
Modeling and Veri�cation of Randomized Distributed

Real-Time Systems

by

Roberto Segala

S.M., Electrical Engineering and Computer Science
Massachusetts Institute of Technology

(1992)
Diploma, Computer Science

Scuola Normale Superiore - Pisa
(1991)

Laurea, Computer Science
University of Pisa - Italy

(1991)

Submitted to the Department of Electrical Engineering and Computer Science
in partial ful�llment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1995

c
 Massachusetts Institute of Technology 1995

Signature of Author
Department of Electrical Engineering and Computer Science

May 15, 1995

Certi�ed by
Nancy A. Lynch

Professor of Computer Science
Thesis Supervisor

Accepted by
Frederic R. Morgenthaler

Chair, Departmental Committee on Graduate Students

2

Modeling and Veri�cation of Randomized Distributed Real-Time Systems

by
Roberto Segala

Submitted to the Department of Electrical Engineering and Computer Science

on May 15, 1995, in partial ful�llment of the

requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Randomization is an exceptional tool for the design of distributed algorithms, sometimes yield-

ing e�cient solutions to problems that are inherently complex, or even unsolvable, in the setting

of deterministic algorithms. However, this tool has a price: even simple randomized algorithms

can be extremely hard to verify and analyze.

This thesis addresses the problem of veri�cation of randomized distributed algorithms. We

consider the problem both from the theoretical and the practical perspective. Our theoretical

work builds a new mathematical model of randomized distributed computation; our practical

work develops techniques to be used for the actual veri�cation of randomized systems. Our

analysis involves both untimed and timed systems, so that real-time properties can be investi-

gated.

Our model for randomized distributed computation is an extension of labeled transition

systems. A probabilistic automaton is a state machine with transitions, where, unlike for labeled

transition systems, a transition from a state leads to a discrete probability distribution over pairs

consisting of a label and a state, rather than to a single label and a single state. A probabilistic

automaton contains pure nondeterministic behavior since from each state there can be several

transitions, and probabilistic behavior since once a transition is chosen the label that occurs and

the state that is reached are determined by a probability distribution. The resolution of pure

nondeterminism leads to probabilistic executions , which are Markov chain like structures. Once

the pure nondeterminism is resolved, the probabilistic behavior of a probabilistic automaton

can be studied.

The properties of a randomized algorithm are stated in terms of satisfying some other prop-

erty with a minimal or maximal probability no matter how the nondeterminism is resolved.

In stating the properties of an algorithm we also account for the possibility of imposing re-

strictions on the ways in which the nondeterminism is resolved (e.g., fair scheduling, oblivious

scheduling,: : :). We develop techniques to prove the correctness of some property by reducing

the problem to the veri�cation of properties of non-randomized systems. One technique is

based on coin lemmas , which state lower bounds on the probability that some chosen random

draws give some chosen outcomes no matter how the nondeterminism is resolved. We identify

a collection of progress statements which can be used to prove upper bounds to the expected

running time of an algorithm. The methods are applied to prove that the randomized dining

philosophers algorithm of Lehmann and Rabin guarantees progress in expected constant time

and that the randomized algorithm for agreement of Ben-Or guarantees agreement in expected

exponential time.

To ensure that our new model has strong mathematical foundations, we extend some of the

3

common semantics for labeled transition systems to the probabilistic framework. We de�ne a

compositional trace semantics where a trace is replaced by a probability distribution over traces,

called a trace distribution, and we extend the classical bisimulation and simulation relations in

both their strong and weak version. Furthermore, we de�ne probabilistic forward simulations ,

where a state is related to a probability distribution over states. All the simulation relations

are shown to be sound for the trace distribution semantics.

In summary, we obtain a framework that accounts for the classical theoretical results of

concurrent systems and that at the same time proves to be suitable for the actual veri�cation

of randomized distributed real-time systems. This double feature should lead eventually to the

easy extension of several veri�cation techniques that are currently available for non-randomized

distributed systems, thus rendering the analysis of randomized systems easier and more reliable.

Thesis Supervisor: Nancy A. Lynch

Title: Professor of Computer Science

Keywords: Automata, Distributed Algorithms, Formal Methods, Labeled Transition Systems,

Randomized Systems, Real-Time Systems, Veri�cation

4

Acknowledgements

Eight years ago, when I was getting my high school diploma from the Istituto Tecnico Industriale

G. Marconi in Verona, I did not know the meaning of the acronym PhD or even the meaning

of the acronym MIT. However, Maurizio Benedetti, my teacher of Computer Science, strongly

encouraged me to apply to the Scuola Normale Superiore of Pisa, a place I would have never

thought I was quali�ed for. If it were not for him I probably would not be here writing this

acknowledgements section. Also, my �rst grade teacher, Ines Martini, had an important role

in all of this: she is an exceptional person who was able to deal with a terrible kid like me and

make him into a person who does not hate school.

Thanks to Rocco De Nicola, my former thesis advisor, for the support that he gave me

during my education in Pisa and during my years as a student at MIT; thanks to Sanjoy Mitter

who introduced me to MIT and who continuously kept me away from the temptation to focus

on just one area of Computer Science.

Nancy Lynch, my advisor here at MIT, deserves strong recognition for the freedom she gave

me and for her patience in listening to my fuzzy conjectures, reading and correcting my drafts,

improving my English, giving suggestions all over, and most of all, allowing me to bene�t from

her experience. Whenever I got stuck on something I would invariantly hear her ask \how is it

going?", and I was surprised to discover how many times explaining my problems and answering

her questions was su�cient to get new ideas.

Albert Meyer was a second advisor for me. Although my research focus is the study of

theory for practice, I have always been attracted by nice and clean theoretical results, and

Albert was a great source. Several times I stopped by his o�ce, both for research questions

or to seek advice on my career choices. He has always been a great source of knowledge and

experience, and a great help.

Thanks to Butler Lampson and Albert Meyer for agreeing to be readers of the thesis.

Frits Vaandrager deserves a special thank since he is the person who started me on research.

He suggested the topic of my Master's thesis and he guided me during the project although

there was an ocean (I was in Italy, he was in the States) between us. It is from my experience

with Frits that my idea of studying theory for practice took shape.

The friendly environment here at MIT was a great stimulus for my research. I had many

discussions with Rainer Gawlick, Anna Pogosyants, Isaac Saias, and J�rgen S�gaard-Andersen,

that lead to some of the papers that I have written in these years. Thanks to all of them.

Rainer was also a great advisor for my English and for my understanding of American culture,

which sometimes is not so easy to grasp if you are European.

Thanks also go to David Gupta, Alex Russell and Ravi Sundaram for all the help that they

gave me on measure theory. Thanks to Mark Tuttle for valuable comments that in
uenced the

presentation of the results of this thesis.

I want to thank several other fellow students and post docs, some of whom are now in

better positions, for the help that in various occasions they gave me and for a lot of fun that we

had together. In particular, thanks go to Javed Aslam, Margrit Betke, Lenore Cowen, Rosario

Gennaro, Shai Halevi, Trevor Jim, Angelika Leeb, Gunter Leeb, Arthur Lent, Victor Luchangco,

Daniele Micciancio, Nir Shavit, Mona Singh, Mark Smith, David Wald, H.B. Weinberg. Thanks

also to Be Hubbard, our \mum", Joanne Talbot, our group secretary, and Scott Blomquist, our

system manager, for their valuable support.

5

Thanks also go to some other \outsiders" who had an impact on this work. In particular,

thanks go to Scott Smolka for useful discussions and for providing me with a rich bibliography

on randomized computation, and thanks go to Lenore Zuck for useful discussions on veri�cation

techniques.

Last, but not least, a very special thank to my parents, Claudio and Luciana, and to my

�ance Arianna for all the love and support that they gave me. This thesis is dedicated to them.

The research in this thesis was supported by NSF under grants CCR-89-15206 and CCR-92-

25124, by DARPA under contracts N00014-89-J-1988 and N00014-92-J-4033, and by AFOSR-

ONR under contracts N00014-91-J-1046 and F49620-94-1-0199.

6

Contents

1 Introduction 13

1.1 The Challenge of Randomization : 13

1.1.1 Modeling : 14

1.1.2 Veri�cation : 15

1.2 Organization of the Thesis : 18

1.3 Reading the Thesis : 22

2 An Overview of Related Work 23

2.1 Reactive, Generative and Strati�ed Models : 23

2.1.1 Reactive Model : 24

2.1.2 Generative and Strati�ed Models : 25

2.2 Models based on Testing : 26

2.3 Models with Nondeterminism and Denotational Models : : : : : : : : : : : : : : 28

2.3.1 Transitions with Sets of Probabilities : 28

2.3.2 Alternating Models : 28

2.3.3 Denotational Semantics : 28

2.4 Models with Real Time : 29

2.5 Veri�cation: Qualitative and Quantitative Methods : : : : : : : : : : : : : : : : : 29

2.5.1 Qualitative Method: Proof Techniques : 29

2.5.2 Qualitative Method: Model Checking : 30

2.5.3 Quantitative Method: Model Checking : 31

3 Preliminaries 33

3.1 Probability Theory : 33

3.1.1 Measurable Spaces : 33

3.1.2 Probability Measures and Probability Spaces : : : : : : : : : : : : : : : : 33

3.1.3 Extensions of a Measure : 34

3.1.4 Measurable Functions : 34

3.1.5 Induced Measures and Induced Measure Spaces : : : : : : : : : : : : : : : 35

3.1.6 Product of Measure Spaces : 35

3.1.7 Combination of Discrete Probability Spaces : : : : : : : : : : : : : : : : : 35

3.1.8 Conditional Probability : 36

3.1.9 Expected Values : 36

3.1.10 Notation : 37

3.2 Labeled Transition Systems : 37

7

3.2.1 Automata : 37

3.2.2 Executions : 39

3.2.3 Traces : 40

3.2.4 Trace Semantics : 40

3.2.5 Parallel Composition : 40

4 Probabilistic Automata 43

4.1 What we Need to Model : 43

4.2 The Basic Model : 46

4.2.1 Probabilistic Automata : 46

4.2.2 Combined Transitions : 47

4.2.3 Probabilistic Executions : 48

4.2.4 Notational Conventions : 51

4.2.5 Events : 52

4.2.6 Finite Probabilistic Executions, Pre�xes, Conditionals, and Su�xes : : : 55

4.2.7 Notation for Transitions : 58

4.3 Parallel Composition : 61

4.3.1 Parallel Composition of Simple Probabilistic Automata : : : : : : : : : : 61

4.3.2 Projection of Probabilistic Executions : 62

4.3.3 Parallel Composition for General Probabilistic Automata : : : : : : : : : 70

4.4 Other Useful Operators : 72

4.4.1 Action Renaming : 72

4.4.2 Action Hiding : 73

4.5 Discussion : 73

5 Direct Veri�cation: Stating a Property 75

5.1 The Method of Analysis : 75

5.2 Adversaries and Adversary Schemas : 79

5.2.1 Application of an Adversary to a Finite Execution Fragment : : : : : : : 80

5.2.2 Application of an Adversary to a Finite Probabilistic Execution Fragment 80

5.3 Event Schemas : 82

5.3.1 Concatenation of Event Schemas : 82

5.3.2 Execution-Based Event Schemas : 83

5.4 Probabilistic Statements : 84

5.4.1 The Concatenation Theorem : 84

5.5 Progress Statements : 85

5.5.1 Progress Statements with States : 86

5.5.2 Finite History Insensitivity : 86

5.5.3 The Concatenation Theorem : 87

5.5.4 Progress Statements with Actions : 88

5.5.5 Progress Statements with Probability 1 : : : : : : : : : : : : : : : : : : : 89

5.6 Adversaries with Restricted Power : 90

5.6.1 Execution-Based Adversary Schemas : 91

5.6.2 Adversaries with Partial On-Line Information : : : : : : : : : : : : : : : : 91

5.7 Deterministic versus Randomized Adversaries : 92

8

5.7.1 Execution-Based Adversary Schemas : 93

5.7.2 Execution-Based Adversary Schemas with Partial On-Line Information : 99

5.8 Probabilistic Statements without Adversaries : 99

5.9 Discussion : 100

6 Direct Veri�cation: Proving a Property 103

6.1 How to Prove the Validity of a Probabilistic Statement : : : : : : : : : : : : : : : 103

6.2 Some Simple Coin Lemmas : 104

6.2.1 First Occurrence of an Action : 106

6.2.2 First Occurrence of an Action among Many : : : : : : : : : : : : : : : : : 107

6.2.3 I-th Occurrence of an Action among Many : : : : : : : : : : : : : : : : : 109

6.2.4 Conjunction of Separate Coin Events : 109

6.3 Example: Randomized Dining Philosophers : 111

6.3.1 The Problem : 111

6.3.2 The Algorithm : 112

6.3.3 The High Level Proof : 114

6.3.4 The Low Level Proof : 116

6.4 General Coin Lemmas : 121

6.4.1 Conjunction of Separate Coin Events with Multiple Outcomes : : : : : : 121

6.4.2 A Generalized Coin Lemma : 124

6.5 Example: Randomized Agreement with Stopping Faults : : : : : : : : : : : : : : 126

6.5.1 The Problem : 126

6.5.2 The Algorithm : 127

6.5.3 The High Level Proof : 128

6.5.4 The Low Level Proof : 129

6.6 Example: The Toy Resource Allocation Protocol : : : : : : : : : : : : : : : : : : 130

6.7 The Partition Technique : 132

6.8 Discussion : 133

7 Hierarchical Veri�cation: Trace Distributions 135

7.1 Introduction : 135

7.1.1 Observational Semantics : 135

7.1.2 Substitutivity and Compositionality : 136

7.1.3 The Objective of this Chapter : 137

7.2 Trace Distributions : 138

7.3 Trace Distribution Preorder : 141

7.4 Trace Distribution Precongruence : 143

7.5 Alternative Characterizations of the Trace Distribution Precongruence : : : : : : 145

7.5.1 The Principal Context : 145

7.5.2 High Level Proof : 146

7.5.3 Detailed Proof : 147

7.6 Discussion : 165

9

8 Hierarchical Veri�cation: Simulations 167

8.1 Introduction : 167

8.2 Strong Simulations : 167

8.3 Strong Probabilistic Simulations : 171

8.4 Weak Probabilistic Simulations : 172

8.5 Probabilistic Forward Simulations : 172

8.6 The Execution Correspondence Theorem : 176

8.6.1 Fringes : 177

8.6.2 Execution Correspondence Structure : 177

8.6.3 The Main Theorem : 179

8.6.4 Transitivity of Probabilistic Forward Simulations : : : : : : : : : : : : : : 189

8.7 Probabilistic Forward Simulations and Trace Distributions : : : : : : : : : : : : : 193

8.8 Discussion : 194

9 Probabilistic Timed Automata 195

9.1 Adding Time : 195

9.2 The Timed Model : 196

9.2.1 Probabilistic Timed Automata : 196

9.2.2 Timed Executions : 198

9.3 Probabilistic Timed Executions : 200

9.3.1 Probabilistic Time-Enriched Executions : : : : : : : : : : : : : : : : : : : 201

9.3.2 Probabilistic Timed Executions : 204

9.3.3 Probabilistic Executions versus Probabilistic Timed Executions : : : : : : 209

9.4 Moves : 217

9.5 Parallel Composition : 218

9.6 Discussion : 222

10 Direct Veri�cation: Time Complexity 223

10.1 General Considerations About Time : 223

10.2 Adversaries : 224

10.3 Event Schemas : 224

10.4 Timed Progress Statements : 226

10.5 Time Complexity : 226

10.5.1 Expected Time of Success : 227

10.5.2 From Timed Progress Statements to Expected Times : : : : : : : : : : : : 227

10.6 Example: Randomized Dining Philosophers : 232

10.6.1 Representation of the Algorithm : 232

10.6.2 The High Level Proof : 233

10.6.3 The Low Level Proof : 233

10.7 Abstract Complexity Measures : 238

10.8 Example: Randomized Agreement with Time : 240

10.9 Discussion : 242

10

11 Hierarchical Veri�cation: Timed Trace Distributions 243

11.1 Introduction : 243

11.2 Timed Traces : 243

11.3 Timed Trace Distributions : 246

11.3.1 Three ways to De�ne Timed Trace Distributions : : : : : : : : : : : : : : 246

11.3.2 Timed Trace Distribution of a Trace Distribution : : : : : : : : : : : : : : 248

11.3.3 Action Restriction : 249

11.4 Timed Trace Distribution Precongruence : 249

11.5 Alternative Characterizations : 250

12 Hierarchical Veri�cation: Timed Simulations 257

12.1 Introduction : 257

12.2 Probabilistic Timed Simulations : 257

12.3 Probabilistic Timed Forward Simulations : 258

12.4 The Execution Correspondence Theorem: Timed Version : : : : : : : : : : : : : 259

12.4.1 Timed Execution Correspondence Structure : : : : : : : : : : : : : : : : : 259

12.4.2 The Main Theorem : 260

12.4.3 Transitivity of Probabilistic Timed Forward Simulations : : : : : : : : : : 260

12.5 Soundness for Timed Trace Distributions : 260

13 Conclusion 263

13.1 Have we Met the Challenge? : 263

13.2 The Challenge Continues : 264

13.2.1 Discrete versus Continuous Distributions : : : : : : : : : : : : : : : : : : 264

13.2.2 Simpli�ed Models : 264

13.2.3 Beyond Simple Probabilistic Automata : : : : : : : : : : : : : : : : : : : 265

13.2.4 Completeness of the Simulation Method : : : : : : : : : : : : : : : : : : : 266

13.2.5 Testing Probabilistic Automata : 266

13.2.6 Liveness in Probabilistic Automata : 266

13.2.7 Temporal Logics for Probabilistic Systems : : : : : : : : : : : : : : : : : : 267

13.2.8 More Algorithms to Verify : 267

13.2.9 Automatic Veri�cation of Randomized Systems : : : : : : : : : : : : : : : 268

13.3 The Conclusion's Conclusion : 268

Bibliography 269

Table of Symbols 277

11

12

Chapter 1

Introduction

1.1 The Challenge of Randomization

In 1976 Rabin published a paper titled Probabilistic Algorithms [Rab76] where he presented

e�cient algorithms for two well-known problems: Nearest Neighbors , a problem in computa-

tional geometry, and Primality Testing , the problem of determining whether a number is prime.

The surprising aspect of Rabin's paper was that the algorithms for Nearest Neighbors and for

Primality Testing were e�cient, and the key insight was the use of randomized algorithms,

i.e., algorithms that can
ip fair coins. Rabin's paper was the beginning of a new trend of

research aimed at using randomization to improve the complexity of existing algorithms. It is

currently conjectured that there are no e�cient deterministic algorithms for Nearest Neighbors

and Primality Testing.

Another considerable achievement came in 1982, when Rabin [Rab82] proposed a solution

to a problem in distributed computing which was known to be unsolvable without random-

ization. Speci�cally, Rabin proposed a randomized distributed algorithm for mutual exclusion

between n processes that guarantees no-lockout (some process eventually gets to the critical

region whenever some process tries to get to the critical region) and uses a test-and-set shared

variable with O(logn) values. On the other hand, Burns, Fisher, Jackson, Lynch and Patter-

son [BFJ+82] showed that
(n) values are necessary for a deterministic distributed algorithm.

Since then, several other randomized distributed algorithms were proposed in the literature,

each one breaking impossibility results proved for deterministic distributed algorithms. Several

surveys of randomized algorithms are currently available; among those we cite [Kar90, GSB94].

The bottom line is that randomization has proved to be exceptionally useful for problems in

distributed computation, and it is slowly making its way into practical applications. However,

randomization in distributed computation leaves us with a challenge whose importance increases

as the complexity of algorithms increases:

\How can we analyze randomized distributed algorithms? In particular, how can we

convince ourselves that a randomized distributed algorithm works correctly?"

The analysis of non-randomized distributed systems is challenging already, due to a phenomenon

called nondeterminism. Speci�cally, whenever two systems run concurrently, the relative speeds

of the two systems are not known in general, and thus it is not possible to establish a priori

the order in which the systems complete their tasks. On the other hand, the ordering of the

13

completion of di�erent tasks may be fundamental for the global correctness of a system, since,

for example, a process that completes a task may prevent another process from completing

its task. The structure of the possible evolutions of a system can become intricate quickly,

justifying the statement \there is rather a large body of sad experience to indicate that a

concurrent program can withstand very careful scrutiny without revealing its errors" [OL82].

The introduction of randomization makes the problem even more challenging since two

kinds of nondeterminism arise. We call them pure nondeterminism and probabilistic nondeter-

minism. Pure nondeterminism is the nondeterminism due to the relative speeds of di�erent

processes; probabilistic nondeterminism is the nondeterminism due to the result of some ran-

dom draw. Alternatively, we refer to pure nondeterminism as the nondeterministic behavior of

a system and to probabilistic nondeterminism as the probabilistic behavior of a system. The

main di�culty with randomized distributed algorithms is that the interplay between probabil-

ity and nondeterminism can create subtle and unexpected dependencies between probabilistic

events; the experience with randomized distributed algorithms shows that \intuition often fails

to grasp the full intricacy of the algorithm" [PZ86], and \proofs of correctness for probabilistic

distributed systems are extremely slippery" [LR81].

In order to meet the challenge it is necessary to address two main problems.

� Modeling: How do we represent a randomized distributed system?

� Veri�cation: Given the model, how do we verify the properties of a system?

The main objective of this thesis is to make progress towards answering these two questions.

1.1.1 Modeling

First of all we need a collection of mathematical objects that describe a randomized algorithm

and its behavior, i.e., we need a formal model for randomized distributed computation. The

model needs to be su�ciently expressive to be able to describe the crucial aspects of randomized

distributed computation. Since the interplay between probability and nondeterminism is one

of the main sources of problems for the analysis of an algorithm, a �rst principle guiding our

theory is the following:

1. The model should distinguish clearly between probability and nondeterminism.

That is, if either Alice or Bob is allowed to
ip a coin, the choice of who is
ipping a coin is

nondeterministic, while the outcome of the coin
ip is probabilistic.

Since the model is to be used for the actual analysis of algorithms, the model should allow

the description of randomized systems in a natural way. Thus, our second guiding principle is

the following:

2. The model should correspond to our natural intuition of a randomized system.

That is, mathematical elegance is undoubtedly important, but since part of the veri�cation

process for an algorithm involves the representation of the algorithm itself within the formal

model, the chance of making errors is reduced if the model corresponds closely to our view of

a randomized algorithm. A reasonable tradeo� between theory and practice is necessary.

14

Our main intuition for a computer system, distributed or not, is as a state machine that

computes by moving from one state to another state. This intuition leads to the idea of Labeled

Transition Systems (LTS) [Kel76, Plo81]. A labeled transition system is a state machine with

labels associated with the transitions (the moves from one state to another state). Labeled

transition systems have been used successfully for the modeling of ordinary distributed systems

[Mil89, Jon91, LV91, LT87, GSSL94], and for their veri�cation [WLL88, SLL93, SGG+93,

BPV94]; in this case the labels are used to model communication between several systems. Due

to the wide use of labeled transition systems, the extensive collection of veri�cation techniques

available, and the way in which labeled transition systems correspond to our intuition of a

distributed system, two other guiding principles for the thesis are the following:

3. The new model should extend labeled transition systems.

4. The extension of labeled transition systems should be conservative, i.e., whenever a system

does not contain any random choices, our new system should reduce to an ordinary labeled

transition system.

In other words our model is an extension of the labeled transition system model so that ordinary

non-randomized systems turn out to be a special case of randomized systems. Similarly, all the

concepts that we de�ne on randomized systems are generalizations of corresponding concepts

of ordinary non-randomized systems. In this way all the techniques available should generalize

easily without the need to develop completely new and independent techniques. Throughout

the thesis we refer to labeled transition systems as automata and to their probabilistic extension

as probabilistic automata.

1.1.2 Veri�cation

Once the model is built, our primary goal is to use the model to describe the properties that

a generic randomized algorithm should satisfy. If the model is well designed, the properties

should be easy to state. Then, our second goal is to develop general techniques that can be

used for veri�cation.

We investigate veri�cation techniques from two perspectives. On one hand we formalize

some of the kinds of the informal arguments that usually appear in existing papers; on the

other hand we extend existing abstract veri�cation techniques for labeled transition systems

to the probabilistic framework. Examples of abstract techniques include the analysis of traces

[Hoa85], which are ordered sequences of labels that can occur during the evolution of a system,

and of simulation relations [Mil89, Jon91, LV91], which are relations between the states of

two systems such that one system can simulate the transitions of the other via the simulation

relation. To provide some intuition for traces and simulations, Figure 1-1 represents three

labeled transition systems, denoted by A1; A2, and A3. The empty sequence and the sequences

a and ab are the traces of A1; A2, and A3. For example, a computation that leads to ab is the

one that starts from s0, moves to s1, and then to s3. The dotted lines from one state to another

state (the arrows identify the from-to property) are examples of simulation relations from one

automaton to the other. For example, consider the simulation relation from A3 to A2. State s0
of A3 is related to state s0 of A2; states s1 and s2 of A3 are related to state s1 of A2; state s3
of A3 is related to state s3 of A2. The transition of A3 from s0 to s2 with action a is simulated

in A2 by the transition from s0 to s1 with label a. There is a strong simulation also from A2

15

s0

s1 s2

s3 s4

a a

b b

s0

s1

s3

a

b

s0

s1 s2

s3

a a

b

A1 A2 A3

Figure 1-1: Simulation relations for automata.

to A3 (each state si of A2 is related to state si of A3), from A1 to A2, and from A2 to A1.

There is an even stronger relation between A1 and A2, which is called a bisimulation and is

represented by the double-arrow dotted lines between the states of A1 and A2. A bisimulation

is an equivalence relation between the states of two automata. In this case each automaton can

simulate the transitions of the other via the bisimulation relation.

Direct Veri�cation

In the description of a randomized distributed algorithm pure nondeterminism represents the

undetermined part of its behavior, namely, in what order the processes are scheduled. Schedul-

ing processes is the activity of removing the nondeterminism, and the object that does the

scheduling is usually referred to as a scheduler or an adversary . The intuition behind the name

\adversary" is in proving the correctness of an algorithm a scheduler is viewed as a malicious

entity that degrades the performance of the system as much as possible.

Once the nondeterminism is removed, a system looks like a Markov chain, and thus it is

possible to reason about probabilities. A common argument is then

\no matter how the scheduler acts, the probability that some good property holds is

at least p."

Actually, in most of the existing work p is 1, since the proofs are easier to carry out in this case.

In this thesis we are interested in every p since we are concerned also with the time complexity

of an algorithm. Throughout the thesis it will become clear why we need every p for the study

of time complexity.

One of our major goals is to remove from the informal arguments of correctness all \danger-

ous" statements, i.e., all statements that rely solely on intuition rather than on actual deduc-

tions, and yet keep the structure of a proof simple. In other words, we want to provide tools

that allow people to argue as before with a signi�cantly higher con�dence that what they say is

correct. Then, we want to develop techniques that allow us to decompose the veri�cation task

of complex properties into simpler veri�cation tasks. This feature is important for scalability.

Here we give examples of two issues that we believe to be important.

� Make sure that you know what probability space you are working in. Or, at least, make

sure that you are working in a probability space. This is a rule of thumb that is valid in

other �elds like Information Theory and Detection Theory. Probability is very tricky. The

16

fact that a speci�c probability space was not identi�ed was the reason for a bug discovered

by Saias [Sai92] in the original algorithm of Rabin [Rab82], later �xed by Kushilevitz and

Rabin [KR92]. Of course, in order to make sure we know what probability spaces we are

working in, we need some easy mechanisms to identify those probability spaces. Such

mechanisms were not available in 1982.

� Avoid arguments of the kind \now the worst thing that can happen is the following."

These arguments are usually based on the intuition that the designers have about their

own algorithm. Speci�cally, as has happened in the past, the designers argue based on

worst cases they can think of rather than the actual worst case. What is missing is a

proof showing that the worst case has been identi�ed. A much better statement would

be \no matter what happens, something else will happen", since it does not require us to

identify the worst scenario. Using our methodology, Aggarwal [Agg94] discovered a bug

in an algorithm designed by himself and Kutten [AK93] which was due to an argument of

the kind cited above. Similarly, we discovered a bug in the timing analysis of the mutual

exclusion algorithm of Pnueli and Zuck [PZ86]. This bug arose for the same reason.

The reader familiar with existing work, and in particular familiar with model checking, may

be a bit puzzled at this point. There is a considerable amount of work on model checking

of randomized distributed systems, and yet we are introducing new techniques. Furthermore,

although there is some ongoing work on automating part of the proof methods developed in this

thesis [PS95], we do not address any decidability issue here. Our favorite analogy to justify our

approach is that we view model checking as the program \Mathematica", a popular program

for symbolic manipulation of analytic expressions. If we are given a simple analytical problem,

we can use Mathematica to get the solution from a computer. On the other hand, if we have

a complex analytical problem, say a complex function that we have de�ned, and we want to

verify that it respects some speci�c constraints, or maybe we want to �nd the constraints, then

things are very di�erent, since the problem in general is undecidable, i.e., not solvable by a

computer. We can plot part of the given function using Mathematica and have a rough idea of

whether it satis�es the desired constraints. If the plot shows that the function violates some

of the constraints, then we have to change either the function or the constraints; if the plot

shows that the function does not violate the constraints, then we can start to use all the tools

of analysis to prove that the given function satis�es the constraints. In this way Mathematica

saves us a lot of time. In using the analytical tools we need to use our creativity and our

intuition about the problem so that we can solve its undecidable part. We view our research as

building the analytical tools.

Simulations

The study of traces and simulations carried out in the thesis contributes more directly to theory

than to practice. In particular, we do not give any examples of veri�cation using simulations.

However, due to the success that simulation relations have had for the veri�cation of ordinary

labeled transition systems, it is likely that the same methods will also work for randomized

systems.

A considerable amount of research has been carried out in extending trace semantics and

simulation relations to the probabilistic case, especially within process algebras [Hoa85, Mil89,

17

BW90]; however, most of the existing literature does not address pure nondeterminism, and

thus it has limited practical applicability. We believe it is important to have a model that is

both useful for realistic problems and accounts for the existing theoretical work. In particu-

lar, based on some of the interpretations that are given to nondeterminism within ordinary

automata, we realize that, also in the probabilistic case, pure nondeterminism can be used to

express much more than just the relative speeds of processes running concurrently. Speci�cally,

nondeterminism can be used to model the following phenomena.

1. Scheduling freedom. This is the classical use of nondeterminism, where several processes

run in parallel and there is freedom in the choice of which process performs the next

transition.

2. External environment . Some of the labels can represent communication events due to the

action of some external user, or more generally, to the action of an external environment .

In this case nondeterminism models the arbitrary behavior of the external environment,

which is chosen by an adversary.

3. Implementation Freedom. A probabilistic automaton is viewed as a speci�cation, and

nondeterminism represents implementation freedom. That is, if from some state there

are two transitions that can be chosen nondeterministically, then an implementation can

have just one of the two transitions. In this case an adversary chooses the implementation

that is used.

It is important to recognize that, in the labeled transition system model, the three uses of

nondeterminism described above can coexist within the same automaton. It is the speci�c

interpretation that is given to the labels that determines what is expressed by nondeterminism

at each point.

1.2 Organization of the Thesis

The thesis is divided in two main parts: the �rst part deals with the untimed model and the

second part deals with the timed model. The second part relies heavily on the �rst part and

adds a collection of results that are speci�c to the analysis of real-time properties. We describe

the technical contributions of the thesis chapter by chapter.

An Overview of Related Work. Chapter 2 gives an extensive overview of existing work

on modeling and veri�cation of randomized distributed systems.

Preliminaries. Chapter 3 gives the basics of probability theory that are necessary to under-

stand the thesis and gives an overview of the labeled transition systems model. All the topics

covered are standard, but some of the notation is speci�c to this thesis.

Probabilistic Automata. Chapter 4 presents the basic probabilistic model. A probabilistic

automaton is a state machine whose transitions lead to a probability distribution over the labels

that can occur and the new state that is reached. Thus, a transition describes the probabilistic

behavior of a probabilistic automaton, while the choice of which transition to perform describes

18

the nondeterministic behavior of a probabilistic automaton. A computation of a probabilistic

automaton, called a probabilistic execution, is the result of resolving the nondeterminism in a

probabilistic automaton, i.e., the result of choosing a transition, possibly using randomization,

from every point. A probabilistic execution is described essentially by an in�nite tree with

probabilities associated with its edges. On such a tree it is possible to de�ne a probability

space, which is the object through which the probabilistic properties of the computation can

be studied. We extend the notions of �niteness, pre�x and su�x of ordinary executions to

the probabilistic framework and we extend the parallel composition operator. Finally, we show

how to project a probabilistic execution of a compound probabilistic automaton onto one of

its components and we show that the result is a probabilistic execution of the component.

Essentially, we show that the properties of ordinary automata are preserved in the probabilistic

framework. The probabilistic model is an extension of ordinary automata since an ordinary

automaton can be viewed as a probabilistic automaton where each transition leads just to one

action and one state.

Direct Veri�cation: Stating a Property. Chapter 5 shows how to formalize commonly

used statements about randomized algorithms and shows how such formal statements can be

manipulated. We start by formalizing the idea of an adversary , i.e., the entity that resolves

the nondeterminism of a system in a malicious way. An adversary is a function that, given

the past history of a system, chooses the next transition to be scheduled, possibly using ran-

domization. The result of the interaction between an adversary and a probabilistic automaton

is a probabilistic execution, on which it is possible to study probabilistic properties. Thus,

given a collection of adversaries and a speci�c property, it is possible to establish a bound on

the probability that the given property is satis�ed under any of the given adversaries. We call

such bound statements probabilistic statements . We show how probabilistic statements can be

combined together to yield more complex statements, thus allowing for some form of compo-

sitional veri�cation. We introduce a special kind of probabilistic statement, called a progress

statement , which is a probabilistic extension of the leads-to operator of UNITY [CM88]. Infor-

mally, a progress statement says that if a system is started from some state in a set of states

U , then, no matter what adversary is used, a state in some other set of states U 0 is reached

with some minimum probability p. Progress statements can be combined together under some

general conditions on the class of adversaries that can be used.

Finally, we investigate the relationship between deterministic adversaries (i.e., adversaries

that cannot use randomness in their choices) and general adversaries. We show that for a large

class of collections of adversaries and for a large class of properties it is su�cient to analyze

only deterministic adversaries in order to derive statements that concern general adversaries.

This result is useful in simplifying the analysis of a randomized algorithm.

Direct Veri�cation: Proving a Property. Chapter 6 shows how to prove the validity

of a probabilistic statement from scratch. We introduce a collection of coin lemmas , which

capture a common informal argument on probabilistic algorithms. Speci�cally, for many proofs

in the literature the intuition behind the correctness of an algorithm is based on the following

fact: if some speci�c random draws give some speci�c results, then the algorithm guarantees

success. Then, the problem is reduced to showing that, no matter what the adversary does,

the speci�c random draws give the speci�c results with some minimum probability. The coin

19

lemmas can be used to show that the speci�c random draws satisfy the minimum probability

requirement; then, the problem is reduced to verifying properties of a system that does not

contain probability at all. Factoring out the probability from a problem helps considerably in

removing errors due to unexpected dependencies.

We illustrate the method by verifying the correctness of the randomized dining philosophers

algorithm of Lehmann and Rabin [LR81] and the algorithm for randomized agreement with

stopping faults of Ben-Or [BO83]. In both cases the correctness proof is carried out by proving

a collection of progress statements using some coin lemmas.

Finally, we suggest another technique, called the partition technique, that departs consid-

erably from the coin lemmas and that appears to be useful in some cases. We illustrate the

partition technique on a toy resource allocation protocol, which is one of the guiding examples

throughout Chapters 5 and 6.

Hierarchical Veri�cation: Trace Distributions. Chapter 7 extends the trace-based se-

mantics of ordinary automata [Hoa85] to the probabilistic framework. A trace is a ordered

sequence of labels that occur in an execution; a trace distribution is the probability distribu-

tion on traces induced by a probabilistic execution. We extend the trace preorder of ordinary

automata (inclusion of traces) to the probabilistic framework by de�ning the trace distribution

preorder . However, the trace distribution preorder is not preserved by the parallel composition

operator, i.e., it is not a precongruence. Thus, we de�ne the trace distribution precongruence

as the coarsest precongruence that is contained in the trace distribution preorder. Finally, we

show that there is an elementary probabilistic automaton called the principal context that dis-

tinguishes all the probabilistic automata that are not in the trace distribution precongruence

relation. This leads us to an alternative characterization of the trace distribution precongruence

as inclusion of principal trace distributions .

Hierarchical Veri�cation: Simulations. Chapter 8 extends the veri�cation method based

on simulation relations to the probabilistic framework. Informally, a simulation relation from

one automaton to another automaton is a relation between the states of the two automata that

allows us to embed the transition relation of one automaton in the other automaton. In the

probabilistic framework a simulation relation is still a relation between states; however, since

a transition leads to a probability distribution over states, in order to say that a simulation

relation embeds the transition relation of a probabilistic automaton into another probabilistic

automaton we need to extend a relation de�ned over states to a relation de�ned over probabil-

ity distributions over states. We generalize the strong and weak bisimulation and simulation

relations of Milner, Jonsson, Lynch and Vaandrager [Mil89, Jon91, LV91] to the probabilistic

framework. Then, we introduce a coarser simulation relation, called a probabilistic forward

simulation, where a state is related to a probability distribution over states rather than to a

single state. We prove an execution correspondence theorem which, given a simulation relation

from one probabilistic automaton to another probabilistic automaton, establishes a strong cor-

respondence between each probabilistic execution of the �rst probabilistic automaton and one

of the probabilistic executions of the second automaton. Based on the execution correspon-

dence theorem, we show that each of the relations presented in the chapter is sound for the

trace distribution precongruence. Thus, simulation relations can be used as a sound technique

to prove principal trace distribution inclusion.

20

Probabilistic Timed Automata. Chapter 9 starts the second part of the thesis. We extend

probabilistic automata with time following the approach of Lynch and Vaandrager [LV95], where

passage of time is modeled by means of transitions labeled with positive real numbers. In order

to use most of the untimed theory, we force time-passage transition not to be probabilistic.

We extend probabilistic executions to the timed framework, leading to probabilistic timed

executions, and we show the relationship between probabilistic executions and probabilistic

timed executions. The main idea is that in several circumstances it is su�cient to analyze the

probabilistic executions of a system in order to study its real-time behavior.

Direct Veri�cation: Time Complexity. Chapter 10 introduces new techniques for the

veri�cation of real-time properties of a randomized algorithm. The techniques of Chapter 5

still apply; however, due to the presence of time, it is possible to study the time complexity

of an algorithm. We augment the progress statements of Chapter 5 with an upper bound t to

state the following: if a system is started from some state in a set of states U , then, no matter

what adversary is used, a state of some other set of states U 0 is reached within time t with

some minimum probability p. Based on these timed progress statements , we show how to derive

upper bounds on the expected time to reach some set of states. We illustrate the technique

by showing that the randomized dining philosophers algorithm of Lehmann and Rabin [LR81]

guarantees progress within expected constant time.

By extending the technique for the analysis of expected time, we show how to derive bounds

on more abstract notions of complexity. In particular, we consider the algorithm for randomized

agreement of Ben-Or as an example. The algorithm of Ben-Or runs in stages. From the way

the algorithm is structured, it is not possible to give meaningful bounds on the time it takes

to make progress from any reachable state. However, using abstract complexities, it is easy

to prove an upper bound on the expected number of stages that are necessary before reaching

agreement. Once an upper bound on the expected number of stages is derived, it is easy to

derive an upper bound on the expected time to reach agreement.

Hierarchical Veri�cation: Timed Trace Distributions and Timed Simulations. Chap-

ters 11 and 12 extend the trace distribution precongruence and the simulation relations of the

untimed framework to the timed framework. A trace is replaced by a timed trace, where a

timed trace is a sequence of labels paired with their time of occurrence plus a limit time. The

timed trace distribution precongruence is characterized by a timed principal context , which is

the principal context augmented with arbitrary time-passage transitions. All the timed simu-

lation relations are shown to be sound for the timed trace distribution precongruence. All the

results are proved by reducing the problem to the untimed framework.

Conclusion. Chapter 13 gives some concluding remarks and several suggestions for further

work. Although this thesis builds a model for randomized computation and shows that it is

su�ciently powerful for the analysis of randomized distributed real-time algorithms, it just

discovers the tip of the iceberg. We propose a methodology for the analysis of randomization,

and we give several examples of the application of such methodology; however, there are several

other ways to apply our methodology. It is very likely that new probabilistic statements, new

results to combine probabilistic statements, and new coin lemmas can be developed based on the

study of other algorithms; similarly, the fundamental idea behind the trace semantics that we

21

present can be used also for other kinds of observational semantics like failures [Hoa85, DH84].

We give hints on how it is possible to handle liveness within our model and state what we know

already. Furthermore, we give ideas of what is possible within restricted models where some

form of I/O distinction like in the work of Lynch and Tuttle [LT87] or some timing restriction

like in the work of Merritt, Modugno and Tuttle [MMT91] is imposed. Finally, we address the

issue of relaxing some of the restrictions that we impose on the timed model.

1.3 Reading the Thesis

The two parts of the thesis, the untimed and the timed part, proceed in parallel: each chapter of

the untimed part is a prerequisite for the corresponding chapter in the timed part. Each part is

subdivided further into two parts: the direct veri�cation and the hierarchical veri�cation. The

two parts can be read almost independently, although some knowledge of the direct veri�cation

method can be of help in reading the hierarchical method. The direct method is focused mainly

on veri�cation of algorithms, while the hierarchical method is focused mainly on the theoretical

aspects of the problem. Further research should show how the hierarchical method can be of

signi�cant help for the analysis of randomized algorithms.

Each chapter starts with an introductory section that gives the main motivations and an

overview of the content of the chapter. Usually, the more technical discussion is concentrated

at the end. The same structure is used for each section: the main result and short proofs are

at the beginning of each section, while the long proofs and the more technical details are given

at the end. A reader can skip the proofs and the most technical details on a �rst reading in

order to have a better global picture. It is also possible to read just Chapter 3 and the �rst

section (including subsections) of Chapters 4 to 12, and have a global view of the results of

the thesis. In a second reading, the interested reader can concentrate on the proofs and on the

technical de�nitions that are necessary for the proofs. The reader should keep in mind that

several proofs in the thesis are based on similar techniques. Such techniques are explained in

full detail only the �rst time they are used.

A reader interested only in the techniques for the direct veri�cation of algorithms and not

interested in the arguments that show the foundations of the model can avoid reading the proofs.

Moreover, such a reader can just glance over Section 4.2.6, and skip Sections 4.2.7, 4.3, and 4.4.

In the timed framework the reader interested just in the techniques for the direct veri�cation

of algorithms can skip all the comparison between the di�erent types of probabilistic timed

executions and concentrate more on the intuition behind the de�nition of a probabilistic timed

execution.

22

Chapter 2

An Overview of Related Work

In this chapter we give an extensive overview of existing work on modeling and veri�cation of

randomized distributed systems. We defer the comparison of our work with the existing work

to the end of each chapter. Some of the descriptions include technical terminology which may

be di�cult to understand for a reader not familiar with concurrency theory. Such a reader

should focus mainly on the high level ideas and not worry about the technical details. The rest

of the thesis presents our research without assuming any knowledge of concurrency theory. We

advise the reader not familiar with concurrency theory to read this chapter again after reading

the thesis.

There have been twomain research directions in the �eld of randomized distributed real-time

systems: one focused mainly on modeling issues using process algebras [Hoa85, Mil89, BW90]

and labeled transition systems [Kel76, Plo81] as the basic mathematical objects; the other

focused mainly on veri�cation using Markov chains as the basic model and temporal logic

arguments [Pnu82] and model checking [EC82, CES83] as the basic veri�cation technique. Most

of the results of the �rst of the research directions fail to model pure nondeterminism, while

the results of the second of the research directions model pure nondeterminism successfully, but

not in its full generality. As expressed at the end of Section 1.1.2, pure nondeterminism arises

only in the choice of what process is performing the next instruction at each moment. Below

we summarize the results achieved in both of the research directions. Furthermore, at the end

of each chapter we add a section where we explain how the results described in this section are

related to our research.

2.1 Reactive, Generative and Strati�ed Models

We present some of the existing work on modeling which is based on a classi�cation due to van

Glabbeek, Smolka, Ste�en and Tofts [GSST90]. They de�ne three types of processes: reactive,

generative, and strati�ed .

� Reactive model: Reactive processes consist of states and labeled transitions associated

with probabilities. The restriction imposed on a reactive process is that for each state the

sum of the probabilities of the transitions with the same label is 1.

� Generative model: Generative processes consist of states and labeled transitions associated

with probabilities. The restriction imposed on a generative process is that for each state

23

a ba b

1/81/89/163/161/4 3/4 1/2 1/2

a ba b

1/2

a a b b

1/23/41/4

3/4 1/4

Figure 2-1: Reactive, generative and strati�ed processes, from left to right.

either there are no outgoing transitions, or the sum of the probabilities of all the outgoing

transitions is 1.

� Strati�ed model: Strati�ed processes consist of states, unlabeled transitions associated

with probabilities, and labeled transitions. The restriction imposed on a strati�ed process

is that for each state either there is exactly one outgoing labeled transition, or all the

outgoing transitions are unlabeled and the sum of their probabilities is 1.

Figure 2-1 gives an example of a reactive, a generative, and a strati�ed process. Informally,

reactive processes specify for each label (also called action) the probability of reaching other

states; generative processes also give additional information concerning the relative probabili-

ties of the di�erent actions; strati�ed processes add some probabilistic structure to generative

processes. Observe that among the three models above only the reactive model has a struc-

ture that can be used to express some form of pure nondeterminism (what action to perform),

although in van Glabbeek et al. [GSST90] this issue is not considered.

2.1.1 Reactive Model

Rabin [Rab63] studies the theory of probabilistic automata, which are an instance of the reactive

model. He de�nes a notion of a language accepted by a probabilistic automaton relative to a

cut point � and shows that there are �nite state probabilistic automata that de�ne non-regular

languages.

Larsen and Skou [LS89, LS91] de�ne a bisimulation type semantics, called probabilistic

bisimulation, and a logic, called probabilistic model logic (PML), for reactive processes, and

they introduce a notion of testing based on sequential tests and a copying facility. They show

that two processes that satisfy the minimal probability assumption are probabilistically bisim-

ilar if and only if they satisfy exactly the same PML formulas, and that two processes that

satisfy the minimal probability assumption and that are not probabilistically bisimilar can be

distinguished through testing with a probability arbitrarily close to 1. The minimum proba-

bility assumption states that for every state the probability of each transition is either 0 or is

above some minimal value. This condition corresponds to the image-�niteness condition for

non-probabilistic processes. Bloom and Meyer [BM89] relate the notions of probabilistic and

non-probabilistic bisimilarity by showing that two non-probabilistic �nitely branching processes

P and Q are bisimilar if and only if there exists an assignment of probabilities to the transi-

tions of P and Q such that the corresponding reactive processes P 0 and Q0 are probabilistically

bisimilar.

Larsen and Skou [LS92] introduce a synchronous calculus for reactive processes where the

probabilistic behavior is obtained through a binary choice operator parameterized by a prob-

24

ability p. They de�ne a bisimulation relation on the new calculus, and they introduce a new

extended probabilistic logic (EPL) which extends PML in order to support decomposition with

respect to parallel composition. Both the probabilistic bisimulation and the extended proba-

bilistic logic are axiomatized.

2.1.2 Generative and Strati�ed Models

Giacalone, Jou and Smolka [GJS90] de�ne a process algebra for generative processes, called

PCCS, which can be seen as a probabilistic extension of Milner's SCCS [Mil93]. In PCCS two

processes synchronize at every transition regardless of the action that they perform. That is, if

one process performs a transition labeled with action a with probability pa and another process

performs a transition labeled with b with probability pb, then the two processes together can

perform a transition labeled with ab with probability papb. The authors provide an equational

theory for PCCS based on the probabilistic bisimulation of Larsen and Skou [LS89], and provide

an axiomatization for probabilistic bisimulation (the axiomatization is shown to be sound and

complete in [JS90]). Furthermore, the authors de�ne a notion of �-bisimulation, where two

processes can simulate each other's transition with a probability di�erence at most �. Based on

�-bisimulation, the authors de�ne a metric on generative processes.

Jou and Smolka [JS90] de�ne trace and failure equivalence for generative processes. They

show that, unlike for nondeterministic transition systems, maximality of traces and failures does

not increase the distinguishing power of trace and failure equivalence, where by maximality of

a trace we mean the probability to produce a speci�c trace and then terminate. More precisely,

knowing the probability of each �nite trace of a generative process gives enough information to

determine the probability that a �nite trace occurs leading to termination; similarly, knowing

the probability of every failure of a generative process gives enough information to determine

the probability of each maximal failure. Jou and Smolka show also that the trace and failure

equivalences are not congruences. Our probabilistic executions are essentially generative pro-

ceses, and our trace distributions are essentially the trace semantics of Jou and Smolka. In our

case the properties shown by Jou and Smolka follow directly from measure theory.

Van Glabbeek et al. [GSST90] state that the generative model is more general than the

reactive model in the sense that generative processes, in addition to the relative probabilities

of transitions with the same label, contain information about the relative probabilities of tran-

sitions with di�erent labels. They show also that the strati�ed model is a generalization of the

generative model in the sense that a probabilistic choice in the generative model is re�ned by

a structure of probabilistic choices in the strati�ed model. Formally, the authors give three

operational semantics to PCCS, one reactive, one generative, and one strati�ed, and show how

to project a strati�ed process into a generative process and how to project a generative process

into a reactive process, so that the operational semantics of PCCS commute with the projec-

tions. The reactive and generative processes of Figure 2-1 are the result of the projection of

the generative and strati�ed processes, respectively, of Figure 2-1. Finally, the authors de�ne

probabilistic bisimulation for the generative and for the strati�ed models and show that bisim-

ulation is a congruence in all the models and that bisimulation is preserved under projection

from one model to the other. The results of van Glabbeek et al. [GSST90], however, are based

on the fact that parallel composition is synchronous.

Tofts [Tof90] introduces a weighted synchronous calculus whose operational semantics resem-

25

bles the strati�ed model. The main di�erence is that the weights associated with the transitions

are not probabilities, but rather frequencies , and thus their sums are not required to be 1. Tofts

de�nes two bisimulation relations that are shown to be congruences. The �rst relation is sensi-

tive to the actual frequencies of the transitions leaving from a state, while the second relation

is sensitive only to the relative frequencies of the transitions leaving from a state. In particular,

the second relation coincides with the strati�ed bisimulation of van Glabbeek et al. [GSST90]

after normalizing to 1 the frequencies of the transitions that leave from every state. The ad-

vantage of Tofts' calculus is that it is not necessary to restrict the syntax of the expressions so

that the weights of the choices at any point sum to 1 (such a restriction is imposed in PCCS).

Moreover, it is possible to de�ne a special weight ! that expresses in�nite frequency and can

be used to express priorities. A similar idea to express priorities is used by Smolka and Ste�en

in [SS90], where the strati�ed semantics of PCCS is extended with 0-probability transitions.

Baeten, Bergstra and Smolka [BBS92] de�ne an algebra, prACP�I , which is an extension

of ACP [BW90] with generative probabilities. The authors show that prACP�I and a weaker

version of ACP (ACP�I) are correlated in the sense that ACP�I is the homomorphic image

of prACP�I in which the probabilities are forgotten. The authors also provide a sound and

complete axiomatization of probabilistic bisimulation.

Wu, Smolka and Stark [WSS94] augment the I/O automaton model of Lynch and Tuttle

[LT87] with probability and they study a compositional behavioral semantics which is also

shown to be fully abstract with respect to probabilistic testing. A test is a probabilistic I/O

automaton with a success action w. The model is reactive for the input actions and generative

for the output actions. This allows the authors to de�ne a meaningful parallel composition

operator, where two probabilistic I/O automata synchronize on their common actions and

evolve independently on the others. In order to deal with the nondeterminism that arises from

parallel composition, the authors attach a delay parameter to each state of a probabilistic I/O

automaton, which can be seen as the parameter of an exponential probability distribution on

the time of occurrence of the next local (i.e., output or internal) action. Whenever there is a

con
ict for the occurrence of two local actions of di�erent probabilistic I/O automata, the delay

parameters associated with the states are used to determine the probability with which each

action occurs. The behavior of a probabilistic I/O automaton A is a function EA that associates

a functional EA� with each �nite trace � . If the length of � is n, then EA� takes a function f

that given n+1 delay parameters computes an actual delay, and returns the expected value of

f applied to the delay parameters of the computations of A that lead to �.

2.2 Models based on Testing

Research on modeling has also focused on extending the testing preorders of De Nicola and

Hennessy [DH84] to probabilistic processes. To de�ne a testing preorder it is necessary to

de�ne a notion of a test and of how a test interacts with a process. The interaction between

a test and a process may lead to success or failure. Then, based on the success or failure of

the interactions between a process and a test, a preorder relation between processes is de�ned.

Informally, a test checks whether a process has some speci�c features: if the interaction between

a test and a process is successful, then the process has the desired feature.

Ivan Christo� [Chr90b, Chr90a] analyzes generative processes by means of testing. A test

is a nondeterministic �nite-state process, and the interaction between a process and a test is

26

obtained by performing only those actions that both the processes o�er and by keeping the

relative probability of each transition unchanged. Four testing preorders are de�ned, each one

based on the probability of the traces of the interaction between a process and a test. Christo�

also provides a fully abstract denotational semantics for each one of the testing preorders: each

process is denoted by a mapping that given an o�ering and a trace returns a probability. An

o�ering is a �nite sequence of non-empty sets of actions, and, informally, describes the actions

that the environment o�ers to a process during the interaction between the process and a test.

Linda Christo� [Chr93] builds on the work of Ivan Christo� and de�nes three linear se-

mantics for generative processes: the trace semantics, the broom semantics, and the barbed

semantics. The relations are de�ned in a style similar to the denotational models of Ivan

Christo�, and, in particular, the trace and barbed semantics coincide with two of the semantics

of [Chr90b]. Linda Christo� also de�nes three linear-time temporal logics that characterize her

three semantics and provides e�cient model checking algorithms for the recursion-free version

of the logics.

Testing preorders that are more in the style of De Nicola and Hennessy [DH84] are presented

by Yi and Larsen in [YL92], where they de�ne a process algebra with all the operators of CCS

plus a binary probabilistic choice operator parameterized by a probability p. Thus, the calculus

of Yi and Larsen allows for nondeterminism. A test is a process of their calculus with an

additional label w. Depending on how the nondeterminism is resolved, w occurs with di�erent

probabilities in the interaction between a process and a test. Then, Yi and Larsen de�ne a may

preorder, which is based on the highest probability of occurrence of w, and a must preorder,

which is based on the lowest probability of occurrence of w. The two preorders are shown to

coincide with the testing preorders of De Nicola and Hennessy [DH84] when no probability is

present. In more recent work Jonsson, Ho-Stuart and Yi [JHY94] give a characterization of

the may preorder based on tests that are not probabilistic, while Jonsson and Yi [JY95] give a

characterization of the may and must preorders based on general tests.

Cleaveland, Smolka and Zwarico [CSZ92] introduce a testing preorder on reactive processes.

A test is a reactive process with a collection of successful states and a non-observable action.

The interaction between a test and a process allows an observable action to occur only if

the two processes allow it to occur, and allows the non-observable action to occur if the test

allows it to occur. The result is a generative process, where each of the actions that occur is

chosen according to a uniform distribution (thus the formalism works only for �nitely many

actions). Two processes are compared based on the probability of reaching a successful state in

the interaction between a process and a test. The authors show that their testing preorder is

closely connected to the testing preorders of De Nicola and Hennessy [DH84] in the sense that

if a process passes a test with some non-zero probability, then the non-probabilistic version

of the process (the result of removing the probabilities from the transition relation of the

process) may pass the non-probabilistic version of the test, and if a process passes a test with

probability 1, then the non-probabilistic version of the process must pass the non-probabilistic

version of the test. An alternative characterization of the testing preorder of Cleaveland et al.

[CSZ92] is provided by Yuen, Cleaveland, Dayar and Smolka [YCDS94]. A process is represented

as a mapping from probabilistic traces to [0; 1], where a probabilistic trace is an alternating

sequence of actions and probability distributions over actions. Yuen et al. use the alternative

characterization to show that the testing preorder of Cleaveland et al. [CSZ92] is an equivalence

relation.

27

2.3 Models with Nondeterminism and Denotational Models

2.3.1 Transitions with Sets of Probabilities

Jonsson and Larsen [JL91] introduce a new kind of probabilistic transition system where the

transitions are labeled by sets of allowed probabilities. The idea is to model speci�cations where

the probabilities associated with the transitions are not completely speci�ed. They extend the

bisimulation of Larsen and Skou [LS89] to the new framework and they propose two criteria for

re�nement between speci�cations. One criterion is analogous to the de�nition of simulations

between non-probabilistic processes; the other criterion is weaker and regards a speci�cation

as a set of probabilistic processes. Re�nement is then de�ned as inclusion of probabilistic

processes. Finally, Jonsson and Larsen present a complete method for verifying containment

between speci�cations.

2.3.2 Alternating Models

Hansson and Jonsson [HJ89, HJ90] develop a probabilistic process algebra based on an alternat-

ing model . The model of Hansson and Jonsson, which is derived from the Concurrent Markov

Chains of Vardi [Var85], is a model in which there are two kinds of states: probabilistic states ,

whose outgoing transitions are unlabeled and lead to nondeterministic states, and nondetermin-

istic states , whose outgoing transitions are labeled and lead to probabilistic states. Only the

transitions leaving from probabilistic states are probabilistic, and for each probabilistic state

the probabilities of the outgoing transitions add to 1. The authors de�ne a strong bisimulation

semantics in the style of Larsen and Skou [LS89] for which they provide a sound and complete

axiomatization. The model of Hansson and Jonsson [HJ90] di�ers substantially from the models

of van Glabbeek et al. [GSST90] in that there is a clear distinction between pure nondeterminism

and probability. The model could be viewed as an instance of the reactive model; however, the

parallel composition operation de�ned by Hansson and Jonsson [HJ90] is asynchronous, while

the classi�cation of van Glabbeek et al. [GSST90] works only for synchronous composition. A

complete presentation of the work of Hansson and Jonsson [HJ89, HJ90] appears in Hansson's

PhD thesis [Han91], later published as a book [Han94]. Our simple probabilistic automata are

very similar in style to the objects of Hansson's book.

2.3.3 Denotational Semantics

Seidel [Sei92] extends CSP [Hoa85] with probability. The extension is carried out in two steps.

In the �rst step a process is a probability distribution over traces; in the second step, in order

to account for the nondeterministic behavior of the environment, a process is a conditional

probability measure, i.e., an object that given a trace, which is meant to be produced by the

external environment, returns a probability distribution over traces.

Jones and Plotkin [JP89] use a category theoretic approach to de�ne a probabilistic pow-

erdomain, and they use it to give a semantics to a language with probabilistic concurrency.

It is not known yet how the semantics of Jones and Plotkin compares to existing operational

semantics.

28

2.4 Models with Real Time

There are basically two models that address real time issues. One model is the model of Hansson

and Jonsson [Han94], where special � actions can appear in the transitions. The occurrence of

an action � means that time has elapsed, and the amount of time that elapses in a computation

is given by the number of occurrences of action �. Thus, the time domain of Hansson and

Jonsson's model is discrete.

The other model is based on stochastic process algebras and is used in the �eld of performance

analysis. In particular, actions are associated with durations, and the durations are expressed

by random variables. In order to simplify the analysis, the random variables are assumed to have

an exponential probability distribution, which is memoryless. Research in this area includes

work from G�otz, Herzog and Rettelbach [GHR93], from Hillston [Hil94], and from Bernardo,

Donatiello and Gorrieri [BDG94].

2.5 Veri�cation: Qualitative and Quantitative Methods

Most of the research on the veri�cation of randomized distributed systems is concerned with

properties that hold with probability 1. The advantage of such properties is that for �nite

state processes they do not depend on the actual probabilities of the transitions, but rather on

whether those transitions have probability 0 or probability di�erent from 0. Thus, the problem

of checking whether a system satis�es a property with probability 1 is reduced to the problem

of checking whether a non-randomized system satis�es some other property. This method is

called qualitative, as opposed to the quantitative method, where probabilities di�erent from 1

also matter.

The rationale behind the qualitative method is that a randomized process, rather than

always guaranteeing success, usually guarantees success with probability 1, which is practically

the same as guaranteeing success always. The quantitative method becomes relevant whenever

a system has in�nitely many states or the complexity of an algorithm needs to be studied.

Almost all the papers that we describe in this section are based on a model where n Markov

chains evolve concurrently. Each Markov chain represents a process, and the pure nondeter-

minism arises from the choice of what Markov chain performs the next transition (what process

is scheduled next). The object that resolves the nondeterminism is called a scheduler or adver-

sary , and the result of a scheduler on a collection of concurrent Markov chains is a new Markov

chain that describes one of the possible evolutions of the global system. Usually a scheduler is

required to be fair in the sense that each process should be scheduled in�nitely many times.

2.5.1 Qualitative Method: Proof Techniques

Huart, Sharir and Pnueli [HSP83] consider n �nite state asynchronous randomized processes

that run in parallel, and provide two necessary and su�cient conditions to guarantee that a

given set of goal states is reached with probability 1 under any fair scheduler. A scheduler is

the entity that at any point chooses the next process that performs a transition. The result

of the action of a scheduler on n processes is a Markov chain, on which it is possible to study

probabilities. A scheduler is fair if and only if, for each path in the corresponding Markov

chain, each process is scheduled in�nitely many times. The authors show that in their model

29

each property described by reaching a collection of states has either probability 0 or probability

1. Then, they describe a decision procedure for the almost sure reachability of a set of goal

states. The procedure either constructs a decomposition of the state space into a sequence of

components with the property that any fair execution of the program must move down the

sequence with probability 1 until it reaches the goal states (goal states reached with probability

1), or �nds an ergodic set of states through which the program can loop forever with probability

1 (goal states reached with probability 0). Finally the authors give some examples of problems

where the use of randomization does not provide any extra power over pure nondeterminism.

The proof principle of [HSP83] is generalized to the in�nite state case by Hart and Sharir

[HS85].

Lehmann and Shelah [LS82] extend the temporal logic of linear time of Pnueli [Pnu82] to

account for properties that hold with probability 1, and they provide three complete axioma-

tizations of the logic: one axiomatization is for general models, one is for �nite models, and

one is for models with bounded transition probabilities (same as the minimum probability re-

quirement of Larsen and Skou [LS91]). A model of the logic is essentially a Markov chain,

or alternatively an unlabeled generative process. The logic of Lehmann and Shelah [LS82] is

obtained from the logic of Pnueli [Pnu82] by adding a new modal operator O whose meaning

is that the argument formula is satis�ed with probability 1.

Pnueli [Pnu83] introduces the notion of extreme fairness and shows that a property that

holds for all extreme fair executions holds with probability 1. Furthermore, Pnueli presents a

sound proof rule based on extreme fairness and linear temporal logic. The model consists of n

randomized processes in parallel. Each process is a state machine where each state enables a

probabilistic transition, which lead to several modes . Resolving the nondeterminism leads to a

Markov chain. However, only those Markov chains that originate from fair scheduling policies

are considered. Then, an execution (a path in the Markov chain) is extremely fair relative

to a property � (� is a property that is satis�ed by states) if and only if for each transition

that occurs in�nitely many times from states that satisfy �, each mode of the transition occurs

in�nitely many times. An execution is extremely fair if and only if it is extremely fair relative

to any formula � expressed in the logic used in [Pnu83]. The proof rule of Pnueli [Pnu83],

along with some other new rules, is used by Pnueli and Zuck [PZ86] to verify two non-trivial

randomized algorithms, including the Randomized Dining Philosophers algorithm of Lehmann

and Rabin [LR81]. Zuck [Zuc86] introduces the notion of �-fairness and shows that �-fairness

is complete for temporal logic properties that hold with probability 1.

Rao [Rao90] extends UNITY [CM88] to account for randomized systems and properties

that hold with probability 1. The main emphasis is on properties rather than states. A new

notion of weak probabilistic precondition is introduced that, together with the extreme fairness

of Pnueli, generalizes weakest preconditions. Finally, based on the work of Huart et al. [HSP83],

Rao argues that his new logic is complete for �nite state programs.

2.5.2 Qualitative Method: Model Checking

Vardi [Var85] presents a method for deciding whether a probabilistic concurrent �nite state

program satis�es a linear temporal logic speci�cation, where satisfaction means that a formula

is satis�ed with probability 1 whenever the scheduler is fair. A program is given as a Concurrent

Markov Chain, which is a transition system with nondeterministic and probabilistic states. A

30

subset F of the nondeterministic states is called the set of fair states. A scheduler is a function

that, based on the past history of a program, chooses the next transition to perform from

a nondeterministic state. The result of the action of a scheduler on a program is a Markov

chain on which it is possible to study the probability that some linear temporal logic formula

is satis�ed. A path in the Markov chain is fair if for each fair state that occurs in�nitely many

times each one of the possible nondeterministic choices from that state occurs in�nitely many

times; a scheduler is fair if the fair paths have probability 1 in the corresponding Markov chain.

The model checking algorithm of Vardi works in time polynomial in the size of the program and

doubly exponential in the size of the speci�cation. By considering a slightly restricted logic,

Vardi and Wolper [VW86] reduce the complexity of the model checking algorithm to only one

exponent in the size of the formula.

Courcoubetis and Yannakakis [CY88, CY90] investigate the complexity of model checking

linear time propositional temporal logic of sequential and concurrent probabilistic processes. A

sequential process is a Markov chain and a concurrent process is a Concurrent Markov Chain.

They give a model checking algorithm that runs in time linear in the size of the program and

exponential in the size of the formula, and they show that the problem is in PSPACE. Moreover,

they give an algorithm for computing the exact probability with which a sequential program

satis�es a formula.

Alur, Courcoubetis and Dill [ACD91a, ACD91b] develop a model checking algorithm for

probabilistic real-time systems. Processes are modeled as a generalized semi-Markov process ,

which are studied in [Whi80, She87]. Essentially a process is a �nite state transition system

with timing constraints expressed by probability distributions on the delays. They impose the

restriction that every distribution is either discrete, or exponential, or has a density function

which is di�erent from 0 only on a �nite collection of intervals (in [ACD91a] only this last case

is studied). The temporal logic, called TCTL, is an extension of the branching-time temporal

logic of Emerson and Clarke [EC82] where time delays are added to the modal operators. TCTL

can detect only whether a formula is satis�ed with probability 0, or with a positive probability,

or with probability 1. The model checking algorithm transforms a process into a �nite state

process without probabilities and real-time, thus allowing the use of other existing algorithms.

The problem of model-checking for TCTL is PSPACE-hard.

2.5.3 Quantitative Method: Model Checking

Hansson [Han91, Han94] de�nes a model checking algorithm for his Labeled Concurrent Markov

Chain model and his branching-time temporal logic TPCTL. Time is discrete in Hansson's

model, but the logic improves on previous work because probabilities can be quanti�ed (i.e.,

probabilities can be between 0 and 1). The previous model checking algorithms relied heavily

on the fact that probabilities were not quanti�ed. The algorithm is based on the algorithm

for model checking of Clarke, Emerson and Sistla [CES83], and on previous work of Hansson

and Jonsson [HJ89] where a model checking algorithm for PCTL (TPCTL without time) is

presented. In order to deal with quanti�ed probabilities, the algorithm reduces the computation

of the probability of an event to a collection of �nitely many linear recursive equations. The

algorithm has an exponential complexity; however, Hansson shows that for a large class of

interesting problems the algorithm is polynomial.

31

32

Chapter 3

Preliminaries

3.1 Probability Theory

The rigorous study of randomized algorithms requires the use of several probability measures.

This section introduces the basic concepts of measure theory that are necessary. Most of the

results are taken directly from Halmos [Hal50] and Rudin [Rud66], and the proofs can be found

in the same books or in any other good book on measure theory or probability theory.

3.1.1 Measurable Spaces

Consider a set
. A �eld on
, denoted by F , is a family of subsets of
 that contains
, and

that is closed under complementation and �nite union. A �-�eld on
, denoted by F , is a �eld

on
 that is closed under countable union. The elements of a �-�eld are called measurable sets .

The pair (
;F) is called a measurable space.

A �eld generated by a family of sets C, denoted by F (C), is the smallest �eld that contains

C. The �-�eld generated by a family of sets C, denoted by �(C), is the smallest �-�eld that

contains C. The family C is called a generator for �(C). A trivial property of a generator C is

�(C) = �(F (C)).

The �eld generated by a family of sets can be obtained following a simple procedure.

Proposition 3.1.1 Let C be a family of subsets of
.

1. Let F1(C) be the family containing ;,
, and all C �
 such that C 2 C or (
� C) 2 C.

2. Let F2(C) be the family containing all �nite intersections of elements of F1(C).

3. Let F3(C) be the family containing all �nite unions of disjoint elements of F2(C).

Then F (C) = F3(C).

3.1.2 Probability Measures and Probability Spaces

Let C be a family of subsets of
. A measure � on C is a function that assigns a non-negative

real value (possibly 1) to each element of C, such that

1. if ; is an element of C, then �(;) = 0.

33

2. if (Ci)i2N forms a sequence of pairwise disjoint elements of C, and [iCi is an element of

C, then �([iCi) =
P

i �(Ci).

The last property is called �-additivity . If (
;F) is a measurable space, then a measure on F

as called a measure on (
;F).

A measure on a family of sets C is �nite if the measure of each element of C is �nite.

A measure space is a triple (
;F ; �), where (
;F) is a measurable space, and � is a measure

on (
;F). A measure space (
;F ; �) is complete i� for each element C of F such that �(C) = 0,

each subset of C is measurable and has measure 0, i.e., for each C0
� C, C0

2 F and �(C0) = 0.

A measure space is discrete if F is the power set of
 and the measure of each measurable set

is the sum of the measures of its points. Discrete spaces will play a fundamental role in our

theory.

A probability space is a triple (
;F ; P), where (
;F) is a measurable space, and P is a

measure on (
;F) such that P (
) = 1. The measure P is also referred to as a probability

measure or a probability distribution. The set
 is called the sample space, and the elements

of F are called events . We denote a generic event by E, possibly decorated with primes and

indices. A standard convention with probability measures and event is that the measure of an

event is denoted by P [E] rather than by P (E).

3.1.3 Extensions of a Measure

The following two theorems shows methods to extend a measure de�ned on a collection of sets.

The �rst theorem says that it is possible to de�ne a probability measure P on a measurable

space (
;F) by specifying P only on a generator of F ; the second theorem states that every

measure space can be extended to a complete measure space.

Thus, from the �rst theorem we derive that in order to check the equality of two probability

measures P1 and P2 on (
;F), it is enough to compare the two measures on a �eld that generates

F .

Theorem 3.1.2 (Extension theorem) A �nite measure � on a �eld F has a unique exten-

sion to the �-�eld generated by F . That is, there exists a unique measure �� on �(F) such that

for each element C of F , ��(C) = �(C).

Theorem 3.1.3 Let (
;F ; �) be a measure space. Let F 0 be the set of subsets of
 of the form

C [N such that C 2 F and N is a subset of a set of measure 0 in F . Then, F 0 is a �-�eld.

Furthermore, the function �0 de�ned by �0(C [N) = �(C) is a complete measure on F 0. We

denote the measure space (
;F 0; �0) by completion((
;F ; �)).

3.1.4 Measurable Functions

Let (
;F) and (
0;F 0) be two measurable spaces. A function f :
 !
0 is said to be a

measurable function from (
;F) to (
0;F 0) if for each set C of F 0 the inverse image of C,

denoted by f�1(C), is an element of F . The next proposition shows that the measurability of

f can be checked just by analyzing a generator of F 0.

Proposition 3.1.4 Let (
;F) and (
0;F 0) be two measurable spaces, and let C be a generator

of F 0. Let f be a function form
 to
0. Then f is measurable i� for each element C of C, the

inverse image f�1(C) is an element of F .

34

Another property that we need is the closure of measurable functions under composition.

Proposition 3.1.5 Let f be a measurable function from (
1;F1) to (
2;F2), and let g be a

measurable function from (
2;F2) to (
3;F3). Then f �g is a measurable function from (
1;F1)

to (
3;F3).

3.1.5 Induced Measures and Induced Measure Spaces

Proposition 3.1.6 Let f be a measurable function from (
;F) to (
0;F 0), and let � be a

measure on (
;F). Let �0 be de�ned on F 0 as follows: for each element C of F 0, �0(C) =

�(f�1(C)). Then �0 is a measure on (
0;F 0). The measure �0 is called the measure induced by

f , and is denoted by f(�).

Based on the result above, it is possible to transform a measure space using a function f .

Let (
;F ; �) be a measure space, and let f be a function de�ned on
. Let
0 be f(
), and

let F 0 be the set of subsets C of
0 such that f�1(C) 2 F . Then, F 0 is a �-�eld, and f is a

measurable function from (
;F) to (
0;F 0). Thus, the space (
0;F 0; f(�)) is a measure space.

We call such a space the space induced by f , and we denote it by f((
;F ; �)). Observe that

if (
;F ; �) is a probability space, then f((
;F ; �)) is a probability space as well, and that

induced measure spaces preserve discreteness and completeness.

3.1.6 Product of Measure Spaces

Let (
1;F1) and (
2;F2) be two measurable spaces. Denote by F1
 F2 the �-�eld generated

by the set of rectangles fC1 � C2 j C1 2 F1; C2 2 F2g. The product space of (
1;F1) and

(
2;F2), denoted by (
1;F1)
 (
2;F2), is the measurable space (
1 �
2;F1
F2).

Proposition 3.1.7 Let (
1;F1; �1) and (
2;F2; �2) be two measure spaces where �1 and �2
are �nite measures. Then there is a unique measure, denoted by �1
 �2, on F1
F2 such that

for each C1 2 F1 and C2 2 F2, �1
 �2(C1 � C2) = �1(C1)�2(C2).

The product measure space of two measure spaces (
1;F1; �1) and (
2;F2; �2), denoted by

(
1;F1; �1)
 (
2;F2; �2), is the measure space (
1�
2;F1
F2; �1
 �2). It is easy to check

that if (
1;F1; �1) and (
2;F2; �2) are probability spaces, then their product is a probability

space as well.

The product of two measure spaces is invertible. Let (
;F ; �) = (
1;F1; �1)
 (
2;F2; �2),

and let �i, i = 1; 2, be a projection function from
1 �
2 to
i, that maps each pair (x1; x2)

to xi. Let
0i = �i(
i), and let F 0i = fC j �
�1
i (C) 2 Fig. Then (
0i;F

0
i) = (
i;Fi), and �i is

a measurable function from (
;F) to (
0i;F
0
i). The measure �i(�) coincides with �i, since for

each C 2 F1, �
�1
1 (C) = C �
2, and for each C 2 F2, �

�1
2 (C) =
1 � C. Thus, the projection

of (
;F ; �) onto its ith component is (
i;Fi; �i).

3.1.7 Combination of Discrete Probability Spaces

In our theory there are several situations in which a discrete probability space is chosen accord-

ing to some probability distribution, and then an element from the chosen probability space

35

is chosen according to the corresponding probability distribution. The whole process can be

described by a unique probability space.

Let f(
i;Fi; Pi)gi�0 be a family of discrete probability spaces, and let fpigi�0 be a family

of real numbers between 0 and 1 such that
P

i�0 pi = 1. De�ne
P

i�0(
i;Fi; Pi) to be the triple

(
;F ; P), where
 = [i�0
i, F = 2
, and, for each x 2
, P [x] =
P

i�0jx2
i
piPi[x]. It is easy

to verify that (
;F ; P) is a probability space.

The process described by (
;F ; P) is the following: a probability space (
i;Fi; Pi) is drawn

from f(
i;Fi; Pi)gi�0 with probability pi, and then an element x is drawn drom
i with prob-

ability Pi[x].

3.1.8 Conditional Probability

Let (
;F ; P) be a probability space, and let E be an element of F . Frequently, we need to

study the probability of an event E0 of F knowing that event E has occurred. For example, we

may want to study the probability that a dice rolled 6 knowing that it rolled a number greater

than 3. The probability of a conditional event is expressed by P [E0jE]. If P [E] = 0, then

P [E0
jE] is unde�ned; if P [E] > 0, then P [E0

jE] is de�ned to be P [E \E0]=P [E].

Suppose that P [E] > 0, and consider the triple (
jE;FjE;P jE) where
jE = E, FjE =

fE0
\E j E0

2 Fg, and for each event E0 of FjE, P jE[E0] = P [E0
jE]. Then it is easy to show

that (
jE;FjE;P jE) is a probability space. We call this space a conditional probability space.

Conditional measures give us an alternative way to express the probability of the intersection

of several events. That is,

P [E1 \ � � � \En] = P [E1]P [E2jE1] � � �P [EnjE1 \ � � � \ En�1]:

If P [E0] = P [E0
jE], then P [E \E0] = P [E]P [E0]. In this case the events E and E0 are said

to be independent .

3.1.9 Expected Values

Let (
;F) be a measurable space, and let (<;R) be the measurable space where < is the set

of real numbers, and R is the �-�eld generated by the open sets of the real line. A random

variable on (
;F), denoted by X , is a measurable function from (
;F) to (<;R).

We use random variables to deal with timed systems. An example of a random variable is

the function that, given a computation of a system, returns the time it takes to the system to

achieve a goal in the given computation. In our case, the computations of a system are chosen

at random, and thus, a natural estimate of the performance of the system is the average time

it takes to the system to achieve the given goal.

The above idea is expressed formally by the expected value of a random variable, which is a

weighted average of X . Speci�cally, let (
;F ; P) be a probability space, and let X be a random

variable on (
;F). Then the expected value of X , denoted by E[X], is the weighted average

of X based on the probability distribution P . We do not show how to compute the expected

value of a random variable in general, and we refer the interested reader to [Hal50]. Here we

just mention that if
 can be partitioned in a countable collection of measurable sets (Ci)i�0

such that for each set Ci, X(Ci) is a singleton, then E[X] =
P

i�0 P [Ci]X(ci), where for each i

ci is an element of Fi.

36

3.1.10 Notation

Throughout the thesis we adopt some conventional notation concerning probability spaces. We

use the notation P , possibly decorated with indexes and primes, to denote a generic probability

space. Thus, the expression P 0i stands for the probability space (
0i;F
0
i; P

0
i). Furthermore, if

a generic expression exp denotes a probability space (
;F ; P), we use
exp ;Fexp , and Pexp to

denote
;F , and P , respectively.

If (
;F ; P) is a probability space, and E is a generic set, we use P [E] to denote P [E \
].

If E \
 is not an element of F , then P [E] is unde�ned.

A special kind of probability space is a probability space with a unique element in its sample

set. The corresponding measure is called a Dirac distribution. We use the notation D(x) to

denote a probability space (
;F ; P) where
 = fxg.

Another important kind of probability space is a space with �nitely many elements, each

one with the same probability. The corresponding measure is called a uniform distribution.

We use the notation U(x1; : : : ; xn) to denote a discrete probability space (
;F ; P) where
 =

fx1; : : : ; xng and, for each element xi of
, P [xi] = 1=n.

In the thesis we use heavily discrete probability spaces with no 0-probability elements. It

is easy to verify that the sample set of these probability spaces is at most countable. If C is

any set, then we denote by Probs(C) the set of discrete probability spaces (
;F ; P) with no

0-probability elements such that
 � C.

3.2 Labeled Transition Systems

A Labeled Transition System [Kel76, Plo81] is a state machine with labeled transitions. The

labels, also called actions , are used to model communication between a system and its external

environment. Labeled transition systems have been used successfully for the analysis of con-

current and distributed systems [DH84, Mil89, LT87, LV93a]; for this reason we choose them

as our basic model.

Currently there are several de�nitions of labeled transition systems, each one best suited

for the kind of application it is meant for. In this section we present a de�nition of labeled

transition systems in the style of [LV93a].

3.2.1 Automata

An automaton A consists of four components:

1. a set states(A) of states.

2. a nonempty set start(A) � states(A) of start states.

3. an action signature sig(A) = (ext(A); int(A)), where ext(A) and int(A) are disjoint sets

of external and internal actions, respectively. Denote by acts(A) the set ext(A)[int(A)

of actions.

4. a transition relation trans(A) � states(A)�acts(A)�states(A). The elements of trans(A)

are referred to as transitions or steps .

37

insert(i) extract(i)

Figure 3-1: The Bu�er automaton.

Thus, an automaton is a labeled transition system, possibly with multiple start states, whose

actions are partitioned into external and internal actions. The external actions model com-

munication with the external environment; the internal actions model internal communication,

not visible from the external environment.

We use s to denote a generic state, and a and b to denote a generic action. We also use � to

denote a generic internal action. All our conventional symbols may be decorated with primes

and indexes. We say that an action a is enabled from a state s in A if there exists a state s0 of

A such that (s; a; s0) is a transition of A.

A standard alternative notation for transitions is s
a
�! s0. This notation can be extended to

�nite sequences of actions as follows: s
a1���an
�! s0 i� there exists a sequence of states s1; : : : ; sn�1

such that s
a1
�! s1

a2
�! � � �sn�1

an
�! sn. To abstract from internal computation, there is another

standard notion of weak transition, denoted by s
a

=) s0. The action a must be external, and

the meaning of s
a

=) s0 is that there are two �nite sequences �1; �2 of internal actions such that

s
�1a�2
�! s0. As for ordinary transitions, weak transitions can be generalized to �nite sequences

of external actions. A special case is given by the empty sequence: s =) s0 i� either s0 = s or

there exists a �nite sequence � of internal actions such that s
�
�! s0.

Example 3.2.1 A classic example of an automaton is an unbounded ordered bu�er that stores

natural numbers (see Figure 3-1). An external user sends natural numbers to the bu�er, and

the bu�er sends back to the external environment the ordered sequence of numbers it receives

from the user.

The automaton Bu�er of Figure 3-1 can be described as follows. All the actions of Bu�er

are external and are of the form insert(i) and extract(i), where i is a natural number, i.e., the

actions of Bu�er are given by the in�nite set [i2Nfinsert(i); extract(i)g. The states of Bu�er

are the �nite sequences of natural numbers, and the start state of Bu�er is the empty sequence.

