one is

computed as net change. Finally, the client’s ticket allocation is dynamically modified via

client modify().

For example, suppose clients A and B have each been allocated 400 tickets. Client A

always consumes its entire quantum, while client B uses only one-fifth of its quantum before

yielding the resource. Since both A and B have equal ticket assignments, they are equally

likely to win a lottery when both compete for the same resource. However, client B uses

only f = 1=5 of its allocated time, allowing client A to consume five times as much of the

resource, in violation of their 1 : 1 ticket ratio. To remedy this situation, clientB is granted 1600

compensation tickets when it yields the resource. When B next competes for the resource, its

total funding will be 400=f = 2000 tickets. Thus, on average B will win the resource lottery

five times as often as A, each time consuming 1=5 as much of its quantum as A, achieving the

desired 1 : 1 allocation ratio.
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3.2 Multi-Winner Lottery Scheduling

Multi-winner lottery scheduling is a generalization of the basic lottery scheduling technique.

Instead of selecting a single winner per lottery, nw winners are selected, and each winner is

granted the use of the resource for one quantum. The set of nw consecutive quanta allocated

by a single multi-winner lottery will be referred to as a superquantum. This section presents

the basic multi-winner lottery algorithm, followed by a discussion of extensions for dynamic

operations and nonuniform quanta.

3.2.1 Basic Algorithm

The multi-winner lottery scheduling algorithm is a hybrid technique with both randomized and

deterministic components. The first winner in a superquantum is selected randomly, and the

remaining nw � 1 winners are selected deterministically at fixed offsets relative to the first

winner. These offsets appear at regular, equally-spaced intervals in the ticket space [0, T � 1],

where T is the total number of tickets competing for the resource. More formally, the nw

winning offsets are located at (r + i T

nw
) mod T in the ticket space, where r is a random

number and index i 2 [0; nw � 1] yields the ith winning offset.

Since individual winners within a superquantum are uniformly distributed across the ticket

space, multi-winner lotteries directly implement a form of short-term, proportional-share fair-

ness. Because the spacing between winners is T=nw tickets, a client with t tickets is determin-

istically guaranteed to receive at least bnw
t

T
c quanta per superquantum. However, there are

no deterministic guarantees for clients with fewer than T=nw tickets.

An appropriate value for nw can be computed by choosing the desired level of deterministic

guarantees. Larger values of nw result in better deterministic approximations to specified

ticket allocations, reducing the effects of random error. Ensuring that a client deterministically

receives at least one quantum per superquantum substantially increases its throughput accuracy

and dramatically reduces its response-time variability. Setting nw � 1=f guarantees that all

clients entitled to at least a fraction f of the resource will be selected during each superquantum.

For example, if deterministic guarantees are required for all clients with resource shares of at

least 12:5%, then a value of nw � 8 should be used.

Figure 3-8 presents an example multi-winner lottery. Five clients compete for a resource

with a total of T = 20 tickets. The thirteenth ticket is randomly chosen, resulting in the

selection of the third client as the first winner. Since nw = 4, three additional winners are

selected in the same superquantum, with relative offsets that are multiples of T=4 = 5 tickets.

Note that the first client with 10 tickets is guaranteed to receive 2 out of every 4 quanta, and

the third client with 5 tickets is guaranteed to receive 1 out of every 4 quanta. The choice of
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Figure 3-8: Example Multi-Winner Lottery. Five clients compete in a four-winner lottery with a
total of 20 tickets. The first winner is selected at a randomly-generated offset of 13, and the remaining
winners are selected at relative offsets with a deterministic spacing of 5 tickets.

the client that receives the remaining quantum is effectively determined by the random number

generated for the superquantum.

Although the basic multi-winner lottery mechanism is very simple, the use of a superquan-

tum introduces a few complications. One issue is the ordering of winning clients within a

superquantum. The simplest option is to schedule the clients in the order that they are selected.

However, this can result in the allocation of several consecutive quanta to clients holding a

relatively large number of tickets. While this is desirable in some cases to reduce context-

switching overhead, the reduced interleaving also increases response time variability. Another

straightforward approach with improved interleaving is to schedule the winning clients using

an ordering defined by a fixed or pseudo-random permutation.

Figure 3-9 lists ANSI C code for a list-based multi-winner lottery algorithm that sched-

ules winners within a superquantum using a fixed permuted order. The per-client state and

client init() operation are identical to those listed in Figure 3-2. Additional global state is in-

troduced to handle the scheduling of winners within a superquantum. The intra schedule array

defines a fixed permutation of winners within a superquantum, such that successive winners are

maximally separated from one another in the ticket space. The random offset for the first winner

is maintained by intra first, and the deterministic spacing between winners is maintained by

intra space. The current intra-superquantum winner number is stored by intra count.

The allocate() operation initially checks if a new superquantum should be started by inspect-

ing intra count. When a superquantum is started, a new random winning offset is generated,

and a new deterministic inter-winner spacing is computed. These same values are then used

for all of the allocations within the superquantum. Each allocation determines the next winner
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/* per-client state */
typedef struct f

: : :

int tickets;
g *client t;

/* winners per superquantum (e.g. 4) */
const int n winners = 4;

/* current resource owner */
client t current;

/* list of clients competing for resource */
list t list;

/* global ticket sum */
int global tickets = 0;

/* intra-superquantum schedule (e.g. permuted) */
int intra schedule[] = f 0, 2, 1, 3 g;
int intra first, intra space;
int intra count = 0;

/* locate client with winning offset */
client t find winner(int winner)
f
int sum = 0;
client t c;

/* search list to find client with winning offset */
for (c = list first(list);

c != NULL;
c = list next(list, c))

f
/* update running sum, stop at winner */
sum += c->tickets;
if (sum > winner)
return(c);

g

g

/* initialize client with specified allocation */
void client init(client t c, int tickets)
f

/* initialize client state, update global sum */
c->tickets = tickets;
global tickets += tickets;

/* join competition for resource */
list insert(list, c);

g

/* proportional-share resource allocation */
void allocate()
f

int winner;

/* handle new superquantum */
if (intra count == 0)

f
/* generate random offset, inter-winner spacing */
intra first =
fast random() % global tickets;

intra space = global tickets / n winners;
g

/* select next winner within superquantum */
winner = intra first +
intra space * intra schedule[intra count];

/* handle ticket-space wrap-around */
if (winner >= global tickets)
winner -= global tickets;

/* advance intra-superquantum winner count */
if (++intra count == n winners)
intra count = 0;

/* grant resource to winner for quantum */
current = find winner(winner);
use resource(current);

g

Figure 3-9: Multi-Winner Lottery Scheduling Algorithm. ANSI C code for scheduling a static
set of clients using a list-based multi-winner lottery. An allocation requires O(n

c
) time to search the

list of clients for the winning ticket.
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by computing its offset within the ticket space. This winning offset is the sum of the initial

random offset, intra first, and a deterministic offset based on the relative position of the next

winner, intra space � intra sched[intra count]. Thus, successive winners within the same su-

perquantum are separated by some multiple of intra space tickets. The implementation of the

find winner() operation is identical to the linear search used in Figure 3-2, and is presented as

a separate abstraction to highlight the key changes to allocate().

A more efficient version of the code listed in Figure 3-9 can be implemented by selecting all

of the superquantum winners during a single scan of the client list. By avoiding a separate pass

for each allocation, this optimization would also decrease the cost of performing an allocation

by nearly a factor of nw over ordinary lottery scheduling. The implementation of a tree-based

multi-winner lottery would also be very similar to the list-based code. The find winner()

function can simply be changed to use the tree-based search employed in Figure 3-3, and

references to global tickets can be replaced by the root node’s tickets field.

The multi-winner lottery algorithm is very similar to the stochastic remainder technique

used in the field of genetic algorithms for randomized population mating and selection [Gol89].

This technique can also be applied to scheduling time-shared resources, although it was not

designed for that purpose. Using the same scheduling terminology introduced earlier, for

each superquantum consisting of nw consecutive quanta, the stochastic remainder technique

allocates each client nw
t

T
quanta, where t is the number of tickets held by that client, and

T is the total number of tickets held by all clients. The integer part of this expression is

deterministically allocated, and the fractional remainder is stochastically allocated by lottery.