The actions of the form insert(i) are enabled from every state of Bu�er , i.e., for each state

s and each natural number i there is a transition (s; insert(i); is) in Bu�er , where is denotes

the sequence obtained by appending i to the left of s. The actions of the form extract(i) are

enabled only from those states where i is the rightmost element in the corresponding sequence

of numbers, i.e., for each state s and each natural number i there is a transition (si; extract(i); s)

of Bu�er . No other transitions are de�ned for Bu�er .

Observe that from every state of Bu�er there are in�nitely many actions enabled. The

way to choose among those actions is not speci�ed in Bu�er . In other words, the choice of the

transition to perform is nondeterministic. In this case the nondeterminism models the arbitrary

behavior of the environment.

38

Buffer Buffer1 2

extract(i)insert(i) (i)τ

Figure 3-2: Concatenation of two bu�ers.

The role of internal actions becomes clear when we concatenate two bu�ers as in Figure 3-2.

The communication that occurs between the two bu�ers is internal in the sense that it does not

a�ect directly the external environment. Another useful observation about the concatenation

of the two bu�ers in Figure 3-2 is that nondeterminism expresses two di�erent phenomena: the

arbitrary behavior of the environment, and the arbitrary scheduling policy that can be adopted

in choosing whether Bu�er1 or Bu�er 2 performs the next transition. In general nondeterminism

can express even a third phenomenon, namely, the fact that an arbitrary state can be reached

after the occurrence of an action. Such a form of nondeterminism would arise if we assume that

a bu�er may lose data by failing to modify its state during an insertion operation.

3.2.2 Executions

The evolution of an automaton can be described by means of its executions. An execution

fragment � of an automaton A is a (�nite or in�nite) sequence of alternating states and actions

starting with a state and, if the execution fragment is �nite, ending in a state

� = s0a1s1a2s2 � � �

where for each i, (si; ai+1; si+1) is a transition of A. Thus, an execution fragment represents a

possible way to resolve the nondeterminism in an automaton.

Denote by fstate(�) the �rst state of � and, if � is �nite, denote by lstate(�) the last state of

�. Furthermore, denote by frag�(A) and frag(A) the sets of �nite and all execution fragments

of A, respectively.

An execution is an execution fragment whose �rst state is a start state. Denote by exec�(A)

and exec(A) the sets of �nite and all execution of A, respectively. A state s of A is reachable if

there exists a �nite execution of A that ends in s.

The length of an execution fragment �, denoted by j�j, is the number of actions that occur

in �. If � is in�nite, then j�j =1.

A �nite execution fragment �1 = s0a1s1 � � �ansn of A and an execution fragment �2 =

snan+1sn+1 � � � of A can be concatenated . In this case the concatenation, written �1
a �2, is

the execution fragment s0a1s1 � � �ansnan+1sn+1 � � �. If � = �1
a �2, then we denote �2 by �.�1

(read \� after �1").

An execution fragment �1 of A is a pre�x of an execution fragment �2 of A, written �1 � �2,

if either �1 = �2 or �1 is �nite and there exists an execution fragment �01 of A such that

�2 = �1
a �01. The execution fragment �01 is also called a su�x of �2 and is denoted by �2.�1.

39

3.2.3 Traces

The executions of an automaton contain a lot of information that is irrelevant to the environ-

ment, since the interaction between an automaton and its environment occurs through external

actions only. The trace of an execution is the object that represents the actual interaction that

occurs between an automaton and its environment during an execution.

The trace of an execution (fragment) � of an automaton A, written traceA(�), or just

trace(�) when A is clear, is the list obtained by restricting � to the set of external actions of

A, i.e., trace(�) = � � ext(A). We say that � is a trace of an automaton A if there exists an

execution � of A with trace(�) = �. Denote by traces�(A) and traces(A) the sets of �nite and

all traces of A, respectively. Note, that a �nite trace can be the trace of an in�nite execution.

3.2.4 Trace Semantics

In [LV93a] automata are compared based on traces. Speci�cally, a preorder relation is de�ned

between automata based on inclusion of their traces:

A1 vT A2 i� traces(A1) � traces(A2):

The trace preorder can express a notion of implementation, usually referred to as a safe imple-

mentation. That is, A1, the implementation, cannot do anything that is forbidden by A2, the

speci�cation. For example, no implementation of the bu�er of Figure 3-1 can return natural

numbers that were never entered or natural numbers in the wrong order.

Although the trace preorder is weak as a notion of implementation, and so �ner relations

could be more appropriate [DeN87, Gla90, Gla93], there are several situations where a trace

based semantics is su�cient [LT87, Dil88, AL93, GSSL94]. The advantage of a trace based

semantics is that it is easy to handle.

In this thesis we concentrate mainly on trace based semantics; however, the techniques that

we develop can be extended to other semantic notions as well.

3.2.5 Parallel Composition

Parallel composition is the operator on automata that identi�es how automata communicate

and synchronize. There are two main synchronization mechanisms for labeled transition sys-

tems, better known as the CCS synchronization style [Mil89], and the CSP synchronization

style [Hoa85]. In the CCS synchronization style the external actions are grouped in pairs of

complementary actions; a synchronization occurs between two automata that perform comple-

mentary actions, and becomes invisible to the external environment, i.e., a synchronization is

an internal action. Unless speci�cally stated through an additional restriction operator, an

automaton is allowed not to synchronize with another automaton even though a synchroniza-

tion is possible. In the CSP synchronization style two automata must synchronize on their

common actions and evolve independently on the others. Both in the CCS and CSP styles,

communication is achieved through synchronization.

In this thesis we adopt the CSP synchronization style, which is essentially the style adopted

in [LT87, Dil88, LV93a]. A technical problem that arises in our framework is that automata

may communicate through their internal actions, while internal actions are not supposed to be

visible. To avoid these unwanted communications, we de�ne a notion of compatibility between

40

automata. Two automata A1; A2 are compatible i� int(A1) \ acts(A2) = ; and acts(A1) \

int(A2) = ;.

The parallel composition of two compatible automata A1; A2, denoted by A1kA2, is the

automaton A such that

1. states(A) = states(A1)� states(A2).

2. start(A) = start(A1)� start(A2).

3. sig(A) = (ext(A1)[ext(A2); int(A1) [int(A2)).

4. ((s1; s2); a; (s
0
1; s

0
2)) 2 trans(A) i�

(a) if a 2 acts(A1), then (s1; a; s
0
1) 2 trans(A1), else s

0
1 = s1, and

(b) if a 2 acts(A2), then (s2; a; s
0
2) 2 trans(A2), else s

0
2 = s2.

If two automata are incompatible and we want to compose them in parallel, the problem

can be solved easily by renaming the internal actions of one of the automata. The renaming

operation is simple: just rename each occurrence of each action in the action signature and the

transition relation of the given argument automaton. At this point it is possible to understand

how to build a system like the one described in Figure 3-2. Bu�er 1 is obtained from Bu�er by

renaming the actions extract(i) into �(i), and Bu�er2 is obtained from Bu�er by renaming the

actions insert(i) into �(i). Then, Bu�er1 and Bu�er2 are composed in parallel, and �nally the

actions �(i) are made internal. This last step is achieved through a Hide operation, whose only

e�ect is to change the signature of an automaton.

We conclude by presenting two important properties of parallel composition. The �rst

property concerns projections of executions. Let A = A1kA2, and let (s1; s2) be a state of A.

Let i be either 1 or 2. The projection of (s1; s2) onto Ai, denoted by (s1; s2)dAi, is si. Let

� = s0a1s1 � � � be an execution of A. The projection of � onto Ai, denoted by �dAi is the

sequence obtained from � by projecting all the states onto Ai, and by removing all the actions

not in acts(Ai) together with their subsequent states.

Proposition 3.2.1 Let A = A1kA2, and let � be an execution of A. Then �dA1 is an execution

of A1 and �dA2 is an execution of A2.

The projection of an execution of A onto one of the components Ai is essentially the view of

Ai of the execution �. In other words the projection represents what Ai does in order for A to

produce �. Proposition 3.2.1 states that the view of Ai is indeed something that Ai can do.

The second property concerns the trace preorder.

Proposition 3.2.2 Let A1 vT A01. Then, for each A2 compatible with both A1 and A01,

A1kA2 vT A
0
1kA2.

The property expressed in Proposition 3.2.2 is better known as substitutivity or compositionality .

In other words vT is a precongruence with respect to parallel composition. Substitutivity is one

of the most important properties that an implementation relation should satisfy. Informally,

substitutivity says that an implementation A1 of a system A01 works correctly in any context

where A01 works correctly. Substitutivity is also the key idea at the base of modular veri�cation

techniques.

41

42

Chapter 4

Probabilistic Automata

4.1 What we Need to Model

Our main goal is to analyze objects that at any point can evolve according to a probability

distribution. The simplest example of a random computation is the process of
ipping a coin.

Thus, a program may contain an instruction like

x :=
ip

whose meaning is to assign to x the result of a coin
ip. From the state-machine point of view,

the transition relation of the corresponding automaton should be speci�ed by giving the states

reachable after the coin
ip, together with their probability. Thus, the coin
ipping process

can be represented by the labeled transition system of Figure 4-1. The edges joining two states

are associated with an action and a weight, where the weight of an edge is the probability of

choosing that speci�c edge. Thus, we require that for each state that has some outgoing edges,

the sum of the weights of the outgoing edges is 1.

However, we also need to deal with nondeterminism. Consider a more complicated process

where a coin is
ipped, but where the coin can be either fair, i.e., it yields head with probability

1=2, or unfair by yielding head with probability 2=3. Furthermore, suppose that the process

emits a beep if the result of the coin
ip is head . In this case, the choice of which coin to
ip

is nondeterministic, while the outcome of the coin
ip is probabilistic. The start state should

enable two separate transitions, each one corresponding to the
ip of a speci�c coin. Figure 4-

2 represents the nondeterministic coin
ipping process. The start state enables two separate

groups of weighted edges; each group is identi�ed by an arc joining all of its edges, and the

edges of each group form a probability distribution.

At this point we may be tempted to ask the following question:

s0

tail

head

1/2

1/2

flip

flip

Figure 4-1: The coin
ipping process.

43

s0

flip

flip

1/2

1/2

flip

flip

tail

beep
head s

1/3

2/3

Figure 4-2: The nondeterministic coin
ipping process.

\What is the probability that the nondeterministic coin
ipper beeps?"

The correct answer is

\It depends on which coin is
ipped ."

Although this observation may appear to be silly, the lesson that we learn is that it is not

possible to talk about the probability of some event until the nondeterminism is resolved.

Perhaps we could give a more accurate answer as follows:

\The probability that the nondeterministic coin
ipper beeps is either 1=2 or 2=3,

depending on which coin is
ipped ."

However, there are two possible objections. The �rst objection concerns the way a coin is

chosen. What happens if the coin to be
ipped is chosen at random? After all, in the de�nition

of the nondeterministic coin
ipper there are no limitations to the way a coin is chosen. In this

case, the correct answer would be

\The probability that the nondeterministic coin
ipper beeps is between 1=2 and 2=3,

depending on how the coin to be
ipped is chosen."

The second objection concerns the possibility of scheduling a transition. What happens if the

scheduler does not schedule the beep transition even though it is enabled? In this case the

correct answer would be

\Under the hypothesis that some transition is scheduled whenever some transition is

enabled, the probability that the nondeterministic coin
ipper beeps is between 1=2

and 2=3, depending on how the coin to be
ipped is chosen."

There is also another statement that can be formulated in relation to the question:

\The nondeterministic coin
ipper does not beep with any probability greater than

2=3."

This last property is better known as a safety property [AS85] for ordinary labeled transition

systems.

Let us go back to the scheduling problem. There are actual cases where it is natural to allow

a scheduler not to schedule any transition even though some transition is enabled. Consider a

new nondeterministic coin
ipper with two buttons, marked fair and unfair , respectively. The

44

s1

s2

s
beep

s0

head

tail

flip

flip

1/2

1/2

flip

flip

2/3

1/3
unfair

fair

Figure 4-3: The triggered coin
ipping process.

s0

1/2

1/2

unfair

fair

s1

s2

s
beep

s

flip

flip
1/2

1/2

tail

flip

flip

tail

head

head

2/3

1/3

beep

Figure 4-4: A computation of the triggered coin
ipping process.

buttons can be pressed by an external user. Suppose that pressing one button disables the

other button, and suppose that the fair coin is
ipped if the button marked fair is pressed,

and that the unfair coin is
ipped if the button marked unfair is pressed. The new process

is represented in Figure 4-3. In this case the scheduler models the external environment, and

a user may decide not to press any button, thus not scheduling any transition from s0 even

though some transition is enabled. An external user may even decide to
ip a coin and press

a button only if the coin gives head , or
ip a coin and press fair if the coin gives head and

press unfair if the coin gives tail . That is, an external user acts like a scheduler that can use

randomization for its choices. If we ask again the question about the probability of beeping, a

correct answer would be

\Assuming that beep is scheduled whenever it is enabled, the probability that the

triggered coin
ipper beeps, conditional to the occurrence of a coin
ip, is between

1=2 and 2=3."

Suppose now that we resolve all the nondeterminism in the triggered coin
ipper of Figure 4-3,

and consider the case where the external user presses fair with probability 1=2 and unfair

with probability 1=2. In this case it is possible to study the exact probability that the process

beeps, which is 7=12. Figure 4-4 gives a representation of the outcome of the user we have just

described. Note that the result of resolving the nondeterminism is not a linear structure as is

the case for standard automata, but rather a tree-like structure. This structure is our notion

of a probabilistic execution and is studied in more detail in Section 4.2.

45

4.2 The Basic Model

In this section we introduce the basic probabilistic model that is used in the thesis. We formalize

the informal ideas presented in Section 4.1, and we extend the parallel composition operator

of ordinary automata to the new framework. We also introduce several notational conventions

that are used throughout the thesis.

4.2.1 Probabilistic Automata

A probabilistic automaton M consists of four components:

1. A set states(M) of states.

2. A nonempty set start(M) � states(M) of start states.

3. An action signature sig(M) = (ext(M); int(M)), where ext(M) and int(M) are disjoint

sets of external and internal actions, respectively. Denote by acts(M) the set ext(M) [

int(M) of actions.

4. A transition relation trans(M) � states(M)�Probs((acts(M)�states(M))[f�g). Recall

from Section 3.1.10 that for each set C, Probs(C) denotes the set of discrete probability

spaces (
;F ; P) with no 0-probability elements such that
 � C. The elements of

trans(M) are referred to as transitions or steps .

A probabilistic automaton di�ers from an ordinary automaton only in the transition relation.

Each transition represents what in the �gures of Section 4.1 is represented by a group of edges

joined by an arc. From each state s, once a transition is chosen nondeterministically, the

action that is performed and the state that is reached are determined by a discrete probability

distribution. Each transition (s;P) may contain a special symbol �, which represents the

possibility for the system not to complete the transition, i.e., to remain in s without being able

to engage in any other transition.

Example 4.2.1 (Meaning of �) To give an idea of the meaning of �, suppose thatM models

a person sitting on a chair that stands up with probability 1=2. That is, from the start state s0
there is a transition of M where one outcome describes the fact that the person stands up and

the other outcome describes the fact that the person does not stand up (this is �). The point

is that there is no instant in time where the person decides not to stand up: there are only

instants where the person stands up. What the transition leaving s0 represents is that overall

the probability that the person does the action of standing up is 1=2. The need for � is clari�ed

further in Section 4.2.3, where we study probabilistic executions, and in Section 4.3, where we

study parallel composition.

The requirement that the probability space associated with a transition be discrete is imposed

to simplify the measure theoretical analysis of probabilistic automata. In this thesis we work

with discrete probability spaces only, and we defer to further work the extension of the theory

to more general probability spaces. The requirement that each transition does not lead to any

place with probability 0 is imposed to simplify the analysis of probabilistic automata. All the

results of this thesis would be valid even without such a restriction, although the proofs would

46

contain a lot of uninteresting details. The requirement becomes necessary for the study of live

probabilistic automata, which we do not study here.

There are two classes of probabilistic automata that are especially important for our analysis:

simple probabilistic automata, and fully probabilistic automata.

A probabilistic automaton M is simple if for each transition (s;P) of trans(M) there is an

action a of M such that
 � fag � states(M). In such a case, a transition can be represented

alternatively as (s; a;P 0), where P 0 2 Probs(states(M)), and it is called a simple transition with

action a. The probabilistic automata of Figures 4-2 and 4-3 are simple. In a simple probabilistic

automaton each transition is associated with a single action and it always completes. The idea

is that once a transition is chosen, then only the next state is chosen probabilistically. In

this thesis we deal mainly with simple probabilistic automata for a reason that is made clear

in Section 4.3. We use general probabilistic automata to analyze the computations of simple

probabilistic automata.

A probabilistic automaton M is fully probabilistic if M has a unique start state, and from

each state of M there is at most one transition enabled. Thus, a fully probabilistic automaton

does not contain any nondeterminism. Fully probabilistic automata play a crucial role in the

de�nition of probabilistic executions.

Example 4.2.2 (Probabilistic automata) A probabilistic Turing Machine is a Turing ma-

chine with an additional random tape. The content of the random tape is instantiated by

assigning each cell the result of an independent fair coin
ip (say 0 if the coin gives head and

1 if the coin gives tail). If we assume that each cell of the random tape is instantiated only

when it is reached by the head of the machine, then a probabilistic Turing machine can be

represented as a simple probabilistic automaton. The probabilistic automaton, denoted by M ,

has a unique internal action � , and its states are the instantaneous descriptions of the given

probabilistic Turing machine; each time the Turing machine moves the head of its random tape

on a cell for the �rst time,M has a probabilistic transition that represents the result of reaching

a cell whose content is 0 with probability 1=2 and 1 with probability 1=2.

An algorithm that at some point can
ip a coin or roll a dice can be represented as a simple

probabilistic automaton where the
ipping and rolling operations are simple transitions. If the

outcome of a coin
ip or dice roll a�ects the external behavior of the automaton, then the

ip and roll actions can be followed by simple transitions whose actions represent the outcome

of the random choice. Another possibility is to represent the outcome of the random choice

directly in the transition where the random choice is made by performing di�erent actions. In

this case the resulting probabilistic automaton would not be simple. Later in the chapter we

show why we prefer to represent systems as simple probabilistic automata when possible.

4.2.2 Combined Transitions

In Section 4.1 we argued that a scheduler may resolve the nondeterminism using randomization,

i.e., a scheduler can generate a new transition by combining several transitions of a probabilistic

automatonM . We call the result of the combination of several transitions a combined transition.

Formally, let M be a probabilistic automaton, and let s be a state of M . Consider a �nite or

countable set f(s;Pi)gi2I of transitions of M leaving from s, and a family of non-negative

47

weights fpigi2I such that
P

i pi � 1. Let

P
4
=

0
@ X
i2Ijpi>0

piPi

1
A+

1�

X
i2I

pi

!
D(�); (4.1)

i.e., P is a combination of discrete probability spaces as described in Section 3.1.7. The

pair (s;P) is called a combined transition of M and is denoted by
P

i2I pi(s;Pi). Denote

by ctrans(M) the set of combined transitions of M . Note that trans(M) � ctrans(M).

Thus, the combination of transitions can be viewed as a weighted sum of transitions where

the sum of the weights is at most 1. If the sum of the weights is not 1, then nothing is

scheduled by default. The reason for � by default will become clear when we analyze parallel

composition in Section 4.3. Note that all the transitions (s;Pi) where pi = 0 are discarded in

Expression (4.1), since otherwise P would contain elements whose probability is 0. We do not

impose the restriction that each pi is not 0 for notational convenience: in several parts of the

thesis the pi's are given by complex expression that sometimes may evaluate to 0.

Proposition 4.2.1 The combination of combined transitions of a probabilistic automaton M

is a combined transition of M .

Proof. Follows trivially from the de�nition of a combined transition.

4.2.3 Probabilistic Executions

If we resolve both the nondeterministic and probabilistic choices of a probabilistic automaton,

then we obtain an ordinary execution like those usually de�ned for ordinary automata. Thus, an

execution fragment of a probabilistic automatonM is a (�nite or in�nite) sequence of alternating

states and actions starting with a state and, if the execution fragment is �nite, ending in a state,

� = s0a1s1a2s2 � � � ;

where for each i there is a transition (si;Pi+1) of M such that (ai+1; si+1) 2
i+1. Executions,

concatenations of executions, and pre�xes can be de�ned as for ordinary automata.

In order to study the probabilistic behavior of a probabilistic automaton, we need a mech-

anism to resolve only the nondeterminism, and leave the rest unchanged. That is, we need a

structure that describes the result of choosing a transition, possibly using randomization, at

any point in history, i.e., at any point during a computation. In Figure 4-4 we have given an

example of such a structure, and we have claimed that it should look like a tree. Here we give

a more signi�cant example to justify such a claim.

Example 4.2.3 (History in a probabilistic execution) Consider a new triggered coin
ip-

per, described in Figure 4-5, that can decide nondeterministically to beep or boo if the coin
ip

yields head , and consider a computation, described in Figure 4-6, that beeps if the user chooses

to
ip the fair coin, and boos if the user chooses to
ip the unfair coin. Then, it is evident that

we cannot identify the two states head of Figure 4-6 without reintroducing nondeterminism. In

other words, the transition that is scheduled at each point depends on the past history of the

system, which is represented by the position of a state in the tree. For a formal de�nition of a

structure like the one of Figure 4-6, however, we need to refer explicitly to the past history of

a system.

48

s1

s2

s0

head

tail

flip

flip

1/2

1/2

flip

flip

2/3

1/3

beep
s

boo

unfair

fair

s’

Figure 4-5: The triggered coin
ipper with a boo sound.

s0

1/2

1/2

unfair

fair

s1

s2

s
beep

flip

flip
1/2

1/2

tail

flip

flip

tail

head

head

2/3

1/3

boo
s’

Figure 4-6: A computation of the triggered coin
ipper with a boo sound.

Let � be a �nite execution fragment of a probabilistic automaton M . De�ne a function �a

that applied to a pair (a; s) returns the pair (a; �as), and applied to � returns �. Recall from

Section 3.1.5 that the function �a can be extended to probability spaces. Informally, if (s;P) is

a combined transition of M and � is a �nite execution fragment of M such that lstate(�) = s,

then the pair (�; � a
P) denotes a transition of a structure that in its states remembers part of

the past history. A probabilistic execution fragment of a probabilistic automaton M , is a fully

probabilistic automaton, denoted by H , such that

1. states(H) � frag�(M). Let q range over states of probabilistic execution fragments.

2. for each transition (q;P) of H there is a combined transition (lstate(q);P 0) of M , called

the corresponding combined transition, such that P = q a P 0.

3. each state q of H is reachable in H and enables one transition, possibly (q;D(�)).

A probabilistic execution is a probabilistic execution fragment whose start state is a start state of

M . Denote by prfrag(M) the set of probabilistic execution fragments of M , and by prexec(M)

the set of probabilistic executions of M . Also, denote by qH0 the start state of a generic

probabilistic execution fragment H .

Thus, by de�nition, a probabilistic execution fragment is a probabilistic automaton itself.

Condition 3 is technical: reachability is imposed to avoid useless states in a probabilistic exe-

cution fragment; the fact that each state enables one transition is imposed to treat uniformly

all the points where it is possible not to schedule anything. Figures 4-6 and 4-7 represent

two probabilistic executions of the triggered coin
ipper of Figure 4-5. The occurrence of �

is represented by a dashed line labeled with �. The states of the probabilistic executions are

49

s1

s2

s0

unfair

fair
1/4

1/4

1/2

δ

Figure 4-7: A probabilistic execution of the triggered coin
ipper.

not represented as �nite execution fragments since their position in the diagrams gives enough

information. Similarly, we omit writing explicitly all the transitions that lead to D(�) (e.g.,

states s1 and s2 in Figure 4-7).

We now have enough structure to understand better the role of �. In ordinary automata a

scheduler has the possibility not to schedule anything at any point, leading to a �nite execution.

Such assumption is meaningful if the actions enabled from a given state model some input

that comes from the external environment. In the probabilistic framework it is also possible to

schedule no transition from some point. Since a scheduler may use randomization in its choices,

it is also possible that from some speci�c state nothing is scheduled only with some probability

p, say 1=2.

Example 4.2.4 (The role of �) In the triggered coin
ipper of Figure 4-5 a user can
ip

a fair coin to decide whether to push a button, and then, if the coin
ip yields head,
ip

another coin to decide which button to press. In the transition that leaves from s0 we need

some structure that represents the fact that nothing is scheduled from s0 with probability 1=2:

we use � for this purpose. Figure 4-7 represents the probabilistic execution that we have just

described.

Since a probabilistic execution fragment is itself a probabilistic automaton, it is possible to

talk about the executions of a probabilistic execution fragment, that is, the ways in which the

probabilistic choices can be resolved in a probabilistic execution fragment. However, since at

any point q it is possible not to schedule anything, if we want to be able to study the probabilistic

behavior of a probabilistic execution fragment then we need to distinguish between being in q

with the possibility to proceed and being in q without any possibility to proceed. For example,

in the probabilistic execution of Figure 4-7 we need to distinguish between being in s0 before

performing the transition enabled from s0 and being in s0 after performing the transition. We

represent this second condition by writing s0�. In general, we introduce a notion of an extended

execution fragment, which is used in Section 4.2.5 to study the probability space associated with

a probabilistic execution.

An extended execution (fragment) of a probabilistic automaton M , denoted by �, is either

an execution (fragment) of M , or a sequence �0�, where �0 is a �nite execution (fragment) of

M . The sequences s0� and s0 fair s1� are examples of extended executions of the probabilistic

execution of Figure 4-7.

There is a close relationship between the extended executions of a probabilistic automaton

and the extended executions of one of its probabilistic execution fragments. Here we de�ne

two operators that make such a relationship explicit. Let M be a probabilistic automaton and

50

let H be a probabilistic execution fragment of M . Let q0 be the start state of H . For each

extended execution � = q0a1q1 � � � of H , let

�#
4
=

(
q0

a lstate(q0)a1lstate(q1)a2 � � � if � does not end in �,

q0
a lstate(q0)a1lstate(q1)a2 � � �anlstate(qn)� if � = q0a1q1 � � �anqn�.

(4.2)

It is immediate to observe that �# is an extended execution fragment of M . For each extended

execution fragment � of M such that q0 � �, i.e., � = q0
a s0a1s1 � � �, let

�"q0
4
=

(
q0a1(q0

a s0a1s1)a2(q0
a s0a1s1a2s2) � � � if � does not end in �,

q0a1(q0
a s0a1s1) � � �(q0

a s0a1s1 � � �ansn)� if � = q0
a s0a1s1 � � �ansn�.

(4.3)

It is immediate to observe that �"q0 is an extended execution of some probabilistic execution

fragment of M . Moreover, the following proposition holds.

Proposition 4.2.2 Let H be a probabilistic execution fragment of a probabilistic automaton

M , and let q0 be the start state of H. Then, for each extended execution � of H,

(�#)"q0 = �; (4.4)

and for each extended execution fragment � of M starting with q0,

(�"q0)# = �: (4.5)

Proof. Simple analysis of the de�nitions.

The bottom line is that it is possible to talk about extended executions of H by analyzing only

extended execution fragments of M .

4.2.4 Notational Conventions

For the analysis of probabilistic automata and of probabilistic executions we need to refer to

explicit objects like transitions or probability spaces associated with transitions. In this section

we give a collection of notational conventions that ease the identi�cation of each object.

Transitions

We denote a generic transition of a probabilistic automaton by tr , possibly decorated with

primes and indices. For each transition tr = (s;P), we denote P alternatively by Ptr . If tr is a

simple transition, represented by (s; a;P), we abuse notation by denoting P by Ptr as well. The

context will always clarify the probability space that we denote. If (s;P) is a transition, we use

any set of actions V to denote the event f(a; s0) 2
 j a 2 V g that expresses the occurrence of

an action from V in P , and we use any set of states U to denote the event f(a; s0) 2
 j s0 2 Ug

that expresses the occurrence of a state from U in P . We drop the set notation for singletons.

Thus, P [a] is the probability that action a occurs in the transition (s;P).

If M is a fully probabilistic automaton and s is a state of M , then we denote the unique

transition enabled from s in M by trMs , and we denote the probability space that appears in

trMs by PMs . Thus, trMs = (s;PMs). We drop M from the notation whenever it is clear from

the context. This notation is important to handle probabilistic execution fragments.

51

Transition Pre�xing and Su�xing

Throughout the thesis we use transitions of probabilistic automata and transitions of proba-

bilistic execution fragments interchangeably. If H is a probabilistic execution fragment of a

probabilistic automaton M , then there is a strong relation between the transitions of H and

some of the combined transitions of M . We exploit such a correspondence through two oper-

ations on transitions. The �rst operation is called transition pre�xing and adds some partial

history to the states of a transition; the second operation is called transition su�xing and re-

moves some partial history from the states of a transition. These operations are used mainly

in the proofs of the results of this thesis.

Let tr = (s;P) be a combined transition of a probabilistic automaton M , and let � be a

�nite execution fragment of M such that lstate(�) = s. Then the transition � a tr is de�ned to

be (�; � a P). We call the operation �a transition pre�xing .

Let tr = (q;P) be a transition of a probabilistic execution fragment H , and let q0 � q. Let

.q0 be a function that applied to a pair (a; q00) of
 returns (a; q00.q0), and applied to � returns

�. Let P.q0 denote the result of applying .q0 to P . Then the transition tr.q0 is de�ned to be

(q.q0;P.q0). We call the operation .q0 transition su�xing .

The following properties concern distributivity of transition pre�xing and su�xing with

respect to combination of transitions.

Proposition 4.2.3 LetM be a probabilistic automaton, and let q be a �nite execution fragment

of M .

1. q a
P

i pitr i =
P

i pi(q
a tr i), where each tr i is a transition of M .

2.
P

i pitr i.q =
P

i pi(tr i.q), where each tr i is a transition of some probabilistic execution

fragment of M .

Proof. Simple manipulation of the de�nitions.

4.2.5 Events

At this point we need to de�ne formally how to compute the probability of some event in

a probabilistic execution. Although it is intuitively simple to understand the probability of

a �nite execution to occur, it is not as intuitive to understand how to deal with arbitrary

properties. A probabilistic execution can be countably branching, and can have uncountably

many executions. As an example, consider a probabilistic execution that at any point draws a

natural number n > 0 with probability 1=2n. What is measurable? What is the probability of

a generic event?

In this section we de�ne a suitable probability space for a generic probabilistic execution

fragment H of a probabilistic automaton M . Speci�cally, given a probabilistic execution frag-

ment H we de�ne a probability space PH as the completion of another probability space P 0H
which is de�ned as follows. De�ne an extended execution � of H to be complete i� either �

is in�nite or � = �0� and � 2
H
lstate(�0). Then, the sample space
0H is the set of extended

executions of M that originate from complete extended executions of H , i.e.,

0H
4
= f�# j � is a complete extended execution of Hg: (4.6)

52

The occurrence of a �nite extended execution � of M can be expressed by the set

CH
�

4
= f�0 2
0H j � � �

0
g; (4.7)

called a cone. We drop H from CH
� whenever it is clear from the context. Let CH be the set of

cones of H . Then de�ne F 0H to be the �-�eld generated by CH , i.e.,

F
0
H

4
= �(CH): (4.8)

To de�ne a probability measure on F 0H , we start by de�ning a measure �H on CH such that

�H(
H) = 1. Then we show that �H can be extended uniquely to a measure ��H on F (CH),

where F (CH) is built according to Proposition 3.1.1. Finally we use the extension theorem

(Theorem 3.1.2) to show that �H can be extended uniquely to a probability measure P 0H on

�(F (CH)) = �(CH).

The measure �H(C
H
�) of a cone C

H
� is the product of the probabilities associated with each

edge that generates � in H . Formally, let q0 be the start state of H . If � � q0, then

�H(C
H
�)

4
= 1; (4.9)

if � = q0
a s0a1s1 � � �sn�1ansn, then

�H(C
H
�)

4
= PH

q0
[(a1; q1)] � � �P

H
qn�1

[(an; qn)]; (4.10)

where for each i, 1 � i < n, qi = q0
a s0a1s1 � � �si�1aisi; if � = q0

a s0a1s1 � � �sn�1ansn�, then

�H(C
H
�)

4
= PH

q0
[(a1; q1)] � � �P

H
qn�1

[(an; qn)]Pqn [�]; (4.11)

where for each i, 1 � i � n, qi = q0
a s0a1s1 � � �si�1aisi.

Example 4.2.5 (Some commonly used events) Before proving that the construction of

P 0H is correct, we give some examples of events. The set describing the occurrence of an action

a (eventually a occurs) can be expressed as a union of cones of the form C� such that a appears

in �. Moreover, any union of cones can be described as a union of disjoint cones (follows from

Lemma 4.2.4 below). Since a probabilistic execution fragment is at most countably branching,

the number of distinct cones in CH is at most countable, and thus the occurrence of a can be

expressed as a countable union of disjoint cones, i.e., it is an event of F 0H . More generally, any

arbitrary union of cones is an event. We call such events �nitely satis�able. The reason for the

word \satis�able" is that it is possible to determine whether an execution � of
0H is within a

�nitely satis�able event by observing just a �nite pre�x of �. That �nite pre�x is su�cient to

determine that the property represented by the given event is satis�ed.

The set describing the non-occurrence of an action a is also an event, since it is the comple-

ment of a �nitely satis�able event. Similarly, the occurrence, or non-occurrence, of any �nite

sequence of actions is an event. For each natural number n, the occurrence of exactly n a's is

an event: it is the intersection of the event expressing the occurrence of at least n a's and the

event expressing the non-occurrence of n+ 1 a's. Finally, the occurrence of in�nitely many a's

is an event: it is the countable intersection of the events expressing the occurrence of at least i

a's, i � 0.

53

We now move to the proof that P 0H is well de�ned. First we use ordinal induction to show that

the function �H de�ned on CH is �-additive, and thus that �H is a measure on CH (Lemma 4.2.6);

then we show that there is a unique extension of �H to F (CH) (Lemmas 4.2.7, 4.2.8, and 4.2.9).

Finally, we use the extension theorem to conclude that P 0H is well de�ned.

Lemma 4.2.4 Let C�1; C�2 2
H . If �1 � �2 then C�1 � C�2. If �1 � �2 and �2 � �1 then

C�1 \ C�2 = ;.

Proof. Simple analysis of the de�nitions.

Lemma 4.2.5 Let H be a probabilistic execution of a probabilistic automaton M , and let q be

a state of H. Suppose that there is a transition enabled from q in H. Then

�H(Cq) =

(P
(a;q0)2
Hq

�H(Cq0) if � =2
H
qP

(a;q0)2
Hq
�H(Cq0) + �H(Cq�) if � 2
H

q :
(4.12)

Proof. Simple analysis of the de�nitions.

Lemma 4.2.6 The function �H is �-additive on CH , and �H(
H) = 1.

Proof. By de�nition �H(

0
H) = 1, hence it is su�cient to show �-additivity. Let q be an

extended execution of M , and let � be a set of incomparable extended executions of M such

that Cq = [q02�Cq0 . If q ends in �, then � contains only one element and �-additivity is

trivially satis�ed. Thus, assume that q does not end in �, and hence q is a state of H , and that

� contains at least two elements. From Lemma 4.2.4, q is a pre�x of each extended execution

of �. For each state q0 of H , let �q0 be the set fq00 2 � j q0 � q00g. We show �-additivity

in two steps: �rst we assign an ordinal depth to some of the states of H and we show that q

is assigned a depth; then we show that �H(Cq) =
P

q02� �H(Cq0) by ordinal induction on the

depth assigned to q.

The depth of each state q0 within some cone Cq00 (q
00 � q0), where q00 2 �, is 0, and the depth

of each state q0 with no successors is 0. For each other state q0 such that each of its successors

has a depth, if fdepth(q00) j 9a(a; q
00) 2
H

q0 g has a maximum, then

depth(q0) = max (fdepth(q00) j 9a(a; q
00) 2
H

q0 g) + 1; (4.13)

otherwise, if fdepth(q00) j 9a(a; q
00) 2
q0g does not have a maximum, then

depth(q0) = sup(fdepth(q00) j 9a(a; q
00) 2
H

q0 g): (4.14)

Consider a maximal assignment to the states of H , i.e., an assignment that cannot be extended

using the rules above, and suppose by contradiction that q is not assigned a depth. Then

consider the following sequence of states of H . Let q0 = q, and, for each i > 0, let qi be a state

of H such that (ai; qi) 2
qi�1 , and qi is not assigned a depth. For each i, the state qi exists

since otherwise, if there exists an i such that for each (ai; qi) 2
qi�1 , qi is assigned a depth,

then qi�1 would be assigned a depth. Note that the qi's form a chain under pre�x ordering, i.e.,

for each i; j, if i � j then qi � qj . Consider the execution �1 = limi qi. From its de�nition, �1
is an execution of Cq. Then, from hypothesis, �1 is an execution of [q02�Cq0 , and therefore

�1 is an execution of some Cq0 such that q0 2 �. By de�nition of a cone, q0 is a pre�x of �1.

54

Thus, q0 = qk for some k � 0. But then qk is within the cone Cq0 , and thus it is assigned depth

0. This contradicts the fact that qk is not assigned any depth.

Let
 be the ordinal depth assigned to q. We show that �H(Cq) =
P

q02� �H(Cq0) by

ordinal induction on
. If
 = 0, then � is either fqg or fq�g, and the result is trivial. Let

 be a successor ordinal or a limit ordinal. From Lemma 4.2.5, �H(Cq) =
P

(a;q0)2
q
�H(Cq0)

if � =2
q, and �H (Cq) =
P

(a;q0)2
q �H(Cq0) + �H(Cq�) if � 2
q. For each (a; q0) 2
q,

Cq0 = [q002�q0
Cq00 . Moreover, for each (a; q0) 2
q, the depth of q0 is less than
. By induction,

�H(Cq0) =
P

q002�q0
�H(Cq00). Thus, �H(Cq) =

P
(a;q0)2
q

P
q002�q0

�H(Cq00) =
P

q02� �H(Cq0) if

� =2
q, and �H(Cq) =
P

(a;q0)2
q

P
q002�q0

�H(Cq00) + �H (Cq�) =
P

q02� �H(Cq0) if � 2
q.

Lemma 4.2.7 There exists a unique extension �0H of �H to F1(CH).

Proof. There is a unique way to extend the measure of the cones to their complements since

for each �, �H(C�) + �H(
H � C�) = 1. Therefore �0H coincides with �H on the cones and

is de�ned to be 1 � �H(C�) for the complement of any cone C�. Since, by the countably

branching structure of H , the complement of a cone is a countable union of cones, �-additivity

is preserved.

Lemma 4.2.8 There exists a unique extension �00H of �0H to F2(CH).

Proof. The intersection of �nitely many sets of F1(CH) is a countable union of cones. Therefore

�-additivity enforces a unique measure on the new sets of F1(CH).

Lemma 4.2.9 There exists a unique extension �000H of �00H to F3(CH).

Proof. There is a unique way of assigning a measure to the �nite union of disjoint sets whose

measure is known, i.e., adding up their measures. Since all the sets of F3(CH) are countable

unions of cones, �-additivity is preserved.

Theorem 4.2.10 There exists a unique extension P 0H of �H to the �-algebra F 0H.

Proof. By Theorem 3.1.2, de�ne P 0H to be the unique extension of �000H to F 0H .

4.2.6 Finite Probabilistic Executions, Pre�xes, Conditionals, and Su�xes

We extend the notions of �niteness, pre�x and su�x to the probabilistic framework. Here we

add also a notion of conditional probabilistic execution which is not meaningful in the non-

probabilistic case and which plays a crucial role in some of the proofs of Chapter 5.

Finite Probabilistic Executions

Informally, �niteness means that the tree representation of a probabilistic execution fragment

has a �nite depth. Thus, a probabilistic execution fragment H is �nite i� there exists a natural

number n such that the length of each state of H is at most n.

55

s1

s2

s
0

1/4

1/4

1/2

δ

a

b

H:

s1

s2

s0

s1

s2

s0
’’

a

b

1/2

s

s

1/2

s
1/4

δ

a

b

1/4

1/2

H :

s

sc

c c

c

1/2

1/2d

H : ’’

Figure 4-8: Examples of the pre�x relation.

Pre�xes

The idea of a pre�x of a probabilistic execution fragment is more complicated than the de�nition

of pre�x for ordinary automata. To get a better understanding of the problem, consider the

de�nition of pre�x for ordinary execution fragments: � � �0 i� either � = �0, or � is �nite and

there is an execution fragment �00 such that �0 = �a�00. Another way to interpret this de�nition

is to observe that if � is �nite, then there is exactly one point in �, which we call a point of

extension, from which nothing is scheduled, and in that case �0 is obtained by extending � from

its unique point of extension. With the word \extending" we mean \adding transitions". In

other words, an execution fragment � is a pre�x of an execution fragment �0 i� �0 is obtained

from � by adding transitions, possibly none, from all the points of extension of �, i.e., from

all the points of � where nothing is scheduled. We apply the same observation to probabilistic

execution fragments, where a point of extension is any point where � occurs.

Example 4.2.6 (Pre�xes) Consider the probabilistic execution fragment H of Figure 4-8.

It is easy to see that s1 and s2 are points of extension in H . However, also s0 is a point

of extension since in H nothing is scheduled from s0 with probability 1=2. The probabilistic

execution fragment H 0 of Figure 4-8 is an extension of H . States s1 and s2 are extended with

transitions labeled with c, and half of the extendible part of s0 is extended with the transition

s0
a
�! s1, i.e., we have added the transition (s0;U((a; s1); �)) to the extendible part of s0. Since

the extension from s0 overlaps with one of the edges leaving s0 in H , the e�ect that we observe

in H 0 is that s1 is reached with a higher probability.

Consider now the probabilistic execution fragment H 00 of Figure 4-8. H 00 is an extension

of H 0, but this time something counterintuitive has happened; namely, the edge labeled with

action c that leaves from state s2 has a lower probability in H 00 than in H 0. The reason for this

di�erence is that the extendible part of s0 is extended with a transition s0
b
�! s2 followed by

s2
c
�! s0. Thus, half of the transition leaving from s2 in H

00 is due to the previous behavior of

H 0, and half of the transition leaving from s2 in H
00 is due to the extension from s0. However,

the probability of the cone Cs0bs2cs is the same in H 0 and in H 00.

A formal de�nition of a pre�x works as follows. A probabilistic execution fragmentH is a pre�x

of a probabilistic execution fragment H 0, denoted by H � H 0, i�

1. H and H 0 have the same start state, and

2. for each state q of H , PH [Cq] � PH 0 [Cq].

Observe that the de�nition of a pre�x for ordinary executions is a special case of the de�nition

we have just given.

56

c

1/2

1/2d

c

1/2

1/2d

s bs

s bs ds

s bs cs s2

s ds

s cs0 2 0 2

0 2 ’

2

2 ’

H : H :1 2

Figure 4-9: Conditionals and su�xes.

Conditionals

Let H be a probabilistic execution fragment of a probabilistic automatonM , and let q be either

a state of H or a pre�x of the start state of H . We want to identify the part of H that describes

what happens conditional to the occurrence of q. The new structure, which we denote by H jq,

is a new probabilistic execution fragment de�ned as follows:

1. states(H jq) = fq0 2 states(H) j q � q0g;

2. start(H jq) = min(states(H jq)), where the minimum is taken under pre�x ordering,

3. for each state q0 of H jq, tr
Hjq
q0 = trHq0 .

H jq is called a conditional probabilistic execution fragment.

Example 4.2.7 (Conditionals) The probabilistic execution fragment H1 of Figure 4-9 is an

example of a conditional probabilistic execution fragment. Speci�cally, H1 = H 00j(s0as2), where

H 00 is represented in Figure 4-8. In Figure 4-9 we represent explicitly the states ofH1 for clarity.

The conditional operation essentially extracts the subtree of H 00 that starts with s0as2.

It is easy to check that (
Hjq;FHjq; PHjq) and (
H jCq;FH jCq; PH jCq) are the same probability

space (cf. Section 3.1.8). Indeed, the sample sets are the same, the generators are the same, and

the probability measures coincide on the generators. Thus, the following proposition, which is

used in Chapter 5, is true.

Proposition 4.2.11 Let H be a probabilistic execution fragment of a probabilistic automaton

M , and let q be either a state of H, or a pre�x of the start state of H. Then, for each subset

E of
Hjq,

1. E 2 FHjq i� E 2 FH .

2. If E is an event, then PH [E] = PH [Cq]PHjq[E].

Su�xes

The de�nition of a su�x is similar to the de�nition of a conditional; the di�erence is that in

the de�nition of H.q we drop q from each state of H , i.e., we forget part of the past history.

Formally, let H be a probabilistic execution fragment of a probabilistic automaton M , and let

q be either a state of H or a pre�x of the start state of H . Then H.q is a new probabilistic

execution fragment de�ned as follows:

1. states(H.q) = fq0.q j q0 2 states(H); q � q0g,

57

2. start(H.q) = min(states(H.q)), where the minimum is taken under pre�x ordering,

3. for each state q0 of H 0, tr
H.q
q0 = trH

qaq0
.q.

H.q is called a su�x of H . It is a simple inductive argument to show that H.q is indeed

a probabilistic execution fragment of M . Observe that the de�nition of a su�x for ordinary

executions is a special case of the de�nition we have just given.

Example 4.2.8 (Su�xes) The probabilistic execution fragment H2 of Figure 4-9 is an ex-

ample of a su�x. Speci�cally, H2 = H 00.(s0as2), where H
00 is represented in Figure 4-8. The

su�xing operation essentially extracts the subtree of H 00 that starts with s0as2 and removes

from each state the pre�x s0as2.

It is easy to check that the probability spaces PH.q and PHjq are in a one-to-one correspondence

through the measurable function f :
H.q !
Hjq such that for each � 2
H.q, f(�) = q a �.

The inverse of f is also measurable and associates �.q with each execution � of
Hjq. Thus,

directly from Proposition 4.2.11, we get the following proposition.

Proposition 4.2.12 Let H be a probabilistic execution fragment of a probabilistic automaton

M , and let q be either a state of H, or a pre�x of the start state of H. Then, for each subset

E of
H.q,

1. E 2 FH.q i� (q a E) 2 FH .

2. If E is an event, then PH [q
a E] = PH [Cq]PH.q[E].

4.2.7 Notation for Transitions

In this section we extend the arrow notation for transitions that is used for ordinary automata.

The extension that we present is meaningful for simple transitions only.

An alternative representation for a simple transition (s; a;P) of a probabilistic automatonM

is s
a
�! P . Thus, di�erently from the non-probabilistic case, a transition leads to a distribution

over states. If P is a Dirac distribution, say D(s0), then we can represent the corresponding

transition by s
a
�! s0. Thus, the notation for ordinary automata becomes a special case of the

notation for probabilistic automata. If (s; a;P) is a simple combined transition of M , then we

represent the transition alternatively by s
a
�!C P , where the letter C stands for \combined".

The extension of weak transitions is more complicated. The expression s
a

=) P means

that P is reached from s through a sequence of transitions of M , some of which are internal.

The main di�erence from the non-probabilistic case is that in the probabilistic framework the

transitions involved form a tree rather than a linear chain. Formally, s
a

=) P , where a is either

an external action or the empty sequence and P is a probability distribution over states, i�

there is a probabilistic execution fragment H such that

1. the start state of H is s;

2. PH [f�� j �� 2
Hg] = 1, i.e., the probability of termination in H is 1;

3. for each �� 2
H , trace(�) = a;

58

s1

s1

s2

s2

s2

1/2

1/2

τ

τ

τ’

’ ’

’

’

ss τ

1/2

1/2

a

a
τ

τ
2/3

1/3

1

2 5

4

3

s

s

s

s

s
a

a
1/2

1/2

Figure 4-10: A representation of a weak transition with action a.

1/2

1/2

s

s

τ

τ

1

0 1/2

1/2

s

s

τ

τ

1

00s
1/2

s
τ

0

1/2

s
τ

1

H:0sM:
1/2

s
τ

τ
1/2

1

Figure 4-11: A weak transition of a probabilistic automaton with cycles.

4. P = lstate(�-strip(PH)), where �-strip(PH) is the probability space P 0 such that
0 =

f� j �� 2
Hg, and for each � 2
0, P 0[�] = PH [C��];

5. for each state q of H , either trHq is the pair (lstate(q);D(�)), or the transition that corre-

sponds to trHq is a transition of M .

A weak combined transition, s
a

=)C P , is de�ned as a weak transition by dropping Condition 5.

Throughout the thesis we also the extend the function �-strip to extended execution fragment;

its action is to remove the symbol � at the end of each extended execution fragment.

Example 4.2.9 (Weak transitions) Figure 4-10 represents a weak transition with action

a that leads to state s1 with probability 5=12 and to state s2 with probability 7=12. The

action � represents any internal action. From the formal de�nition of a weak transition, a tree

that represents a weak transition may have an in�nite branching structure, i.e., it may have

transitions that lead to countably many states, and may have some in�nite paths; however, the

set of in�nite paths has probability 0.

Figure 4-11 represents a weak transition of a probabilistic automaton with cycles in its

transition relation. Speci�cally, H represents the weak transition s0 =) P , where P [s0] = 1=8

and P [s1] = 7=8. If we extend H inde�nitely on its right, then we obtain a new probabilistic

execution fragment that represents the weak transition s0 =) D(s1). Observe that the new

probabilistic execution fragment has an in�nite path that occurs with probability 0. Further-

more, observe that there is no other way to reach state s1 with probability 1.

Remark 4.2.10 According to our de�nition, a weak transition can be obtained by concatenat-

ing together in�nitely many transitions of a probabilistic automaton. A reasonable objection

to this de�nition is that sometimes scheduling in�nitely many transitions is unfeasible. In the

59

timed framework this problem is even more important since it is feasible to assume that there

is some limit to the number of transitions that can be scheduled in a �nite time. Thus, a more

reasonable and intuitive de�nition of a weak transition would require the probabilistic execution

fragment H that represent a weak transition not to have any in�nite path. All the results that

we prove in this thesis are valid for the more general de�nition where H can have in�nite paths

as well as for the stricter de�nition where H does not have any in�nite path. Therefore, we use

the more general de�nition throughout. The reader is free to think of the simpler de�nition to

get a better intuition of what happens.

An alternative way to represent a weak transition, which is used to prove the theorems of

Chapter 8, is by means of a generator . If H represents a weak combined transition, then a

generator can be seen as an object that chooses the combined transitions of M that lead to H

(in Chapter 5 this object is also called an adversary). More precisely, a generator is a function

O that associates a weak combined transition of M with each �nite execution fragment of

M . Before stating the formal properties that a generator satis�es, we give an example of the

generator for the weak transition of Figure 4-10.

Example 4.2.11 (Generators) Recall from Section 3.1.10 that U(x; y) denotes the probabil-

ity space that assigns x and y probability 1=2 each. Then, the generator for the weak transition

of Figure 4-10 is the function O where

O(s�s01as
0
3) = (s03; �;U(s1; s2))

O(s�s01) = (s01; a;U(s
0
3; s

0
4)) O(s�s

0
1as

0
4) = (s04; �;D(s2))

O(s) = (s; �;U(s01; s
0
2)) O(s�s

0
2) = (s02; �;D(s

0
5)) O(s�s02�s

0
5) = (s05; a;U(s1; s2))

and O(�) = (lstate(�);D(�)) for each � that is not considered above. The layout of the

de�nition above re
ects the shape of the probabilistic execution fragment of Figure 4-10.

Thus, if we denote the probabilistic execution fragment of Figure 4-10 byH , O is the function

that for each state q ofH gives the combined transition ofM that corresponds to trHq . Function

O is also minimal in the sense that it returns a transition di�erent from (lstate(q);D(�)) only

from those states q that are relevant for the construction of H . We call active all the states of

H that enable some transition; we call reachable all the reachable states of H ; we call terminal

all the states q of H such that � 2
H
q .

Let M be a probabilistic automaton and let s be a state of M . A generator for a weak

(combined) transition s
a�ext(M)
=) P ofM is a function O that associates a (combined) transition

of M with each �nite execution fragment of M such that the following conditions are satis�ed.

1. If O(�) = (s0;P), then s0 = lstate(�). Call � active if P 6= D(�).

2. If �bs0 is active, then fstate(�) = s and (b; s0) 2
O(�).

3. Call � reachable i� either � = s or � = �0bs0 and (b; s0) 2
O(�0). Call � terminal i� � is

reachable and PO(�as0)[�] > 0. Then, for each terminal �, the trace of � is a � ext(M).

4. For each reachable execution fragment � = sa1s1a2s2 � � �aksk , let

PO�
4
=

Y
0�i<k

PO(sa1s1���aisi)[(ai+1si+1)];

60

Then,

 = flstate(�) j terminal(�)g;

and for each s0 2
,

P [s0] =
X

�jlstate(�)=s0;terminal(�)

PO� PO(�)[�]:

Condition 1 says that the transition that O(�) returns is a legal transition ofM from lstate(�);

Condition 2 guarantees that the active execution fragments are exactly those that are relevant

for the weak transition denoted by O; Condition 3 ensures that the weak transition represented

by O has action a � ext(M); Condition 4 computes the probability space reached in the tran-

sition represented by O, which must coincide with P . The term PO� represents the probability

of performing � if O resolves the nondeterminism in M . Observe that terminal execution frag-

ments must be reachable with probability 1 if we want the structure computed in Condition 4

to be a probability space.

Proposition 4.2.13 There is a weak combined transition s
a

=) P of M i� there is a function

O that satis�es the �ve conditions of the de�nition of a generator.

Proof. Simple analysis of the de�nitions.

4.3 Parallel Composition

In this section we extend to the probabilistic framework the parallel composition operator and

the notion of a projection of ordinary automata. The parallel composition of simple probabilistic

automata can be de�ned easily by enforcing synchronization on the common actions as in the

non-probabilistic case; for general probabilistic automata, however, it is not clear how to give

a synchronization rule. We discuss the problems involved at the end of the section.

4.3.1 Parallel Composition of Simple Probabilistic Automata

Two probabilistic automataM1 and M2 are compatible i�

int(M1) \ acts(M2) = ; and acts(M1) \ int(M2) = ;.

The parallel composition of two compatible simple probabilistic automataM1 andM2, denoted

by M1kM2, is the simple probabilistic automaton M such that

1. states(M) = states(M1)� states(M2).

2. start(M) = start(M1)� start(M2).

3. sig(M) = (ext(M1)[ext(M2); int(M1) [int(M2)).

4. ((s1; s2); a;P) 2 trans(M) i� P = P1
 P2 where

61

s1,0 s,()2,0

ss ,()2,01,1

ss ,()2,01,2

ss ,()1,2 2,1

b

a

1/2

1/2
a

b

ss ,()2,01,3

ss ,()1,1 2,1

ss ,()2,01,4

ss ,()2,11,4

ss ,()2,01,5

ss ,()2,11,6

1/2

1/2

a

1/2

1/2
b

c
d

d

Figure 4-12: A probabilistic execution fragment of M1kM2.

s1,0

s1,1

s1,2

s1,5

s1,3

1/2

1/2
b

δ

1,4 s1,6
s

b

c

1/2

1/21/2

1/2
a

b a

Figure 4-13: The projection onto M1 of the probabilistic execution fragment of Figure 4-10.

(a) if a 2 acts(M1) then (s1; a;P1) 2 trans(M1), else P1 = D(s1), and

(b) if a 2 acts(M2) then (s2; a;P2) 2 trans(M2), else P2 = D(s2).

Similar to the non-probabilistic case, two simple probabilistic automata synchronize on their

common actions and evolve independently on the others. Whenever a synchronization occurs,

the state that is reached is obtained by choosing a state independently for each of the proba-

bilistic automata involved.

4.3.2 Projection of Probabilistic Executions

The Structure of the Problem

LetM =M1kM2, and let H be a probabilistic execution fragment ofM . We want to determine

the view that M1 has of H , or, in other words, what probabilistic execution M1 performs in

order for M1kM2 to produce H . To understand the complexity of the problem, consider the

probabilistic execution fragment of Figure 4-12, and consider its projection ontoM1, represented

in Figure 4-13. Actions a; b and c are actions of M1, while action d is an action of M2. Thus,

there is no communication between M1 and M2. Denote the probabilistic execution fragment

of Figure 4-12 by H , and denote the probabilistic execution fragment of Figure 4-13 by H1.

The projections of the states are ordinary projections of pairs onto their �rst component. The

transitions, however, are harder to understand. We analyze them one by one.

s1;0 The transition leaving s1;0 is obtained directly from the transition leaving (s1;0; s2;0) in

H by projecting onto M1 the target states.

s1;2 The transition leaving s1;2 is obtained by combining the transitions leaving states (s1;2; s2;0)

and (s1;2; s2;1), each one with probability 1=2. The two transitions leaving (s1;2; s2;0) and

62

(s1;2; s2;1) have the same projection onto M1, and thus the transition leaving s1;2 in H1

is s1;2
a
�! s1;4. From the point of view of M1, there is just a transition s1;2

a
�! s1;4;

nothing is visible about the behavior of M2.

To give a better idea of what we mean by \visible", suppose that M1 is a student who

has to write a report and suppose that the report can be written using a pen (action

c) or using a pencil (action b). Suppose that the teacher may be able to get a pencil

eraser (action d) and possibly erase the report written by the student once it is ready for

grading. Then the scheduler is an arbiter who gives the student a pen if the teacher gets

an eraser. If the student starts in state s1;2, then from the point of view of the student

the material for the report is prepared (action a), and then the arbiter gives the student

a pen with probability 1=2 and a pencil with probability 1=2; nothing is known about the

time the the arbiter made the choice and the reason for which the choice was made. We

can also think of the student as being alone in a room and the arbiter as being a person

who brings to the student either a pen or a pencil once the material for the report is

ready.

The detailed computation of the transition leaving from s1;2 in H1 works as follows: we

start from state (s1;2; s2;0), which is the �rst state reached in H where M1 is in s1;2, and

we analyze its outgoing edges. We include directly all the edges labeled with actions of

M1 in the transition leaving s1;2; for the other edges, we move to the states that they

lead to, in our case (s1;2; s2;1), and we repeat the same procedure keeping in mind that

the probability of the new edges must be multiplied by the probability of reaching the

state under consideration. Thus, the edge labeled with a that leaves (s1;2; s2;0) is given

probability 1=2 since its probability is 1=2, and the edge that leaves (s1;2; s2;1) is given

probability 1=2 since the probability of reaching (s1;2; s2;1) from (s1;2; s2;0) is 1=2.

s1;4 For the transition leaving s1;4, we observe that inH there are two states, namely (s1;4; s2;0)

and (s1;4; s2;1), that can be reached separately and whose �rst component is s1;4. Each

one of the two states is reached in H with probability 1=4. The di�erence between the

case for state s1;2 and this case is that in the case for s1;2 state (s1;2; s2;0) occurs before

(s1;2; s2;1), while in this case there is no relationship between the occurrences of (s1;4; s2;0),

and (s1;4; s2;1). The transition leaving s1;4 depends on the state of M2 which, conditional

on M1 being in s1;4, is 1=2 for s2;0 and 1=2 for s2;1. Thus, from the point of view of M1,

since the state ofM2 is unknown, there is a transition from s1;4 that with probability 1=2

leads to the occurrence of action b and with probability 1=2 leads to the occurrence of

action c. Essentially we have normalized to 1 the probabilities of states (s1;4; s2;0) and

(s1;4; s2;1) before considering their e�ect on M1.

s1;1 The transition leaving s1;1 shows why we need the symbol � in the transitions of a proba-

bilistic automaton. From state (s1;1; s2;0) there is a transition where action b occurs with

probability 1=2 and action � occurs with probability 1=2. After � is performed, nothing

is scheduled. Thus, from the point of view of M1, nothing is scheduled from s1;1 with

probability 1=2; the transition of M2 is not visible by M1.

63

Action Restricted Transitions

The formal de�nition of a projection relies on a new operation on transitions, called action

restriction, which is used also in several other parts of the thesis. The action restriction op-

eration allows us to consider only those edges of a transition that are labeled with actions

from a designated set V . For example, V could be the set of actions of a speci�c probabilistic

automaton.

Formally, let M be a probabilistic automaton, V be a set of actions of M , and tr = (s;P)

be a transition of M . The transition tr restricted to actions from V , denoted by tr � V , is

the pair (s;P 0) where P 0 is obtained from P by considering only the edges labeled with actions

from V and by normalizing their probability to 1, i.e.,

�
0 =

(
f(a; s0) 2
 j a 2 V g if P [V] > 0

f�g otherwise

� if P [V] > 0, then for each (a; s0) 2
0, P 0[(a; s0)] = P [(a; s0)]=P [V].

Two properties of action restriction concern commutativity with transition pre�xing, and dis-

tributivity with respect to combination of transitions. These properties are used in the proofs

of other important results of this thesis. The reader may skip the formal statements for the

moment and refer back to them when they are used.

Proposition 4.3.1 For each q and tr such that one of the expressions below is de�ned,

q a (tr � V) = (q a tr) � V:

Proof. Simple manipulation of the de�nitions.

Proposition 4.3.2 Let ftigi2I be a collection of transitions leaving from a given state s, and

let fpigi2I be a collection of real numbers between 0 and 1 such that
P

i2I pi � 1. Let V be a

set of actions. Then

(
X
i

pitr i) � V =
X
i

piPtr i [V]P
i piPtr i [V]

(tr i � V);

where we use the convention that 0=0 = 0.

Proof. Let

(s;P)
4
=

X
i

pitr i; (4.15)

(s;P 0)
4
= (

X
i

pitr i) � V; (4.16)

(s;P 00)
4
=

X
i

piPtr i [V]P
i piPtri [V]

(tr i � V): (4.17)

We need to show that P 0 and P 00 are the same probability space.

64

If P [V] = 0, then both P 0 and P 00 are D(�) and we are done. Otherwise, observe that

neither
0 nor
00 contain �. Consider any pair (a; s0). Then,

(a; s0) 2
0

i� (a; s0) 2
 and a 2 V from (4.16) and (4.15)

i� 9i(a; s
0) 2
tr i ; pi > 0; and a 2 V from (4.15)

i� 9i(a; s
0) 2
tr i�V and pi > 0 from the de�nition of tr i � V

i� (a; s0) 2
00 from (4.17).

Consider now a pair (a; s0) of
0. From the de�nition of action restriction and (4.16),

P 0[(a; s0)] = P [(a; s0)]=P [V]: (4.18)

From the de�nition of P (Equation (4.15)), the right side of Equation 4.18 can be rewritten

into X
i

piP
i piPtr i [V]

Ptr i [(a; s
0)]; (4.19)

where
P

i piPtri [V] is an alternative expression of P [V] that follows directly from (4.16). By

multiplying and dividing each ith summand of Expression 4.19 by Ptri [V], we obtain

X
i

piPtr i [V]P
i piPtr i [V]

(Ptri [(a; s
0)]=Ptri [V]): (4.20)

Since Ptri [(a; s
0)]=Ptri [V] = Ptr i�V [(a; s

0)], from the de�nition of P 00 (Equation (4.17)), Expres-

sion 4.20 can be rewritten into P 00[(a; s0)]. Thus, P 0[(a; s0)] = P 00[(a; s0)]. This is enough to

show that P 0 = P 00.

De�nition of Projection

We give �rst the formal de�nition of a projection, and then we illustrate its critical parts by

analyzing the example of Figures 4-12 and 4-13. It is very important to understand Expres-

sions (4.21) and (4.22) since similar expressions will be used in several other parts of the thesis

without any further explanation except for formal proofs.

Let M =M1kM2, and let H be a probabilistic execution fragment of M .

Let tr = (q;P) be an action restricted transition of H such that only actions ofMi, i = 1; 2,

appear in tr . De�ne the projection operator on the elements of
 as follows: (a; q0)dMi =

(a; q0dMi), and �dMi = �. Recall from Section 3.1.5 that the projection can be extended

to discrete probability spaces. The projection of tr onto Mi, denoted by trdMi, is the pair

(qdMi;PdMi).

The projection of H onto Mi, denoted by HdMi, is the fully probabilistic automaton H 0

such that

1. states(H 0) = fqdMi j q 2 states(H)g;

2. start(H 0) = fqdMi j q 2 start(H)g;

3. sig(H 0) = sig(Mi);

65

4. for each state q of H 0, let qeH be the set of states of H that projected onto Mi give q,

and let min(qeH) be the set of minimal states of qeH under pre�x ordering. For each

q0 2 (qeH), let

�p
qeH
q0

4
=

PH [C�q]P
q002min(qeH) PH [Cq00]

: (4.21)

The transition enabled from q in H 0 is

trH
0

q
4
=

X
q02qeH

�p
qeH
q0 PH

q0 [acts(Mi)](tr
H
q0 � acts(Mi))dMi: (4.22)

Each summand of Expression 4.22 corresponds to the analysis of one of the states of H that can

in
uence the transition enabled from q in H 0. The subexpression (trHq0 � acts(Mi))dMi selects

the part of the transition leaving from q0 where Mi is active, and projects onto Mi the target

states of the selected part; the subexpression �p
qeH
q0 PH

q0 [acts(Mi)] expresses the probability with

which q0 in
uences the transition enabled from q. PH
q0 [acts(Mi)] is the probability that tr

H
q0 does

something visible byMi, and �p
qeH
q0 is the probability of being in q0 conditional onMi being in q.

Its value is given by Expression 4.21 and can be understood as follows. The state q0 is either a

minimal state of qeH or is reached from a minimal state through a sequence of edges with actions

not in acts(Mi). The probability of being in q0, conditional on Mi being in q, is the normalized

probability of being in the minimal state of qeH that precedes q0 multiplied by the probability

of reaching q0 from that minimal state. We encourage the reader to apply Expression (4.22) to

the states s1;0; s1;1; s1;2, and s1;4 of Figure 4-13 to familiarize with the de�nition. As examples,

observe that min((s1;0bs1;2)eH) = f(s1;0; s2;0)b(s1;2; s2;0)g and that min((s1;0bs1;2as1;4)eH) =

f(s1;0; s2;0)b(s1;2; s2;0)a(s1;4; s2;0); (s1;0; s2;0)b(s1;2; s2;0)d(s1;2; s2;1)a(s1;4; s2;1)g.

If we analyze the state s1;3 of Figure 4-13 and we use Expression 4.22 to compute the

transition leaving s1;3, then we discover that the sum of the probabilities involved is not 1.

This is because there is a part of the transition leaving (s1;3; s2;0) where no action of M1 ever

occurs. From the point of view of M1 nothing is scheduled; this is the reason of our choice of

deadlock by default in the de�nition of the combination of transitions (cf. Section 4.2.2).

We now move to Proposition 4.3.4, which is the equivalent of Proposition 3.2.1 for the

probabilistic framework. Speci�cally, we show that the projection of a probabilistic execution

fragment H of M1kM2 onto one of its components Mi is a probabilistic execution fragment

of Mi. Proposition 3.2.1 is important because it shows that every computation of a parallel

composition is the result of some computation of each of the components. One of the reasons

for our use of randomized schedulers in the model is to make sure that Proposition 3.2.1 is

valid. Before proving this result, we show that its converse does not hold, i.e., that there are

structures that look like a probabilistic execution, that projected onto each component give a

probabilistic execution of a component, but that are not probabilistic executions themselves.

Example 4.3.1 (Failure of the converse of Proposition 4.3.4) Consider the probabilis-

tic automata of Figure 4-14.a, and consider a potential probabilistic execution of the composi-

tion as represented in Figure 4-14.b. Denote the two probabilistic automata of Figure 4-14.a by

M1 andM2, and denote the structure of Figure 4-14.b by H . The projections of H ontoM1 and

66

s0

s1

s2

1/2

1/2

a

a

s0

s1

s2

1/2

1/2
b

b

s0 s0,)(
1/2

1/2
b

b

(,)s0 s1

,)(ss0 2

(,)s s11

,)(ss 22

a

a

a) Two compatible simple probabilistic automata.

b) A potential probabilistic execution of the composition.

Figure 4-14: A counterexample to the converse of the projection proposition.

M2 give a probabilistic execution of M1 and M2, respectively. The diagrams of Figure 4-14.a

can be viewed as the projections of H as well. However, H is not a probabilistic execution of

M1kM2 since in no place of M1 it is possible to have a Dirac transition to s1 or s2.

The rest of this section is dedicated to the proof of the proposition that corresponds to Propo-

sition 3.2.1 and to the proof of an additional result (Proposition 4.3.5) that gives a meaning to

the denominator of Expression (4.21). We �rst state two preliminary properties of projection

of transitions (Proposition 4.3.3).

Proposition 4.3.3 Let M =M1kM2. Then, for i = 1; 2,

1. (
P

j pjtr j)dMi =
P

j pj(tr jdMi).

2. (q a tr)dMi = (qdMi)
a trdMi.

Proof. Simple manipulation of the de�nitions.

Proposition 4.3.4 Let M = M1kM2, and let H be a probabilistic execution fragment of M .

Then HdM1 2 prexec(M1) and HdM2 2 prexec(M2).

Proof. We show that HdM1 2 prexec(M1); the other statement follows from a symmetric

argument. Let H1 denote HdM1. From Proposition 3.2.1, the states of H1 are execution

fragments of M1.

Consider now a state q of H1. We need to show that there is a combined transition tr of

M1 that corresponds to trH1
q , i.e., such that trH1

q = q a tr . From Propositions 4.2.1 and 4.2.3,

it is su�cient to show that for each state q0 of qeH , there is a combined transition tr(q0) of M1

such that

(trHq0 � acts(M1))dM1 = q a tr(q0): (4.23)

67

Then, the transition tr would be

tr =
X

q02qeH

�p
qeH
q0 PH

q0 [acts(Mi)]tr(q
0): (4.24)

Proposition 4.2.1 is used to show that tr is a combined transition of M1; Proposition 4.2.3 is

used to show that q a tr = trH1
q . Since H is a probabilistic execution fragment of M , for each

state q0 of qeH there exists a combined transition tr 0(q0) of M such that

trHq0 = q0 a tr 0(q0): (4.25)

From the de�nition of a combined transition, there is a collection of transitions ftr 0(q0; i)gi2I
of M , and a collection of probabilities fpigi2I , such that

tr 0(q0) =
X
i

pitr
0(q0; i): (4.26)

Note that each transition tr 0(q0; i) is a simple transition. From the de�nition of action restriction

and (4.26), there is a subset J of I , and a collection of non-zero probabilities fp0jgj2J , such that

tr 0(q0) � acts(M1) =
X
j

p0jtr
0(q0; j): (4.27)

If we apply transition pre�x with q0 to both sides of Equation 4.27, we use commutativity

of action restriction with respect to transition pre�xing (Proposition 4.3.1) and (4.25) on the

left expression, and we use distributivity of transition pre�xing with respect to combination of

transitions (Proposition 4.2.3) on the right expression, then we obtain

trHq0 � acts(M1) =
X
j

p0j

�
q0 a tr 0(q0; j)

�
: (4.28)

By projecting buth sides of (4.28) ontoM1, and using distributivity of projection with respect to

combination of transitions (Proposition 4.3.3) and commutativity of projection and transition

pre�xing (Proposition 4.3.3) on the right expression, we obtain

(trHq0 � acts(M1))dM1 =
X
j

p0j

�
q a (tr 0(q0; j)dM1)

�
: (4.29)

From the distributivity of transition pre�xing with respect to combination of transitions (Propo-

sition 4.2.3), Equation 4.29 becomes

(trHq0 � acts(M1))dM1 = q a
X
j

p0j(tr
0(q0; j)dM1): (4.30)

From standard properties of the projection of product probability distributions (cf. Sec-

tion 3.1.6) and the de�nition of parallel composition, each tr 0(q0; j)dM1 is a transition of M1.

Thus,
P

j p
0
j tr

0(q0; j)dM1 is the combined transition of M1 that satis�es Equation 4.23.

Finally, we need to show that each state q of H1 is reachable. This is shown by induction

on the length of q, where the base case is the start state of H1. The start state of H1 is

trivially reachable. Consider a state qas of H1. By induction, q is reachable. Let q0 be a

minimal state of (qas)eH . Then, q0 = q00a(s; s2), where q
00 is a state of qeH and s2 is a state

68

of M2. Moreover, (a; q0) 2
trH
q00
, and thus, (a; qas) 2
(trH

q00
�acts(M1))dM1

. Since no edges with

probability 0 are allowed in a probabilistic automaton, the term �p
qeH
q00 P

H
q00 [acts(Mi)] is not 0,

and thus (a; qas) 2
H1
q . This means that qas is reachable.

We conclude this section with another property of projections that gives a meaning to the

denominator of Expression (4.21). Speci�cally, the proposition below allows us to compute the

probability of a �nitely satis�able event of the projection of a probabilistic execution fragment

H by computing the probability of a �nitely satis�able event of H . Observe that the right

expression of (4.31) is indeed the denominator of (4.21).

Proposition 4.3.5 Let M = M1kM2, and let H be a probabilistic execution fragment of M .

Let Hi be HdMi, i = 1; 2. Let q be a state of Hi. Then,

PHi
[Cq] =

X
q02min(qeH)

PH [Cq0]: (4.31)

Proof. The proof is by induction on the length of q, where the base case is for the start state

of Hi. If q is the start state of Hi, then the start state of H is the only minimal state of qeH .

Both the cones denoted by the two states have probability 1.

Consider now the case for qas. From the de�nition of the probability of a cone,

PH1 [Cqas] = PH1 [Cq]P
H1
q [(a; qas)]: (4.32)

By using Expression 4.22 and the de�nitions of action restriction and projection, the term

PH1
q [(a; qas)] can be rewritten into

X
q02qeH

�p
qeH
q0 PH

q0 [acts(Mi)]

0
B@ X
q002(qas)eHj(a;q00)2
H

q0

PH
q0 [(a; q

00)]=PH
q0 [acts(Mi)]

1
CA ; (4.33)

which becomes

X
q02qeH

�p
qeH
q0

0
B@ X
q002(qas)eHj(a;q00)2
H

q0

PH
q0 [(a; q

00)]

1
CA ; (4.34)

after simplifying the term PH
q0 [acts(Mi)]. The case when PH

q0 [acts(Mi)] = 0 is not a problem

since the innermost sum of Expression 4.33 would be empty. By expanding �p
qeH
q0 in Expres-

sion 4.34 with its de�nition (Equation 4.21), applying induction to PH1 [Cq] in Expression 4.32,

and simplifying algebraically, Equation 4.32 can be rewritten into

PH1 [Cqas] =
X

q02qeH

X
q002(qas)eHj(a;q00)2
H

q0

PH [Cq0]P
H
q0 [(a; q

00)]: (4.35)

Indeed, the denominator of the expansion of �p
qeH
q0 coincides with the expansion of PH1 [Cq].

From the de�nition of the probability of a cone, the terms PH [Cq0]P
H
q0 [(a; q

00)] that appear

in Equation 4.35 can be rewritten into PH [Cq00].

69

Consider now one of the states q00 of the right side of Equation 4.35. Then q00dMi = qas, and

there exists a state q0 of qeH such that (a; q00) 2
q0 . This means that q00 can be expressed as

q0as0 for some state s0 ofM . Since q0dMi = q, then q00 is a minimal state of (qas)eH . Conversely,

let q00 be a minimal state of (qas)eH . Then q00 can be expressed as q0as0 for some state q0 of H

and some state s0 of M (otherwise q00 would not be minimal). Moreover, q0 is a state of qeH

and (a; q00) 2
H
q0 . Thus, q00 is considered in Equation 4.35. Finally, each minimal state q00 of

(qas)eH is considered at most once in Equation 4.35, since there is at most one state q0 in H

such that (a; q00) 2
H
q0 . Thus, Equation 4.35 can be rewritten into

PH1 [Cqas] =
X

q002min((qas)eH)

PH [Cq00]; (4.36)

which is what we needed to show.

4.3.3 Parallel Composition for General Probabilistic Automata

In this section we give an idea of the problems that arise in de�ning parallel composition for

general probabilistic automata. The discussion is rather informal: we want to give just an idea

of why our intuition does not work in this case.

The main problem that needs to be addressed is to choose when two transitions should

synchronize and how the synchronization would occur. We analyze the problem through some

toy examples. Consider two probabilistic automata M1;M2 with no internal actions and such

that ext(M1) = fa; b; c; dg and ext(M2) = fa; b; c; eg. Let (s1; s2) be a reachable state ofM1kM2,

and consider the following cases.

1. Suppose that from state s1 of M1 there is a transition tr1 giving actions a; b probability

1=2 to occur, and suppose that from state s2 ofM2 there is a transition tr2 giving actions

a; b probability 1=2 to occur.

tr :
1 1/2

1/2

b

a

s1
1/2

1/2

b

a

str :
2 2

If we choose not to synchronize tr1 and tr2, then the only transitions that can be syn-

chronized are the simple transitions, leading to a trivial parallel composition operator

that does not handle any kind of transition with probabilistic choices over actions. The

transitions tr1 and tr2 cannot be scheduled even independently, since otherwise the CSP

synchronization style would be violated.

If we choose to synchronize tr1 and tr2, then both M1 and M2 choose an action between

a and b. If the actions coincide, then there is a synchronization, otherwise we have two

possible choices in our de�nition: either the system deadlocks, or the random draws are

repeated. The �rst approach coincides with viewing each probabilistic automaton as de-

ciding its next action probabilistically independently of the other interacting automaton;

the second approach is the one outlined in [GSST90], where essentially deadlock is not

allowed, and assumes some dependence between the involved probabilistic automata.

For the rest of the discussion we assume that the transitions tr1 and tr2 do synchronize;

however, we leave unspeci�ed the way in which tr1 and tr2 synchronize.

70

2. Suppose that from state s1 of M1 there is a transition tr1 giving actions a; b probability

1=2 to occur, and suppose that from state s2 ofM2 there is a transition tr2 giving actions

a; c probability 1=2 to occur.

tr :
1 1/2

1/2

b

a

s1
1/2

1/2
a

str :
2 2

c

Note that actions a; b and c are all in common between M1 and M2. If we choose not

to synchronize tr1 and tr2, then only transitions involving the same sets of actions can

synchronize. However, we have the same problem outlined in Case 1, where neither tr 1,

nor tr2 can be scheduled independently.

If we choose to synchronize tr1 and tr2, then, since a is the only action that is in common

between tr1 and tr2, the only action that can occur is a. Its probability is either 1 or 1=4

depending on how the synchronization in Case 1 is resolved. However, in both cases the

only action that appears in the sample space of the composite transition is a.

For the rest of the discussion we assume that the transitions tr1 and tr2 do synchronize.

Once again, we leave unspeci�ed the way in which tr1 and tr2 synchronize.

3. Suppose that from state s1 ofM1 there is a transition tr1 giving actions a; b; d probability

1=3 to occur, and suppose that from state s2 ofM2 there is a transition tr2 giving actions

a; b; e probability 1=3 to occur.

a
1/3

1/3

1/3

d

b
s1

a
1/3

1/3

1/3

b
s2

e

In this case each transition has some actions that are in common between M1 and M2,

and some actions that are not in common.

If we choose not to synchronize tr1 and tr2, then, beside the fact that tr1 and tr2 could not

be scheduled independently, the parallel composition operator would not be associative.

Consider two new probabilistic automata M 0
1;M

0
2 with the same actions as M1 and M2,

respectively. Suppose that from state s01 ofM
0
1 there is a transition tr 01 giving actions a; b

probability 1=2 to occur, and suppose that from state s02 of M 0
2 there is a transition tr 02

giving actions a; b probability 1=2 to occur.

1/2

1/2

b

a

11
tr : s

1/2

1/2

b

a

2 2tr : s’ ’ ’ ’

If we consider (M 0
1kM1)k(M2kM

0
2), then in state ((s01; s1); (s2; s

0
2)) tr 1 would synchronize

with tr 01 leading to a transition that involves actions a and b only, tr2 would synchronize

with tr 02 leading to a transition that involves actions a and b only, and the two new

71

transitions would synchronize because of Case 1, leading to a transition that involves

actions a and b. If we consider (M 0
1k(M1kM2))kM

0
2, then in state ((s01; (s1; s2)); s

0
2) tr1

and tr2 would not synchronize, and thus associativity is broken.

If we choose to synchronize tr1 and tr2, then problems arise due to the presence of actions

that are not in common between M1 and M2. In particular we do not know what to do if

M1 draws action d and M2 draws action e, or if M1 draws action d and M2 draws action

a. Since we do not want to assume anything about the respective probabilistic behaviors

of M1 and M2, at least the �rst case is an evident case of nondeterminism.

However, even by dealing with the �rst case above by means of nondeterminism, only

one of actions d; e can be performed. Suppose that d is chosen, and thus M1 performs a

transition while M2 does not. What happens to M2? Is action e supposed to be chosen

already after d is performed? Otherwise, what is the probability for e to occur? At this

point we do not see any choice that would coincide with any reasonable intuition about

the involved systems.

In the second case we are sure that action a cannot occur. Does this mean that action d

occurs for sure? Or does this mean that a deadlock can occur? With what probabilities?

Once again, intuition does not help in this case.

The main problem, which is evident especially from Case 3, is that we do not know who is in

control of a system, and thus, whenever there is a con
ict that is not solved by nondeterminism

alone, we do not know what probability distribution to use to resolve the con
ict. However,

if we decorate probabilistic automata with some additional structure that clari�es who is in

control of what actions [LT87], then parallel composition can be extended safely to some forms

of general probabilistic automata, where the external actions are partitioned into input and

output actions, the transitions that contain some input action are simple transitions, and input

actions are enabled from every state (cf. Section 13.2.2). An observation along this line appears

in [WSS94].

4.4 Other Useful Operators

There are two other operators on probabilistic automata that should be mentioned, since they

are used in general on ordinary automata. In this section we provide a short description of

those operators. Since the relative theory is simple, this is the only point where we mention

these operators during the development of the probabilistic model.

4.4.1 Action Renaming

Let � be a one-to-one function whose domain is acts(M). De�ne Rename�(M) to be the

probabilistic automaton M 0 such that

1. states(M 0) = states(M).

2. start(M 0) = start(M).

3. sig(M 0) = (�(ext(M)); �(int(M))).

72

4. (s;P) 2 trans(M 0) i� there exists a transition (s;P 0) of M such that P = �0(P 0), where

�0((a; s0)) = (�(a); s0) for each (a; s0) 2
0, and �0(�) = �.

Thus, the e�ect of Rename� is to change the action names of M . The restriction on � to be

one-to-one can be relaxed as long as internal and external actions are not mixed, i.e., there is

no pair of actions a; b where a is an external action, b is an internal action, and �(a) = �(b).

4.4.2 Action Hiding

Let M be a probabilistic automaton, and let I be a set of actions. Then HideI(M) is de�ned

to be a probabilistic automaton M 0 that is the same as M , except that

sig(M 0) = (ext(M)� I; int(M) [I):

That is, the actions in the set I are hidden from the external environment.