For example, consider a superquantum withnw = 10, and two clients,A andB, with a 2 : 1

ticket allocation ratio. Client A receives b10� 2

3
c = 6 quanta, and B receives b10� 1

3
c = 3

quanta. Thus, A is deterministically guaranteed to receive six quanta out of every ten; B is

guaranteed to receive three quanta out of every ten. The remaining quantum is allocated by

lottery with probability (10� 2

3
)� 6 = 2

3
to client A, and (10� 1

3
)� 3 = 1

3
to client B.

The multi-winner lottery algorithm and the stochastic remainder technique both provide

the same deterministic guarantee: a client with t tickets will receive at least bnw
t

T
c quanta per

superquantum. The remaining quanta are allocated stochastically. The stochastic remainder

approach uses independent random numbers to perform these allocations, while a multi-winner

lottery bases its allocations on a single random number. A multi-winner lottery evenly divides

the ticket space into regions, and selects a winner from each region by lottery. This distinc-

tion provides several implementation advantages. For example, fewer random numbers are

generated; the same random number is effectively reused within a superquantum. Also, fewer

expensive arithmetic operations are required. In addition, if nw is chosen to be a power of two,

then all divisions can be replaced with efficient shift operations.
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/* dynamically modify client allocation by delta tickets */
void client modify(client t c, int delta)
f

/* update client tickets */
c->tickets += delta;

/* adjust global state if active */
if (client is active(c))

f
/* force start of new superquantum */
intra count = 0;

/* update global ticket sum */
global tickets += delta;

g

g

/* join competition for resource */
void client join(client t c)
f

/* force start of new superquantum */
intra count = 0;

/* update global ticket sum, link into list */
global tickets += c->tickets;
list insert(list, c);

g

/* leave competition for resource */
void client leave(client t c)
f

/* force start of new superquantum */
intra count = 0;

/* update global ticket sum, unlink from list */
global tickets -= c->tickets;
list remove(list, c);

g

Figure 3-10: Dynamic Operations: Multi-Winner Lottery. ANSI C code to support dy-
namic operations for a list-based multi-winner lottery scheduler. Each operation terminates the current
superquantum. All operations execute in constant time.

3.2.2 Dynamic Operations

The use of a superquantum also complicates operations that dynamically modify the set

of competing clients or their relative ticket allocations. For a single-winner lottery, each

allocation is independent, and there is no state that must be transformed in response to dynamic

changes. For a multi-winner lottery, the current state of the intra-superquantum schedule must

be considered.

Randomization can be used to once again sidestep the complexities of dynamic modifi-

cations, by scheduling winners within a superquantum in a pseudo-random order. After any

dynamic change, the current superquantum is simply prematurely terminated and a new su-

perquantum is started. This same technique can also be used with an intra-superquantum

schedule based on a fixed permutation, such as the one listed in Figure 3-9. Since winners

are maximally separated in the ticket space, premature termination of a superquantum after

w winners have been selected approximates the behavior exhibited by a multi-winner lottery

scheduler with nw = w. For example, the first two winners scheduled by the four-winner

lottery listed in Figure 3-9 are identical to the winners that would be selected by a two-winner

lottery. When nw and w are perfect powers of two, this approximation will be exact. In other
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cases, the use of a randomly-generated initial offset still ensures that no systematic bias will

develop across superquanta. This is important, because systematic bias could potentially be

exploited by clients attempting to cheat the system.

Figure 3-10 lists ANSI C code that trivially extends the basic multi-winner lottery algorithm

to handle dynamic changes. The premature termination of a superquantum allows dynamic

operations to be supported in a principled manner. However, if dynamic changes occur with high

frequency, then the effective superquantum size will be reduced, weakening the deterministic

guarantees that it was intended to provide. In the extreme case where a dynamic change

occurs after every allocation, this scheme reduces to an ordinary single-winner lottery. I

was unable to find other systematic dynamic techniques that work with alternative ordering

schemes. In general, the use of a superquantum introduces state that may require complicated

transformations to avoid incorrect dynamic behavior.

3.2.3 Nonuniform Quanta

Fractional and variable-size quanta are supported by the same compensation ticket technique

described for ordinary lottery scheduling. The code presented for assigning compensation

tickets in Figure 3-7 can be used without modification. However, for multi-winner lotteries,

the assignment of compensation tickets forces the start of a new superquantum, since the

multi-winner version of client modify() terminates the current superquantum. Thus, if clients

frequently use nonuniform quantum sizes, the effective superquantum size will be reduced,

weakening the deterministic guarantees provided by the multi-winner lottery.

The need to start a new superquantum after every nonuniform quantum can be avoided by

using a more complex compensation scheme. Instead of invoking compensate() after every

allocation, compensation tickets can be assigned after each complete superquantum. This

approach requires keeping track of each winner’s cumulative allocation count and resource

usage over the entire superquantum to determine appropriate compensation values.

3.3 Deterministic Stride Scheduling

Stride scheduling is a deterministic allocation mechanism for time-shared resources. Stride

scheduling implements proportional-share control over processor-time and other resources by

cross-applying and generalizing elements of rate-based flow control algorithms designed for

networks [DKS90, Zha91, ZK91, PG93]. New techniques are introduced to efficiently support

dynamic operations, such as modifications to ticket allocations, and changes to the number of

clients competing for a resource.
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/* per-client state */
typedef struct f

: : :

int tickets, stride, pass;
g *client t;

/* large integer stride constant (e.g. 1M) */
const int stride1 = (1 << 20);

/* current resource owner */
client t current;

/* queue of clients competing for resource */
queue t queue;

/* initialize client with specified allocation */
void client init(client t c, int tickets)
f

/* stride is inverse of tickets */
c->tickets = tickets;
c->stride = stride1 / tickets;
c->pass = c->stride;

/* join competition for resource */
queue insert(queue, c);

g

/* proportional-share resource allocation */
void allocate()
f

/* select client with minimum pass value */
current = queue remove min(queue);

/* use resource for quantum */
use resource(current);

/* compute next pass using stride */
current->pass += current->stride;
queue insert(queue, current);

g

Figure 3-11: Basic Stride Scheduling Algorithm. ANSI C code for scheduling a static set of
clients. Queue manipulations can be performed inO(lgn

c
) time by using an appropriate data structure.

3.3.1 Basic Algorithm

The core stride scheduling idea is to compute a representation of the time interval, or stride,

that a client must wait between successive allocations. The client with the smallest stride will

be scheduled most frequently. A client with half the stride of another will execute twice as

quickly; a client with double the stride of another will execute twice as slowly. Strides are

represented in virtual time units called passes, instead of units of real time such as seconds.

Three state variables are associated with each client: tickets, stride, and pass. The tickets

field specifies the client’s resource allocation, relative to other clients. The stride field is

inversely proportional to tickets, and represents the interval between selections, measured in

passes. The pass field represents the virtual time index for the client’s next selection. Performing

a resource allocation is very simple: the client with the minimum pass is selected, and its pass

is advanced by its stride. If more than one client has the same minimum pass value, then any

of them may be selected. A reasonable deterministic approach is to use a consistent ordering

to break ties, such as one defined by unique client identifiers.
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The only source of relative error under stride scheduling is due to quantization. Thus, the

the relative error for any pair of clients is never greater than one, independent of na. However,

for skewed ticket distributions it is still possible for a client to haveO(nc) absolute error, where

nc is the number of clients. Nevertheless, stride scheduling is considerably more accurate than

lottery scheduling, since its error does not grow with the number of allocations.

Figure 3-11 lists ANSI C code for the basic stride scheduling algorithm. For simplicity, a

static set of clients with fixed ticket assignments is assumed. These restrictions will be relaxed

in subsequent sections to permit more dynamic behavior. The stride scheduling state for each

client must be initialized via client init() before any allocations are performed by allocate().

To accurately represent stride as the reciprocal of tickets, a floating-point representation could

be used. A more efficient alternative is presented that uses a high-precision fixed-point integer

representation. This is easily implemented by multiplying the inverted ticket value by a large

integer constant. This constant will be referred to as stride1, since it represents the stride

corresponding to the minimum ticket allocation of one.3

The cost of performing an allocation depends on the data structure used to implement the

client queue. A priority queue can be used to implement queue remove min() and other queue

operations inO(lgnc) time or better, wherenc is the number of clients [CLR90, Tho95]. A skip

list could also provide expected O(lgnc) time queue operations with low constant overhead

[Pug90]. For small nc or heavily skewed ticket distributions, a simple sorted list is likely to be

most efficient in practice.