4.5 Discussion

The generative model of probabilistic processes of van Glabbeek et al. [GSST90] is a special

case of a fully probabilistic automaton; simple probabilistic automata are partially captured

by the reactive model of [GSST90] in the sense that the reactive model assumes some form

of nondeterminism between di�erent actions. However, the reactive model does not allow

nondeterministic choices between transitions involving the same action. By restricting simple

probabilistic automata to have �nitely many states, we obtain objects with a structure similar to

that of the Concurrent Labeled Markov Chains of [Han91]; however, in our model we do not need

to distinguish between nondeterministic and probabilistic states. In our model nondeterminism

is obtained by means of the structure of the transition relation. This allows us to retain most

of the traditional notation that is used for automata.

Our parallel composition operator is de�ned only for simple probabilistic automata, and thus

a natural objection is that after all we are dealing just with the reactive model. Furthermore,

the reactive model is the least general according to [GSST90]. Although we recognize that our

simple probabilistic automata constitute a restricted model and that it would be desirable to

extend the parallel composition operator to general probabilistic automata, we do not think that

it is possible to use the classi�cation of [GSST90] to judge the expressivity of simple probabilistic

automata. The classi�cation of [GSST90] is based on a synchronous parallel composition, while

our parallel composition is based on a conservative extension of the parallel composition of CSP

[Hoa85]. Furthermore, in the classi�cation of [GSST90] a model is more general if it contains

less nondeterminism, while in our model nondeterminism is one of the key features.

73

74

Chapter 5

Direct Verication Stating a

Property

This chapter presents a method to study the properties that a probabilistic automaton satis�es.

We describe how an informally stated property can be made rigorous, and we show how simple

statements can be combined together to give more complex statements. In Chapter 6 we develop

techniques to prove from scratch that a probabilistic automaton satis�es a given property.

Part of this chapter is based on discussion with Isaac Saias who provided us with the

motivations for the de�nition of progress statements (Section 5.5) and for the statement of the

concatenation theorem (Theorem 5.5.2).

5.1 The Method of Analysis

If we read through the papers on randomized algorithms and we look at the statements of

correctness, we see claims like

\Whenever the algorithm X starts in a condition Y , no matter what the adversary

does, the algorithm X achieves the goal Z with probability at least p."

For convenience, denote the statement above by S. A possible concrete instantiation of S is

the following:

\Consider a distributed system X, composed of n processors, that provides services

under request and suppose that some request R comes. Then, independently of the

relative order in which the n processors complete their operations (no matter what

the adversary does), a response to R is given eventually (the goal Z) with probability

at least 2=3.

Let us try to understand the meaning of the statement S. First of all, in S there is an entity,

called adversary , that a�ects the performance of algorithm X . The adversary is seen as a

malicious entity that degrades the performance of X as much as possible.

If X is a distributed algorithm that runs on n separate processes, then the adversary is the

entity that chooses what process performs the next transition, and possibly what the external

environment does. To account for all the possible ways to schedule processes, the adversary

75

$ $

M 2M 1

R2

R 1

Figure 5-1: A toy resource allocation protocol.

bases its choices on a complete knowledge of the state of a system, including its past history. If

the algorithm is represented as a probabilistic automaton, then an adversary is the object that

resolves the nondeterminism. In other words, an adversary is a scheduler seen as a malicious

entity.

However, not all the schedulers guarantee in general that some speci�c property is satis�ed.

For example, an adversary is usually required to be fair to all the processes of a system in

order to guarantee progress. In other cases, an adversary is not allowed to base its choices on a

complete knowledge of the history of a system: the correctness of an algorithm may rely on the

adversary not to use the results of previous random draws in choosing the next process to be

scheduled. Thus, in the statement S there is usually an implicit assumption that an adversary

has some limitations.

Example 5.1.1 (A toy resource allocation protocol) Figure 5-1 illustrates a toy scenario

where correctness is guaranteed only for adversaries that do not know the outcome of the random

draws of the processes. Two processes M1 and M2 compete for two resources R1 and R2. Each

process continuously runs through the following cycle:

1.
ip a coin to choose a resource;

2. if the chosen resource is free, then get it;

3. if you hold the resource, then return it.

That is, each process continuously tries to get a randomly chosen resource and then returns it,

possibly after using the resource. Of course this is a stupid protocol, but it highlights several

aspects of randomized distributed algorithms. Suppose every adversary to be fair, meaning

that both processes perform in�nitely many transitions. A malicious adversary can create a

situation where M1 never succeeds in obtaining a resource with an arbitrarily high probability.

The adversary works as follows. Fix an arbitrary probability p such that 0 < p < 1, and consider

a collection of probabilities fpigi2N such that
Q
i pi = p. We know that such a collection

of probabilities exists. Then the adversary works in rounds, where at round i the following

happens:

a. M1 is scheduled until it
ips its coin;

b. M2 is scheduled for su�ciently many times so that it gets the resource chosen by M1

with probability at least pi (�nitely many times are su�cient). As soon as M2 gets the

resource chosen by M1 the control goes to c;

76

c. M1 is scheduled to check its resource and fails to get it.

In this case M1 fails to obtain a resource with probability at least p. On the other hand, if

an adversary is not allowed to base its choices on the outcome of the coin
ips, or better,

if an adversary chooses the next process that performs a transition based only on the order

in which processes were scheduled in the past, then each process eventually gets a resource

with probability 1 (this fact is proved in Section 6.6). Such an adversary is called an oblivious

adversary or an o�-line scheduler .

Let us move back to the problem of understanding the statement S. Consider a valid adversary

A, i.e., an adversary that satis�es the limitations that are implicitly assumed for S. Let M

be a probabilistic automaton that describes algorithm X , and consider an arbitrary starting

point q for M , i.e., q is a �nite execution fragment of M that describes a partial evolution of

M . If we let A resolve the nondeterminism in M starting from the knowledge that q occurred,

then we obtain a probabilistic execution fragment of M , which we denote by prexec(M;A; q).

According to S, if q satis�es condition Y , then prexec(M;A; q) should satisfy property Z with

probability at least p. However, Z is a property of M , and not a property of prexec(M;A; q).

Thus, we need a way to associate with prexec(M;A; q) the event that expresses Z. The object

that does this operation is called an event schema. At this point it is possible to formalize S

by stating the following:

\For each valid adversary A and each valid starting condition q, the probability of

the event associated with prexec(M;A; q) is at least p."

This is an example of what we call a probabilistic statement .

A probabilistic statement that plays an important role in our analysis is denoted by

U �!
p Advs U

0; (5.1)

where U and U 0 are sets of states, p is a probability, and Advs is a set of adversaries. We call

such a statement a progress statement . Its meaning is that if a protocol starts from a state of

U , then, no matter what adversary of Advs is used to resolve the nondeterminism, some state of

U 0 is reached with probability at least p. A progress statement is a probabilistic generalization

of the leads-to operator of UNITY [CM88].

Example 5.1.2 It is possible to show (cf. Section 6.6) that the toy resource allocation protocol

satis�es R �!
1=2

Advs M1, where R is the set of reachable states ofM1kM2,M1 is the set of states

of M1kM2 where M1 holds a resource, and Advs is the set of fair oblivious and adversaries for

M1kM2, i.e., the set of adversaries that are fair to each process and that do not base their

choices on the outcomes of the coin
ips (cf. Example 5.6.2 for a formal de�nition of a fair

oblivious adversary).

Progress statements are important because, under some general conditions, they can be com-

bined together to obtain more complex progress statements, thus allowing the decomposition

of a complex problem into simpler problems.

77

Example 5.1.3 Suppose that in some system M whenever a request is pending (M is in a

state of some set P , a token is given eventually with probability at least 1=2 (reaching a state

of some set T), and suppose that whenever a token is given a response is given eventually with

probability at least 1=3 (reaching a state of some set G). That is,

P �!
1=2

Advs T and T �!
1=3

Advs G: (5.2)

Then, it is reasonable to conclude that whenever a request is pending a response is given

eventually with probability at least 1=6, i.e.,

P �!
1=2

Advs G: (5.3)

This result is a consequence of the concatenation theorem (cf. Theorem 5.5.2).

Example 5.1.4 Consider the toy resource allocation protocol again. We know from Exam-

ple 5.1.2 that

R �!
1=2

Advs M1: (5.4)

It is also possible to show that

R) RUnlessM1; (5.5)

where R) RUnlessM1 is a UNITY [CM88] expression stating that whenever a system is in a

state of R the system remains in a state of R unless a state ofM1 is reached. This means that

(5.4) is applicable from any point in the evolution of the toy resource allocation protocol, and

this fact, together with the condition that every adversary is fair, is succicient to guarrantee

that

R �!
1

Advs M1 (5.6)

(cf. Proposition 5.5.6). The reader familiar with UNITY may note that the combination of

(5.4) and (5.5) is a probabilistic generalization of the ensures operator of Chandy and Misra

[CM88].

To see more signi�cative applications of progress statements the reader is referred to Chapter 6,

where we prove the correctness of the randomized Dining Philosophers algorithm of Lehmann

and Rabin [LR81], and we prove the correctness of the randomized algorithm of Ben-Or for

agreement in asynchronous networks in the presence of stopping faults [BO83]. Instead, the �nal

part of this chapter concentrates on standard methods to specify event schemas and adversary

schemas, and on the relationship between deterministic and general (randomized) adversaries.

The main lesson that we learn is that for a large class of probabilistic statements it is possible

to prove their validity by considering only deterministic adversaries, i.e., adversaries that do

not use randomization in their choices. The reader who is reading only the �rst section of each

chapter should move to Chapter 6 at this point and skip the rest of this section.

We said already that an event schema is a rule to associate an event with each probabilistic

execution fragment. More formally, an event schema is a function that given a probabilistic

execution fragment H returns an event of FH . However, we have not given any method to

78

specify an event schema. Our de�nition of an event schema is very general since it allows for

any kind of rule to be used in determining the event associated with a probabilistic execution

fragment. On the other hand, there is a speci�c rule which is used in most of the existing

literature on randomized algorithms. Namely, given a probabilistic automaton M , a set � of

execution fragments of M is �xed, and then, given a probabilistic execution fragment H of M ,

the event associated with H is �\
H . We call such an event schema an execution-based event

schema. Since the start state of a probabilistic execution fragment contains part of the history of

M , and since in general we are interested in what happens only after the probabilistic execution

fragment starts, we re�ne the de�nition of an execution-based event schema by associating a

probabilistic execution fragment H with the event �\ (
H.q
H
0), where q

H
0 is the start state of

H . In this way a progress statement can be stated in terms of execution-based event schemas,

where � is the set of execution fragments of M that contain at least one occurrence of a state

from U 0.

To specify an adversary schema there are two main restrictions that are usually imposed.

One possibility is to restrict the kind of choices that an adversary can make, and the other

possibility is to restrict the on-line information that an adversary can use in making its choices.

The �rst kind of restriction is usually achieved by �xing a set � of execution fragments before-

hand and requiring that all the probabilistic execution fragments H generated by an adversary

satisfy
H � �. We call the corresponding adversary schema an execution-based adversary

schema. The second kind of restriction is achieved by imposing a correlation on the choices of

an adversary on di�erent inputs. We call the corresponding adversary schema an adversaries

schema with partial on-line information.

Example 5.1.5 An example of an execution-based adversary schema is the set of fair adver-

saries for n processes running in parallel. In this case � is the set of execution fragments of

the composite system where each process performs in�nitely many transitions. An example of

an adversary schema with partial on-line information is the set of oblivious adversaries for the

toy resource allocation protocol. Execution-based adversary schemas and adversary schemas

with partial on-line information can be combined together. An example of an execution-based

adversary schema with partial on-line information is the set of fair and oblivious adversaries

for the toy resource protocol (cf. Example 5.6.2).

Exacution-based adversaries and event schemas give us a good basis to study the relationship

between deterministic and general adversaries. Roughly speaking, and adversary is determin-

istic if it does not use randomness in its choices. Then the question is the following: \does

randomness add power to an adversary?" The answer in general is \yes"; however, there are

several situations of practical relevance where randomness does not add any power to an ad-

versary. In particular, we show that randomization does not add any power when dealing with

�nitely satis�able execution-based event schemas in two scenarios: execution-based adversary

schemas and adversary schemas with partial on-line information.

5.2 Adversaries and Adversary Schemas

An adversary , also called a scheduler , for a probabilistic automaton M is a function A that

takes a �nite execution fragment � of M and returns a combined transition of M that leaves

79

from lstate(�). Formally,

A : frag�(M)! Probs(ctrans(M))

such that if A(�) = (s;P), then s = lstate(�).

An adversary is deterministic if it returns either transitions of M or pairs of the form

(s;D(�)), i.e., the next transition is chosen deterministically. Denote the set of adversaries

and deterministic adversaries for a probabilistic automaton M by Advs(M) and DAdvs(M),

respectively. We introduce deterministic adversaries explicitly because most of the existing

randomized algorithms are analized against deterministic adversaries. In Section 5.7 we study

the connections between deterministic adversaries and general adversaries.

As we have noted already, the correctness of an algorithm may be based on some speci�c

assumptions on the scheduling policy that is used. Thus, in general, we are interested only in

some of the adversaries of Advs(M). We call a subset of Advs(M) an adversary schema, and

we use Advs to denote a generic adversary schema. Section 5.6 describes in more detail possible

ways to specify an adversary schema.

5.2.1 Application of an Adversary to a Finite Execution Fragment

The interaction of an adversary A with a probabilistic automaton M leads to a probabilistic

execution fragment, where the transition enabled from each state is the transition chosen by

A. Given a �nite execution fragment � of M , the probabilistic execution of M under A with

starting condition �, denoted by prexec(M;A; �), is the unique probabilistic execution fragment

H of M such that

1. start(H) = f�g, and

2. for each state q of H , the transition trHq is q a A(q).

Condition 2 ensures that the transition enabled from every state q of H is the transition chosen

by A. It is a simple inductive argument to show that H is well de�ned.

5.2.2 Application of an Adversary to a Finite Probabilistic Execution Frag-

ment

From the theoretical point of view, we can generalize the idea of the interaction between an

adversary and a probabilistic automaton by assuming that the start condition is a �nite prob-

abilistic execution fragment of M . In this case the adversary works from all the points of

extension of the starting condition. The resulting probabilistic execution fragment should be

an extension of the starting condition. Formally, if H is a �nite probabilistic execution fragment

of M , then the probabilistic execution of M under A with starting condition H , denoted by

prexec(M;A; H), is the unique probabilistic execution fragment H 0 of M such that

1. start(H 0) = start(H), and

2. for each state q of H 0, if q is a state of H , then trH
0

q is

p
�
trHq � acts(H)

�
+ (1� p)

�
q a A(q)

�
;

80

q qq
0 1

δ δ

aa

1/2

1/2

1/2

1/2H: q

q
2

q
1

b

aa

3/4

1/4q
0H :’

Figure 5-2: An example of the action of an adversary on a probabilistic execution fragment.

where

p =
PH [Cq]

PH 0 [Cq]
PH
q [acts(H)];

and if q is not a state of H , then trH
0

q is q a A(q).

Once again, it is a simple inductive argument to show that H 0 is well de�ned.

Example 5.2.1 (Extension of a �nite probabilistic execution fragment) Before prov-

ing that H 0 is an extension of H , we describe in more detail how the de�nition above works.

The di�cult case is for those states q of H 0 that are also states of H . Consider the example of

Figure 5-2. Let A choose q0
a
�! q on input q0, choose q

b
�! q2 on input q, and choose � on all

other inputs. The probabilistic execution fragment H 0 of Figure 5-2 is the result of the action

of A on the probabilistic execution fragment H of Figure 5-2. In H 0 there are two ways to reach

q: one way is by means of transitions of H , and the other way is by means of transitions due

to A that originate from q0. Thus, a fraction of the probability of reaching q in H 0 is due to

H , while another fraction is due to the e�ect of A on H . The weight with which the transition

trHq is considered in H 0 is the �rst fraction of the probability of reaching q, which is expressed

by PH [Cq]=PH 0 [Cq]. In our example the fraction is 1=2. However, in our example the transition

trHq may also leads to � with probability 1=2, and the part of trHq that leads to � should be

handled by A. For this reason in the left term of the de�nition of trH
0

q we discard � from trHq
and we add a multiplicative factor PH

q [acts(H)] to the weight. Thus, in our example, three

quarters of the transition leaving from q in H 0 are controlled by A. Note that the probability

of reaching q1 from q0 is the same in H and H 0.

Proposition 5.2.1 Let M be a probabilistic automaton, and let A be an adversary for M .

Then, for each �nite probabilistic execution fragment H of M , the probabilistic execution frag-

ment generated by A from H is an extension of H, i.e.,

H � prexec(M;A; H):

Proof. Denote prexec(M;A; H) by H 0. We need to prove that for each state q of H ,

PH [Cq] � PH 0 [Cq]: (5.7)

If q is the start state of H , then q is also the start state of H 0, and (5.7) is satis�ed trivially.

Consider now a state qas of H that is not the start state of H . Then q is a state of H .

From the de�nition of the probability of a cone,

PH 0 [Cqas] = PH 0 [Cq]P
H 0

q [(a; qas)]: (5.8)

81

From the de�nition of trH
0

q ,

PH 0

q [(a; qas)] =
PH [Cq]

PH 0 [Cq]
PH
q [(a; qas)] +

1�

PH [Cq]

PH 0 [Cq]
PH
q [acts(H)]

!
PA(q)[(a; qas)]: (5.9)

Here we have also simpli�ed the expression PH
q [acts(H)] in the �rst term as we did in the proof

of Proposition 4.3.5 (Expressions (4.33) and (4.34)). We will not mention this simpli�cation

any more in the thesis.

If we remove the second term from the right expression of Equation (5.9), turning Equa-

tion (5.9) into an inequality, we obtain

PH 0

q [(a; qas)] �
PH [Cq]

PH 0 [Cq]
PH
q [(a; qas)]: (5.10)

By using (5.10) in (5.8), and simplifying the factor PH 0 [Cq], we obtain

PH 0 [Cqas] � PH [Cq]P
H
q [(a; qas)]: (5.11)

The right part of (5.11) is PH [Cqas]. Thus, we conclude

PH 0 [Cqas] � PH [Cqas]: (5.12)

5.3 Event Schemas

In the informal description of a probabilistic statement we said that we need a rule to associate

an event with each probabilistic execution fragment. This is the purpose of an event schema.

An event schema for a probabilistic automatonM , denoted by e, is a function that associates an

event of FH with each probabilistic execution fragment H of M . An event schema e is �nitely

satis�able i� for each probabilistic execution fragment H the event e(H) is �nitely satis�able.

Union, intersection and complementation of event schemas are de�ned pointwise. Similarly,

conditional event schemas are de�ned pointwise.

The best way to think of an event schema is just as a rule to associate an event with

each probabilistic execution fragment. Although in most of the practical cases the rule can be

speci�ed by a set of executions (cf. Section 5.3.2), part of our results do not depend on the

actual rule, and thus they would hold even if for some reason in the future we need to study

di�erent rules. Moreover, event schemas allow us to simplify the notation all over.

5.3.1 Concatenation of Event Schemas

If e is a �nitely satis�able event schema, i.e., for each probabilistic execution fragment H the

event e(H) can be expressed as a union of cones, then it means that in every execution of e(H)

it is possible to identify a �nite point where the property denoted by e is satis�ed. Sometimes

we may be interested in checking whether a di�erent property, expressed by another event

schema, is satis�ed eventually once the property expressed by e is satis�ed. That is, we want

to concatenate two event schemas.

82

Formally, let e1; e2 be two event schemas for a probabilistic automatonM where e1 is �nitely

satis�able, and let Cones be a function that associates a set Cones(H) with each probabilistic

execution fragment H of M such that Cones(H) is a characterization of e1(H) as a union of

disjoint cones, i.e., e1(H) = [q2Cones(H)Cq, and for each q1; q2 2 Cones(H), if q1 6= q2, then

Cq1 \Cq2 = ;. Informally, Cones(H) identi�es the points where the event denoted by e1(H) is

satis�ed, also called points of satisfaction.

The concatenation e1 �Cones e2 of e1 and e2 via Cones is the function e such that, for each

probabilistic execution fragment H of M ,

e(H)
4
=

[
q2Cones(H)

e2(H jq): (5.13)

Proposition 5.3.1 The concatenation of two event schemas is an event schema. That is, if

e = e1 �Cones e2, then e is an event schema.

Proof. Consider a probabilistic execution fragment H . From Proposition 4.2.11 each set

e2(H jq) is an event of FH . From the closure of a �-�eld under countable union, e(H) is an

event of FH .

Proposition 5.3.2 PH [e1 �Cones e2(H)] =
P

q2Cones(H) PH [Cq]PHjq[e2(H jq)].

Proof. Since Cones(H) represents a collection of disjoint cones, from (5.13) we obtain

PH [e1 �Cones e2(H)] =
X

q2Cones(H)

PH [e2(H jq)]: (5.14)

From Proposition 4.2.11, for each q 2 Cones(H)

PH [e2(H jq)] = PH [Cq]PHjq[e2(H jq)]: (5.15)

By substituting (5.15) in (5.14) we obtain the desired result.

5.3.2 Execution-Based Event Schemas

Our de�nition of an event schema is very general; on the other hand, most of the existing

work on randomized algorithms is based on a very simple rule to associate an event with each

probabilistic execution. Namely, a set � of execution fragments ofM is chosen beforehand, and

then, given a probabilistic execution fragment H , the event associated with H is the � a
H .

We call this class of event schemas execution-based . We have chosen to give a more general

de�nition of an event schema for two main reasons:

1. The concatenation Theorem of Section 5.4.1 (Theorem 5.4.2) does not rely on the fact that

an event schema is execution-based, but rather on the fact that it is �nitely satis�able.

Thus, if in the future some di�erent kinds of event schemas will become relevant, here we

have already the machinery to deal with them.

2. The event schemas that we use later to de�ne a progress statement (cf. Section 5.5) are

not execution-based according to the informal description given above. Speci�cally, the

start state of a probabilistic execution fragment of M is a �nite execution fragment of

83

M , i.e., it contains some history of M , and such history is not considered in determining

whether there is some progress. On the other hand, it is plausible that sometimes we

want to consider also the history encoded in the start state of a probabilistic execution

fragment. Thus, the more general de�nition of an event schema still helps.

Nevertheless, execution-based adversary schemas are easier to understand and enjoy properties

that do not hold for general adversary schemas (cf. Section 5.7). For this reason we give

a formal de�nition of an execution-based adversary schema, where we also assume that the

history encoded in the start state of a probabilistic execution fragment is eliminated.

Let � be a set of extended execution fragments ofM . An event schema e for a probabilistic

automaton M is �-based i� for each probabilistic execution fragment H of M , e(H) = � \

(
H.q
H
0). An event schema e for a probabilistic automatonM is execution-based i� there exists

a set � of extended execution fragments of M such that e is �-based.

5.4 Probabilistic Statements

Given a probabilistic automatonM , an event schema e, an adversary A, and a �nite execution

fragment �, it is possible to compute the probability Pprexec(M;A;�)[e(prexec(M;A; �))] of the

event denoted by e when M starts from � and interacts with A. As a notational convention,

we abbreviate the expression above by PM;A;�[e]. Moreover, when M is clear from the context

we write PA;�[e], and we write PA[e] if M has a unique start state and � is chosen to be the

start state of M .

We now have all the machincery necessary to de�ne a probabilistic statement. A probabilistic

statement for a probabilistic automatonM is an expression of the form PrAdvs;�(e) R p, where

Advs is an adversary schema ofM , � is a set of starting conditions, i.e., a set of �nite execution

fragments of M , e is an event schema for M , and R is a relation among =, �, and �. A

probabilistic statement PrAdvs;�(e) R p is valid forM i� for each adversary A of Advs and each

starting condition � of �, PA;�[e] R p, i.e.,

PrAdvs ;�(e) R p i� 8A2Advs8�2�PA;�[e] R p: (5.16)

Proposition 5.4.1 Some trivial properties of probabilistic statements are the following.

1. If p1 R p2 then PrAdvs ;�(e) R p1 implies PrAdvs;�(e) R p2.

2. If Advs1 � Advs2 and �1 � �2, then PrAdvs1;�1(e) R p implies PrAdvs2;�2(e) R p.

5.4.1 The Concatenation Theorem

We now study an important property of probabilistic statements applied to the concatenation

of event schemas. Informally, we would like to derive properties of the concatenation of two

event schemas from properties of the event schemas themselves. The idea that we want to

capture is expressed by the sentence below and is formalized in Theorem 5.4.2.

\If e1 is satis�ed with probability at least p1, and from every point of satisfaction of

e1, e2 is satis�ed with probability at least p2, then the concatenation of e1 and e2 is

satis�ed with probability at least p1p2."

84

Theorem 5.4.2 Consider a probabilistic automaton M . Let

1. PrAdvs ;�(e1) R p1 and,

2. for each A 2 Advs, q 2 �, let PrAdvs ;Cones(prexec(M;A;q))(e2) R p2.

Then, PrAdvs ;�(e1 �Cones e2) R p1p2.

Proof. Consider an adversary A 2 Advs and any �nite execution fragment q 2 �. Let

H = prexec(M;A; q). From Proposition 5.3.2,

PH [e1 �Cones e2(H)] =
X

q02Cones(H)

PH [Cq0]PHjq0[e2(H jq
0)]: (5.17)

Consider an element q0 of Cones(H). It is a simple inductive argument to show that

H jq0 = prexec(M;A; q0): (5.18)

Thus, from our second hypothesis,

PHjq0[e2(H jq
0)] R p2: (5.19)

By substituting (5.19) in (5.17), we obtain

PH [e1 �Cones e2(H)]R p2
X

q02Cones(e1(H))

PH [Cq0]: (5.20)

By using the fact that Cones(H) is a characterization of e1(H) as a disjoint union of cones,

Equation (5.20) can be rewritten into

PH [e1 �Cones e2(H)]R p2PH [e1(H)]: (5.21)

From the �rst hypothesis, PH [e1(H)] R p1; therefore, from Proposition 5.4.1,

PH [e1 �Cones e2(H)]R p1p2: (5.22)

This completes the proof.

5.5 Progress Statements

In this section we give examples of probabilistic statements, which we call progress statements,

that play an important role in the analysis of algorithms. Progress statements are formaliza-

tions of statements that are used generally for the informal analysis of randomized algorithms;

however, many other statements can be de�ned depending on speci�c applications. We show

also how to derive complex statements by concatenating several simple statements.

85

5.5.1 Progress Statements with States

Let U and U 0 be sets of states of a probabilistic automaton M . A common informal statement

is the following.

\Whenever the system is in a state of U , then, under any adversary A of Advs, the

probability that a state of U 0 is reached is at least p."

The probability p is usually 1. In this thesis we consider the more general statement where p

is required only to be greater than 0. We represent the statement concisely by writing

U �!
p Advs U

0; (5.23)

where Advs is an adversary schema. We call (5.23) a progress statement since, if we view U 0 as

a better condition than U , then (5.23) states that from U it is possible to have some progress

with probability at least p. The reader familiar with UNITY [CM88] may note that a progress

statement is a probabilistic generalization of the leads-to operator of UNITY.

Let us concentrate on the formal meaning of (5.23). Let eU 0 be an event schema that given

a probabilistic execution fragment H returns the set of extended executions � of
H such that

a state of U 0 is reached in �.qH0 (recall that qH0 is the start state of H). Then (5.23) is the

probabilistic statement

PrAdvs ;U(eU 0) � p: (5.24)

Note that the starting conditions of statement (5.24) are just states of M , i.e., they do not

contain any past history of M except for the current state. This is because when we reason

informally about algorithms we do not talk usually about the past history of a system. However,

if we want to concatenate two progress statements according to Theorem 5.4.2, then we need to

consider the past history explicitly, and thus a better probabilistic statement for (5.23) would

be

PrAdvs ;�U
(eU 0) � p; (5.25)

where �U is the set of �nite execution fragments of M whose last state is a state of U . So, why

can we, and indeed do people, avoid to deal with the past history explicitly? The point is that

(5.24) and (5.25) are equivalent for most of the adversary schemas that are normally used.

5.5.2 Finite History Insensitivity

An adversary schema Advs for a probabilistic automaton M is �nite-history-insensitive i�

for each adversary A of Advs and each �nite execution fragment � of M , there exists an

adversary A0 of Advs such that for each execution fragment �0 ofM with fstate(�0) = lstate(�),

A
0(�0) = A(�a �0). In other words, A0 does even though A0 does not know the �nite history �.

Lemma 5.5.1 Let Advs be a �nite-history-insensitive adversary schema for a probabilistic au-

tomaton M . Then (5.24) and (5.25) are equivalent probabilistic statements.

86

Proof. From Proposition 5.4.1, since U � �U , Statement (5.25) implies Statement (5.24)

trivially. Conversely, suppose that Statement (5.24) is valid. Consider an adversary A of Advs,

and consider an element q of �U . Let Aq be an adversary of Advs such that for each execution

fragment q0 of M with fstate(q0) = lstate(q), Aq(q
0) = A(q a q0). We know that Aq exists since

Advs is �nite-history-insensitive. It is a simple inductive argument to show that

prexec(M;Aq; lstate(q)) = prexec(M;A; q).q: (5.26)

Moreover,

Pprexec(M;A;q)[Cq] = 1: (5.27)

From the de�nition of eU 0, since the start state of prexec(M;A; q) is q,

eU 0(prexec(M;Aq; lstate(q))) = eU 0(prexec(M;A; q)).q: (5.28)

Thus, from Proposition 4.2.12 and (5.27),

PA;q[eU 0] = PAq;lstate(q)[eU 0]: (5.29)

From hypothesis,

PAq;lstate(q)[eU 0] � p; (5.30)

and thus, from (5.29), PA;q [eU 0] � p. This shows that Statement (5.25) is valid.

5.5.3 The Concatenation Theorem

We now start to compose (simple) progress statements to derive other (more complex) progress

statements. This allows us to decompose a complex problems into simpler problems that can be

solved separately. The examples of Chapter 6 contain explicit use of the concatenation theorem

of this section.

Suppose that from U we can reach U 0 with probability at least p, and that from U 0 we

can reach U 00 with probability at least p0. Then, it is reasonable that from U we can reach U 00

with probability at least pp0. This result is an instantiation of the concatenation theorem of

Section 5.4.1.

Theorem 5.5.2 Let Advs be a �nite-history-insensitive adversary schema. Then,

U �!
p Advs U

0 and U 0 �!
p0

Advs U
00 imply U �!

pp0
Advs U

00.

Proof. Consider the event schemas eU 0 and eU 00 . Let Cones be the function that associates

with each probabilistic execution fragment H the set

Cones(H)
4
= fq j lstate(q.q0) 2 U

0; 6 9q0<(q.q0) lstate(q
0) 2 U 0

g: (5.31)

It is easy to check that Cones(H) is a characterization of eU 0 as a disjoint union of cones. Then,

directly from the de�nitions, for each execution fragment H ,

eU 0 �Cones eU 00(H) � eU 00(H): (5.32)

87

Informally, the left expression represents the property of reaching a state of U 00 passing through

a state of U 0, while the right expression represents the property of reaching a state of U 00 without

passing necessarily through a state of U 0.

From Lemma 5.5.1, for each probabilistic execution fragment H , each adversary A of Advs,

and each element q of Cones(H), since lstate(q) 2 U 0,

PA;q[eU 00] � p
0: (5.33)

From hypothesis, (5.33), and Theorem 5.4.2 (concatenation of two event schemas),

PrAdvs ;U(eU 0 �Cones eU 00) � pp
0: (5.34)

From (5.32) and (5.34),

PrAdvs ;U(eU 00) � pp
0: (5.35)

This shows that U �!
pp0

Advs U
00.

Proposition 5.5.3 Other trivial properties of progress statements are the following.

1. U �!
1
U .

2. If U1 �!p1
U 0
1 and U2 �!p2

U 0
2, then U1 [U2 �!

min(p1;p2)
U 0
1 [U

0
2.

5.5.4 Progress Statements with Actions

Progress statements can be formulated also in terms of actions rather than states. Thus, if V

is a set of actions, we could write

U �!
p Advs V (5.36)

meaning that starting from any state of U and under any adversary of Advs, with probability at

least p an action from V occurs. Formally, let eV be an event schema that given a probabilistic

execution fragment H returns the set of executions � of
H such that an action from V occurs

in �.qH0 . Then (5.36) is the probabilistic statement

PrAdvs ;U(eV) � p: (5.37)

Similarly, we can change the left side of a progress statement. Thus, we can write

V �!
p Advs U (5.38)

meaning that starting from any point where an action from V occurred and no state of U is

reached after the last occurrence of an action from V , a state of U is reached with probability

at least p. In other words, after an action from V occurs, no matter what the system has

done, a state of U is reached with probability at least p. Formally, let �V;U be the set of �nite

execution fragments of M where an action from V occurs and no state of U occurs after the

last occurrence of an action from V . Then (5.38) is the probabilistic statement

PrAdvs ;�V;U
(eU) � p: (5.39)

88

Finally, we can consider statements involving only sets of actions. Thus, the meaning of

V �!
p Advs V

0 would be the probabilistic statement

PrAdvs ;�V;V 0
(eV) � p; (5.40)

where �V;V 0 is the set of �nite execution fragments of M where an action from V occurs and

no action from V 0 occurs after the last occurrence of an action from V .

The concatenation theorem extendeds easily to the new kinds of progress statements.

Theorem 5.5.4 Let Advs be a �nite-history-insensitive adversary schema, and let X;X 0 and

X 00 be three sets, each one consisting either of actions of M only or states of M only. Then,

X �!
p1

Advs X
0 and X 0 �!

p2
Advs X

00 imply X �!
p1p2

Advs X
00.

Proof. This proof is similar to the proof of Theorem 5.5.2, and thus it is left to the reader.

Observe that �nite-history-insensitivity is not necessary if X 0 is a set of actions.

5.5.5 Progress Statements with Probability 1

Usually we are interested in progress properties that hold with probability 1. A useful result is

that in most cases progress with probability 1 can be derived from progress with any probability

p such that 0 < p < 1. Speci�cally, under the condition that an adversary never chooses � when

the left side of a given progress statement is satis�ed and the right side of the same progress

statement is not satis�ed,

1. if the left element of the progress statement is a set of actions, then progress is achieved

with probability 1;

2. if the left element of the progress statement is a set of states U , the adversary schema is

�nite-history-insensitive, and the system remains in a state of U unless the right side of

the statement is satis�ed, then progress is achieved with probability 1.

Proposition 5.5.5 Suppose that V �!
p Advs X, and suppose that � =2
A(q) for each adversary

A of Advs and each element q of �V;X. Then V �!
1

Advs X.

Proof. We give the proof for the case where X is a set of states. The other proof is similar.

Denote X by U .

Consider an element q0 of �V;U and an adversary A of Advs. Let H be prexec(M;A; q0),

and let p0 = PH [eU(H)]. We know from hypothesis that p0 � p. Suppose by contradiction that

p0 < 1. Let � be the set of �nite execution fragments q of M such that q0 � q, lstate(q) 2 U ,

and no state of U occurs in any proper pre�x of q.q0. Then � is a characterization of eU(H)

as a union of disjoint cones. Thus,

PH [eU (H)] =
X
q2�

PH [Cq]: (5.41)

Let � be any real number such that 0 � � � p0. Then, from (5.41) and the de�nition of p0, it is

possible to �nd a natural number k� such that.X
q2�jjqj�k�

PH [Cq] � (p0 � �): (5.42)

89

Let �� be the set of states q of H such that jqj = k� and no pre�x of q is in �. That is, �� is

the set of states of H of length k� that are not within any cone Cq of eU (H) where jqj � k�.

Equation (5.41) can be rewritten as

PH [eU (H)] =

0
@ X
q2�jjqj�k�

PH [Cq]

1
A+

0
@X
q2��

PH [Cq]PH [eU(H)jCq]

1
A : (5.43)

Observe that for each state q of ��, since a state of U
0 is not reached yet, q is an element of �V;U .

Moreover, prexec(M;A; q) = H jq (simple inductive argument). Thus, from Proposition 4.2.11

and hypothesis, PH [eU(H)jCq] � p, and (5.43) can be rewritten into

PH [eU (H)] �

0
@ X
q2�jjqj�k�

PH [Cq]

1
A+

0
@X
q2��

PH [Cq]p

1
A : (5.44)

Observe that
P

q2�jjqj�k� PH [Cq] +
P

q2��
PH [Cq] = 1. This follows from the fact that if a state

q of H does not have any pre�x in �, then q 2 �V;X , which in turn means that � =2
H
q . In

other words, in H it is not possible to stop before reaching either a state of fq 2 � j jqj � k�g

or a state of ��. Thus, by using (5.42) in (5.44) we obtain

PH [eU (H)] � (p0 � �) + (1� (p0 � �))p: (5.45)

After simple algebraic manipulations, Equation (5.45) can be rewritten into

PH [eU (H)] � p0 + p(1� p0)� �(1� p): (5.46)

If we choose � such that 0 < � < p(1�p0)=(1�p), which exists since p0 < 1, then Equation (5.46)

shows that PH [eU(H)] > p0. This contradicts the fact that p0 < 1. Thus, PH [eU(H)] = 1.

For the next proposition we de�ne the statement U UnlessX , where U is a set of states and X

is either a set of states only or a set of actions only. The statement is true for a probabilistic

automaton M i� for each transition (s;P) of M , if s 2 U �X then for each (a; s0) 2
 either

a 2 X , or s0 2 U [X . That is, once in U , the probabilistic automaton M remains in U until

the condition expressed by X is satis�ed.

Proposition 5.5.6 Suppose that U �!
p Advs X, U Unless X, Advs is �nite-history-insensitive,

and � =2
A(s) for each adversary A of Advs and each state s of U . Then, U �!
1

Advs X.

Proof. This proof is similar to the proof of Proposition 5.5.5. The main di�erence is that the

passage from Equation (5.43) to Equation (5.44) is justi�ed by using �nite-history-insensitivity

as in the proof of Proposition 5.5.1.

5.6 Adversaries with Restricted Power

In Section 5.2 we have de�ned adversary schemas to reduce the power of an adversary; however,

we have not described any method to specify how the power of an adversary is reduced. In

this section we show two methods to reduce the power of an adversary. The �rst method,

which is the most commonly used, reduces the kind of choices that an adversary can make;

the second method, which is used in informal arguments but is rarely formalized, reduces the

on-line information used by an adversary to make a choice. The two speci�cation methods are

used in Section 5.7 to study the relationship between deterministic and randomized adversaries.

90

5.6.1 Execution-Based Adversary Schemas

If n processes run in parallel, then a common requirement of a scheduler is to be fair to all the

processes. This means that whenever an adversary resolves the nondeterminism and leads to

a probabilistic execution fragment H , in all the executions of
H each one of the n processes

performs in�nitely many transitions. More generally, a set � of extended execution fragments

ofM is set beforehand, and then an adversary is required to lead only to probabilistic execution

fragments whose corresponding sample space is a subset of �.

Formally, let � be a set of extended execution fragments of M . Let Advs� be the set of

adversaries A such that for each �nite execution fragment q of M ,
prexec(M;A;q) � �. Then

Advs� is called �-based. An adversary schema Advs is execution-based i� there exists a set �

of extended execution fragments of M such that Advs is �-based.

The notion of �nite-history-insensitivity can be reformulated easily for execution-based ad-

versary schemas. De�ne � to be �nite-history-insensitive i� for each extended execution frag-

ment � of M and each �nite execution fragment �0 of M such that lstate(�0) = fstate(�), if

�0 a � 2 � then � 2 �. It is easy to verify that if � is �nite-history-insensitive, then Advs� is

�nite-history-insensitive.

5.6.2 Adversaries with Partial On-Line Information

Sometimes, like in the case of the toy resource allocation protocol, an adversary cannot base

its choices on the whole history of a system if we want to guarantee progress. In other words,

some part of the history is not visible to the adversary.

Example 5.6.1 (O�-line scheduler) The simplest kind of adversary for n processes that run

in parallel is an adversary that �xes in advance the order in which the processes are scheduled.

This is usually called an o�-line scheduler or an oblivious adversary . Thus, at each point �

the next transition to be scheduled depends only on the ordered sequence of processes that are

scheduled in �.

To be more precise, the transition scheduled by the adversary depends also on the state that

is reached by �, i.e., lstate(�), since a speci�c process may enable di�erent transitions from

di�erent states. This means that if �1 and �2 are equivalent in terms of the ordered sequence

of processes that are scheduled, the oblivious constraint says only that the transitions chosen

by the adversary in �1 and �2 must be correlated, i.e., they must be transitions of the same

process.

The formal de�nition of an adversary with partial on-line information for a probabilistic au-

tomaton M is given by specifying two objects:

1. an equivalence relation that speci�es for what �nite execution fragments ofM the choices

of an adversary must be correlated;

2. a collection of correlation functions that specify how the transitions chosen by an adver-

sary must be correlated.

Let � be an equivalence relation between �nite execution fragments of M , and let F be a

family of functions parameterized over pairs of equivalent execution fragments. Each function

91

f��0 takes a combined transition ofM leaving from lstate(�) and returns a combined transition

of M leaving from lstate(�0) such that

1. f�0�(f��0(tr)) = tr ;

2. f��0(
P

i2I pitr i) =
P

i2I pif��0(tr i).

The pair (�; F) is called an oblivious relation. An adversary A is oblivious relative to (�; F) i�

for each pair of equivalent execution fragments ofM , � � �0, A(�0) = f��0(A(�)). An adversary

schema Advs is said to be with partial on-line information i� there exists an oblivious relation

(�; F) such that Advs is the set of adversaries for M that are oblivious relative to (�; F).

Condition 1 is used to guarantee that there are oblivious adversaries relative to (�; F);

Condition 2 is more technical and is used to guarantee that there are oblivious adversaries

relative to (�; F) that do not use randomization in their choices. Condition 2 is needed mainly

to prove some of the results of Section 5.7.

Adversaries with partial on-line information and execution-based adversaries can be com-

bined together easily. Thus, an adversary schema Advs is said to be execution-based and with

partial on-line information i� there exists an execution-based adversary schema Advs0 and a

pair (�; F) such that Advs is the set of adversaries of Advs0 that are oblivious relative to (�; F).

Example 5.6.2 (Adversaries for the toy-resource allocation protocol) The fair obliv-

ious adversaries for the toy resource allocation protocol are an example of an execution-based

adversary schema with partial on-line information. The set � is the set of executions ofM1kM2

where both M1 and M2 perform in�nitely many transitions. Two �nite execution fragments

�1 and �2 are equivalent i� the ordered sequences of the processes that perform a transition

in �1 and �2 are the same. Let �1 � �2, and let, for i = 1; 2, tr i;1 and tr i;2 be the tran-

sitions of M1 and M2, respectively, enabled from lstate(�i). Then f�1�2(tr1;1) = tr2;1 and

f�1�2(tr1;2) = tr2;2.

Another execution-based adversary schema with partial on-line information that works for

the toy resource allocation protocol is obtained by weakening the equivalence relation so that

an adversary cannot see only those coins that have not been used yet, i.e., those coins that have

been
ipped but have not been used yet to check whether the chosen resource is free.

5.7 Deterministic versus Randomized Adversaries

In our de�nition of an adversary we have allowed the use of randomness for the resolution of

the nondeterminism in a probabilistic automaton M . This power that we give to an adversary

corresponds to the possibility of combining transitions of M in the de�nition of a probabilistic

execution fragment. From the formal point of view, randomized adversaries allow us to model a

randomized environment and to state and prove the closure of probabilistic execution fragments

under projection (Proposition 4.3.4). However, one question is still open:

Are randomized adversaries more powerful than deterministic adversaries?

That is, if an algorithm performs well under any deterministic adversary, does it perform well

under any adversary as well, or are there any randomized adversaries that can degrade the

performance of the algorithm? In this section we want to show that in practice randomization

92

does not add any power to an adversary. We say "in practice" because it is easy to build

examples where randomized adversaries are more powerful than deterministic adversaries, but

those examples do not seem to be relevant in practice.

Example 5.7.1 (Randomization adds power) Consider an event schema e that applied to

a probabilistic execution fragment H returns
H if H can be generated by a deterministic

adversary, and returns ; otherwise. Clearly, if M is a nontrivial probabilistic automaton, the

probability of e is at least 1 under any deterministic adversary, while the probability of e can

be 0 under some randomized adversary; thus, randomization adds power to the adversaries.

However, it is unlikely that a realistic event schema has the structure of e. Another less

pathological example appears in Section 5.7.2 (cf. Example 5.7.2).

We consider the class of execution-based event schemas, and we restrict our attention to the

subclass of �nitely satis�able, execution-based event schemas. We show that randomization does

not add any power for �nitely satis�able, execution-based event schemas under two scenarios:

execution-based adversary schemas, and execution-based adversary schemas with partial on-line

information. In the second case we need to be careful (cf. Example 5.7.2).

Informally, a randomized adversary can be seen as a convex combination of deterministic

adversaries, and thus a randomized adversary satis�es the same probability bounds of a deter-

ministic adversary. However, there are uncountably many deterministic adversaries, and thus

from the formal point of view some more careful analysis is necessary.

5.7.1 Execution-Based Adversary Schemas

Proposition 5.7.1 Let Advs be an execution-based adversary schema for M , and let AdvsD
be the set of deterministic adversaries of Advs. Let e be a �nitely-satis�able, execution-based,

event schema for M . Then, for every set � of �nite execution fragments ofM , every probability

p, and every relation R among �, =, �, PrAdvs;�(e) R p i� PrAdvsD;�(e) R p.

In the rest of this section we prove Proposition 5.7.1. Informally, we show that each probabilistic

execution fragment H generated by an adversary of Advs can be converted into two other

probabilistic execution fragments H 0 and H 00, each one generated by some adversary of AdvsD,

such that PH 0 [e(H 0)] � PH [e(H)] � PH 00 [e(H 00)]. Then, if R is � we use H 00, and if R is � we

use H 0.

An operation that is used heavily in the proof is called deterministic reduction. Let H be a

probabilistic execution fragment of a probabilistic automaton M , and let q be a state of H . A

probabilistic execution fragment H 0 is said to be obtained from H by deterministic reduction

of the transition enabled from q if H 0 is obtained from H through the following two operations:

1. Let trHq = q a (
P

i2I pitr i) where each pi is non-zero and each tr i is a transition of M .

Then replace trHq either with (q;D(�)) or with q a tr j , under the restriction that (q;D(�))

can be chosen only if
P

i2I pi < 1.

2. Remove all the states of H that become unreachable after trHq is replaced.

Throughout the rest of this section we assume implicitly that whenever a probabilistic execution

fragment is transformed, all the states that become unreachable are removed.

93

Lemma 5.7.2 Let Advs be an execution-based adversary schema for a probabilistic automaton

M , and let H be a probabilistic execution fragment of M that is generated by some adversary

of Advs. Let e be an execution-based event schema such that PH [e(H)] = p. Let q be a state

of H. Then there exist two probabilistic execution fragments H
q
low ; H

q
high, each one generated

by an adversary of Advs, that are obtained from H by deterministic reduction of the transition

enabled from q, and such that PHq

low
[e(H

q
low)] � p, and PHq

high
[e(H

q
high)] � p.

Proof. Let trHq be q a (
P

i2I pitr i), where each tr i is either a transition of M or the pair

(lstate(q);D(�)), each pi is greater than 0, and
P

i2I pi = 1. For each transition tr i, i 2 I , let

Htri be obtained from H by replacing trHq with q a tr i. Observe that, since Advs is execution-

based and H is generated by an adversary of Advs, Htri is generated by an adversary of Advs.

The probability of e(H) can be written as

PH [e(H)] = PH [Cq]PH [e(H)jCq] + (1� PH [Cq])PH [e(H)jCq]: (5.47)

Observe that for each i 2 I , since H and Htri di�er only in the states having q as a pre�x,

PH [Cq] = PHtri
[Cq]. Since e is execution-based, e(H)\Cq = e(Htri)\Cq, and PH [e(H)\Cq] =

PHtri
[e(Htri) \ Cq] (use conditional probability spaces and Theorem 3.1.2). Moreover, as it is

shown below, PH [e(H)\ Cq] =
P

i2I piPHtri
[e(Htri) \ Cq]. In fact,

PH [e(H)\Cq] = PH [Cq]

0
B@PH

q [�]PH [e(H)jCq�] +
X

(a;q0)2
Hq

PH
q [(a; q0)]PH [e(H)jCq0]

1
CA ;(5.48)

where we assume that PH [e(H)jCq�] is 0 whenever it is unde�ned. For each (a; q0) of
H
q ,

PH
q [(q; a0)] =

P
i2I piP

Htri
q [(a; q0)], and for each i such that (a; q0) 2

Htri
q , PH [e(H)jCq0] =

PHtri
[e(Htri)jCq0] (simply observe that H.q0 = Htri.q

0). Similarly, if � 2
H
q , then PH

q [�] =P
i2I piP

Htri
q [�], and for each i such that � 2

Htri
q , PH [e(H)jCq�] = PHtri

[e(Htri)jCq�]. Thus,

from (5.48),

PH [e(H)\ Cq] =
X
i2I

piPHtri
[Cq]

0
BB@PHtri

q [�]PHtri
[e(Htri)jCq�] +

X
(a;q0)2

Htri
q

P
Htri
q [(a; q0)]PHtri

[e(Htri)jCq0]

1
CCA ; (5.49)

which gives the desired equality

PH [e(H)\ Cq] =
X
i2I

piPHtri
[e(Htri) \ Cq]: (5.50)

Thus, (5.47) can be rewritten into

PH [e(H)] =
X
i2I

pi

�
PHtri

[Cq]PHtri
[e(Htri)jCq] + (1� PHtri

[Cq])PHtri
[e(Htri)jCq]

�
; (5.51)

which becomes

PH [e(H)] =
X
i2I

piPHtri
[e(Htri)]: (5.52)

94

If there exists an element i of I such that PHtri
[e(Htri)] = p, then �x H

q
low and H

q
high to be Htri .

If there is no element i of I such that PHtrq
[e(Htri)] = p, then it is enough to show that there

are two elements i1; i2 of I such that PHtri1
[e(Htri1

)] < p and PHtri2
[e(Htri2

)] > p, respectively.

Assume by contradiction that for each element i of I , PHtri
[e(Htri)] < p. Then, from (5.52),P

i2I piPHtri
[e(Htri)] < p, which contradicts PH [e(H)] = p. Similarly, assume by contradiction

that for each element i of I , PHtri
[e(Htri)] > p. Then, from (5.52),

P
i2I piPHtri

[e(Htri)] > p,

which contradicts PH [e(H)] = p again.

Lemma 5.7.3 Let Advs be an execution-based adversary schema for a probabilistic automaton

M , and let H be a probabilistic execution fragment of M that is generated by some adversary

of Advs. Let e be an execution-based event schema such that PH [e(H)] = p. Let d be a natural

number, and let Ud be the set of states q of H such that jqj = d. Then there exist two probabilistic

execution fragments Hlow ; Hhigh, each one generated by an adversary of Advs, that are obtained

from H by deterministic reduction of the transitions enabled from the states of Ud, and such

that PHlow
[e(Hlow)] � p, and PHhigh

[e(Hhigh)] � p.

Proof. From Lemma 5.7.2 we know that for each state q of Ud there are two probabilistic exe-

cution fragments Hq
low and Hq

high , obtained from H by deterministic reduction of the transition

enabled from q, such that PHq

low
[e(Hq

low)] � p, and PHq

high
[e(Hq

high)] � p. Let Hlow be obtained

from H by replacing the transition enabled from each state q of Ud with the transition enabled

from q in Hq
low , and let Hhigh be obtained from H by replacing the transition enabled from each

state q of Ud with the transition enabled from q in Hq
high . Since Advs is execution-based and

all the involved probabilistic execution fragments are generated by an adversary of Advs, then

Hhigh and Hlow are generated by an adversary of Advs. Since e is execution-based, for each

state q of Ud, PHlow
[e(Hlow) \ Cq] = PHq

low
[e(Hq

low) \ Cq]. Thus,

PHlow
[e(Hlow)] =

X
q2Ud

PHlow
[Cq]PHq

low
[e(H

q
low)jCq]: (5.53)

Observe that, for each state q of Ud, the di�erence between the probability of e(H) and the

probability of e(Hq
low) is determined by the subcones of Cq. Thus,

PHlow
[e(Hlow)] �

X
q2Ud

PH [Cq]PH [e(H)jCq]: (5.54)

The right side of (5.54) is PH [e(H)], which is p. In a similar way it is possible to show that

PHhigh
[e(Hhigh)] � p.

Now we use the fact that e is �nitely satis�able. For each probabilistic execution fragment H

of M , let Can(e(H)) the set of minimal elements of fq 2 states(H) j Cq � e(H)g [fq� j q 2

states(H); Cq� � e(H)g. Then, Can(e(H)) is a characterization of e(H) as a union of disjoint

cones. For each natural number d, let e�d be the function that given a probabilistic execution

fragment H returns the set [q2Can(e(H))jjqj�dC
H
q .

Lemma 5.7.4 Let e be an execution-based, �nitely satis�able, event schema for a probabilistic

automaton M , and let d; d0 be two natural numbers such that d � d0. Then, for each probabilistic

execution fragment H, PH [e�d(H)] � PH [e�d
0(H)] � PH [e(H)].

95

Proof. Follows trivially from the de�nitions.

Lemma 5.7.5 Let e be an execution-based, �nitely satis�able, event schema for a probabilistic

automaton M , and let d be a natural number. Let H be a probabilistic execution fragment H

of M , and let H 0 be obtained from H by reducing deterministically any collection of states of

length greater than d. Then, PH [e�d(H)] � PH 0 [e�d(H 0)].

Proof. Just observe that for each q 2 Can(e(H)) such that jqj � d there is a q0 2 Can(e(H 0))

such that q0 � q, and that for each state q of H such that jqj � d, PH [Cq] = PH 0 [Cq].

Lemma 5.7.6 Let Advs be an execution-based adversary schema for a probabilistic automaton

M , and let H be a probabilistic execution fragment of M that is generated by some adversary

of Advs. Let e be an execution-based, �nitely satis�able event schema such that PH [e(H)] = p.

Then there exists a probabilistic execution fragment H 0, generated by a deterministic adversary

of Advs, such that PH 0 [e(H 0)] � p.

Proof. From Lemma 5.7.3 it is possible to �nd a sequence of probabilistic execution fragments

(Hi)i�0, where H0 = H , each Hi+1 is obtained from Hi by deterministically reducing all its

transitions leaving from states of length i, and for each i, PHi+1 [e(Hi+1)] � PHi
[e(Hi)]. Let H

0

be obtained from H by replacing the transition enabled from each state q with the transition

enabled from q in any Hi such that jqj � i. It is immediate to check that H 0 is generated by

some deterministic adversary of Advs (every extended execution of
H 0 is an extended execution

of
H).

Suppose by contradiction that PH 0 [e(H 0)] > p. Then there exists a level d such that

PH 0 [e�d(H 0)] > p: (5.55)

For each d0 � d, let Ed0 be

Ed0
4
=

[
q2Can(e�d0(Hd0))j9q02Can(e�d(H0))q

0�q

CH 0

q : (5.56)

Then, the following properties are valid.

1. for each d0 � d, E0
d is an element of FH 0 .

Ed0 is a union of cones of FH 0.

2. if d0 � d00, then Ed0 � Ed00

Consider an element q 2 Can(e�d0(Hd0)) such that there exists a q0 2 Can(e�d(H 0)) such

that q0 � q. Observe that, since Hd00 is obtained from Hd0 by deterministic reduction of

states of length greater than d0, there exists a q00 2 Can(e�d00(Hd00)) such that q00 � q.

Moreover, from the construction of H 0, q0 � q00. Thus, from (5.56), CH 0

q00 � Ed00 . Since

q00 � q, CH 0

q � Ed00 , and therefore, Ed0 � Ed00 .

3. e�d(H 0) � [d0�dEd0 .

Consider an element � of e�d(H 0). Then, for each d0, � 2 e(Hd0). Let q0 2 Can(e(Hd))

such that q0 � �, and let d0 be jq0j. Then, there exists a q00 2 Can(e�d0(Hd0)) such that

q00 � q0 � �, and thus � 2 Ed0 .

96

4. for each d0 � d, PHd0
[e�d0(Hd0)] � PH 0 [Ed0].

From the construction of H 0, for each q such that jqj � d0, PHd0
[C

Hd0

q] = PH 0 [CH 0

q].

Moreover, if CH 0

q is used in the de�nition of Ed0 , then q 2 Can(e�d0(Hd0)).

From 2 and 3, and from (5.55), there exists a value d0 such that PH 0 [Ed0] > p. From 4,

PHd0
[e�d0(Hd0)] > p. From Lemma 5.7.4, PHd0

[e(Hd0)] > p. This contradicts the fact that

PHd0
[e�d0(Hd0)] � p.

To build a probabilistic execution fragment H 0, generated by an adversary of AdvsD, such that

PH 0 [e(H 0)] � p, we need to extend part of Lemmas 5.7.2 and 5.7.3.

Lemma 5.7.7 Let Advs be an execution-based adversary schema for a probabilistic automaton

M , and let H be a probabilistic execution fragment of M that is generated by some adversary of

Advs. Let e be an execution-based, �nitely-satis�able, event schema. Let q be a state of H, and

let d be a natural number such that PH [e�d(H)] = p. Then there exist a probabilistic execution

fragment H
q
high , generated by an adversary of Advs, that is obtained from H by deterministic

reduction of the transition enabled from q, such that PHq

high
[e�d(Hq

high)] � p.

Proof. This proof is similar to the proof of Lemma 5.7.2, with the di�erence that the = sign

of Equations (5.49), (5.50), (5.51), and (5.52), is changed into a �. In fact, in each one of the

Htri some new cone of length at most d may appear.

Lemma 5.7.8 Let Advs be an execution-based adversary schema for a probabilistic automaton

M , and let H be a probabilistic execution fragment of M that is generated by some adversary

of Advs. Let e be an execution-based, �nitely-satis�able, event schema, and let d be a natural

number such that PH [e�d(H)] = p. Let d0 be a natural number, and let Ud0 be the set of states q

of H such that jqj = d0. Then there exist a probabilistic execution fragment Hhigh , generated by

an adversary of Advs, that di�ers from H only in that the transitions enabled from the states

of Ud are deterministically reduced, such that PHhigh
[e�d(Hhigh)] � p.

Proof. This proof is similar to the proof of Lemma 5.7.3. In this case the arguments for the

equation corresponding to Equation (5.54) is justi�ed from the additional fact that Hhigh may

have more cone of depth at most d than H .

Lemma 5.7.9 Let Advs be an execution-based adversary schema for a probabilistic automaton

M , and let H be a probabilistic execution fragment of M that is generated by some adversary

of Advs. Let e be an execution-based, �nitely-satis�able, event schema such that PH [e(H)] > p.

Then, there exists a probabilistic execution fragment H 0 of M , generated by a deterministic

adversary of Advs, such that PH [e(H
0)] > p.

Proof. Since PH [e(H)]> p and e(H) is a union of cones, there exists a natural number d such

that PH [e�d(H)] > p. From repeated applications of Lemma 5.7.8, one for each level d0 � d,

there exists a probabilistic execution fragment H 00, obtained from H by deterministic reduction

of the transitions enabled from every state q with jqj � d, such that PH 00 [e�d(H 00)] > p. From

Lemma 5.7.4, PH 00 [e(H 00)] > p. Moreover, any probabilistic execution fragment H 000 obtained

97

from H 00 by reducing deterministically transitions at depth greater than d (jqj > d) satis�es

PH 000 [e�d(H 000)] > p, and thus PH 000 [e(H 000)] > p. Hence, H 0 can be any probabilistic execution

fragment obtained from H 00 by reducing deterministically all the transitions at depth greater

than d in any arbitrary way. It is easy to check thatH 0 is generated by a deterministic adversary

of Advs.

Lemma 5.7.10 Let Advs be an execution-based adversary schema for a probabilistic automaton

M , and let H be a probabilistic execution fragment of M that is generated by some adversary

of Advs. Let e be an execution-based, �nitely-satis�able, event schema such that PH [e(H)] � p.

Then, there exists a probabilistic execution fragment H 0 of M , generated by a deterministic

adversary of Advs, such that PH [e(H
0)] � p.

Proof. If PH [e(H)] > p, then Lemma 5.7.9 su�ces. If PH [e(H)] = p, then by Lemma 5.7.3

it is possible to �nd a sequence of probabilistic execution fragments (Hi)i�0, where H0 = H ,

each Hi+1 is obtained from Hi by deterministically reducing all its i-level transitions, and

for each i, PHi+1 [e(Hi+1)] � PHi
[e(Hi)]. If there exists a sequence (Hi)i�0 such that for

some i, PHi
[e(Hi)] > p, then Lemma 5.7.9 su�ces. Otherwise, consider the sequence of

probabilistic execution fragments de�ned as follows: H0 = H and, for each i, let di be

the level of Hi such that PHi
[e�di(Hi)] � p

P
j�i(1=2)

j+1. Let Hi+1 be obtained from re-

peated applications of Lemma 5.7.8, till level di, so that PHi+1 [e�di(Hi+1)] � p
P

j�i(1=2)
j+1.

Note that PHi+1 [e(Hi+1)] = p, otherwise we can �nd a sequence (Hi)i�0 and an i such that

PHi+1 [e(Hi+1)] > p (simple argument by contradiction). Let H 0 be obtained from H by replac-

ing the transition enabled from each state q with the transition enabled from q in any Hi such

that jqj � di�1. It is easy to check that H 0 is generated by an adversary of Advs. Suppose by

contradiction that PH 0 [e(H 0)] = p0 < p. Then, from the construction of the Hi's, there exists an

i such that p
P

j�i(1=2)
j+1 > p0, and thus PHi+1 [e�di(Hi+1)] > p0. However, from the de�nition

of H 0, PHi+1 [e�di(Hi+1)] = PH 0 [e�di(H
0)], and thus p0 < PH 0 [e(H 0)], which contradicts the fact

that PH 0 [e(H 0)] = p0.

Proof of Proposition 5.7.1. Since AdvsD � Advs, PrAdvs ;�(e) R p implies PrAdvsD;�(e) R p

trivially. Conversely, suppose that PrAdvsD;�(e) R p, and let H be a probabilistic execution

fragment, generated by an adversary of Advs, whose start state is in �. We distinguish the

following cases.

1. R is �.

From Lemma 5.7.6, there is a probabilistic execution fragment H 0, generated by an ad-

versary of AdvsD, whose start state is in �, and such that PH 0 [e(H 0)] � PH [e(H)]. From

hypothesis, PH 0 [e(H 0)] � p. Thus, PH [e(H)] � p.

2. R is �.

From Lemma 5.7.10, there is a probabilistic execution fragment H 0, generated by an

adversary of AdvsD, whose start state is in �, and such that PH 0 [e(H 0)] � PH [e(H)].

From hypothesis, PH 0 [e(H 0)] � p. Thus, PH [e(H)] � p.

3. R is =.

This follows by combining Items 1 and 2.

98

5.7.2 Execution-Based Adversary Schemas with Partial On-Line Informa-

tion

Proposition 5.7.1 can be extended to adversary schemas that do not know all the past history

of a system, i.e., to execution-based adversary schemas with partial on-line information. We

need to impose a technical restriction, though, which is that an adversary should always be

able to distinguish two execution fragments with a di�erent length (cf. Example 5.7.2). The

proof of the new result is a simple modi�cation of the proof of Proposition 5.7.1.

Proposition 5.7.11 Let (�; F) be an oblivious relation such that for each pair �1 � �2 of

equivalent execution fragment, �1 and �2 have the same length. Let Advs be an execution-

based adversary schema with partial on-line information such that each adversary of Advs is

oblivious relative to (�; F), and let AdvsD be the set of deterministic adversaries of Advs.

Let e be a �nitely-satis�able, execution-based, event schema for M . Then, for every set � of

�nite execution fragments of M , every probability p, and every relation R among �, =, �,

PrAdvs;�(e) R p i� PrAdvsD;�(e) R p.

Proof. The proof is similar to the proof of Proposition 5.7.1. The main di�erence is in the

proofs of Lemmas 5.7.2, 5.7.3 and 5.7.8, where equivalence classes of states rather than single

states only must be considered. In these two proofs we use also the fact that equivalent execution

fragments have the same length. The details of the proof are left to the reader.

Example 5.7.2 (Why length sensitivity) The requirement that an adversary should al-

ways see the length of a probabilistic execution fragment seems to be arti�cial; however, ran-

domized adversaries have more power in general if they cannot see the length of a probabilistic

execution. Consider the probabilistic automaton M of Figure 5-3, and suppose that all the

executions of M that end in states s1; s2; s3, and s6 are equivalent. Since for each state si there

is exactly one execution of M that ends in si, we denote such an execution by qi. Let � be the

set of extended executions �� of M such that lstate(�) does not enable any transition in M .

For each state si that enables some transition, let tr i;u be the transition that leaves from si and

goes upward, and let tr i;d be the transition that leaves from si and goes downward. Then, for

each pair i; j 2 f1; 2; 3; 6g, i 6= j, let fqiqj(tr i;u) = tr j;u, and let fqiqj(tr i;d) = tr j;d.

Let Advs be the set of �-based adversaries for M that are oblivious relative to (�; F), and

let AdvsD be the set of deterministic adversaries of Advs. Then, the statement fs0g �!
1=2

AdvsD

fs7; s10g is valid, whereas the statement fs0g �!
1=2

Advs fs7; s10g is not valid, i.e., an adversary can

use randomization to reduce the probability to reach states fs7; s10g. In fact, the probabilistic

executions H1 and H2 of Figure 5-3 are the only probabilistic executions of M that can be

generated by the adversaries of AdvsD, while H0 is generated by an adversary of Advs. The

probability of reaching fs7; s10g in H1 and H2 is 1=2, whereas the probability of reaching

fs7; s10g in H0 is 1=4.

5.8 Probabilistic Statements without Adversaries

The current literature on randomized distributed algorithms relies on the notion of an adversary,

and for this reason all the de�nitions given in this chapter are based on adversaries. However,

99

s0

s2

s1

s4

s3

s5

s6

s8

s9

s7

10s

a

a
a

a

a

a

a

a

a

a

1/2

1/2

M:

a

a

1/2

1/2
0

1

4

10

6

2

q

q

q

q

q
q

a

a

a

H :1

a

a
a

a

a

a

a

a

a

a

1/2

1/2
0

1

3

7

8

4

5

9

10

6

2

q

q

q

q

q

q

q

q

q

q

q

H :0

a

a
a

a

a

1/2

1/2
0

1

3

7

5

2

q

q

q

q

q

q

H :2

1/2
1/2

1/2
1/2

1/2

1/2

1/2
1/2

Figure 5-3: Randomization adds power for some adversaries with partial on-line information.

the key objects of the theory that we have presented are the probabilistic execution fragments of

a probabilistic automaton, and not its adversaries. An adversary schema can be replaced by an

arbitrary set of probabilistic execution fragments in the de�nition of a probabilistic statement,

namely, the set of probabilistic execution fragments that the adversary schema can generate. In

other words, an adversary schema can be seen as a useful tool to express a set of probabilistic

execution fragments.

5.9 Discussion

Two objects that we have de�ned in this chapter and that do not appear anywhere in the

literature are adversary schemas and event schemas. Both the objects are needed because,

di�erently from existing work, in this thesis we identify several di�erent rules to limit the

power of an adversary and several di�erent rules to associate an event with a probabilistic

execution fragment, and thus we need some way to identify each rule. The best way to think

of an adversary schema and of an event schema is as a way to denote the rule that is used to

limit the power of an adversary and denote the rule that is used to associate an event with each

probabilistic execution fragment.

We have de�ned the classes of execution-based adversary schemas and execution-based

event schemas, and we have proved that for �nitely satis�able execution-based event schemas

randomization does not increase the power of an execution-based adversary schema, or of a

class of execution-based adversary schemas with partial on-line information. These results are

of practical importance because most of the known event schemas and adversary schemas of

practical interest are execution-based. As a result, it is possible to verify the correctness of

a randomized distributed algorithm by analyzing only the e�ect of deterministic adversaries,

100

which is easier than analyzing every adversary. A similar result is shown by Hart, Sharir and

Pnueli [HSP83] for fair adversaries and almost-sure termination properties, i.e., properties that

express the fact that under all fair adversaries the system reaches some �xed set of states

with probability 1. Fair adversaries and termination events are expressible as execution-based

adversary schemas and �nitely satis�able execution-based event schemas, respectively; thus,

the result of Hart, Sharir and Pnueli is implied by our result. Hart, Sharir and Pnueli prove

also that another class of adversaries is equivalent to the class of fair adversaries, namely, those

adversaries that lead to fair executions with probability 1. The same result holds here as well;

however, it is not clear under what conditions a similar result holds in general.

101

102

Chapter 6

Direct Verication Proving a

Property

In this chapter we illustrate techniques to prove the validity of a probabilistic statement from

scratch. The main technique, which is based on coin lemmas , consists of reducing the analysis of

a property of a probabilistic automaton to the analysis of a property of an ordinary automaton.

We illustrate the methodology by applying it to some existing randomized algorithms.

Part of this chapter is based on joint work with Anna Pogosyants and Isaac Saias. Anna

Pogosyants suggested us the coin event OCC (Section 6.2.3) as a generalization of other less

elegant coin events that we had in mind and collaborated on the veri�cation of the randomized

algorithm for agreement of Ben-Or (Section 6.5). The veri�cation of the randomized dining

philosophers algorithm of Lehmann and Rabin (Section 6.3) is based on joint work with Nancy

Lynch and Isaac Saias [LSS94], and the veri�cation of the randomized algorithm for agreement

of Ben-Or is a formalization of a proof that appears in the book on distributed algorithms of

Nancy Lynch [Lyn95].

6.1 How to Prove the Validity of a Probabilistic Statement

In Chapter 5 we have de�ned formally what is a probabilistic statement and we have shown how

it is possible to combine probabilistic statements to derive more complex properties. However,

one question is left open: how do we prove the validity of a given probabilistic statement from

scratch?

The problem is not trivial: a property may rely on complicate global con�gurations of a

system that depend on several separated random draws. Analyzing the exact probability of an

event associated with a probabilistic execution fragment may be extremely hard. Fortunately,

there are usually some key points, known to the designer of a system, where speci�c probabilistic

choices lead to the desired property. In this chapter we formalize the idea above by introducing

a collection of coin lemmas . The idea behind a coin lemma is the following.

1. We de�ne a mechanism to identify events of the kind \some speci�c probabilistic choices

yield some speci�c results". We call such events coin events since a common source of

randomness is given by coin
ips.

103

2. We prove a lower bound on the probability of the coin event that we identify.

Then, the analysis of a probabilistic statement for a probabilistic automaton M proceeds as

follows.

1. We �nd a coin event that expresses the key intuition behind the property to be shown.

2. We show that the coin event is a subevent of the event expressing the desired property,

i.e., we show that whenever the coin event is satis�ed, the desired property is satis�ed as

well.

3. We use the lower bound on the probability of the coin event to obtain a lower bound on

the probability of the desired property.

Example 6.1.1 (Coin lemmas and the toy resource allocation protocol) Let us con-

sider the toy resource allocation protocol of Chapter 5 again. One of the coin lemmas of

this chapter states that if we �x any two separate coin
ips (
ipping of di�erent coins) and

we consider the event where the two coin
ips yield di�erent outcomes whenever they both

occur, then, no matter how the nondeterminism is resolved, the considered event is satis�ed

with probability at least 1=2. On the other hand, if the �rst coin
ip of M1 after the �rst coin

ip of M2 is di�erent from the last coin
ip of M2 before the �rst time M1 checks its resource

after
ipping, then M1 succeeds in getting its resource. Thus, whenever the property above can

be expressed as a coin event in a form suitable to the coin lemma above, we are guaranteed that

M1 eventually gets its resource with probability at least 1=2. It turns out that an adversary

must be fair, oblivious and deterministic in order to be able to de�ne the desired coin event (cf.

Section 6.6). Our results about deterministic and randomized adversaries (Proposition 5.7.11)

can then be used to remove the constraint that an adversary is deterministic.

We present a large collection of coin lemmas, and we illustrate their use via two main examples:

Section 6.3 proves the correctness of the randomized Dining Philosophers algorithm of Lehmann

and Rabin [LR81], and Section 6.5 proves the correctness of the randomized algorithm of Ben-

Or for agreement in asynchronous networks in the presence of stopping faults [BO83]. At the

end of the chapter we hint at another technique, called the partition technique, that departs

considerably from the coin lemmas and that is necessary to prove stronger claims about the toy

resource allocation protocol. We leave to further work a deeper study of this other technique.

6.2 Some Simple Coin Lemmas

In this section we present some simple coin lemmas where we use actions to identify the random

draws of interest. Speci�cally, we study the following coin lemmas.

1. First occurrence of an action.

In this coin lemma we consider an action a and a set of states U , and we study the

probability that either action a does not occur or the �rst occurrence of action a leads to

a state of U . We show that this probability is at least the in�mum of the probability of

reaching a state of U over all the transitions of M that are labeled with action a.

104

As an example, action a can identify the process of
ipping a fair coin and U can identify

those states that are reached if the coin
ip yields head. Then the coin lemma says that

no matter how the nondeterminism is resolved the probability that either the coin is not

ipped or the coin is
ipped and yields head is at least 1=2.

Observe that in the de�nition of the coin event we allow for those executions where no

coin is
ipped. One reason for this choice is to avoid trivial lower bounds due to the fact

that a generic adversary can always decide not to schedule any transition. Another reason

is that generally a randomized algorithm is structured so that that if no coin is
ipped

then progress is guaranteed with certainty. Alternatively, a randomized algorithm can be

structured so that under any valid adversary some coin is
ipped. In both cases it is of

absolute importance to be aware of the existence of executions where no coin is
ipped.

Overlooking those executions is a common source of mistakes.

2. First occurrence of an action among many.

In this coin lemma we consider several pairs (ai; Ui) of actions and sets of states, and we

study the probability that either none of the ai's occur or the action aj that occurs �rst

leads to a state of Uj . We show that, if for each i pi is the lower bound given for (ai; Ui)

by the coin lemma of 1, then the probability mentioned above is at least the minimum of

the pi's.

As an example, consider n processes that run in parallel, and suppose that each process

can
ip a fair coin. Then, the probability that either no process
ips a coin or that the

�rst process that
ips a coin obtains head is at least 1=2.

3. I-th occurrence of an action among many.

In this coin lemma we consider the coin event of 2 with the di�erence that we consider

the ith occurrence of an action rather than the �rst occurrence. The lower bound on the

probability of this event is the same as the lower bound on the probability of the event

of 2.

4. Conjunction of separate coin events.

In this coin lemma we consider the conjunction of several coin events of the kind of 3. We

show that if each one of the coin events involves disjoint occurrences of actions, then the

lower bound on the probability of the conjunction is the product of the lower bounds on

the probability of each of the involved coin events.

As an example, consider n processes that run in parallel, and suppose that each process

can
ip a fair coin. For each i let xi be either head or tail. Then, the probability that for

each process i either no coin is
ipped or the �rst coin that is
ipped yields xi is at least

1=2n.

Some more general and complex coin lemmas are presented in Section 6.4; several other coin

lemmas are likely to be derived in the future. Before presenting the simple coin lemmas in full

detail we give just a rough idea of the coin lemmas of Section 6.4.

5. Conjunction of separate coin events with multiple outcomes.

105

In this coin lemma we consider again the conjunction of several coin events that involve

disjoint occurrences of actions. However we allow more freedom. First of all an action is

paired with more than one set of states, thus allowing the observation of more than one

outcome; second, we allow for multiple joint observations.

As an example, the coin lemma says that if n processes run in parallel and each one of

them can
ip a coin, then the probability that at least half of the processes either do not

ip a coin or
ip head is at least 1=2. Similarly, if each process can roll a dice, then the

probability that if process 1 rolls 1 then the other processes do not roll a number di�erent

from 1 is at least (1=6)n + 5=6, which is essentially the probability of rolling n dices and

that either all processes give 1 or process 1 does not give 1.

6. A generalized coin lemma.

In this coin lemma we generalize the idea of 5, but this time we do not use actions to

identify the random draws of interest. The reader is referred to Section 6.4.2 for further

details.

6.2.1 First Occurrence of an Action

Let M be a probabilistic automaton, and let (a; U) be a pair consisting of an action of M and

a set of states of M . Let FIRST(a; U) be a function that applied to a probabilistic execution

fragment H of M returns the set of executions � of
H such that either a does not occur in

�.qH0 , or a occurs in �.qH0 and the state reached after the �rst occurrence of a is a state of U .

It is simple to check that FIRST(a; U) is an event schema since, for each probabilistic

execution fragment H of M , the complement of FIRST(a; U)(H) is the set of executions � of

H such that action a occurs in �.qH0 , and the state reached after the �rst occurrence of a is

not a state of U . This set is expressible as a union of cones, and thus it is an event.

The event schema FIRST(a; U) identi�es the �rst random draw associated with action a

that occurs in a probabilistic execution fragment H , and requires the outcome of the random

draw to be in a speci�c range, namely in U . The intuition behind the use of such a coin event,

is that a system performs well if the outcome of the �rst random draw involving a is in U .

From the de�nition of FIRST(a; U), we assume also that the system performs well whenever a

does not occur at all. Thus, if an adversary has the possibility not to schedule a, then it has a

better chance to degrade the performance of a system by scheduling a.

The following lemma provides a lower bound to the probability of FIRST(a; U). Informally,

it states that if whenever there is a transition of M that involves action a the occurrence of a

implies that a state of U is reached with probability at least p, then p is a lower bound on the

probability of FIRST(a; U).

Lemma 6.2.1 Let M be a probabilistic automaton, and let (a; U) be a pair consisting of an

action of M and a set of states of M . Let p be a real number between 0 and 1 such that for

each transition (s;P) of M where P [a] > 0, P [U ja] � p. Then, for each probabilistic execution

fragment H of M , PH [FIRST(a; U)(H)]� p.

Proof. For convenience denote FIRST(a; U)(H) by E, and for each state q of H , denote by

(q; U) the set f(a; q0) 2
H
q j lstate(q

0) =2 Ug. Let � be the set of states q of H such that

106

action a does not occur in q.qH0 , and P
H
q [a] > 0. Then,

PH [E] =
X
q2�

X
(a;q0)2
(q;U)

PH [Cq]P
H
q [(a; q0)]: (6.1)

By expressing PH
q [(a; q0)] as a conditional probability and rearranging the expression, we obtain

PH [E] =
X
q2�

PH [Cq]P
H
q [a]

0
B@ X
(a;q0)2
(q;U)

PH
q [(a; q0)ja]

1
CA : (6.2)

From the de�nition of a probabilistic execution fragment and the de�nition of
(q; U), for each

element q of � there is a combined transition tr =
P

i pitr i of M such that trHq = q a tr and

X
(a;q0)2
(q;U)

PH
q [(a; q0)ja] = Ptr [U ja] =

Ptr [U \ a]

Ptr [a]
=

P
i piPtr i [U \ a]P

i piPtr i [a]
: (6.3)

By multiplying and dividing each ith summand of the enumerator by Ptr i [a], using the hypoth-

esis of the lemma, i.e., for each i Ptr i [U \ a] � (1� p), and simplifying algebraically, from (6.3)

we obtainX
(a;q0)2
(q;U)

PH
q [(a; q0)ja] � (1� p): (6.4)

By using (6.4) in (6.2) we obtain

PH [E] � (1� p)

0
@X
q2�

PH [Cq]P
H
q [a]

1
A : (6.5)

Furthermore, the subexpression
P

q2� PH [Cq]P
H
q [a] is the probability that a occurs in H , which

is at most 1. Thus,

PH [E] � (1� p): (6.6)

This completes the proof.

6.2.2 First Occurrence of an Action among Many

The event schema FIRST(a; U) can be generalized to account for the �rst action that occurs

among several possible ones. Let M be a probabilistic automaton, and let (a1; U1); : : : ; (an; Un)

be pairs consisting of an action of M and a set of states of M such that the actions ai are

all distinct. Then de�ne FIRST((a1; U1); : : : ; (an; Un)) to be the function that applied to a

probabilistic execution fragment H ofM returns the set of executions � of
H such that either

none of the ai's occurs in �.q
H
0 , or some of the ai's occur in �.q

H
0 , and if ai is the �rst of those

actions that occurs, then the state reached after the �rst occurrence of ai is a state of Ui.

It is simple again to check that FIRST((a1; U1); : : : ; (an; Un)) is an event schema since, for

each probabilistic execution fragment H , the complement of FIRST((a1; U1); : : : ; (an; Un))(H)

can be expressed as a union of cones.

Lemma 6.2.1 extends to this case.

107

Lemma 6.2.2 Let M be a probabilistic automaton, and let (a1; U1); : : : ; (an; Un) be pairs con-

sisting of an action of M and a set of states of M such that the actions ai are all distinct. Let

fpigi=1;:::;n be a collection of real numbers between 0 and 1 such that for each i, 1 � i � n,

and each transition (s;P) of M where P [ai] > 0, P [U jai] � pi. Then, for each probabilistic

execution fragment H of M , PH [FIRST((a1; U1); : : : ; (an; Un))(H)]� min(p1; : : : ; pn).

Proof. Let V be fa1; : : : ; ang, and let p be the minimum of fp1; : : : ; png. For convenience,

denote FIRST((a1; U1); : : : ; (an; Un))(H) by E, and for each state q of H , denote by
(q; E)

the set [i2f1;:::;ngf(ai; q
0) 2
H

q j lstate(q
0) =2 Uig. Then, for each transition (q;PHq) of H such

that PH
q [V] > 0,

PH
q [
(q; E)jV] � (1� p): (6.7)

To prove (6.7), let, for each i = 1; : : : ; n,
(q; ai; U i) denote the set f(ai; q
0) 2
H

q j lstate(q
0) =2

Uig. Then,

PH
q [
(q; E)jV] =

X
i2f1;:::;ng

PH
q [
(q; ai; U i)jV]: (6.8)

By using conditional probabilities, Equation (6.8) can be rewritten into

PH
q [
(q; E)jV] =

X
i2f1;:::;ng

PH
q [aijV]P

H
q [
(q; ai; U i)jai]: (6.9)

Following the same argument as in the proof of Lemma 6.2.1, for each i, PH
q [
(q; ai; U i)jai] �

(1� p); moreover,
P

i P
H
q [aijV] = 1. Thus, (6.7) follows directly.

The rest of the proof follows te lines of the proof of Lemma 6.2.1. Let � be the set of states

q of H such that no action of V occurs in q.qH0 , and P
H
q [V] > 0. Then,

PH [E] =
X
q2�

X
(a;q0)2
(q;E)

PH [Cq]P
H
q [(a; q0)]: (6.10)

By expressing PH
q [(a; q0)] as a conditional probability and rearranging the expression, we obtain

PH [E] =
X
q2�

PH [Cq]P
H
q [V]

0
B@ X
(a;q0)2
(q;E)

PH
q [(a; q0)jV]

1
CA : (6.11)

The subexpression
P

(a;q0)2
(q;E) P
H
q [(a; q0)jV] is PH

q [
(q; E)jV], which is less than or equal to

(1� p) from (6.7). Thus,

PH [E] � (1� p)

0
@X
q2�

PH [Cq]P
H
q [V]

1
A : (6.12)

Furthermore, the subexpression
P

q2� PH [Cq]P
H
q [V] is the probability that an action from V

occurs in H , which is at most 1. Thus,

PH [E] � (1� p): (6.13)

This completes the proof.

108

6.2.3 I-th Occurrence of an Action among Many

In the de�nition of FIRST we have considered the �rst action among a given set that occurs

in a probabilistic execution fragment H . However, the results for FIRST are valid also if

we consider the ith occurrence of an action instead of the �rst occurrence. This observation

suggests a new more general event schema.

Let M be a probabilistic automaton, and let (a1; U1); : : : ; (an; Un) be pairs consisting of

an action of M and a set of states of M such that the actions ai are all distinct. Then

de�ne OCC (i; (a1; U1); : : : ; (an; Un)) to be the function that applied to a probabilistic execution

fragment H of M returns the set of executions � of
H such that either there are less than i

occurrences of actions from fa1; : : : ; ang in �.q
H
0 , or there are at least i occurrences of actions

from fa1; : : : ; ang, and, if aj is the action that occurs as the ith one, then the state reached

after its occurrence is a state of Ui.

Since in the proof of Lemma 6.2.2 we never use the fact that it is the �rst occurrence of an

action that is considered, Lemma 6.2.2 carries over to the ith occurrence trivially.

Lemma 6.2.3 Let M be a probabilistic automaton, and let (a1; U1); : : : ; (an; Un) be pairs con-

sisting of an action of M and a set of states of M such that the actions ai are all distinct. Let

fpjgj=1;:::;n be a collection of real numbers between 0 and 1 such that for each j 2 f1; : : : ; ng

and each transition (s;P) of M where P [aj] > 0, P [U jaj] � pj. Then, for each probabilistic

execution fragment H of M , PH [OCC(i; (a1; U1); : : : ; (an; Un))(H)]� min(p1; : : : ; pn).

6.2.4 Conjunction of Separate Coin Events

In this section we study what happens if we consider several events of the kind OCC together.

In order to simplify the notation, we consider only event schemas of the kind OCC(i; (a; U))

since, as we have seen in the proof of Lemma 6.2.2, the case with multiple actions can be

reduced to the case with a single action.

The lemma that we prove states that if we consider several separate coin events, i.e., coin

events that involve di�erent random draws, each one with its own lower bound, then the lower

bound of their conjunction is the product of the lower bounds. In other words, an adversary

can introduce dependencies by increasing the probability of the conjunction of events, but it

can never decrease the probability below the value that we would get by considering all the

events to be independent.

Lemma 6.2.4 Let M be a probabilistic automaton, and let (k1; a1; U1); : : : ; (kn; an; Un) be a

collection of triplets consisting of a natural number, an action of M and a set of states of

M , such that the pairs (ki; ai) are all distinct. Let fpjgj=1;:::;n be a collection of real num-

bers between 0 and 1 such that for each j 2 f1; : : : ; ng and each transition (s;P) of M

where P [aj] > 0, P [U jaj] � pj. Then, for each probabilistic execution fragment H of M ,

PH [OCC(k1; (a1; U1))(H)\ � � � \ OCC(kn; (an; Un))(H)] � p1 � � �pn.

Proof. For each I � f1; : : : ; ng, denote a generic event schema \i2IOCC(ki; (ai; Ui)) by eI .

For each i = 1; : : : ; n and each state q of H , denote by
(q; i; Ui) the set f(ai; q
0) 2
H

q j

lstate(q0) 2 Uig of pairs where ai occurs and Ui is reached, and denote by
(q; i; Ui) the set

f(ai; q
0) 2
H

q j lstate(q
0) =2 Uig of pairs where ai occurs and Ui is not reached. For each action

109

a and each state q of H , let a(q) denote the number of occurrences of action a in q.qH0 . For

each i = 1; : : : ; n, let �i be the set of states q of H such that each action aj ; 1 � j � n occurs

less than kj times in q.qH0 , action ai occurs ki � 1 times in q.qH0 , and P
H
q [ai] > 0. For each

i = 1; : : : ; n and each state q of H such that ai(q) < ki, let OCC(ki; (ai; Ui)).q denote the event

schema OCC (ki � ai(q); (ai; Ui)). Finally, for each I � f1; : : : ; ng and each suitable state q of

H , let eI.q denote the event schema \i2IOCC (ki; (ai; Ui)).q.

We prove the lemma by induction on n. If n = 1, then the result follows directly from

Lemma 6.2.1. Otherwise,

PH [e1;:::;n(H)] =
X

i2f1;:::;ng

X
q2�i

PH [Cq]

0
B@
0
B@ X
(ai;q0)2
(q;i;Ui)

PH
q [(ai; q

0)]

1
CA

+

0
@ X
(ai;q0)2
(q;i;Ui)

PH
q [(ai; q

0)]PH.q0 [ef1;:::;i�1;i+1;:::;ng.q0(H.q0)]

1
A
1
A : (6.14)

The �rst summand of Expression (6.14) expresses the probability that action ai occurs from q

and leads to a state not in Ui; the second summand expresses the probability that ai occurs, leads

to a state of Ui, and from the reached state something happen so that the resulting execution

is not in e1;:::;n(H). From induction, and by using conditional probabilities, we obtain

PH [e1;:::;n(H)] �
X

i2f1;:::;ng

X
q2�i

PH [Cq]P
H
q [ai]

0
B@
0
B@ X
(ai;q0)2
(q;i;Ui)

PH
q [(ai; q

0)jai]

1
CA

+

0
@ X
(ai;q0)2
(q;i;Ui)

PH
q [(ai; q

0)jai])(1� p1 � � �pi�1pi+1 � � �pn)

1
A
1
A : (6.15)

Let, for each i and each q, pi;q = PH
q [
(q; i; Ui)jai]. Then, (6.15) becomes

PH [e1;:::;n(H)]

�
X

i2f1;:::;ng

X
q2�i

PH [Cq]P
H
q [ai]((1� pi;q) + (1� p1 � � �pi�1pi+1 � � �pn)pi;q); (6.16)

which becomes

PH [e1;:::;n(H)] �
X

i2f1;:::;ng

X
q2�i

PH [Cq]P
H
q [ai](1� p1 � � �pi�1pi;qpi+1 � � �pn) (6.17)

after simple algebraic simpli�cations. Using the same argument as in the proof of Lemma 6.2.1,

for each i and each q, pi;q � pi. Thus,

PH [e1;:::;n(H)] �
X

i2f1;:::;ng

X
q2�i

PH [Cq]P
H
q [ai](1� p1 � � �pn): (6.18)

Finally, observe that
P

i2f1;:::;ng

P
q2�i

PH [Cq]P
H
q [ai] is the probability that for some i action

ai occurs at least ki times. Thus,

PH [e1;:::;n(H)] � (1� p1 � � �pn): (6.19)

This completes the proof.

110

Figure 6-1: The Dining Philosopher problem with 6 philosophers.

6.3 Example: Randomized Dining Philosophers

In this section we apply the methodology presented so far to prove the correctness of the Ran-

domized Dining Philosophers algorithm of Lehmann and Rabin [LR81]. The proof is structured

in two levels. The high level proof consists of a collection of progress statements that are con-

catenated together; the low level proof consists of the proofs of the statements of the high level

proof. The low level proof is based on the coin lemmas.

6.3.1 The Problem

There are n philosophers sat at a round table. Each philosopher has a plate in from of him, a

fork on its left, and a fork on its right. The left fork is shared with his left neighbor philosopher,

and the right fork is shared with his right neighbor philosopher. At the center of the table there

is a bowl full of spaghetti. Figure 6-1 illustrates the situation for n = 6. Each philosopher

goes repeatedly through phases where he is thinking and where he is eating. However, each

philosopher needs both of its forks in order to eat. The problem is the following:

\What procedure should each philosopher follow to get his forks and to put them

down in order to make sure that every philosopher that is hungry will eventually be

able to eat?"

A simpler problem is the following.

\What procedure should each philosopher follow to get his forks and to put them down

in order to make sure that whenever somebody is hungry somebody will eventually

be able to eat?"

The second problem is simpler than the �rst problem since it allows for some philosopher

to starve. It is known from [LR81] that there is no symmetric solution even for the simple

dining philosophers problem, i.e., there is no deterministic solution for the dining philosophers

problem where each philosopher follows exactly the same protocol; some mechanism to break

the symmetry is necessary. In the algorithm of Lehmann and Rabin each philosopher follows

exactly the same protocol and randomness is used to break the symmetry.

111

Shared variables: Resj 2 ffree; takeng; j = 1; : : : ; n, initially free.

Local variables: ui 2 fleft; rightg; i = 1; : : : ; n

Code for process i:

0. try ** beginning of Trying Section **

1. < ui random> ** choose left or right with equal probability **

2. < if Res(i;ui) = free then

Res(i;ui) := taken ** pick up �rst resource **

else goto 2. >

3. < if Res(i;opp(ui)) = free then

Res(i;opp(ui)) := taken; ** pick up second resource **

goto 5. >

4. < Res(i;ui) := free; goto 1.> ** put down �rst resource **

5. crit ** end of Trying Section **

** Critical Section **

6. exit ** beginning of Exit Section **

7. < ui left or right ** nondeterministic choice **

Res(i;opp(ui)) := free > ** put down �rst resources **

8. < Res(i;ui) := free > ** put down second resources **

9. rem ** end of Exit Section **

** Remainder Section **

Figure 6-2: The Lehmann-Rabin algorithm. The operations between angular brackets are

performed atomically.

6.3.2 The Algorithm

Each hungry philosopher proceeds according to the following protocol.

1. Flip a fair coin to choose between the left and the right fork.

2. Wait for the chosen fork to become free and get it.

3. Try to get the second fork:

if it is free, then get it;

if it is taken, then put down the �rst fork and go to 1.

4. Eat.

Each philosopher that has terminated to eat puts down his forks one at a time. The intuition

behind the use of randomness is that the actual protocol used by each philosopher is determined

by an in�nite sequence of random coin
ips. Thus, with probability 1 each philosopher follows

a di�erent protocol.

Figure 6-2 gives a more precise representation of the protocol, using a terminology that

is closer to computer science; thus, a philosopher is called a process, and a fork is called a

resource. A philosopher who is thinking is said to be in its reminder region; a philosopher

112

1

34

5

6

1

2

3

4

5

6

2

Figure 6-3: Numbering processes and resources in the Dining Philosophers problem.

who is eating is said to be in its critical region; a philosopher who is trying to get its forks is

said to be in its trying region; and a philosopher who is putting down its forks is said to be in

its exit region. The n resources (forks) are represented by n shared variables Res1; : : : ;Resn,

each of which can assume values in ffree; takeng. Each process (philosopher) i ignores its

own name and the names of its adjacent resources. However, each process i is able to refer

to its adjacent resources by relative names: Res(i;left) is the resource located to the left, and

Res(i;right) is the resource to the right of i. Each process i has a private variable ui, whose value

is in fleft; rightg, which is used either to keep track of the resource that process i currently

holds, or, if no resource is held, to keep track of the resource that process i is going to take

next. For notational convenience we de�ne an operator opp that complements the value of its

argument, i.e., opp(right) = left and opp(left) = right.

We now de�ne a probabilistic automatonM that represents the evolution of n philosophers.

We assume that process i + 1 is on the right of process i and that resource Resi is between

processes i and i+ 1 (see Figure 6-3). We also identify labels modulo n so that, for instance,

process n + 1 coincides with process 1.

A state s of M is a tuple (X1; : : : ; Xn;Res1; : : : ;Resn) containing the local state Xi of each

process i, and the value of each resource Resi. Each local state Xi is a pair (pci; ui) consisting

of a program counter pci and the local variable ui. The program counter of each process keeps

track of the current instruction in the code of Figure 6-2. Rather than representing the value

of the program counter with a number, we use a more suggestive notation which is explained

in Table 6.1. Also, the execution of each instruction is represented by an action. Actions tryi,

criti, remi, exiti are external; all the other actions are internal.

The start state of M assigns the value free to all the shared variables Resi, the value R to

each program counter pci, and an arbitrary value to each variable ui. The transition relation

of M is derived directly from Figure 6-2. For example, for each state where pci = F there is

an internal transition labeled with flipi that changes pci into W and assigns left to ui with

probability 1=2 and right to ui with probability 1=2; from each state where Xi = (W; left)

there is a transition labeled with waiti that does not change the state if Res(i;left) = taken,

and changes pci into S and Res(i;left) into taken if Res(i;left) = free; for each state where

113

Nr. pci Action Informal meaning

0 R tryi Reminder region

1 F flipi Ready to Flip

2 W waiti Waiting for �rst resource

3 S secondi Checking for Second resource

4 D dropi Dropping �rst resource

5 P criti Pre-critical region

6 C exiti Critical region

7 EF dropfi Exit: drop First resource

8 ES dropsi Exit: drop Second resource

9 ER remi Exit: move to Reminder region

Table 6.1: Program counter and action names for the Lehmann-Rabin algorithm.

pci = EF there are two transitions labeled with action dropfi: one transition sets ui to right

and makes Res(i;left) free, and the other transition sets ui to left makes Res(i;right) free. The

two separate transitions correspond to a nondeterministic choice that is left to the adversary.

The value of each pair Xi can be represented concisely by the value of pci and an arrow

(to the left or to the right) which describes the value of ui. Thus, informally, a process i is in

state S
!

or D
!

(resp. S

or D

) when i is in state S or D while holding its right (resp. left)

resource; process i is in state W
!

(resp. W

) when i is waiting for its right (resp. left) resource

to become free; process i is in state ES
!

(resp. ES

) when i is in its exit region and it is still

holding its right (resp. left) resource. Sometimes we are interested in sets of pairs; for example,

whenever pci = F the value of ui is irrelevant. With the simple value of pci we denote the set of

the two pairs f(pci; left); (pci; right)g. Finally, with the symbol # we denote any pair where

pci 2 fW;S;Dg. The arrow notation is used as before.

For each state s = (X1; : : : ; Xn;Res1; : : : ;Resn) of M we denote Xi by Xi(s) and Resi by

Resi(s). Also, for any set St of states of a process i, we denote by Xi 2 St , or alternatively

Xi = St the set of states s of M such that Xi(s) 2 St . Sometimes we abuse notation in the

sense that we write expressions like Xi 2 fF;Dg with the meaning Xi 2 F [D. Finally, we

write Xi = E for Xi = fEF ; ES ; ERg, and we write Xi = T for Xi 2 fF;W; S;D;Pg.

6.3.3 The High Level Proof

In this section we give the high level proof that the algorithm of Lehmann and Rabin guarantees

progress, i.e., that from every state where some process is in its trying region, some process

enters eventually its critical region with probability 1. We assume that each process that is

ready to perform a transition is allowed eventually to do so: process i is ready to perform a

transition whenever it enables an action di�erent from tryi or exiti. Actions tryi and exiti

are under the control of the user (a philosopher decides whether to eat or think), and hence,

by assumption, under the control of the adversary.

Formally, consider the probabilistic automaton M of Section 6.3.2. De�ne an extended

execution � of M to be fair i� for each process i either � is �nite and its last state enables

114

tryi or exiti, or � is in�nite and either actions of process i occur in�nitely many times in �

or � = �1
a �2 and all the states of �2 enable either tryi or exiti. De�ne Fairadvs to be the

set of adversaries A for M such that, for every �nite execution fragment � of M the elements

of
prexec(M;A;�) are extended fair execution fragments of M . Then Fairadvs is �nite-history-

insensitive: if A is an adversary of Fairadvs and q is a �nite execution fragment of M , then it

is easy to verify that the adversary Aq such that

Aq(�) =

(
A(�.q) if q � �

A(�) otherwise

is an adversary of Fairadvs. Let rstates(M) denote the set of reachable states of M . Let

T
4
= fs 2 rstates(M) j 9iXi(s) 2 fTgg

denote the sets of reachable states of M where some process is in its trying region, and let

C
4
= fs 2 rstates(M) j 9iXi(s) = Cg

denote the sets of reachable states of M where some process is in its critical region. We �rst

show that

T �!
1=8

Fairadvs C; (6.20)

i.e., that, starting from any reachable state where some process is in its trying region, for all

the adversaries of Fairadvs, some process enters its critical region eventually with probability at

least 1=8. Note that (6.20) is satis�ed trivially if some process is initially in its critical region.

Our proof is divided into several phases, each one concerned with the property of making

some partial progress toward C. The sets of states associated with the di�erent phases are

expressed in terms of T ;RT ;F ;G;P ; and C. Here,

RT
4
= fs 2 T j 8iXi(s) 2 fER; R; Tgg

is the set of states where at least one process is in its trying region and where no process is in

its critical region or holds resources while being in its exit region.

F
4
= fs 2 RT j 9iXi(s) = Fg

is the set of states of RT where some process is ready to
ip a coin.

P
4
= fs 2 rstates(M) j 9iXi(s) = Pg

is the sets of reachable states of M where some process is in its pre-critical region, i.e., where

some process is ready to enter its critical region. The set G is the most important for the

analysis. To motivate the de�nition, we de�ne the following notions. We say that a process i

is committed if Xi 2 fW;Sg, and that a process i potentially controls Resi (resp. Resi�1) if

Xi 2 fW
!
; S
!
; D
!
g (resp. Xi 2 fW

; S

; D

g). Informally said, a state in RT is in G if and only

if there is a committed process whose second resource is not potentially controlled by another

process. Such a process is called a good process. Formally,

G
4
= fs 2 RT j 9i

Xi(s) 2 fW

; S

g and Xi+1(s) 2 fER; R; F;#

!
g; or

Xi(s) 2 fW
!
; S
!
g and Xi�1(s) 2 fER; R; F;#

gg

115

Reaching a state of G is a substantial progress toward reaching a state of C. Somehow, a good

state is a place where the symmetry is broken. The progress statements of the proof are the

following.

T �!
1
RT [C (Proposition 6.3.3),

RT �!
1
F [G [P (Proposition 6.3.16),

F �!
1=2
G [P (Proposition 6.3.15),

G �!
1=4
P (Proposition 6.3.12),

P �!
1
C (Proposition 6.3.1).

The �rst statement says that eventually every process in its exit region relinquishes its resources.

In this way we avoid to deal with resources held by processes who do not want to enter the

critical region. The second statement says that eventually either a good state is reached, or a

place where some process is ready to
ip its coin is reached. The
ipping points are potential

points where the symmetry is broken, and thus reaching a
ipping point means progress. The

third statement says that from a
ipping point there is probability 1=2 to reach a good state.

Finally, the fourth statement says that from a good state there is probability 1=4 to be ready

to enter the critical region. By combining the statements above by means of Proposition 5.5.3

and Theorem 5.5.2 we obtain

T �!
1=8
C; (6.21)

which is the property that was to be proven. Observe that once some process is in the trying

region there is always some process in the trying region until some process reaches the critical

region. Formally, M satis�es T Unless C. Thus, Proposition 5.5.6 applies, leading to

T �!
1
C: (6.22)

6.3.4 The Low Level Proof

In this section we prove the �ve progress statements used in Section 6.3.3. The proofs are

detailed operational arguments. The main point to observe is that randomness is handled

exclusively by the coin lemmas, and thus, any technique for the veri�cation of ordinary automata

could be applied as well.

For the sake of clarity, we do not prove the relations in the order they were presented.

Throughout the proof we abuse notation by writing expressions of the kind FIRST(flipi; left)

for the event schema FIRST(flipi; fs 2 states(M) j Xi(s) = W

g). We write also sentences of

the form \If FIRST(flipi; left) then �" meaning that for each valid probabilistic execution

fragment H , each element of FIRST(flipi; left)(H) satis�es �.

Proposition 6.3.1 If some process is in P , then some process enters C, i.e.,

P �!
1
C:

Proof. Let i be the process in P . Then, from the de�nition of Fairadvs, process i is scheduled

eventually, and enters C.

116

Lemma 6.3.2 If some process is in its Exit region, then it will eventually enter R.

Proof. The process needs to perform two transitions to relinquish its two resources, and then

one transition to send a rem message to the user. Every adversary of Fairadvs guarantees that

those three transitions are performed eventually.

Proposition 6.3.3 T �! RT [C.

Proof. From Lemma 6.3.2, every process that begins in EF or ES relinquishes its resources.

If no process begins in C or enters C in the meantime, then the state reached at this point is

a state of RT ; otherwise, the starting state or the state reached when the �rst process enters

C is a state of C.

We now turn to the proof of G �!
1=4
P . The following lemmas form a detailed cases analysis

of the di�erent situations that can arise in states of G. Informally, each lemma shows that a

speci�c coin event is a sub-event of the properties of reaching some other state. A preliminary

lemma is an invariant of M , which guarantees that the resources are held by those processes

who think to be holding them.

Lemma 6.3.4 For each reachable state s of M and each i, 1 � i � n, Resi = taken i�

Xi(s) 2 fS
!
; D
!
; P; C; EF ; ES

!
g or Xi+1(s) 2 fS

; D

; P; C; EF ; ES

g. Moreover, for each reachable

state s of M and each i, 1 � i � n, it is not the case that Xi(s) 2 fS
!
; D
!
; P; C; EF ; ES

!
g and

Xi+1(s) 2 fS

; D

; P; C; EF ; ES

g, i.e., only one process at a time can hold one resource.

Proof. The proof of this lemma is a standard proof of invariants. Simply verify that the two

properties are true for the start states of M and are preserved by each transition of M .

Lemma 6.3.5

1. Let Xi�1 2 fER; R; Fg and Xi = W

. If FIRST(flipi�1; left), then, eventually, either

Xi�1 = P or Xi = S.

2. Let Xi�1 = D and Xi = W

. If FIRST(flipi�1; left), then, eventually, either Xi�1 = P

or Xi = S.

3. Let Xi�1 = S and Xi = W

. If FIRST(flipi�1; left), then, eventually, either Xi�1 = P

or Xi = S.

4. Let Xi�1 = W and Xi = W

. If FIRST(flipi�1; left), then, eventually, either Xi�1 = P

or Xi = S.

Proof. The four proofs start in the same way. Let s be a state of M satisfying the respective

properties of items 1 or 2 or 3 or 4 . Let A be an adversary of Fairadvs, and let � be an

execution of
prexec(M;fsg;A) where the result of the �rst coin
ip of process i � 1, if it occurs,

is left.

117

1. By hypothesis and Lemma 6.3.4, i � 1 does not hold any resource at the beginning of �

and has to obtain Resi�2 (its left resource) before pursuing Resi�1. From the de�nition

of Fairadvs, i performs a transition eventually in �. If i � 1 does not hold Resi�1 when

i performs this transition, then i progresses into con�guration S. If not, it must be the

case that i� 1 succeeded in getting it in the meanwhile. But, in this case, since i� 1
ips

left, Resi�1 was the second resource needed by i� 1 and i� 1 therefore entered P .

2. If Xi = S eventually, then we are done. Otherwise, process i � 1 performs a transition

eventually. Let � = �1
a �2 such that the last transition of �1 is the �rst transition taken

by process i � 1. Then Xi�1(fstate(�2)) = F and Xi(fstate(�2)) = W

. Since process

i� 1 did not
ip any coin during �1, from the �nite-history-insensitivity of Fairadvs and

Item 1 we conclude.

3. If Xi = S eventually, then we are done. Otherwise, process i � 1 performs a transition

eventually. Let � = �1
a �2 such that the last transition of �1 is the �rst transition taken

by process i � 1. If Xi�1(fstate(�2)) = P then we are also done. Otherwise it must be

the case that Xi�1(fstate(�2)) = D and Xi(fstate(�2)) = W

. Since process i� 1 did not

ip any coin during �1, from the �nite-history-insensitivity of Fairadvs and Item 2 we

conclude.

4. If Xi = S eventually, then we are done. Otherwise, process i checks its left resource

eventually and fails, process i � 1 gets its right resource before, and hence reaches at

least state S. Let � = �1
a �2 where the last transition of �1 is the �rst transition of �

that leads process i� 1 to state S. Then Xi�1(fstate(�2)) = S and Xi(fstate(�2)) = W

.

Since process i� 1 did not
ip any coin during �1, from the �nite-history-insensitivity of

Fairadvs and Item 3 we conclude.

Lemma 6.3.6 Assume that Xi�1 2 fER; R; Tg and Xi = W

. If FIRST(flipi�1; left), then,

eventually, either Xi�1 = P or Xi = S.

Proof. Follows directly from Lemma 6.3.5 after observing thatXi�1 2 fER; R; Tg is equivalent

to Xi�1 2 fER; R; F;W; S;D;Pg.

The next lemma is a useful tool for the proofs of Lemmas 6.3.8, 6.3.9, and 6.3.10.

Lemma 6.3.7 Let Xi 2 fW

; S

g or Xi 2 fER; R; F; D

g with FIRST(flipi; left). Further-

more, let Xi+1 2 fW
!
; S
!
g or Xi+1 2 fER; R; F; D

!
g with FIRST(flipi+1; right). Then the

�rst of the two processes i or i+ 1 testing its second resource enters P after having performed

this test (if this time ever comes).

Proof. By Lemma 6.3.4 Resi is free. Moreover, Resi is the second resource needed by both i

and i+ 1. Whichever tests for it �rst gets it and enters P .

Lemma 6.3.8 If Xi = S

and Xi+1 2 fW
!
; S
!
g then, eventually, one of the two processes i or

i+ 1 enters P . The same result holds if Xi 2 fW

; S

g and Xi+1 = S

!
.

118

Proof. Being in state S, process i tests its second resource eventually. An application of

Lemma 6.3.7 �nishes the proof.

Lemma 6.3.9 Let Xi = S

and Xi+1 2 fER; R; F; D
!
g. If FIRST(flipi+1; right), then, even-

tually, one of the two processes i or i+1 enters P . The same result holds if Xi 2 fER; R; F;Dg,

Xi+1 = S
!

and FIRST(flipi; left).

Proof. Being in state S, process i tests its second resource eventually. An application of

Lemma 6.3.7 �nishes the proof.

Lemma 6.3.10 Assume that Xi�1 2 fER; R; Tg, Xi = W

, and Xi+1 2 fER; R; F;W

!
; D
!
g. If

FIRST(flipi�1; left) and FIRST(flipi+1; right), then eventually one of the three processes

i� 1, i or i+ 1 enters P .

Proof. Let s be a state of M such that Xi�1(s) 2 fER; R; Tg, Xi(s) = W

, and Xi+1(s) 2

fER; R; F;W
!
; D
!
g. Let A be an adversary of Fairadvs, and let � be an extended execution of

prexec(M;fsg;A) where the result of the �rst coin
ip of process i � 1 is left and the result

of the �rst coin
ip of process i + 1 is right. By Lemma 6.3.6, eventually either process

i � 1 reaches con�guration P in � or process i reaches con�guration S

in �. If i � 1 reaches

con�guration P , then we are done. If not, then let � = �1
a �2 such that lstate(�1) is the

�rst state s0 of � with Xi(s
0) = S

. If i + 1 enters P before the end of �1, then we are done.

Otherwise, Xi+1(fstate(�2)) is either in fW
!
; S
!
g or it is in fER; R; F; D

!
g and process i + 1

has not
ipped any coin yet in �. From the �nite-history-insensitivity of Fairadvs we can then

apply Lemma 6.3.7: eventually process i tests its second resource and by Lemma 6.3.7 process

i enters P if process i+ 1 did not check its second resource in the meantime. If process i + 1

checks its second resource before process i does the same, then by Lemma 6.3.7 process i + 1

enters P .

Lemma 6.3.11 Assume that Xi+2 2 fER; R; Tg, Xi+1 = W
!
, and Xi 2 fER; R; F;W

; D

g. If

FIRST(flipi; left) and FIRST(flipi+2; right), then eventually one of the three processes i,

i+ 1 or i+ 2, enters P .

Proof. The proof is analogous to the one of Lemma 6.3.10. This lemma is the symmetric case

of Lemma 6.3.10.

Proposition 6.3.12 Starting from a global con�guration in G, then, with probability at least

1=4, some process enters P eventually. Equivalently:

G �!
1=4
P :

Proof. Lemmas 6.3.8 and 6.3.9 jointly treat the case where Xi = S

and Xi+1 2 fER; R; F;#
!
g

and the symmetric case where Xi 2 fER; R; F;#

g and Xi+1 = S

!
; Lemmas 6.3.10 and 6.3.11

jointly treat the case where Xi = W

and Xi+1 2 fER; R; F;W
!
; D
!
g and the symmetric case

where Xi 2 fER; R; F;W

; D

g and Xi+1 = W

!
.

119

Speci�cally, each lemma shows that a compound event of the kind FIRST(flipi; x) and

FIRST(flipj ; y) leads to P . Each of the basic events FIRST(flipi; x) has probability at least

1=2. From Lemma 6.2.4 each of the compound events has probability at least 1=4. Thus the

probability of reaching P eventually is at least 1=4.

We now turn to F �!
1=2
G [P . The proof is divided in two parts and constitute the global

argument of the proof of progress, i.e., the argument that focuses on the whole system rather

than on a couple of processes.

Lemma 6.3.13 Start with a state s of F . If there exists a process i for which Xi(s) = F and

(Xi�1; Xi+1) 6= (#
!
;#

), then, with probability at least 1=2 a state of G[P is reached eventually.

Proof. If s 2 G [P , then the result is trivial. Let s be a state of F � (G [P) and let i be such

that Xi(s) = F and (Xi�1; Xi+1) 6= (#
!
;#

). Assume without loss of generality that Xi+1 6= #

,

i.e., Xi+1 2 fER; R; F;#
!
g. The case for Xi�1 6= #

!
is similar. Furthermore, we can assume

that Xi+1 2 fER; R; F; D
!
g since if Xi+1 2 fW

!
; S
!
g then s is already in G. We show that the

event schema FIRST((flipi; left); (flipi+1; right)), which by Lemma 6.2.2 has probability

at least 1=2, leads eventually to a state of G [P . Let A be an adversary of Fairadvs, and let

� be an extended execution of
prexec(M;fsg;A) where if process i
ips before process i+ 1 then

process i
ips left, and if process i+ 1
ips before process i then process i+ 1
ips right.

Then, eventually, i performs one transition and reaches W . Let j 2 fi; i+ 1g be the �rst of

i and i+1 that reaches W and let s1 be the state reached after the �rst time process j reaches

W . If some process reached P in the meantime, then we are done. Otherwise there are two

cases to consider. If j = i, then, flipi yields left and Xi(s1) = W

whereas Xi+1 is (still) in

fER; R; F; D
!
g. Therefore, s1 2 G. If j = i + 1, then flipi+1 yields right and Xi+1(s1) = W

!
whereas Xi(s1) is (still) F . Therefore, s1 2 G.

Lemma 6.3.14 Start with a state s of F . If there exists a process i for which Xi(s) = F and

(Xi�1(s); Xi+1(s)) = (#
!
;#

). Then, with probability at least 1=2, a state of G [P is reached

eventually.

Proof. The hypothesis can be summarized into the form (Xi�1(s); Xi(s); Xi+1(s)) = (#
!
; F;#

).

Since i�1 and i+1 point in di�erent directions, by moving to the right of i+1 there is a process

k pointing to the left such that process k + 1 either points to the right or is in fER; R; F; Pg,

i.e., Xk(s) 2 fW

; S

; D

g and Xk+1(s) 2 fER; R; F;W

!
; S
!
; D
!
; Pg.

If Xk(s) 2 fW

; S

g and Xk+1(s) 6= P then s 2 G and we are done; if Xk+1(s) = P then

s 2 P and we are done. Thus, we can restrict our attention to the case where Xk(s) = D

.

We show that FIRST((flipk; left); (flipk+1; right)), which by Lemma 6.2.2 has proba-

bility at least 1=2, leads eventually to G [P . Let A be an adversary of Fairadvs, and let �

be an extended execution of
prexec(M;fsg;A) where if process k
ips before process k + 1 then

process k
ips left, and if process k + 1
ips before process k then process k + 1
ips right.

Then, eventually, process k performs at least two transitions and hence goes to con�guration

W . Let j 2 fk; k+1g be the �rst of k and k+1 that reaches W and let s1 be the state reached

after the �rst time process j reachesW . If some process reached P in the meantime, then we are

120

done. Otherwise, we distinguish two cases. If j = k, then, flipk yields left and Xk(s1) = W

whereas Xk+1 is (still) in fER; R; F;#
!
g. Therefore, s1 2 G. If j = k + 1, then flipk+1 yields

right and Xk+1(s1) = W
!

whereas Xk(s1) is (still) in fD

; Fg. Therefore, s1 2 G.

Proposition 6.3.15 Start with a state s of F . Then, with probability at least 1=2, a state of

G [P is reached eventually. Equivalently:

F �!
1=2
G [P :

Proof. The hypothesis of Lemmas 6.3.13 and 6.3.14 form a partition of F .

Finally, we prove RT �!
1
F [G [P .

Proposition 6.3.16 Starting from a state s of RT , then a state of F [G [P is reached

eventually. Equivalently:

RT �!
1
F [G [P :

Proof. Let s be a state of RT . If s 2 F [G [P , then we are trivially done. Suppose

that s =2 F [G [P . Then in s each process is in fER; R;W; S;Dg and there exists at least

process in fW;S;Dg. Let A be an adversary of Fairadvs, and let � be an extended execution

of
prexec(M;fsg;A).

We �rst argue that eventually some process reaches a state of fS;D; Fg in �. This is trivially

true if in state s there is some process in fS;Dg. If this is not the case, then all processes are

either in ER or R or W . Eventually, some process in R or W performs a transition. If the

�rst process not in ER performing a transition started in ER or R, then it reaches F and we

are done; if the �rst process performing a transition is in W , then it reaches S since in s no

resource is held. Once a process i is in fS;D; Fg, then eventually process i reaches either state

F or P , and we are done.

6.4 General Coin Lemmas

The coin lemmas of Section 6.2 are su�ciently general to prove the correctness of the Random-

ized Dining Philosophers algorithm of Lehmann and Rabin. However, there are several other

coin events that are relevant for the analysis of distributed algorithms. For example, the toy

resource allocation protocol that we used in Chapter 5 cannot be veri�ed yet. In this section

we present two general coin lemmas: the �rst one deals with multiple outcomes in a random

draw; the second one gives a generalization of all the coin lemmas presented in the thesis.

Unfortunately, generality and simplicity are usually incompatible: the two coin lemmas of this

section are conceptually more complicated than those of Section 6.2.

6.4.1 Conjunction of Separate Coin Events with Multiple Outcomes

The coin lemma of Section 6.2.4 deals with the result of the intersection of several coin events.

Thus, for example, if each coin event expresses the process of
ipping a coin, then the coin

lemma of Section 6.2.4 can be used to study the probability that all the coins yield head.

121

However, we may be interested in the probability that at least half of the coins yield head,

or in the probability that exactly 5 coins yield head. The coin lemmas of Section 6.2 are not

adequate. Suppose now that we use each coin event to express the process of rolling a dice.

The coin events of Section 6.2 are not adequate again since they can deal only with binary

outcomes: we can observe only whether a speci�c set U is reached or not. How can we express

the event that for each number i between 1 and 6 there is at least one dice that rolls i?

In this section we de�ne a coin event and prove a coin lemma that can deal with the scenarios

outlined above. LetM be a probabilistic automaton, and let S be a set of n tuples fx1; : : : ; xng,

where for each i, 1 � i � n, xi is a tuple (ai; Ui;1; : : : ; Ui;k) consisting of an action of M and k

pairwise disjoint sets of states of M . Let the actions ai be all distinct. Let E be a set of tuples

((1; j1); : : : ; (n; jn)) where for each i, 1 � i � n, the value of ji is between 1 and k. For each

extended execution � of M and each i, 1 � i � n, let

Ui(�) =

8><
>:
f(i; 1); : : : ; (i; k)g if ai does not occur

f(i; j)g if ai occurs and its �rst occurrence leads to Ui;j
; otherwise:

Then de�ne GFIRST(S; E) to be the function that associates with each probabilistic execution

fragment H of M the set of extended executions � of
H such that E \ (U1(�.q
H
0) � � � � �

Uk(�.q
H
0)) 6= ;.

We illustrate the de�nition above by encoding the dice rolling example. In each tuple

(ai; Ui;1; : : : ; Ui;k) ai identi�es the action of rolling the ith dice, k = 6, and for each j, Ui;j is

the set of states where the ith dice rolls j. The set E identi�es the set of outcomes that are

considered to be good. In the case of the dices E is the set of tuples ((1; j1); : : : ; (n; jn)) where

for each number l between 1 and 6 there is at least one i such that ji = l. The function Ui(�)

checks whether the ith dice is rolled and identi�es the outcome. If the dice is not rolled, then,

we allow any outcome as a possible one; if the dice is rolled and hits Ui;j , then the outcome is

(i; j); if the the dice is rolled and the outcome is not in any one of the sets Ui;j 's, then there is

no outcome (this case does not arise in our example). Then, an extended execution � of
H

is in the event GFIRST(S; E)(H) if at least one of the outcomes associated with �.qH0 is an

element of E, i.e., if by choosing the outcome of the dices that are not rolled in �.qH0 all the

six numbers appear as the outcome of some dice.

Let p be the probability that by rolling n dices all the six numbers appear as the outcome

of some dice. Then, the lemma below states that PH [GFIRST(S; E)(H)]� p for each H .

Proposition 6.4.1 LetM be a probabilistic automaton. Let S be a set of n tuples fx1; : : : ; xng

where for each i, 1 � i � n, xi is a tuple (ai; Ui;1; : : : ; Ui;k) consisting of an action of M and k

pairwise disjoint sets of states of M . Let the actions ai be all distinct. Let E be a set of tuples

((1; j1); : : : ; (n; jn)) where for each i, 1 � i � n, the value of ji is between 1 and k. For each

i; j, 1 � i � n, 1 � j � k, let pi;j be a real number between 0 and 1 such that for each transition

(s;P) of M where P [ai] > 0, P [Ui;j jai] � pi;j, and let C be the collection of the pi;js. Let PC [E]

be the probability of the event E assuming that each experiment i is run independently, and

that for each i a pair (i; j) is chosen with probability pi;j. Then, for each probabilistic execution

fragment H of M , PH [GFIRST(S; E)(H)]� PC [E].

Proof. For each state q of H , each i 2 f1; : : : ; ng, and each j 2 f1; : : : ; kg, denote by
(q; Ui;j)

the set f(ai; q
0) 2
H

q j lstate(q
0) 2 Ui;jg of pairs where ai occurs and leads to a state of Ui;j ,

122

and denote by
(q; Ui) the set f(ai; q
0) 2
H

q j lstate(q
0) =2 [jUi;jg of pairs where ai occurs and

none of the Ui;js is reached. For each i 2 f1; : : : ; ng, let �i be the set of states q of H such that

no action aj , 1 � j � n, occurs in q.q
H
0 , and P

H
q [ai] > 0.

We prove the lemma by induction on n. If n = 1 then the result follows from Lemma 6.2.1

(the event can be transformed into a new event with two outcomes); otherwise,

PH [GFIRST(S; E)(H)] =
X

i2f1;:::;ng

X
q2�i

PH [Cq]

0
B@
0
B@ X
(ai;q0)2
(q;Ui)

PH
q [(ai; q

0)]

1
CA

+

0
@ X
j2f1;:::;kg

X
(ai;q0)2
(q;Ui;j)

PH
q [(ai; q

0)]PH.q0 [GFIRST(Si; E(i;j))(H.q
0)]

1
A
1
A : (6.23)

where Si is obtained from S by removing the tuple (ai; Ui;1; : : : ; Ui;k), and E(i;j) is the set of tu-

ples ((1; j1); : : : ; (i�1; ji�1); (i+1; ji+1); : : : ; (n; jn)) such that ((1; j1); : : : ; (i�1; ji�1); (i; j); (i+

1; ji+1); : : : ; (n; jn)) 2 E. Let Ci be obtained from C by removing all the probabilities of the

form pi;j , 1 � j � k. Then, by induction,

PH.q0 [GFIRST(Si; E(i;j))(H.q0)] � (1� PCi [E(i;j)]): (6.24)

From the properties of conditional probabilities and the de�nition of C,

PCi [E(i;j)] = PC[Ej(i; j)]: (6.25)

Thus, by using (6.24) and (6.25) in (6.23), and by expressing PH
q [(ai; q

0)] as PH
q [ai]P

H
q [(ai; q

0)jai],

we obtain

PH [GFIRST(S; E)(H)] �
X

i2f1;:::;ng

X
q2�i

PH [Cq]P
H
q [ai]

0
B@
0
B@ X
(ai;q0)2
(q;Ui)

PH
q [(ai; q

0)jai]

1
CA

+

0
@ X
j2f1;:::;kg

X
(ai;q0)2
(q;Ui;j)

PH
q [(ai; q

0)jai](1� PC [Ej(i; j)])

1
A
1
A : (6.26)

For each i; j and q, let pi;j;q be P
H
q [
(q; Ui;j)jai]. Then, from (6.26),

PH [GFIRST(S; E)(H)] �
X

i2f1;:::;ng

X
q2�i

PH [Cq]P
H
q [ai]

0
@(1� pi;1;q � � � � � pi;k;q) +

0
@ X
j2f1;:::;kg

pi;j;q(1� PC[Ej(i; j)])

1
A
1
A ; (6.27)

which becomes

PH [GFIRST(S; E)(H)]

�
X

i2f1;:::;ng

X
q2�i

PH [Cq]P
H
q [ai]

0
@1� X

j2f1;:::;kg

PC [Ej(i; j)]pi;j;q

1
A (6.28)

123

after some simple algebraic simpli�cations. Using the same argument as in the proof of

Lemma 6.2.1, for each i; j and each q, pi;j;q � pi;j . Thus,

PH [GFIRST(S; E)(H)]

�
X

i2f1;:::;ng

X
q2�i

PH [Cq]P
H
q [ai]

0
@1� X

j2f1;:::;kg

PC [Ej(i; j)]pi;j

1
A : (6.29)

Finally, observe that
P

i2f1;:::;ng

P
q2�i

PH [Cq]P
H
q [ai] is the probability that some action ai

occurs, and observe that
P

j2f1;:::;kg PC [Ej(i; j)]pi;j = PC [E]. Thus,

PH [GFIRST(S; E)(H)] � 1� PC[E] (6.30)

6.4.2 A Generalized Coin Lemma

All the coin lemmas that we have studied in this chapter share a common characteristic. Given

a probabilistic execution fragmentH , we identify n separate classes of random draws to observe.

Each class can be observed at most once in every execution � of
H , and if any class cannot

be observed, then we allow for any arbitrary outcome. In this section we formalize this idea.

Let H be a probabilistic execution fragment of a probabilistic automaton M . A coin-event

speci�cation for H is a collection C of tuples (q;X;X1; : : : ; Xk) consisting of a state of H , a

subset X of
H
q , and m pairwise disjoint subsets of X , such that the following properties are

satis�ed:

1. for each state q of H there is at most one tuple of C whose state is q;

2. for each state q of H such that there exists a tuple of C with state q, there is no pre�x q0

of q such that there exists a tuple (q0; X;X1; : : : ; Xk) in C and a pair (a; q00) in X where

q00 is a pre�x of q.

The set C is the object that identi�es one of the classes of random draws to be observed. For

each transition trHq and each tuple (q;X;X1; : : : ; Xk) of C, the set X identi�es the part of trHq
that is relevant for C, and the sets X1; : : : ; Xk identify some of the possible outcomes. The �rst

requirement for C guarantees that there is at most one way to observe what happens from a

state q of H , and the second requirement states that along every execution of
H there is at

most one place where C is observed.

As an example, consider the observation of whether the �rst occurrence of an action a,

which represents a coin
ip, leads to head. Then C is the set of tuples (q;X;X1) where action

a does not occur in q.qH0 and PH
q [a] > 0, X is the set of pairs of
H

q where action a occurs,

and X1 is the set of pairs of X where the coin
ips head.

Let � be an extended execution of
H , and let q be a state of H such that q � �. We say

that C occurs in � at q i� there exists a tuple (q;X;X1; : : : ; Xk) in C and a pair (a; q0) in X

such that q0 � �. Moreover, if (a; q0) 2 Xj , we say that C occurs in � at q and leads to Xj .

Two coin event speci�cations C1 and C2 are said to be separate i� from every state q of

H , if (q;X1; X1;1; : : : ; X1;k) is a tuple of C1 and (q;X2; X2;1; : : : ; X2;k) is a tuple of C2, then

X1 \X2 = ;. In other words, there is no interference between the observations of C1 and the

124

observations of C2. Let S = fC1; : : : ; Cng be a set of pairwise separate coin-event speci�cations.

For notational convenience, for each i 2 f1; : : : ; ng and each state q of H such that there exists

a tuple in Ci with state q, denote such tuple by (q;Xq;i; Xq;i;1; : : : ; Xq;i;k)

Let E be a set of tuples ((1; j1); : : : ; (n; jn)) where for each i, 1 � i � n, the value of ji is

between 1 and k. For each extended execution � of
H and each i, 1 � i � n, let

Ui(�) =

8><
>:
f(i; 1); : : : ; (i; k)g if Ci does not occur in �

f(i; j)g if Ci occurs in � leading to Xq;i;j

; otherwise:

Then, de�ne GCOIN (S; E)(H) to be the set of extended executions of
H such that E \

(U1(�.q
H
0)� � � � � Uk(�.q

H
0)) 6= ;.

Lemma 6.4.2 Let H be a probabilistic execution fragment of a probabilistic automaton M . Let

S = fC1; : : : ; Cng be a set of separate coin-event speci�cations for H. For each i; j, 1 � i � n,

1 � j � k, let pi;j be a real number between 0 and 1 such that for each i 2 f1; : : : ; ng and each

tuple (q;Xq;i; Xq;i;1; : : : ; Xq;i;m) of Ci, P
H
q [Xq;i;jjXq;i] � pi;j. Let C be the collection of the pi;j's.

Let PC[E] be the probability of the event E assuming that each experiment i is run independently,

and for each i a pair (i; j) is chosen with probability pi;j. Then, PH [GCOIN (S; E)(H)]� PC [E].

Proof. For each state q of H and each i, 1 � i � n, if there exists a tuple in Ci with state q,

then denote Xq;in [j2f1;:::;kg Xq;i;j by Xq;i. For each i, 1 � i � n, let �i be the set of states q

of H such that there exists a tuple with state q in Ci and no coin-event Cj, 1 � j � n, occurs

in q.qH0 .

We prove the lemma by induction on n, using n = 0 for the base case. For n = 0 we assume

that P [E] = 1 and that GCOIN (S; E)(H) =
H . In this case the result is trivial. Otherwise,

PH [GCOIN (S; E)(H)] =
X

i2f1;:::;ng

X
q2�i

PH [Cq]

0
B@
0
B@ X
(a;q0)2Xq;i

PH
q [(a; q0)]

1
CA

+

0
@ X
j2f1;:::;kg

X
(a;q0)2Xq;i;j

PH
q [(a; q0)]PH.q0 [GCOIN (S.q0; E(i;j))(H.q0)]

1
A
1
A : (6.31)

where S.q0 is obtained from S by removing Ci and, for each j 6= i, by transforming the set Cj

into f(q.q0; X.q0; X1.q
0; : : : ; Xk.q

0) j (q;X;X1; : : : ; Xk) 2 Cj; q
0 � qg. Then, by induction,

PH.q0 [GCOIN (S.q0; E(i;j))(H.q0)] � (1� PCi [E(i;j)]): (6.32)

From the properties of conditional probabilities and the de�nition of C,

PCi [E(i;j)] = PC[Ej(i; j)]: (6.33)

Thus, by using (6.32) and (6.33) in (6.31), and expressing PH
q [(a; q0)] as PH

q [Xq;i]P
H
q [(a; q0)jXq;i],

we obtain

PH [GCOIN (S; E)(H)] �
X

i2f1;:::;ng

X
q2�i

PH [Cq]P
H
q [Xq;i]

0
B@
0
B@ X
(a;q0)2Xq;i

PH
q [(a; q0)jXq;i]

1
CA

+

0
@ X
j2f1;:::;kg

X
(a;q0)2Xq;i;j

PH
q [(a; q0)jXq;i](1� PC [Ej(i; j)])

1
A
1
A : (6.34)

125

For each i; j and q, let pi;j;q be P
H
q [Xq;i;jjXq;i]. Then, from (6.34),

PH [GCOIN (S; E)(H)] �
X

i2f1;:::;ng

X
q2�i

PH [Cq]P
H
q [Xq;i]

0
@(1� pi;1;q � � � � � pi;k;q) +

0
@ X
j2f1;:::;kg

pi;j;q(1� PC[Ej(i; j)])

1
A
1
A ; (6.35)

which becomes

PH [GCOIN (S; E)(H)]

�
X

i2f1;:::;ng

X
q2�i

PH [Cq]P
H
q [Xi;j]

0
@1� X

j2f1;:::;kg

PC [Ej(i; j)]pi;j;q

1
A (6.36)

after some simple algebraic simpli�cations. From hypothesis, for each i; j and each q, pi;j;q �

pi;j . Thus,

PH [GCOIN (S; E)(H)]

�
X

i2f1;:::;ng

X
q2�i

PH [Cq]P
H
q [Xq;i]

0
@1� X

j2f1;:::;kg

PC [Ej(i; j)]pi;j

1
A : (6.37)

Finally, observe that
P

i2f1;:::;ng

P
q2�i

PH [Cq]P
H
q [Xq;i] is the probability that some Ci occurs,

and observe that
P

j2f1;:::;kg PC [Ej(i; j)]pi;j = PC [E]. Thus,

PH [GCOIN (S; E)(H)] � 1� PC [E] (6.38)

6.5 Example: Randomized Agreement with Stopping Faults

In this section we analyze the Randomized Agreement algorithm of Ben-Or [BO83]. Its proof

of correctness is an application of Lemma 6.4.2. The proof that we present in this section is not

as detailed as the proof of the Dining Philosophers algorithm, but contains all the information

necessary to �ll in all the details, which we leave to the reader.

6.5.1 The Problem

Consider n asynchronous processes that communicate through a network of reliable channels

(i.e., channels that deliver all the messages in the same order as they are received, and that

never fail to deliver a message), and suppose that each process i starts with an initial value

vi 2 f0; 1g. Suppose that each process can broadcast a message to every other process in a

single operation. Each process runs an algorithm that at some point may decide on one value

of f0; 1g. Each process decides at most once. The algorithm should be designed so that the

following properties are satis�ed.

1. Agreement: all the processes that decide choose the same value.

126

2. Validity: if all the processes have the same initial value v, then v is the only possible

decision value.

3. f-failure termination: if at most f processes fail, then all the non-failing processes

decide a value.

We assume that a process fails by stopping, i.e., by failing to send messages to other processes

from some point on. Since the processes are asynchronous, no processes can distinguish a slow

process from a failing process.

Unfortunately, it is known from [FLP85] that there is no deterministic algorithm for asyn-

chronous processes that solves the agreement problem and guarantees 1-failure termination.

Here we present the randomized algorithm of Ben-Or [BO83], which solves the agreement prob-

lem with certainty, and guarantees f -failure termination with probability 1 whenever n > 3f .

6.5.2 The Algorithm

Each process i has local variables x, initially vi, and y, initially null , and executes a series of

stages numbered 1; 2; : : :, each stage consisting of two rounds . Each process runs forever, even

after it decides. At stage st � 1, process i does the following.

1. Broadcast (�rst; st; v), where v is the current value of x, and then wait to obtain n � f

messages of the form (�rst; st; �), where � stands for any value. If all the messages have

the same value v, then set y := v, otherwise set y := null .

2. Broadcast (second; st; v), where v is the current value of y, and then wait to obtain n� f

messages of the form (second; st; �). There are three cases:

(a) if all the messages have the same value v 6= null , then set x := v and perform a

decide(v)i operation if no decision was made already;

(b) if at least n� 2f messages, but not all the messages, have the same value v 6= null ,

then set x := v without deciding (the assumption n > 3f guarantees that there

cannot be two di�erent such values v);

(c) otherwise, set x to 0 with probability 1=2 and to 1 with probability 1=2.

The intuition behind the use of randomness is that at each stage, if a decision is not made yet,

with probability at least 1=2n all the processes that choose a value at random choose the same

"good" value. Thus, with probability 1 there is eventually a stage where the processes that

choose a value at random choose the same good value, and this leads to a decision.

We now give an idea of the structure of the probabilistic automatonM that describes Ben-

Or's algorithm. Each process i has the two variables x and y mentioned in the description

of the algorithm, plus a queue mj for each process j that records the unprocessed messages

received from process j, initially null , a stage counter st , initially 1, a program counter pc,

and a boolean variable decided that is set to true i� process i has decided already. There

is a channel Ci;j between every pair of processes. Each channel Ci;j is essentially a bu�er

like the bu�er described in Chapter 3 (cf. Figure 3-1), whose inputs are actions of the form

(�rst; st ; v)i and (second; st; v)i, and whose outputs are actions of the form (�rst; st; v)i;j and

(second; st; v)i;j. To broadcast a message (�rst ; st; v), process i performs the action (�rst ; st; v)i.

127

A message (�rst; st; v) is received by process i from process j through the action (�rst ; st; v)j;i.

The de�nition of the transition relation of M is straightforward.

6.5.3 The High Level Proof

Agreement and validity are easy to prove and do not involve any probabilistic argument.

Lemma 6.5.1 Ben-Or's algorithm satis�es the agreement and validity conditions.

Proof. We start with validity. Suppose that all the processes start with the same value v.

Then it is easy to see that every process that completes stage 1 decides on v in that stage. This

is because the only value sent or received by any process in the �rst round is v, and thus the

only value sent or received by any process in the second round is v, leading to the decision of v.

For agreement, suppose that some process decides, and let process i be the �rst process

that decides. Let v and st be the value decided by process i and the stage at which process

i decides, respectively. Then it must be the case that process i receives n � f (second; st; v)

messages. This implies that any other process j that completes stage st receives at least n� 2f

(second; st; v) messages, since it hears from all but at most f of the processes that process i

hears from. This means that process j cannot decide on a value di�erent from v at stage st ;

moreover, process j sets x := v at stage st . Since this is true for all the processes that complete

stage st , then an argument similar to the argument for validity shows that any process that

completes stage st + 1 and does not decide in stage st decides v at stage st + 1.

The argument for f -failure termination involves probability. We assume that all the processes

but at most f are scheduled in�nitely many times. Thus, let f-fair be the set of adversaries for

M such that for each probabilistic execution fragment H generated by an adversary of f-fair

the set
H contains only executions ofM where at least n�f processes are scheduled in�nitely

many times. It is easy to check that f-fair is �nite-history-insensitive.

Let B be the set of reachable states of M ; let F be the set of reachable states of M where

no process has decided yet and there exists a value st and a number i such that process i

received exactly n� f messages (�rst; st ; �), and no other process has ever received more than

n� f � 1 messages (�rst; st; �); �nally, let O be the set of reachable states of M where at least

one process has decided.

It is easy to show that

B �!
1

f-fair F [O: (6.39)

Speci�cally, let � be an f -fair execution fragment of M starting from a reachable state s ofM ,

and let st be the maximum value of the stages reached by each process in s. Then, stage st +1

is reached eventually in �, and thus there is a state s0 in � where some process is the �rst one

to receive n� f messages (�rst ; st + 1; �). The state s0 is a state of F [O.

In Section 6.5.4 we show that

F �!
1=2n
O: (6.40)

Thus, combining (6.39) and (6.40) with Theorem 5.5.2, and by using Proposition 5.5.6, we

obtain

B �!
1
O: (6.41)

128

Finally, we need to show that in every f -fair execution where at least one process decides all

the non-failing processes decide eventually. This is shown already in the second part of the

proof of Lemma 6.5.1.

6.5.4 The Low Level Proof

In this section we prove the progress statement of (6.40) using the generalized coin lemma.

Consider a state s of F , and let i be the process that has received n� f messages (�rst ; st; v).

Let A be an adversary of f-fair , and let H be prexec(M;A; s).

For each j, 1 � j � n, let Cj be the set of triplets (q;X;X1) where q is a state ofH such that

process j is at stage st in lstate(q) and there is a non-zero probability that process j chooses

randomly between 0 and 1 from q, X is the set of pairs of
H
q where process j performs a

transition, and X1 is de�ned as follows. Let s0 be lstate(q), and let v be a good value if at least

f + 1 of the messages (�rst ; st; �) processed by process i have value v. We emphasize the word

\processed" since, although each process can receive more that n�f messages (�rst; st; �), only

n� f of those messages are used (processed).

1. If 0 is a good value, then let X1 be the set of pairs of X where process i chooses 0;

2. if 1 is a good value and 0 is not a good value, then let X1 be the set of pairs of X where

process i chooses 1.

Observe that in s0 there is at least one good value, and at most two values; thus, Cj is well

de�ned. It is easy to check that C1; : : : ; Cn are separate coin event speci�cations; more-

over, for each j, 1 � j � n, and each triplet (q;X;X1) of Cj , P
H
q [X1jX] = 1=2. Let

E = f((1; 1); (2; 1); : : : ; (n; 1)g. From Lemma 6.4.2, PH [GCOIN ((C1; : : : ; Cn); E)(H)]� 1=2n.

We are left with the proof that in each extended execution of GCOIN ((C1; : : : ; Cn); E)(H)

all the non-faulty processes choose a value. More precisely, we show that the non-faulty pro-

cesses complete stage st setting x to the same value v. Then, the second part of the proof of

Lemma 6.5.1 can be used to show that all the non-faulty processes decide on v at the end of

stage st + 1; in particular at least one process decides. We distinguish two cases.

1. In s0 there is exactly one good value v.

In this case every other process receives at least one copy of v during the �rst round of

stage st , and thus y is set either to v or to null . Therefore, v is the only value that

a process chooses by a non-random assignment at the end of stage st . On the other

hand, if a process j chooses a value at random at the end of stage st , the de�nition of Cj

guarantees that the value chosen is v. Thus, every process that completes stage st sets

x := v.

2. In s0 there are two good values.

In this case every process receives at least one copy of 0 and one copy of 1, and thus y

is set to null . Therefore, each process chooses a value at random at the end of stage st .

The de�nition of C1; : : : ; Cn guarantees that every process that completes stage st sets

x := 0.

129

6.6 Example: The Toy Resource Allocation Protocol

Lemma 6.4.2 can be used also to prove formally that the toy resource allocation protocol of

Section 5.1 guarantees that, under any deterministic fair oblivious adversary (cf. Example 5.6.2

for the de�nition of a fair oblivious adversary), process M1 eventually gets a resource. This

result can be extended to general oblivious adversaries by using the results about deterministic

and randomized adversaries proved in Chapter 5 (cf. Proposition 5.7.11).

Recall from Example 6.1.1 that we want to identify a coin event that expresses the following

property: the �rst coin
ip of M1 after the �rst coin
ip of M2 is di�erent from the last coin

ip of M2 before the �rst time M1 checks its resource after
ipping. In the rest of the section

we specify two coin event speci�cations C1 and C2. The speci�cation C1 identi�es the �rst coin

ip of M1 after the �rst coin
ip of M2, while the speci�cation C2 identi�es the last coin
ip of

M2 before the �rst time M1 checks its resource after
ipping.

Let H be a probabilistic execution fragment, generated by a deterministic fair oblivious

adversary, such that the �rst state of qH0 is reachable in M . Let C1 be the set of tuples

(q;X;X1; X2) where

1. q is a state of H such that M2
ips at least once in q.q
H
0 , M1 does not
ip in q.qH0 after

the �rst time M2
ips, and M1
ips from q,

2. X is the set
H
q ,

3. X1 is the set of pairs of X where M1
ips head,

4. X2 is the set of pairs of X where M1
ips tail.

Observe that C1 is a coin-event speci�cation. Moreover, observe that for each tuple of C1,

PH
q [X1jX] = 1=2 and PH

q [X2jX] = 1=2. Let C2 be the set of tuples (q;X;X1; X2) where

1. q is a state of H such that either

(a) M1 does not
ip in q.qH0 after M2
ips, M2
ips from q, and there exists a state

q0 � q such that M2
ips exactly once in q0.q and M1
ips and checks its resource

after
ipping in q0.q, or

(b) M1
ips and does not check its resource after the �rst
ip of M2 in q.q
H
0 , M2
ips

from q, and there exists a state q0 � q such that M2
ips exactly once in q0.q, M1

does not check its resource in q0.q, and M1 checks its resource from q0,

2. X is the set
H
q ,

3. X1 is the set of pairs of X where M2
ips head,

4. X1 is the set of pairs of X where M2
ips tail.

Informally, C2 identi�es the coin
ip of M2 that precedes the point where M1 checks the

resource determined by C1. Figure 6-4 illustrates graphically the two cases of the de�nition

of C2. Observe that for each tuple of C2, P
H
q [X1jX] = 1=2 and PH

q [X2jX] = 1=2. Since H is

generated by an oblivious deterministic adversary, then it is easy to verify that C2 is a coin-event

speci�cation. The important point is to verify that Condition 2 of the de�nition of a coin event

is satis�ed; this is the point where the fact that an adversary is oblivious and deterministic is

used.

130

a b

1

1

2

2 2

1

1

M flips

M

M

M

M

2M

flips

flips

flips

flips

flips

M Mchecks checks

q

q

q’
q’

Figure 6-4: The de�nition of C2 for the toy resource allocation protocol.

2H :

2C

M f2

M f1

1C 2M t
2C

M f2
1M t

1M t

*

H :1 M f2

M f1
M f2

1M t

M f2
1M t

1C 2C C2

*

Figure 6-5: How C2 could not be a coin event speci�cation.

Example 6.6.1 (How C2 could not be a coin event speci�cation.) To give a rough idea

of why Condition 2 does not fail, Figure 6-5 shows how Condition 2 could fail. Consider the

execution of H1 that is marked with �, and denote it by �; denote by �0 the other execution of

H1 that appears in the �gure. The un�lled circles mark the points where a coin event speci-

�cation is observed. By following � from left to right we observe C1 and then we observe C2.

The reason why we observe C2 the �rst time is that along �0 M1 tests its resource. However,

continuing to follow �, we observe C2 again because along � M2 tests its resource later. Using

oblivious adversaries we are guaranteed that such a situation does not arise because if along �0

M1 tests its resource before M2
ips again, then the same property holds along �.

The probabilistic execution H2 of Figure 6-5 illustrates how Condition 2 can fail by using

randomized schedulers. After M1
ips, the adversary chooses randomly whether to let M1 test

its resource (higher �lled circle) or to let M2 continue.

Let E be the set f((1; 1)(2; 2)); ((1; 2); (2; 1))g, which expresses the fact that C1 and C2 yield

two di�erent outcomes. It is easy to check that in every execution of GCOIN ((C1; C2); E)(H)

M1 eventually gets one resource. Thus, from Lemma 6.4.2, the probability that M1 gets its

resource in H is at least 1=4. Since H is a generic probabilistic execution fragment, then, under

any deterministic fair oblivious adversary M1 gets a resource eventually with probability at

least 1=4. Since the set of deterministic fair oblivious adversaries is �nite-history-insensitive,

Lemma 5.5.6 applies, and we conclude that under any deterministic fair oblivious adversaryM1

gets a resource eventually with probability 1.

131

6.7 The Partition Technique

Even though the coin lemmas can be used to prove the correctness of several nontrivial algo-

rithms, two of which have been illustrated in this chapter, there are algorithms for which the

coin lemmas do not seem to be suitable. One example of such an algorithm is the random-

ized algorithm for maximal independent sets of Awerbuch, Cowen and Smith [ACS94]; another

example is the toy resource allocation protocol again.

Example 6.7.1 (The coin lemmas do not work always) In Section 6.6 we have shown

that the toy resource allocation protocol guarantees progress against fair oblivious adversaries;

however, in Example 5.6.2 we have stated that the toy resource allocation protocol guarantees

progress also against adversaries that do not know only the outcome of those coins that have

not been used yet. Such a result cannot be proved using the coin lemmas of this chapter be-

cause situations like those outlined in Example 6.6.1 arise. For example, after the �rst timeM2

ips, we could schedule M2 again and then schedule M1 to test its resource only if M2 gets the

resource R1.

Another way to obtain a situation where the coin lemmas of this chapter do not apply is to

modify the second instruction of the resource allocation protocol as follows

2. if the chosen resource is free, then get it, otherwise go back to 1 .

Example 6.7.1 shows us that some other techniques need to be developed; it is very likely that

several new techniques will be discovered by analyzing other algorithms. In this section we hint

at a proof technique that departs considerably from the coin lemmas and that is su�ciently

powerful to deal with the toy resource allocation protocol. We illustrate the technique with an

example.

Example 6.7.2 (The partition technique) Let A be a generic fair adversary for the toy

resource allocation protocol that does not know the outcome of those coin
ips that have not

been used yet, and letH be a probabilistic execution generated by A. Assume for simplicity that

A is deterministic; the result for a generic adversary follows from Proposition 5.7.11. Consider

an element of
H , and consider the �rst point q where M1
ips a coin (cf. Figure 6-6). The

coin
ipping transition leads to two states qh and qt that are not distinguishable by A, which

means that from qh and qt the adversary schedules the same process. If the process scheduled

from qh and qt isM2, then the states reached from qh are in one-to-one correspondence with the

states reached from qt, since they di�er only in the value of the coin
ipped by M1. Figure 6-6

illustrates the case where M2
ips a coin. Furthermore, two corresponding states are reached

with the same probability. The one-to-one correspondence between the states reached form qh
and qt is maintained until M1 tests its chosen resource.

Consider now a point whereM1 tests its resource. Figure 6-6 illustrates four of these points,

denoted by qt;1, qh;1, qt;2, and qh;2. If M1 fails to obtain the resource, it means that M2 holds

that resource at that point. However, M2 holds the same resource in the corresponding state

via the one-to-one correspondence M2, while M1 tests the other resource. Thus, M1 succeeds

in getting the chosen resource. (cf. states qt;1 and qh;1 of Figure 6-6.

The bottom line is that we have partitioned the states where M1 checks its resource in

two sets, and we have shown that for each pair of corresponding states there is at least one

state where M1 succeeds in getting a resource. In some cases, like for states qt;2, and qh;2 of

132

qh

qt

qtt

qth

qht

qhh

flip1

flip1

flip2

flip2

flip2

flip2

q

1/2

1/2

1/2

1/2

1/2

1/2

q

q

q M suceeds

M fails

M suceeds

q

h,2

h,1

t,2

t,1 M suceeds

1

1

1

1

H:

Figure 6-6: The partition technique.

Figure 6-6, M1 succeeds in getting its resource from both the corresponding states (M2 does

not hold any resource). Thus, M1 gets a resource with probability at least 1=2.

6.8 Discussion

To our knowledge, no techniques similar to our coin lemmas or to our partition technique were

proposed before; however, similar arguments appear in several informal analysis of randomized

algorithms. The idea of reducing the analysis of a randomized algorithm to the analysis of an

ordinary pure nondeterministic system was at the base of the qualitative analysis techniques

described in Sections 2.5.1 and 2.5.2. Here we have been able to apply the same idea for a

quantitative analysis of an algorithm.

In this chapter we have focused mainly on how to apply a coin lemma for the veri�cation of

a randomized algorithm; once a good coin event is identi�ed, the analysis is reduced to verify

properties of a system that does not contain randomization. We have carried out this last part

using detailed operational arguments, which can be error prone themselves. However, since the

problem is reduced to the analysis of a non-randomized system, several existing techniques can

be used to eliminate our operational arguments. In [PS95] Segala and Pogosyants show how

such an analysis can be carried out formally and possibly mechanized.

133

134

Chapter 7

Hierarchical Verication Trace

Distributions

7.1 Introduction

So far we have de�ned a model to describe randomized concurrent and distributed systems,

and we have shown how to study the properties of a system by means of a direct analysis of its

structure. A speci�cation is a set of properties that an implementation should satisfy, and an

implementation is a probabilistic automaton that satis�es the desired properties.

Another approach to the analysis of a system considers an automaton as a speci�cation itself.

Then, an abstract notion of observation is de�ned on automata, and an automaton is said to

be an implementation of another automaton i� there is a speci�c relation, usually a preorder

relation, between their abstract observations. Examples of observations are traces [Hoa85, LV91]

(cf. Section 3.2.3), and failures [Hoa85, BHR84]; in these two cases implementation is expressed

by set inclusion.

7.1.1 Observational Semantics

Formally, an automaton A is associated with a set Obs(A) of observations, and a preorder

relation R is de�ned over sets of observations (for example R can be set inclusion). Then, an

automaton A1 is said to implement another automaton A2, denoted by A1 v A2, i� Obs(A1) R

Obs(A2). The function Obs() is called an observational semantics , or alternatively a behavioral

semantics ; in the second case the observations are thought as the possible behaviors of an

automaton.

The methodology based on preorder relations is an instance of the hierarchical veri�cation

method: a speci�cation, which is usually very abstract, can be re�ned successively into less

abstract speci�cations, each one implementing the more abstract speci�cation, till the actual

implementation is obtained. Figure 7-1 gives an example of a speci�cation that is re�ned two

times to build the actual implementation. Of course it is implicitly assumed that the relevant

properties of a system are only those that are preserved by the chosen implementation relation.

Thus, given a relation, it is important to understand what properties it preserves. Coarse

relations may not preserve all the relevant properties, but they are usually easy to verify, i.e., it

is usually easy to establish whether such a relation holds; �ner relations that preserve exactly the

135

Intermediate
implementation

Implementation Specification

implements implements

Figure 7-1: Re�nement of a speci�cation.

M1 M2 M3 Mn......

M1 M2 M3 Mn......

S

’ ’ ’ ’

Figure 7-2: Modular design.

relevant properties are usually di�cult to characterize and verify; other relations that preserve

all the relevant properties and that are easy to verify are usually too �ne, i.e., they distinguish

too much. Some tradeo� is necessary.

7.1.2 Substitutivity and Compositionality

When the size of a problem becomes large, it is common to decompose the problem into simpler

subproblems that are solved separately. Figure 7-2 gives an example. A large speci�cation S is

decomposed into several subcomponentsM1; : : : ;Mn that interact together to implement S. For

example, a complex computer system can be described by the interaction of a central processor

unit, a memory unit, and an Input/Output unit. Then, each subcomponent speci�cation Mi is

given to a development team that builds an implementation M 0
i . Finally, the implementations

are put together to build an actual implementation of S. This kind of approach is called modular

design; however, in order to guarantee the soundness of modular design, we need to guarantee

that an implementation works properly in every context where its speci�cation works properly,

i.e., our implementation relation must be preserved by parallel composition (i.e., it must be a

precongruence). This property is called substitutivity of a preorder relation, and constitutes one

of the most important properties that an implementation relation should satisfy.

A property that is strictly related to the substitutivity of v is called compositionality

of Obs(). That is, there is an operator k de�ned on pairs of sets of observations such that

Obs(A1kA2) = Obs(A1)kObs(A2). Compositionality and substitutivity are used interchange-

ably when talking informally about concurrent systems, and it is easy to get confused by the

meanings of the two terms. To clarify every doubt, here is how the two concepts are related.

136

Theorem 7.1.1 Let Obs() be an observational semantics, R be an equivalence relation over

sets of observations, and let, for each set x of observations, [x]R be the equivalence class of

x under R. Let A1 � A2 i� Obs(A1) R Obs(A2). Then the following two statements are

equivalent.

1. � is substitutive, i.e., if A1 � A2 then for each A3, A1kA3 � A2kA3;

2. Obs() is compositional, i.e., there exists an operator k on equivalence classes of observa-

tions such that [Obs(A1kA2)]R = [Obs(A1)]Rk[Obs(A1)]R.

If R is set equality, then we can remove the equivalence classes from the second statement

since each set of observations is an equivalence class. The substitutivity of a preorder relation

is stronger than the substitutivity of its kernel equivalence relation, since the direction of the

inequality must be preserved under parallel composition. For this reason our primary concern

in this chapter is the substitutivity of the implementation relation.

7.1.3 The Objective of this Chapter

In this chapter we study the simplest implementation relation based on observations, i.e., trace

inclusion, and we extend the corresponding precongruence to the probabilistic framework. The

trace preorder constitutes the basis for several other implementation relations and is known to

preserve the safety properties of a system [AS85]. Roughly speaking, a safety property says that

\something good holds forever" or that \something bad does not happen". The trace preorder

is important for ordinary automata for its simplicity and for the availability of the simulation

method [LT87, Jon91, LV91] (cf. Chapter 8), which provides several su�cient conditions for

the trace preorder relation to hold. Other relations, based either on failures [Hoa85, BHR84]

or on any other form of enriched traces, can be obtained by following the same methodology

that we present here.

In the probabilistic framework a trace is replaced by a trace distribution, where the trace

distribution of a probabilistic execution fragment H is the distribution over traces induced by

PH , the probability space associated with H . The trace distribution preorder is de�ned as

inclusion of trace distributions.

Unfortunately, the trace distribution preorder is not a precongruence (cf. Example 7.4.1),

which in turn means that the observational semantics based on trace distributions is not com-

positional. A standard approach in this case is to de�ne the trace distribution precongruence

as the coarsest precongruence that is contained in the trace distribution preorder; then, in

order to have a compositional observational semantics that captures the trace distribution pre-

congruence, an alternative, more operational and constructive characterization of the trace

distribution precongruence is derived. We give an alternative characterization of the trace dis-

tribution precongruence by exhibiting a context, called the principal context , that distinguishes

two probabilistic automata whenever there exists a distinguishing context. This leads to the

notion of a principal trace distribution, which is a trace distribution of a probabilistic automaton

in parallel with the principal context; the trace distribution precongruence can be characterized

alternatively as inclusion of principal trace distributions.

Several other characterizations of the trace distribution precongruence could be found, pos-

sibly leading to di�erent observational semantics equivalent to the principal trace distribution

semantics. Further experience with each one of the alternative semantics will determine which

137

s0 s11/2

a

a1/2
s0

s2

s3

s1 1

2

3

τ

τ

τ

1/2

1/4

1/8

a

a

a

a

a a

2

3 3

s

s

s

s

s s

’’

’’ ’’’

’

’

’

Figure 7-3: Trace distribution equivalent probabilistic automata.

one is more useful. One of the problems with the principal trace distribution characterization

is that, although from Theorem 7.1.1 there exists an operator k de�ned on principal traces,

the de�nition of k is not simple. For ordinary automata the traces of a parallel composition

of two automata are exactly those sequences of actions that restricted to each component give

a trace of the component. This property does not hold for principal trace distributions (cf.

Example 7.4.1). It is desirable to �nd a semantics that characterizes the trace distribution

precongruence and for which the corresponding parallel composition operator has a simple

de�nition; however, it is not clear whether such a semantics exists.

7.2 Trace Distributions

Let H be a probabilistic execution fragment of a probabilistic automaton M , and let f be a

function from
H to
 = ext(H)�[ext(H)! that assigns to each execution of
H its trace. The

trace distribution of H , denoted by tdistr(H), is the probability space completion((
;F ; P))

where F is the �-�eld generated by the cones C�, where � is a �nite trace ofH , and P = f(PH).

Observe that, from Proposition 3.1.4, f is a measurable function from (
H ;FH) to (
;F), since

the inverse image of a cone is a union of cones. Denote a generic trace distribution by D. A trace

distribution of a probabilistic automatonM is the trace distribution of one of the probabilistic

executions of M . Denote by tdistrs(M) the set of the trace distributions of a probabilistic

automaton M .

It is easy to see that trace distributions extend the traces of ordinary automata: the trace

distribution of a linear probabilistic execution fragment � is a distribution that assigns proba-

bility 1 to trace(�).

Given two probabilistic execution fragments H1 and H2, it is possible to check whether

tdistr(H1) = tdistr(H2) just by verifying that Ptdistr(H1)[C�] = Ptdistr(H2)[C�] for each �nite

sequence of actions �. This is an easy consequence of the extension theorem (cf. Theorem 3.1.2).

Example 7.2.1 (Reason for the de�nition of
) The reader may wonder why we have

not de�ned
 to be trace(
H). This is to avoid to distinguish two trace distribution just be-

cause they have di�erent sample spaces. Figure 7-3 illustrates the idea. The two probabilistic

automata of Figure 7-3 have the same trace distributions; however, the left probabilistic au-

tomaton has a probabilistic execution where the trace a1 occurs with probability 0, while the

right probabilistic automaton does not. Thus, by de�ning the sample space of tdistr(H) to be

trace(
H), the two probabilistic automata of Figure 7-3 would be distinct. In Chapter 8 we

138

de�ne several simulation relations for probabilistic automata, and we show that they are sound

for the trace distribution precongruence; such a result would not be true with the alternative

de�nition of a trace distribution.

Pre�xes

The notion of a pre�x for traces can be extended to the probabilistic framework by following

the same idea as for the notion of a pre�x de�ned on probabilistic executions (cf. Section 4.2.6).

A trace distribution D is a pre�x of a trace distribution D0, denoted by D � D0, i� for each

�nite trace �, PD [C�] � PD0 [C�]. Thus, two trace distributions are equal i� each one is a pre�x

of the other.

Lemma 7.2.1 Let H1 and H2 be two probabilistic execution fragments of a probabilistic au-

tomaton M . If H1 � H2, then tdistr(H1) � tdistr(H2).

Action Restriction

Similarly to the ordinary case, it is possible to de�ne an action restriction operator on trace

distributions. Let D = (
;F ; P) be a trace distribution, and let V be a set of actions. Then

the restriction of D to V , denoted by D � V , is the probability space completion((
0;F 0; P 0))

where
0 =
 � V , F 0 is the �-�eld generated by the sets of cones of
0, and P 0 is the inverse

image of P under the function that restricts traces to V .

Lemma 7.2.2 Let D be a trace distribution. Then (D � V1) � V2 = D � (V1 \ V2).

Proof. This is a direct consequence of the fact that restricting a trace to V1 and then to V2 is

equivalent to restricting the same trace to V1\V2. Formally, � � (V1\V2) = (� � V2) � (� � V1).

Finally, we want to show that, if M = M1kM2, then the projection of a trace distribution of

M onto M1 and M2 is a trace distribution of M1 and M2, respectively. Formally,

Proposition 7.2.3 If D 2 tdistrs(M1kM2), then D � acts(Mi) 2 tdistrs(Mi), i = 1; 2.

The converse of Proposition 7.2.3 is not true; an illustrating example is given in Section 7.4

(cf. Example 7.4.1). The rest of this section is dedicated to the proof of Proposition 7.2.3. We

start with a de�nition of an internal trace distribution, which is a trace distribution that does

not abstract from internal actions.

Let � be an execution of a probabilistic automaton M . The internal trace of �, denoted

by itrace(�), is the subsequence of � consisting of the actions of M . Let H be a probabilistic

execution fragment of M , and let f be a function from
H to
 = acts(H)� [acts(H)! that

assigns to each execution of
H its internal trace. The internal trace distribution of H , denoted

by itdistr(H), is the probability space completion((
;F ; P)) where F is the �-�eld generated

by the cones of
, and P = f(PH). Observe that, from Proposition 3.1.4, f is a measurable

function from (
H ;FH) to (
;F). Denote a generic internal trace distribution by D. Denote

the set of internal trace distributions of a probabilistic automaton M by itdistrs(M).

Lemma 7.2.4 Let H be a probabilistic execution fragment of a probabilistic automaton M .

Then, tdistr(H) = itdistr(H) � ext(H).

139

Proof. This is a direct consequence of the fact that the set of executions of H whose trace

contains a given � is the set of executions of H whose internal trace restricted to the external

actions of H contains �. Formally, trace(�) = itrace(�) � (� � ext(H)).

Lemma 7.2.5 Let H be a probabilistic execution fragment of M1kM2, where M1 and M2 are

two compatible probabilistic automata. Then itdistr(HdMi) = itdistr(H) � acts(Mi), i = 1; 2.

Proof. Let P denote itdistr(HdMi), and let P 0 denote itdistr(H) � acts(Mi). We need to

show that for each �nite internal trace �, P [C�] = P 0[C�]. Let P
00 denote itdistr(H). From the

de�nition of an internal trace,

P [C�] = PHdMi
[� 2
HdMi

j � � itrace(�)]: (7.1)

From the de�nition of P 0 and P 00,

P 0[C�] = P 00[�0 2
00 j � � �0 � acts(Mi)]: (7.2)

From the de�nition of itdistr(H) and (7.2),

P 0[C�] = PH [� 2
H j � � itrace(�) � acts(Mi)]: (7.3)

Thus, from (7.1) and (7.3), we need to show that

PHdMi
[� 2
HdMi

j � � itrace(�)] = PH [� 2
H j � � itrace(�) � acts(Mi)]: (7.4)

By using a characterization of the involved events as a disjoint union of cones, and by rewriting

Equation 7.4 accordingly, we obtain

PHdMi
[

[
q2states(HdMi)jitrace(q)=�;lact(q)=lact(�)

Cq] (7.5)

= PH [
[

q2states(H)jitrace(q)�acts(Mi)=�;lact(q)=lact(�)

Cq]:

Observe that for each q 2 states(H) such that itrace(q) � acts(Mi) = � and lact(q) =

lact(�), the state qdMi is a state of HdMi such that itrace(qdMi) = � and lact(qdMi) =

lact(�). Moreover, the states q of the left expression of (7.5) are partitioned by the relation

that relates q and q0 whenever qdMi = q0dMi. Thus, if we show that for each trace � and each

q 2 states(HdMi) such that itrace(q) = � and lact(q) = lact(�),

PHdMi
[Cq] = PH [[q02qeHjlact(q0)=lact(�)Cq0]; (7.6)

Equation (7.5) is proved. Observe that

PH [[q02states(H)jq0dMi=q;lact(q0)=lact(�)Cq0] =
X

q02min(qeH)

PH [Cq0]; (7.7)

since fq0 2 states(H) j q0dMi = q; lact(q0) = lact(�)g = min(qeH). Thus, Equation (7.6)

becomes

PHdMi
[Cq] =

X
q02min(qeH)

PH [Cq0]; (7.8)

which is true from Proposition 4.3.5.