Figure 3-12 illustrates an example of stride scheduling. Three clients, A, B, and C, are

competing for a time-shared resource with a 3 : 2 : 1 ticket ratio. For simplicity, a convenient

stride1 = 6 is used instead of a large number, yielding respective strides of 2, 3, and 6. The

pass value of each client is plotted as a function of time. For each quantum, the client with the

minimum pass value is selected, and its pass is advanced by its stride. Ties are broken using

the arbitrary but consistent client ordering A, B, C. The sequence of allocations produced by

stride scheduling in Figure 3-12 exhibits precise periodic behavior: A, B, A, A, B, C.

3.3.2 Dynamic Operations

The basic stride scheduling algorithm presented in Figure 3-11 does not support dynamic

changes in the number of clients competing for a resource. When clients are allowed to join

and leave at any time, their state must be appropriately modified. Figure 3-13 extends the basic

algorithm to efficiently handle dynamic changes to the set of active clients. The code listed in

Figure 3-13 also supports nonuniform quanta; this issue will be discussed in Section 3.3.3.

3Section 5.2.1 discusses the representation of strides in more detail.
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Figure 3-12: Stride Scheduling Example. Clients A (triangles),B (circles), and C (squares) have
a 3 : 2 : 1 ticket ratio. In this example, stride1 = 6, yielding respective strides of 2, 3, and 6. For each
quantum, the client with the minimum pass value is selected, and its pass is advanced by its stride.

A key extension is the addition of global variables that maintain aggregate information

about the set of active clients. The global tickets variable contains the total ticket sum for all

active clients. The global pass variable maintains the “current” pass for the scheduler. The

global pass advances at the rate of global stride per quantum, where global stride = stride1 /

global tickets. Conceptually, the global pass continuously advances at a smooth rate. This is

implemented by invoking the global pass update() routine whenever the global pass value is

needed.4

A state variable is also associated with each client to store the remaining portion of its stride

when a dynamic change occurs. The remain field represents the number of passes that are left

before a client’s next selection. When a client leaves the system, remain is computed as the

difference between the client’s pass and the global pass. When a client rejoins the system, its

pass value is recomputed by adding its remain value to the global pass.

This mechanism handles situations involving either positive or negative error between the

specified and actual number of allocations. If remain < stride, then the client is effectively

given credit when it rejoins for having previously waited for part of its stride without receiving

4Due to the use of a fixed-point integer representation for strides, small quantization errors may accumulate
slowly, causing global pass to drift away from client pass values over a long period of time. This is unlikely to be
a practical problem, since client pass values are recomputed using global pass each time they leave and rejoin the
system. However, this problem can be avoided by infrequently resetting global pass to the minimum pass value
for the set of active clients.
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/* per-client state */
typedef struct f

: : :

int tickets, stride, pass, remain;
g *client t;

/* quantum in real time units (e.g. 1M cycles) */
const int quantum = (1 << 20);

/* large integer stride constant (e.g. 1M) */
const int stride1 = (1 << 20);

/* current resource owner */
client t current;

/* queue of clients competing for resource */
queue t queue;

/* global aggregate tickets, stride, pass */
int global tickets, global stride, global pass;

/* update global pass based on elapsed real time */
void global pass update(void)
f

static int last update = 0;
int elapsed;

/* compute elapsed time, advance last update */
elapsed = time() - last update;
last update += elapsed;

/* advance global pass by quantum-adjusted stride */
global pass +=
(global stride * elapsed) / quantum;

g

/* update global tickets and stride to reflect change */
void global tickets update(int delta)
f

global tickets += delta;
global stride = stride1 / global tickets;

g

/* initialize client with specified allocation */
void client init(client t c, int tickets)
f

/* stride is inverse of tickets, whole stride remains */
c->tickets = tickets;
c->stride = stride1 / tickets;
c->remain = c->stride;

g

/* join competition for resource */
void client join(client t c)
f

/* compute pass for next allocation */
global pass update();
c->pass = global_pass + c->remain;

/* add to queue */
global tickets update(c->tickets);
queue insert(queue, c);

g

/* leave competition for resource */
void client leave(client t c)
f

/* compute remainder of current stride */
global pass update();
c->remain = c->pass - global_pass;

/* remove from queue */
global tickets update(-c->tickets);
queue remove(queue, c);

g

/* proportional-share resource allocation */
void allocate()
f
int elapsed;

/* select client with minimum pass value */
current = queue remove min(queue);

/* use resource, measuring elapsed real time */
elapsed = use resource(current);

/* compute next pass using quantum-adjusted stride */
current->pass +=
(current->stride * elapsed) / quantum;

queue insert(queue, current);

g

Figure 3-13: Dynamic Stride Scheduling Algorithm. ANSI C code for stride scheduling
operations, including support for joining, leaving, and nonuniform quanta. Queue manipulations can be
performed in O(lgn

c
) time by using an appropriate data structure.
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Figure 3-14: Stride Scheduling Allocation Change. Modifying a client’s allocation from tickets
to tickets0 requires only a constant-time recomputation of its stride and pass. The new stride0 is inversely
proportional to tickets0. The new pass0 is determined by scaling remain, the remaining portion of the the
current stride, by stride0 / stride.

a quantum. If remain> stride, then the client is effectively penalized when it rejoins for having

previously received a quantum without waiting for its entire stride.5 This approach implicitly

assumes that a partial quantum now is equivalent to a partial quantum later. In general, this

is a reasonable assumption, and resembles the treatment of nonuniform quanta that will be

presented in Section 3.3.3. However, it may not be appropriate if the total number of tickets

competing for a resource varies significantly between the time that a client leaves and rejoins

the system.

The time complexity for both the client leave() and client join() operations is O(lgnc),

where nc is the number of clients. These operations are efficient because the stride scheduling

state associated with distinct clients is completely independent; a change to one client does not

require updates to any other clients. The O(lgnc) cost results from the need to perform queue

manipulations.

Additional support is needed to dynamically modify client ticket allocations. Figure 3-14

illustrates a dynamic allocation change, and Figure 3-15 lists ANSI C code for dynamically

changing a client’s ticket allocation. When a client’s allocation is dynamically changed from

tickets to tickets0, its stride and pass values must be recomputed. The new stride0 is computed

as usual, inversely proportional to tickets0. To compute the new pass0, the remaining portion

of the client’s current stride, denoted by remain, is adjusted to reflect the new stride0. This is

accomplished by scaling remain by stride0 / stride. In Figure 3-14, the client’s ticket allocation

5Several interesting alternatives could also be implemented. For example, a client could be given credit for
some or all of the passes that elapse while it is inactive.
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/* dynamically modify client ticket allocation by delta tickets */
void client modify(client t c, int delta)
f

int tickets, stride, remain;
bool t active;

/* check if client actively competing for resource */
active = client is active(c);

/* leave queue for resource */
if (active)
client leave(c);

/* compute new tickets, stride */
tickets = c->tickets + delta;
stride = stride1 / tickets;

/* scale remaining passes to reflect change in stride */
remain = (c->remain * stride) / c->stride;

/* update client state */
c->tickets = tickets;
c->stride = stride;
c->remain = remain;

/* rejoin queue for resource */
if (active)
client join(c);

g

Figure 3-15: Dynamic Ticket Modification: Stride Scheduling. ANSI C code for dynamic
modifications to client ticket allocations under stride scheduling. The client modify() operation requires
O(lg n

c
) to perform appropriate queue manipulations.
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is increased, so pass is decreased, compressing the time remaining until the client is next

selected. If its allocation had decreased, then pass would have increased, expanding the time

remaining until the client is next selected.

The client modify() operation requires O(lgnc) time, where nc is the number of clients.

As with dynamic changes to the number of clients, ticket allocation changes are efficient

because the stride scheduling state associated with distinct clients is completely independent;

the dominant cost is due to queue manipulations.

3.3.3 Nonuniform Quanta

With the basic stride scheduling algorithm presented in Figure 3-11, a client that does not

consume its entire allocated quantum will receive less than its entitled share of a resource.

Similarly, it may be possible for a client’s usage to exceed a standard quantum in some situations.

For example, under a non-preemptive scheduler, client run lengths can vary considerably.

Fortunately, fractional and variable-size quanta can easily be accommodated. When a client

consumes a fraction f of its allocated time quantum, its pass should be advanced by f � stride

instead of stride. If f < 1, then the client’s pass will be increased less, and it will be scheduled

sooner. If f > 1, then the client’s pass will be increased more, and it will be scheduled later.

The extended code listed in Figure 3-13 supports nonuniform quanta by effectively computing

f as the elapsed resource usage time divided by a standard quantum in the same time units.

Another extension would permit clients to specify the quantum size that they require.6 This

could be implemented by associating an additional quantumc field with each client, and scaling

each client’s stride field by quantumc / quantum. Deviations from a client’s specified quantum

would still be handled as described above, with f redefined as the elapsed resource usage

divided by the client-specific quantumc.

3.4 Hierarchical Stride Scheduling

Stride scheduling guarantees that the relative throughput error for any pair of clients never

exceeds a single quantum. However, depending on the distribution of tickets to clients, a large

O(nc) absolute throughput error is still possible, where nc is the number of clients.

For example, consider a set of 101 clients with a 100 : 1 : : : : : 1 ticket allocation. A schedule

that minimizes absolute error and response time variability would alternate the 100-ticket client

with each of the single-ticket clients. However, the standard stride algorithm schedules the

6Yet another alternative would be to allow each client to specify its scheduling period. Since a client’s period
and quantum are related by its relative resource share, specifying one quantity yields the other.
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clients in order, with the 100-ticket client receiving 100 quanta before any other client receives

a single quantum. Thus, after 100 allocations, the intended allocation for the 100-ticket client

is 50, while its actual allocation is 100, yielding a large absolute error of 50 quanta. Similar

rate-based flow control algorithms designed for networks [DKS90, Zha91, ZK91, PG93] also

exhibit this undesirable behavior.

This section describes a novel hierarchical variant of stride scheduling that limits the

absolute throughput error of any client toO(lgnc) quanta. For the 101-client example described

above, hierarchical stride scheduler simulations produced a maximum absolute error of only 4.5.

The hierarchical algorithm also significantly reduces response time variability by aggregating

clients to improve interleaving. Since it is common for systems to consist of a small number

of high-throughput clients together with a large number of low-throughput clients, hierarchical

stride scheduling represents a practical improvement over previous work.

3.4.1 Basic Algorithm

Hierarchical stride scheduling is essentially a recursive application of the basic stride

scheduling algorithm. Individual clients are combined into groups with larger aggregate ticket

allocations, and correspondingly smaller strides. An allocation is performed by invoking the

normal stride scheduling algorithm first among groups, and then among individual clients

within groups.

Although many different groupings are possible, a balanced binary tree of groups is consid-

ered. Each leaf node represents an individual client. Each internal node represents the group

of clients (leaf nodes) that it covers, and contains their aggregate ticket, stride, and pass values.

Thus, for an internal node, tickets is the total ticket sum for all of the clients that it covers, and

stride = stride1 / tickets. The pass value for an internal node is updated whenever the pass value

for any of the clients that it covers is modified.

Figure 3-16 presents ANSI C code for the basic hierarchical stride scheduling algorithm.

This code also supports nonuniform quanta, which will be discussed in Section 3.4.3. Each

node has the normal tickets, stride, and pass scheduling state, as well as the usual tree links

to its parent, left child, and right child. An allocation is performed by tracing a path from

the root of the tree to a leaf, choosing the child with the smaller pass value at each level via

node choose child(). Once the selected client has finished using the resource, its pass value is

updated to reflect its usage. The client update is identical to that used in the dynamic stride

algorithm that supports nonuniform quanta, listed in Figure 3-13. However, the hierarchical

scheduler requires additional updates to each of the client’s ancestors, following the leaf-to-root

path formed by successive parent links.
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/* binary tree node */
typedef struct node f

: : :

struct node *left, *right, *parent;
int tickets, stride, pass;

g *node t;

/* quantum in real time units (e.g. 1M cycles) */
const int quantum = (1 << 20);

/* large integer stride constant (e.g. 1M) */
const int stride1 = (1 << 20);

/* current resource owner */
node t current;

/* tree of clients competing for resource */
node t root;

/* select child of internal node to follow */
node t node choose child(node t n)
f

/* no choice if only one child */
if (n->left == NULL)
return(n->right);

if (n->right == NULL)
return(n->left);

/* choose child with smaller pass */
if (n->left->pass < n->right->pass)
return(n->left);

else
return(n->right);

g

/* proportional-share resource allocation */
void allocate()
f

int elapsed;
node t n;

/* traverse root-to-leaf path following min pass */
for (n = root; !node is leaf(n); )
n = node choose child(n);

/* use resource, measuring elapsed real time */
current = n;
elapsed = use_resource(current);

/* update pass for each ancestor using its stride */
for (n = current; n != NULL; n = n->parent)
n->pass +=
(n->stride * elapsed) / quantum;

g

Figure 3-16: Hierarchical Stride Scheduling Algorithm. ANSI C code for hierarchical stride
scheduling with a static set of clients, including support for nonuniform quanta. The main data structure
is a binary tree of nodes. Each node represents either a client (leaf) or a group (internal node) that
summarizes aggregate information.
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/* dynamically modify node allocation by delta tickets */
void node modify(node t n, int delta)
f

int old stride, remain;

/* compute new tickets, stride */
old stride = n->stride;
n->tickets += delta;
n->stride = stride1 / n->tickets;

/* done when reach root */
if (n == root)
return;

/* simply scale stored remain value if inactive */
if (!node is active(n))

f
n->remain = (n->remain * n->stride) / old stride;
return;

g

/* scale remaining passes to reflect change in stride */
remain = n->pass - root->pass;
remain = (remain * n->stride) / old stride;
n->pass = root->pass + remain;

/* propagate change to ancestors */
node modify(n->parent, delta);

g

Figure 3-17: Dynamic Ticket Modification: Hierarchical Stride Scheduling. ANSI C code
for dynamic modifications to client ticket allocations under hierarchical stride scheduling. A modification
requiresO(lg n

c
) time to propagate changes.

Each client allocation can be viewed as a series of pairwise allocations among groups of

clients at each level in the tree. The maximum error for each pairwise allocation is 1, and in the

worst case, error can accumulate at each level. Thus, the maximum absolute error for a series

of tree-based allocations is the height of the tree, which is dlg nce, where nc is the number of

clients. Since the error for a pairwise A : B ratio is minimized when A = B, absolute error can

be further reduced by carefully choosing client leaf positions to better balance the tree based

on the number of tickets at each node.

3.4.2 Dynamic Operations

Extending the basic hierarchical stride algorithm to support dynamic modifications requires

a careful consideration of the impact that changes have at each level in the tree. Figure 3-17

lists ANSI C code for performing a ticket modification that works for both clients and internal

nodes. Changes to client ticket allocations essentially follow the same scaling and update rules
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used for normal stride scheduling, listed in Figure 3-15. The hierarchical scheduler requires

additional updates to each of the client’s ancestors, following the leaf-to-root path formed by

successive parent links. Note that the pass value of the root node used in Figure 3-17 effectively

takes the place of the global pass variable used in Figure 3-15; both represent the aggregate

global scheduler pass.7

Operations that allow clients to dynamically join or leave the system must also account

for the effects of changes at each level in the tree. Under hierarchical stride scheduling, the

state of each node that covers a client is partially based on that client’s state. By the time

that a client dynamically leaves the system, it may have accumulated O(lgnc) absolute error.

Without adjustments to compensate for this error, a client that leaves after receiving too few

quanta unfairly increases the allocation granted to other clients in the same subtree. Similarly,

a client that leaves after receiving too many quanta unfairly decreases the allocation granted to

other clients in the same subtree.

A general “undo” and “redo” strategy is used to avoid these problems. Any bias introduced

by a client on its ancestors is eliminated when it leaves the system. When the client rejoins

the system, symmetric adjustments are made to reconstruct the appropriate bias in order to

correctly influence future scheduling decisions.