140

Lemma 7.2.6 Let H be a probabilistic execution fragment of M1kM2, where M1 and M2 are

two compatible probabilistic automata. Then tdistr(HdMi) = tdistr(H) � acts(Mi).

Proof. From Lemma 7.2.4,

tdistr(HdMi) = itdistr(HdMi) � ext(Mi): (7.9)

From Lemma 7.2.5 and (7.9),

tdistr(HdMi) = (itdistr(H) � acts(Mi)) � ext(Mi): (7.10)

From Lemma 7.2.2 and (7.10),

tdistr(HdMi) = (itdistr(H) � ext(H)) � acts(Mi): (7.11)

From Lemma 7.2.4 and (7.11),

tdistr(HdMi) = tdistr(H) � acts(Mi); (7.12)

which is what we needed to prove.

Proof of Proposition 7.2.3. Let D 2 tdistrs(M1kM2). Then there exists a probabilis-

tic execution H of M1kM2 such that tdistr(H) = D. From Proposition 4.3.4, HdMi is a

probabilistic execution of Mi. From Lemma 7.2.6, tdistr(HdMi) = D � acts(Mi). Thus,

D � acts(Mi) 2 tdistrs(Mi).

7.3 Trace Distribution Preorder

Once trace distributions are de�ned, the trace distribution preorder can be de�ned as trace

distribution inclusion. Formally, let M1;M2 be two probabilistic automata with the same

external action signature. The trace distribution preorder is de�ned as follows.

M1 vD M2 i� tdistrs(M1) � tdistrs(M2): (7.13)

The trace distribution preorder is a conservative extension of the trace preorder of ordinary

automata, and it preserves properties that resemble the safety properties of ordinary automata

[AS85]. Here we give some examples of such properties.

Example 7.3.1 The following property is preserved by the trace distribution preorder.

\After some �nite trace � has occurred, then the probability that some other trace

�0 occurs, is not greater than p."

In fact, suppose that M1 vD M2, and suppose that M2 satis�es the property above, while

M1 does not. Then there is a trace distribution of M1 where the probability of �0 after �

conditional to � is greater than p. Since M1 vD M2, there is a trace distribution of M2 where

the probability of �0 after � conditional to � is greater than p. This contradicts the hypothesis

thatM2 satis�es the property above. Observe that the property above would still be preserved

if we replace �0 with a set of traces.

141

Example 7.3.2 The following property is preserved by the trace distribution preorder.

\In every computation where in�nite external activity occurs with probability 1, if

a �nite trace � occurs, then the probability that some other trace �0 occurs after �

given that � occurs is at least p."

A more concrete instantiation of the property above is \under the hypothesis that a distributed

system never deadlocks, every request of service eventually gets a response with probability at

least p". This property is de�nitely more interesting than the property of Example 7.3.1 since it

involves a progress statement, one of the property of key interest for the analysis of randomized

distributed algorithms. Thus, if in a system it is always possible to avoid a deadlock, under

the assumption that we always schedule a transition and under the condition that no in�nite

internal computation is possible, the property above guarantees progress. However, in order to

be sure that if M1 vD M2 and M2 satis�es the property above then M1 guarantee progress, we

need to make sure that from every state of M2 it is possible to avoid deadlock and there is no

possibility of in�nite internal computation. Such a property must be veri�ed separately since it

is not guaranteed by the trace distribution preorder. Fortunately, there are several cases (e.g.,

n processes running in parallel that communicate via shared memory) where it is easy to verify

that it is always possible to avoid a deadlock.

To prove that the property above is preserved, suppose that M1 vD M2, and suppose that

M2 satis�es the the property above, while M1 does not. Then there is a trace distribution ofM1

with in�nite external computation where the probability of �0 after � conditional to � is greater

than p. Since M1 vD M2, there is a trace distribution ofM2 with in�nite external computation

where the probability of �0 after � conditional to � is greater than p. This contradicts the

hypothesis that M2 satis�es the property above.

Example 7.3.3 The following property is preserved by the trace distribution preorder.

\In every computation where in�nite external activity occurs with probability 1, if a

�nite trace � occurs, then, no matter what state is reached, a trace �0 occurs ofter

� with probability at least p."

A more concrete instantiation of the property above is \under the hypothesis that a distributed

system never deadlocks, if a process has requested a service (�), then, no matter what state is

reached, either the service has received a positive acknowledgment already (�0), or a positive

acknowledgment will be received eventually with probability at least p". This property is pre-

served by the trace distribution preorder since it is equivalent to the property of Example 7.3.2

with p = 1 (cf. Proposition 5.5.5 to have an idea of why this is true).

Essentially, the rule of thumb to determine what properties can be guaranteed to be preserved

under the trace distribution preorder is the following: express the property of interest as a

property � of the trace distributions of a probabilistic automatonM plus a condition on the

structure ofM . If M1 vD M2, then the trace distributions ofM1 satisfy the property �. Thus,

if we know that M2 satis�es the property of interest, it is enough to verify separately that M1

satis�es in order to be guaranteed that also M1 satis�es the property of interest.

142

s0

s2s1

s3 s4

s5 s6

b b

a a

f g

s5 s6

s0

s3 s4

s1

a

b b

f g

3c 4c

1c 2c

0c

c c

d e

M2M1 C

1/2 1/2

Figure 7-4: The trace distribution preorder is not a precongruence.

a

1/2

1/2
c

c

s0 c0),(),(s c01

),(s c1 1

),(s c1 2
b

b

),(s c24

),(s c13),(s c3 3

),(s c4 4

),(s c35

),(s c46

f

g

d

e

Figure 7-5: A probabilistic execution of M2kC.

7.4 Trace Distribution Precongruence

Although the trace distribution preorder preserves some properties that are useful for the anal-

ysis of randomized distributed systems, the trace distribution preorder is not a precongruence,

and thus it does not allow us to use modular analysis.

Example 7.4.1 (The trace distribution preorder is not substitutive) Consider the two

probabilistic automata M1 and M2 of Figure 7-4. It is easy to check that M1 and M2 have

the same trace distributions. Consider now the context C of Figure 7-4. Figure 7-5 shows a

probabilistic execution of M2kC where there is a total correlation between the occurrence of

actions d and f and actions e and g. Such a correlation cannot be obtained from M1kC, since

the choice between f and g must be resolved before knowing what action among d and e is

chosen probabilistically. Thus, M1kC and M2kC do not have the same trace distributions.

This leads us to the de�nition of the trace distribution precongruence, denoted by vDC , as the

coarsest precongruence that is contained in the trace distribution preorder. This de�nition of the

trace distribution precongruence is not constructive, and thus it is di�cult to understand what

we have de�ned. Furthermore, we do not have any observational semantics that characterizes

the trace distribution precongruence. In Section 7.5 we give an alternative characterization

of the trace distribution precongruence that gives a better idea of the relation that we have

de�ned. Here we give some examples of properties that are preserved by the trace distribution

precongruence and that are not preserved by the trace distribution preorder.

Example 7.4.2 The following property is preserved by the trace distribution precongruence

but not by the trace distribution preorder.

143

\After some �nite trace � has occurred, no matter what state is reached, the prob-

ability that some other trace �0 occurs from the state reached is not greater than

p."

This property is not preserved by the trace distribution preorder since trace distributions cannot

detect all the points where we may start to study the probability of �0 to occur. However, this

task is possible with the help of an external context. We use a context C that performs a fresh

action o and then stops.

Suppose that M1 vDC M2 and suppose that M2 satis�es the property above, while M1

does not. Then there is a probabilistic execution H1 of M1 where some state q is reached after

the occurrence of �, and the probability that �0 occurs from q is greater than p. Consider a

probabilistic execution H 0
1 ofM1kC such that H 0

1dM1 = H1 and such that action o is scheduled

exactly from the minimal state q0 such that q0dM1 = q. Then, o occurs always after �, and

the conditional probability of �0 after o given that o occurred is greater than p in the trace

distribution of H 0
1. Since M1 vDC M2, then there is a probabilistic execution H 0

2 of M2kC

whose trace distribution is the same as the trace distribution of H 0
2. This means that there is at

least one state q00 in H 0
2, reached immediately after the occurrence of o, where the probability

that �0 occurs from q00 in H 0
2 is greater than p. Consider H 0

2dM2, and change its transition

relation to obtain a probabilistic execution H2 such that H2.(q
00
dM2) = (H 0

2dM2).(q
00
dM2).

Then the probability that �0 occurs from q00dM2 in H2 is greater than p. Moreover, � has

occurred when qdM2 is reached. This contradicts the hypothesis that M2 satis�es the property

above.

Example 7.4.3 The following property is preserved by the trace distribution precongruence

but not by the trace distribution preorder.

\In every computation where in�nite external activity occurs with probability 1, if a

�nite trace � occurs, then, no matter what state is reached, if another trace �00 has

not occurred yet after �, then a trace �0 occurs with probability at least p."

A more concrete instantiation of the property above is \under the hypothesis that a distributed

system never deadlocks, if a process has requested a service (�) and has not received yet a

refusal (�00) then, no matter what state is reached, a positive acknowledgment (�0) will be

received eventually with probability at least p". Observe that the main di�erence from the

property of Example 7.3.3 is in the use of �00. The presence of �00 does not guarantee that �0

occurs with probability 1.

Even in this case in the proof we use a context C with a fresh action o. Suppose that

M1 vDC M2 and suppose thatM2 satis�es the property above, while M1 does not. Then there

is a probabilistic execution H1 ofM1 where in�nite external activity occurs such that there is a

state q of H1 that is reached after the occurrence of � and before the occurrence of �00, and such

that the probability that �0 occurs from q is smaller than p. Consider a probabilistic execution

H 0
1 of M1kC such that H 0

1dM1 = H1 and such that action o is scheduled exactly from the

minimal state q0 such that q0dM1 = q. Then, o occurs always after � and before �00 occurs after

�, and the conditional probability of �0 after o given that o occurred is greater than p in the

trace distribution of H 0
1. Since M1 vDC M2, then there is a probabilistic execution H

0
2 ofM2kC

whose trace distribution is the same as the trace distribution of H 0
2. This means that there is at

144

c0

left

pleft 1/2 1/2 pright

right

0c

1c 2c

left

pleft pright

right

1/2 1/2
start start

Figure 7-6: The principal context (left) and the simple principal context (right).

least one state q00 in H 0
2, reached immediately after the occurrence of o, where the probability

that �0 occurs from q00 in H 0
2 is smaller than p. Consider H 0

2dM2, and change its transition

relation to obtain a probabilistic execution H2 such that H2.(q
00
dM2) = (H 0

2dM2).(q
00
dM2).

Then the probability that �0 occurs from q00dM2 in H2 is smaller than p. Moreover, � has

occurred when qdM2 is reached and similarly �00 has not occurred after the occurrence of �.

This contradicts the hypothesis that M2 satis�es the property above.

7.5 Alternative Characterizations of the Trace Distribution

Precongruence

In this section we give an alternative characterization of the trace distribution precongruence

that is easier to manipulate. We de�ne a principal context , denoted by CP , and we show that

there exists a context C that can distinguish two probabilistic automata M1 and M2 i� the

principal context distinguishes M1 and M2.

7.5.1 The Principal Context

The principal context is a probabilistic automaton with a unique state and three self-loop tran-

sitions labeled with actions that do not appear in any other probabilistic automaton. Two

self-loop transitions are deterministic (Dirac) and are labeled with action left and right , respec-

tively; the third self-loop transition is probabilistic, where one edge leads to the occurrence of

action pleft with probability 1=2 and the other edge leads to the occurrence of action pright

with probability 1=2. Figure 7-6 shows the principal context.

The principal context is not a simple probabilistic automaton; however, since it does not

have any action in common with any other probabilistic automaton, the parallel composition

operator can be extended trivially: no synchronization is allowed. Alternatively, if we do not

want a non-simple context, we can replace the principal context with the simple principal

context , represented in Figure 7-6, as well. In this case we need to assume that also action start

does not appear in any other probabilistic automaton. The main theorem is the following.

Theorem 7.5.1 M1 vDC M2 i� M1kCP vD M2kCP .

As a corollary we obtain an alternative characterization of the trace distribution precongruence

and a compositional observational semantics for probabilistic automata. A principal trace distri-

145

bution of a probabilistic automatonM is a trace distribution ofMkCP . Denote by ptdistrs(M)

the set tdistrs(MkCP).

Corollary 7.5.2 M1 vDC M2 i� ptdistrs(M1) � ptdistrs(M2).

The fact that the principal context is not a simple probabilistic automaton may appear to

be confusing. Here we shed some light on the problem. First of all, in Chapter 4 we have

de�ned parallel composition only for simple probabilistic automata; in this section, in order to

account for the principal context, we have extended parallel composition to pairs of probabilistic

automata, not necessarily simple, that do not have any action in common. This raises an

immediate question: is the trace distribution precongruence de�ned based solely on contexts

that are simple probabilistic automata or is it de�ned based on any compatible context according

to the new extended parallel composition? The answer to this question, as it will become clear

from the proof of Theorem 7.5.1, is that it does not matter because the two de�nitions are

equivalent. That is, if there is a non-simple context that distinguishes two simple probabilistic

automata M1 and M2, then the simple principal context distinguishes M1 and M2 as well.

Our choice of the principal context is just stylistic since it contains less structure than

the simple principal context. The reader should keep in mind that there are in�nitely many

contexts with the same properties as the principal and the simple principal contexts; any one

of those contexts can be chosen to give an alternative characterization to the trace distribution

precongruence.

7.5.2 High Level Proof

The rest of this section is dedicated to the proof of Theorem 7.5.1. The proof is structured

in several steps where at each step a generic distinguishing context C is transformed into

a simpler distinguishing context C0. The proof of each transformation step is structured as

follows. Given a distinguishing context C for M1 vD M2, build a simpler context C0. Suppose

by contradiction that C0 is not a distinguishing context and consider a trace distribution D of

M1kC that is not a trace distribution of M2kC. Let H1 be a probabilistic execution of M1kC

such that tdistr(H1) = D. Transform H1 into a probabilistic execution H
0
1 ofM1kC

0, and show

that if there is a probabilistic execution H 0
2 of M2kC

0 such that tdistr(H 0
2) = tdistr(H 0

1), then

H 0
2 can be transformed into a probabilistic execution H2 of M2kC such that tdistr(H2) = D.

This leads to a contradiction.

The high level proof of Theorem 7.5.1 is then the following.

=): Assuming that the principal context distinguishes M1 and M2, we show that the simple

principal context distinguishes M1 and M2.

(=: We consider a generic context C that distinguishes M1 and M2, and we transform it into

the principal context, showing that the principal context distinguishes M1 and M2. The

transformation steps are the following.

1. Ensure that C does not have any action in common withM1 andM2 (Lemma 7.5.3);

2. Ensure that C does not have any cycles in its transition relation (Lemma 7.5.4);

3. Ensure that the branching structure of C is at most countable (Lemma 7.5.5);

146

4. Ensure that the branching structure of C is at most binary (Lemma 7.5.6);

5. Ensure that the probabilistic transitions ofC lead to binary and uniform distributions

(Lemma 7.5.7);

6. Ensure that each action of C is external and appears exactly in one edge of the

transition relation of C (Lemma 7.5.8);

7. Ensure that each state of C enables two deterministic transitions and one probabilis-

tic transition with a uniform binary distribution (Lemma 7.5.9);

8. Rename all the actions of the context of 7 according to the action names of the

principal context and then collapse all the states of the new context into a unique

state, leading to the principal context (Lemma 7.5.10).

7.5.3 Detailed Proof

Lemma 7.5.3 Let C be a distinguishing context for two probabilistic automata M1 and M2.

Then there exists a distinguishing context C0 for M1 and M2 with no actions in common with

M1 and M2. C
0 is called a separated context.

Proof. The context C0 is built from C be replacing each action a in common with M1 and M2,

called a shared action, with two new actions a1; a2, and by replacing each transition (c; a;P) of

C with two transitions (c; a1; c
0) and (c0; a2;P), where c

0 denotes a new state that is used only

for the transition (c; a;P). We denote c0 also by c(c;a;P) when convenient. We also denote the

set of actions of the kind a1 and a2 by V1 and V2, respectively.

Let D be a trace distribution of M1kC that is not a trace distribution ofM2kC. Consider a

probabilistic execution H1 of M1kC such that tdistr(H1) = D, and consider the scheduler that

leads to H1. Apply to M1kC
0 the same scheduler with the following modi�cation: whenever a

transition ((s1; c); a;P1
P) is scheduled in M1kC, schedule ((s1; c); a1;D((s1; c
0))), where c0 is

c(c;a;P), followed by ((s1; c
0); a;P1
D(c

0)), and, for each s01 2
1, followed by ((s
0
1; c

0); a2;D(s
0
1)

P). Denote the resulting probabilistic execution by H 0
1 and the resulting trace distribution by

D
0. Then,

D
0
� acts(M1kC) = D: (7.14)

To prove (7.14) we de�ne a new construction, called collapse and abbreviated with clp, to be

applied to probabilistic executions of MikC
0, i = 1; 2, where each occurrence of a shared action

a is followed immediately by an occurrence of its corresponding action a2.

Let H 0 be a probabilistic execution of MikC
0 where each occurrence of a shared action a is

followed immediately by an occurrence of its corresponding action a2. For convenience denote

clp(H 0) by H . A state q of H 0 is closed if each occurrence of a shared action a is followed

eventually by an occurrence of the corresponding action a2. For each closed state q of H 0, let

clp(q) be obtained from q as follows: each sequence

(s0; c0)a1(s0; ctr)�2(s2; ctr) � � ��k(sk; ctr)a(s; ctr)a2(s; c)

is replaced with

(s0; c0)�2(s2; c0) � � ��k(sk; c0)a(s; c);

147

and each sequence

(s0; c0)a1(s1; ctr)�2(s2; ctr) � � ��k(sk; ctr)

occurring at the end of q is replaced with

(s0; c0)�2(s2; c0) � � ��k(sk; c0):

De�ne

states(H)
4
= fclp(q) j q 2 states(H 0); closed(q)g: (7.15)

Let (q;P) be a restricted transition of H 0 where q is a closed state, and suppose that no action

of V1 [V2 occurs. Consider a pair (a; q0) of
. If a is not a shared action, then let

P(a;q0)
4
= D((a; clp(q0))); (7.16)

if a is a shared action, then let

(a;q0)
4
= f(a; clp(q00)) j (a2; q

00) 2
H 0

q0 g; (7.17)

and for each (a; q000) 2
(a;q0), let

P(a;q0)[(a; q
000)]

4
= Pq0 [a2 � clp�1(q000)]; (7.18)

where for each state q of H , clp�1(q) is the set of closed states q0 of H 0 such that clp(q0) = q.

The transition clp((q;P)) is de�ned to be

clp((q;P))
4
=

0
@clp(q); X

(a;q0)2

P [(a; q0)]P(a;q0)

1
A : (7.19)

For the transition relation of H , consider a state q of H Let min(clp�1(q)) be the set of minimal

states of clp�1(q) under pre�x ordering. For each state �q 2 clp�1(q), let

�p
clp�1(q)
�q

4
=

PH 0 [C�q]P
q02min(clp�1(q)) PH 0 [Cq0]

: (7.20)

The transition enabled in H from q isX
q02clp�1(q)

�p
clp�1(q)
q0 PH 0

q0 [acts(MikC)]clp(tr
H 0

q0 � acts(MikC)): (7.21)

Note the similarity with the de�nition of the projection of a probabilistic execution fragment

(cf. Section 4.3.2).

The probabilistic execution H satis�es the following properties.

a. H is a probabilistic execution of MikC.

The fact that each state of H is reachable can be shown by a simple inductive argument;

the fact that each state of H is a �nite execution fragment ofMikC follows from a simple

analysis of the de�nition of clp.

From (7.21) it is enough to check that for each closed state q0 of H 0, the transition

clp(trH
0

q0 � acts(MikC)) is generated by a combination of transitions of MikC. Since tr
H 0

q0

is a transition of H 0, (trH
0

q0 � acts(MikC)) can be expressed as
P

j pj(q
0 a tr j), where each

tr j is a transition of MikC
0. We distinguish three cases.

148

1. tr j is a non-shared transition of Mi.

Then tr j = ((s; c); a;P
 D(c)) for some action a and probability space P , where

(s; c) = lstate(q0). Let lstate(clp(q0)) = (s0; c0). Then, s0 = s, as it follows directly

from the de�nition of clp. De�ne tr 0j to be the transition ((s; c0); a;P
D(c0)). Then

tr 0j is a transition of MikC and clp(q0 a tr j) = clp(q0) a tr 0j

2. tr j is a non-shared transition of C0.

Then tr j = ((s; c); a;D(s)
 P) for some action a and probability space P , where

(s; c) = lstate(q0). Let lstate(clp(q0)) = (s0; c0). Then, s0 = s and c0 = c, as it follows

directly from the de�nition of clp after observing that q0 must be a closed state in

order to enable tr j . De�ne tr 0j to be tr j . Then tr 0j is a transition of MikC and

clp(q0 a tr j) = clp(q0) a tr 0j

3. tr j is a shared transition.

Then tr j = ((s; ctr); a;P
D(ctr)) for some action a and probability space P , where

(s; ctr) = lstate(q0). In particular, ctr is one of the states that are added to those

of C, and tr is a simple transition of C with action a. Moreover, from each state

(s0; ctr) 2
P
D(ctr), there is a transition ((s0; ctr); a2;D(s
0)
 Ptr) enabled. Let

lstate(clp(q0)) = (s0; c0). Then, s0 = s. De�ne tr 0j to be ((s; c0); a;P
 Ptr). Then,

from the de�nition of C0, tr 0j is a transition of MikC.

Observe that clp distributes over combination of transitions. Moreover, from Equa-

tion (7.19), observe that for each j clp(q0 a tr j) = clp(q0) a tr 0j . Thus, clp(trH
0

q0 �

acts(MikC)) = clp(q0) a (
P

j pjtr
0
j), which is generated by a combination of transitions of

MikC.

b. For each state q of H ,

PH [Cq] =
X

q02min(clp�1(q))

PH 0 [Cq0]: (7.22)

This is shown by induction on the length of q. If q consists of a start state only, then the re-

sult is trivial. Otherwise, from the de�nition of the probability of a cone, Equation (7.21),

and a simple algebraic simpli�cation,

PH [Cqas] = PH [Cq]

0
@ X
q02clp�1(q)

�p
clp�1(q)
q0 Fq0(qas)

1
A ; (7.23)

where Fq0(qas) expresses the probability of the completions of q0 to a state whose col-

lapse gives qas without using actions from V1 [V2 in the �rst transition. Formally,

if a is not a shared action, then Fq0(qas) is PH 0

q0 [a � clp�1(qas)]; otherwise, Fq0(qas)

is PH 0

q0 [(a; q
0a(s0; ctr))]P

H 0

q0a(s0;ctr)
[(a2; q

0a(s0; ctr)a2(s
0; c))], where ctr = lstate(q0)dC0, and

s = (s0; c). In the �rst case,
H 0

q0 \ (fag � clp�1(qas)) contains only one element, say

(a; q0as00), and PH 0 [Cq0]Fq0(qas) gives PH 0 [Cq0as00]; in the second case PH 0 [Cq0]Fq0(qas)

gives PH 0 [C(q0a(s0;ctr)a2s)].

149

Observe that the states of min(clp�1(qas)) are the states of the form described above

(simple cases analysis). Thus, by applying induction to (7.23), using (7.20), simplifying

algebraically, and using the observations above,

PH [Cqas] =
X

q02min(clp�1(qas))

PH 0 [Cq0]: (7.24)

c. tdistr(H) = tdistr(H 0) � acts(MikC).

Let � be a �nite trace of H or H 0. Then f� 2
H 0 j � � trace(�) � acts(MikC)g can be

expressed as a union of disjoint cones [q2�Cq where, if the last action of � is a and a is

not a shared action,

� = fq 2 states(H 0) j trace(q) � acts(MikC) = �; lact(q) = ag; (7.25)

and if the last action of � is a and a is a shared action,

� = fq 2 states(H 0) j trace(q) � acts(MikC) = �; lact(q) = a2g: (7.26)

Observe that � is a set of closed states. The set clp(�) is the set

clp(�) = fq 2 states(H) j trace(q) = �; lact(q) = ag; (7.27)

which is a characterization of f� 2
H j � � trace(�)g as a union of disjoint cones.

Observe that min(clp�1(clp(�))) = �. Moreover, for each q1 6= q2 of clp(�), clp
�1(q1) \

clp�1(q2) = ;. Thus, from (7.22), PH 0 [[q2�Cq] = PH [[q2clp(�)Cq]. This is enough to

conclude.

To complete the proof of (7.14) it is enough to observe that H1 = clp(H 0
1). Property (7.14) is

then expressed by property (c).

Suppose by contradiction that it is possible to obtain D0 fromM2kC
0. Consider the scheduler

that leads to D0 in M2kC
0, and let H 0

2 be the corresponding probabilistic execution. First, we

build a new probabilistic execution H 00
2 of M2kC

0 whose trace distribution is D0, and such that

each shared action a is followed immediately by its corresponding action a2. Then we let H2 be

clp(H 00
2). This leads to a contradiction since tdistr(H2) = D. The rest of the proof is dedicated

to the construction of H 00
2 .

For each state q of H 0
2, let exch(q) be the set of sequences q0 that can be obtained from q

as follows: each sequence

(s0; ctr)a(s1; ctr)�2(s2; ctr) � � ��h(sh; ctr)a2(sh; c)

is replaced with

(s0; ctr)a(s1; ctr)a2(s1; c)�2(s2; c) � � ��h(sh; c);

each sequence

(s0; ctr)a(s1; ctr)�2(s2; ctr) � � ��h(sh; ctr)

150

occurring at the end of q is replaced with

(s0; ctr)a(s1; ctr)a2(s1; c)�2(s2; c) � � ��h(sh; c);

where c is any of the states that a2 may lead to from ctr , and each sequence

(s0; ctr)a(s1; ctr)

occurring at the end of q, where a is a shared action, either it is replaced with

(s0; ctr)a(s1; ctr)a2(s1; c);

where c is any of the states that a2 may lead to from ctr , or it is not replaced. Then, de�ne

states(H 00
2)

4
=

[
q2states(H 0

2)

exch(q): (7.28)

Let (q;P) be a restricted transition of H 0
2, and suppose that no action of V2 occurs. Let q

0 be

a state of exch(q) that does not end with a shared action. Then, for each (a; q1) 2
 there is

exactly one q01 2 exch(q1) such that q0 � q01 and jq
0
1j = jq

0j+ 1 (simple analysis of the de�nition

of exch). Denote such q01 by exchq0(q1). Let

0 = f(a; exchq0(q1) j (a; q1) 2
g, and let, for each

(a; q01) 2
0, P 0[(a; q01)] = P [(a� exch�1(q01))], where exch
�1(q) is the set of states q0 of H 0

2 such

that q 2 exch(q0). Then de�ne the transition exchq0((q;P)) to be

exchq0((q;P))
4
= (q0;P 0): (7.29)

For each state q of H 00
2 , let min(exch�1(q)) be the set of minimal states of exch�1(q) under

pre�x ordering. For each state q0 of exch�1(q), where q is closed, let

� p
q
q0

4
= PH 0

2
[Cq0] if q

0 is closed , i.e., if each occurrence of a shared action a is followed

eventually by an occurrence of its corresponding action a2;

� p
q
q0

4
= PH 0

2
[Cq0]Ptr [c] if q

0 is open, where lstate(q0)dC0 = ctr and lstate(q)dC = c.

For each q0 2 exch�1(q), let

�p
exch�1(q)
q0

4
=

p
q
q0P

q002min(exch�1(q)) p
q
q00
: (7.30)

If the last action of q is a shared action a, and lstate(q) = (s; ctr), then the transition enabled

from q in H 00
2 is

q a ((s; ctr); a2;D(s)
 Ptr): (7.31)

If the last action of q is not a shared action, then the transition enabled from q in H 00
2 is

X
q02exch�1(q)

�p
exch�1(q)
q0 P

H 0
2

q0 [acts(H 0
2)nV2]exchq(tr

H 0
2

q0 � (acts(H 0
2)nV2)): (7.32)

The probabilistic execution H 0
2 satis�es the following properties.

151

a. H 00
2 is a probabilistic execution of M2kC

0.

The fact that each state of H 00
2 is reachable can be shown by a simple inductive argument;

the fact that each state of H 00
2 is a �nite execution fragment of M2kC

0 follows from a

simple analysis of the de�nition of exch .

We need to check that for each state q of H 00
2 the transition enabled from q in H 00

2 is

generated by a combination of transitions of M2kC
0. If the last action of q is a shared

action, then the result follows immediately from Expression (7.31) and the de�nition of

C0. If the last action of q is not a shared action, then consider a state q0 2 exch�1(q).

The transition tr
H 0
2

q0 � (acts(H 0
2)nV2) can be expressed as

P
i pi(q

0 a tr i), where each tr i is

a transition of M2kC
0 enabled from lstate(q0). We distinguish three cases.

1. tr i is a non-shared transition of M2.

Then tr i = ((s; c); a;P
 D(c)) for some action a and probability space P , where

(s; c) = lstate(q0). Let lstate(q) = (s0; c0). Then, s0 = s. De�ne tr 0i to be the

transition ((s; c0); a;P
D(c0)). Then tr 0i is a transition ofM2kC
0 and exchq(q

0atr i) =

q a tr 0i.

2. tr i is a non-shared transition of C0.

Then tr i = ((s; c); a;D(s)
 P) for some action a and probability space P , where

(s; c) = lstate(q0). Let lstate(q) = (s0; c0). Then, s0 = s and c = c0. De�ne tr 0i to be

tr i. Then tr 0i is a transition of M2kC
0 and exchq(q

0 a tr i) = q a tr 0i.

3. tr i is a shared transition.

Then tr i = ((s; c); a;P
 D(c)) for some action a and probability space P , where

(s; c) = lstate(q0). Let lstate(q) = (s0; c0). Then, s0 = s and c = c0. De�ne tr 0i to be

tr i. Then tr 0i is a transition of M2kC
0 and exchq(q

0 a tr i) = q a tr 0i.

Observe that exch distributes over combination of transitions. Thus, exchq((trq0) �

(acts(H 0
2)nV2)) can be expressed as

P
i pi(q

a tr 0i), which is generated by a combination of

transitions of M2kC
0. From (7.32), the transition enabled from q in H 00

2 is generated by a

combination of transitions of M2kC
0.

b. For each state q of H 00
2 ,

PH 00
2
[Cq] =

(P
q02min(exch�1(q)) PH 0

2
[Cq0] if q ends with a shared action,P

q02min(exch�1(q)) p
q
q0 otherwise.

(7.33)

The proof is by induction on the length of q. If q consists of a start state only, then the

result is trivial. Otherwise, consider PH 00
2
[Cqas]. We distinguish two cases.

1. q is open.

In this case, since in H 0
2 each shared action is followed immediately by the corre-

sponding action of V2, a is an action of V2. Moreover, from the de�nition of exch ,

exch�1(q) = min(exch�1(qas)) = min(exch�1(q)); (7.34)

and all the elements of exch�1(q) are open states. From induction,

PH 00
2
[Cq] =

X
q02min(exch�1(q))

PH 0
2
[Cq0]: (7.35)

152

Let c = sdM2, and let ctr = lstate(q)dC0. Then, for each q0 2 min(exch�1(q)),

ctr = lstate(q0)dC0, and

p
qas
q0 = PH 0

2
[Cq0]Ptr [c]: (7.36)

Moreover, P
H 00
2

q [(a; qas)] = Ptr [c]. Thus, from the de�nition of the probability of a

cone and (7.35),

PH 00
2
[Cqas] =

X
q02min(exch�1(q))

PH 0
2
[Cq0]Ptr [c]: (7.37)

By using the fact that min(exch�1(q)) = min(exch�1(qas)), and using (7.36), we

obtain

PH 00
2
[Cqas] =

X
q02min(exch�1(qas))

p
qas
q0 : (7.38)

2. q is closed.

In this case, from the de�nition of the probability of a cone and (7.32),

PH 00
2
[Cqas] = PH 00

2
[Cq]

0
@ X
q02exch�1(q)

�p
exch�1(q)
q0 P

H 0
2

q0 [a� exch�1(qas)]

1
A : (7.39)

Let P tr q [q
0] denote Ptr [c], where c = lstate(q)dC0, and ctr = lstate(q0)dC0. Then,

from induction and (7.30),

PH 00
2
[Cqas] =

X
q02exch�1(q)jclosed(q0)

PH 0
2
[Cq0]P

H 0
2

q0 [a� exch�1(qas)] + (7.40)

X
q02exch�1(q)jopen(q0)

PH 0
2
[Cq0]P tr q[q

0]P
H 0
2

q0 [a� exch�1(qas)]:

We distinguish two subcases.

(a) a is a shared action.

In this case each state q0 of exch�1(q) such that P
H 0
2

q0 [a � exch�1(qas)] > 0

is closed. Thus, only the �rst summand of (7.40) is used. Moreover, each

state of min(exch�1(qas)) is captured by Expression (7.40). Thus, PH 0
2
[Cqas] =P

q02min(exch�1(qas)) PH 0
2
[Cq0]. Observe that qas is open.

(b) a is not a shared action.

In this case, for each q0 2 exch�1(q), if q0 is closed, then all the states reached in

q0\(fag�exch
�1(qas)) are closed, and if q0 is open, then all the states reached

in
q0\(fag�exch
�1(qas)) are open. Moreover, each state of min(exch�1(qas))

is captured by Expression (7.40). Thus, from the de�nition of pqasq0 , PH 0
2
[Cqas] =P

q02min(exch�1(qas)) p
qas
q0 . Observe that qas is closed.

c. tdistr(H 0
2) = tdistr(H 00

2).

Let � be a �nite trace of H 0
2 or H

00
2 . Then f� 2
H 0

2
j � � trace(�)g can be expressed as

a union of disjoint cones [q2�Cq where

� = fq 2 states(H 0) j trace(q) = �; lact(q) = lact(�)g: (7.41)

153

We distinguish two cases.

1. � does not end with an action of V2.

The set �0 = fq 2 exch(�) j lact(q) = lact(�)g is a characterization of f� 2
H 00
2
j

� � trace(�)g as a union of disjoint cones. Observe that min(exch�1(�0)) = � and

that for each pair of states q1 6= q2 of �0, min(exch�1(q1)) \ min(exch�1(q2)) =

;. Thus, if � ends with a shared action, then (7.33) is su�cient to conclude that

PH 0
2
[f� 2
H 0

2
j � � trace(�)g] = PH 00

2
[f� 2
H 00

2
j � � trace(�)g]; if � does not

end with a shared action, then, since all the states of � are closed, Equation (7.33)

together with the de�nition of p
q
q0 are su�cient to conclude.

2. � ends with an action of V2.

In this case � = �0a2 for some action a2 2 V2. Observe that, both in H 0
2 and H 00

2 ,

after the occurrence of a shared action a the corresponding action a2 occurs with

probability 1: for H 0
2 recall that tdistr(H 0

2) � acts(M2kC) = D; for H
00
2 see (7.31).

Thus, the probability of � is the same as the probability of �0, and the problem is

reduced to Case 1.

Lemma 7.5.4 Let C be a distinguishing separated context for two probabilistic automata M1

and M2. Then there exists a distinguishing cycle-free separated context C0 for M1 and M2.

Proof. C0 can be built by unfolding C. Every scheduler for MikC can be transformed into a

scheduler for MikC
0 and vice versa, leading to the same trace distributions.

Lemma 7.5.5 Let C be a distinguishing cycle-free, separated context for two probabilistic au-

tomata M1 and M2. Then there exists a distinguishing cycle-free separated context C0 for M1

and M2 with a transition relation that is at most countably branching.

Proof. Let D be a trace distribution of M1kC that is not a trace distribution of M2kC.

Consider the corresponding probabilistic execution H . Observe that H has at most countably

many states, and that at each state of H there are at most countably many transitions of C

that are scheduled. Thus, in total, only countably many transitions of C are used to generate

D. Then C0 is C without the unused transitions.

Lemma 7.5.6 Let C be a distinguishing cycle-free, separated context for two probabilistic au-

tomata M1 and M2 such that the transition relation of C is at most countably branching. Then

there exists a distinguishing cycle-free separated context C0 for M1 and M2 that at each state

either enables two deterministic transitions or a unique probabilistic transition with two possible

outcomes. C0 is called a binary separated context.

Proof. For each state s of C, choose a new action start s. Let s enable the transitions

tr1; tr2; : : :, where each tr i is a transition (s; ai;Pi). The transition relation of C0 is obtained in

two phases. First, a transition is chosen nondeterministically as shown in Figure 7-7, where each

symbol � denotes a distinct state and each symbol � denotes a distinct internal action; then, for

each state �i, the transition tr i is encoded as follows. Let
i be fsi;1; si;2; : : :g, pi;j
4
= Pi[si;j],

and �pi;j
4
=
P

k�j pi;k. The transition relation from �i is represented in Figure 7-8, where each

154

τ

τ

τ

τ

1

start s

τ
2 3

s

Figure 7-7: Nondeterministic choice of a transition.

i,1p

-pi,2 /
-pi,

-pi,23

/p -pi,2i,2 /p -pi,i,3 3

a i a i a i

i, 1s

τ

τ

τ

τ

τ

si, si,2 3

i

Figure 7-8: Transforming a transition into binary transitions.

symbol � denotes a distinct state and each symbol � denotes a distinct internal action. Observe

that by scheduling all the transitions of the diagram above, for each j we have

P [si;j] = Pi[si;j]; (7.42)

where P [si;j] is the probability of reaching si;j from �i. Denote the set of actions of the kind

starts by Vstart . Denote the auxiliary actions of C0 that occur between a start action and a

state �j by V1, and denote the auxiliary actions of C0 that occur between a state �j and the

corresponding occurrence of action aj by V2.

Let D be a trace distribution of M1kC that is not a trace distribution of M2kC. Consider

a probabilistic execution H1 of M1kC whose trace distribution is D in M1kC, and consider the

scheduler that leads to H1 in M1kC. Apply to M1kC
0 the same scheduler with the following

modi�cation: whenever some transition of C is scheduled, schedule the start action from C0,

then schedule the internal transitions to choose the transition of C to perform with the right

probability, and then schedule the transitions of the chosen transition till the corresponding

external action of C occurs. Denote the resulting probabilistic execution byH 0
1 and the resulting

trace distribution by D0. Then,

D
0
� acts(M1kC) = D: (7.43)

To prove (7.43), we de�ne a new construction, called shrink and abbreviated with shr , to be

applied to probabilistic executions of MikC
0 such that no action of Mi occurs between a state

of the form �j and the occurrence of the corresponding action aj of C, and such that all the

transitions between a state of the kind �j and the corresponding occurrences of action aj are

scheduled.

Let H 0 be such a probabilistic execution of MikC
0. Denote shr(H 0) by H . A state q of H 0

is closed if each occurrence of a state of the kind �j is followed eventually by the occurrence of

the corresponding action aj . For each state q of H 0 let shr(q) be obtained from q as follows:

each sequence

(s0; c0)startc0(s0; �)b1(s1; �) � � �bh(sh; �j)�1(sh; �) � � ��k(sh; �)aj(s; c)

155

is replaced with

(s0; c0)bi1(si1 ; c0) � � �bil(si;l; c0)aj(s; c);

where i1; : : : ; il is the ordered sequence of the indexes of the b's that are actions ofMi, and each

sequence either of the form

(s0; c0)startc0(s0; �)b1(s1; �) � � �bh(sh; �j)�1(sh; �) � � ��k(sh; �)

or of the form

(s0; c0)startc0(s0; �)b1(s1; �) � � �bh(sh; �)

occurring at the end of q is replaced with

(s0; c0)bi1(si1 ; c0) � � �bil(si;l; c0);

where i1; : : : ; il is the ordered sequence of the indexes of the b's that are actions of Mi. Then,

states(H)
4
= fshr(q) j q 2 states(H 0)g: (7.44)

Let (q;P) be a restricted transition of H 0, and suppose that no action of acts(C0)nacts(C)

occurs. Let
0 = f(a; shr(q0)) j (a; q0) 2
g, and for each (a; q00) 2
0, let P 0[(a; q00)] =

P [a � shr�1(q00)], where shr�1(q) is the set of states q0 of H 0 such that shr(q0) = q. Then the

transition shr((q;P)) is de�ned to be

shr((q;P))
4
= (shr(q);P): (7.45)

For the transition relation of H , consider a state q of H , and let min(shr�1(q)) be the set of

minimal states of shr�1(q) under pre�x ordering. For each state �q 2 shr�1(q), let

�p
shr�1(q)
�q

4
=

PH 0 [C�q]P
q02min(shr�1(q)) PH 0 [Cq0]

: (7.46)

The transition enabled from q in H isX
q02shr�1(q)

�p
shr�1(q)
�q PH 0

q0 [acts(MikC)]shr(tr
H 0

q0 � acts(MikC)): (7.47)

The probabilistic execution H satis�es the following properties.

a. H is a probabilistic execution of MikC.

The fact that each state of H is reachable can be shown by a simple inductive argument;

the fact that each state of H is a �nite execution fragment ofMikC follows from a simple

analysis of the de�nition of shr .

We need to show that for each state q of H the transition of Expression (7.47) is generated

by a combination of transitions of MikC. The states of shr
�1(q) that enable some action

ofMikC can be partitioned into two sets �c and �o of closed and open states, respectively.

We analyze �c �rst. Let q
0 2 �c. Since tr q0 is a transition of H 0, (tr q0 � acts(MikC)) can

be expressed as
P

j pj(q
0 a tr j), where each tr j is a transition of MikC

0. We distinguish

two cases.

156

1. tr j is a transition of Mi.

Then tr j = ((s; c); a;P
 D(c)) for some action a and probability space P , where

(s; c) = lstate(q0). Let lstate(shr(q0)) = (s0; c0). Then, s0 = s, as it follows directly

from the de�nition of shr . Moreover, (s; a;P) is a transition of Mi. De�ne tr 0j
to be the transition ((s; c0); a;P
 D(c0)). Then tr 0j is a transition of MikC and

shr q(q
0 a tr i) = q a tr 0j .

2. tr j is a transition of C0.

This case is not possible since, from the construction of C0, no action of C can be

enabled from a closed state.

Observe that shr distributes over combination of transitions. Thus,

shr(trH
0

q0 � acts(MikC)) =
X
j

pj(shr(q
0) a tr 0j); (7.48)

which is generated by a combination of transitions of MikC.

We now turn to �o. The set �o can be partitioned into sets (�j)j�0, where each set

�j consists of those states q
0 of �o where a particular state �j of C

0 occurs without its

matching action aj . Each element q0 of �j can be split into two parts q1
a q2, where

lstate(q1)dC
0 = �j . Denote q1 by head(q0). Partition �j into other sets (�j;k)k�0, where

each �j;k is an equivalence class of the relation that relates two states i� they have the

same head. Denote the common head of the states of �i;j by head(�i;j). For each pair

of states q1; q2 of H
0 such that q1 � q2, denote by pq1q2 the probability value such that

PH 0 [CH 0

q2
] = PH 0 [CH 0

q1
]pq1q2 . Then, for each equivalence class �i;j , the expression

X
q02�j;k

�p
shr�1(q)
q0 PH 0

q0 [acts(MikC)]shr(tr
H 0

q0 � acts(MikC)) (7.49)

can be rewritten into0
@�p

shr�1(q)
head(�i;j)

X
q02�j;k

phead(q0)q0

1
A

X
q02�j;k

phead(q0)q0P
q02�j;k

phead(q0)q0
PH 0

q0 [aj]shr(tr
H 0

q0 � acts(MikC)) (7.50)

where (7.50) is obtained from (7.49) by expressing each �p
shr�1(q)
q0 as �p

shr�1(q)
head(q0) phead(q0)q0 , by

grouping �p
shr�1(q)

head(�i;j)
, which is equal to �p

shr�1(q)

head(q0) for each q0 os �i;j , by substituting P
H 0

q0 [aj]

for PH 0

q0 [acts(MikC] (action aj is the only action of MikC that can be performed from q0

due to the structure of H 0), and by multiplying and dividing by
P

q02�j;k
phead (q0)q0 .

Observe that each transition that appears in (7.50) is generated by some transitions of

MikC. Thus, the transition of (7.50) is generated by a combined transition of MikC.

Denote this transition by tr j;k. Then, in Expression (7.47) it is possible to substi-

tute each subexpression
P

q02�j;k
�p
shr�1(q)
q0 PH 0

q0 [acts(MikC)]shr(tr q0 � acts(MikC)) with

(�p
shr�1(q)

head(q0)

P
q02�j;k

phead(q0)q0)tr j;k. This is enough to conclude.

157

b. For each state q of H ,

PH [Cq] =
X

q02min(shr�1(q))

PH 0 [Cq0]: (7.51)

This is shown by induction on the length of q. If q consists of a start state only, then the

result is trivial. Otherwise, from the de�nition of the probability of a cone and (7.47),

PH [Cqas] =
X

q02shr�1(q)

PH 0 [Cq0]P
H 0

q0 [a� shr�1(qas)]: (7.52)

Observe that the states ofmin(shr�1(qas)) are the states that appear in (a�shr�1(qas))\

q0 for some q0 2 shr�1(q). Thus, PH [Cqas] =
P

q02min(shr�1(qas)) PH 0 [Cq0].

c. tdistr(H) = tdistr(H 0) � acts(MikC).

Let � be a �nite trace of H or the projection of a �nite trace of H 0. Then f� 2
H 0 j � �

trace(�) � acts(MikC)g can be expressed as a union of disjoint cones [q2�Cq where

� = fq 2 states(H 0) j trace(q) � acts(MikC) = �; lact(q) = lact(�)g: (7.53)

Observe that � is a set of closed states. The set shr(�) is the set

shr(�) = fq 2 states(H) j trace(q) = �; lact(q) = lact(�)g; (7.54)

which is a characterization of f� 2
H j � � trace(�)g as a union of disjoint cones.

Observe that min(shr�1(shr(�))) = �. Moreover, for each q1 6= q2 of shr(�), shr
�1(q1)\

shr�1(q2) = ;. Thus, from (7.51), PH 0 [[q2�Cq] = PH [q 2 shr(�)Cq].

To complete the proof of (7.43), it is enough to observe that H1 = shr(H 0
1). Property (7.43) is

then expressed by property (c).

Suppose by contradiction that it is possible to obtain D0 fromM2kC
0. Consider the scheduler

that leads to D0 in M2kC
0, and let H 0

2 be the corresponding probabilistic execution. First, we

build a new probabilistic execution H 00
2 ofM2kC

0 whose trace distribution is D0, such that there

is no action of M2 between each state of the kind �i and the occurrence of the corresponding

external action of C, and such that all the transitions between a state of the kind �j and the

corresponding occurrences of action aj are scheduled. Then we let H2 = shr(H 00
2). This leads

to a contradiction since tdistr(H2) = D. The rest of the proof is dedicated to the construction

of H 00
2 .

For each state q of H 0
2, let shf (q) be the set of sequences q

0 that can be obtained from q as

follows: each sequence

(s0; �j)b1(s1; �) � � �bk(sk; �)aj(s; c)

is replaced with

(s0; �j)bi1(s0; �) � � �bil(s0; �)aj(s0; c)bk1(sk1 ; c) � � �bkm(s; c)

158

where i1; : : : ; il is the ordered sequence of the indexes of the b's that are actions of C0, and

k1; : : : ; km is the ordered sequence of the indexes of the b's that are actions ofM2; each sequence

(s0; �j)b1(s1; �) � � �bk(sk; �)

occurring at the end of q either is replaced with

(s0; �j)bi1(s0; �) � � �bil(s0; �)
a � a (s0; �)aj(s0; c)bk1(sk1 ; c) � � �bkm(s; c)

where i1; : : : ; il is the ordered sequence of the indexes of the b's that are actions of C
0, k1; : : : ; km

is the ordered sequence of the indexes of the b's that are actions ofM2, and �, called an extension

for q, is an arbitrary execution fragment of M2kC
0 that leads to the occurrence of aj , or, is

replaced with a pre�x of (s0; �j)bi1(s0; �) � � �bil(s0; �). Then,

states(H 00
2)

4
=

[
q2states(H 0

2)

shf (q): (7.55)

Let (q;P) be a restricted transition of H 0
2, and suppose that only actions ofM2 and Vstart occur.

Let q0 be a state of shf (q). Then, for each (a; q1) 2
 there is exactly one q01 2 shf (q1) such that

q0 � q01 and jq01j = jq
0
j + 1. Denote such q01 by shf q0(q1). Let

0 = f(a; shf q0(q1) j (a; q1) 2
g,

and let, for each (a; q01) 2
0, P 0[(a; q01)] = P [(a� shf �1(q01))], where shf
�1(q) is the set of states

q0 of H 0
2 such that q 2 shf (q0). Then de�ne the transition shf q0((q;P)) to be

shf q0((q;P))
4
= (q0;P): (7.56)

For each state q of H 00
2 , let min(shf

�1(q)) be the set of minimal states of shf �1(q) under pre�x

ordering. Let q be a closed state of H 00
2 , and let q0 2 shf �1(q). If q0 is an open state, then let �

be the extension for q0 that is used in q, and let Eq
q0 be the product of the probabilities of the

edges of �. For each state q0 of shf �1(q), where q is closed, let

� p
q
q0

4
= PH 0

2
[Cq0] if q

0 is closed;

� p
q
q0

4
= PH 0

2
[Cq0]E

q
q0 if q

0 is open.

For each q0 2 shf �1(q), let

�p
shf�1(q)
q0

4
=

p
q
q0P

q002min(shf�1(q)) p
q
q00
: (7.57)

If q is open, then the transition enabled from q in H 00
2 is the one due to the transition of C0

enabled from lstate(q)dC0; if q is closed, then the transition enabled from q in H 00
2 is

X
q02shf�1(q)

�p
shf�1(q)
q0 P

H 0
2

q0 [acts(H 0
2)n(acts(C)[V2)] (7.58)

shf q(tr
H 0
2

q0 � (acts(H 0
2)n(acts(C)[V2))):

The probabilistic execution H 00
2 satis�es the following properties.

159

a. H 00
2 is a probabilistic execution of M2kC

0.

The fact that each state of H 00
2 is reachable can be shown by a simple inductive argument;

the fact that each state of H 00
2 is a �nite execution fragment of M2kC

0 follows from a

simple analysis of the de�nition of shf .

We need to check that for each state q of H 00
2 the transition enabled from q in H 00

2 is

generated by a combination of transitions ofM2kC
0. If q is an open state, then the result

follows immediately from the de�nition of the transition relation of H 00
2 . If q is a closed

state, then consider a state q0 2 shf �1(q). The transition tr
H 0
2

q0 � (acts(H 0
2)nV2), which

appears in Expression (7.58), can be expressed as
P

i pi(q
0 a tr i), where each tr i is a

transition of M2kC
0 enabled from lstate(q0). We distinguish two cases.

1. tr i is a transition of M2.

Then tr i = ((s; c); a;P
 D(c)) for some action a and probability space P , where

(s; c) = lstate(q0). Let lstate(q) = (s0; c0). Then, s0 = s. De�ne tr 0i to be the

transition ((s; c0); a;P
D(c0)). Then tr 0i is a transition ofM2kC
0 and shf q(q

0a tr i) =

q a tr 0i.

2. tr i is a transition of C0.

Then tr i = ((s; c); a;D(s)
 P) for some action a and probability space P , where

(s; c) = lstate(q0). Let lstate(q) = (s0; c0). Then, s0 = s and c = c0 (q is closed).

De�ne tr 0i to be tr i. Then tr 0i is a transition of M2kC
0 and shf q(q

0 a tr i) = q a tr 0i.

Observe that shf distributes over combination of transitions, and thus, the transition

shf q(t
H 0
2

q0 � (acts(H 0
2)nV2)) can be expressed as

P
i pi(q

a t0i), which is generated by a

combination of transitions of M2kC
0.

b. For each state q of H 00
2 ,

PH 00
2
[Cq] =

(P
q02min(shf�1(q)) p

q
q0 if q is closed,P

q02min(shf�1(q)) PH 0
2
[Cq0] if q is open.

(7.59)

The proof is by induction on the length of q. If q consists of a start state only, then the

result is trivial. Otherwise, consider PH 00
2
[Cqas]. We distinguish two cases.

1. q is open.

In this case a is an action of V2 [acts(C), and each state of shf �1(q) is open. From

the de�nition of the probability of a cone and induction,

PH 00
2
[Cqas] =

0
@ X
q02min(shf�1(q))

PH 0
2
[Cq0]

1
APH 00

2
q [(a; qas)]: (7.60)

We distinguish two other cases.

(a) a 2 V2.

Observe that all the states of min(shf �1(q)) enable the same transition of C0

that is enabled from q. Moreover, for each q0 2 min(shf �1(q)), action a occurs

with probability 1 (in D0 each occurrence of a start action is followed by an

160

external action with probability 1), and the probability of reaching a state of

min(shf �1(qas)) given that a occurs is P
H 00
2

q [(a; qas)] (recall that q enables only

action a). Since all the states of min(shf �1(qas)) are open and have a pre�x in

min(shf �1(q)), we can conclude

PH 00
2
[Cqas] =

X
q02min(shf�1(qas))

PH 0
2
[Cq0]: (7.61)

(b) a 2 acts(C).

From the de�nition of H 00
2 , P

H 00
2

q [(a; qas)] = 1. Observe that all the states of

min(shf �1(q)) enable the same transition of C that is enabled from q. Moreover,

for each q0 2 min(shf �1(q)), action a occurs with probability 1 (in D0 each

occurrence of a start action is followed by an external action with probability

1), leading to a state of shf �1(qas) for sure (recall that q enables only action a).

Thus, for each q0 2 shf �1(q),

PH 0
2
[Cq0] =

X
q002min(shf�1(qas))jq0�q00

PH 0
2
[Cq00]: (7.62)

Combining (7.60) and (7.62), we obtain

PH 00
2
[Cqas] =

X
q02min(shf�1(qas))

PH 0
2
[Cq0]: (7.63)

For each q0 2 min(shf �1(qas)), if q0 is open, then p
qas
q0 = PH 0

2
[Cq0] by de�nition;

if q0 is closed, then pqasq0 = PH 0
2
[Cq0] since E

qas
q0 = 1 (no � must be added by shf

to get q0 from qas). Thus, (7.63) becomes

PH 00
2
[Cqas] =

X
q02min(shf�1(qas))

p
qas
q0 : (7.64)

2. q is closed.

In this case, from the de�nition of the probability of a cone and (7.58),

PH 00
2
[Cqas] = PH 00

2
[Cq]

0
@ X
q02shf�1(q)

�p
shf�1(q)
q0 P

H 0
2

q0 [a� shf �1(qas)]

1
A (7.65)

From induction, the de�nition of �p
shf�1(q)
q0 , and an algebraic simpli�cation,

PH 00
2
[Cqas] =

X
q02shf�1(q)jclosed(q0)

PH 0
2
[Cq0]P

H 0
2

q0 [a� shf �1(qas)] + (7.66)

X
q02shf�1(q)jopen(q0)

PH 0
2
[Cq0]E

q
q0P

H 0
2

q0 [a� shf �1(qas)]:

We distinguish two subcases.

(a) qas is open.

In this case each state q0 of shf �1(q) such that P
H 0
2

q0 [a � shf �1(qas)] > 0 is

closed, and thus only the �rst summand of (7.66) is used. Moreover, for each q0

of shf �1(q) the set

H 0
2

q0 \ a� shf �1(qas) is made of open states q0as0 such that

E
qas
q0as0 = 1. Observe that all the states of min(shf �1(qas)) are captured. Thus,

PH 00
2
[Cqas] =

X
q02min(shf�1(qas))

p
q
q0 : (7.67)

161

(b) qas is closed.

In this case, for each q0 2 shf �1(q), if q0 is closed, then all the states reached in

q0 \ (fag� shf �1(qas)) are closed, and if q0 is open, then all the states reached

in
q0 \ (fag � shf �1(qas)) are open and the extension � does not change, i.e.,

the term E does not change. Observe that all the states of min(shf �1(qas)) are

captured. Thus,

PH 00
2
[Cqas] =

X
q02min(shf�1(qas))

p
q
q0 : (7.68)

c. tdistr(H 0
2) = tdistr(H 00

2).

Let � be a �nite trace of H 0
2 or H

00
2 . Then f� 2
H 0

2
j � � trace(�)g can be expressed as

a union of disjoint cones [q2�Cq. We distinguish two cases.

1. � does not end with an action of C.

Then

� = fq 2 states(H 0) j trace(q) = �; lact(q) = lact(�)g: (7.69)

The set �0 = fq 2 shf (�) j lact(q) = lact(�)g is a characterization of f� 2
H 00
2
j

� � trace(�)g as a union of disjoint cones. Observe that min(shf �1(�0)) = � and

that for each q1 6= q2 of �
0, min(shf �1(q1))\min(shf

�1(q2)) = ;. Thus, from (7.51),

PH 0
2
[f� 2
H 0

2
j � � trace(�)g] = PH 00

2
[f� 2
H 00

2
j � � trace(�)g].

2. � ends with an action of C.

In this case � = �0aj for some action aj 2 acts(C). Since in H 0
2 and H 00

2 after the

occurrence of a state �j the corresponding action aj occurs with probability 1, we

can assume that all the states of � end in �j , i.e.,

� = fq 2 states(H 0) j trace(q) = �0; and lstate(q) is one of the �j 'sg: (7.70)

Then the set �0 = min(shf (�)) is a characterization of f� 2
H 00
2
j � � trace(�)g as a

union of disjoint cones. Observe that all the elements of � are open. Property (7.59)

is su�cient to conclude.

Lemma 7.5.7 Let C be a distinguishing binary separated context for two probabilistic automata

M1 and M2. Then there exists a distinguishing total binary separated context C0 for M1 and

M2 where all the probabilistic transitions have a uniform distribution. C0 is called a balanced

separated context.

Proof. We achieve the result in two steps. First we decompose a binary probabilistic transition

into several binary uniform probabilistic transitions, leading to a new distinguishing context

C1; then we use Lemma 7.5.4 to make C1 into a cycle-free context.

The context C1 is obtained from C by expressing each probabilistic transition of C by

means of, possibly in�nitely many, binary probabilistic transitions. For each state s of C, let

starts be a new action. If s enables a probabilistic transition with actions a1; a2 to states s1; s2,

respectively, and with probabilities p1; p2, respectively, then C1 enables from s a deterministic

transition with action starts. Then, C1 enables an internal probabilistic transition with a

uniform distribution. If p1 > p2 (p2 > p1), then one of the states that is reached enables a

162

deterministic transition with action a1 (a2). The other state enables a new internal probabilistic

transition with a uniform binary distribution, and the transitions from the successive states are

determined by giving a1 probability 2(p1 � 1=2) and a2 probability 2p2 (a1 probability 2p1
and a2 probability 2(p2 � 1=2)). If p1 = p2, then one state enables a1, and the other state

enables a2. For example, if p1 = 5=8 and p2 = 3=8, then the corresponding transitions of C1

are represented below. Let D be a trace distribution of M1kC that is not a trace distribution

τ

τ

τ

τ

s

a

1

1

s

a

1

1a 2

a 2

s2

s2

τ

s sstart 1/2

1/2 1/2

1/2 1/2

1/2

τ

of M2kC. Consider a probabilistic execution H1 of M1kC whose trace distribution is D, and

consider the scheduler that leads to H1 in M1kC. Apply to M1kC1 the same scheduler with

the following modi�cation: whenever a probabilistic transition of C is scheduled, schedule the

start action from C1, then schedule the internal transitions to resolve the probabilistic choice,

and �nally schedule the chosen action. Denote the resulting probabilistic execution by H 0
1 and

the resulting trace distribution by D0. Then,

D
0
� acts(M1kC) = D: (7.71)

To prove (7.71), we de�ne a new construction shr1, similar to shr , to be applied to probabilistic

executions ofMikC1 such that no action ofMi occurs between the occurrence of a starts action

and the occurrence of one of the corresponding external actions of C, and such that all the

transitions of C1 between the occurrence of an action start s and the occurrence of one of the

corresponding external actions of C are scheduled. The new function is identical to shr if we

consider each state reached immediately after the occurrence of a start action like the states �j
used in Lemma 7.5.6. We leave the details to the reader.

Suppose by contradiction that it is possible to obtainD0 fromM2kC1. Consider the scheduler

that leads to D0 in M2kC1, and let H 0
2 be the corresponding probabilistic execution. First, we

build a new probabilistic execution H 00
2 of M2kC1 whose trace distribution is D0, such that

no action of Mi occurs between the occurrence of a starts action and the occurrence of one

of the corresponding external action of C, and such that all the transitions of C1 between

the occurrence of an action start s and the occurrence of one of the corresponding external

action of C are scheduled. Then we let H2 = shr1(H
00
2). This leads to a contradiction since

tdistr(H2) = D.

The construction of H 00
2 , which is left to the reader, is the same as shf if we consider each

state reached immediately after the occurrence of a start action like the states �j used in

Lemma 7.5.6.

Lemma 7.5.8 Let C be a distinguishing balanced separated context for two probabilistic au-

tomata M1 and M2. Then there exists a distinguishing binary separated context C0 for M1

and M2 with no internal actions and such that each action appears exactly in one edge of the

transition tree. C0 is called a total balanced separated context.

163

Proof. The context C0 is obtained from C by renaming all of its actions so that each edge of

the new transition relation has its own action.

Let D be a trace distribution of M1kC that is not a trace distribution ofM2kC. Consider a

probabilistic execution H1 of M1kC whose trace distribution is D, and consider the scheduler

that leads to H1 inM1kC. Apply toM1kC
0 the same scheduler with the following modi�cation:

whenever a transition of C is scheduled, schedule the corresponding transition of C0. Denote the

resulting probabilistic execution by H 0
1 and the corresponding trace distribution by D0. From

construction, H1 and H
0
1 are the same up to the names of the actions of C. Thus, if �0 is the

function that maps each action of C0 to its original name in C, D = �0(D0) (the renaming of a

trace distribution is the probability space induced by the function that renames traces).

Suppose by contradiction that it is possible to obtain D0 fromM2kC
0. Consider the scheduler

that leads to D0 in M2kC
0, and let H 0

2 be the corresponding probabilistic execution. Apply to

M2kC the same scheduler with the following modi�cations: whenever a transition of C0 is

scheduled, schedule the corresponding transition of C with the unrenamed actions. Let H2 be

the resulting probabilistic execution. From the construction, H2 and H 0
2 are the same up to

the names of the actions of C. Thus, tdistr(H2) = �0(D0) = D, which is a contradiction.

Lemma 7.5.9 Let C be a distinguishing total balanced separated context for two probabilistic

automata M1 and M2. Then there exists a distinguishing total balanced separated context C0

for M1 and M2 that from every state enables two deterministic transitions and a probabilistic

transition with a uniform distribution over two choices. C0 is called a complete context.

Proof. In this case it is enough to complete C by adding all the missing transitions and states.

If D is a trace distribution of M1kC that is not a trace distribution of M2kC, then it is enough

to use on M1kC
0 the same scheduler that is used in M1kC. In fact, since each new transition

of C0 has a distinct action, none of the new transitions of C0 can be used in M2kC
0 to generate

D.

Lemma 7.5.10 Let C be a distinguishing complete context for two probabilistic automata M1

and M2. Then the principal context CP is a distinguishing context for M1 and M2.

Proof. The result is achieved in two steps. First the actions of C are renamed so that each state

enables two deterministic transitions with actions left and right , respectively, and a probabilistic

transition with actions pleft and pright . Call this context C1. Then, by observing that each

state s of C1 is uniquely determined by the trace of the unique execution of C1 that leads to s,

all the states of C1 are collapsed into a unique one.

Thus, we need to show only that C1 is a distinguishing context. Let D be a trace distribution

of M1kC that is not a trace distribution of M2kC. Consider the scheduler that leads to D in

M1kC, and apply to M1kC1 the same scheduler with the following modi�cation: whenever a

transition of C is scheduled, schedule the corresponding transition of C1. Denote the resulting

trace distribution by D0. Note that if we rename all the actions of C1 into their original name

in C, then we obtain D.

Suppose by contradiction that it is possible to obtain D0 from M2kC1. Consider the sched-

uler that leads to D0 in M2kC1, and apply to M2kC the same scheduler with the following

modi�cation: whenever a transition of C1 is scheduled, schedule the corresponding transition

of C. The resulting trace distribution is D, which is a contradiction.

164

Lemma 7.5.11 Let CP be a distinguishing context for two probabilistic automata M1 and M2.

Then the simple principal context, denoted by C, is a distinguishing context for M1 and M2.

Proof. Let D be a trace distribution of M1kCP that is not a trace distribution of M2kCP .

Consider a probabilistic execution H1 of M1kCP whose trace distribution is D, and consider

the scheduler that leads to H1 in M1kCP . Apply to M1kC the same scheduler with the follow-

ing modi�cation: whenever the probabilistic transition of CP is scheduled, schedule the start

action of C followed by the next transition of C that becomes enabled. Denote the resulting

probabilistic execution by H 0
1 and the resulting trace distribution by D0. Then,

D
0
� acts(M1kCP) = D: (7.72)

To prove (7.72), we de�ne a new construction shr2, similar to shr , to be applied to probabilistic

executions of MikC such that no action of Mi occurs between the occurrence of a start action

and the occurrence of one of the actions pleft and pright , and such that the transitions labeled

with pleft and pright occur whenever they are enabled. The new function is identical to shr

if we consider each state reached after an action start as a state of the kind �j . We leave the

details to the reader.

Suppose by contradiction that it is possible to obtain D0 fromM2kC. Consider the scheduler

that leads to D0 in M2kC, and let H 0
2 be the corresponding probabilistic execution. First, we

build a new probabilistic execution H 00
2 of M2kC whose trace distribution is D0, such that no

action of M2 occurs between the occurrence of a start action and the occurrence of one of

the actions pleft and pright , and such that the transitions labeled with pleft and pright occur

whenever they are enabled. Then we let H2 = clp2(H
00
2). This leads to a contradiction since

tdistr(H2) = D.

The construction of H 00
2 , which is left to the reader, is the same as shf if we consider each

state reached immediately after the occurrence of a start action like the states �j used in

Lemma 7.5.6.

Proof of Theorem 7.5.1. Let M1 vDC M2. Then, from Lemma 7.5.11,M1kCP vD M2kCP .

Conversely, let M1kCP vD M2kCP . Then, from Lemmas 7.5.3, 7.5.4, 7.5.5, 7.5.6, 7.5.7, 7.5.8,

7.5.9, and 7.5.10,M1 vDC M2.

7.6 Discussion

A trace-based semantics similar to ours is studied for generative processes by Jou and Smolka

[JS90]. One of the processes of Jou and Smolka is essentially one of our probabilistic executions.

The semantics of a process is given by a function, called a trace function, that associates a prob-

ability with each �nite trace. Since our trace distributions are determined by the probabilities

of the cones, our trace distributions are characterized completely by the trace functions of Jou

and Smolka. In other words, the trace semantics of Jou and Smolka is the semantics that we

use to say that two probabilistic executions have the same trace distribution.

Jou and Smolka de�ne also a notion of a maximal trace function. Given a probabilistic

execution H , the interpretation of a maximal trace function in our framework is a function that

associates with each �nite trace � the probability of the extended executions on
H that end in

� and whose trace is �. Jou and Smolka show that the trace function of a process is su�cient

165

to determine the maximal trace function of the process. In our trace distributions the maximal

trace function of a probabilistic execution is given by the probability of each �nite trace in the

corresponding trace distribution. From the de�nition of a trace distribution the probability of

each �nite trace is determined uniquely by the probabilities of the cones, and thus the result of

Jou and Smolka holds also in our framework.

166

Chapter 8

Hierarchical Verication

Simulations

8.1 Introduction

In Chapter 7 we have studied the trace distribution precongruence as an instance of the hierar-

chical method for the veri�cation of probabilistic systems. Another instance of the hierarchical

method is called the simulation method . According to the simulation method, rather than

comparing two probabilistic automata through some abstract observations, two probabilistic

automata are compared by establishing some relation between their states and by showing that

the two probabilistic automata can simulate each other via the given relation. Standard work

on simulation relations appears in [Mil89, Jon91, LV91]. Simulation relations are stronger than

the trace preorder, and are often used as a sound proof technique for the trace preorder.

In this chapter we study how to extend some of the relations of [Mil89, Jon91, LV91] to the

probabilistic framework. We start with the generalization of the simplest relations that do not

abstract from internal computation, and we conclude with the generalization of the forward

simulations of [LV91] that approximate closely the trace distribution preorder. We prove the

equivalent of the Execution Correspondence Lemma [GSSL94] for probabilistic automata, which

states that there is a strong connection between the probabilistic executions of two probabilistic

automata related by some simulation relation. Finally, we use the new Execution Correspon-

dence Lemma to prove that the existence of a probabilistic forward simulation is su�cient to

prove the trace distribution precongruence relation.

8.2 Strong Simulations

One of the �nest equivalence relations for ordinary automata would be graph isomorphism;

however, it is widely recognized that graph isomorphism distinguishes too much. A coarser

equivalence relation is strong bisimulation [Par81, Mil89], where two automata A1 and A2 are

equivalent i� there is an equivalence relation between their states so that for each pair (s1; s2)

of equivalent states,

if s1
a
�! s01, then there exists a state s02 equivalent to s

0
1 such that s2

a
�! s02.

167

s0

s1 s2

s3 s4

a a

b b

s0

s1

s3

a

b

s0

s1 s2

s3

a a

b

A1 A2 A3

Figure 8-1: The di�erence between strong bisimulation and the kernel of strong simulation.

That is, A1 and A2 simulate each other. A preorder relation that is closely connected to

strong bisimulation is strong simulation. An automaton A1 is strongly simulated by another

automaton A2 i� there is a relation between the states of A1 and the states of A2 so that for

each pair (s1; s2) of related states,

if s1
a
�! s01, then there exists a state s02 such that s2

a
�! s02 and s

0
1 is related to s02.

The kernel of strong simulation is an equivalence relation that is coarser than bisimulation.

Example 8.2.1 (Strong simulation and strong bisimulation) Figure 8-1 shows the dif-

ference between strong bisimulation and the kernel of strong simulation. The double-arrow

dotted links represent a strong bisimulation between A1 and A2; thus, A1 and A2 are strongly

bisimilar. There is also a strong simulation from A2 to A3, expressed by the dotted lines that

have an arrow pointing to A3, and a strong simulation from A3 to A2, expressed by the dotted

lines that have an arrow pointing to A2. Thus, A2 and A3 are equivalent according to the kernel

of strong simulation. However, there is no bisimulation between A2 and A3 since state s2 of A3

must be related to state s1 of A2 in order for A2 to be able to simulate the transition s0
a
�! s2

of A3, but then it is not possible to simulate the transition s1
b
�! s3 of A2 from s2 in A3.

The extension of strong bisimulation and strong simulation to the probabilistic framework

presents a problem due to the fact that a probabilistic transition leads to a probability distri-

bution over states rather than to a single state. Thus, a relation over states needs to be lifted

to distributions over states. Here we borrow an idea from [JL91].

Let R� X � Y be a relation between two sets X; Y , and let P1 and P2 be two probability

spaces of Probs(X) and Probs(Y), respectively. Then P1 and P2 are in relation vR, written

P1 vR P2, i� there exists a weight function w : X � Y ! [0; 1] such that

1. for each x 2 X ,
P

y2Y w(x; y) = P1[x],

2. for each y 2 Y ,
P

x2X w(x; y) = P2[y],

3. for each (x; y) 2 X � Y , if w(x; y) > 0 then x R y.

Example 8.2.2 (Lifting of one relation) The idea behind the de�nition of vR is that each

state of
1 must be represented by some states of
2, and similarly, each state of
2 must

represent one or more states of
1. Figure 8-2 gives an example of two probability spaces that

168

1/2

1/2

1/3

1/3

1/3

1/3

1/3

1/6

1/6

s1,1

s

s

s

s

1,2

2,1

2,2

2,3

Figure 8-2: Lifting one relation.

are related. The dotted lines connect states that are related by R. Thus, state s1;1 can be

represented by s2;1 for a third of its probability, and by s2;2 for the reminder. Similarly, state

s2;2 represents s1;1 for one sixth of its probability and s1;2 for the reminder. A useful property

of vR is its preservation over combination of probability spaces.

If R is an equivalence relation, then we denote the relation vR alternatively by �R. The reason

for the alternative notation is that whenever R is an equivalence relation and P1 �R P2, each

equivalence class of R is assigned the same probability in P1 and P2 (cf. Lemma 8.2.2).

The de�nition of strong bisimulation and strong simulation for probabilistic automata are

now straightforward. For convenience assume that M1 and M2 do not have common states.

A strong bisimulation between two simple probabilistic automata M1;M2 is an equivalence

relation R over states(M1)[states(M2) such that

1. each start state of M1 is related to at least one start state of M2, and vice versa;

2. for each pair of states s1 R s2 and each transition s1
a
�! P1 of either M1 or M2, there

exists a transition s2
a
�! P2 of either M1 or M2 such that P1 �R P2.

We write M1 'M2 whenever acts(M1) = acts(M2) and there is a strong bisimulation between

M1 and M2.

A strong simulation between two simple probabilistic automata M1;M2 is a relation R�

states(M1)� states(M2) such that

1. each start state of M1 is related to at least one start state of M2;

2. for each pair of states s1 R s2 and each transition s1
a
�! P1 ofM1, there exists a transition

s2
a
�! P2 of M2 such that P1 vR P2.

We writeM1 vSS M2 whenever acts(M1) = acts(M2) and there is a strong simulation fromM1

to M2. We denote he kernel of strong simulation by �SS. Because of Lemma 8.2.2, our strong

bisimulations are the same as the bisimulations of [Han94], and our strong simulations are a

generalization of the simulations of [JL91].

It is easy to check that ' is an equivalence relation, that vSS is a preorder relation, and

that both ' and vSS are preserved by the parallel composition operator.

We conclude this section by proving two results about the lifting of a relation. The �rst

result shows that the lifting of a relation is preserved by the combination of probability spaces;

the second result shows that P1 �R P2 i� P1 and P2 assign the same probability to each

equivalence class of R.

169

Lemma 8.2.1 Let PX;i vR PY;i via a weight function wi, and let fpigi�0 be a family of

real numbers between 0 and 1 such that
P

i�0 pi = 1. Then
P

i�0 piPX;i vR
P

i�0 piPY;i viaP
i�0 piwi.

Proof. Let PX =
P

i�0 piPX;i, PY =
P

i�0 piPY;i, and w =
P

i�0 piwi. Let x 2
X . ThenP
y2
Y

w(x; y) =
P

y2
Y

P
i�0 piwi(x; y) =

P
i�0 pi(

P
y2
Y

wi(x; y)) =
P

i�0 piPX;i[x] = PX [x].

Condition 2 of the de�nition of vR is veri�ed similarly. For Condition 3, let w(x; y) > 0. Then

there exists an i such that wi(x; y) > 0, and thus x R y.

Lemma 8.2.2 Let X; Y be two disjoint sets, R be an equivalence relation on X [Y , and let

P1 and P2 be probability spaces of Probs(X) and Probs(Y), respectively. Then, P1 �R P2 i�

for each equivalence class C of (X [Y)=R, P1[C \
1] = P2[C \
2].

Proof. Suppose that P1 �R P2, and let w be the corresponding weight function. Then, for

each equivalence class C of (X [Y)=R,

P1[C \
1] =
X

x2C\
1

P1[x] =
X

x2C\
1

X
y2C\
2

w(x; y); (8.1)

and

P2[C \
2] =
X

y2C\
2

P2[y] =
X

y2C\
2

X
x2C\
1

w(x; y): (8.2)

From the commutativity and associativity of sum,

P1[C \
1] = P2[C \
2]: (8.3)

Conversely, suppose that each equivalence class (X [Y)=R has the same probability in P1 and

P2. We de�ne w(x; y) for each equivalence class of (X [Y)=R, and we assume implicitly that

w is 0 for all the pairs (x; y) 2
1 �
2 that are not considered in the construction below.

Consider any equivalence class C of (X [Y)=R, and let X 0 = C \
1, and Y
0 = C \
2. From

hypothesis we know that P1[X
0] = P2[Y

0]. Let x1; x2; : : : be an enumeration of the points of

X 0, and let y1; y2; : : : be an enumeration of the points of Y 0. For each i, let pi =
P

k<i P1[xi]

and let qi =
P

k<i P2[yi]. Then

w(xi; yj) =

(
0 if pi+1 � qj or qj+1 � pi
min(pi+1; qj+1)�max (pi; qj) otherwise.

Informally, the construction above works as follows. Consider two intervals [0; P1[X
0]], and

mark the �rst interval with the points pi and the second interval with the points qj . Each

interval [pi; pi+1] has length P1[xi] and each interval [qj ; qj+1] has length P2[yj]. The weight

function w(xi; yj) is de�ned to be the length of the intersection of the intervals associated with

xi and yj , respectively. It is simple to verify that w is a weight function for P1 and P2.

170

s0s1

s2

s1

s2

1/2

1/2

a

a a

a

1/4

3/4

s1 s2

s0s1

s2

s1

s2

1/2

1/2

a

a a

a

a a

3/8 5/8

1/4

3/4

M1 M2

Figure 8-3: Combining transitions to simulate a transition.

8.3 Strong Probabilistic Simulations

In the de�nition of strong bisimulations and strong simulations we have not taken into account

the fact that the nondeterminism can be resolved by combining several transitions probabilis-

tically into a unique one. That is, a transition of a probabilistic automaton could be simulated

by combining several transitions of another probabilistic automaton.

Example 8.3.1 (Combining transitions to simulate another transition) Consider the

two probabilistic automata M1 and M2 of Figure 8-3. M2 contains the transitions of M1 plus

a transitions that is obtained by combining probabilistically the transitions of M1. For this

reason there is no simulation from M2 to M1 (the additional transition cannot be simulated).

On the other hand, M1 and M2 have exactly the same probabilistic executions, and therefore

we do not see any reason to distinguish them.

Example 8.3.1 suggests two new relations, which are coarser than strong bisimulation and strong

simulation, where the only di�erence is that a transition can be simulated by a probabilistic

combination of transitions.

For convenience assume thatM1 andM2 do not have common states. A strong probabilistic

bisimulation between two simple probabilistic automata M1;M2 is an equivalence relation R

over states(M1) [states(M2) such that

1. each start state of M1 is related to at least one start state of M2, and vice versa;

2. for each pair of states s1 R s2 and each transition s1
a
�! P1 of either M1 or M2, there

exists a combined transition s2
a
�!C P2 of either M1 or M2 such that P1 �R P2.

We write M1 'P M2 whenever acts(M1) = acts(M2) and there is a strong probabilistic bisim-

ulation between M1 and M2.

A strong probabilistic simulation between two simple probabilistic automata M1 and M2 is

a relation R� states(M1)� states(M2) such that

1. each start state of M1 is related to at least one start state of M2;

2. for each pair of states s1 R s2 and each transition s1
a
�! P1 ofM1, there exists a combined

transition s2
a
�!C P2 of M2 such that P1 vR P2.

We write M1 vSPS M2 whenever acts(M1) = acts(M2) and there is a strong probabilistic

simulation from M1 to M2. We denote the kernel of strong probabilistic simulation by �SPS.

171

It is easy to check that 'P is an equivalence relation, that vSPS is a preorder relation, and

that both 'P and vSPS are preserved by the parallel composition operator. It is easy as well

to verify that a strong bisimulation is also a strong probabilistic bisimulation and that a strong

simulation is also a strong probabilistic simulation.

8.4 Weak Probabilistic Simulations

The abstraction from internal computation can be obtained in the same way as for ordinary

automata: a transition of a probabilistic automaton should be simulated by a collection of

internal and external transitions of another probabilistic automaton. For the formal de�nition

we use the weak combined transitions of Chapter 4.

For convenience assume that M1 and M2 do not have common states. A weak probabilistic

bisimulation between two simple probabilistic automataM1 and M2 is an equivalence relation

R over states(M1) [states(M2) such that

1. each start state of M1 is related to at least one start state of M2, and vice versa;

2. for each pair of states s1 R s2 and each transition s1
a
�! P1 of either M1 or M2, there

exists a weak combined transition s2
a�ext(M2)
=)C P2 of either M1 orM2 such that P1 �R P2.

We writeM1 =P M2 whenever ext(M1) = ext(M2) and there is a weak probabilistic bisimulation

between M1 and M2.

A weak probabilistic simulation between two simple probabilistic automataM1 and M2 is a

relation R� states(M1)� states(M2) such that

1. each start state of M1 is related to at least one start state of M2;

2. for each pair of states s1 R s2 and each transition s1
a
�! P1 of M1, there exists a weak

combined transition s2
a�ext(M2)
=)C P2 of M2 such that P1 vR P2.

We write M1 vWPS M2 whenever ext(M1) = ext(M2) and there is a weak probabilistic simula-

tion from M1 to M2. We denote the kernel of weak probabilistic simulation by �WPS.

It is easy to verify that a strong probabilistic bisimulation is also a weak probabilistic

bisimulation and that a strong probabilistic simulation is also a weak probabilistic simulation.

However, it is not as easy to verify that =P is an equivalence relation, that vWPS is a preorder

relation, and that both =P and vWPS are preserved by the parallel composition operator. The

veri�cation of these properties is a simpli�cation of the veri�cation of the same properties for

the relation of the next section. For this reason we omit the proofs from this section.

8.5 Probabilistic Forward Simulations

One of the main results of this chapter is that all the relations presented so far are sound for

the trace distribution precongruence. However, none of the relations of the previous sections

allow for one probabilistic operation to be implemented by several probabilistic operations.

172

s0

s1

s2

s6

s5

s4

s3 s

s

s

s

7

8

9

10

a

b

c

d

τ

τ

τ

τ

τ

τ

1/2

1/2

1/2

1/2

1/2

1/2

M1 M2

7

8

9

10

a

b

c

d

τ

τ

τ

τ

1/4

1/4

1/4

1/4

0

3

4

5

6

s

s

s

s

s

s

s

s

s

’

’

’

’ ’

’

’

’

’

Figure 8-4: Implementation of a probabilistic transition with several probabilistic transitions.

s0

s1

s2

s6

s5

s3

s4

τ

τ

τ

τ

τ

τ

τ

τ

s

s

s

s

s

s

s

s

7

8

9

10

11

12

13

14

s

sb

s

s

s

s

s

s

15

16

17

18

19

20

21

22

a

c

d

e

f

g

h

1/2
1/2

1/2
1/2

1/2
1/2

1/2
1/2

M2M1

τ

τ

τ

τ

1/4

1/4

1/4

1/4

l

m

l

l

l

m

m

m

0

3

4

5

6

1/2
1/2

1/2
1/2

1/2
1/2

1/2
1/2

s

s

s

s

s

7

8

9

10

11

12

13

14

b

15

16

17

18

19

20

21

22

a

c

d

e

f

g

h

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

τ

τ

1/2

1/2

1/2

1/2

1/2

1/2

l

l

m

m

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

Figure 8-5: A more sophisticated implementation.

Example 8.5.1 (Weak probabilistic simulations are too coarse) Consider the two prob-

abilistic automata of Figure 8-4. The probabilistic automatonM2, which chooses internally one

element out of four with probability 1=4 each, is implemented by the probabilistic automaton

M1, which
ips two fair coins to make the same choice. However, the �rst transition of M1

cannot be simulated by M2 since the probabilistic choice of M2 is not resolved completely yet

in M1. This situation suggests a new preorder relation where a state of M1 can be related

to a probability distribution over states of M2. The informal idea behind a relation s1 R P2
is that s1 represents an intermediate stage of M1 in reaching the distribution P2. For exam-

ple, in Figure 8-4 state s1 would be related to a uniform distribution P over states s03 and s04
(P = U(s03; s

0
4)), meaning that s1 is an intermediate stage ofM1 in reaching the distribution P .

It is also possible to create examples where the relationship between s and P does not mean

simply that s is an intermediate stage of M1 in reaching the distribution P , but rather that

s is an intermediate stage in reaching a probability distribution that can be reached from P .

Consider the two probabilistic automata of Figure 8-5. Although not evident at the moment,

M1 and M2 are in the trace distribution precongruence relation, i.e., M1 vDC M2. Following

the same idea as for the example of Figure 8-4, state s1 is related to U(s03; s
0
4). However, s1 is

173

not an intermediate stage ofM1 in reaching U(s03; s
0
4), since s1 enables a transition labeled with

an external action l, while in M2 no external action occurs before reaching U(s03; s
0
4). Rather,

from s03 and s04 there are two transitions labeled with l, and thus the only way to simulate

the transition s1
l
�! U(s3; s4) from U(s

0
3; s

0
4) is to perform the two transitions labeled with

l, which lead to the distribution U(s07; s
0
8; s

0
9; s

0
10). Now the question is the following: in what

sense does U(s07; s
0
8; s

0
9; s

0
10) represent U(s3; s4)? The �rst observation is that s3 can be seen as

an intermediate stage in reaching U(s07; s
0
8), and that s4 can be seen as an intermediate stage in

reaching U(s09; s
0
10). Thus, s3 is related to U(s07; s

0
8) and s4 is related to U(s09; s

0
10). The second

observation is that U(s07; s
0
8; s

0
9; s

0
10) can be expressed as 1=2U(s07; s

0
8) + 1=2U(s09; s

0
10). Thus,

U(s07; s
0
8; s

0
9; s

0
10) can be seen as a combination of two probability spaces, each one representing

an element of U(s3; s4). This recalls the lifting of a relation that we introduced at the beginning

of this chapter.

Based on Example 8.5.1, we can move to the formal de�nition of a probabilistic forward simu-

lation. A probabilistic forward simulation between two simple probabilistic automata M1 and

M2 is a relation R� states(M1)� Probs(states(M2)) such that

1. each start state of M1 is related to at least one Dirac distribution over a start state of

M2;

2. for each s R P 0, if s
a
�! P1, then

(a) for each s0 2
0 there exists a probability space Ps0 such that s0
a�ext(M2)
=)C Ps0 , and

(b) there exists a probability space P 02 of Probs(Probs(states(M2))) satisfying P1 vR P
0
2,

such that
P

s02
0 P
0[s0]Ps0 =

P
P2
02

P 02[P]P .

We write M1 vFS M2 whenever ext(M1) = ext(M2) and there is a probabilistic forward simu-

lation from M1 to M2.

Example 8.5.2 (A probabilistic forward simulation) The probabilistic forward simula-

tion for the probabilistic automata M1 and M2 of Figure 8-5 is the following: s0 is related

to U(s00); each state si, i � 7, is related to D(s0i); each state si, 1 � i � 6, is related to

U(s02i+1; s
0
2i+2). It is an easy exercise to check that this relation is a probabilistic forward

simulation. Observe also that there is no probabilistic forward simulation from M2 to M1. In-

formally, s03 cannot be simulated by M1, since the only candidate state to be related to s01 is s1,

and s1 does not contain all the information contained in s03. The formal way to see that there

is no probabilistic forward simulation from M2 to M1 is to observe that M2 and M1 are not in

the trace distribution precongruence relation and then use the fact that probabilistic forward

simulations are sound for the trace distribution precongruence relation (cf. Section 8.7). In

M2kCP it is possible force action left to be scheduled exactly when M2 is in s03, and thus it

is possible to create a correlation between action left and actions a and b; in M1kCP such a

correlation cannot be created since action left must be scheduled before action l.

It is easy to check that a weak probabilistic simulation is a special case of a probabilistic forward

simulation where each state ofM1 is related to a Dirac distribution. The veri�cation that vFS

174

is a preorder that is preserved by parallel composition is more complicated. In this section

we show that vFS is preserved by parallel composition; the proof that vFS is a preorder is

postponed to Section 8.6.4.

Proposition 8.5.1 vFS is preserved by the parallel composition operator.

Proof. Let M1 vFS M2, and let R be a probabilistic forward simulation from M1 to M2. Let

R
0 be a relation between states(M1)� states(M3) and Probs(states(M2)� states(M3)), de�ned

as follows:

(s1; s3) R
0
P i� P = P2
D(s3) for some P2 such that s1 R P2. (8.4)

Condition 1 of the de�nition of a probabilistic forward simulation is immediate to verify. Con-

dition 2 for transitions that involve M1 only or M3 only is immediate to verify as well.

Let (s1; s3) R
0
P2
 D(s3), and let (s1; s3)

a
�! P1
 P3, where s1

a
�! P1, and s3

a
�!

P3. From the de�nition of a probabilistic forward simulation, for each s 2
2 there exists

a weak combined transition s2
a

=)C Ps of M2, and there exists a probability space P 02 of

Probs(Probs(states(M2))), such thatX
s2
2

P2[s]Ps =
X
P2
02

P 02[P]P ; (8.5)

and

P1 vR P
0
2: (8.6)

For each s 2
2, let Os be a generator for s
a

=)C Ps. De�ne a new generator O0s as follows:

for each �nite execution fragment � of M2kM3 starting in (s; s3),

1. if Os(�dM2) = (s0;P), where (s0;P) =
P

i pi(s
0; ai;Pi), each (s0; ai;Pi) is a transition of

M2, and �dM3 = s3, then

O
0
s(�) =

X
i

pi((s
0; s3); ai;Pi
 P

0
i);

where

P 0i = D(s3) if ai 6= a, and P 0i = P3 if ai = a.

2. if Os(�dM2) = (s0;P), where (s0;P) =
P

i pi(s
0; ai;Pi), each (s0; ai;Pi) is a transition of

M2, �dM3 = s3as
0
3, and s

0
3 2
3, then

O
0
s(�) =

X
i

pi((s
0; s03); ai;Pi
 D(s

0
3));

3. if none of the above cases holds, then O0s(�) = D(�).

175

The weak combined transition generated by each O0s is (s; s3)
a

=)C Ps
P3. In fact, an execution

fragment � of M2kM3 is terminal for O0s i� �dM2 is terminal for Os and �dM3 = s3as
0
3 for

s03 2
3, and thus
O0s =
s �
3. Moreover, for each � 2
O0s , P
O0s
� = POs

�dM2
P3[lstate(�dM3)].

Denote Ps
 P3 by P(s;s3). Then, for each (s; s3) 2
2 � D(s3), we have identi�ed a weak

combined transition (s; s3)
a

=)C P(s;s3). These are the spaces of Condition 2.a in the de�nition

of a probabilistic forward simulation. Note that P(s;s3) can be expressed alternatively as

P(s;s3) =
X
s032
3

P3[s
0
3]
�
Ps
 D(s

0
3)
�
: (8.7)

Let

P
0
2;3

4
=

X
s032
3

P3[s
0
3]
�
P
0
2
D(D(s

0
3))
�
; (8.8)

where the pairing of two probability spaces is meant to be their product. For each s03 2
3,

since P1 vR P
0
2, P1
 D(s

0
3) vR P

0
2
 D(D(s

0
3)). Thus, from Lemma 8.2.1, P1
 P3 vR P

0
2;3.

This is enough to show that Condition 2.b of the de�nition of a probabilistic forward simulation

is satis�ed.

We are left with
P

s2
2 P2[s]P(s;s3) =
P
P2
02;3

P 02;3[P]P , which is shown as follows. From (8.7),

X
s2
2

P2[s]P(s;s3) =
X
s2
2

X
s032
3

P2[s]P3[s
0
3]
�
Ps
D(s

0
3)
�
: (8.9)

From (8.5),X
s2
2

P2[s]P(s;s3) =
X
s032
3

X
P2
02

P 02[P]P3[s
0
3]
�
P
 D(s03)

�
: (8.10)

From a simple algebraic manipulation,X
s2
2

P2[s]P(s;s3) =
X
s032
3

X
P2
P0

2

D(D(s0

3
))

P3[s
0
3]P

0
2[P]P : (8.11)

From (8.8),X
s2
2

P2[s]P(s;s3) =
X

P2
02;3

P 02;3[P]P : (8.12)

8.6 The Execution Correspondence Theorem

The existence of some simulation relation between two probabilistic automata implies that there

is some strict relation between their probabilistic executions. This relationship is known as the

execution correspondence lemma for ordinary automata [GSSL94] and is useful in the context

of liveness. In this section we prove the execution correspondence theorem for probabilistic

automata; a corollary, which is proved in Section 8.7, is that the existence of a probabilistic

forward simulation is sound for the trace distribution precongruence.

176

s0

F
2

F
1

F
3

Figure 8-6: Fringes.

8.6.1 Fringes

Let H be a probabilistic execution of a probabilistic automatonM . De�ne the extended states

of H , denoted by extstates(H), to be states(H) [fq� j q 2 states(H); PH[Cq�] > 0g. A fringe

of H is a discrete probability space P of Probs(extstates(H)) such that for each state q of H ,X
q02
jq�q0

P [q0] � PH [Cq]: (8.13)

Two fringes P1 and P2 are in the � relation i� for each state q of H ,X
q02
1jq�q0

P1[q
0] �

X
q02
2jq�q0

P2[q
0]: (8.14)

Informally, a fringe is a line that cuts a probabilistic execution in two parts (see Figure 8-6). A

fringe is smaller than another one if the �rst fringe cuts the probabilistic execution earlier than

the second fringe. Figure 8-6 shows three fringes F1; F2 and F3, where F1 � F2 � F3.

A fringe of particular interest is the fringe that cuts a probabilistic execution fragment at

some depth i. Let fringe(H; i) denote the fringe of H where
 = fq 2 extstates(H) j jqj =

ig [fq� 2 extstates(H) j jqj < ig, and for each q 2
, P [q] = PH [Cq].

8.6.2 Execution Correspondence Structure

Let R be a probabilistic forward simulation from M1 to M2. An execution correspondence

structure via R is a tuple (H1; H2; m; S), where H1 is a probabilistic execution of M1, H2 is a

probabilistic execution of M2, m is a mapping from natural numbers to fringes of M2, and S

is a mapping from natural numbers to probability distributions of Probs(Probs(states(H2))),

such that

1. For each i, m(i) � m(i+ 1);

2. For each state q2 of H2, limi!1
P

q2
ijq2�q Pi[q] = PH [Cq];

3. Let q1 R P i� for each q 2
, trace(q) = trace(q1), and either

(a) q1 does not end in �, each state of
 does not end in �, and lstate(q1) R lstate(P),

or

(b) q1 and each state of
 end in � and lstate(�-strip(q1)) R lstate(�-strip(P)).

Then, for each i � 0, m(i) =
P
P2
S(i)

PS(i)[P]P , and fringe(H1; i) vR S(i).

177

s0

F
i

F
3

F
2

F
1

F
0

s0

F
i

F
3

F
2

F
1

F
0

s0 s0

m(0)
m(1)

m(2)
m(3)

m(i)

q
m(0)

m(1)
m(2)

m(i)
m(3)

q

Figure 8-7: Execution Correspondence Structures: the role of Condition 2.

4. Let, for each i � 0, each q1 2 fringe(H1; i), and each q2 2 states(H2), Wi(q1; q2)
4
=P

P wi(q1;P)P [q2]. If Wi(q1; q
0
2) = 0 for each pre�x or extension q02 of q2, then, for each

extension q01 of q1 such that q01 2 fringe(H1; i+ 1) and each pre�x or extension q02 of q2,

Wi+1(q
0
1; q

0
2) = 0.

Informally, an execution correspondence structure is an object that shows how a probabilistic

execution H1 of M1 is represented by a probabilistic execution H2 of M2 via R. H2 is said to

be the probabilistic execution fragment that corresponds to H1. Conditions 1 and 3 state that

each fringe fringe(H1; i) is represented by the fringe m(i) in H2, and Condition 2 states that

at the limit each state of H2 represents some part of H1. Figure 8-7 gives an example of an

execution correspondence structure (left) and of a structure that fails to satisfy Condition 2

since state q is not captured (right). Condition 4 enforces the correspondence between H1 and

H2. Informally, it states that if two states q1 and q2 of H1 and H2, respectively, are connected

through the ith fringes, then for each j < i there are two pre�xes q01 and q02 of q1 and q2,

respectively, that are connected through the jth fringes. This condition allows us to derive a

correspondence structure between the execution fragments ofM1 andM2 that denote the states

of H1 and H2. We do not use Condition 4 to prove any of the results that we present in this

thesis; however, this condition is necessary to prove the results that Segala and Lynch present

in [SL94].

If R is a weak probabilistic simulation, then an execution correspondence structure is a

triplet (H1; H2; m): Condition 3 becomes fringe(H1; i) vR m(i), where q1 R q2 i� trace(q1) =

trace(q2) and either q1 and q2 end in � and �-strip(lstate(q1)) R �-strip(lstate(q2)), or lstate(q1) R

lstate(q2); Wi(q1; q2) becomes wi(q1; q2), and Condition 4 says that for each i � 0, given

q1 2 fringe(H1; i) and q2 2 states(H2), if wi(q1; q
0
2) = 0 for each pre�x or extension q02 of q2,

then, for each extension q01 of q1 such that q01 2 fringe(H1; i+ 1), and each pre�x or extension

q02 of q2, wi+1(q
0
1; q

0
2) = 0.

178

IfR is a strong probabilistic simulation, then an execution correspondence structure is a pair

(H1; H2): Conditions 1 and 2 are removed; Condition 3 becomes fringe(H1; i) vR fringe(H2; i)

where q1 R q2 i� itrace(q1) = itrace(q2) and either q1 and q2 end in � and �-strip(lstate(q1)) R

�-strip(lstate(q2)), or lstate(q1) R lstate(q2); Condition 4 says that for each i � 0, given q1 2

fringe(H1; i) and q2 2 fringe(H2; i), if wi(q1; q2) = 0, then, for each extension q01 of q1 such that

q01 2 fringe(H1; i+1) and each extension q
0
2 of q2 such that q

0
2 2 fringe(H2; i+1), wi+1(q

0
1; q

0
2) = 0.

8.6.3 The Main Theorem

Theorem 8.6.1 Let M1 vFS M2 via the probabilistic forward simulation R, and let H1 be a

probabilistic execution of M1. Then there exists a probabilistic execution H2 of M2, a map-

ping m from natural numbers to fringes of M2, and a mapping S from natural numbers to

probability distributions of Probs(Probs(states(H2))), such that (H1; H2; m; S) is an execution

correspondence structure via R.

Proof. Let q1 be a state of H1, and let P2 be a distribution over potential states of H2 such

that q1 vR P2 according to the de�nition given in the de�nition of an execution correspondence

structure. Denote by Pq1H1
the probability space such that trH1

q1
=
P

tr2

q1
H1

P
q1
H1
[tr](q1

a tr). Let

tr1 2

q1
H1
, and let Ptr1 be the probability space reached in q1

a tr 1.

Since R is a probabilistic forward simulation, then for each state q2 of
2 there exists a

weak transition tr q1P2tr1q2 of H2 with action a � ext(M2), leading to a distribution over states

Pq1P2tr1q2 , such that there exists a probability distribution over probability distributions of

potential states of H2, denoted by PSq1P2tr1 , satisfyingX
P2
S

q1P2tr1

PS
q1P2tr1 [P]P =

X
q22
2

P2[q2]Pq1P2tr1q2 (8.15)

and

Ptr1 vR P
S
q1P2tr1 (8.16)

via a weight function wq1P2tr1 . Denote the probability space
P

q22
2 P2[q2]Pq1P2tr1q2 by Pq1P2tr1 ,

i.e.,

Pq1P2tr1
4
=

X
q22
2

P2[q2]Pq1P2tr1q2 : (8.17)

Denote the generator of each weak transition tr q1P2tr1q2 by Oq1P2tr1q2 (cf. Section 4.2.7). For the

sake of this proof, we change the notation for the generators of the transitions of a probabilistic

execution. Thus, for each q02 such that q2 � q
0
2, Oq1P2tr1q2(q

0
2) stands for Oq1P2tr1q2(q

0
2"q2), and

P
Oq1P2tr1q2

q02
stands for P

Oq1P2tr1q2

q02"q2
.

For each state q1 and each probability distribution over states P2, let �q1
4
= D(q1�), �P2

4
=P

q22
2 P2[q2]�q2 , �
S
P2

4
= D(�P2), and w�q1P2 be a weight function such that w�q1P2(q1�;P2) = 1.

Note that, if for each q2 2
2, trace(q1) = trace(q2), then

�q1 vR �SP2 (8.18)

179

via w�q1P2 . Moreover,

�P2 =
X

P2
S
P2

P�S
P2

[P]P : (8.19)

Let s1 be the start state of H1, and s2 be a start state ofM2 that is related to s1. We know

that s2 exists since R is a probabilistic forward simulation. Let Active be the smallest set such

that

1. (s1;D(s2)) 2 Active;

2. if (q1;P2) 2 Active, tr1 2

q1
H1
, and (q01;P

0
2) 2
tr1 �
S

q1P2tr1
, then (q01;P

0
2) 2 Active;

3. if (q1;P2) 2 Active, P
q1
H1
[�] > 0, then (q1�; �

S
P2
) 2 Active.

Observe that for each pair (q1;P2) 2 Active, q1 R P2 (simple inductive argument). For each q1
such that there exists some P2 with (q1;P2) 2 Active, each tr1 2

q1
H1
, and each q2 2
2, let

active(q1;P2; tr1; q2) be the set of states that are active in Oq1P2tr1q2 , and let reach(q1;P2; tr1; q2)

be the set of states that are reachable in Oq1P2tr1q2 . Let active denote the union of the sets

reach(q1;P2; tr1; q2) where (q1;P2) 2 Active, tr1 2

q1
H1
, and q2 2
2. For each i � 0, let

Active(i) be the set of pairs (q1;P2) 2 Active such that either jq1j = i or jq1j � i and q1 ends

in �. For each pair (q1;P2) of Active such that q1 does not end in �, let

Pq1
4
=

X
tr12

q1
H1

P
q1
H1
[tr1]Ptr1 + P

q1
H1
[�]�q1 (8.20)

be the probability space reached in H1 with the transition enabled from q1,

Pq1P2
4
=

X
tr12

q1
H1

P
q1
H1
[tr1]Pq1P2tr1 + P

q1
H1
[�]�P2 (8.21)

be the probability space that is reached in the corresponding transition of P2,

P
S
q1P2

4
=

X
tr12

q1
H1

P
q1
H1
[tr1]P

S
q1P2tr1

+ P
q1
H1
[�]�SP2 (8.22)

be the probability space of probability spaces that corresponds to Pq1 , and for each q01;P
0
2,

wq1P2(q
0
1;P

0
2)

4
=

X
tr12

q1
H1

P
q1
H1
[tr1]wq1P2tr1(q

0
1;P

0
2) + P

q1
H1
[�]w�q1P2(q

0
1;P

0
2) (8.23)

be the corresponding weight function. From Lemma 8.2.1,

Pq1 vR P
S
q1P2 (8.24)

via the weight function wq1P2 .

For each pair (q1;P2) of Active such that q1 ends in �, let

Pq1
4
= D(q1); Pq1;P2

4
= P2; P

S
q1;P2

4
= D(P2); and wq1P2(q1;P2)

4
= 1: (8.25)

It is immediate to observe that Equation (8.24) holds also in this case.

180

De�ne m(i); S(i) and wi inductively as follows.

m(0)
4
= D(s2); S(0)

4
= D(m(0)); w0(s1; m(0))

4
= 1; (8.26)

m(i+ 1)
4
=

X
(q1;P2)2Active(i)

wi(q1;P2)Pq1P2 ; (8.27)

S(i+ 1)
4
=

X
(q1;P2)2Active(i)

wi(q1;P2)P
S
q1P2

; (8.28)

wi+1(q
0
1;P

0
2)

4
=

X
(q1;P2)2Active(i)

wi(q1;P2)wq1P2(q
0
1;P

0
2): (8.29)

To show that Equations (8.27), (8.28),and (8.29) are well de�ned, we show by induction that

for each i � 0,
P

(q1;P2)2Active(i)
wi(q1;P2) = 1. The base case is a direct consequence of (8.26)

and the de�nition of Active(0). For the inductive step,X
(q1;P2)2Active(i+1)

wi+1(q1;P2)

=
X

(q1;P2)2Active(i+1)

X
(q01;P

0
2)2Active(i)

wi(q
0
1;P

0
2)wq01P

0
2
(q1;P2)

=
X

(q01;P
0
2)2Active(i)

wi(q
0
1;P

0
2)

= 1;

where the �rst step follows from Equation (8.29), the second step follows from the fact that

wq01;P
0
2
is a weight function that is non zero only in pairs of Active(i + 1), and the third step

follows from induction. Let

Wq1P2tr1q2(q
0
2)

4
= w(q1;P2)P

q1
H1
[tr1]P2[q2]P

Oq1P2tr1q2

q02
: (8.30)

Consider a state q2 of active. Then the transition enabled from q2 isX
(q01;P

0
2)2Active

X
tr12

H1
q0
1

X
q022

0
2jq22active(q

0
1;P

0
2;tr1;q

0
2)

(8.31)

POq1P2tr1q
0
2
(q2)[acts(M2)]Wq01P

0
2tr1q

0
2
(q2)=W (q2)

�
Oq01P2tr1q

0
2
(q2) � acts(M2)

�
;

where W (s2)
4
= 1, and for each q2 6= s2,

W (q2)
4
=

X
(q01;P

0
2)2Active

X
tr12

H1
q0
1

X
q022

0
2jq

0
2 6=q2;q22reach(q

0
1;P

0
2;tr1;q

0
2)

Wq01P
0
2tr1q

0
2
(q2): (8.32)

It is easy to verify that Expression (8.31) denotes a valid transition of a probabilistic execution

fragment of M since it is the combination of legal transitions of a probabilistic execution

fragment of M . The fact that the projection of a legal transition of a probabilistic execution

fragment of M onto acts(M) is still a legal transition of a probabilistic execution fragment of

M follows from the fact that M is a simple probabilistic automaton.

181

Informally, the set active is used to identify all the states ofH2. The transition enabled from

each one of those states, say q2, is due to several states of H1, and each state of H1 in
uences

the transition enabled from a speci�c state of H2 with a di�erent probability. Such a probability

depends on how much a state of H2 represents a state of H1, on the probability of the transition

of M1 that has to be matched, on the probability of reaching a speci�c state q02 of H2 during

the matching operation, on the probability of reaching q2 from q02, and on the probability of

departing from q2. These conditions are captured by PO
q1P2tr1q

0
2
(q2)[acts(M2)]Wq01P

0
2tr1q

0
2
(q2).

These weights must be normalized with respect to the probability of reaching q2, which is

expressed by W (q2). The condition q02 6= q2 in the third sum of (8.32) is justi�ed by the fact

W (q2) is the probability of reaching q2.

This completes the de�nition of H2, m(i), S(i), and the wi's. We need to show that

(H1; H2; w; S) is an execution correspondence structure via R. Thus, we need to show the

following properties.

1. For each i, m(i) is a fringe of H2;

2. For each i, m(i) � m(i+ 1);

3. For each state q of H2, limi!1
P

q02
ijq�q0
Pi[q

0] = PH [Cq];

4. For each i, m(i) =
P
P2S(i) PS(i)[P]P ;

5. For each i, fringe(H1; i) vR S(i) via wi.

6. For each i, each q1 2 fringe(H1; i), and each q2 2 states(H2), if Wi(q1; q
0
2) = 0 for each

pre�x or extension q02 of q2, then, for each extension q
0
1 of q1 such that q

0
1 2 fringe(H1; i+1)

and each pre�x or extension q02 of q2, Wi+1(q
0
1; q

0
2) = 0.

We show each item separately.

1. For each i, m(i) is a fringe of H2.

By construction m(i) is a probability distribution. Thus, we need to show only that for

each state q2 of H2,

X
q022
m(i)jq2�q

0
2

Pm(i)[q
0
2] � PH2 [Cq2] (8.33)

First we show that for each q2 2 states(H2),

W (q2) = PH2 [Cq2]; (8.34)

then we show that for each q2 2 states(H2),

X
q022
m(i)jq2�q

0
2

Pm(i)[q
0
2] � W (q2): (8.35)

The proof of (8.34) is by induction on the length of q2. If q2 = s2, then (8.34) holds by

de�nition. Otherwise, let ~q2 be q2 without its last action and state, i.e., q2 = ~q2as for

182

some action a and some state s. Then, from the de�nition of the probability of a cone,

induction, Equation (8.31) and an algebraic simpli�cation,

PH2
[Cq2] =

X
(q01;P

0
2)2Active

X
tr12

q0
1
H1

X
q022

0
2j~q22active(q

0
1;P

0
2;tr1;q

0
2)

Wq01P
0
2tr1q

0
2
(~q2)PO

q0
1
P2tr1q

0
2
(~q2)[q2]: (8.36)

From Equation (8.30) and the de�nition of P
O
q0
1
P0
2
tr1q

0
2

q2 (cf. Section 4.2.7), we obtain

PH2 [Cq2] =
X

(q01;P
0
2)2Active

X
tr12

q0
1
H1

X
q022

0
2j~q22active(q

0
1;P

0
2;tr1;q

0
2)

w(q01;P
0
2)P

q01
H1
[tr1]P

0
2[q

0
2]P

O
q0
1
P0
2
tr1q

0
2

q2 : (8.37)

Observe that q02 2
02 and ~q2 2 active(q01;P
0
2; tr1; q

0
2) i� q02 2
02, q

0
2 6= q2, and q2 2

reach(q01;P
0
2; tr1; q

0
2). Thus, from Equation (8.31),

PH2 [Cq2] =
X

(q01;P
0
2)2Active

X
tr12

q0
1
H1

X
q022

0
2jq

0
2 6=q2;q22reach(q

0
1;P

0
2;tr1;q

0
2)

Wq01P
0
2tr1q

0
2
(q2): (8.38)

At this point Equation (8.32) is su�cient to conclude the validity of Equation (8.34).

The proof of Equation (8.35) is also by induction. If i = 0, then the result follows directly

from the fact that a fringe is a probability distribution. Otherwise, let N(q1) be true i�

q1 does not end in �. Then, from Equation (8.27),

X
q022
m(i+1)jq2�q

0
2

Pm(i+1)[q
0
2] (8.39)

can be rewritten into

X
q022
m(i+1)jq2�q

0
2

X
(q1;P2)2Active(i)

wi(q1;P2)Pq1P2 [q
0
2]: (8.40)

From the de�nition of Pq1;P2 (Equations (8.21) and (8.25)) and the de�nition of Pq1P2tr1
(Equation (8.17)), Expression (8.40) can be rewritten intoX

q022
m(i+1)jq2�q
0
2

X
(q1;P2)2Active(i);N(q1)

X
tr12

q1
H1

X
q0022
2

(8.41)

wi(q1;P2)P
q1
H1
[tr1]P2[q

00
2]Pq1P2tr1q002 [q

0
2]

+
X

q02�2
m(i+1)jq2�q
0
2

X
(q1;P2)2Active(i);N(q1)

wi(q1;P2)P
q1
H1
[�]P2[q

0
2]

+
X

q02�2
m(i+1)jq2�q
0
2

X
(q1�;P2)2Active(i)

wi(q1�;P2)P2[q
0
2�]:

183

By exchanging sums in Expression (8.41), we obtainX
(q1;P2)2Active(i);N(q1)

X
tr12

q1
H1

X
q00
2
2
2

X
q0
2
2
m(i+1)jq2�q

0
2

(8.42)

wi(q1;P2)P
q1
H1
[tr1]P2[q

00
2]Pq1P2tr1q002 [q

0
2]

+
X

(q1;P2)2Active(i);N(q1)

X
q02�2
m(i+1)jq2�q

0
2

wi(q1;P2)P
q1
H1
[�]P2[q

0
2]

+
X

(q1�;P2)2Active(i)

X
q02�2
m(i+1)jq2�q

0
2

wi(q1�;P2)P2[q
0
2�];

where the �rst summand comes from the �rst summand of (8.22), the second summand

comes from the second summand of (8.22), and the third summand comes from (8.25).

Consider the �rst summand of Expression (8.42), and partition the states q002 of
2 into

those that include q2 (q2 � q
00
2) and those that do not. In the �rst case, since from (8.27),

(8.21), and (8.17),
q1P2tr1q
00
2
�
m(i+1), and since each element q02 of
q1P2tr1q

00
2
satis�es

q2 � q
0
2, X
q022
m(i+1)jq2�q

0
2

Pq1P2tr1q002 [q
0
2] = 1; (8.43)

in the second case the same sum gives P
Oq1P2tr1q

00
2

q2 . Consider the second summand of

Expression (8.42), and observe that, from (8.27), (8.21), and the de�nition of �P2 , q
0
2� 2

m(i+1), q2 � q02, and P2[q
0
2] > 0 i� q02 2
2, q2 � q02, and P2[q

0
2] > 0. Finally, consider

the third summand of Expression (8.42), and observe that all the states of
2 end with �,

and, from (8.27) and (8.21), q02� 2
m(i+1), q2 � q
0
2, and P2[q

0
2�] > 0 i� q02� 2
2, q2 � q

0
2�,

P2[q
0
2�] > 0. By combining the observations above, Expression (8.42) can be rewritten

into X
(q1;P2)2Active(i);N(q1)

X
tr12

q1
H1

wi(q1;P2)P
q1
H1
[tr1] (8.44)

0
@ X
q0022
2jq2�q

00
2

P2[q
00
2] +

X
q0022
2jq

00
2<q2

P2[q
00
2]P

Oq1P2tr1q
00
2

q2

1
A

+
X

(q1;P2)2Active(i);N(q1)

X
q0022
2jq2�q

00
2

wi(q1;P2)P
q1
H1
[�]P2[q

00
2]

+
X

(q1�;P2)2Active(i)

X
q0022
2jq2�q

00
2

wi(q1�;P2)P2[q
00
2]:

By regrouping expressions and simplifying, we obtain

X
(q1;P2)2Active(i);N(q1)

X
tr12

q1
H1

X
q0022
2jq2�q

00
2

wi(q1;P2)P
q1
H1
[tr1]P2[q

00
2]P

Oq1P2tr1q
00
2

q2 (8.45)

+
X

(q1;P2)2Active(i)

X
q0022
2jq2�q

00
2

wi(q1;P2)P2[q
00
2]:

184

Finally, from Equation (8.30), Expression (8.45) can be rewritten intoX
(q1;P2)2Active(i);N(q1)

X
tr12

q1
H1

X
q0022
2jq2�q

00
2

Wq1P2tr1q
00
2
(q2) (8.46)

+
X

(q1;P2)2Active(i)

X
q0022
2jq2�q

00
2

wi(q1;P2)P2[q
00
2]:

We now analyze the second summand of Expression (8.46), and we show by induction on

i that it is 0 if i = 0 and q2 6= s2, it is 1 if i = 0 and q2 = s2, and it is

X
j<i

X
(q1;P2)2Active(j)

X
tr12

q1
H1

X
q0022
2jq

00
2<q2

Wq1P2tr1q
00
2
(q2) (8.47)

otherwise. For i = 0 the result is trivial. Otherwise, from Equation (8.29),

X
(q1;P2)2Active(i+1)

X
q0022
2jq2�q

00
2

wi+1(q1;P2)P2[q
00
2] (8.48)

can be rewritten intoX
(q1;P2)2Active(i+1)

X
(q01;P

0
2)2Active(i)

X
q0022
2jq2�q

00
2

wi(q
0
1;P

0
2)wq01P

0
2
(q1;P2)P2[q

00
2]: (8.49)

From the de�nition of wq01P
0
2
(Equations (8.23) and (8.25)), Expression (8.49) can be

rewritten intoX
(q1;P2)2Active(i+1)

X
(q01;P

0
2)2Active(i);N(q01)

X
tr 012

q0
1
H1

X
q0022
2jq2�q

00
2

(8.50)

wi(q
0
1;P

0
2)P

q01
H1
[tr 01]wq01P

0
2tr

0
1
(q1;P2))P2[q

00
2]

+
X

(q1�;P2)2Active(i+1)

X
(q01;P

0
2)2Active(i);N(q01)

X
q0022
2jq2�q

00
2

wi(q
0
1;P

0
2)P

q01
H1
[�]w�q01P

0
2
(q1�;P2)P2[q

00
2]

+
X

(q01�;P
0
2)2Active(i)

X
q0022

0
2jq2�q

00
2

wi(q
0
1�;P

0
2)P2[q

00
2]:

Observe that in the �rst summand of (8.50)X
(q1;P2)2Active(i+1)

X
q0022
2jq2�q

00
2

wq01P
0
2tr

0
1
(q1;P2)P2[q

00
2]

=
X

P2j9q1;(q1;P2)2Active(i+1)

X
q0022
2jq2�q

00
2

PS
q01P

0
2tr

0
1
[P2]P2[q

00
2]

=
X

q0002 2

0
2

X
q0022
q0

1
P0
2
tr0
1
jq2�q

00
2

Pq01P
0
2tr

0
1q
000
2
[q002];

185

where the �rst step follows from the fact that wq0
1
P 0
1
tr 0
1
q000
2

is a weight function, and the

second step follows from (8.17), (8.15) and the fact that
q01P
0
2tr

0
1
is the set of probability

space P2 such that there is a state q1 where (q1;P2) 2 Active(i + 1) (cf. the de�nition

of Active and observe that jq1j = i + 1). For the second summand of (8.50), observe

that for each pair (q01�;P2) of Active(i + 1), if P
q01
H1
[�] > 0, then there is exactly one pair

(q1;P
0
2) of Active(i) such that w�q01P

0
2
(q01�;P2) > 0. In particular, q1 = q01, P2 = �P 02 , and

w�q01P
0
2
(q01�;P2) = 1. Conversely, for each pair (q01;P

0
2) of Active(i) such that P

q01
H1
[�] > 0,

the pair (q01�;P2) is in Active(i+1) and w�q01P
0
2
(q01�;P2) = 1. Thus, the term w�q01P

0
2
(q01�;P2)

and the sum
P

(q01�;P2)2Active(i+1)
can be removed from the second summand of (8.50).

Thus, by applying the observations above to (8.50), we obtainX
(q01;P

0
2)2Active(i);N(q01)

X
tr 012

q0
1
H1

X
q0002 2

0
2

X
q0022
q0

1
P0
2
tr0
1
q000
2
jq2�q

00
2

(8.51)

wi(q
0
1;P

0
2)P

q01
H1
[tr 01]P

0
2[q

000
2]Pq01P 02tr 01q0002 [q

00
2]

+
X

(q01;P
0
2)2Active(i);N(q01)

X
q0002 2

0
2jq2�q

00
2

wi(q
0
1;P

0
2)P

q01
H1
[�]P 02[q

000
2]

+
X

(q01�;P
0
2)2Active(i)

X
q0002 2

0
2jq2�q

000
2

wi(q
0
1�;P

0
2)P

0
2[q

000
2]:

Consider the �rst summand of Expression (8.51). If q2 � q
000
2 , thenX

q0022
q0
1
P0
2
tr0
1
q000
2
jq2�q

00
2

Pq01P
0
2tr

0
1q
000
2
[q002] = 1; (8.52)

If q0002 � q2, then

X
q0022
q0

1
P0
2
tr0
1
q000
2
jq2�q

00
2

Pq01P
0
2tr

0
1q
000
2
[q002] = P

Oq0
1
P0
2
tr0
1
q000
2

q2 : (8.53)

Thus, from Equations (8.52) and (8.53), Expression (8.51) can be rewritten into

X
(q01;P

0
2)2Active(i);N(q01)

X
tr 012

q0
1
H1

wi(q
0
1;P

0
2)P

q01
H1
[tr 01] (8.54)

0
@ X
q0002 2

0
2jq2�q

000
2

P 02[q
000
2] +

X
q0002 2

0
2jq

000
2 <q2

P 02[q
000
2]P

Oq0
1
P0
2
tr0
1
q000
2

q2

1
A

+
X

(q01;P
0
2)2Active(i);N(q01)

X
q0002 2

0
2jq2�q

00
2

wi(q
0
1;P

0
2)P

q01
H1
[�]P 02[q

000
2]

+
X

(q01�;P
0
2)2Active(i)

X
q0002 2

0
2jq2�q

000
2

wi(q
0
1�;P

0
2)P

0
2[q

000
2]:

186

By regrouping the subexpressions in (8.54), we obtain

X
(q01;P

0
2)2Active(i);N(q01)

X
tr 012

q0
1
H1

X
q0002 2

0
2jq

000
2 <q2

wi(q
0
1;P

0
2)P

q01
H1
[tr 01]P

0
2[q

000
2]P

O
q0
1
P0
2
tr0
1
q000
2

q2 (8.55)

+
X

(q01;P
0
2)2Active(i)

X
q0002 2

0
2jq2�q

000
2

wi(q
0
1;P

0
2)P

0
2[q

000
2]:

From Equation (8.30), Expression (8.55) can be rewritten intoX
(q01;P

0
2)2Active(i);N(q01)

X
tr 012

q0
1
H1

X
q0002 2

0
2jq

000
2 <q2

Wq01P
0
2tr

0
1q
000
2
(q2) (8.56)

+
X

(q01;P
0
2)2Active(i)

X
q0002 2

0
2jq2�q

000
2

wi(q
0
1;P

0
2)P

0
2[q

000
2]:

The induction hypothesis is now su�cient to conclude the validity of (8.47). From an

alternative characterization of the set fq002 2
2 j q
00
2 < q2g in Expressions (8.47) and (8.45),

and by combining (8.45) and (8.47), we obtainX
q022
m(i+1)jq2�q

0
2

Pm(i+1)[q
0
2] (8.57)

=
X
j�i

X
(q1;P2)2Active(j)

X
tr12

q1
H1

X
q0022
2jq

00
2 6=q2;q

00
22reach(q1;P2;tr1;q2)

Wq1P2tr1q
00
2
(q2):

Observe that the right expression of (8.57) contains a subset of the terms of the right

expression of Equation (8.32). This is enough to conclude the validity of (8.35).

2. For each i, m(i) � m(i+ 1).

This result follows directly from Equation (8.57). In fact, for each state q2 of H2, Ex-

pression (8.57) for m(i + 1) contains a subset of the terms of the Expression (8.57) for

m(i).

3. For each state q of H2, limi!1
P

q02
ijq�q0
Pi[q

0] = PH [Cq].

This result follows directly from Expression (8.57). In fact, as i!1, the right expression

of (8.57) converges to the right expression of (8.32).

4. For each i, m(i) =
P
P2S(i) PS(i)[P]P .

For i = 0 the result is trivial. For i > 0, from Equation (8.27), m(i+ 1) is rewritten into.

X
(q1;P2)2Active(i)

wi(q1;P2)Pq1P2 : (8.58)

From Equation (8.21), Expression (8.58) can be rewritten into

X
(q1;P2)2Active(i)

wi(q1;P2)

0
B@ X
tr12

q1
H1

P
q1
H1
[tr1]Pq1P2tr2 + P

q1
H1
[�]�P2

1
CA : (8.59)

187

From Equation (8.17) applied to Pq1P2tr2 and Equations (8.15) and (8.19) applied to

P
q1
H1
[�]�P2 , Expression (8.59) can be rewritten into

X
(q1;P2)2Active(i)

wi(q1;P2)

0
B@ X

tr12

q1
H1

P
q1
H1
[tr1]

0
B@ X
P2
S

q1P2tr1

PS
q1P2tr1

[P]P

1
CA+ (8.60)

P
q1
H1
[�]

X
P2
�P2

P�P2 [P]P

1
CA :

From Equation (8.22), Expression (8.60) can be rewritten into

X
(q1;P2)2Active(i)

wi(q1;P2)

0
B@ X
P2
S

q1P2

PS
q1P2

[P]P

1
CA : (8.61)

Finally, from Equation (8.28), Expression (8.61) can be rewritten into

X
P2
S(i+1)

PS(i+1)[P]P ; (8.62)

which is what we needed to show.

5. For each i, fringe(H1; i) vR S(i) via wi.

For i = 0 the result is trivial. By applying the de�nitions of a fringe and of fringe(H1; i+1),

fringe(H1; i+ 1)

=
X

q12states(H2)jjq2j=ior q2=q
0
2�;jq2j<i

PH1 [Cq1]Pq1

=
X

(q1;P2)2Active(i)

wi(q1;P2)Pq1 :

From (8.28),

S(i+ 1) =
X

(q1;P2)2Active(i)

wi(q1;P2)P
S
q1P2 :

Since for each pair (q1;P2) of Active(i), Pq1 vR P
S
q1P2

via wq1;P2 , from Lemma 8.2.1,

X
(q1;P2)2Active(i)

wi(q1;P2)Pq1 vR
X

(q1;P2)2Active(i)

wi(q1;P2)P
S
q1P2

via
P

(q1;P2)2Active(i)
wi(q1;P2)wq1P2 , which is wi+1.

188

6. For each i, each q1 2 fringe(H1; i), and each q2 2 states(H2), if Wi(q1; q
0
2) = 0 for each

pre�x or extension q02 of q2, then, for each extension q
0
1 of q1 such that q

0
1 2 fringe(H1; i+1)

and each pre�x or extension q02 of q2, Wi+1(q
0
1; q

0
2) = 0.

Suppose by contradiction that there is an extension q01 of q1 such that q
0
1 2 fringe(H1; i+1)

and a pre�x or extension q02 of q2 such that Wi+1(q
0
1; q

0
2) > 0. From the de�nition of Wi

and Equation (8.29),

Wi+1(q1; q
0
2) =

X
P

X
(�q1;P2)2Active(i)

wi(�q1;P2)w �q1;P2(q1;P)P [q
0
2]: (8.63)

Since Wi(q1; q
0
2) > 0, then there is at least one probability space P and one pair (�q1;P2) 2

Active(i) such that wi(�q1;P2) > 0, w �q1;P2(q1;P) > 0, and P [q02] > 0. Then there is at

least one pre�x q002 of q02 such that P2[q
00
2] > 0, which means that Wi(�q1; q

00
2) > 0. However,

this is a contradiction since q002 is either a pre�x or a su�x of q2.

The execution correspondence theorem can be stated and proved similarly for weak and strong

probabilistic simulations. The proofs are simpler than the proof presented in this section, and

thus we omit them from this thesis.

8.6.4 Transitivity of Probabilistic Forward Simulations

Now we have enough machinery to prove that probabilistic forward simulations are transitive,

i.e., if M1 vFS M2 and M2 vFS M3, then M1 vFS M3. We start by proving a lemma.

Lemma 8.6.2 Let (H1; H2; m; S) be an execution correspondence structure via the probabilistic

forward simulation R, and suppose that H1 represents a weak combined transition s
a

=)C P1.

Then H2 represents a weak combined transition s0
a

=)C P2 and there is a probability space PS2
such that

1. P1 vR P
S
2 and

2. P2 =
P
P2
S2

PS
2 [P]P.

Proof. Let wi be the weight functions for fringe(H1; i) vR S(i). Let P 01 be �-strip(PH1), P
0
2

be �-strip(PH2), and let

P
0
2;S

4
=

X
��2
H1

X
Pjwj�j+1(��;P)>0

wj�j+1(��;P)P : (8.64)

For each �� 2
H1 and each P 2 Probs(extstates(H2)), let w(��;P)
4
= wj�j+1(��;P).

We show that w is a weight function from P 01 to P
0
2;S and that P 02;S is well de�ned. This im-

plies that P 01 vR P
0
2;S . Then we show that for each element �� of
H2 ,

P
P2
02;S

P 02;S [P]P [��] =

PH2 [C��]. Since all the elements of the probability spaces of
02;S end with �, we obtain that

P
0
2 is well de�ned and that P 02 =

P
P2
02;S

P 02;S [P]P . Then the lemma is proved by de�ning P1

to be lstate(P 01), P2 to be lstate(P 02), and P2;S to be lstate(P 02;S).

To show that w is a weight function we have to verify the three conditions of the de�nition

of a weight function. If w(��;P) > 0, then, from the de�nition of w, wj�j+1(��;P) > 0.

189

Since wj�j+1 is a weight function, then �� R P . Let P 2
02;S . Then
P

��2
H1
w(��;P) =P

��2
H1
wj�j+1(��;P), which is P 02;S [P] by de�nition of P 02;S . Consider now an element �� of

H1
. Then,

P
P2
0

2;S
w(��;P) =

P
P2
0

2;S
wj�j+1(��;P). Since wj�j+1 is a weight function, then

the sum above gives PH1 [C��] = P 01[��]. To show that P 02;S is well de�ned we need to show thatP
��2
H1

P
Pjwj�j+1(��;P)>0

wj�j+1(��;P) = 1. This follows immediately from the fact that w is a

weight function and that, since H1 represents a weak combined transition,
P

��2
H1
P 01[��] = 1.

We are left to show that for each element �� of
H2 ,
P
P2
02;S

P 02;S [P]P [��] = PH2 [C��].

Observe that for each element �� of
H1 , if i � j�j then wi(��;P) is unde�ned for each P , and

if i > j�j, then for each j � i and each P , wi(��;P) is de�ned i� wj(��;P) is de�ned, and if

wi(��;P) is de�ned then wi(��;P) = wj(��;P). Thus, if we extend each wi by setting it to 0

whenever it is not de�ned, then, for each �� 2
H2 ,

X
P2
0

2;S

P 02;S [P]P [��] =
X

P2
0
2;S

0
@ lim
i!1

X
��2
H1

wi(��;P)

1
AP [��]: (8.65)

Since for each i, wi is a weight function, and since from the de�nition of P 02;S each element P

for which wi(��;P) > 0 is in
02;S , then we derive

X
P2
02;S

P 02;S [P]P [��] =
X

P2
02;S

�
lim
i!1

PS(i)[P]

�
P [��]: (8.66)

By exchanging the limit with the sum and by using Condition 3 of the de�nition of an execution

correspondence structure, the equation above can be rewritten intoX
P2
02;S

P 02;S [P]P [��] = lim
i!1

m(i)[��]; (8.67)

which gives the desired result after using Condition 2 of the de�nition of an execution corre-

spondence structure.

Proposition 8.6.3 Probabilistic forward simulations are transitive.

Proof. Let R1 be a probabilistic forward simulation from M1 to M2, and let R2 be a proba-

bilistic forward simulation from M2 to M3. De�ne R so that s1 R P3 i� there is a probability

space P2, and a probability space PS3 , such that

1. s1 R1 P2,

2. P2 vR2 P
S
3 , and

3. P3 =
P
P2
S3

PS
3 [P]P .

We need to show that R is a probabilistic forward simulation fromM1 toM3. For this purpose,

let s1 R P3, and let P2 and PS3 satisfy the three conditions above. Let s1
a
�! P1. Let M 0

2

be obtained from M2 by introducing a new state s02 and by adding a transition s02
�
�! P2,

where � is an internal action; similarly, let M 0
3 be obtained fromM3 by introducing a new state

s03 and by adding a transition s03
�
�! P3, where � is an internal action. Let R01 be obtained

190

from R1 by adding the pair (s1;D(s
0
2)), and let R02 be obtained from R2 by adding the pair

(s02;D(s
0
3)). Observe that R

0
1 is a probabilistic forward simulation from M1 toM

0
2 and that R02

is a probabilistic forward simulation from M 0
2 to M

0
3.

We want to �nd two probability spaces P 03 and P 03;S such that s03
a

=)C P
0
3, P

0
1 vR P

0
3;S,

and P 03 =
P
P2
03;S

P 03;S [P]P . From the de�nition of a weak transition, this is su�cient to show

that for each state s of P3 there is a weak combined transition s
a

=)C Ps of M3 such that

P 03 =
P

s2
3
P3[s]Ps.

Since R01 is a probabilistic forward simulation, there is a weak combined transition s02
a

=)C

P 02 of M
0
2 and a probability space P 02;S such that

P
0
2 =

X
P2
02;S

P 02;S [P]P and P
0
1 vR1 P

0
2;S : (8.68)

Let H2 be the probabilistic execution fragment of M 0
2 that represents the weak combined tran-

sition s02
a

=)C P
0
2. Then, by de�nition of H2, P

0
2 = lstate(�-strip(PH2)) (cf. Section 4.2.7).

From the Execution Correspondence Theorem there is an execution correspondence struc-

ture (H2; H3; m; S), where H3 is a probabilistic execution fragment of M 0
3 that starts from s03.

From Lemma 8.6.2, H3 represents a weak combined transition s03
a

=)C P
00
3 for same probability

space P 003 . Moreover, there is a probability space P 003;S such that

P
00
3 =

X
P2
003;S

P 003;S [P]P and P
0
2 vR2 P

00
3;S: (8.69)

Let w2 be the weight function for P 02 vR2 P
00
3;S . For each probability space P of
02;S , let

wP : states(M2) � Probs(states(M3)) ! [0; 1] be a function that is non-zero only in the set

�
003;S and such that for each pair (s;P 0) of
�
003;S ,

wP(s;P
0) =

P [s]w2(s;P
0)

P 02[s]
: (8.70)

Also, for each probability space P of
02;S , let

P
P
3;S

4
=
X
s2

X
P 02
00

3;S

wP(s;P
0)D(P 0); (8.71)

and let

P
P
3

4
=

X
P 02
P3;S

PP3;S [P
0]P 0: (8.72)

Let P 03;S be the discrete probability space where
03;S = fPP3 j P 2
2;Sg, and for each element

PP3 of
03;S, P
0
3;S [P

P
3] =

P
P 02
02;S jP

P
3 =P

P0

3
P 02;S [P

0]. Then, the following properties are true.

1. For each probability space P of
02;S, wP is a weight function from P to PP3;S .

We verify separately each one of the conditions that a weight function must satisfy.

191

(a) For each s 2 states(M2), P [s] =
P
P 02Probs(states(M3))

wP(s;P
0).

From the de�nition of wP , the right expression above can be rewritten into

X
P 02Probs(states(M3))

P [s]w2(s;P
0)

P 02[s]
: (8.73)

Since w2 is a weight function,
P
P 02Probs(states(M3))

w2(s;P
0) = P 02[s], and thus Ex-

pression 8.73 becomes P [s].

(b) For each P 0 2 Probs(states(M3)),
P

s2states(M2)
wP(s;P

0) = PP3;S [P
0].

From Equation (8.71), PP3;S [P
0] =

P
s2
 wP(s;P

0). Since wP is non-zero only when

the �rst argument is in
, PP3;S [P
0] =

P
s2states(M2)

wP(s;P
0).

(c) For each (s;P 0) 2 states(M2)� Probs(states(M3)), if wP(s;P
0) > 0 then s R2 P

0.

If wP(s;P
0) > 0, then, from Equation (8.70), w2(s;P

0) > 0. Since w2 is a weight

function, then s R2 P
0.

2.
P
P2
0

3;S
P 03;S [P]P = P 003 .

From the de�nition of P 03;S , Equation (8.72), Equation (8.71), and Equation (8.70),P
P2
03;S

P 03;S [P]P can be rewritten into

X
P2
02;S

X
P 02
003;S

X
s2states(M2)

P 02;S [P]
P [s]w2(s;P

0)

P 02[s]
P
0: (8.74)

From (8.68), Expression (8.74) can be rewritten into

X
P 02
003;S

X
s2states(M2)

P 02[s]w2(s;P
0)

P 02[s]
P
0: (8.75)

After simplifying P 02[s], since w2 is a weight function from P 02 to P
00
3;S, Expression (8.75)

can be rewritten into

X
P 02
00

3;S

P 003;S [P
0]P 0; (8.76)

which can be rewritten into P 003 using Equation (8.69).

3. For each pair (s01;P) such that s01 R1 P , s
0
1 R3 P

P
3 .

This follows directly from 1 and (8.72).

Let P 03 be P
00
3 , and de�ne a new weight function w : states(M1) � Probs(states(M3)) ! [0; 1]

such that, for each probability space P of
02;S , w(s1;P
P
3) = w1(s1;P). Then, it is easy to check

that P 01 vR P
0
3;S via w. This fact, together with 2, is su�cient to complete the proof.

192

8.7 Probabilistic Forward Simulations and Trace Distributions

In this section we show that probabilistic forward simulations are sound for the trace distribution

precongruence. Speci�cally, we show that M1 vFS M2 implies M1 vD M2. Thus, since vFS is

a precongruence that is contained in vD , from the de�nition of vDC we obtain thatM1 vFS M2

implies M1 vDC M2.

Proposition 8.7.1 Let M1 vFS M2. Then M1 vD M2.

Proof. Let R be a probabilistic forward simulation from M1 to M2, and let H1 be a proba-

bilistic execution of M1 that leads to a trace distribution D1. From Lemma 8.6.1, there exists

a probabilistic execution H2 of M2 and two mappings m;S such that (H1; H2; m; S) is an exe-

cution correspondence structure for R. We show that H2 leads to a trace distribution D2 that

is equivalent to D1.

Consider a cone C� of D1. The measure of C� is given byX
q12states(H1)jtrace(q1)=�;lact(q1)=lact(�)

PH1 [Cq1]: (8.77)

The same value can be expressed as

lim
i!1

X
q12fringe(H1;i)j��trace(q1)

PH1 [Cq1]: (8.78)

Consider a cone C� of D2. The measure of C� is given byX
q22states(H2)jtrace(q2)=�;lact(q2)=lact(�)

PH2 [Cq2]: (8.79)

The same value can be expressed as

lim
i!1

X
q22m(i)j��trace(q2)

Pm(i)[Cq2]: (8.80)

The reason for the alternative expression is that at the limit each cone of Expression (8.79) is

captured completely. Thus, it is su�cient to show that for each �nite � and each i,X
q12fringe(H1;i)j��trace(q1)

PH1 [Cq1] =
X

q22m(i)j��trace(q2)

Pm(i)[q2]: (8.81)

This is shown as follows. Let wi be the weight function for m(i) vR S(i). Then,X
q2fringe(H1;i)j��trace(q)

PH1 [Cq] =
X

q12fringe(H1;i)j��trace(q1)

X
P22S(i)

wi(q1;P2): (8.82)

Observe that each probability space of S(i) has objects with the same trace, that each state q

of fringe(H1; i) is related to some space of S(i), and that each space of S(i) is related to some

state q of fringe(H1; i). Thus, from (8.82),X
q2fringe(H1;i)j��trace(q)

PH1 [Cq] =
X

P22S(i)j9q22
2��trace(q2)

X
q12fringe(H1;i)

wi(q1;P2): (8.83)

193

Since wi is a weight function, we obtainX
q2fringe(H1;i)j��trace(q)

PH1
[Cq] =

X
P22S(i)j9q22
2��trace(q2)

PS(i)[P2]: (8.84)

Since in a probability space the probability of the whole sample space is 1, we obtainX
q2fringe(H1;i)j��trace(q)

PH1 [Cq] =
X

P22S(i)j9q22
2��trace(q2)

X
q22
2

PS(i)[P2]P2[q2]: (8.85)

From an algebraic manipulation based on Condition 3 of an Execution Correspondence Struc-

ture, we obtainX
q2fringe(H1;i)j��trace(q)

PH1 [Cq] =
X

q22m(i)j��trace(q2)

X
P22S(i)jq22
2

PS(i)[P2]P2[q2]: (8.86)

Finally, from Condition 3 of an Execution Correspondence Structure again, we obtain Equa-

tion (8.81).

8.8 Discussion

Strong bisimulation was �rst de�ned by Larsen and Skou [LS89, LS91] for reactive processes.

Successively it was adapted to the alternating model by Hansson [Han94]. In this thesis we

have de�ned the same strong bisimulation as in [Han94]. The formal de�nition di�ers from the

de�nition given by Hansson in that we have used the lifting of a relation to probability spaces

as de�ned by Jonsson and Larsen [JL91].

Strong simulation is similar in style to the satisfaction relation for the probabilistic speci�-

cation systems of Jonsson and Larsen [JL91]. It is from [JL91] that we have borrowed the idea

of the lifting of a relation to a probability space.

The probabilistic versions of our simulation relations are justi�ed both by the fact that a

scheduler can combine transitions probabilistically, as we have said in this thesis, and by the fact

that several properties, namely the ones speci�ed by the logic PCTL of Hansson and Jonsson

[Han94], are valid relative to randomized schedulers i� they are valid relative to deterministic

schedulers. This fact was �rst observed by Segala and Lynch [SL94] and can be proved easily

using the results about deterministic and randomized schedulers that we proved in Chapter 5.

The weak probabilistic relations were introduced �rst by Segala and Lynch [SL94]. No

simulation relations abstracting from internal computation were de�ned before. Probabilistic

forward simulations are novel in their de�nition since it is the �rst time that a state is related

to a probability distribution over states.

194

Chapter 9

Probabilistic Timed Automata

9.1 Adding Time

So far we have extended labeled transition systems to handle probabilistic behavior; however,

we have not addressed any real-time issue yet. The main objective of this chapter is to add

time to probabilistic automata.

Following an approach that Abadi and Lamport [AL91] call the \old-fashioned recipe", we

address real-time issues by augmenting probabilistic automata with some structure that models

passage of time. In particular, we adopt the solution of Lynch and Vaandrager [LV95], where

a timed automaton is an ordinary automaton whose actions include the positive real numbers.

The occurrence of a real number d means that time d elapses. In addition, a timed automaton

of [LV95] is required to satisfy two trajectory axioms : the �rst axiom says that if time d can

elapse and immediately afterwards time d0 can elapse, then time d+ d0 can elapse; the second

axiom says that if time d can elapse, then there is a trajectory that allows us to associate every

real time in the interval [0; d] with a state.

The introduction of real-time in probabilistic automata presents two main problems.

1. Time is a continuous entity, and the time that elapses between the occurrence of two sep-

arate actions may depend on a probability distribution that is not discrete. For example,

the response time of a system may be distributed exponentially. On the other hand, the

probability distributions that we allow in the untimed model are only discrete.

2. In the untimed model the parallel composition operator is de�ned only for simple prob-

abilistic automata. Since time-passage is modeled by actions of <+, in a simple proba-

bilistic timed automaton it is not possible to let time pass according to some probability

distribution.

The �rst problem could be solved by removing the requirement that the probability distribution

associated with a transition is discrete. However, in such case we would need to redevelop the

whole theory, while if we force each probability distribution to be discrete we can reuse most

of the results of the untimed model. For this reason, we choose to work only with discrete

probability distributions and we defer to further work the extension of the model to non-discrete

probability distributions (cf. Section 13.2.1).

195

For the second problem the reader may object that it originates from the choice of using

a distinct time-passage action for each amount of time that elapses in a transition, and thus

we may conclude that the problem would be solved by using a unique action that expresses

passage of time [LV93b] rather than a di�erent action for every time; however, the problem has

deeper roots.

Example 9.1.1 (Problems with probabilistic passage of time) Suppose that from state

s1 a probabilistic timed automatonM1 lets time pass for 1 second with probability 1=2 and for

2 seconds with probability 1=2 before performing an action a, and suppose that from state s2 a

probabilistic timed automatonM2 lets time pass for 0:5 seconds with probability 1=2 and for 1:5

seconds with probability 1=2 before performing action a. What is the probability distribution

on the time that elapses from state (s1; s2) of M1kM2 before performing a? What can we

say about the projections of a probabilistic execution of M1kM2? The reader may note the

similarity with the problems encountered in the de�nition of parallel composition for general

probabilistic automata (cf. Section 4.3.3).

In order to simplify the handling of trajectories, in this thesis we impose an additional restric-

tion on the time-passage transitions of a probabilistic timed automaton; namely, each transition

involving time-passage is required to lead to a Dirac distribution. Probabilistic behavior as-

sociated with passage of time is allowed only within a probabilistic execution. Even though

this timed model may appear to be restrictive, it is su�ciently powerful to analyze non-trivial

timed properties of randomized algorithms (cf. Chapter 10).

In the rest of this chapter we concentrate on the de�nition of the timed model as an extension

of the probabilistic automata of Chapter 4. Most of the concepts are extensions of the de�nitions

of [LV95] to the probabilistic framework; the non-trivial part of the chapter is the de�nition of

a probabilistic timed execution, where some measure-theoretical complications arise.

9.2 The Timed Model

In this section we de�ne probabilistic timed automata as an extension of the probabilistic

automata of Chapter 4, and we extend the timed executions of [LV95] to our framework. Due

to the complications that arise in the de�nition of a probabilistic timed execution, we de�ne

probabilistic timed executions in a separate section.

9.2.1 Probabilistic Timed Automata

A probabilistic semi-timed automaton M is a probabilistic automaton whose set of external

actions includes <+, the set of positive reals, and whose transitions with some action in <+

are non-probabilistic, i.e., they lead to a Dirac distribution. Actions from <+ are referred to as

time-passage actions , while non-time-passage actions are referred to as discrete actions . We let

d; d0; : : : range over <+ and more generally, t; t0; : : : range over the set <[f1g of real numbers

plus in�nity. The set of visible actions is de�ned by vis(M)
4
= ext(M) n <+.

A probabilistic timed automaton is a probabilistic semi-timed automaton M that satis�es

the following two axioms.

A1 If s
d
�! s0 and s0

d0
�! s00, then s

d+d0
�! s00.

196

For the second axiom, we need an auxiliary de�nition of a trajectory , which describes the

state changes that can occur during time-passage. Namely, if I is any left-closed interval of <

beginning with 0, then an I-trajectory is a function ! : I ! states(M), such that

!(t)
t0�t
�! !(t0) for all t; t0 2 I with t < t0.

Thus, a trajectory assigns a state to each time t in the interval I in a \consistent" manner. We

de�ne ltime(!), the \last time" of !, to be the supremum of I . We de�ne fstate(!) to be !(0),

and if I is right-closed, we also de�ne lstate(!) to be !(ltime(!)). A trajectory for a transition

s
d
�! s0 is a [0; d]-trajectory such that fstate(!) = s and lstate(!) = s0. Now we can state the

second axiom.

A2 Each time-passage transition s
d
�! s0 has a trajectory.

A probabilistic timed automatonM is simple if M is a simple probabilistic automaton.

Axioms A1 and A2 express natural properties of time: Axiom A1 says that if time can

elapse in two transitions, then it can also elapse in a single transition; Axiom A2 says that if

time d can elapse, then it is possible to associate states with all times in the interval [0; d] in a

consistent way.

Example 9.2.1 (The patient construction) A simple way to add time to a probabilistic

automaton is to add arbitrary self-loop timed transitions to each state of a probabilistic au-

tomaton. Speci�cally, given a probabilistic automaton M , we de�ne patient(M) to be the

probabilistic timed automaton M 0 such that

1. states(M 0) = states(M),

2. start(M 0) = start(M),

3. acts(M 0) = acts(M) [<+,

4. trans(M 0) = trans(M) [f(s; d; s) j s 2 states(M); d 2 <+g.

Thus, patient(M) is like M except that an arbitrary amount of time can elapse between two

discrete transitions. It is immediate to verify that patient(M) satis�es axioms A1 and A2.

The patient construction was �rst de�ned for ordinary automata in [VL92].

Example 9.2.2 (Simple restrictions on time passage) The patient construction does not

specify any limitations to the way time can elapse. Sometimes we may want to specify upper

and lower bounds to the time it takes for some transition to take place. Such a limitation can

be imposed easily by augmenting the states of a probabilistic automaton with variables that

express the time limitations that are imposed. As an easy example consider a probabilistic

automatonM with a unique state s and a unique discrete transition (s; a; s). Suppose that we

want to add time to M and impose that action a occurs once every at least 1 time unit and at

most 2 time units. Then the corresponding probabilistic timed automatonM 0 can be speci�ed

as follows.

1. states(M 0) = f(s; l; h) j 0 � l � 1; 0 � l � h � 2g,

197

2. start(M 0) = f(s; 0; 2)g,

3. acts(M 0) = fag [<+,

4. trans(M 0) = f((s; 0; h); a; (s; 1; 2)) j 0 � h � 2g [f((s; l; h); d; (s; l� d; h � d)) j d � l �

hg [f((s; 0; h); d; (s; 0; h� d))d � hg.

The variables l and h keep track of the time that must or can elapse before performing a. Time

passage decreases both the variables unless they are 0. Action a can occur only when l = 0

and leads to a state where l = 1. This means that at least 1 time unit must elapse before a

can be performed again. No time can elapse if h = 0. At thet point the only transition that

can be performed is the transition labeled with a. Thus, no more than 2 time units can elapse

between the occurrence of two actions a. It is immediate to verify that M 0 satis�es axioms A1

and A2.

9.2.2 Timed Executions

Since a probabilistic timed automaton is also a probabilistic automaton, the executions of the

untimed model carry over to the timed case. However, an execution associates states with just

a countable number of points in time, whereas the trajectory axiom A2 allows us to associate

states with all real times. Also, our intuition about the executions of a timed system is that

visible actions occur at points in time, and that time passes \continuously" between these

points. In other words, at each point in time a system is in some state. This leads to the

de�nition of a timed execution.

Timed Executions

A timed execution fragment � of a probabilistic timed automaton M is a �nite or in�nite

alternating sequence, � = !0a1!1a2!2 � � �, where

1. Each !i is a trajectory and each ai is a discrete action.

2. If � is a �nite sequence then it ends with a trajectory.

3. If !i is not the last trajectory in � then its domain is a right-closed interval, and there

exists a transition (lstate(!i);P) of M such that (a; fstate(!i+1)) 2
.

A timed execution fragment describes all the discrete changes that occur, plus the evolution

of the state during time-passage transitions. If � is a timed execution fragment, then we

let ltime(�) denote
P

i ltime(!i). Note that we allow the case where the domain of the �nal

trajectory is of the form [0;1); in this case ltime(�) = 1. We de�ne the initial state of �,

fstate(�), to be fstate(!0)

A timed execution is a timed execution fragment whose �rst state is a start state.

The timed executions and timed execution fragments of a probabilistic timed automaton

can be partitioned into �nite, admissible, and Zeno timed executions and timed execution

fragments. A timed execution (fragment) � is �nite, if it is a �nite sequence and the domain of

its �nal trajectory is right-closed; a timed execution (fragment) � is admissible if ltime(�) =1;

a timed execution (fragment) � is Zeno if it is neither �nite nor admissible.

198

There are basically two types of Zeno timed executions: those containing in�nitely many

discrete actions in �nite time, and those containing �nitely many discrete actions and for which

the time interval associated with the last trajectory is right-open. Thus, Zeno timed executions

represent executions of a probabilistic timed automaton where an in�nite amount of activity

occurs in a bounded period of time. (For the second type of Zeno timed executions, the in�nitely

many time-passage transitions needed to span the right-open interval should be thought of the

\in�nite amount of activity".)

We will be interested mostly in the admissible timed executions of a probabilistic timed

automaton since they correspond to our intuition that time is a force beyond our control that

happens to approach in�nity. However, according to our de�nition of a probabilistic timed

automaton, it is possible to specify probabilistic timed automata in which from some states

no admissible timed execution fragments are possible. This can be because only Zeno timed

execution fragments are possible from that state, or because time cannot advance at all (in which

case a time deadlock has occurred). Although Zeno timed executions are usually non-desirable,

research experience has shown that the analysis of a model would be more complicated if Zeno

timed executions are ruled out.

Denote by t-frag�(M), t-frag1(M), and t-frag(M) the sets of �nite, admissible, and all

timed execution fragments ofM . Similarly, denote by t-exec�(M), t-exec1(M), and t-exec(M)

the sets of �nite, admissible, and all timed executions of M .

A timed extended execution fragment of M , denoted by �, is either a timed execution

fragment of M or a sequence �0� where �0 is a timed execution fragment of M . Denote by

t-exec��(M) and t-exec�(M) the sets of �nite and all timed extended executions of M .

Concatenations, Pre�xes and Su�xes

If ! is an I-trajectory where I is right-closed, and !0 is an I 0-trajectory such that lstate(!) =

fstate(!0), then ! and !0 can be concatenated. The concatenation, denoted by !!0 is the least

trajectory (the trajectory with the smallest domain) !00 such that !00(t) = !(t) for t 2 I , and

!00(t+ ltime(!)) = !(t) for t 2 I 0. It is easy to show that !00 is a trajectory.

Likewise, we may combine a countable sequence of \compatible" trajectories into one: if !i
is an Ii-trajectory, 0 � i <1, where all Ii are right-closed, and if lstate(!i) = fstate(!i+1) for

all i, then the in�nite concatenation !1!2 � � � is the least function ! such that for all i and all

t 2 Ii, !(t+
P

j<i ltime(!j)) = !i(t). It is easy to show that ! is a trajectory.

A �nite timed execution fragment � = !0a1!1 � � �an!n ofM and a timed (extended) execu-

tion fragment �0 = !0nan+1!n+1 � � � of M can be concatenated if lstate(�) = fstate(�0). In this

case the concatenation, written �a �0, is de�ned to be �00
4
= !0a1!1 � � �an(!n!

0
n)an+1!n+1 � � �.

It is easy to see that � is a timed (extended) execution fragment of M .

The notion of pre�x for timed execution fragments and timed extended execution fragments

is de�ned as follows. A timed (extended) execution fragment � of M is a pre�x of a timed

(extended) execution fragment �0 of M , written � � �0, if either � = �0 or � is �nite and there

exists a timed (extended) execution fragment �00 of M such that �0 = � a �00. Likewise, � is a

su�x of �0 if there exists a �nite timed execution fragment �00 such that �0 = �00 a �. Denote

� by �0.�00.

The length of a timed execution fragment � expresses the number of discrete actions in

�. Thus, even though � is admissible or Zeno (and thus not �nite), its length may be �nite.

199

Formally, de�ne the length of � = !0a1!1a2!2 � � � as

j�j
4
=

(
n if � is a �nite sequence and ends in !n
1 if � is an in�nite sequence.

9.3 Probabilistic Timed Executions

Since a probabilistic timed automaton is also a probabilistic automaton, it is possible to talk

about the probabilistic executions of a probabilistic timed automaton. However, as we have

pointed out already for ordinary executions, a probabilistic execution does not describe com-

pletely the evolution of a probabilistic timed automaton since it does not allow us to associate

every real time with the states that are reached at that time. We need a structure that extends

probabilistic executions in the same way as a timed execution extends an execution. A timed

execution di�ers from an execution in two aspects:

1. a timed execution has trajectories to express passage of time;

2. a timed execution does not contain any time-passage actions.

In particular, a timed execution hides the time-passage transitions that are scheduled in an

execution to let time pass. Given a trajectory !, there are in�nitely many ways to schedule time-

passage transitions to move in time ltime(!) from fstate(!) to lstate(!) (lstate(!) is meaningful

only if the domain of ! is right-closed); the trajectory ! represents all those possible ways. In a

similar way, a probabilistic timed execution should not contain any information on the speci�c

time-passage transitions that are scheduled. Thus, a probabilistic timed execution should be

a structure where each state records the past history and each transition contains information

on the trajectories that are spanned till the occurrence of the next action. However, it may be

the case that there is no next action since the next trajectory is right-open. This would not

be a problem except for the fact that from a state there can be uncountably many right-open

trajectories that leave even though they are generated by scheduling time-passage transitions

according to a discrete probability distribution.

Example 9.3.1 (Uncountable branching from countable branching) Consider a prob-

abilistic automatonM that can increase or decrease a variable x of its state at a constant speed,

and suppose that every one time unit the speed of x can be complemented nondeterministi-

cally. A valid scheduler A for M is a scheduler that every one time unit chooses the sign of the

speed of x according to a uniform binary distribution. As a result, there are uncountably many

trajectories leaving from the start state ofM if we use A to resolve the nondeterminism. Thus,

if in a probabilistic timed execution we do not allow for a trajectory to be split into pieces,

the probabilistic timed execution of M generated by A would have a non-discrete probability

distribution in its transition relation.

To express the fact that we allow only discrete probability distributions on a scheduler, we de�ne

probabilistic timed executions in two steps. First we de�ne probabilistic time-enriched execu-

tions, which contain closed trajectories and time-passage actions (the time-passage transitions

that are scheduled are visible); then, we remove the time-passage actions from probabilistic

time-enriched executions to yield probabilistic timed executions.

200

At the end of this section we show that probabilistic executions, probabilistic time-enriched

executions, and probabilistic timed executions are strongly related. Speci�cally, we show that

each probabilistic execution is a sampling of a probabilistic time-enriched execution where

the information contained in the trajectories is lost, and that each probabilistic time-enriched

execution is sampled by some probabilistic execution. Furthermore, we show that it is possible to

de�ne an equivalence relation directly on probabilistic time-enriched executions that expresses

the fact that two probabilistic time-enriched executions denote the same probabilistic timed

execution (they just schedule time-passage transitions in a di�erent way).

All the equivalence results that we prove in this section allow us to use the kind of proba-

bilistic execution that is best suited for each problem. In particular, we use probabilistic timed

executions for the theorems of Chapter 10, and we use probabilistic time-enriched executions

and probabilistic executions for the results of Chapters 11 and 12. Due to the purely technical

content of the comparison section (Section 9.3.3), the reader may focus just on the de�nitions

and on the informal explanations (Sections 9.3.1 and 9.3.2) at a �rst reading. Most of the

concepts are simple modi�cations of concepts de�ned for probabilistic executions.

9.3.1 Probabilistic Time-Enriched Executions

Time-Enriched Executions

LetM be a probabilistic timed automaton. A time-enriched execution fragment ofM is a �nite

or in�nite alternating sequence � = !0a1!1a2!2 � � � where

1. The domain of !0 is [0; 0].

2. Each !i is a trajectory with a closed domain and each ai is an action.

3. If ai is a visible action, then the domain of !i is [0; 0], and there exists a transition

(lstate(!i�1);P) of M such that (ai; fstate(!i)) 2
.

4. If ai is a time-passage action, then the domain of !i is [0; ai] and lstate(!i�1) = fstate(!i).

Denote by te-frag�(M) and te-frag(M) the set of �nite and all time-enriched execution fragments

of M , respectively. The notation for fstate(�), lstate(�) and ltime(�) extends trivially.

A time-enriched execution fragment � contains more information than a timed execution

fragment since it is possible to observe what time-passage transitions are used to generate �.

A time-enriched extended execution fragment ofM is either a time-enriched execution frag-

ment of M or a sequence �� where � is a �nite time-enriched execution fragment of M . The

notation for lstate(�) extends trivially.

A �nite time-enriched execution fragment � = !0a1!1 � � �an!n of M and a time-enriched

extended execution fragment �0 = !0nan+1!n+1 � � � of M can be concatenated if lstate(�) =

fstate(�0). In this case the concatenation is de�ned to be �00
4
= !0a1!1 � � �an!nan+1!n+1 � � �,

and is denoted by � a �0. It is easy to see that �00 is a time-enriched extended execution

fragment of M . A time-enriched extended execution fragment � of M is a pre�x of a time-

enriched extended execution fragment �0 of M , written � � �0, if either � = �0 or � is �nite

and there exists a time-enriched extended execution fragment �00 of M such that �0 = � a �00.

Likewise, � is a su�x of �0 if there exists a �nite time-enriched execution fragment �00 such

that �0 = �00 a �. Denote � by �0.�00.

201

Time-Enriched Transitions

Let (s;P) be a combined transition of M . For each pair (a; s0) of
, if a is a discrete action,

then let P(a;s0) be D((a; s
0)); if a is a time-passage action, then let P(a;s0) be a discrete proba-

bility distribution of Probs(trajectories(M; s; a; s0)), where trajectories(M; s; a; s0) denotes the

set of trajectories for s
a
�! s0. The pair

P
(a;s0)2
 P [(a; s

0)](s;P(a;s0)) is called a time-enriched

transition of M .

Thus, a time-enriched transition adds information to a combined transition by specifying

what state is reached at each intermediate time. A combined transition gives just the extremes

of a trajectory, dropping all the information about what happens in the middle.

Probabilistic Time-Enriched Executions

A probabilistic time-enriched execution fragment H of a timed probabilistic automatonM is a

fully probabilistic automaton such that

1. states(H) � te-frag�(M)

2. for each transition tr = (q;P) of H there is a time-enriched transition tr 0 = (lstate(q);P 0)

of M , called the corresponding time-enriched transition, such that P = q a P 0.

3. each state of H is reachable and enables one transition.

A probabilistic time-enriched execution is a probabilistic time-enriched execution fragment

whose start state is a start state of M . Denote by te-prfrag(M) the set of probabilistic time-

enriched execution fragments of M , and by te-prexec(M) the set of probabilistic time-enriched

executions of M . Also, denote by qH0 the start state of a generic probabilistic time-enriched

execution fragment H .

As for the untimed case, there is a strong relationship between the time-enriched extended

execution fragments of a probabilistic timed automaton and the extended executions of one of

its probabilistic time-enriched execution fragments. Speci�cally, let M be a probabilistic timed

automaton and let H be a probabilistic time-enriched execution fragment of M . Let q0 be the

start state of H . For each extended execution � = q0a1q1 � � � of H , let

�#
4
=

(
q0

a lstate(q0)a1ltraj (q1)a2 � � � if � does not end in �,

q0
a lstate(q0)a1ltraj (q1)a2 � � �anltraj (qn)� if � = q0a1q1 � � �anqn�,

(9.1)

where ltraj (qi) denotes the last trajectory of qi. It is immediate to observe that �# is a time-

enriched extended execution fragment of M . For each time-enriched extended execution frag-

ment � of M such that q0 � �, i.e., � = q0
a !0a1!1 � � �, let

�"q0
4
=

(
q0a1(q0a1!1)a2(q0a1!1a2!2) � � � if � does not end in �,

q0a1(q0a1!1) � � �(q0a1!1 � � �an!n)� if � = q0a1!1 � � �an!n�.
(9.2)

It is immediate to observe that �"q0 is an extended execution of some probabilistic timed

execution fragment of M . Moreover, the following proposition holds.

202

Proposition 9.3.1 Let H be a probabilistic time-enriched execution fragment of a probabilistic

timed automaton M . Then, for each extended execution � of H,

(�#)"q0 = �; (9.3)

and for each time-enriched extended execution fragment � of M starting with q0,

(�"q0)# = �: (9.4)

Events

The probability space PH associated with a probabilistic time-enriched execution H is de�ned

as for the untimed case. Thus,
0H is the set of time-enriched extended execution fragments of

M that correspond to complete extended executions of H , i.e.,

0H
4
= f�# j � is a complete extended execution of Hg; (9.5)

where an extended execution � of H is complete i� either � is in�nite, or � = �0�, �0 is a �nite

execution of H , and � 2
H
lstate(�). For each �nite time-enriched extended execution fragment

� of M , let CH
� denote the cone

CH
�

4
= f�0 2
H j � � �

0
g: (9.6)

Let CH be the set of cones of H . Then de�ne F 0H to be the �-�eld generated by CH , i.e.,

F
0
H

4
= �(CH): (9.7)

De�ne a measure � on CH such that the measure �H(C
H
�) of a cone CH

� is the product of the

probabilities associated with each edge that generates � in H . Formally, let q0 be the start

state of H . If � � q0, then

�H(C
H
�)

4
= 1; (9.8)

if � = q0
a !0a1!1 � � �!n�1an!n, then

�H(C
H
�)

4
= PH

q0
[(a1; q1)] � � �P

H
qn�1

[(an; qn)]; (9.9)

where for each i, 1 � i < n, qi = q0
a !0a1!1 � � �!i�1ai!i; if � = q0

a !0a1!1 � � �!n�1an!n�,

then

�H(C
H
�)

4
= PH

q0
[(a1; q1)] � � �P

H
qn�1

[(an; qn)]Pqn [�]; (9.10)

where for each i, 1 � i � n, qi = q0
a !0a1!1 � � �!i�1ai!i. Then the probability measure P 0H is

the unique measure on FH that extends �H , and PH is the completion of PH .

Finite Probabilistic Time-Enriched Executions, Pre�xes, Conditionals, and Su�xes

Since a probabilistic time-enriched execution is a fully probabilistic automaton, the de�nitions

of �niteness, pre�x, conditional and su�x of Section 4.2.6 extend directly: we just need to

de�ne the length of a time-enriched execution fragment � as the number of actions that occur

in �.

203

9.3.2 Probabilistic Timed Executions

We now de�ne the probabilistic timed executions of a probabilistic timed automaton. We

use probabilistic time-enriched executions to characterize those transitions that originate from

discrete schedulers.

Timed Transitions

A timed transition expresses the result of choosing either an in�nite trajectory or a �nite

trajectory followed by some discrete action at random. However, a timed transition should

be the result of scheduling a collection of time-enriched transitions, so that we are guaranteed

that it is due to a discrete scheduler. For this reason, we derive a timed transition from the

probability distribution associated with a time-enriched probabilistic execution. The derivation

proceeds in two steps: �rst all the time-passage actions are removed and the corresponding

trajectories are concatenated; then the resulting structure is truncated at the occurrence of the

�rst action.

Removing Time-Passage Actions. Let � = !0a1!1a2!2 � � � be a time-enriched execution

fragment of a probabilistic timed automatonM . The timed execution represented by �, denoted

by t-exec(�), is the sequence obtained from � by removing all the time-passage actions and by

concatenating all the trajectories whose intermediate action is removed.

Let H be a probabilistic time-enriched execution fragment of a probabilistic timed automa-

ton M . Let

4
= t-exec(
H) [limits(t-exec(
H)); (9.11)

where limits(t-exec(
H)) is the set of timed executions � ofM that end with an open trajectory

and such that for each �nite pre�x �0 of � there is an element �00 of t-exec(
H) such that �
0
� �00.