Figure 3-18 lists ANSI C code that implements support for dynamic client participation. As

with ordinary stride scheduling, an additional remain field is associated with each client to store

the remaining portion of its stride when it leaves the system. If remain < stride, then the client

should be credited for quanta that it was entitled to receive. If remain > stride, then the client

should be penalized when it rejoins the system for having previously received quanta ahead

of schedule. As mentioned earlier in the context of dynamic stride scheduling, this approach

makes the implicit assumption that a quantum now is equivalent to a quantum later.

When a client leaves the system, remain is computed as the difference between its pass

and the global pass, represented by the pass value of the root node. When the client rejoins

the system, this remain value is used to recompute the client’s pass value. For ordinary stride

scheduling, no other special actions are required, because the scheduling state associated with

distinct clients is completely independent. However, under hierarchical stride scheduling, the

state of each node that covers a client is partially based on that client’s state. When a client

leaves the system via client leave(), any residual impact on its ancestors must be eliminated.

This is implemented by performing a “pseudo-allocation” to erase the effects of client error by

updating the client’s ancestors as if an actual corrective allocation had been given to the client.

7Changes that do not occur on exact quantum boundaries should first update the root pass value based on
the elapsed real time since its last update. This update would resemble the operation of global pass update() for
ordinary stride scheduling, listed in Figure 3-13.
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/* binary tree node */
typedef struct node f

: : :

struct node *left, *right, *parent;
int tickets, stride, pass, remain;

g *node t;

/* standard quantum in real time units (e.g. 1M cycles) */
const int quantum = (1 << 20);

/* compute entitled resource time for client */
int client entitled(node_t c)
f

int completed, entitled;

/* compute completed passes */
completed = c->stride - c->remain;

/* convert completed passes into entitled time */
entitled =
(completed * quantum) / c->stride;

return(entitled);
g

/* pretend that elapsed time units were allocated to node */
void pseudo allocate(node t node, int elapsed)
f

node t n;

/* update node, propagate changes to ancestors */
for (n = node; n != root; n = n->parent)
n->pass +=
(n->stride * elapsed) / quantum;

g

/* join competition for resource */
void client join(node t c)
f

/* add node to tree */
tree insert(root, c)

/* perform update to reflect ticket gain */
node modify(c->parent, c->tickets);

/* ‘‘redo” any existing client error */
pseudo allocate(c->parent,

- client entitled(c));

/* compute pass for next allocation */
c->pass = root->pass + c->remain;

g

/* leave competition for resource */
void client leave(node t c)
f

/* compute passes remaining */
c->remain = c->pass - root->pass;

/* ‘‘undo” any existing client error */
pseudo allocate(c->parent,

client entitled(c));

/* perform update to reflect ticket loss */
node modify(c->parent, - c->tickets);

/* remove client from tree */
tree remove(root, c);

g

Figure 3-18: Dynamic Client Participation: Hierarchical Stride Scheduling. ANSI C code
to support dynamic client participation under hierarchical stride scheduling. The client join() and
client leave() operations requireO(lg n

c
) time to propagate updates.
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This pseudo-allocation is intended to correct any outstanding client error, so the quantum

size used for the pseudo-allocation must equal the amount of resource time the client is actually

entitled to receive. This value is determined by client entitled(), which returns a resource

entitlement measured in the same real time units as quantum. A client’s entitlement is based

on the number of passes remaining before it is due to be selected. If the client’s entitlement is

positive, then it is currently owed time by the system; if it is negative, then the client owes time

to the system.

After the pseudo-allocation corrects for any existing client error, node modify() is invoked

to ensure that future updates reflect the overall decrease in tickets due to the client leaving

the system. As with any ticket modification, this change propagates to each of the client’s

ancestors. Finally, a call to tree remove() deactivates the client by removing it from the tree.

When a client rejoins the system via client join(), the inverse operations are performed.

First, tree insert() activates the client by adding it to the tree. Next, node modify() is invoked

to reflect the overall increase in tickets due to the client joining the system. Finally, the client’s

new ancestors are updated to reflect its net entitlement by invoking pseudo allocate(). Note

that the implementation of client join() is completely symmetric to client leave(). As expected,

successive client leave() and client join() operations to the same client leaf position effectively

undo one another.

3.4.3 Nonuniform Quanta

Fractional and variable-size quanta are handled in a manner that is nearly identical to their

treatment under ordinary stride scheduling. The basic hierarchical stride algorithm listed in

Figure 3-16 includes support for nonuniform quanta. When a client uses a fraction f of its

allocated quantum, its pass is advanced by f� stride instead of stride. The same scaling factor

f is used when advancing the pass values associated with each of the client’s ancestors during

an allocation.

3.4.4 Huffman Trees

As noted in Section 3.4.1, many different hierarchical groupings of clients are possible. A

height-balanced binary tree permits efficientO(lg nc) scheduling operations while achieving a

dlg nce bound on absolute error. An interesting alternative is to construct a tree with Huffman’s

algorithm [Huf52, CLR90], using client ticket values as frequency counts.8 Huffman encoding

is typically used to find optimal variable-length codes for compressing files or messages.

8Thanks to Bill Dally for suggesting this approach.
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In the context of hierarchical stride scheduling, a Huffman tree explicitly minimizes the

cost of performing an allocation. The same basic allocation operation presented in Figure 3-16

can also be used with Huffman trees. In a Huffman tree, clients with high ticket values are

located near the root of the tree, while clients with low ticket values end up farther down in

the tree structure. Thus, clients that receive the most allocations require very short root-to-leaf

traversals, and clients that receive allocations infrequently have longer root-to-leaf paths.

The Huffman tree structure also ensures that worst-case absolute error is smallest for the

clients with the largest ticket values, since maximum absolute error is directly related to the

depth of the client in the tree. In Section 4.1.4, it will be demonstrated that response-time

variability also increases with tree depth, so a Huffman tree also minimizes response-time

variability for large clients. However, O(nc) absolute error is still possible for small clients,

since the height of the tree may be O(nc) for highly skewed ticket distributions. Allocations to

small clients may also exhibit high response-time variability for the same reason.

While a height-balanced tree provides uniform performance bounds and identical allocation

costs for all clients, a Huffman tree provides better guarantees and lower allocation costs for

clients with larger ticket values, at the expense of clients with smaller ticket values. A detailed

analysis of the precise effects of various hierarchical structures is an interesting topic for

future research. In addition to bounds on worst-case behavior, more work is needed to better

understand the average-case behavior associated with both height-balanced binary trees and

Huffman trees.

Huffman trees appear to be a good choice for static environments, since the tree structure

remains fixed. However, dynamic operations that modify client ticket values or the set of

active clients present some challenging problems. Although the dynamic operations listed in

Figures 3-17 and 3-18 will correctly implement proportional sharing with Huffman trees, they

do not maintain the invariants that characterize Huffman trees. For example, if a client’s ticket

allocation is changed from a very small to a very large value, numerous node interchanges and

updates are necessary to move the client to a higher location in the tree.

Dynamic Huffman codes have been studied in the context of adaptive compression schemes

for communication channels [Vit87]. Similar techniques may be useful for dynamic manipula-

tions of Huffman trees for hierarchical stride scheduling. However, these techniques commonly

assume that the values of character frequencies (client ticket values in the case of scheduling)

change only incrementally as messages are processed dynamically. Of course, there is no com-

pelling reason that the tree structure used for hierarchical stride scheduling must always remain

a strict Huffman tree. Relaxing this constraint may yield algorithms that provide near-optimal

allocation costs with acceptable overhead for dynamic operations.
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3.5 Framework Implementation

This section explains how the various proportional-share mechanisms presented in this chapter

can be used to implement the general resource management framework described in Chapter 2.

Implementations of ticket transfers, ticket inflation, and ticket currencies are presented in terms

of low-level dynamic operations that have already been defined, such as client modify(). Since

primitive dynamic operations have been described for lottery scheduling, multi-winner lottery

scheduling, stride scheduling, and hierarchical stride scheduling, any of these mechanisms can

be used as a substrate for the general framework.