Then, t-exec(PH) denotes the probability space completion((
;F ; P)) where F is the �-�eld

generated by the cones on
, and P is t-exec(PH).

The reason for the de�nition of the sample space of t-exec(PH) is mainly technical: we

want to establish a relationship between probabilistic time-enriched executions and probabilis-

tic timed executions, and we want the relationship to be preserved by projection of probabilistic

timed executions in a parallel composition context. Informally, we are interested in a distribu-

tion over trajectories, possibly followed by an action, without keeping any information on how

such a distribution is obtained. The elements of the sample space that end with right open

trajectories can be a�ected by the way the transitions are scheduled in a probabilistic time-

enriched execution. Moreover, these elements of
 can create problems for parallel composition.

Closing the sample space under limit makes such di�erences invisible. The reader interested in

more details is referred to Sections 9.3.3 and 9.5, and speci�cally to Examples 9.3.3 and 9.5.1.

Example 9.3.2 (What t-exec identi�es) Figure 9-1 gives an example of two probabilistic

time-enriched executions that are mapped to the same structure by t-exec(). We assume to

have two functions ! and !0 de�ned on the real numbers, and we denote by !d;d0 the trajectory

!00 with domain [0; d0� d] such that for each t � d0� d, !00(t) = !(t� d). A similar notation is

used for !0.

204

s0

ω0,1/4

ω0,1/8

ω1/2,1

ω1/4,1

ω1/8,1

ω

ω

ω

’

1,2

1,2

0,1
1

1

1

ω

ω

1

1

’0,1

2,3

ω0,1/21/2

1/2

1/4

1/8

1/2

3/4

7/81/8

1/4

ω1
’0,1

s0 ω0,1
1

1

1/2

1/2

1

1

1/2

1/2

ω2,3
1

1

1/2

1/2

ω1,2

ωω ω’ ’ ’0,1 0,1 0,1

Figure 9-1: Probabilistic time-enriched executions that are mapped to the same structure.

Truncation at the First Action. Let M be a probabilistic timed automaton, and let q be

a �nite timed execution fragment of M . For each extended timed execution fragment � of M

such that q � �, let

truncateq(�)
4
=

(
� if no action occurs in �.q

q a !0a1fstate(!1) if �.q = !0a1!1 � � �
(9.12)

Let H be a probabilistic time-enriched execution fragment of M , and let q be a pre�x of

the start state of H . Then de�ne truncateq(t-exec(PH)) to be the probability space P where

 = truncateq(t-exec(
H)), F is the �-�eld generated by the cones of
, and P is the measure

truncateq(t-exec(PH)).

Timed Transitions. A timed transition of M leaving from a state s is a pair (s;P) such

that there is a probabilistic time-enriched execution fragment H of M starting in s, and P =

truncates(t-exec(PH)).

Probabilistic Timed Executions

A probabilistic timed execution fragment of a probabilistic timed automatonM , denoted by H ,

consists of four components.

1. A set states(H) � t-frag�(M) of states.

2. A unique start state qH0 .

3. An action signature sig(H) = sig(M).

4. A transition relation trans(M) consisting of pairs (q;P) such that there exists a timed

transition (lstate(q);P 0) of M satisfying P = q a P 0. Observe that, from the discussion in

Section 3.1.5, q a P 0 is well de�ned.

Moreover, each state ofH is reachable, enables at most one transition, and enables one transition

i� it is a �nite timed execution fragment of M . A probabilistic timed execution of M is a

probabilistic timed execution fragment of M whose start state is a start state of M .

An execution of H is a sequence of states ofH , � = q0q1 � � � ; such that for each i, qi+1 2
H
qi
.

As for the untimed case, there is a strong correspondence between the timed extended execution

fragments of a probabilistic timed execution H of M and the executions of H . Speci�cally, let

205

M be a probabilistic timed automaton and let H be a probabilistic timed execution fragment

of M . Let q0 be the start state of H . For each execution � = q0q1 � � � of H , let

�#
4
= lim

i
qi; (9.13)

where the limit is taken under pre�x ordering. It is immediate to observe that �# is a timed

extended execution fragment of M . For each timed extended execution fragment � of M such

that q0 � �, i.e., � = q0
a !0a1!1 � � �, let qi be q0

a !0a1!1 � � �aifstate(!i), and if �.q0 is a �nite

sequence with n discrete actions, let qn+1 be �. Then let

�"q0
4
= q0q1q2 � � � : (9.14)

It is immediate to observe that �"q0 is an execution of some probabilistic timed execution

fragment of M . Moreover, the following proposition holds.

Proposition 9.3.2 Let H be a probabilistic timed execution fragment of a probabilistic timed

automaton M . Then, for each execution � of H,

(�#)"q0 = �; (9.15)

and for each timed extended execution fragment � of M starting with q0,

(�"q0)# = �: (9.16)

Events

The probability space PH associated with a probabilistic timed execution fragmentH is de�ned

similarly to the untimed case. The set
0H the set of extended timed execution fragments of

M that correspond to complete executions of H , where an execution of H is complete i� it is

either in�nite or it leads to a state that does not enable any transition. The �-�eld F 0H is the

minimum �-�eld that contains the class of cones of
0H . The measure P 0H is the unique measure

that extends the measure de�ned on cones as follows: if � = qH0
a !0a1!1a2 � � �an!n, then

P 0H [C�] = PH
q0
[q1] � � �P

H
qn�1

[qn]P
H
qn [C�] (9.17)

where for each i � n, qi = qH0
a !0a1!1 � � �anfstate(!i); if � = qH0

a !0a1!1a2 � � �an!n�, then

P 0H [C�] = PH
q0
[q1] � � �P

H
qn�1

[qn]P
H
qn
[�] (9.18)

where for each i � n, qi = qH0
a !0a1!1 � � �anfstate(!i). Observe that although there are

uncountably many cones in F 0H , every union of cones is expressible as a countable union of

disjoint cones. Then, PH is the completion of P 0H .

Finite Probabilistic Timed Executions, Pre�xes, Conditionals, and Su�xes

Finiteness and pre�x are de�ned similarly to the untimed case, and thus we do not repeat the

de�nitions here.

Conditionals and su�xes di�er in a small detail concerning the start state. The reader

should observe the similarity of these de�nitions to those for the untimed case. Also, observe

that the properties of conditionals and su�xes (Propositions 9.3.3 and 9.3.4) are the same as

206

for the untimed case. This is what allows us to extend the results for the untimed case directly

to the timed case.

Let H be a probabilistic timed execution fragment of a probabilistic timed automaton M ,

and let q be a pre�x of some state of H such that qH0 is a pre�x of q. Then H jq is a new

probabilistic execution fragment de�ned as follows:

1. states(H jq) = fqg [fq0 2 states(H) j q � q0g;

2. start(H jq) = fqg.

3. for each state q0 of H jq di�erent from q, tr
Hjq
q0 = trHq0 .

4. let �q be the maximum state of H that is a pre�x of q. Then, tr
Hjq
q = (q;PH�q jCq).

H jq is called a conditional probabilistic timed execution fragment. We show later that H jq is a

probabilistic timed execution. Observe that (
Hjq;FHjq; PHjq) and (
H jCq;FH jCq; PH jCq) are

the same probability space (cf. Section 3.1.8): the sample spaces are the same, the generators

are the same, and the probability measures coincide on the generators. Thus, the following

proposition is true.

Proposition 9.3.3 Let H be a probabilistic timed execution fragment of a probabilistic timed

automaton M , and let q be a pre�x of a state of H such that qH0 � q. Then, for each subset E

of
Hjq,

1. E 2 FHjq i� E 2 FH .

2. If E is an event, then PH [E] = PH [Cq]PHjq[E].

Let H be a probabilistic timed execution fragment of a probabilistic timed automatonM , and

let q be a pre�x of some state of H such that qH0 is a pre�x of q. Then H.q is a new probabilistic

execution fragment de�ned as follows:

1. states(H.q) = fq0.q j q0 2 states(H jq)g;

2. start(H jq) = flstate(q)g.

3. for each state q0 of H.q, trH.q
q0 = tr

Hjq

qaq0
.q.

H.q is called a su�x of H . It is easy to check that the probability spaces PH.q and PHjq are

in a one-to-one correspondence through the measurable function f :
H.q !
Hjq such that

for each � 2
H.q, f(�) = q a �. The inverse of f is also measurable and associates �.q with

each timed execution � of
Hjq. Thus, directly from Proposition 9.3.3, we get the following

proposition.

Proposition 9.3.4 Let H be a probabilistic timed execution fragment of a probabilistic timed

automaton M , and let q be a pre�x of a state of H such that qH0 � q. Then, for each subset E

of
H.q,

1. E 2 FH.q i� (q a E) 2 FH .

207

2. If E is an event, then PH [q
a E] = PH [Cq]PH.q[E].

We are left with showing that H jq is well de�ned. The proof of this apparently obvious fact is

not simple and contains several technical details.

Proposition 9.3.5 Let H be a probabilistic timed execution fragment of a probabilistic timed

automaton M , and let q be a pre�x of a state of H such that qH0 � q. Then, H jq is a probabilistic

timed execution fragment of M .

Proof. We just need to verify that the transition leaving from state q in H jq is a timed

transition. Let �q be the maximum state of H that is a pre�x of q. Then, from the de�nition

of a timed transition, there is a probabilistic time-enriched execution fragment H�q of M such

that PH�q = �q a truncate lstate(�q)(t-exec(PH�q)). From the de�nition of tr
Hjq
q , we need to �nd a

probabilistic time-enriched execution fragment Hq of M such that

(�q a truncate lstate(�q)(t-exec(PH�q)))jCq = q a truncate lstate(q)(t-exec(PHq)): (9.19)

Let q0 be q.�q. From the de�nition of �q, q0 is just one closed trajectory. Thus, if we build Hq

such that

(t-exec(PH�q))jCq0 = q0 a t-exec(PHq); (9.20)

then Equation 9.19 follows easily using simple properties of truncate. Thus, the rest of this

proof is dedicated to the construction of an Hq that satis�es (9.20).

Let q1; q2; : : : be an enumeration of the minimal states q00 of H such that q0 � t-exec(q00).

We distinguish two cases.

1. For each i, t-exec(qi) = q0.

The construction for Hq in this case is carried out in the proof of Proposition 9.3.8 (cf.

Equation 9.29). We give a forward pointer to avoid too many technical details at this

point.

2. There is an i such that q0 < t-exec(qi).

We prove this case by reducing the problem to the previous case. That is, we build a new

probabilistic time-enriched execution fragment H 0
�q such that t-exec(PH�q) = t-exec(PH 0

�q
)

and such that the minimal states q00 of H 0
�q such that q0 � t-exec(q00) satisfy q0 = t-exec(q0).

Recall �rst that q0 is a trajectory whose domain is [0; d] for some d > 0. De�ne a

collection of �nite time-enriched execution fragments q01; q
0
2; � � � as follows: for each i, if

t-exec(qi) = q0 then q0i = qi; otherwise, represent qi as �qi
a lstate(�qi)di!i, where �qi is

a state of H�q, and let q0i be �qi
a lstate(�qi)di;1!i;1di;2!i;2di;3!i;3 where !i = !i;1!i;2!i;3,

t-exec(�qi
a lstate(�qi)di;1!i;1di;2!i;2) = q0, and the actions di;1 and di;2 are chosen in such a

way that for each i �qi
a lstate(�qi)di;1!i;1 is not a pre�x of any of the q0j 's, j 6= i. In other

words, we split all the qi's in such a way that a state that corresponds to q0 is reached

always and such that none of the states of H�q are identi�ed. Then,

states(H 0
�q) = fq00 j 9iq

00
� q0ig (9.21)

[

 [
i

fq0i
a (q00.qi) j q

00
2 states(H�q); qi < q00g

!
:

208

The transition relation of H 0
�q is obtained from the transition relation of H�q by scheduling

the same time-enriched transitions of M as before except for the states �qi where the

intermediate transitions leading to the q0i's are scheduled. It is simple to check that H 0
�q

satis�es the desired properties.

9.3.3 Probabilistic Executions versus Probabilistic Timed Executions

In this section we show the relationship between probabilistic executions, probabilistic time-

enriched executions, and probabilistic timed executions. The main idea is that they all repre-

sent the same structures with di�erent levels of detail. We show that a probabilistic execution

is a sampling of a probabilistic time-enriched execution, where the information given by the

trajectories is lost. Conversely, we show that each probabilistic time-enriched execution is

sampled by some probabilistic execution. We show that each probabilistic time-enriched exe-

cution represents a probabilistic timed execution and that each probabilistic timed execution

is represented by some probabilistic time-enriched execution. Essentially, a probabilistic time-

enriched execution is a probabilistic timed execution with the additional information of what

time-passage transitions are scheduled. Finally, we de�ne an equivalence relation on probabilis-

tic time-enriched executions that captures the idea of representing the same probabilistic timed

execution. This equivalence relation will be useful for parallel composition.

Probabilistic Executions versus Probabilistic Time-Enriched Executions

There is a close relationship between the probabilistic executions of a probabilistic timed au-

tomaton and its probabilistic time-enriched executions. Informally, a probabilistic time-enriched

execution contains more information than a probabilistic execution because it associates a state

with every real time rather than with a countable set of times. In other words, a probabilistic

execution can be seen as a sampling of a probabilistic time-enriched execution at countably

many points. In later chapters we will see that probabilistic executions are su�cient for the

study of the properties of a system whenever such properties do not depend on the actual states

that are reached at each time. For the moment we just de�ne what it means for a probabilistic

execution to sample a probabilistic time-enriched execution, and we show that each probabilistic

time-enriched execution is sampled by some probabilistic execution and that each probabilistic

execution samples some probabilistic time-enriched execution. We start by de�ning a func-

tion sample that applied to a probabilistic time-enriched execution H of a probabilistic timed

automaton M gives a probabilistic execution H 0 of M , which by de�nition samples H .

Let � = !0a1!1a2!2 � � � be a time-enriched execution of a probabilistic timed automaton

M , and let sample(�) be the sequence �0 = lstate(!0)a1lstate(!1)a2lstate(!2) � � �. Then, it is

easy to check that �0 is an execution of M . We say that �0 samples �. De�ne

states(H 0)
4
= sample(states(H)): (9.22)

Let (q;P) be a transition ofH . De�ne sample on
 as follows: sample((a; q0)) = (a; sample(q0)),

and sample(�) = �. Then, de�ne the transition sample((q;P)) to be

sample((q;P))
4
= (sample(q); sample(P)): (9.23)

209

For each state q of H 0, let sample�1(q) be the set of states q0 of H such that sample(q0) =

q. Observe that all the states of sample�1(q) are incomparable under pre�x. For each q0 2

sample�1(q), let

�p
sample�1(q)
q0

4
=

PH [Cq0]P
q002sample�1(q) PH [Cq00]

: (9.24)

Then, the transition enabled from q in H 0 is de�ned to be

trH
0

q
4
=

X
q02sample�1(q)

�p
sample�1(q)
q0 sample(trHq0): (9.25)

Observe the similarity of Equations (9.24) and (9.25) with the equations that the �ne the

projection of a probabilistic execution (cf. Equations (4.21) and (4.22)).

Proposition 9.3.6 below shows that H 0 is a probabilistic execution of M . We say that H 0

samples H . Then, Proposition 9.3.7 shows that each probabilistic execution samples some

probabilistic time-enriched execution.

Proposition 9.3.6 For each probabilistic time-enriched execution H of a probabilistic timed

automaton M , sample(H) is a probabilistic execution of M .

Proof. Let H 0 denote sample(H). The fact that each state of H 0 is reachable can be shown

by a simple inductive argument; the fact that each state of H 0 is a �nite execution fragment of

M follows from a simple analysis of the de�nition of sample and of a time-enriched execution.

We need to check that for each state q of H 0 the transition enabled from q in H 0 is generated

by a combined transition of M . From (9.25), it is enough to show that for each state q0 of

sample�1(q) the transition sample(trHq0) is generated by a combined transition of M .

Since H is a probabilistic time-enriched execution of M , then there is a time-enriched

transition (lstate(q0);P) of M such that PHq0 = q0 a P . From the de�nition of sample and the

de�nition of a time-enriched transition, (lstate(q); sample(P)) is a combined transition of M ,

and sample(PHq0) = sample(q0) a sample(P), which means that sample(PH
0

q) = q a sample(P).

This is enough to conclude.

Proposition 9.3.7 Let H be a probabilistic execution of a probabilistic timed automaton M .

Then there is a probabilistic time-enriched execution H 0 of M such that H = sample(H 0).

Proof. We build H 0 inductively in such a way that for each state q of H there is exactly one

state q0 of H 0 in sample�1(q). The start state of H 0 is the same as the start state of H .

Suppose that the transition relation of H 0 is de�ned for each state of length at most i� 1

and assume that for each state q of H of length at most i there is exactly one state q0 of H 0 in

sample�1(q). Let q be a state of H of length i and let q0 be the state of sample�1(q). Observe

from the de�nition of sample that the length of q0 is i. Let (lstate(q);P) be the combined

transition of M that corresponds to trHq . For each pair (a; s) of
, if a is a discrete action,

then let P(a;s0) be D((a; s
0)); if a is a time-passage action, then let P(a;s0) be D(wa;s0), where

wa;s0 2 trajectories(M; s; a; s0). Let P 0 =
P

(a;s)2
 P [(a; s)]P(a;s). Then, (lstate(q);P
0) is a time-

enriched transition of M . Let trH
0

q0 be (q0; q0 a P 0). Then, trH
0

q0 is a legal transition for H 0.

Moreover, from the de�nition of P 0, each state of PHq is the sampling of exactly one state of

PH
0

q0 , and, vice versa, the sample of each state of PH
0

q0 is a state of PHq .

210

Probabilistic Time-Enriched Executions versus Probabilistic Timed Executions

We de�ne a function t-sample that, given a probabilistic time-enriched execution fragment H

of M , builds a probabilistic timed execution H 0 as follows.

states(H 0) = ft-exec(qH0) [(9.26)

fq 2
t-exec(H) j q contains �nitely many actionsg [

fq 2 t-frag�(M) j ltraj (q) is a [0,0]-trajectory and 9q02
t-exec(H)
q � q0g:

The start state of H 0 is t-exec(qH0), and for each state q of H 0 the transition enabled from q is

(q; truncateq(t-exec(PH)jCq)).

Proposition 9.3.8 t-sample(H) is a probabilistic timed execution fragment of M .

Proof. We need to show that for each state q of H 0 that enables some transition there is

a probabilistic time-enriched execution fragment Hq of M starting from lstate(q) such that

PHq = truncate lstate(q)(t-exec(PHq)).

Let q1; q2; : : : be an enumeration of the states q0 of H such that t-exec(q0) = q, and for each

i let pi denote PH [Cqi]. Observe that, since q ends with the occurrence of a discrete action,

for each state q00 of H such that q0 � t-exec(q00) there is an i such that qi � q00. De�ne Hq as

follows.

states(Hq)
4
=
[
i

states(H.qi): (9.27)

For each state q0 of Hq, let

tr
Hq

q0
4
=

P
ijq02states(H.qi)

PH [Cqiaq0
](trH

qiaq0
.qi)P

ijq02states(H.qi)
PH [Cqiaq0

]
: (9.28)

Then, it is enough to prove that

q a t-exec(PHq) = t-exec(PH)jCq: (9.29)

Before proving (9.29), we show the following property: for each state q0 of Hq,

PHq [Cq0] =

P
ijq02states(H.qi)

PH [Cqiaq0
]P

i PH [Cqi]
: (9.30)

This follows easily by induction using Equation (9.28) for the inductive step. The denominator

is necessary for the base case to work.

We now turn to Equation (9.29). Consider an extended timed execution fragment � of M ,

and distinguish the following two cases.

1. � does not end with an open trajectory.

Suppose that � 2
t-exec(PH)jCq . Then, from the de�nition of t-exec() and of the con-

ditional operation, q � � and there is a time-enriched execution �0 of
H such that

t-exec(�0) = �. This means that there is a time-enriched execution �0 of
H such that

t-exec(�0) = � and there is a state qi of H such that qi � �0. From the construction of

Hq, each pre�x of �0 is a state of Hq, and thus �0 2
t-exec(Hq). The argument can be

reversed.

211

2. � ends with an open trajectory.

Suppose that � 2
t-exec(PH)jCq . Then, from the de�nition of t-exec() and of the condi-

tional operation, q � � and for each �nite pre�x �0 of � there is a timed execution �00

of t-exec(
H) such that �0 � �00. It is su�cient to show that for each �nite pre�x �0

of � there is a timed execution �00q of t-exec(
Hq
) such that �0 � (q a �00q). Consider a

pre�x �0 of �, and let �00 be an element of t-exec(
H) such that �0 � �00. Then there is

a time-enriched execution �000 of
H such that �0 � t-exec(�000), which means that there

is a �nite pre�x �0000 of �000 such that �0 � t-exec(�000) and q � t-exec(�000). Let qi be

the pre�x of �0000. We know that such pre�x exists. Then, from the de�nition of Hq,

�0000.qi is a state of Hq, and thus there is a time-enriched execution �0q of
Hq
such that

�0 � (q a t-exec(�0q)). Moreover, t-exec(�0q) 2 t-exec(PHq
), which is su�cient to conclude.

The argument can be reversed.

Finally, we need to show that Pt-exec(PH)jCq and Pt-exec(PHq) coincide on the cones of their sample

spaces. Thus, consider a �nite timed execution fragment � ofM . From the de�nition of t-exec(),

Pt-exec(PHq)[C�] =
X

q02min(fq02states(Hq)j��t-exec(q0)g)

PHq [Cq0]: (9.31)

From (9.30),

Pt-exec(PHq)[C�] =
X

q02min(fq02states(Hq)j��t-exec(q0)g)

P
ijq02states(H.qi)

PH [Cqiaq0
]P

i PH [Cqi]
: (9.32)

From the de�nition of the states of Hq, (9.32) can be rewritten into

Pt-exec(PHq)[C�] =

P
i

P
q02min(fq02states(H.qi)jqa��t-exec(qiaq0)g)PH [Cqiaq0

]P
i PH [Cqi]

: (9.33)

By simplifying the concatenations we obtain

Pt-exec(PHq)[C�] =

P
q02min(fq02states(H)jqa��t-exec(q0)g) PH [Cq0]P

i PH [Cqi]
: (9.34)

From the de�nition of t-exec(), the de�nition of a conditional space, and the de�nition of the

qi's,

Pt-exec(PH)jCq [C�] =

P
q02min(fq02states(H)jqa��t-exec(q0)g) PH [Cq0]P

i PH [Cqi]
: (9.35)

Since the right sides of Equations (9.34) and (9.35) are the same, we conclude that

Pt-exec(PHq)[C�] = Pt-exec(PH)jCq [Cqa�]: (9.36)

This completes the proof.

Conversely, we show that every probabilistic timed execution of M is sampled by some proba-

bilistic time-enriched execution of M . Let H be a probabilistic timed execution of M . Then,

build H 0 as follows. Let H0 be a probabilistic timed execution consisting of a single state that

212

is t-sampled by qH0 , i.e., t-sample(q
H0
0) = qH0 . Strictly speaking H0 is not a probabilistic timed

execution because qH0
0 should enable a transition in general. Suppose now that Hi is de�ned.

Then build Hi+1 be extending the transition relation of Hi from all the states of Hi that do

not end in � and do not have any outgoing transition as follows. Consider a state q of Hi that

do not end in � and do not have any outgoing transition, and let q0 be the state of H such

that t-exec(q) = q0 (our construction ensures that there is always such a state since q ends with

a [0; 0]-trajectory). From the de�nition of a probabilistic timed execution fragment, there is

a probabilistic time-enriched execution fragment Hq0 of M starting from lstate(q0) such that

PHq0 = truncate lstate(q0)(t-exec(PHq0
)). Let H 0

q0 be obtained from Hq0 by removing all the tran-

sitions from states where an action has occurred and by removing all the states that become

unreachable. Then, extend Hi from q0 with q0 a H 0
q0 , i.e., Hi+1.q

0 = H 0
q0 .

Then the states of H 0 are the union of the states of the Hi's, the start state of H
0 is qH0

0 ,

and for each state q of H 0, if q is a state of Hi, then trH
0

q = tr
Hi+1
q .

Proposition 9.3.9 t-sample(H 0) = H.

Proof. We prove that PH = t-exec(PH 0). Then the equality between t-sample(H 0) and

H follows by induction after observing that t-sample(H 0) and H have the same start state

and that for each state q, step
t-sample(H 0)
q = (q; truncateq(t-exec(PH 0)jCq)), and that stepHq =

(q; truncateq(PH jCq)).

For the sample spaces, consider an element � of
H . Then, by de�nition of
H , there is an

execution �0�1 � � � of H such that limi �i = �, and such that either � is not a �nite execution,

or the last element of � ends in �. We distinguish two cases.

1. � is either an in�nite sequence or a �nite sequence �0�2 � � ��n where �n ends with �.

From the de�nition of the transition relation of H 0, there is a sequence of extended time-

enriched execution fragments q0; q1; : : : such that for each i �i = t-exec(q0
a
� � �

a qi),

q0
a q1

a � � � is an element of
H 0 , and t-exec(q0
a q1

a � � �) = �. Thus, � 2
t-exec(H 0). The

converse argument is a reversal of the argument above.

2. � = �0�2 � � ��n where �n ends with an open trajectory.

From the de�nition of the transition relation of H 0, there is a sequence of extended

time-enriched execution fragments q0; q1; : : : ; qn�1 such that for each i � n � 1 �i =

t-exec(q0
a
� � �

a qi) and q0
a
� � �

a qi is a state of H 0. Furthermore, for each �nite pre�x

�0 of � there is a time-enriched execution fragment qn such that �0 � t-exec(q0
a � � �a qn)

and q0
a
� � �

a qn�1
a qn is an element of
H 0. This means that for each �nite pre�x �0 of

� there is an element �00 of t-exec(
H 0) such that �0 � �00, and thus � 2
t-exec(PH0)
. The

argument can be reversed.

Consider now a cone C�. From the de�nition of t-exec(),

Pt-exec(H 0)[C�] =
X

q2min(fq2states(H 0)j��t-exec(q)g)

PH 0 [Cq]: (9.37)

If C� is not empty, then � = �1 � � ��n, where �n = �, �0 � � ��n�1 is an execution of H , and

there is a �0n such that �n � �0n and �1 � � ��
0
n is an execution of H . We show by induction on

213

n that

PH [C�n] =
X

q2min(fq2states(H 0)j��t-exec(q)g)

PH 0 [Cq]: (9.38)

The base case is trivial since C�0 denotes the whole sample space. For the inductive case, from

the de�nition of the probability of a cone,

PH [C�n] = PH [C�n�1]P
H
�n�1

[C�n]: (9.39)

From the de�nition of the transition relation of H ,

PH
�n�1

[C�n] =

P
q2states(H 0)jt-exec(q)=�n�1

PH 0 [Cq]Pt-exec(H 0.q)[C�n.�n�1]P
q2states(H 0)jt-exec(q)=�n�1

PH 0 [Cq]
; (9.40)

where

Pt-exec(H 0.q)[C�n.�n�1] =
X

q02min(fq02states(H 0.q)j�n�t-exec(qaq0)g)

PH 0.q[Cq0]: (9.41)

Since �n�1 is a state of H , the last trajectory of �n�1 has domain [0; 0], and the set fq 2

states(H 0) j t-exec(q) = �n�1g is a set of minimal states. Thus, by substituting (9.41) in (9.40),

simplifying the numerator of (9.40), we obtain

Pt-exec(H 0.q)[C�n.�n�1] =

P
q02min(fq02states(H 0)j�n�t-exec(q0)g)PH 0 [Cq0]P

q2states(H 0)jt-exec(q)=�n�1 PH 0 [Cq]
: (9.42)

By substituting (9.42) in (9.39), using induction and simplifying algebraically, we get (9.38).

Equivalent Probabilistic Time-Enriched Executions

It is possible to de�ne an equivalence relation on probabilistic time-enriched executions that

captures exactly the probabilistic timed executions that they represent.

Let H1 and H2 be two probabilistic time-enriched execution fragments of a probabilistic

timed automaton M . Then t-exec(PH1) and t-exec(PH2) are said to be equivalent , denoted by

t-exec(PH1) � t-exec(PH2), i�

1. for each timed extended execution fragment � ofM that does not contain in�nitely many

discrete actions, � 2
t-exec(PH1
) i� � 2
t-exec(PH2

);

2. for each �nite timed extended execution fragment � of M ,

Pt-exec(PH1
)[C�] = Pt-exec(PH2

)[C�].

H1 and H2 are said to be equivalent , denoted by H1 � H2, i� t-exec(qH1
0) = t-exec(qH2

0) and

t-exec(PH1) � t-exec(PH2).

Example 9.3.3 (Two equivalent probabilistic time-enriched executions) In the de�-

nition above we do not require the sample spaces of the given probabilistic time-enriched ex-

ecution fragments to contain the same timed executions with in�nitely many discrete actions.

Figure 9-2 shows an example of two probabilistic time-enriched executions whose corresponding

sample spaces di�er from a timed execution with in�nitely many discrete actions and such that

214

s0

ω0,1/4

ω0,1/8

ω0,1/21/2

1/2

ω

ω

a

a
2,2

2,2 ω

ω

1

1

’0,1

2,3 ω1
’0,1

ω1/2,1

ω1/4,1

ω1/8,1

ω1,1
a

1/4

1/8

1/8

1/4

ωa
3,3

ω

ω

ω

’

1,2

1,2

0,1
1

1

1

ω

ω1,1

1,1
a

a

1/2

3/4

7/8

s0 ω0,1
1 ωa

1,1 ωa
2,2 ωa

3,3
1

1

1/2

1/2

ω1,2
1

1

1/2

1/2

ω2,3

1

1/2

1/2

ωωω’ ’ ’0,1 0,1 0,1

Figure 9-2: Probabilistic time-enriched executions that represent the same probabilistic timed

execution.

t-sample() gives the same probabilistic timed execution. The important aspect of this example

is that in the upper probabilistic time-enriched execution the explicit time-passage actions are

used to let 1 time unit elapse in in�nitely many di�erent ways. However, the trajectory that

is spanned before the �rst occurrence of action a is always the same. Observe that the fact

that the two probabilistic time-enriched executions of Figure 9-2 represent the same structure

is not a consequence of the limit closure of the sample space of t-exec(), since t-exec(
H1) and

t-exec(
H2) do not di�er in timed executions that end with an open trajectory. Rather, by

analyzing this example again in the context of parallel composition we will discover the reason

for our de�nition of t-exec() (cf. Example 9.5.1).

The rest of this section is dedicated to showing that � characterizes the probabilistic timed

executions represented by probabilistic time-enriched executions. We do it by showing two

results: the �rst result says that two equivalent probabilistic time-enriched executions describe

the same probabilistic timed execution, and the second result says that for each probabilistic

time-enriched execution H , Pt-sample(H) � t-exec(PH).

Proposition 9.3.10 If t-exec(H1) � t-exec(H2), then t-sample(H1) = t-sample(H2).

Proof. Let q 2 states(t-sample(H1)). If q = t-exec(qH1
0) or q 2
t-exec(H1) and contains �nitely

many discrete actions, then q 2 states(t-sample(H2)) trivially. Thus, suppose that ltraj (q) is a

[0,0]-trajectory and that there is a q0 2
t-exec(H1) such that q � q0. Then, Pt-exec(H1)[Cq] > 0,

and, since t-exec(H1) = t-exec(H2), Pt-exec(H2)[Cq] > 0. Thus, there is a q00 2
t-exec(H2) such

that q � q00, which means that q 2 states(t-sample(H2)). The converse argument is identical.

Consider now a state q of t-sample(H1) and t-sample(H2). We need to show that tr
t-sample(H1)
q

and tr
t-sample(H2)
q are the same transition. From the de�nition of t-sample(), it is enough to show

that truncateq(t-exec(PH1)jCq) = truncateq(t-exec(PH2)jCq). Since t-exec(PH1) � t-exec(PH2),

215

a direct analysis of the de�nition of t-exec() shows that t-exec(PH1
)jCq � t-exec(PH2

)jCq. The

truncation operation is independent of the elements of
 that contains in�nitely many discrete

actions, and thus
truncateq(t-exec(PH1
)jCq) =
truncateq(t-exec(PH2

)jCq). Furthermore, directly from

the de�nition of �, Ptruncateq(t-exec(PH1
)jCq) and Ptruncateq(t-exec(PH2

)jCq) coincide on the cones,

and thus truncateq(t-exec(PH1)jCq) = truncateq(t-exec(PH2)jCq).

Proposition 9.3.11 Let H be a probabilistic time-enriched execution of a probabilistic timed

automaton M . Then, Pt-sample(H) � t-exec(PH).

Proof. Consider a �nite timed execution � of M . We prove the proposition in three steps.

1. For each �nite timed extended execution � of M , there is a timed extended execution �0

of
t-sample(H) such that � � �0 i� there is a timed extended execution �00 of
t-exec(PH)

such that � � �00.

Let �0 2
t-sample(H) such that � � �0. Then there is a complete execution q0q1 � � � of

t-sample(H) such that limiqi = �0. In particular, there is a value n such that � � qn.

From the de�nition of the transition relation of t-sample(H), Pt-exec(H)[Cqn] > 0, and thus

there is a timed execution �00 of
t-exec(PH) such that qn � �
00, which means that � � �00.

Conversely, suppose that there is a timed execution �00 of
t-exec(PH) such that � � �00. If

�00 contains �nitely many actions, then �00 2
t-sample(H) by de�nition. Otherwise, there

is a �nite pre�x �000 of �00 such that � � �000 and the last trajectory of �000 has domain

[0; 0]. From the de�nition of t-sample(H), �000 is a state of t-sample(H), and thus there

is a timed execution �0 of
t-sample(H) such that �000 � �0, which means that � � �0.

2. For each timed extended execution fragment � ofM that does not contain in�nitely many

discrete actions, � 2
t-sample(H) i� � 2
t-exec(PH).

Let � be a timed extended execution of M that does not contain in�nitely many discrete

actions, and suppose that � 2
t-sample(H). If � ends with �, then Item 1 is su�cient

to conclude that � 2
t-exec(PH). If � does not end with �, then there is a �nite execu-

tion q0q1 � � �qn of t-sample(H) such that qn ends with a right-open trajectory. From the

de�nition of the transition relation of t-sample(H), qn 2 truncateqn�1(t-exec(PH)jCqn�1).

Since qn ends with an open trajectory, qn 2
t-exec(PH), i.e., � 2
t-exec(PH).

Conversely, suppose that � 2
t-exec(PH). If � ends with �, then Item 1 is su�cient to

conclude that � 2
t-sample(H). If � does not end with �, then there is a �nite pre�x �0 of �

such that �.�0 does not contain any action, and either �0 is the start state of t-sample(H),

or the last trajectory of �0 has domain [0; 0]. Thus, from the de�nition of t-sample(), �0 is

a state of t-sample(H). From the de�nition of truncate, � 2 truncate�0(t-exec(PH)jC�0),

and thus, from the de�nition of the transition relation of t-sample(H), � 2

t-sample(H)
�0 .

Since � ends with an open trajectory, � 2
t-sample(H).

3. For each �nite timed extended execution fragment � of M ,

Pt-sample(H)[C�] = Pt-exec(PH)[C�].

Let � be a �nite timed execution. From Item 1, C
t-sample(H)
� = ; i� C

t-exec(PH)
� = ;.

Suppose that C
t-sample(H)
� is not empty. Then there is an execution of t-sample(H),

216

�0�1 � � ��n�1�n such that �n�1 < � � �n. From the de�nition of the probability of a

cone,

Pt-sample(H)[C�] = P�0 [C�1]P�1 [C�2] � � �P�n�2 [C�n�1]P�n�1 [C�]: (9.43)

From the de�nition of t-sample(H), for each i < n

P�i [C�i+1] = Pt-exec(H)jC�i
[C�i+1]: (9.44)

Thus, by substituting (9.44) in (9.43) and simplifying, we obtain

Pt-sample(H)[C�] = Pt-exec(H)[C�]: (9.45)

This completes the proof.

9.4 Moves

In the non-timed framework we have introduced the notion of a weak transition to abstract

from internal computation. Informally, a weak transition is obtained by concatenating several

internal and external transitions so that overall the system emulates a unique transition labeled

with at most one external action. In the timed framework, due to the presence of explicit

time-passage actions, it may be the case that some time t cannot elapse without performing

some internal transitions in the middle. This problem becomes more evident when we extend

the simulation relations to the timed framework (cf. Chapter 12). For this reason we introduce

the concept of a move, which extends weak transitions and abstracts from internal transitions

interleaved with time-passage transitions..

Let M is a probabilistic timed automaton, s be a state of M , P be a discrete probability

distribution over states of M , and a be an action of M or the value 0. If a is a visible action of

M then we use the expression s
a
; P to denote s

a
=) P ; if a = 0, then we use the expression

s
0
; P to denote s ; P , which is the same as s =) P ; if a is a time-passage action, i.e.,

a = d for some d 2 <+, then we use the expression s
d
; P to denote that P is reached from s

by means of several internal and time-passage transitions so that in each situation time d has

elapsed. Formally, s
d
; P i� there is a probabilistic execution fragment H such that

1. the start state of H is s;

2. PH [f�� j �� 2
Hg] = 1, i.e., the probability of termination in H is 1;

3. for each �� 2
H , t-trace(�) = t-trace(a);

4. P = lstate(�-strip(PH)), where �-strip(PH) is the probability space P 0 such that
0 =

f� j �� 2
Hg, and for each � 2
0, P 0[�] = PH [C��];

The notion of a generator for a weak transition can be extended to moves in a straightforward

way.

217

9.5 Parallel Composition

The parallel composition operator for probabilistic timed automata is exactly the same as the

parallel composition operator for probabilistic automata. Thus, we omit the formal de�nition.

According to the de�nition of the transition relation of M1kM2, M1 and M2 synchronize on

all their time-passage transitions, and thus time advances always at the same speed in M1 and

M2.

The de�nition of a projection of a probabilistic time-enriched execution is the same as the

de�nition of a projection of a probabilistic execution, except that the states of a probabilistic

time-enriched execution fragment are time-enriched execution fragments rather than ordinary

execution fragments. Thus, we need to extend the de�nition of a projection to time-enriched

execution fragments and time-enriched transitions.

Let M be M1kM2, and let � be a time-enriched execution of M . The projection of � onto

Mi, i = 1; 2, is the sequence obtained from � by projecting the codomain of each trajectory

ontoMi, by removing all the actions not in acts(Mi), and by concatenating all the trajectories

whose intermediate actions are removed. It is straightforward to check that � is a time-enriched

execution of Mi.

Let H be a probabilistic time-enriched execution of M , and let tr = (q;P) be an action

restricted transition of H such that only actions of Mi, i = 1; 2, appear in tr . De�ne the

projection operator on the elements of
 as follows: (a; q0)dMi = (a; q0dMi), and �dMi = �.

The projection of tr onto Mi, denoted by trdMi, is the pair (qdMi;PdMi).

Proposition 9.5.1 Let M = M1kM2, and let H be a probabilistic time-enriched execution

fragment of M . Then HdM1 2 t-prexec(M1) and HdM2 2 t-prexec(M2).

Proof. The structure of the proof is the same as the proof of Proposition 4.3.4. This time it is

necessary to observe that for each state q of H the transition (trHq0 � acts(M1))dM1 is generated

by a time-enriched transition of Mi.

Proposition 9.5.2 Let M = M1kM2, and let H be a probabilistic time-enriched execution

fragment of M . Let Hi be HdMi, i = 1; 2. Let q be a state of Hi. Then,

PHi
[Cq] =

X
q02min(qeH)

PH [Cq0]: (9.46)

Proof. This proof has the same structure as the proof of Proposition 4.3.5.

In the rest of this section we extend the results of Section 9.3.3 to account for parallel com-

position. We show that sample commutes with projections and that the projections of two

equivalent probabilistic time-enriched executions are equivalent. The �rst result guarantees

that sample and projection are well de�ned for probabilistic time-enriched executions; the sec-

ond result allows us to de�ne indirectly a projection operator on probabilistic timed executions:

namely, given a probabilistic timed execution H of M1kM2, let H
0 be any probabilistic time-

enriched execution of M1kM2 such that t-sample(H 0) = H . Then, HdMi is de�ned to be

t-sample(H 0dMi). Before proving these two results, we show why in the de�nition of t-exec()

we force probabilistic time-enriched executions like those of Figure 9-1 to be mapped to the

same structure (cf. Example 9.3.2).

218

Example 9.5.1 (Reason for the de�nition of t-exec) We have already seen that the prob-

abilistic time-enriched executions of Figure 9-2 are t-samples of the same probabilistic timed

execution. Suppose now the probabilistic time-enriched executions of Figure 9-2 to be proba-

bilistic time-enriched executions of the parallel composition of two probabilistic timed automata

M1 and M2, and suppose that a is an action of M2 only. By projecting the probabilistic time-

enriched executions of Figure 9-2 ontoM1 we obtain two probabilistic time-enriched executions

like those of Figure 9-1, which must denote the same probabilistic timed execution if we want

t-sample to be preserved by the projection operation.

Proposition 9.5.3 Let M be M1kM2, and let H be a probabilistic time-enriched execution of

M . Then, sample(HdMi) = sample(H)dMi.

Proof. Since the sampling function commutes with the projection function, sample(HdMi)

and sample(H)dMi have the same states.

For convenience, denote sample(H) by H 0. Let q be one of the states of sample(H)dMi.

Below we show that the equation for the transition leaving from q in sample(H)dMi and the

equation for the transition leaving from q in sample(HdMi) denote the same transition. This

is su�cient to show that sample(H)dMi and sample(HdMi) have the same transition relation.

We use implicitly the fact that the projection onto Mi distributes over the sum of transitions

restricted to acts(Mi).

From (9.25), Proposition 4.3.2, and an algebraic simpli�cation, the expressionX
q02qeH 0

�p
qeH 0

q0 PH 0

q0 [acts(Mi)](tr
H 0

q0 � acts(Mi))dMi (9.47)

can be rewritten intoX
q02qeH 0

X
q002sample�1(q0)

�p
qeH 0

q0 �p
sample�1(q0)
q00 sample(trHq00 � acts(Mi))dMi; (9.48)

which becomesX
q002sample�1(qeH 0)

�p
qeH 0

sample(q00)�p
sample�1(sample(q00))
q00 sample(trHq00 � acts(Mi))dMi; (9.49)

after grouping the two sums.

Denote HdMi by H
00. From (4.22), Proposition 4.3.2, and an algebraic simpli�cation,

X
q02sample�1(q)

�p
sample�1(q)
q0 sample(trH

00

q0) (9.50)

can be rewritten intoX
q02sample�1(q)

X
q002q0eH

�p
sample�1(q)
q0 �p

q0eH
q00 PH

q00 [acts(Mi)]sample(tr
H
q00 � acts(Mi))dMi; (9.51)

which becomesX
q002(sample�1(q))eH

�p
sample�1(q)
q00dMi

�p
(q00dMi)eH
q00 PH

q00 [acts(Mi)]sample(tr
H
q00 � acts(Mi))dMi (9.52)

219

after grouping the two sums.

From the commutativity of sample and projection, sample�1(qeH 0) = sample�1(q)eH .

Thus, in order to show that (9.49) and (9.52) denote the same transition, it is su�cient to

show that for each state q00 of sample�1(qeH 0),

�p
qeH 0

sample(q00)
�p
sample�1(sample(q00))
q00 = �p

sample�1(q)
q00dMi

�p
(q00dMi)eH
q00 : (9.53)

By expanding the expressions above with their de�nitions, (9.53) becomes

PH 0 [Csample(q00)]PH [Cq00]

(
P

�q02min(qeH 0) PH 0 [C�q0])(
P

�q002sample�1(sample(q00)) PH [C�q00])
(9.54)

=
PH 00 [Cq00dMi

]PH [Cq00]

(
P

�q02sample�1(q) PH 00 [C�q0])(
P

�q002min((q00dMi)eH) PH [C�q00])
:

By simplifying common subexpressions, using Proposition 4.3.5, and observing that

PH 0 [Csample(q00)] =
X

�q002sample�1(sample(q00))

PH [C�q00]; (9.55)

(we have veri�ed properties like (9.55) several times) Equation (9.54) becomesX
�q02min(qeH 0)

PH 0 [C�q0] =
X

�q02sample�1(q)

PH 00 [C�q0]; (9.56)

which can be shown as follows:X
�q02min(qeH 0)

PH 0 [C�q0]

=
X

�q02min(qeH 0)

X
q002sample�1(�q0)

PH [Cq00]

=
X

q002min(sample�1(qeH 0))

PH [Cq00]

=
X

q002min((sample�1(q))eH)

PH [Cq00]

=
X

�q02sample�1(q)

X
q002min(�q0eH)

PH [Cq00]

=
X

�q02sample�1(q)

PH 00 [C�q0];

where the �rst step follows from (9.55), the second and fourth steps follow from grouping and

ungrouping sums, the third step follows from the commutativity of sample and projection, and

the �fth step follows from Proposition 4.3.5.

Proposition 9.5.4 Let H1 and H2 be two probabilistic time-enriched executions of M1kM2. If

H1 � H2, then H1dMi � H2dMi, i = 1; 2.

220

Proof. We show �rst that t-exec(PH1dMi
) and t-exec(PH2dMi

) assign the same probabilities

to the same cones; then we show that the sample spaces of t-exec(PH1dMi
) and t-exec(PH2dMi

)

satisfy the condition for �. This part of the proof relies on the way we have de�ned the sample

spaces of the objects produced by t-exec(). For the cones, we show that for each �nite timed

extended execution � of Mi,

Pt-exec(PH1dMi
)[C�] =

X
�02min(f�02t-frag�

�
(M1kM2)j�=�0dMig)

Pt-exec(H1)[C�0]: (9.57)

and

Pt-exec(PH2dMi
)[C�] =

X
�02min(f�02t-frag�

�
(M1kM2)j�=�0dMig)

Pt-exec(H2)[C�0]: (9.58)

Then, since H1 � H2, we conclude that the right sides of (9.57) and (9.58) are equal, and thus,

H1dMi � H2dMi. We prove only (9.57); the proof for (9.58) is symmetric. From the de�nition

of t-exec(),

Pt-exec(PH1dMi
)[C�] =

X
q2min(fq2states(H1dMi)j��t-exec(q)g)

PH1dMi
[Cq]: (9.59)

From (4.31),

Pt-exec(PH1dMi
)[C�] =

X
q2min(fq2states(H1dMi)j��t-exec(q)g)

0
@ X
q02min(qeH1)

PH1 [Cq0]

1
A : (9.60)

Consider a state q of min(fq 2 states(H1dMi) j � � t-exec(q)g) and a state q0 of min(qeH1).

Then, from the de�nition of t-exec(), there is at least one �0 2 t-frag��(M1kM2) such that

� = �0dMi and q0 2 min(fq0 2 states(H1) j �
0 � t-exec(q0)g). Moreover, there is exactly

one minimum �0. Conversely, consider one �0 2 min(f�0 2 t-frag��(M1kM2) j � = �0dMig),

and consider a state q0 of min(fq0 2 states(H1) j �
0 � t-exec(q0)g). Let q = q0dMi. Then,

q0 2 min(qeH1) and q is a state of min(fq 2 states(H1dMi) j � � t-exec(q)g). Thus, from (9.60)

we obtain (9.57).

We now move to the sample spaces. Let � be an element of
t-exec(PH1dMi
) that does not

contain in�nitely many discrete actions. If � ends with �, then � is trivially an element of

t-exec(PH2dMi
) since Pt-exec(PH2dMi

)[C�] = Pt-exec(PH2dMi
)[C�] > 0. Otherwise, � ends with an

open trajectory. Then, from the de�nition of
t-exec(PH1dMi
), for each �nite pre�x �0 of � there

is an element �1 of t-exec(
H1dMi
) such that �0 � �1. It is enough to show that for each �nite

pre�x �0 of � there is also an element �2 of t-exec(
H2dMi
) such that �0 � �2.

Let �0 be a �nite pre�x of � such that there is an element �1 of t-exec(
H1dMi
) such that

�0 � �1. Thus, there is a time-enriched execution �01 of
H1dMi
such that �0 � t-exec(�01).

This means that there is a state q1 of H1dMi such that �0 � t-exec(q1). From the de�nition

of projection, there is a state q01 of H1 such that �0 � t-exec(q01dMi), and thus there is a timed

execution �001 of t-exec(
H1) such that �0 � (�001dMi). Consider a �nite pre�x �0001 of �001 such

that �0 � (�0001 dMi). Then, Pt-exec(PH1
)[C�0001

] > 0. Since H1 � H2, Pt-exec(PH2
)[C�0001

] > 0, which

means that there is a timed execution �002 of
t-exec(PH2
) such that �0 � (�002dMi). Thus, there

is a state q02 of H2 such that �0 � t-exec(q02dMi), and from the de�nition of projection, there

is a state q2 of H2dMi such that �0 � t-exec(q2). This implies that there is an element �02 of

t-exec(
H2dMi
) such that �0 � �02, which is su�cient to conclude.

221

9.6 Discussion

To our knowledge, no general probabilistic models with dense time have been proposed except

for the automata of Courcoubetis, Alur and Dill [ACD91a, ACD91b]. In our model no prob-

ability distributions over passage of time are allowed within a probabilistic timed automaton;

time can elapse probabilistically only within a probabilistic timed execution, and the associated

probability distributions can be only discrete. We have chosen to de�ne the timed model with

such a restriction so that all the theory for the untimed model carries over.

Further work should investigate on the extension of our model to non-discrete probability

distributions. A starting point could be the study of restricted forms of non-discrete distri-

butions as it is done by Courcoubetis, Alur and Dill in [ACD91a, ACD91b]. Useful ideas can

come from the work on stochastic process algebras of G�otz, Herzog and Rettelbach [GHR93],

Hillston [Hil94], and Bernardo, Donatiello and Gorrieri [BDG94].

222

Chapter 10

Direct Verication Time

Complexity

Part of this chapter is based on joint work with Anna Pogosyants and Isaac Saias; some of the

ideas have been in
uenced by discussion with Lenore Zuck. The veri�cation of the randomized

dining philosophers algorithm of Lehmann and Rabin (Section 10.6) is based on joint work

with Nancy Lynch and Isaac Saias [LSS94]; the veri�cation of the randomized algorithm for

agreement of Ben-Or (Section 10.8) is joint work with Anna Pogosyants and is a formalization

of a proof that appears in the book on distributed algorithms of Nancy Lynch [Lyn95]. Close

interaction with Anna Pogosyants lead us to the idea of the abstract complexity measures of

Section 10.7.

10.1 General Considerations About Time

The direct analysis of a probabilistic timed automaton is carried out exactly in the same way

as for untimed probabilistic automata. Thus, probabilistic statements and progress statements

can be generalized directly, and the coin lemmas can be applied without any modi�cation.

In this chapter we concentrate more on topics that are speci�c to the presence of time. In

particular, it is now possible to enrich the notation for progress statements and verify some of

the real-time properties of a probabilistic timed automaton. We extend the progress statements

of Chapter 5 by adding a time parameter t: the expression U
t
�!
p
U 0 means that, starting from

a state of U , a state of U 0 is reached within time t with probability at least p. Based on the new

timed progress statements we show how to derive upper bounds on the worst expected time for

progress.

We generalize the method for time complexity analysis to more abstract complexity mea-

sures. Then, rather than studying the expected time for progress, we study the expected

abstract complexity for progress. We use abstract complexity to derive an upper bound on the

worst expected time for decision of the randomized algorithm for agreement of Ben-Or that we

presented in Chapter 5. Speci�cally, we show that under some conditions on the scheduling

policy, each non-faulty process completes its ith stage within some upper bound, and we show

an upper bound on the expected number of stages that are necessary to reach agreement. In

this case the abstract complexity is the number of stages. A direct analysis of the expected time

223

for success in Ben-Or's algorithm would not be as easy since there is no useful upper bound on

the time it takes to a process to move from a stage to the next stage.

Sections 10.2, 10.3, and 10.4 simply extend the de�nitions of Chapter 5 to the timed case;

Section 10.5 shows how to derive upper bounds on the worst expected time for progress given

a timed progress statement, and Section 10.7 shows how to derive upper bounds on the worst

expected abstract complexity for progress given a timed progress statement with abstract com-

plexity; Sections 10.6 and 10.8 present examples of application by proving that the randomized

dining philosophers algorithm of Lehmann and Rabin guarantees progress in expected constant

time and that the randomized agreement algorithm of Ben-Or guarantees agreement in expected

exponential time.

10.2 Adversaries

An adversary for a probabilistic timed automaton M is a function A that takes a �nite timed

execution fragment � of M and returns a timed transition of M that leaves from lstate(�).

Formally,

A : t-frag�(M)! t-trans(M)

such that if A(�) = (s;P), then s = lstate(�). Moreover, an adversary satis�es the following

consistency condition: if A(�) = (s;P), then for each pre�x �0 of some element �00 of
,

A(� a �0) = (lstate(�0);P.�0). Informally, consistency says that an adversary does not change

its mind during a timed transition.

An adversary is deterministic if it returns either deterministic timed transitions of M or

pairs of the form (s;D(s�)), i.e., the next timed transition is chosen deterministically. Denote

the set of adversaries and deterministic adversaries for a probabilistic timed automaton M by

Advs(M) and DAdvs(M), respectively.

The de�nitions of an adversary schema and of the result of the interaction between an adver-

sary and a probabilistic timed automaton is the same as for the untimed case (cf. Section 5.2),

and thus we do not repeat them here.

To guarantee that our adversaries are well de�ned, we need to prove the following lemma.

Lemma 10.2.1 If (s;P) is a timed transition of a probabilistic timed automaton M , then for

each pre�x �0 of some element �00 of
, (lstate(�0);P.�0) is a timed transition of M .

Proof. This is proved already in Proposition 9.3.5.

10.3 Event Schemas

As for the untimed case we need a mechanism to associate an event with each probabilistic

timed execution fragment of a probabilistic timed automaton. Thus, an event schema is a

function e that associates an event of the space PH with each probabilistic timed execution

fragment H of M . The notion of �nite satis�ability extends directly from the untimed case.

Observe that, although in PH there can be uncountably many cones, each �nitely satis�able

event can be expressed as the union of countably many disjoint cones. Furthermore, every

uncountable family of cones contains at least two cones that are not disjoint.

224

The de�nition of a timed probabilistic statement extends directly from the untimed case, and

similarly the de�nition of the concatenation of two event schemas extends directly. Therefore,

we omit the de�nitions, which are identical to those of Chapter 5.

Proposition 10.3.1 The concatenation of two event schemas is an event schema. That is, if

e = e1 �Cones e2, then e is an event schema.

Proof. Consider a probabilistic timed execution fragment H . From Proposition 9.3.3 each set

e2(H jq) is an event of FH . From the closure of a �-�eld under countable union, e(H) is an

event of FH .

Proposition 10.3.2 PH [e1 �Cones e2(H)] =
P

q2Cones(H) PH [Cq]PHjq[e2(H jq)].

Proof. Since Cones(H) represents a collection of disjoint cones, from (5.13) we obtain

PH [e1 �Cones e2(H)] =
X

q2Cones(H)

PH [e2(H jq)]: (10.1)

From Proposition 9.3.3, for each q 2 Cones(H)

PH [e2(H jq)] = PH [Cq]PHjq[e2(H jq)]: (10.2)

By substituting (10.2) in (10.1) we obtain the desired result.

Now it is possible to prove a concatenation property similar to the one for the untimed case.

Proposition 10.3.3 Consider a probabilistic timed automaton M . Let

1. PrAdvs ;�(e1) R p1 and,

2. for each A 2 Advs, q 2 �, let PrAdvs ;Cones(prexec(M;A;q))(e2) R p2.

Then, PrAdvs ;�(e1 �Cones e2) R p1p2.

Proof. Consider an adversary A 2 Advs and any �nite timed execution fragment q 2 �. Let

H = prexec(M;A; q). From Proposition 10.3.2,

PH [e1 �Cones e2(H)] =
X

q02Cones(H)

PH [Cq0]PHjq0[e2(H jq
0)]: (10.3)

Consider an element q0 of Cones(H). It is a simple inductive argument to show that

H jq0 = prexec(M;A; q0); (10.4)

where we use consistency for the base case. Thus, from our second hypothesis,

PHjq0[e2(H jq
0)] R p2: (10.5)

By substituting (10.5) in (10.3), we obtain

PH [e1 �Cones e2(H)]R p2
X

q02Cones(e1(H))

PH [Cq0]: (10.6)

225

By using the fact that Cones(H) is a characterization of e1(H) as a disjoint union of cones,

Equation (10.6) can be rewritten into

PH [e1 �Cones e2(H)]R p2PH [e1(H)]: (10.7)

From the �rst hypothesis, PH [e1(H)] R p1; therefore, from Proposition 5.4.1,

PH [e1 �Cones e2(H)]R p1p2: (10.8)

This completes the proof.

10.4 Timed Progress Statements

As a special case of a probabilistic statement for the timed case we can add some features

to the notation X �!
p Advs X

0. In particular we de�ne a timed progress statement to assert

that starting from a set of states U some other state of a set U 0 is reached within time t with

probability at least p. Such a statement, which we denote by U
t
�!
p Advs U

0, or by U
t
�!
p
U 0 if

Advs is clear from the context, is expressed by the probabilistic statement PrAdvs ;U(eU 0;t) � p,

where the event schema eU 0;t applied to a timed probabilistic execution fragment H returns the

set of timed executions � of
H where a state from U 0 is reached within time t in �.qH0 . Such

a set can be expressed as a union of cones, and therefore it is an event.

Similarly, the progress statements involving actions can be generalized to the timed frame-

work. Thus, V
t
�!
p Advs V

0 is the probabilistic statement PrAdvs;�V;V 0
(eV 0;t) � p, where �V;V 0 is

the set of �nite timed execution fragments of M where an action from V occurs and no action

from V 0 occurs after the last occurrence of an action from V , and the event schema eV 0;t applied

to a timed probabilistic execution fragment H returns the set of timed executions � of
H such

that an action from V occurs in �.qH0 within time t.

In order to generalize the concatenation theorem for progress statements, we need to extend

the de�nition of a �nite-history-insensitive adversary schema. Thus, an adversary schema Advs

is �nite-history-insensitive i� for each adversary A of Advs and each �nite timed execution

fragment � of M there is an adversary A0 of Advs such that for each timed execution fragment

�0 such that � � �0, A(�0) = A0(�0.�). Then, the following theorem is shown in the same way

as for the untimed case.

Theorem 10.4.1 Let Advs be �nite-history-insensitive. If X
t1
�!
p1

Advs X
0 and X 0 t2

�!
p2

Advs X
00,

then X
t1+t2
�!
p1p2

Advs X
00.

10.5 Time Complexity

In this section we show how to study the time complexity of a randomized distributed algorithm.

We start by de�ning how to compute a worst expected time, and then we show how it is possible

to derive upper bounds on the worst expected running time of an algorithm based on timed

progress statements.

226

10.5.1 Expected Time of Success

Let e be a �nitely satis�able event schema and suppose that PH [e(H)] = 1, i.e., that the property

described by e is satis�ed in H with probability 1. Let Cones(H) be a characterization of e(H)

as a disjoint union of cones, where each element of Cones(H) identi�es the �rst point along

a timed execution where the property denoted by e is satis�ed. Then, we can compute the

expected time to satisfy the property identi�ed by e asX
q2Cones(H)

PH [Cq](ltime(q.q
H
0)): (10.9)

In general, if e is a �nitely satis�able event-schema and Cones(H) identi�es the �rst point along

a timed execution where the property identi�ed by e is satis�ed, then for each probabilistic timed

execution fragment H of M we de�ne EH [e], the expected time to satisfy e in H , as follows.

EH [e] =

(P
q2Cones(H)PH [Cq](ltime(q.q

H
0)) if PH [e(H)] = 1

1 otherwise.
(10.10)

Then, the question is the following: are there easy ways to compute upper bounds on the

expected time for success in a randomized algorithm without computing explicitly (10.10)? We

give a positive answer to this question.

10.5.2 From Timed Progress Statements to Expected Times

Timed progress statements can be used to analyze the time complexity of a randomized algo-

rithm. The main idea for the analysis is expressed by Proposition 10.5.1. Suppose that we

know the following:(
U

t
�!
p Advs U

0

U) (U Unless U 0):
(10.11)

Then, if Advs is �nite-history-insensitive and s� =2
A(s) for each A 2 Advs and each s 2 U ,

we know from Proposition 5.5.6 that U �!
1

Advs U
0. Let e be a �nitely satis�able event schema,

and let Cones express the points of satisfaction of e. Suppose that for each probabilistic timed

execution fragmentH and each state q ofH , if there is no pre�x q0 of q such that q0 2 Cones(H),

then e(H.q) = e(H).q and Cones(H.q) = Cones(H).q (e.g., e can express the property of

reaching some state in a set U 00, or the property of performing some action). Let

EU;Advs [e]
4
= sups2U;A2AdvsEprexec(M;A;s)[e]: (10.12)

Then the following property is valid.

Proposition 10.5.1

EU;Advs [e] � t + pEU 0;Advs [e] + (1� p)EU;Advs [e]: (10.13)

Proof. We prove (10.13) by distinguishing four cases.

1. EU 0;Advs [e] � EU;Advs [e].

In this case (10.13) is satis�ed trivially.

227

2. EU;Advs [e] =1 and p < 1.

Also in this case (10.13) is satis�ed trivially.

3. EU;Advs [e] =1 and p = 1.

We show that EU 0;Advs [e] =1, which is enough to satisfy (10.13). Suppose by contradic-

tion that EU 0;Advs [e] <1. Then we distinguish the following cases.

(a) There is an adversary A of Advs and a state s of U such that

Pprexec(M;A;s)[e(prexec(M;A; s))]< 1.

(b) It is not the case that there is an adversary A of Advs and a state s of U such that

Pprexec(M;A;s)[e(prexec(M;A; s))]< 1.

For Case (a), let ConesU 0 be the function that expresses the points of satisfaction of eU 0,

and let H be prexec(M;A; s), where Pprexec (M;A;s)[e(prexec(M;A; s))] < 1. Then,

PH [e(H)] �
X

q2ConesU 0(H)

PH [Cq]PH.q(e(H.q)); (10.14)

i.e., the probability of satisfying e is not smaller than the probability of reaching U 0 and

then from there satisfying e. From the �nite-history-insensitivity of Advs, for each state q

of ConesU 0(H) there is an adversary A0 of Advs such that H.q = prexec(M;A0; lstate(q)),

and thus, since EU 0;Advs [e] <1, PH.q(e(H.q)) = 1. By substituting this result in (10.14),

we get

PH [e(H)] �
X

q2ConesU 0(H)

PH [Cq]: (10.15)

Since p = 1, the right side of (10.15) is equal to 1, i.e., PH [e(H)] � 1, a contradiction.

For Case (b), let ConesU 0 be a function that expresses the points of satisfaction of eU ,

and, for each d > 0, let Conesd be a function that expresses the event of reaching time

d as a union of disjoint cones. From the de�nition of a probabilistic timed execution,

we know that Conesd exists and that for each probabilistic timed execution fragment H

and each q 2 Conesd(H), ltime(q.qH0) = d. Let H be prexec(M;A; s). From (10.10) the

expected time for success for e is

EH [e] =
X

q2Cones(H)

PH [Cq]ltime(q.q
H
0): (10.16)

Let � be an arbitrary positive number. Let �1 be the set of elements q of ConesU 0(H)

such that ltime(q.qH0) < t+ �, and let H2 be the set of elements q of Conest+�(H) that do

not have any pre�x in �1. Since PH [eU(H)] = 1, then PH [[q2�1[�2Cq] = 1. Moreover,

by hypothesis, PH [[q2Cones(H)Cq] = 1. Thus, observe that each element of Cones(H) has

either a proper pre�x or a su�x in �1 [�2. In fact, if there is an element q of Cones(H)

that has no pre�x nor su�x in �1[�2, then the cone Cq would not be part of [q2�1[�2Cq,

contradicting the hypothesis that PH [[q2Cones(H)Cq] = 1. Similarly, we can show that

228

for each element q of �1 [�2 has either a pre�x or a proper su�x in Cones(H). Thus,

Cones(H) can be partitioned into two sets �p and �s of elements that have a proper

pre�x and a su�x, respectively, in �1 [�2, and �1 [�2 can be partitioned into two sets

�
p
1;2 and �

s
1;2 of elements that have a pre�x and a proper su�x, respectively, in Cones(H).

Based on these observations, the right side of Equation(10.16) can be rewritten into0
B@X
q2�p

X
q02�s

1;2jq
0�q

PH [Cq0]PH.q0 [Cq.q0](ltime(q
0.qH0) + ltime(q.q0))

1
CA (10.17)

+

0
B@X
q2�s

X
q02�

p

1;2jq�q
0

PH [Cq]PH.q[Cq0.q]ltime(q.q
H
0)

1
CA :

Observe that for each q 2 �s,
P

q02�
p

1;2jq�q
0 PH.q[Cq0.q] = 1, and observe that for each

q0 2 �s
1;2,

P
q2�pjq0�q PH.q0 [Cq.q0] = 1. By exchanging the sums in (10.17) and using some

simple algebraic manipulations, we obtain0
B@ X
q02�s

1;2

PH [Cq0]

0
@ltime(q0.qH0) + X

q2�pjq0�q

PH.q0 [Cq.q0]ltime(q.q
0)

1
A
1
CA (10.18)

+

0
B@ X
q02�

p

1;2

X
q2�sjq�q0

PH [Cq]PH.q[Cq0.q]ltime(q.q
H
0)

1
CA :

In the �rst summand, since from the properties of e for each q0 2 �s
1;2, e(H.q

0) =

e(H).q0, the subexpression
P

q2�pjq0�q ltime(q.q
0)PH.q0 [Cq.q0] denotes EH.q0 [e]. In the

second summand, observe that for each q0 2 �p
1;2 there is exactly one element q of �s

such that q � q0. Moreover, PH [Cq]PH.q[Cq0.q] = PH [Cq0]. Thus, from (10.18) we obtain

EH [e] �

0
B@ X
q02�s

1;2

PH [Cq0](ltime(q
0.qH0) + EH.q0 [e])

1
CA (10.19)

+

0
B@ X
q02�p

1;2

PH [Cq0]ltime(q
0.qH0)

1
CA :

By repartitioning �s
1;2 [�

p
1;2 into �1 and �2, and by observing that for each element q

of �1 ltime(q.q
H
0) < t+ �, and for each element q of �2 ltime(q.q

H
0) = t + �, (10.19) can

be rewritten into

EH [e] � (t + �)

0
B@ X
q2�s

1;2\�1

PH [Cq]EH.q[e])

1
CA+

0
B@ X
q2�p

1;2\�1

PH [Cq]EH.q[e]

1
CA (10.20)

+

0
B@ X
q2�s

1;2\�2

PH [Cq]EH.q[e]

1
CA+

0
B@ X
q2�p

1;2\�2

PH [Cq]EU;Advs [e]

1
CA ;

229

where we have added EH.q[e] in the upper right summand and EU;Advs [e] in the lower

right summand. Since Advs is �nite history insensitive, for each q 2 �1 [�2 there is an

adversary A0 of Advs such that (H.q) = prexec(M;A; lstate(q)). Thus, (10.20) can be

rewritten into

EH [e] � (t + �)

0
@X
q2�1

PH [Cq]EU 0;Advs [e])

1
A+

0
@X
q2�2

PH [Cq]EU;Advs [e]

1
A ; (10.21)

where we have used U) (U Unless U 0) to say that the last states of the elements of �2

are in U . Observe that
P

q2�1
PH [Cq] is PH [eU 0;t(H)], which is 1 by hypothesis. Since by

hypothesis EU 0;Advs [e] <1, from (10.21) we derive that EU;Advs [e] <1, a contradiction.

4. EU;Advs [e] <1, EU 0;Advs [e] <1, and EU 0;Advs [e] � EU 0;Advs [e].

Let A be an adversary of Advs and s be a state of U . Let H be prexec(M;A; s). Let �

be any positive real number. Equation (10.21) can be derived also in this case using the

same identical argument as before. Since we have assumed that EU 0;Advs [e] � EU;Advs [e],

the lowest possible value of the right side of (10.21) occurs by giving U 0 the lowest possible

probability, which is p. Thus, (10.21) becomes

EH [e] � (t + �)pEU 0;Advs [e] + (1� p)EU;Advs [e]: (10.22)

Since Equation (10.22) is valid for any adversary Advs and any state of U , we obtain

timed execution fragment

EU;Advs [e] � (t+ �)pEU 0;Advs [e] + (1� p)EU;Advs [e]: (10.23)

Since Equation (10.23) is valid for every �, Equation (10.23) is valid also for the in�mum

of the values that � can have, i.e., 0, and thus,

EU;Advs [e] � t+ pEU 0;Advs [e] + (1� p)EU;Advs [e]: (10.24)

This completes the proof.

Example 10.5.1 (From timed progress to expected time) As a simple example of ap-

plication of Proposition 10.5.1, suppose that e expresses the property of reaching U 0. Then, we

know by de�nition that EU 0;Advs [e] = 0. By applying Equation (10.13), we obtain EU;Advs [e] �

t + (1� p)EU;Advs [e], which gives EU;Advs [e] � t=p, i.e., the expected time to reach U 0 from U

is at most t=p. Informally speaking, we can view the process of reaching U 0 as a sequence of

Bernoulli trials, each one performed every t time units. At time t, with probability p we have

reached U 0, and with probability (1� p) we are still in U , and thus we apply the same exper-

iment again. The expected number of rounds of such a process is 1=p, and thus the expected

time for success is t=p. Suppose now that we know the following,8<
:
U0

t1
�!
p1

Advs U1 U0) (U0 Unless U1)

U1
t2
�!
p2

Advs U2 U1) (U1 Unless U2);
(10.25)

230

and suppose that e expresses the property of reaching U2. Then, we know that EU2;Advs [e] = 0.

By applying Proposition 10.5.1, we obtain(
EU0;Advs [e] � t1 + p1EU1;Advs [e] + (1� p1)EU0;Advs [e]

EU1;Advs [e] � t2 + (1� p2)EU1;Advs [e]:
(10.26)

From simple algebraic manipulations (10.26) becomes(
EU0;Advs [e] � t1=p1 + EU1;Advs [e]

EU1;Advs [e] � t2=p2;
(10.27)

and thus, after substituting the second inequality in the �rst inequality,(
EU0;Advs [e] � t1=p1 + t2=p2
EU1;Advs [e] � t2=p2:

(10.28)

Suppose now that in addition to (10.25) we know that8<
: U0

t3
�!
p3

Advs U2

U0) (U0 Unless U2);
(10.29)

which is possible if U1 � U0 [U2. Then, from Proposition 10.5.1 we get

EU0;Advs [e] � t3=p3; (10.30)

which added to (10.28) gives(
EU0;Advs [e] � min(t1=p1 + t2=p2; t3=p3)

EU1;Advs [e] � t2=p2:
(10.31)

Therefore, more information may give us the possibility to prove better bounds.

Proposition 10.5.1 can be proved also for timed progress statements that involve sets of actions

rather than sets of states. Let V; V 0 denote two sets of actions, and let Advs be an adversary

schema. Suppose that

V
t
�!
p Advs V

0: (10.32)

Let e be a �nitely satis�able event schema, and let Cones express the points of satisfaction of

e. Suppose that for each probabilistic timed execution fragment H and each state q of H , if

there is no pre�x q0 of q such that q0 2 Cones(H), then e(H.q) = e(H).q and Cones(H.q) =

Cones(H).q. Let EV;V 0;Advs [e] denote supq2�V;V 0 ;A2Advs
Eprexec(M;A;q)[e]. Let �V 0 denote the

set of �nite execution fragments of M whose last action is in V 0, and let EV 0;Advs [e] denote

supq2�V 0 ;A2Advs
Eprexec(M;A;q)[e]. Suppose that q

0� =2
A(q) for each q
0, each A 2 Advs and each

q 2 �V;V 0 . Then the following proposition is valid.

Proposition 10.5.2

1. EV;V 0;Advs [e] � t + pEV 0;Advs [e] + (1� p)EV;V 0;Advs [e], and

2. for each set of actions V 00, EV 0;Advs [e] � EV 0;V 00;Advs [e].

Proof. The proof of the �rst item follows the lines of the proof of Proposition 10.5.1; the proof

of the second item follows from the fact that �V 0 � �V 0;V 00 .

231

10.6 Example: Randomized Dining Philosophers

To illustrate the use of timed progress statements for the analysis of an algorithm, we reconsider

the randomized dining philosophers algorithm of Lehmann and Rabin, and we show that, under

the condition that each process has a minimum speed, progress is guaranteed within expected

constant time. First, we show how to add time to the probabilistic automaton that describes the

algorithm; then, we add time limitations to the progress statements that we used in Section 6.3.3

and we derive the upper bound on the expected time for progress; �nally we repeat the low

level proof observing that the coin lemmas are applied in the same way as for the untimed case.

10.6.1 Representation of the Algorithm

The probabilistic timed automaton that represent the Algorithm of Lehmann and Rabin can be

obtained directly from the probabilistic automaton of Section 6.3.2 by adding arbitrary self-loop

time-passage transition from each state (same as the patient construction of Example 9.2.1).

Then, in order to enforce a lower bound on the speed of each process, we impose some limitations

on the adversaries that act on M . For convenience, but without loss of generality, we assume

that from any point each process in its trying or exit region performs one transition within time

1. Thus, the adversary schema that we use on M is the set of adversaries A for M such that

for each �nite timed execution fragment � of M ,

1. Pprexec(M;A;�)[frag
1(M)] = 1, and

2. for each element �0 of
prexec(M;A;�) there is no pair of pre�xes �1 � �2 of �0.� and no

process i such that process i is in its trying or exit region in lstate(�1), ltime(�2.�1) > 1,

and process i does not perform any discrete transition in �2.�1.

We call this adversary schema Unit-Time.

Remark 10.6.1 Observe that in Condition 1 we require the probability of the admissible

executions to be 1 rather than requiring the sample space to contain only admissible executions.

The reason for using probabilities is technical and is due to the fact that the sample space of a

probabilistic timed executions always contains Zeno timed executions, even though they occur

with probability 0. From the practical point of view all the Zeno timed executions can be

ignored.

In other words, it is not necessary to know the intricacies of the de�nition of a probabilistic

timed executions since they are used only to guarantee that the events of interest are measurable.

From the point of view of verifying the correctness of a randomized distributed algorithm, as

long as Zeno timed executions occur only with probability 0, it is possible to think that Zeno

timed executions do not occur at all.

Remark 10.6.2 (Alternative approach) Another alternative approach to modeling the al-

gorithm of Lehmann and Rabin, which we do not use here, is to augment the probabilistic

automaton of Section 6.3.2 with an upper bound for each process i to the time by which pro-

cess i must perform a transition, and to allow a time-passage transition only when no process

goes beyond its upper bound. Of course the upper bounds need to be updated opportunely

within a transition. In this case the condition imposed on an adversary would be just that time

advances unboundedly with probability 1.

232

10.6.2 The High Level Proof

The high level proof consists of the same progress statements that we used in Section 6.3.3

together with a time bound. Speci�cally, we use the following timed progress statements.

T
2
�!
1
RT [C (Proposition 10.6.3),

RT
3
�!
1
F [G [P (Proposition 10.6.15),

F
2
�!
1=2
G [P (Proposition 10.6.14),

G
5
�!
1=4
P (Proposition 10.6.11),

P
1
�!
1
C (Proposition 10.6.1).

By combining the statements above by means of Proposition 5.5.3 and Theorem 10.4.1 we

obtain

T
13
�!
1=8
C: (10.33)

Observing that if some process is in the trying region then some process is in the trying region

unless some process gets to the critical region, we apply Proposition 10.5.1 and we obtain that

the expected time to reach C from RT is at most 104, i.e., the algorithm of Lehmann and Rabin

guarantees progress within expected constant time.

10.6.3 The Low Level Proof

We now prove the timed progress statements of Section 10.6.2. The proofs are exactly the same

as the proofs given in Section 6.3.4 with the di�erence that in this case we consider also time

bounds and we consider only admissible timed execution fragments since we know that they

occur with probability 1.

Proposition 10.6.1 If some process is in P , then some process enters C within time 1, i.e.,

P
1
�!
1
C:

Proof. Let i be the process in P . Then, from the de�nition of Unit-Time, process i is scheduled

within time 1, and enters C.

Lemma 10.6.2 If some process is in its Exit region, then it will enter R within time 3.

Proof. The process needs to perform two transitions to relinquish its two resources, and then

one transition to send a rem message to the user. Every adversary of Unit-Time guarantees

that those three transitions are performed within time 3.

Proposition 10.6.3 T
2
�! RT [C.

233

Proof. From Lemma 6.3.2, every process that begins in EF or ES relinquishes its resources

within time 2 . If no process begins in C or enters C in the meantime, then the state reached

at this point is a state of RT ; otherwise, the starting state or the state reached when the �rst

process enters C is a state of C.

We now turn to the proof of G
5
�!
1=4
P . The following lemmas form a detailed cases analysis

of the di�erent situations that can arise in states of G. Informally, each lemma shows that a

speci�c coin event is a sub-event of the properties of reaching some other state. Here we do not

repeat the proof of Lemma 6.3.4 since it does not depend on timing issues.

Lemma 10.6.4

1. Let Xi�1 2 fER; R; Fg and Xi = W

. If FIRST(flipi�1; left), then, within time 1,

either Xi�1 = P or Xi = S.

2. Let Xi�1 = D and Xi = W

. If FIRST(flipi�1; left), then, within time 2, either

Xi�1 = P or Xi = S.

3. Let Xi�1 = S and Xi = W

. If FIRST(flipi�1; left), then, within time 3, either Xi�1 =

P or Xi = S.

4. Let Xi�1 = W and Xi = W

. If FIRST(flipi�1; left), then, within time 4, either

Xi�1 = P or Xi = S.

Proof. The four proofs start in the same way. Let s be a state of M satisfying the respective

properties of items 1 or 2 or 3 or 4 . Let A be an adversary of Unit-Time, and let � be an

admissible timed execution of
prexec(M;fsg;A) where the result of the �rst coin
ip of process

i� 1, if it occurs, is left.

1. By hypothesis and Lemma 6.3.4, i � 1 does not hold any resource at the beginning of �

and has to obtain Resi�2 (its left resource) before pursuing Resi�1. From the de�nition

of Unit-Time, i performs a transition within time 1 in �. If i � 1 does not hold Resi�1
when i performs this transition, then i progresses into con�guration S. If not, it must be

the case that i� 1 succeeded in getting it in the meanwhile. But, in this case, since i� 1

ips left, Resi�1 was the second resource needed by i� 1 and i� 1 therefore entered P .

2. If Xi = S within time 1, then we are done. Otherwise, process i� 1 performs a transition

within time 1. Let � = �1
a �2 such that the last transition of �1 is the �rst transition

taken by process i�1. Then Xi�1(fstate(�2)) = F and Xi(fstate(�2)) = W

. Since process

i � 1 did not
ip any coin during �1, from the �nite-history-insensitivity of Unit-Time

and Item 1 we conclude.

3. If Xi = S within time 1, then we are done. Otherwise, process i� 1 performs a transition

within time 1. Let � = �1
a �2 such that the last transition of �1 is the �rst transition

taken by process i� 1. If Xi�1(fstate(�2)) = P then we are also done. Otherwise it must

be the case that Xi�1(fstate(�2)) = D and Xi(fstate(�2)) = W

. Since process i � 1 did

not
ip any coin during �1, from the �nite-history-insensitivity of Unit-Time and Item 2

we conclude.

234

4. If Xi = S within time 1, then we are done. Otherwise, process i checks its left resource

within time 1 and fails, process i� 1 gets its right resource before, and hence reaches at

least state S. Let � = �1
a �2 where the last transition of �1 is the �rst transition of �

that leads process i� 1 to state S. Then Xi�1(fstate(�2)) = S and Xi(fstate(�2)) = W

.

Since process i� 1 did not
ip any coin during �1, from the �nite-history-insensitivity of

Unit-Time and Item 3 we conclude.

Lemma 10.6.5 Assume that Xi�1 2 fER; R; Tg and Xi = W

. If FIRST(flipi�1; left),

then, within time 4, either Xi�1 = P or Xi = S.

Proof. Follows directly from Lemma 10.6.4 after observing that Xi�1 2 fER; R; Tg is equiva-

lent to Xi�1 2 fER; R; F;W; S;D; Pg.

The next lemma is a useful tool for the proofs of Lemmas 10.6.7, 10.6.8, and 10.6.9. It is just

repeated from Section 6.3.4.

Lemma 10.6.6 Let Xi 2 fW

; S

g or Xi 2 fER; R; F; D

g with FIRST(flipi; left). Further-

more, let Xi+1 2 fW
!
; S
!
g or Xi+1 2 fER; R; F; D

!
g with FIRST(flipi+1; right). Then the

�rst of the two processes i or i+ 1 testing its second resource enters P after having performed

this test (if this time ever comes).

Proof. By Lemma 6.3.4 Resi is free. Moreover, Resi is the second resource needed by both i

and i+ 1. Whichever tests for it �rst gets it and enters P .

Lemma 10.6.7 If Xi = S

and Xi+1 2 fW
!
; S
!
g then, within time 1, one of the two processes

i or i+ 1 enters P . The same result holds if Xi 2 fW

; S

g and Xi+1 = S

!
.

Proof. Being in state S, process i tests its second resource within time 1. An application of

Lemma 10.6.6 �nishes the proof.

Lemma 10.6.8 Let Xi = S

and Xi+1 2 fER; R; F; D
!
g. If FIRST(flipi+1; right), then,

within time 1, one of the two processes i or i + 1 enters P . The same result holds if Xi 2

fER; R; F;Dg, Xi+1 = S
!

and FIRST(flipi; left).

Proof. Being in state S, process i tests its second resource within time 1. An application of

Lemma 10.6.6 �nishes the proof.

Lemma 10.6.9 Assume that Xi�1 2 fER; R; Tg, Xi = W

, and Xi+1 2 fER; R; F;W

!
; D
!
g.

If FIRST(flipi�1; left) and FIRST(flipi+1; right), then, within time 5, one of the three

processes i� 1, i or i+ 1 enters P .