3.5.1 Tickets

A ticket is a first-class object that abstractly encapsulates relative resource rights. In the

descriptions of the basic mechanisms, all of the tickets associated with a client are compactly

represented by a single integer. A complete resource management framework implementation

is likely to use a more flexible representation, in which tickets are protected system-level objects

that can be explicitly created,destroyed, and transferred between clients and currencies. Despite

the use of a more sophisticated ticket representation, the resource rights currently specified by

a set of tickets can always be converted into a single integer value, expressed in base units.

However, the frequency of such conversions may differ between implementations.

3.5.2 Ticket Transfers

A ticket transfer is an explicit transfer of tickets from one client to another. A transfer of t

tickets from clientA to clientB essentially consists of two dynamic ticket modifications. These

modifications can be implemented by invoking client modify(A, �t) and client modify(B, t).

For lottery scheduling, the client modify() operations simply change the underlying ticket

allocations associated with clients A and B, and update appropriate ticket sums. Under multi-

winner lottery scheduling, a ticket transfer also terminates the current superquantum. When

A transfers tickets to B under stride scheduling, A’s stride and pass will increase, while B’s

stride and pass will decrease. A slight complication arises for complete ticket transfers; i.e.,

when A transfers its entire ticket allocation to B. In this case, A’s adjusted ticket value is zero,

leading to an adjusted stride of infinity (division by zero). This problem can be circumvented

by treating a complete transfer from A to B as an update of client B via client modify(B,

A.tickets), and a suspension of client A via client leave(A). This effectively stores A’s remain

value at the time of the transfer, and defers the computation of its stride and pass values until it

once again receives a non-zero ticket allocation. The same technique can be used to implement

ticket transfers for hierarchical stride scheduling.
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3.5.3 Ticket Inflation and Deflation

Ticket inflation and ticket deflation are alternatives to explicit ticket transfers that alter resource

rights by manipulating the overall supply of tickets. An instance of inflation or deflation simply

requires a single dynamic modification to a client. If t new tickets are created for clientA, then

the resulting inflation is implemented via client modify(A, t). Similarly, if t of A’s existing

tickets are destroyed, the resulting deflation is implemented via client modify(A, �t).

For lottery scheduling, inflation and deflation simply change the underlying ticket allocation

associated with a client. In the case of multi-winner lotteries, ticket inflation and deflation also

terminate the current superquantum. For stride scheduling, ticket inflation causes a client’s

stride and pass to decrease; deflation causes its stride and pass to increase. The effect is the

same under hierarchical stride scheduling; similar updates are also applied to each internal

node that covers the client.

3.5.4 Ticket Currencies

A ticket currency defines a resource management abstraction barrier that contains the effects

of ticket inflation in a modular way. Tickets are denominated in currencies, allowing resource

rights to be expressed in units that are local to each logical module. The effects of inflation

are locally contained by effectively maintaining an exchange rate between each local currency

and a common base currency that is conserved. There are several different implementation

strategies for currencies.

One eager implementation strategy is to always immediately convert ticket values denomi-

nated in arbitrary currencies into units of the common base currency. Any changes to the value

of a currency would then require dynamic modifications, via client modify(), to all clients

holding tickets denominated in that currency, or one derived from it. An important exception

is that changes to the number of tickets in the base currency do not require any modifications

to client state. This is because all client scheduling state is computed from ticket values ex-

pressed in base units, and the state associated with distinct clients is independent. Thus, the

scope of any changes in currency values is limited to exactly those clients which are affected.

Since currencies are used to group and isolate logical sets of clients, the impact of currency

fluctuations will typically be very localized.

An alternative lazy implementation strategy defers the computation of ticket values until they

are actually needed. For example, consider a list-based lottery scheduler that is implemented

for a system with a fixed number of base tickets. Since only a portion of the ticket space is

traversed during an allocation, only those clients that are actually examined need to have their

tickets converted into base units. A lazy implementation exploits this fact to defer computing
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the effects of dynamic changes that result from ticket transfers and inflation9. The efficiency of

such an approach depends on the relative frequencies of dynamic operations and allocations, as

well as the distribution of tickets to clients. Lazy implementations may also benefit by caching

ticket and currency values to accelerate conversions.

Various optimizations are also possible. For example, in some systems it may be acceptable

to temporarily delay the effect of dynamic changes. If delays are large compared to the

average allocation granularity, then performance may be improved by batching changes, such

as modifications to currency values. A related optimization is to maintain exchange rates that

are only approximately correct and loosely consistent. For example, updates to currency values

could be deferred until significant changes accumulate. System-enforced limits could even

be placed on the allowed rate of inflation and deflation, avoiding large, rapid fluctuations in

currency values. Such optimizations would be particularly useful for distributed scheduler

implementations, since communication would be relatively expensive.

9Many scheduling operations depend upon accurate maintenance of the total number of active base tickets.
Inflation or deflation of the base currency would require immediate work to reflect changes in the overall number
of base tickets.
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Chapter 4

Performance Results

This chapter presents results that quantify the performance of lottery scheduling, multi-winner

lottery scheduling, stride scheduling, and hierarchical stride scheduling. Basic analytical results

are initially introduced to serve as a guide to the behavior of the core scheduling algorithms.

Quantitative results obtained from simulation experiments are then presented to further eval-

uate the scheduling mechanisms in both static and dynamic environments. Many graphical

presentations of simulation data are included to facilitate detailed comparisons between the

various mechanisms.

4.1 Basic Analysis

In general, there are nc clients competing for a resource, and each client ci has ti tickets, for a

total of T =
Pnc

i=1 ti tickets. As described in Chapter 3, the throughput accuracy for each client

is quantified by measuring the difference between its specified allocation and the allocation

that it actually receives. After na consecutive allocations, the specified allocation for client ci

is nati=T . A client’s absolute error is defined as the absolute value of the difference between

its specified and actual number of allocations. The pairwise relative error between clients

ci and cj is defined as the absolute error for the subsystem containing only ci and cj , where

T = ti + tj , and na is the total number of allocations received by both clients.

The response time for each client is measured as the elapsed time from its completion of

one quantum, up to and including its completion of another. The response-time variability

associated with a client is quantified by the spread of its response-time distribution. The range

of this spread is given by its minimum and maximum response times. The response-time

distribution can also be characterized by its mean, �, and its standard deviation, �. Another

useful metric that normalizes variability is the dimensionless coefficient of variation, �=�.
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The rest of this section presents some basic analytical results for lottery scheduling, multi-

winner lottery scheduling, stride scheduling, and hierarchical scheduling. Each mechanism is

analyzed in terms of both throughput accuracy and response-time variability.

4.1.1 Lottery Scheduling

Lottery scheduling is a randomized algorithm, and can be easily analyzed using well-known

results from probability and statistics [Tri82]. The number of lotteries won by a client has

a binomial distribution. The probability that client ci will win a particular lottery is simply

pi = ti=T . After na identical allocations, the expected number of wins wi for client ci is

E[wi] = na pi, with variance �2wi

= napi(1� pi). Thus, the expected throughput error for a

client is O(
p
na). Since error increases slowly with na, throughput accuracy steadily improves

when error is measured as a percentage of na. Nevertheless, the absolute value of the error can

still grow without bound.

The response time for a client has a geometric distribution. The expected number of

lotteries li that client ci must wait before completing its first win is E[li] = 1=pi, with variance

�2li = (1 � pi)=p
2

i . The coefficient of variation is �li=E[li] =
p
1� pi. Thus, the response-

time variability for client ci depends only on its relative share of tickets, pi = ti=T . When

pi is large, the coefficient of variation is small, as desired. However, when pi is small, the

coefficient of variation approaches one, indicating that response-time variability is extremely

high for low-throughput clients.

4.1.2 Multi-Winner Lottery Scheduling

Multi-winner lottery scheduling is a hybrid scheme with both randomized and deterministic

components. A multi-winner lottery selects nw winners per lottery; the nw consecutive quanta

allocated by a lottery are referred to as a superquantum. A multi-winner lottery with nw winners

can be analyzed as nw separate lotteries, each of which independently selects a winner from

an equal-size region of the ticket space that contains T=nw tickets. Thus, all of the results

presented for lottery scheduling can also be applied to each winner in a multi-winner lottery.

The key feature of a multi-winner lottery is its ability to provide some deterministic guaran-

tees, depending on both the distribution of tickets to clients and the value of nw. Deterministic

guarantees are based on the observation that if there is only a single client in a particular

region, then that client will win the region’s lottery with probability 1. Thus, each client ci

is deterministically guaranteed of receiving at least bnw
ti
T
c quanta per superquantum. The

throughput accuracy and response-time variability for client ci depend on the fraction of its

allocations that is performed deterministically. Let di = bnw
ti
T
c denote the number of quanta
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that are deterministically allocated to client ci per superquantum. Let si =
ti
T
� di denote the

fractional number of quanta that are stochastically allocated to client ci per superquantum.

If si = 0, the multi-winner lottery always allocates the precise number of quanta specified

for client ci during each superquantum, and there is no random error. In this case, the absolute

error for client ci equals zero at some point during every superquantum. The error at other points

within a superquantum depends on the intra-superquantum schedule used to order winners. The

worst-case response time for client ci is bounded by 2(nw � di) + 1 quanta. This maximum

will occur when all di quanta are allocated consecutively at the start of one superquantum, and

then all di quanta are allocated consecutively at the end of the next superquantum.

If si > 0, then the throughput error for client ci will also have a random component. This

component has exactly the same properties described for ordinary lottery scheduling, where

pi = si, and na is replaced by the number of consecutive superquanta. If di > 0, then the

maximum response time for client ci is still bounded by 2(nw � di) + 1 quanta. Otherwise,

the response time has the same geometric distribution as for lottery scheduling, with pi = si,

and na equal to the number of consecutive superquanta.

4.1.3 Stride Scheduling

Stride scheduling provides a strong deterministic guarantee that the absolute error for any pair

of clients never exceeds one quantum. This guarantee results from the observation that the

only source of pairwise error is due to quantization. A derivation of this bound is relatively

straightforward. Let c1 and c2 denote two clients competing for a resource with a t1 : t2 ticket

ratio. Let s1 = 1=t1 denote the stride for c1, and p1 denote the pass value for c1. Similarly,

let s2 and p2 denote the stride and pass values for c2. The initial pass values are p1 = s1,

and p2 = s2. For each allocation, the client ci with the minimum pass value pi is selected; if

p1 = p2, then either client may be selected. The pass value pi for the selected client is then

advanced by si. Since p1 is only advanced by s1 when p1 � p2, and p2 is only advanced by s2

when p2 � p1, the maximum possible difference between p1 and p2 at any time is max(s1; s2).

The schedule produced by stride scheduling will consist of alternating sequences of allo-

cations to clients c1 and c2. Without loss of generality, assume that t1 � t2. The absolute error

for client c2 will be greatest immediately following the longest possible sequence of allocations

to client c1. (Because there are only two clients, their absolute error values are identical, so

this is also the maximum error for client c1.) The maximum number of consecutive allocations

to client c1 is d s2
s1
e = d t1

t2
e. For this interval, the specified allocation for client c2 is t2

t1+t2
d t1
t2
e.

Because the actual allocation to client c2 over this interval is zero, its absolute error over

the interval is equal to its specified allocation. Since d t1
t2
e � t1+t2

t2
, it follows directly that
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the maximum absolute error for c2 is bounded by t2
t1+t2

t1+t2
t2

= 1. Therefore, the maximum

throughput error for any pair of clients is bounded by a single quantum. Similarly, for any

pair of clients, the largest difference between the minimum and maximum response times for

the same client is also bounded by one quantum. Thus, for a pair of clients, response-time

distributions will be extremely tight.

Unfortunately, throughput error and response-time variability can be much larger when

more than two clients are scheduled. Skewed ticket distributions can result in O(nc) absolute

error, where nc is the number of clients. For example, consider a very uneven ticket distribution

in which nc � 1 “small” clients each have a single ticket, and one “large” client has nc � 1

tickets. The stride scheduling algorithm will schedule the large client first, and will allocate

nc � 1 quanta to it before any other client is scheduled. Since the specified allocation for the

large client is only half that amount, its absolute error is O(nc). Response-time variability

is also extremely high for such distributions, since there is no interleaving of the many small

clients with the single large client.

4.1.4 Hierarchical Stride Scheduling

Hierarchical stride scheduling provides a tighter O(lgnc) bound on absolute error, eliminating

the worst-case O(nc) behavior that is possible under ordinary stride scheduling. Hierarchical

stride scheduling can be analyzed as a series of pairwise allocations among successively smaller

groups of clients at each level in the hierarchy. The error for each pairwise allocation is bounded

by one quantum, and in the worst case, error can accumulate at each level. Thus, the maximum

absolute error for a series of allocations is the height of the tree, which is dlg nce for a balanced

binary tree.

The response-time characteristics of hierarchical stride scheduling are more difficult to

analyze. For highly skewed ticket distributions, response-time variability can be dramatically

lower than under ordinary stride scheduling. However, for other distributions, response-time

variability can be significantly higher. The explanation for this behavior is that response-time

variability can potentially increase multiplicatively at successive levels of the hierarchy.

Consider the first level of the tree-based data structure used for hierarchical stride schedul-

ing. This level consists of the two children of the root node, Nl and Nr, each representing an

aggregate group of clients. One of these two nodes is selected during every hierarchical allo-

cation. The response-time distribution for each of these nodes will be tight, with a maximum

difference of one quantum between its minimum and maximum values. For example, suppose

that the range for the right node Nr is [3, 4]. Now consider the two children of this node, Nrl

and Nrr. If all other nodes in the hierarchy are ignored, the response-time distributions for
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this isolated pair of nodes are also very tight; suppose that the range for the left node Nrl is

[2, 3]. However, since node Nrl is only selected every second or third time that its parent Nr

is selected, its overall response-time range expands to [2 � 3, 3 � 4] = [6, 12].

In general, the minimum (maximum) response time for a client can be as low (high) as

the product of the minimum (maximum) response times computed in isolation for each of

its ancestors. However, the actual spread may not be this large for some distributions. For

example, the periodic behavior of a child may coincide with the periodic behavior of its parent if

their periods divide evenly. Nevertheless, multiplicative increases in response-time variability

are still possible for many distributions of tickets to clients.

4.2 Simulation Results

This section presents the results of quantitative experiments designed to evaluate the effective-

ness of the various proportional-share mechanisms described in Chapter 3. The behavior of

each mechanism is examined in both static and dynamic environments. As predicted by the

basic analytical results, when compared to the randomized lottery-based mechanisms, the de-

terministic stride-based approaches generally provide significantly better throughput accuracy,

with significantly lower response-time variability.

For example, Figure 4-1 presents the results of scheduling three clients with a 3 : 2 : 1 ticket

ratio for 100 allocations. The dashed lines represent the ideal allocations for each client. It is

clear from Figure 4-1(a) that lottery scheduling exhibits significant variability at this time scale,

due to the algorithm’s inherent use of randomization. The results for multi-winner lottery

scheduling with nw = 4, depicted in Figure 4-1(b), demonstrate reduced variability for the

clients with large ticket shares. Figures 4-1(c) and 4-1(d) indicate that deterministic stride

scheduling and hierarchical stride scheduling both produce the same precise periodic behavior:

A, B, A, A, B, C.

The remainder of this section explores the behavior of these four scheduling mechanisms in

more detail, under a variety of conditions. Throughput accuracy and response-time variability

are used as the primary metrics for evaluating performance. Ideally, throughput error and

response-time variability should both be minimized. However, these goals can conflict for

many distributions of tickets to clients, resulting in different tradeoffs for the various scheduling

techniques. For example, hierarchical stride scheduling generally minimizes throughput error,

but may exhibit highly variable response times for some ticket distributions.

Although a large amount of data is presented, a regular structure has been imposed to

facilitate comparisons. Figures that include results for multiple mechanisms generally consist

of four rows of graphs in a fixed top-to-bottom order: lottery scheduling (L), multi-winner
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Figure 4-1: Example Simulation Results. Simulation results for 100 allocations involving three
clients, A, B, and C , with a 3 : 2 : 1 allocation. The dashed lines represent ideal proportional-share
behavior. (a) Randomized lottery scheduler. (b) Hybrid multi-winner lottery scheduler with n

w
= 4.

(c) Deterministic stride scheduler. (d) Hierarchical stride scheduler.
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lottery scheduling (M), stride scheduling (S), and hierarchical stride scheduling (H). Graphs

that appear in the same column are generally associated with the same client ticket allocation,

and allocations are arranged in a decreasing left-to-right order. A graph depicting results for a

client with T tickets under scheduling algorithm A that appears in Figure F will be referred to

as Figure F (A; T ).

4.2.1 Static Environment

Before considering the effects of dynamic changes, baseline behaviors are examined for a

static environment. A static environment consists of a fixed set of clients, each of which has a

constant ticket allocation. The first set of simulations presented involve only two clients; later

simulations probe the effects of introducing additional clients.

Two Clients

Figures 4-2 and 4-3 plot the absolute error1 and response-time distributions that result from

simulating two clients under each scheduling scheme. The data depicted is representative of

simulation results over a wide range of pairwise ratios. The 7 : 3 ticket ratio simulated in

Figure 4-2 is typical of small ratios, and the 13 : 1 allocation simulated in Figure 4-3 is typical

of large ratios.

The graphs that appear in the first column of Figures 4-2 and 4-3 plot the absolute error

observed over a series of 1000 allocations. The error for the randomized lottery scheduling

technique is averaged over 1000 separate runs, in order to quantify its expected behavior. The

error values observed for lottery scheduling are approximately linear in
p
na, as demonstrated

by Figures 4-2(L) and 4-3(L). Thus, as expected, lottery-scheduler error increases slowly with

na, indicating that accuracy steadily improves when error is measured as a percentage of na. It

may initially seem counterintuitive that the absolute error is considerably smaller for the 13 : 1

ratio than for the 7 : 3 ratio. The explanation for this effect is that the standard deviation for a

client’s actual allocation count is proportional to
q
p(1� p), where p is the client’s probability

of winning a single lottery. For the 13 : 1 ratio, this value is roughly 0.26, while it is about 0.46

for the 7 : 3 allocation. Thus, the expected absolute error is indeed smaller for the larger ratio.

However, when measured as a percentage of the number of allocations due to each client, the

error is largest for the single-ticket client under the 13 : 1 ratio.

Three separate error curves are presented for each multi-winner lottery scheduling graph,

corresponding to nw = 2, 4, and 8 winners. Because multi-winner lottery scheduling has a

1In this case the relative and absolute errors are identical, since there are only two clients.
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Figure 4-2: Static Environment, 7:3 Allocation. Simulation results for two clients with a static 7 : 3
ticket ratio under lottery scheduling, multi-winner lottery scheduling, stride scheduling, and hierarchical
stride scheduling. The first column graphs the absolute error measured for each mechanism over 1000
allocations. The second and third columns graph the response-time distributions for each client under
each mechanism over one million allocations.
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Figure 4-3: Static Environment, 13:1 Allocation. Simulation results for two clients with a
static 13 : 1 ticket ratio under lottery scheduling, multi-winner lottery scheduling, stride scheduling, and
hierarchical stride scheduling. The first column graphs the absolute error measured for each mechanism
over 1000 allocations. The second and third columns graph the response-time distributions for each
client under each mechanism over one million allocations.
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randomized component, each of these error curves is also an average over 1000 separate runs.

The error curves observed for the multi-winner lotteries have the same general shape as those

for a single-winner lottery. However, their absolute value is lower, often by a large amount. For

the 7 : 3 ratio in Figure 4-2(M), the reductions in error are about 25%, 50%, and 60% for nw =

2, 4, and 8, respectively. For the 13 : 1 ratio in Figure 4-3(M), the corresponding reductions are

approximately 3%, 10%, and 30%. As nw increases, the deterministic component of the multi-

winner lottery provides successively better approximations to the specified allocations. This

decreases random error, since a smaller fraction of allocations is determined stochastically. For

the 7 : 3 ratio, the deterministic approximation improves quickly, accounting for the decreasing

marginal improvements as nw increases. The larger 13 : 1 ratio exhibits the opposite behavior,

since the probability that the single-ticket client will be selected during a superquantum remains

below 50% until nw = 8. An even larger reduction in error would result for nw � 14.

Since stride scheduling and hierarchical stride scheduling are deterministic techniques, their

absolute error curves are each plotted for a single run. As expected, the error never exceeds

a single quantum, and drops to zero after each complete period – 10 quanta for the 7 : 3 ratio,

and 14 quanta for the 13 : 1 allocation. This periodic behavior is clearly visible on the small

insets associated with each graph. The results for both stride scheduling and hierarchical stride

scheduling are identical because there are only two clients, and therefore no opportunity for

aggregation under the hierarchical scheme.

The graphs that appear in the second and third columns of Figures 4-2 and 4-3 present

response-time distributions for each client over one million allocations. A logarithmic scale is

used for the vertical axis since response-time frequencies vary enormously across the different

scheduling mechanisms. Under lottery scheduling, client response times have a geometric

distribution, which appears linear on a logarithmic scale. The response-time distributions

for clients with small allocations have a much longer tail than those for clients with larger

allocations. This is because the standard deviation for a client’s response time is
q
(1� p)=p,

where p is the client’s probability of winning a single lottery. As p approaches 1, response-time

variability approaches zero; as p approaches 0, response-time variability becomes infinitely

large. For the 7 : 3 ratio shown in Figure 4-2(L), the response-time distribution for the larger

client drops off quickly, with a maximum of 12 quanta, while the maximum response time for

the smaller client is 49 quanta. Similarly, for the 13 : 1 ratio in Figure 4-3(L), the maximum

response time for the larger client is 6 quanta, but the maximum for the smaller client is off the

scale at 135 quanta.

The multi-winner lottery response-time distributions are plotted for nw = 4. With the 7 : 3

ratio depicted in Figure 4-2(M), this technique is extremely effective, reducing the maximum

response time from 49 to 7 quanta for the smaller client. With nw = 4, the deterministic

76



approximation to the 7 : 3 ratio is very successful. However, for the 13 : 1 ratio presented in

Figure 4-3(M), four winners are insufficient to provide any deterministic guarantees for the

smaller client. In fact, its maximum response time actually increases to 221 quanta, although

its overall distribution tightens slightly. The original single-winner distribution has a standard

deviation of � = 13:50 quanta, which is reduced to � = 12:05 quanta with four winners.

As mentioned earlier, both stride scheduling and hierarchical stride scheduling are iden-

tical when there are only two clients. These deterministic stride-based algorithms exhibit

dramatically less response-time variability than the randomized lottery-based algorithms. As

expected, for both of the pairwise ratios shown in Figures 4-2(S) and 4-3(S), client response

times never varied by more than a single quantum under stride scheduling. The worst-case

� = 13:50 quanta for the 13 : 1 ratio under lottery scheduling is completely eliminated under

stride scheduling – all response times for the small client are exactly 14 quanta. The worst-case

� = 2:79 quanta for the 7 : 3 ratio under lottery scheduling is smaller by a factor of five under

stride scheduling, with � = 0:47 quanta.

Several Clients

A wider range of scheduling behavior is possible when more than two clients are considered.

Figure 4-4 plots the absolute error for four clients with a 13 : 7 : 3 : 1 ticket allocation, and

Figure 4-5 graphs the corresponding response-time distributions for each client. The 13 : 7 : 3 : 1

ratio was selected to allow direct comparisons with the pairwise 7 : 3 and 13 : 1 ratios used in

Figures 4-2 and 4-3.

As expected, the client error curves for lottery scheduling shown in Figure 4-4(L) have

the same general shape, linear in
p
na, as the pairwise error curves in Figures 4-2(L) and

4-3(L). In general, lottery scheduling is insensitive to the number of clients; each client’s error

is determined solely by its own relative ticket share. However, the overall number of tickets

with four clients is larger than in either of the pairwise cases, so the associated reductions in

relative ticket shares are reflected in the client error curves. Recall that the standard deviation

for a client’s actual allocation is proportional to
q
p(1� p), where p is the client’s probability

of winning a single lottery. For the client in Figure 4-4(L,13), this value increases from

approximately 0.26 to 0.50, matching the near factor-of-two increase in the client’s absolute

error. The error for the client in Figure 4-4(L,7) remains roughly unchanged, since its per-

lottery win probability changes from 0.7 to about 0.29 � (1 � 0.7). The changes in absolute

error for the smaller clients also mirror the relative changes in the standard deviations for their

actual allocations.
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