Proof. Let s be a state of M such that Xi�1(s) 2 fER; R; Tg, Xi(s) = W

, and Xi+1(s) 2

fER; R; F;W
!
; D
!
g. Let A be an adversary of Unit-Time, and let � be an admissible timed

execution of
prexec(M;fsg;A) where the result of the �rst coin
ip of process i� 1 is left and

the result of the �rst coin
ip of process i+ 1 is right. By Lemma 10.6.5, within time 4 either

process i � 1 reaches con�guration P in � or process i reaches con�guration S

in �. If i � 1

235

reaches con�guration P , then we are done. If not, then let � = �1
a �2 such that lstate(�1) is

the �rst state s0 of � with Xi(s
0) = S

. If i+1 enters P before the end of �1, then we are done.

Otherwise, Xi+1(fstate(�2)) is either in fW
!
; S
!
g or it is in fER; R; F; D

!
g and process i+ 1 has

not
ipped any coin yet in �. From the �nite-history-insensitivity of Unit-Time we can then

apply Lemma 10.6.6: within time 1 process i tests its second resource and by Lemma 10.6.6

process i enters P if process i+1 did not check its second resource in the meantime. If process

i+ 1 checks its second resource before process i does the same, then by Lemma 10.6.6 process

i+ 1 enters P .

Lemma 10.6.10 Assume that Xi+2 2 fER; R; Tg, Xi+1 = W
!
, and Xi 2 fER; R; F;W

; D

g.

If FIRST(flipi; left) and FIRST(flipi+2; right), then, within time 5, one of the three pro-

cesses i, i+ 1 or i+ 2, enters P .

Proof. The proof is analogous to the one of Lemma 10.6.9. This lemma is the symmetric case

of Lemma 10.6.9.

Proposition 10.6.11 Starting from a global con�guration in G, then, with probability at least

1=4, some process enters P within time 5. Equivalently:

G
5
�!
1=4
P :

Proof. Lemmas 10.6.7 and 10.6.8 jointly treat the case whereXi = S

andXi+1 2 fER; R; F;#
!
g

and the symmetric case where Xi 2 fER; R; F;#

g and Xi+1 = S

!
; Lemmas 10.6.9 and 10.6.10

jointly treat the case where Xi = W

and Xi+1 2 fER; R; F;W
!
; D
!
g and the symmetric case

where Xi 2 fER; R; F;W

; D

g and Xi+1 = W

!
.

Speci�cally, each lemma shows that a compound event of the kind FIRST(flipi; x) and

FIRST(flipj ; y) leads to P . Each of the basic events FIRST(flipi; x) has probability at least

1=2. From Lemma 6.2.4 each of the compound events has probability at least 1=4. Thus the

probability of reaching P within time 5 is at least 1=4.

We now turn to F
2
�!
1=2
G [P . The proof is divided in two parts and constitute the global

argument of the proof of progress, i.e., the argument that focuses on the whole system rather

than on a couple of processes.

Lemma 10.6.12 Start with a state s of F . If there exists a process i for which Xi(s) = F and

(Xi�1; Xi+1) 6= (#
!
;#

), then, with probability at least 1=2 a state of G [P is reached within

time 1.

Proof. If s 2 G [P , then the result is trivial. Let s be a state of F � (G [P) and let i be such

that Xi(s) = F and (Xi�1; Xi+1) 6= (#
!
;#

). Assume without loss of generality that Xi+1 6= #

,

i.e., Xi+1 2 fER; R; F;#
!
g. The case for Xi�1 6= #

!
is similar. Furthermore, we can assume

that Xi+1 2 fER; R; F; D
!
g since if Xi+1 2 fW

!
; S
!
g then s is already in G. We show that the

event schema FIRST((flipi; left); (flipi+1; right)), which by Lemma 6.2.2 has probability

at least 1=2, leads eventually to a state of G [P . Let A be an adversary of Unit-Time, and

236

let � be an admissible timed execution of
prexec(M;fsg;A) where if process i
ips before process

i+ 1 then process i
ips left, and if process i+ 1
ips before process i then process i + 1
ips

right.

Then, within time 1, i performs one transition and reaches W . Let j 2 fi; i+ 1g be the

�rst of i and i+ 1 that reaches W and let s1 be the state reached after the �rst time process j

reaches W . If some process reached P in the meantime, then we are done. Otherwise there are

two cases to consider. If j = i, then, flipi gives left and Xi(s1) = W

whereas Xi+1 is (still)

in fER; R; F; D
!
g. Therefore, s1 2 G. If j = i+ 1, then flipi+1 gives right and Xi+1(s1) = W

!
whereas Xi(s1) is (still) F . Therefore, s1 2 G.

Lemma 10.6.13 Start with a state s of F . If there exists a process i for which Xi(s) = F and

(Xi�1(s); Xi+1(s)) = (#
!
;#

). Then, with probability at least 1=2, a state of G [P is reached

within time 2.

Proof. The hypothesis can be summarized into the form (Xi�1(s); Xi(s); Xi+1(s)) = (#
!
; F;#

).

Since i�1 and i+1 point in di�erent directions, by moving to the right of i+1 there is a process

k pointing to the left such that process k + 1 either points to the right or is in fER; R; F; Pg,

i.e., Xk(s) 2 fW

; S

; D

g and Xk+1(s) 2 fER; R; F;W

!
; S
!
; D
!
; Pg.

If Xk(s) 2 fW

; S

g and Xk+1(s) 6= P then s 2 G and we are done; if Xk+1(s) = P then

s 2 P and we are done. Thus, we can restrict our attention to the case where Xk(s) = D

.

We show that FIRST((flipk; left); (flipk+1; right)), which by Lemma 6.2.2 has proba-

bility at least 1=2, leads to G [P within time 2. Let A be an adversary of Unit-Time, and let �

be an admissible timed execution of
prexec(M;fsg;A) where if process k
ips before process k+1

then process k
ips left, and if process k+1
ips before process k then process k+1
ips right.

Within time 2 process k performs at least two transitions and hence goes to con�guration

W . Let j 2 fk; k + 1g be the �rst of k and k + 1 that reaches W and let s1 be the state

reached after the �rst time process j reaches W . If some process reached P in the meantime,

then we are done. Otherwise, we distinguish two cases. If j = k, then, flipk gives left and

Xk(s1) = W

whereas Xk+1 is (still) in fER; R; F;#
!
g. Thus, s1 2 G. If j = k+1, then flipk+1

gives right and Xk+1(s1) = W
!

whereas Xk(s1) is (still) in fD

; Fg. Thus, s1 2 G.

Proposition 10.6.14 Start with a state s of F . Then, with probability at least 1=2, a state of

G [P is reached within time 2. Equivalently:

F
2
�!
1=2
G [P :

Proof. The hypothesis of Lemmas 10.6.12 and 10.6.13 form a partition of F .

Finally, we prove RT �!
1
F [G [P .

Proposition 10.6.15 Starting from a state s of RT , then a state of F [G [P is reached

within time 3 Equivalently:

RT
3
�!
1
F [G [P :

237

Proof. Let s be a state of RT . If s 2 F [G [P , then we are trivially done. Suppose that

s =2 F [G [P . Then in s each process is in fER; R;W; S;Dg and there exists at least process

in fW;S;Dg. Let A be an adversary of Unit-Time, and let � be an admissible timed execution

of
prexec(M;fsg;A).

We �rst argue that within time 1 some process reaches a state of fS;D; Fg in �. This

is trivially true if in state s there is some process in fS;Dg. If this is not the case, then all

processes are either in ER or R orW . Eventually, some process in R orW performs a transition.

If the �rst process not in ER performing a transition started in ER or R, then it reaches F and

we are done; if the �rst process performing a transition is in W , then it reaches S since in s no

resource is held. Once a process i is in fS;D; Fg, then within time 2 process i reaches either

state F or P , and we are done.

10.7 Abstract Complexity Measures

We have seen how to measure the expected time to satisfy a property. However, the technique

can be extended to other kinds of measures of complexity. Speci�cally, let � be a complexity

measure on timed execution fragments that is additive under concatenation, i.e., �(q1
a q2) =

�(q1) + �(q2). Then we can compute the expected � rather than the expected time, where the

� of a state q of H is de�ned to be �(q.qH0). We generalize the notation for timed progress

statements by writing

U
�(c)
�!
p Advs U

0 (10.34)

with the meaning that PrAdvs;U (eU 0;�(c)) � p, where the event schema eU 0;�(c) applied to a timed

probabilistic execution fragment H returns the set of timed executions � of
H where a state

from U 0 is reached within complexity c. More speci�cally, let ConesU 0;�(c)(H) be the set of

minimal timed execution fragments q of M such that CH
q is not empty, lstate(q) 2 U 0, and

�(q.qH0) � c. Then, eU 0;�(c)(H) = [q2ConesU 0;�(c)(H)C
H
q . Observe that time is just one of the

possible complexity measures.

The same de�nition can be extended to sets of actions as we have done previously, and the

concatenation theorem is still valid.

The expected complexity of a �nitely satis�able event schema can be de�ned easily. Speci�-

cally, if e is a �nitely satis�able event-schema and Cones(H) identi�es the points of satisfaction

of e, then for each probabilistic timed execution fragment H of M we de�ne EH;�[e], the ex-

pected complexity to satisfy e in H , as follows.

EH;�[e] =

(P
q2Cones(H)PH [Cq](�(q.q

H
0)) if PH [e(H)] = 1

1 otherwise.
(10.35)

Then, a proposition similar to Proposition 10.5.1 can be proved.

Proposition 10.7.1 Suppose that8<
: U

�(c)
�!
p Advs U

0

U) (U Unless U 0);
(10.36)

238

s0 s0 s0

s1

s0 s0

s1

s0 1/2

1/2τ

s1

a

1/2

1/2

a

τ

a

1/2

1/2

a

τ

a

Figure 10-1: An example of the use of �.

and suppose that Advs is �nite history insensitive and that s� =2
A(s) for each A 2 Advs and

each s 2 U . Then,

EU;Advs;�[e] � c+ pEU 0;Advs;�[e] + (1� p)(� + EU;Advs;�[e]); (10.37)

where

� = supq2t-frag�(M)jlstate(q)2U

�
supq0>q

�
inf q00jq<q00�q0(�(q

00.q))
��
: (10.38)

Proof. This proof has the same structure as the proof of Proposition 10.5.1. Here we describe

in detail only the main di�erences. In particular, we show part of the derivation from Equa-

tion (10.16) to Equation (10.21), where the constant � is used. Observe that if we use � to

express time complexity, then � = 0.

From (10.35) the expected complexity for success for e is

EH;�[e] =
X

q2Cones(H)

PH [Cq]�(q.q
H
0): (10.39)

For each d > 0, let Conesd be a function that expresses the event of reaching complexity d as

a union of disjoint cones. From the de�nition of a probabilistic timed execution, we know that

Conesd exists and, from (10.38), we know that for each probabilistic timed execution fragment

H and each q 2 Conesd(H), d � �(q.qH0) � d + �. Let � be any positive number. Following

the same derivation as in the proof of Proposition 10.5.1, we obtain

EH;�[e] � (c+ �)

0
@X
q2�1

PH [Cq]EU 0;Advs;�[e])

1
A+

0
@X
q2�2

PH [Cq](� +EU;Advs;�[e])

1
A : (10.40)

One of the novel aspects of Proposition 10.7.1 is the constant �. Roughly speaking, � gives us a

lower bound to the minimum complexity increase that we can obtain by moving along a timed

execution fragment.

Example 10.7.1 (Why � is necessary) For example, if the abstract complexity that we use

is the number of discrete actions that appear in a timed execution fragment, then � = 1. In fact,

whenever we perform a discrete action, the complexity increases by 1. Figure 10-1 shows an

example where � = 1 and where Equation (10.37) is invalidated if we do not include �. Denote

the probabilistic timed execution fragment of Figure 10-1 by H . Let U be fs0g, U
0 be fs1g, and

let e express the property of reaching U 0. Let Advs contain only one adversary that generates H

when applied to s0. Let � count the number of external actions in a timed execution fragment

(no time-passage actions in H). Then, it is immediate to verify that the statement U
�(1)
�!
1=2

U 0 is

239

valid in H and that also U) (U UnlessU 0) is valid. By applying Equation (10.37) with � = 1,

we obtain

EU;Advs;�[e] � t+ 1=2(1+ EU;Advs;�[e]); (10.41)

which leads to EU;Advs;�[e] � 3. If we did not use � in Equation (10.37) we would have obtained

EU;Advs;�[e] � 2. We now show that EH;�[e] = 3. In fact,

EH;�[e] =
1

2
+ 3

1

4
+ 5

1

8
+ 7

1

16
+ � � � (10.42)

By rearranging the terms, we obtain

EH;�[e] =
X
i�0

1

2i

�
1

2
+
2

4
+

2

8
+

2

16
+ � � �

�
: (10.43)

Recall that
P

i�0 1=2
i = 2. Thus, by rearranging the terms again,

EH;�[e] = 2 + 1=2

�
1

2
+
1

4
+

1

8
+

1

16
+ � � �

�
= 3: (10.44)

Roughly speaking, the transition relation of H is structured in such a way that whenever the

experiment of reaching U 0 from U fails, the system looses one additional complexity unit during

the random draw. In the proof of Proposition 10.7.1 this phenomenon is detected when we de�ne

the partition �1 and �2. To make sure that �1 and �2 partition an event with probability 1

and that �1 captures all the places where U 0 is reached within time t, �2 must be based on

states reached after time t. In the probabilistic execution H of this example the states of �2

have complexity t+ 1.

10.8 Example: Randomized Agreement with Time

Using abstract complexity measures it is possible to show that the randomized agreement

algorithm of Ben-Or guarantees agreement within an expected exponential time. This is not

an exceptional complexity result, but it corresponds to the time complexity of the algorithm.

In more detail, we add time to the probabilistic automaton that describes Ben-Or's protocol

in the same way as we have done for the Dining Philosophers algorithm of Lehmann and Rabin.

In this case each adversary is required to schedule every process that enables some transition

within time 1 from every point. Then we show an upper bound linear in st on the time it

takes to all processes to complete a speci�c stage st . Finally, we derive an upper bound on

the expected number of stages it takes for all processes to decide. This is achieved by de�ning

an abstract complexity on the timed executions of M that checks the highest stage reached at

every point. A direct extension of the untimed proof without abstract complexities would not be

possible. In fact, given a reachable state s, the validity of the progress statement of Chapter 6

relies on completing the highest stage reached in s, and we cannot establish any useful upper

bound on the time to complete such stage: there is no useful bound on the di�erence between

the highest and the lowest stages reached in s, and the adversary may stop the processes with

the highest values of st . We start by proving the upper bound on the time it takes to each

process to complete some stage st .

240

Lemma 10.8.1 There is a constant d such that, for each stage st, each process completes stage

st within time d � st.

Proof. Let d1 be the maximum time it takes to each process from the moment it reaches a new

stage st to the moment it broadcasts its value and its value is delivered; let d2 be the maximum

time it takes to each process to broadcast and deliver its second message after receiving enough

messages from the �rst round; let d3 be the maximum time it takes to each process to move to a

new stage once it has received enough messages from the second round. Then d = d1+d2+d3.

Since we have not de�ned formally M , we cannot say explicitly what is the value of d.

We show the result by induction on st where for the base case we assume that st = 0

and that stage 0 is completed by time 0. By induction, by time d � st each non-faulty process

has completed round st . Then, by time d1 + d � st each non-faulty process has broadcasted

and delivered its �rst round message, and thus every non-faulty process has received enough

messages for the �rst round of stage st + 1. Within additional time d2 each non-faulty process

delivers its second message, and within additional time d3 each non-faulty process reaches stage

st + 2, i.e., within time d(st + 1) each non-faulty process completes stage st + 1.

For each �nite timed execution fragment � of M de�ne �(�), the stage complexity of �, to

be max-stage(lstate(�)) � max-stage(fstate(�)), where for each state s, max-stage(s) is the

maximum stage that is reached in s by some process. Observe that this complexity measure is

an upper bound to the stage at which some process decides since if at state s the �rst process

has just decided, thenmax-stage(s) is not smaller than the stage of the process that has decided.

Thus, an upper bound on the expected � for the decision of the �rst process is an upper bound

on the expected stage at which the �rst process decides. We show the following two statements.

B
�(1)
�!
1

f-fair F [O: (10.45)

F
�(2)
�!
1=2n
O: (10.46)

Then, by combining (10.45) and (10.46) with Theorem 5.5.2, we obtain

B
�(3)
�!
1=2n
O: (10.47)

From Proposition 10.7.1, we obtain

EB;Unit-Time;�[eO] � 3 + (1� 1=2n)(1 + EB;Unit-Time;�[eO]); (10.48)

where 1 is the value of � given by (10.38). By solving Equation (10.48) we obtain

EB;Unit-Time;�[eO] � 2n+2 � 1: (10.49)

Since if a process decides at stage st then each other non-faulty process decides within stage

st + 1, then we can derive that the expected stage by which every process decides is at most

2n+2, and thus, from Lemma 10.8.1, each process decides within expected time d � 2n+1.

The proofs for (10.45) and (10.46) have the same structure as the corresponding proofs

for the untimed case. Recall that the proof of (10.45) consider the maximum stage st of a

reachable state s and states that eventually stage st + 1 is reached, at which time a state of F

is reached. The proof of (10.46) states that a speci�c coin lemma leads a process to decide by

stage max-stage(s)+1. Then, since if a process decides a stage st each process decides by stage

st + 1, the complexity of the state where the �rst process decides is at most max-stage(s) + 2.

241

10.9 Discussion

To our knowledge this is the �rst time that statements similar to our timed progress statements

have been used for the analysis of the performance of a randomized distributed algorithm. In

particular, we have been able to prove similar results only because we have studied techniques to

prove properties that hold with some probability di�erent than 1. This should be a su�ciently

strong reason to pursue additional research on methodologies (automatic or not) for the analysis

of properties that hold with probabilities di�erent than 1. The work of Hansson [Han94] and

the algorithm that Courcoubetis and Yannakakis present in [CY90] are in this direction.

242

Chapter 11

Hierarchical Verication Timed

Trace Distributions

11.1 Introduction

In this chapter we extend the trace distribution preorder of Chapter 7 to the timed framework.

The main di�erence is that we use timed traces rather than traces. A timed trace contains the

sequence of discrete actions that occur within a timed execution plus the time of occurrence

of each action and the time at which the observation ends. That is, in a timed execution we

observe at what time each external action occurs and, if �nitely many actions occur, how much

time elapses after the occurrence of the last action.

We de�ne a preorder relation based on timed trace distribution inclusion, and we characterize

the coarsest precongruence that is contained in the timed trace distribution preorder by using

a timed principal context , which is just the principal context of Chapter 7 augmented with

arbitrary time-passage self-loop transitions from its unique state. Most of the proofs follow

directly from the results already proved in Chapter 7, since in several cases it is su�cient to

study ordinary trace distributions in order to derive properties of timed trace distributions.

11.2 Timed Traces

We start by de�ning the main object of observation, i.e., timed traces. The de�nition of a timed

trace that we give in this section is taken directly from [LV95].

Timed Sequence Pairs

Let K be any set that does not intersect <+. Then a timed sequence over K is de�ned to be a

(�nite or in�nite) sequence
 over K � <�0 in which the time components are nondecreasing,

i.e., if (k; t) and (k0; t0) are consecutive elements in
 then t � t0. We say that
 is Zeno if it is

in�nite and the limit of the time components is �nite.

A timed sequence pair over K is a pair � = (
; t), where
 is a timed sequence over K and

t 2 <�0 [f1g, such that t is greater than or equal to all time components in
. We write

seq(�), and ltime(�) for the two respective components of �. We denote by tsp(K) the set of

243

timed sequence pairs over K. We say that a timed sequence pair � is �nite if both seq(�) and

ltime(�) are �nite, and admissible if seq(�) is not Zeno and ltime(�) =1.

Let � and �0 be timed sequence pairs overK with � �nite. Then de�ne �; �0 to be the timed

sequence pair (seq(�)
; ltime(�) + ltime(�0)), where
 is the modi�cation of seq(�0) obtained

by adding ltime(�) to all the time components. If � and �0 are timed sequence pairs over a set

K, then � is a pre�x of �0, denoted by � � �0, if either � = �0, or � is �nite and there exists a

timed sequence pair �00 such that �0 = �; �00.

Lemma 11.2.1 � is a partial ordering on the set of timed sequence pairs over K.

Now we describe how to translate from a sequence over K [<+, and ordinary trace, to a timed

sequence pair over K. First, if � is any sequence over K [<+, then we de�ne the time of

occurrence of any K-element in � to be the sum of all the reals that precede that element in

�. We also de�ne ltime(�) to be the sum of all the reals in �. Finally, we de�ne t-trace(�) to

be the timed sequence pair (
; ltime(�)), where
 is the subsequence of � consisting of all the

elements of K, each paired with its time of occurrence.

If � is a sequence over K [<+ then we say that � is admissible if the sum of the positive

reals in � is in�nite.

Lemma 11.2.2 If � is a �nite or admissible timed sequence pair then t-trace(trace(�)) = �.

Lemma 11.2.3 If � is a sequence over K [<+ then � is admissible if and only if t-trace(�)

is admissible.

Timed Traces of Timed Probabilistic Automata

Suppose that � = !0a1!1a2!2 � � � is a timed execution fragment of a timed probabilistic au-

tomatonM . For each ai, de�ne the time of occurrence ti to be
P

j<i ltime(!j), i.e., the sum of

the lengths of all the trajectory intervals preceding ai in �. Let
 be the sequence consisting of

the actions in � paired with their times of occurrence:

 = (a1; t1)(a2; t2) � � � :

Then t-trace(�), the timed trace of �, is de�ned to be the pair

(
 � (vis(M)�<+); ltime(�)):

Thus, t-trace(�) records the occurrences of visible actions together with their times of oc-

currence, and together with the time spanned by �. Note that neither internal actions nor

time-passage actions appear explicitly in the timed trace of �.

Proposition 11.2.4 If � is a timed execution fragment of M then t-trace(�) is a timed se-

quence pair over vis(M).

Proposition 11.2.5 Let � be a timed execution fragment of M , and let trace(�) denote the

ordered sequence of external actions that appear in �. Then, t-trace(�) = t-trace(trace(�)).

Proposition 11.2.6 If � = �1
a �2 is a timed execution fragment of M , then t-trace(�) =

t-trace(�1); t-trace(�2).

244

We write t-traces(M) for the set of all timed traces of M , t-traces�(M) for the set of �nite

timed traces of M , and t-traces1(M) for the set of admissible timed traces of M ,

The timed traces of a probabilistic timed automaton M can be characterized also in terms

of its time-enriched executions or in terms of its ordinary executions. Speci�cally, if � is a time-

enriched execution of M , then let t-trace(�) denote t-trace(t-exec(�)), and if � is an execution

of M , then let t-trace(�) denote t-trace(trace(�)). The following proposition holds.

Proposition 11.2.7 Let M be a probabilistic timed automaton.

1. If � is a time-enriched execution of M , then there is a timed execution �0 of M such that

t-trace(�) = t-trace(�0).

2. If � is a timed execution of M , then there is a time-enriched execution �0 of M such that

t-trace(�) = t-trace(�0).

3. If � is a timed execution of M , then there is an execution �0 of M such that t-trace(�) =

t-trace(�0).

4. If � is an execution of M , then there is a timed execution �0 of M such that t-trace(�) =

t-trace(�0).

Proof.

1. Let �0 be t-exec(�). Then, t-trace(�) = t-trace(�0) by de�nition.

2. Let � be !0a1!1a2 � � �. If � is a �nite timed execution or an in�nite sequence, then let

�0 = fstate(!0)
a �1

a �2
a
� � �, where for each i,

�i =

(
!i�1aifstate(!i) if !i�1 has domain [0; 0],

fstate(!i�1)ltime(!i�1)!i�1aifstate(!i) otherwise;

if � = !0a1!1a2 � � �an!n and the domain of !n is right-open, then let �0 = fstate(!0)
a

�1
a � � � a �n

a �0n+1, where the �i's are de�ned above and �0n+1 = !00d1!
0
1d2!

0
2 � � � is an

in�nite sequence such that !00!
0
1!

0
2 � � � = !n. It is immediate to verify that � and �0 have

the same timed trace since � = t-exec(�0).

3. Let � be !0a1!1a2 � � �. If � is a �nite timed execution or an in�nite sequence, then let

�0 = fstate(!0)
a �1

a �2
a � � �, where for each i,

�i =

(
lstate(!i�1)aifstate(!i) if !i�1 has domain [0; 0],

fstate(!i�1)ltime(!i�1)lstate(!i�1)aifstate(!i) otherwise;

if � = !0a1!1a2 � � �an!n and the domain of !n is right-open, then let �
00 = fstate(!0)

a�1
a

� � �a�n
a�0n+1, where the �i's are de�ned above and �0n+1 = fstate(!n)d1!n(d1)d2!n(d1+

d2) � � � is an in�nite sequence such that
P

i di = ltime(!n). It is immediate to verify that

� and �0 have the same timed trace.

245

4. Given � = s0a1s1a2 � � �, build a time-enriched execution �00 by replacing each state si with

a trajectory for (si�1; ai; si) whenever ai is a time-passage action. Then, t-trace(�) =

t-trace(�00). Item 2 is enough to conclude.

The bottom line of the proposition above is that for the study of the timed traces of a probabilis-

tic timed automaton it is not necessary to observe the trajectories spanned by a computation.

The points of occurrence of discrete actions are su�cient.

11.3 Timed Trace Distributions

In this section we de�ne the timed trace distributions of a probabilistic timed automaton and we

extend the action restriction operation. The main result is that it is possible to study the timed

trace distributions of a probabilistic timed automatonM by considering either its probabilistic

executions, or its probabilistic time-enriched executions, or its probabilistic timed executions.

11.3.1 Three ways to De�ne Timed Trace Distributions

We now de�ne the timed trace distribution of a probabilistic execution, of a probabilistic time-

enriched execution, and of a probabilistic timed execution of a probabilistic timed automaton.

The de�nitions are given in the same style as for the untimed case. Furthermore, we show that

the three de�nitions lead to the same collection of timed trace distributions. This enforces the

remark that for the study of the timed trace distributions of a probabilistic timed automaton

it is not necessary to observe the trajectories spanned by a computation.

Timed Trace Distribution of a Probabilistic Execution

LetH be a probabilistic execution of a probabilistic timed automatonM , and let f be a function

from
H to
 = tsp(vis(M)) that assigns to each extended execution its timed trace. The timed

trace distribution of H , denoted by t-tdistr(H), is the probability space completion((
;F ; P))

where F is the �-�eld generated by the cones C�, where � is a �nite timed sequence pair of

tsp(vis(M)), and P = f(PH). Note that from Proposition 3.1.4 f is a measurable function

from (
H ;FH) to (
;F).

Timed Trace Distribution of a Probabilistic Time-Enriched Execution

Let H be a probabilistic time-enriched execution of a probabilistic timed automaton M , and

let f be a function from
H to
 = tsp(vis(M)) that assigns to each time-enriched extended

execution its timed trace. The timed trace distribution of H , denoted by t-tdistr (H), is the

probability space (
;F ; P) where F is the �-�eld generated by the cones C�, where � is a �nite

timed timed sequence pair of tsp(vis(M)), and P = f(PH). Note that from Proposition 3.1.4

f is a measurable function from (
H ;FH) to (
;F).

Timed Trace Distribution of a Probabilistic Timed Execution

Let H be a probabilistic timed execution of a probabilistic timed automaton M , and let f

be a function from
H to
 = tsp(vis(M)) that assigns to each timed extended execution

246

its timed trace. The timed trace distribution of H , denoted by t-tdistr(H), is the probability

space (
;F ; P) where F is the �-�eld generated by the cones C�, where � is a �nite timed

timed sequence pair of tsp(vis(M)), and P = f(PH). Note that from Proposition 3.1.4 f is a

measurable function from (
H ;FH) to (
;F).

Equivalence of the De�nitions

We now show that the three de�nitions of a timed trace distribution lead to the same collection

of timed trace distributions when applied to a probabilistic timed automaton (cf. Proposi-

tions 11.3.2 and 11.3.4). Thus, we can freely denote a generic timed trace distribution by D

and denote the timed trace distributions of a probabilistic tomed automatonM by t-tdistrs(M).

Lemma 11.3.1 Let H be a probabilistic time-enriched execution of a probabilistic timed au-

tomaton M . Then, t-tdistr (H) = t-tdistr(sample(H)).

Proof. Let D be t-tdistr(H) and let D0 be t-tdistr (sample(H)) Consider a �nite timed trace

�. From the de�nition of t-tdistr (),

PD0 [C�] = Psample(H)[f� 2
sample(H) j � � t-trace(�)g]: (11.1)

Since C� is a �nitely satis�able event, there is a set of � of states of sample(H) such that for

each element q of �, � � t-trace(q), and such that

f� 2
sample(H) j � � t-trace(�)g = [q2�C
sample(H)
q : (11.2)

Thus,

PD0 [C�] =
X
q2�

Psample(H)[C
sample(H)
q]: (11.3)

From Equation (9.55), Equation (11.3) becomes

PD0 [C�] =
X

q2sample�1(�)

PH [C
H
q]: (11.4)

Observe that sample�1(�) is a characterization of C� for D, and thus,

PD0 [C�] = PD [C�]: (11.5)

This completes the proof.

Proposition 11.3.2 Let M be a probabilistic timed automaton. Then, for each probabilis-

tic time-enriched execution H of M there exists a probabilistic execution H 0 of M such that

t-tdistr(H) = t-tdistr(H 0), and for each probabilistic execution H of M there exists a proba-

bilistic time-enriched execution H 0 of M such that t-tdistr(H) = t-tdistr(H 0).

Proof. Follows directly from Propositions 9.3.6 and 9.3.7, and from Lemma 11.3.1.

Lemma 11.3.3 Let H be a probabilistic time-enriched execution of a probabilistic timed au-

tomaton M . Then, t-tdistr (H) = t-tdistr(t-sample(H)).

247

Proof. Let D be t-tdistr (H), and let D0 be t-tdistr(t-sample(H)). Consider a �nite timed

sequence pair D of tsp(vis(M)). From the de�nition of t-tdistr ,

PD[C�] = PH [f� 2
H j � � t-trace(�)g]: (11.6)

From the de�nition of t-exec(PH),

PD[C�] = Pt-exec(PH)[f� 2
t-exec(H) j � � t-trace(�)g]: (11.7)

With a similar analysis,

PD0 [C�] = Pt-sample(H)[f� 2
t-sample(H) j � � t-trace(�)g]: (11.8)

Since fromProposition 9.3.11 t-exec(PH) = Pt-sample(H), and since the events of (11.7) and (11.8)

are unions of countably many disjoint cones, we conclude that PD [C�] = PD0 [C�].

Proposition 11.3.4 Let M be a probabilistic timed automaton. Then, for each probabilistic

time-enriched execution H of M there exists a probabilistic timed execution H 0 of M such that

t-tdistr(H) = t-tdistr(H 0), and for each probabilistic timed execution H of M there exists a

probabilistic time-enriched execution H 0 of M such that t-tdistr(H) = t-tdistr(H 0).

Proof. Follows directly from Propositions 9.3.8 and 9.3.9, and from Lemma 11.3.3.

Proposition 11.3.5 Let H1 and H2 be two equivalent probabilistic time-enriched executions of

a probabilistic timed automaton M . Then, t-tdistr(H1) = t-tdistr(H2).

Proof. From Proposition 9.3.10, t-sample(H1) = t-sample(H2), and from Lemma 11.3.3,

tdistr(H1) = tdistr(t-sample(H1)) and tdistr(H2) = tdistr(t-sample(H2)). Thus, combining

the observations above, t-tdistr (H1) = t-tdistr(H2).

11.3.2 Timed Trace Distribution of a Trace Distribution

Given a trace distribution of a probabilistic timed automaton, it is possible to de�ne its timed

trace distribution as we have done for ordinary traces. Thus, let D be a trace distribution of a

probabilistic automaton, and let f be a function from
D to
 = ft-trace(�) j � 2
Dg that

assigns to each trace its timed trace. The timed trace distribution of D, denoted by t-tdistr (D),

is the probability space completion((
;F ; P)) where F is the �-�eld generated by the cones

C�, where � is a �nite timed trace, and P = f(PD). Note that from Proposition 3.1.4 f is a

measurable function from (
D;FD) to (
;F).

Proposition 11.3.6 Let H be a probabilistic execution of a timed probabilistic automaton M .

Then, t-tdistr (H) = t-tdistr (tdistr(H)).

Proof. Let D be t-tdistr (H), and let D0 be t-tdistr(tdistr(H)). We show �rst that D and D0

have the same sample space. Then, we show that they assign the same probability to each cone.

To show that D and D0 have the same sample space, it is enough to show that for each

timed sequence pair � of tsp(vis(M)) thehre is a trace �0 of ext(M)� [ext(M)! such that

t-trace(�0) = �. Let (� = (a1; t1)(a2; t2); (a3; t3) � � � ; t). If seq(�) is an in�nite sequence, then

let �0 = �1�2�3 � � �, where for each i, if ti+1 = ti, then �i = ai, and if ti+1 > ti, then �i =

248

ai(ti+1� ti). If seq(�) is a �nite sequence, i.e., seq(�) = (a1; t1)(a2; t2); (a3; t3) � � � ; (an; tn) then

�0 = �1�2�3 � � ��n�1�
0
n where the �i's are de�ned above, and �0n is an if tn = t, an(t � tn) if

0 < t � tn < 1, and an followed by the in�nite sequence of 1's if t = 1. It is easy to verify

that in every case t-trace(�0) = �.

To show that D and D0 assign the same probability to each cone, let � be a �nite timed

trace. From the de�nition of t-tdistr and tdistr ,

PD0 [C�] = PH [f� 2
H j � � t-trace(trace(�))g]: (11.9)

From Proposition 11.2.5, (11.9) becomes

PD0 [C�] = PH [f� 2
H j � � t-trace(�)g]; (11.10)

which is the de�nition of PD[C�].

11.3.3 Action Restriction

Finally, we extend the action restriction operator to timed trace distributions. Let M be a

probabilistic timed automaton, and let V be a set of visible actions ofM . For each timed trace

� = (
; t) of M , let � � V be the pair (
0; t) where
0 is obtained from
 by removing all the

pairs whose action is in V . Let D be a timed trace distribution of M . De�ne D � V to be the

timed trace distribution (
;F ; P) where
 =
D � V , F is the �-�eld generated by the cones

C�, where � is a �nite timed trace, and P = PD � V . Note that from Proposition 3.1.4 � V is a

measurable function from (
D;FD) to (
;F). Action restriction commutes with the operation

of taking a timed trace distribution of a trace distribution.

Proposition 11.3.7 Let D be a trace distribution of a probabilistic timed automaton M , and

let V be a set of visible actions of M . Then, t-tdistr(D � V) = t-tdistr (D) � V .

Proof. Let D0 be t-tdistr(D � V), and let D00 be t-tdistr(D) � V . Let � be a �nite timed trace.

By applying the de�nitions of t-tdistr and of �, we obtain the following two equations.

PD0 [C�] = PD [f�
0
2
D j � � t-trace(�0 � V)g]: (11.11)

PD00 [C�] = PD [f�
0
2
D j � � t-trace(�0) � V g]: (11.12)

Observe that for each �0 of
D , t-trace(�
0 � V) = t-trace(�0) � V . Thus, the right expressions

of (11.11) and (11.12) denote the same value. That is, PD0 [C�] = PD00 [C�].

11.4 Timed Trace Distribution Precongruence

Let M1;M2 be two probabilistic timed automata with the same external actions. The timed

trace distribution preorder is de�ned as follows.

M1 vDt M2 i� t-tdistrs(M1) � t-tdistrs(M2):

As for the untimed case, the timed trace distribution preorder is not a precongruence. A

counterexample can be created directly from the counterexample of Chapter 7 by augmenting

the probabilistic automata of Figure 7-4 with arbitrary self-loop time-passage transitions from

their deadlock states (the states that do not enable any transition). Thus, we de�ne the

timed trace distribution precongruence, denoted by vDCt, as the coarsest precongruence that is

contained in the timed trace distribution preorder.

249

11.5 Alternative Characterizations

The timed trace distribution precongruence can be characterized by a timed version of the

principal context of Chapter 7. Namely, let the timed principal context , denoted by CP be

the principal context of Figure 7-6 augmented with self-loop time-passage transitions for each

time-passage action d. Then, the following holds.

Theorem 11.5.1 M1 vDCt M2 i� M1kCP vDt M2kCP .

Thus, if we de�ne the principal timed trace distributions of a probabilistic timed automaton

M , denoted by pt-tdistrs(M), to be the timed trace distributions of MkCP , then we get the

following.

Corollary 11.5.2 M1 vDCt M2 i� ext(M1) = ext(M2) and pt-tdistrs(M1) � pt-tdistrs(M2).

The rest of this section is dedicated to the proof of Theorem 11.5.1. The structure of the proof

follows the same lines as the proof of Theorem 7.5.1, where only one additional transformation

step is added: a distinguishing context is transformed into a new time-deterministic context

where each state enables either discrete actions only or time-passage actions only. A time-

deterministic context is a probabilistic automaton such that for each state s and each time-

passage action d, if s
d
�! s1 and s

d
�! s2, then s1 = s2. All the lemmas except for one are

proved by reducing the problem to the untimed framework.

Lemma 11.5.3 Let C be a distinguishing context for two probabilistic timed automata M1 and

M2. Then there exists a distinguishing context C0 for M1 and M2 with no discrete actions in

common with M1 and M2. C
0 is called a separated context.

Proof. The context C0 is built from C in the same way as in the proof of Lemma 7.5.3. The con-

structions clp and exch work as well (they never exchange transitions involving time-passage),

and the proof is carried out at the level of probabilistic executions rather than probabilistic

timed executions.

Speci�cally, let D be a timed trace distribution of M1kC that is not a timed trace distri-

bution of M2kC. Consider a probabilistic execution H1 of M1kC such that t-tdistr (H1) = D,

and consider the scheduler that leads to H1. Apply to M1kC
0 the same scheduler with the

following modi�cation: whenever a transition ((s1; c); a;P1
 P) is scheduled in M1kC, sched-

ule ((s1; c); a1;D((s1; c
0))), where c0 is c(c;a;P), followed by ((s1; c

0); a;P1
D(c
0)), and, for each

s01 2
1, followed by ((s01; c
0); a2;D(s

0
1)
P). Denote the resulting probabilistic execution by H 0

1

and the resulting timed trace distribution by D0. From Lemma 7.5.3, tdistr(H1) = tdistr(H 0
1) �

vis(M1kC), and thus, from Propositions 11.3.6 and 11.3.7, D = D0 � vis(M1kC).

Suppose by contradiction that it is possible to obtain D0 fromM2kC
0. Consider the scheduler

that leads to D0 in M2kC
0, and let H 0

2 be the corresponding probabilistic execution. Then, from

Lemma 7.5.3, clp(exch(H 0
2)) is a probabilistic execution ofM2kC

0, and tdistr(clp(exch(H 0
2))) =

tdistr(H 0
2) � acts(M1kC). From Propositions 11.3.6 and 11.3.7, D = t-tdistr (clp(exch(H 0

2))),

which is a contradiction.

Lemma 11.5.4 Let C be a distinguishing separated context for two probabilistic timed automata

M1 and M2. Then there exists a distinguishing cycle-free separated context C0 for M1 and M2.

250

Proof. The context C0 can be built by unfolding C. Every scheduler for C can be transformed

into a scheduler for C0 and vice versa, leading to the same timed trace distributions.

Lemma 11.5.5 Let C be a distinguishing cycle-free, separated context for two probabilistic

timed automata M1 and M2. Then there exists a distinguishing time-deterministic, cycle-free

separated context C0 for M1 and M2 that from any state enables either time-passage actions

only or discrete actions only.

Proof. The context C0 is built from C as follows:

1. for each time-passage transition s
d
�! s0 of C and each trajectory ! for s

d
�! s0, add an

action start! and an action end!;

2. for each time-passage transition s
d
�! s0 of C and each trajectory ! for s

d
�! s0, add a

collection of new states fs!;t j 0 � t � dg, a transition s
start!
�! s!;0, a transition s!;d

end!
�! s0,

and for each 0 � t < t0 � d, a transition s!;t
t0�t
�! s!;t0 ;

3. remove all the time-passage transitions leaving from states of C.

Let D be a timed trace distribution of M1kC that is not a timed trace distribution of M2kC.

Consider a probabilistic execution H1 of M1kC such that t-tdistr (H1) = D, and consider the

scheduler that leads toH1. Apply toM1kC
0 the same scheduler with the following modi�cation:

whenever a time-passage transition s
d
�! s0 is scheduled, choose a trajectory ! for s

d
�! s0

and schedule start!, followed by d, and followed by end! . Denote the resulting probabilistic

execution by H 0
1 and the resulting timed trace distribution by D0. Then,

D
0
� acts(M1kC) = D: (11.13)

To prove (11.13) we prove �rst that tdistr(H 0
1) � acts(M1kC) = tdistr(H1), and then we apply

Propositions 11.3.6 and 11.3.7. To prove that tdistr(H 0
1) � acts(M1kC) = tdistr(H1) we de�ne

a construction tclp to be applied to probabilistic executions ofMikC
0 where each occurrence of

a start action is followed eventually by the corresponding end action with probability 1.

Let H 0 be a probabilistic execution of MikC
0 where each occurrence of a start action is

followed eventually by the corresponding end action with probability 1, and denote tclp(H 0) by

H . For each state q of H 0, let tclp(q) be obtained from q by replacing each state of the form s!;t
with the state !(t), by removing each occurrence of a start action together with its following

state, and by removing each end action together with its following state. Then,

states(H)
4
= tclp(states(H 0)): (11.14)

Let (q;P) be a restricted transition of H 0, and suppose that no start or end action occurs. Let

0 = f(a; tclp(q0)) j (a; q0) 2
g, and for each (a; q00) 2
0, let P 0[(a; q00)] = P [a � tclp�1(q00)],

where tclp�1(q) is the set of states q0 of H 0 such that tclp(q0) = q. Then the transition

tclp((q;P)) is de�ned to be

tclp((q;P))
4
= (tclp(q);P): (11.15)

251

For the transition relation of H , consider a state q of H , and let min(tclp�1(q)) be the set of

minimal states of tclp�1(q) under pre�x ordering. For each state �q 2 tclp�1(q), let

�p
tclp�1(q)
�q

4
=

PH 0 [C�q]P
q02min(tclp�1(q))PH 0 [Cq0]

: (11.16)

The transition enabled from q in H isX
q02tclp�1(q)

�p
tclp�1(q)
�q PH 0

q0 [acts(MikC)]tclp(tr
H 0

q0 � acts(MikC)): (11.17)

The probabilistic execution H satis�es the following properties.

a. H is a probabilistic execution of MikC.

The fact that each state of H is reachable can be shown by a simple inductive argument;

the fact that each state of H is a �nite execution fragment ofMikC follows from a simple

analysis of the de�nition of tclp.

From (11.17) it is enough to check that for each state q0 of H 0, the transition tclp(trH
0

q0 �

acts(MikC)) is generated a combined transition of MikC. Since trH
0

q0 is a transition of

H 0, (trH
0

q0 � acts(MikC)) can be expressed as q0 a tr , where tr is a combined transition of

MikC
0 and no start or end action occurs in tr . Let tr 0 be obtained by substituting each

state of the form s!;t with !(t) in tr . Then, tr 0 is a combined transition of MkC, and,

from the de�nition of tclp, tclp(trH
0

q0 � acts(MikC)) = tclp(q0) a tr 0.

b. For each state q of H ,

PH [Cq] =
X

q02min(tclp�1(q))

PH 0 [Cq0]: (11.18)

This is shown by induction on the length of q. If q consists of a start state only, then

the result is trivial. Otherwise, from the de�nition of the probability of a cone, Equa-

tion (11.17), and a simple algebraic simpli�cation,

PH [Cqas] = PH [Cq]

0
@ X
q02tclp�1(q)

�p
tclp�1(q)
q0 PH 0

q0 [a� tclp�1(qas)]

1
A : (11.19)

Observe that for each q0 2 tclp�1(q) the set
H 0

q0 \ (fag � tclp�1(qas)) contains only one

element, say (a; q0as00), and thus PH 0 [Cq0]P
H 0

q0 [a�tclp
�1(qas)] gives PH 0 [Cq0as00]. Moreover,

observe that the states of min(tclp�1(qas)) are the states of the form described in Equa-

tion (11.19) (simple cases analysis). Thus, by applying induction to (11.19), using (11.16),

simplifying algebraically, and using the observations above,

PH [Cqas] =
X

q02min(tclp�1(qas))

PH 0 [Cq0]: (11.20)

252

c. tdistr(H) = tdistr(H 0) � acts(MikC).

Let � be a �nite trace of H or H 0. Then f� 2
H 0 j � � trace(�) � acts(MikC)g can be

expressed as a union of disjoint cones [q2�Cq where

� = fq 2 states(H 0) j trace(q) � acts(MikC) = �; lact(q) = lact(�)g: (11.21)

The set tclp(�) is the set

tclp(�) = fq 2 states(H) j trace(q) = �; lact(q) = lact(�)g; (11.22)

which is a characterization of f� 2
H j � � trace(�)g as a union of disjoint cones. Ob-

serve that min(tclp�1(tclp(�))) = �. Moreover, for each q1 6= q2 of tclp(�), tclp
�1(q1) \

tclp�1(q2) = ;. Thus, from (11.18), PH 0 [[q2�Cq] = PH [[q2tclp(�)Cq]. This is enough to

conclude.

To complete the proof of (11.13) it is enough to observe that H1 = tclp(H 0
1). Property (11.13)

is then expressed by property (c).

Suppose by contradiction that it is possible to obtain D0 fromM2kC
0. Consider the scheduler

that leads to D0 in M2kC
0, and let H 0

2 be the corresponding probabilistic execution. Observe

that, since the timed trace distribution of H 0
2 is D

0, and since by construction in D0 each occur-

rence of a start action is followed eventually by the corresponding end action with probability

1, in H 0
2 each occurrence of a start action is followed eventually by the corresponding end

action with probability 1. Thus, tclp can be applied, and t-tdistr (tclp(H 0
2)) = D, which is a

contradiction.

Lemma 11.5.6 Let C be a distinguishing time-deterministic, cycle-free, separated context for

two probabilistic timed automata M1 and M2 that from any state enables either time-passage

actions only or discrete actions only. Then there exists a distinguishing time-deterministic,

cycle-free separated context C0 for M1 and M2 that from any state enables either time-passage

actions only or discrete actions only, and such that the transition relation from any state

enabling discrete actions is at most countably branching. C0 is called a time-deterministic,

countably-branching, cycle-free separated context.

Proof. Let D a timed trace distribution of M1kC that is not a timed trace distribution of

M2kC. Consider one of the corresponding probabilistic executions H . Observe that H has at

most countably many states that enable discrete actions, and that at each state of H there are

at most countably many transitions of C that are scheduled. Thus, in total, only countably

many discrete transitions of C are used to generate D. Then C0 is C without the useless discrete

transitions.

Lemma 11.5.7 Let C be a distinguishing time-deterministic, countably-branching, cycle-free

separated context for two probabilistic timed automata M1 and M2. Then there exists a dis-

tinguishing cycle-free separated context C0 for M1 and M2 that at each state enabling discrete

actions either enables two deterministic transitions or a unique probabilistic transition with two

possible outcomes. C0 is called a time-deterministic, binary separated context.

253

Proof. The context C0 is built from C in the same way as in the proof of Lemma 7.5.6. The

constructions shr and shf work as well. The speci�c procedure is the same as the procedure

followed in the proof of Lemma 11.5.3.

Lemma 11.5.8 Let C be a distinguishing time-deterministic, binary separated context for two

probabilistic timed automata M1 and M2. Then there exists a distinguishing time-deterministic,

binary separated context C0 forM1 andM2 where all the probabilistic transitions have a uniform

distribution over two states. C0 is called a time-deterministic, balanced separated context.

Proof. The context C0 is built from C in the same way as in the proof of Lemma 7.5.7. The

speci�c procedure is the same as the procedure followed in the proof of Lemma 11.5.3.

Lemma 11.5.9 Let C be a distinguishing time-deterministic, balanced separated context for two

probabilistic timed automata M1 and M2. Then there exists a distinguishing time-deterministic,

binary separated context C0 for M1 and M2 with no internal actions and such that for each time

t each discrete action appears exactly in one edge of the transition tree that leaves from a state

whose time is t. C0 is called a time-deterministic, total balanced separated context.

Proof. The context C0 is obtained from C by renaming all of its discrete actions so that for

each time t each edge of the new transition relation leaving from a state whose current time is

t has its own action. The proof of Lemma 7.5.8 applies.

Lemma 11.5.10 Let C be a distinguishing time-deterministic, total balanced separated context

for two probabilistic timed automata M1 and M2. Then there exists a distinguishing time-

deterministic, total, cycle-free separated context C0 for M1 and M2 that from every state en-

ables one time-passage transition for each timed-action d, two deterministic transitions, and a

probabilistic transition with a uniform distribution over two choices. C0 is called a complete

context.

Proof. In this case it is enough to complete C by adding all the missing transitions and states.

If D is a timed trace distribution ofM1kC that is not a timed trace distribution ofM2kC, then

it is enough to use on M1kC
0 the same scheduler that is used in M1kC. In fact, since each new

discrete transition of C0 has a distinct action, none of the new discrete transitions of C0 can be

used in M2kC
0 to generate D, and since each state of C0 is uniquely determined by the timed

trace of all the executions leading to that state, none of the new time-passage transitions can

be scheduled (this would a�ect the resulting timed trace distribution).

Lemma 11.5.11 Let C be a distinguishing complete context for two probabilistic timed au-

tomata M1 and M2. Then the timed principal context is a distinguishing context for M1 and

M2.

Proof. The result is achieved in two steps. First the actions of C are renamed so that each

state enables two deterministic transitions with actions left and right , a probabilistic transition

with actions pleft and pright , and one transition for each time-passage action d. Call this

context C1. Then, by observing that the state of C1 is uniquely determined by the timed trace

of any timed execution leading to it, all the states of C1 are collapsed into a unique one.

Thus, we need to show only that C1 is a distinguishing context. The proof of Lemma 7.5.10

applies.

254

Lemma 11.5.12 Let CP be a distinguishing context for two probabilistic timed automata M1

and M2. Then the simple context C of Figure 7-6 augmented with a self-loop time-passage

transition from state s0 for each time-passage action d, where start is an action that does not

appear in M1 and M2, is a distinguishing context for M1 and M2.

Proof. The proof of Lemma 7.5.11 applies.

Proof of Theorem 11.5.1. Let M1 vDCt M2. Then, from Lemma 11.5.12, M1kCP vDt

M2kCP . Conversely, let M1kCP vDt M2kCP . Then, from Lemmas 11.5.3, 11.5.4, 11.5.5,

11.5.6, 11.5.7, 11.5.8, 11.5.9, 11.5.10, and 11.5.11,M1 vDCt M2.

255

256

Chapter 12

Hierarchical Verication Timed

Simulations

12.1 Introduction

The simulation method extends to the timed framework almost directly. The main di�erence

is that in a timed simulation that abstracts from internal computation we use moves (cf. Sec-

tion 9.4) rather than weak combined transitions. The kind of results that we prove are a direct

extension of similar results for the untimed model. In particular, probabilistic timed forward

simulations are sound for the timed trace distribution precongruence.

12.2 Probabilistic Timed Simulations

We start directly with simulation relations that abstract from internal computation; the strong

relations are essentially the same as for the untimed case.

For convenience assume that M1 and M2 do not have common states. A probabilistic timed

bisimulation between two simple probabilistic timed automata M1 and M2 is an equivalence

relation R over states(M1)[states(M2) such that

1. each start state of M1 is related to at least one start state of M2, and vice versa;

2. for each pair of states s1 R s2 and each transition s1
a
�! P1 of either M1 or M2, there

exists a move s2
a�ext(M2)
; P2 of either M1 or M2 such that P1 �R P2.

We write M1 'Pt M2 whenever ext(M1) = ext(M2) and there is a probabilistic timed bisimu-

lation between M1 and M2.

A probabilistic timed simulation between two simple probabilistic timed automata M1 and

M2 is a relation R� states(M1)� states(M2) such that

1. each start state of M1 is related to at least one start state of M2;

2. for each pair of states s1 R s2 and each transition s1
a
�! P1 of M1, there exists a move

s2
a�ext(M2)
; P2 of M2 such that P1 vR P2.

257

We writeM1 vPt M2 whenever ext(M1) = ext(M2) and there is a probabilistic timed simulation

from M1 to M2. We denote the kernel of probabilistic timed simulation by �Pt.

It is easy to check that 'Pt is an equivalence relation, that vPt is a preorder relation, and

that both 'Pt and vPt are preserved by the parallel composition operator. It is also easy to

verify that a weak probabilistic bisimulation is a probabilistic timed bisimulation and that a

weak probabilistic simulation is a probabilistic timed bisimulation.

12.3 Probabilistic Timed Forward Simulations

A probabilistic timed forward simulation between two simple probabilistic timed automata

M1;M2 is a relation R� states(M1)� Probs(states(M2)) such that

1. each start state of M1 is related to at least one Dirac distribution over a start state of

M2;

2. for each s R P 0, if s
a
�! P1, then

(a) for each s0 2
0 there exists a probability space Ps0 such that s0
adext(M2)
; Ps0 , and

(b) there exists a probability space P 01 of Probs(Probs(states(M2))) satisfying P1 vR P
0
1,

such that
P

s02
0 P
0[s0]Ps0 =

P
P2
01

P 01[P]P .

Denote the existence of a probabilistic timed forward simulation fromM1 toM2 byM1 vFSt M2.

Proposition 12.3.1 vFSt is preserved by the parallel composition operator.

Proof. Let M1 vFSt M2, and let R be a probabilistic timed forward simulation from M1 to

M2. Let R
0 be a relation between states(M1)�states(M3) and Probs(states(M2)�states(M3)),

de�ned as follows:

(s1; s3) R
0 P i� P = P2
D(s3) for some P2 such that s1 R P2.

The proof that R0 satis�es Condition 1 and that Condition 2 is satis�ed for each discrete

transition of M1kM2 is essentially the proof of Proposition 8.5.1. Thus we need to show only

that Condition 2 is satis�ed by time-passage transitions.

Let (s1; s3) R
0 P2
 D(s3), and let (s1; s3)

d
�! (s01; s

0
3), where s1

d
�! s01, and s3

d
�! s03.

From the de�nition of a probabilistic timed forward simulation, for each s 2
2 there exists

a move s2
d
; Ps of M2, and there exists a probability space P 02 of Probs(Probs(states(M2))),

such thatX
s2
2

P2[s]Ps =
X
P2
02

P 02[P]P ; (12.1)

and

D(s01) vR P
0
2: (12.2)

Moreover, from the de�nition of a probabilistic timed automaton, there is a trajectory !3 for

s3
d
�! s03.

For each s 2
2, let Os be a generator for s
d
; Ps. De�ne a new generator O0s as follows:

for each �nite execution fragment � of M2kM3 starting in (s; s3),

258

1. if Os(�dM2) = (s0;P), where (s0;P) =
P

i pi(s
0; ai;Pi), each (s0; ai;Pi) is a transition

of M2, and �dM3 is consistent with !3, i.e., for each pre�x �0 of �, lstate(�0)dM3 =

!3(ltime(�
0)), then letting s003 denote lstate(�dM3),

O
0
s(�) =

X
i

pi((s
0; s003); ai;Pi
P

0
i);

where P 0i = D(s
00
3) if ai is a discrete action, and P 0i = D(!3(ltime(�) + ai)) if ai is a

time-passage action.

2. otherwise, O0s(�) = D(�).

The move generated by each O0s is (s; s3)
d
; Ps
 D(s

0
3). In fact, an execution fragment �

of M2kM3 is terminal for O0s i� �dM2 is terminal for Os and lstate(�dM3) = s03, and thus

O0s =
s � D(s
0
3). Moreover, for each � 2
O0s , P

O0s
� = POs

�dM2
.

Denote Ps
D(s
0
3) by P(s;s3). Then, for each (s; s3) 2
2
D(s3), we have identi�ed a move

(s; s3)
a
; P(s;s3). These are the spaces of Condition 2.a in the de�nition of a probabilistic timed

forward simulation.

From this point the proof proceeds exactly in the same way as the proof of Proposition 8.5.1.

No modi�cation of the text is necessary.

12.4 The Execution Correspondence Theorem: Timed Ver-

sion

The execution correspondence theorem of Chapter 8 extends easily to the timed framework. In

this section we de�ne the notion of a timed execution correspondence structure, show the timed

version of the execution correspondence theorem, and, as a consequence, show that probabilistic

timed forward simulations are transitive.

The timed execution correspondence theorem is stated in terms of the probabilistic execu-

tions of a probabilistic timed automaton; however, it is easy to see that the same result can be

extended to probabilistic timed executions: the execution correspondence theorem talks about

countably many states of a probabilistic timed execution; all the other points can be described

by arbitrary trajectories.

12.4.1 Timed Execution Correspondence Structure

The de�nition of a fringe for a probabilistic timed execution is the same as the de�nition of a

fringe for a probabilistic execution. For the de�nition of fringe(H; i) the only di�erence is in

the way the length of a state of H is measured, and thus the de�nition given for probabilistic

automata is still valid.

Let R be a probabilistic timed forward simulation fromM1 toM2. A timed execution corre-

spondence structure via R is a tuple (H1; H2; m; S), where H1 is a probabilistic execution ofM1,

H2 is a probabilistic execution ofM2,m is a mapping from natural numbers to fringes ofM2, and

S is a mapping from natural numbers to probability distributions of Probs(Probs(states(H2))),

such that

259

1. For each i, m(i) � m(i+ 1);

2. For each state q2 of H2, limi!1
P

q2
ijq2�q
Pi[q] = PH [Cq];

3. Let q1 R (
;F ; P) i� for each q 2
, t-trace(q) = t-trace(q1), and either

(a) q1 does not end in �, each state of
 does not end in �, and lstate(q1) R lstate(P),

or

(b) q1 and each state of
 end in � and lstate(�-strip(q1)) R lstate(�-strip(P)).

Then, for each i � 0, m(i) =
P
P2
S(i)

PS(i)[P]P , and fringe(H1; i) vR S(i).

4. Let, for each i � 0, each q1 2 fringe(H1; i), and each q2 2 states(H2), Wi(q1; q2)
4
=P

P wi(q1;P)P [q2]. If Wi(q1; q
0
2) = 0 for each pre�x or extension q02 of q2, then, for each

extension q01 of q1 such that q01 2 fringe(H1; i+ 1), and each pre�x or extension q02 of q2,

Wi+1(q
0
1; q

0
2) = 0.

12.4.2 The Main Theorem

Theorem 12.4.1 Let M1 vFS M2 via the probabilistic timed forward simulation R, and let

H1 be a probabilistic execution of M1. Then there exists a probabilistic execution H2 of M2, a

mapping m from natural numbers to fringes of M2, and a mapping S from natural numbers to

probability distributions of Probs(Probs(states(H2))), such that (H1; H2; m; S) is an execution

correspondence structure via R.

Proof. The proof has exactly the same structure as the proof of Theorem 8.6.1. Note that the

only di�erence between this theorem and Theorem 8.6.1 is in Condition 3, where we use timed

traces rather than traces.

12.4.3 Transitivity of Probabilistic Timed Forward Simulations

The timed execution correspondence theorem can be used to show that probabilistic timed

forward simulations are transitive, i.e., if M1 vFSt M2 and M2 vFSt M3, then M1 vFSt M3.

The proof of this result follows the same lines as the corresponding proof in the untimed case

(cf. Section 8.6.4), where combined transitions are replaced by moves and traces are replaced

by timed traces. We leave the details of the proof to the reader.

12.5 Soundness for Timed Trace Distributions

As for the untimed model, the timed execution correspondence theorem can be used to show

that probabilistic timed forward simulations are sound for the timed trace distribution precon-

gruence. Since vFSt is a precongruence, it is enough to show that vFSt is sound for the timed

trace distribution preorder.

Proposition 12.5.1 If M1 vFSt M2, then M1 vDt M2.

260

Proof. Let M1 vFSt M2, and let H1 be a probabilistic execution of M1 that leads to a timed

trace distribution D1. From Lemma 12.4.1, there exists a probabilistic execution H2 of M2

that corresponds to H1 via some mappings m;S. We show that H2 leads to a timed trace

distribution D2 that is equivalent to D1.

Consider a cone C� of D1. The cone C� can be expressed as a union of cones of PH1 , and

thus its measure can be expressed as

lim
i!1

X
q12fringe(H1;i)j��t-trace(q1)

PH1 [Cq1]: (12.3)

Consider a cone C� of D2. The cone C� can be expressed as a union of cones of PH2 , and thus

its measure can be expressed as

lim
i!1

X
q22m(i)j��t-trace(q2)

Pm(i)[q2]: (12.4)

The reason for Expression (12.4) is that at the limit each cone expressing the occurrence of �

is captured completely.

Thus, it is su�cient to show that for each �nite � and each i,X
q12fringe(H1;i)j��t-trace(q1)

PH1 [Cq1] =
X

q22m(i)j��t-trace(q2)

Pm(i)[q]: (12.5)

From this point the proof proceeds exactly as the proof of Proposition 8.7.1.

261

262

Chapter 13

Conclusion

13.1 Have we Met the Challenge?

We have developed a model for the description of randomized distributed real-time systems, and

we have investigated how the new model can be used for the analysis of algorithms. The main

idea behind the model is to extend labeled transition systems to account for randomization in

such a way that probabilistic behavior and nondeterministic behavior are clearly distinct.

We have shown how commonly used informal statements can be formulated in the new

formalism, and we have shown how such statements can be proved to be correct in a formal

and rigorous way. In particular, we have developed veri�cation techniques that resemble the

common ways in which randomized algorithms are analyzed. The main improvement is that

now we have a collection of results that allow us to determine when a speci�c argument can be

used safely. Furthermore, we have shown how to derive upper bounds to the complexity of a

randomized distributed algorithm using an ordinary time complexity measure as well as more

abstract complexity measures like \number of rounds in an asynchronous computation".

Finally, we have extended several veri�cation techniques that are commonly used within the

labeled transition system model. We have extended the trace semantics of labeled transition

systems and several of the existing simulation relations for labeled transition systems. In

particular, all our preorder relations are compositional and the simulation relations are sound

for the trace-based semantics. Although we have not presented any example of veri�cation

using simulations, except for two toy examples based on coin
ips, we are con�dent that in the

future the method based on simulations will become of practical relevance as it happened for

ordinary automata.

Therefore, we can claim that we have met the challenge given by randomization at least

partially. Surely we understand much more of the problem than before. The fact that we have

been able to prove new results about randomized algorithms is a positive sign. In particular,

Aggarwal [Agg94] used successfully the technique presented in this thesis for the veri�cation of

the randomized self-stabilizing algorithm of Aggarwal and Kutten [AK93], which is not trivial

at all; during the veri�cation process Aggarwal discovered also a subtle bug in the original

protocol. In the measure in which the power of a proof method is evaluated based on the bugs

that such method helps to discover, our methodology has achieved something. Indeed we have

discovered another bug on one existing algorithm, and the main issue is that we did not have

to work much to discover such a bug; essentially it was su�cient to try to reformulate the proof

263

of correctness in our framework.

13.2 The Challenge Continues

Although we have improved considerably our understanding of randomization in distributed

computation, what we have discovered looks like the tip of the iceberg. We have addressed

several problems, and in solving them we have addressed more the basic methodology rather

than an extensive analysis of all the possible solutions. Therefore, there are several directions for

further research that can be pursued. Here we suggest some of the most important directions.

13.2.1 Discrete versus Continuous Distributions

Throughout this thesis we have assumed that the probability distributions associated with the

transitions of a probabilistic automaton are discrete. Although such assumption is su�ciently

general for the study of several randomized algorithms, several other real-time systems are better

described by using continuous distributions. Examples involve algorithms for transmission of

data along a common wire, scheduling algorithms for massively parallel machines, and queuing

systems. Moreover, continuous distributions would be more suitable for the study of randomized

hybrid systems.

The extension of the theory to continuous distributions involves nontrivial measure theoret-

ical problems. In particular it is not the case any more that any union of cones is measurable;

thus, not even the event that expresses the occurrence of an action or the reachability of a

state is measurable in general. The events with probability 0 need a more careful treatment

within the model with continuous distributions. It is likely that some restrictions must be

imposed to the model to ensure that some minimal set of events is measurable. Examples of

restricted models with continuous distributions are the automata of Alur, Courcuobetis and

Dill [ACD91a, ACD91b], where the time that elapses between two transitions is governed by

an exponential distribution or by a distribution which is non zero in a �nite collection of closed

intervals, and the models of [GHR93, Hil93, BDG94], where the time between the occurrence

of two actions is assumed to be distributed exponentially. Exponential distributions occur in

several real systems and are easy to model due to their memoryless structure. However, other

distributions should be studied.

13.2.2 Simpli�ed Models

Within the context of ordinary automata Lynch and Tuttle [LT87] have developed a model of

I/O automata. The model enforces a distinction between Input actions and Output actions

within an automaton, and requires that input actions are enabled from every state. Further-

more, in a parallel composition context each action is required to be the output or internal

action of at most one process, i.e., each action is under the control of at most one process.

Based on the Input/Output distinction Lynch and Tuttle can introduce fairness in the model

in a natural way, and in particular they can use the trace semantics as a meaningful notion of

implementation. In general the trace semantics is not meaningful as a notion of implementation

since, for example, it is not sensitive to deadlock. The advantage of the use of traces is that

traces are easy to deal with.

264

s0

s1 s2 s3

a

1/2

a
b

1/2

s0),(0s

),(ss1 1),(ss1 2),(ss2 3),(0ss3

a
a b

c
1/12

1/12
1/3

1/2

s0

s1 s2 s3

=a
b

c

1/6 1/3 1/2

Figure 13-1: Synchronization for probabilistic I/O automata.

For this reason, it makes sense to study a theory of probabilistic I/O automata as an

extension of the model of [LT87] and as a restriction of our model. An interesting point of a

model with I/O distinction is that it is possible to relax the requirement that all the transitions

of a probabilistic I/O automaton are simple. In particular, only the transitions with input

actions need to be simple, while all the others can be general. The parallel composition can be

de�ned easily since a non-simple transition synchronizes only with simple transitions. Figure 13-

1 gives an example of synchronization between a transition with three output actions a; b; c and

two transitions of an I/O automaton with just two input actions a; b. A similar observation

was made also by Wu, Stark and Smolka in [WSS94].

A restricted timed model with I/O distinction is introduced by Merrit, Modugno and Tuttle

[MMT91]. In particular timing constraints can be described only by giving upper and lower

bounds to the time it takes for a process to perform the next transition whenever it is ready

to do so. MMT automata turned out to be su�cient for the modeling of several distributed

systems, and in particular, due to their simple structure, made the analysis simpler than by

using the full automaton model. Once again, a study of the probabilistic version of the MMT

model would be useful. The proofs that we have illustrated in Chapter 12 could be carried out

in the probabilistic MMT model as well.

Finally, the analysis of a system can be simpli�ed by studying time-deterministic probabilis-

tic timed automata, i.e., probabilistic timed automata such that from each state s and each time

d there is at most one state reachable from s in time d. In fact, if a system is time-deterministic,

then the end points of a time-passage transition determine completely the trajectory that is

spanned. Therefore, trajectories could be removed also from the direct analysis of randomized

timed algorithms. It turns out that most of the times an algorithm can be described as a

time-deterministic probabilistic automaton. Probabilistic MMT automata are an example of

time-deterministic probabilistic automata.

13.2.3 Beyond Simple Probabilistic Automata

The study of parallel composition and of the simulation relations of this thesis is done within

the context of simple probabilistic automata. The main problem is that we did not �nd any

reasonable de�nition of parallel composition for general probabilistic automata that is consistent

with our synchronization style. We have just observed that in the presence of an Input/Output

distinction it is possible to relax the simplicity condition and yet obtain a meaningful notion

of parallel composition. It would be interesting to investigate other mechanisms that give a

meaning to general probabilistic automata and yet work as we expect in the simple case.

265

13.2.4 Completeness of the Simulation Method

We have provided several simulation and bisimulation relations for probabilistic automata and

probabilistic timed automata, and we have shown that they are sound for the trace distribution

precongruence and the timed trace distribution precongruence, respectively. However, we have

not shown any completeness result for probabilistic forward simulations and probabilistic for-

ward timed simulations. In [LV93a, LV95] it is shown that forward simulations together with

another kind of simulations called backward simulations are sound and complete for the trace

preorder. Are probabilistic forward simulations complete for the trace distribution preorder?

If not, is there an equivalent of backward simulations that can lead to completeness?

13.2.5 Testing Probabilistic Automata

We have presented the trace distribution semantics as an example of a semantics based on

abstract observations. Another widely known semantics for ordinary automata is the failure

semantics of Brookes, Hoare and Roscoe [BHR84], which in turn is connected to the testing

preorders of De Nicola and Hennessy [DH84]. Similarly to the trace distribution semantics,

it should be possible to extend the failure semantics to the probabilistic framework and �nd

a su�ciently powerful context to distinguish probabilistic automata that are not in the corre-

sponding precongruence relation. Possibly, a related theory of testing in the style of [DH84]

should be de�ned. It is very likely that the new testing preorders will be similar to those

of Yi and Larsen [YL92]. Other theories of testing for probabilistic automata are studied in

[Chr90b, Chr90a, CSZ92, YCDS94] and are explained in Section 2.2.

13.2.6 Liveness in Probabilistic Automata

In the extension of the notion of an execution of an automaton we have obtained a parallelism

between the theory of ordinary automata and the theory of probabilistic automata. In this

parallelism also the notion of liveness has found its place, although we have not addressed the

issue in this thesis. In ongoing research we have given a simple de�nition of a live probabilistic

automaton as a pair (M;L) where L is an arbitrary subset of the probabilistic executions ofM ,

and we have shown that the live trace distribution precongruence can be de�ned easily and can

be characterized by a live principal context , which is essentially the principal context paired

with the set of its probabilistic executions. However, lot of work remains to be done within the

theory of liveness.

First of all it would be useful to study how the de�nition of safety and liveness properties

of Alpern and Schneider [AS85] extends to the probabilistic framework and what consequences

such extension has. Furthermore, the use of the live trace preorder within ordinary automata

makes sense as a notion of implementation in the presence of I/O distinction and of a property

called receptiveness or environment-freedom [Dil88, AL93, GSSL94]. It would be useful to

study the theory of receptiveness of [Dil88, AL93] and of environment-freedom of [GSSL94]

in the context of randomization. In this case, di�erently from [GSSL94], the environment is

expressed by a function rather than by a sequence of actions. However, non-trivial problems

arise in imposing restrictions to the behavior of the environment.

266

13.2.7 Temporal Logics for Probabilistic Systems

In the chapters on direct analysis we have identi�ed a collection of probabilistic statements

that are useful for the analysis of algorithms. However, there are several other statements that

can be of interest. It would be desirable to �nd a probabilistic temporal logic that expresses

as many properties as possible. The probabilistic modal logic of [LS89] is a direct extension of

the modal logic of Hennessy and Milner [HM85] for reactive processes, but it is not su�ciently

powerful to deal with nondeterminism; similarly, the extended probabilistic logic of [LS92] is not

su�ciently powerful. The Probabilistic Computation Tree Logic of [HJ89, Han94] captures more

the consequences of the interplay between probability and nondeterminism; in [SL94] PCTL is

generalized also to probabilistic systems with internal actions (WPCTL). However, there are

still properties that are useful and do not seem to be expressible in WPCTL. Speci�cally, we

do not know how to express a property of the kind \after something has happened, no matter

where I am, something else will happen with probability at least p". Is there something missing

in WPCTL? What would be a more appropriate temporal logic?

Another issue is the relationship between the simulation method and temporal logic. That

is, if a probabilistic automaton implements another probabilistic automaton according to some

implementation relation (e.g., trace distribution precongruence, probabilistic simulation, proba-

bilistic forward simulation, etc.), what can we say about the implementation? What properties

of the speci�cation are satis�ed by the implementation? More generally, given a probabilis-

tic temporal logic and a preorder relation, what fragment of the logic is preserved by the

preorder relation? Somehow it is implicit that whenever we use some preorder relation as a

notion of implementation we are interested only in the properties that are preserved by such

relation; however, we need to know what are those properties. In [SL95] we have stated that

weak probabilistic simulation preserve a large fragment of WPCTL and that weak probabilistic

bisimulations preserve WPCTL. The results of [SL95] can be proved easily given the results of

this thesis. However, more work in this direction is necessary. In particular, some completeness

results would be useful.

13.2.8 More Algorithms to Verify

In this thesis we have illustrated our direct veri�cation technique by proving the correctness

of the randomized dining philosophers algorithm of Lehmann and Rabin [LR81] and of the

randomized agreement protocol of Ben-Or [BO83]. In [Agg94] Aggarwal uses our model to verify

the correctness of the self-stabilizing minimum weight spanning tree randomized algorithm of

Aggarwal and Kutten [AK93]. However, the technique should be tested against many other

algorithms. We are currently investigating the agreement protocol of Aspnes and Herlihy [AH90]

and the randomized mutual exclusion algorithm of Pnueli and Zuck [PZ86]. Based on the little

experience that we have gained, we can say that the model provides us with a systematic way

of analyzing those algorithms, and in particular it provides us with a simple methodology to

identify the critical points of an algorithm.

It is very likely that new coin lemmas need to be developed together with other techniques

for the actual computation of the probability of an event. A technique that needs further

development is the partition technique of Section 6.7. The analysis of other algorithms should

make clear what other techniques are necessary. Also, playing with the toy resource allocation

protocol of Chapter 5 can be very instructive. Although the protocol is simple, its analysis

267

highlights several of the issues that arise in randomized distributed computation.

It is also plausible, as it happened for non-probabilistic distributed algorithms, that some

complex protocols can be veri�ed more easily by using the simulation method. Finding those

algorithms would be an optimal way to test the hierarchical veri�cation method and possibly

to improve it.

13.2.9 Automatic Veri�cation of Randomized Systems

Formal veri�cation usually involves two levels of analysis. First, an algorithm is analyzed at

a high level by using the intuition that designers have of their own algorithm; then, a more

detailed veri�cation of the high level claims is carried out in order to guarantee correctness.

The low level analysis is very tedious and involves checking a whole lot of uninteresting details.

On the other hand, several times the low level analysis is the only way to discover
aws in the

intuitions about an algorithm.

Fortunately, the low level analysis is amenable to automatic veri�cation, although the re-

search in this area is still in progress. Model checking [EC82, CES83] is certainly a useful

technique; in [SGG+93] it is shown how a theorem prover can be used to help in the veri�cation

of a protocol using simulations; in [PS95] we have investigated how a randomized algorithm

can be veri�ed mechanically once the high level proof is formulated. However, there is still a

lot of work that needs to be done. It would be interesting to study how model checking and

theorem proving could be integrated to automatize part of the veri�cation of an algorithm.

13.3 The Conclusion's Conclusion

To say what we have done in one sentence, we have provided a new way of reasoning about

randomized systems that integrates both the theoretical aspects of modeling and the basic

requirements for usage in practice. From the modeling point of view we have distinguished be-

tween nondeterminism and probability explicitly and we have extended the main semantics that

are available within the labeled transition systems model; from the point of view of veri�cation

we have formalized some of the common informal arguments about randomized algorithms and

we have provided guidelines to determine whether an argument can be used safely. Further-

more, we have provided a systematic way to analyze the complexity of randomized algorithms.

All our results are compatible with previous work.

As we have seen in the previous section, there are still many open problems in this area.

Here we hope to have stimulated the curiosity of the reader to go much further. Needless to

say that for us (me) working on this project was a continuous discovery.

268

Bibliography

[ACD91a] R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking for probabilistic real-time

systems. In J. Leach Albert, B. Monien, and M. Rodr��guez, editors, Proceedings

18th ICALP, Madrid, volume 510 of Lecture Notes in Computer Science, pages

115{136. Springer-Verlag, 1991.

[ACD91b] R. Alur, C. Courcoubetis, and D.L. Dill. Verifying automata speci�cations of

probabilistic real-time systems. In de Bakker et al. [dBHRR91], pages 28{44.

[ACS94] B. Awerbuch, L. Cowen, and M.A. Smith. E�cient asynchronous distributed sym-

metry breaking. In Proceedings of the 26th Annual ACM Symposium on Theory of

Computing, 1994.

[Agg94] S. Aggarwal. Time optimal self-stabilizing spanning tree algorithms. Technical

Report MIT/LCS/TR-632, MIT Laboratory for Computer Science, 1994. Master's

thesis.

[AH90] J. Aspnes and M.P. Herlihy. Fast randomized consensus using shared memory.

Journal of Algorithms, 15(1):441{460, September 1990.

[AK93] S. Aggarwal and S. Kutten. Time optimal self stabilizing spanning tree algo-

rithms. In R.K. Shyamasundar, editor, 13th International Conference on Foun-

dations of Software Technology and Theoretical Computer Science, volume 761 of

Lecture Notes in Computer Science, pages 400{410, Bombay, India., December

1993. Springer-Verlag.

[AL91] M. Abadi and L. Lamport. An old-fashioned recipe for real time. In de Bakker

et al. [dBHRR91], pages 1{27.

[AL93] M. Abadi and L. Lamport. Composing speci�cations. ACM Transactions on

Programming Languages and Systems, 15(1):73{132, 1993.

[AS85] B. Alpern and F.B. Schneider. De�ning liveness. Information Processing Letters,

21(4):181{185, 1985.

[BBS92] J.C.M. Baeten, J.A. Bergstra, and S.A. Smolka. Axiomatizing probabilistic pro-

cesses: ACP with generative probabilities. In Cleaveland [Cle92], pages 472{485.

[BDG94] M. Bernardo, L. Donatiello, and R. Gorrieri. Modeling and analyzing concur-

rent systems with MPA. In U. Herzog and M. Rettelbach, editors, Proceedings of

269

the Second Workshop on Process Algebras and Performance Modelling (PAPM),

Erlangen, Germany, pages 175{189, 1994.

[BFJ+82] J. Burns, M. Fisher, P. Jackson, N.A. Lynch, and G. Peterson. Data requirements

for implementation of n-process mutual exclusion using a single shared variable.

Journal of the ACM, 29(1):183{205, 1982.

[BG91] J.C.M. Baeten and J.F. Groote, editors. Proceedings of CONCUR 91, Amsterdam,

volume 527 of Lecture Notes in Computer Science. Springer-Verlag, 1991.

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating se-

quential processes. Journal of the ACM, 31(3):560{599, 1984.

[BK90] J.C.M. Baeten and J.W. Klop, editors. Proceedings of CONCUR 90, Amsterdam,

volume 458 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

[BM89] B. Bloom and A. Meyer. A remark on bisimulation between probabilistic processes.

In Proceedings of the Symposium on Logical Foundations of Computer Science,

volume 363 of Lecture Notes in Computer Science, pages 26{40, 1989.

[BO83] M. Ben-Or. Another advantage of free choice: completely asynchronous agreement

protocols. In Proceedings of the 2nd Annual ACM Symposium on Principles of

Distributed Computing, Montreal, Quebec, Canada, August 1983.

[BPV94] D. Bosscher, I. Polak, and F. Vaandrager. Veri�cation of an audio control protocol.

Technical Report CS-R9445, CWI, Amsterdam, July 1994.

[BW90] J.C.M. Baeten and W.P Weijland. Process Algebra. Cambridge Tracts in Theo-

retical Computer Science 18, Cambridge University Press, 1990.

[CES83] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-

state concurrent systems using temporal logic speci�cations. ACM Transactions

on Programming Languages and Systems, 8(2), 1983.

[Chr90a] I. Christo�. Testing equivalences and fully abstract models for probabilistic pro-

cesses. In Baeten and Klop [BK90], pages 126{140.

[Chr90b] I. Christo�. Testing Equivalences for Probabilistic Processes. PhD thesis, Depart-

ment of Computer Science, Uppsala University, 1990.

[Chr93] L. Christo�. Speci�cation and Veri�cation Methods for Probabilistic Processes.

PhD thesis, Department of Computer Science, Uppsala University, 1993.

[Cle92] W.R. Cleaveland, editor. Proceedings of CONCUR 92, Stony Brook, NY, USA,

volume 630 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

[CM88] K.M. Chandi and J. Misra. Parallel Program Design: A Foundation. Addison-

Wesley, 1988.

270

[CSZ92] R. Cleaveland, S.A. Smolka, and A. Zwarico. Testing preorders for probabilistic

processes (extended abstract). In Proceedings 19th ICALP, Madrid, volume 623 of

Lecture Notes in Computer Science, pages 708{719. Springer-Verlag, 1992.

[CY88] C. Courcoubetis and M. Yannakakis. Verifying temporal properties of �nite-state

probabilistic programs. In 29th Annual Symposium on Foundations of Computer

Science, pages 338{345, 1988.

[CY90] C. Courcoubetis and M. Yannakakis. Markov decision procedures and regular

events. In M. Paterson, editor, Proceedings 17th ICALP, Warwick, volume 443 of

Lecture Notes in Computer Science, pages 336{349. Springer-Verlag, July 1990.

[dBHRR91] J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors. Pro-

ceedings of the REX Workshop \Real-Time: Theory in Practice", volume 600 of

Lecture Notes in Computer Science. Springer-Verlag, 1991.

[DeN87] R. De Nicola. Extensional equivalences for transition systems. Acta Informatica,

24:211{237, 1987.

[DH84] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical

Computer Science, 34:83{133, 1984.

[Dil88] D. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-Independent

Circuits. ACM Distinguished Dissertations. MIT Press, 1988.

[EC82] E.A. Emerson and E.C. Clarke. Using branching time temporal logic to synthesize

synchronous skeletons. Science of Computer Programming, 2:241{266, 1982.

[FLP85] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus

with a family of faulty process. Journal of the ACM, 32(2):374{382, April 1985.

[GHR93] N. G�otz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed system

design: the integration of functional speci�cation and performance analysis using

stochastic process algebras. In L. Donatiello and R. Nelson, editors, Performance

Evaluation of Computer and Communication Systems. Joint Tutorial Papers of

Performance '93 and Sigmetrics '93, volume 729 of Lecture Notes in Computer

Science, pages 121{146. Springer-Verlag, 1993.

[GJS90] A. Giacalone, C.C Jou, and S.A. Smolka. Algebraic reasoning for probabilistic

concurrent systems. In Proceedings of the Working Conference on Programming

Concepts and Methods (IFIP TC2), Sea of Galilee, Israel, 1990.

[Gla90] R.J. van Glabbeek. The linear time { branching time spectrum. In Baeten and

Klop [BK90], pages 278{297.

[Gla93] R.J. van Glabbeek. The linear time { branching time spectrum ii. The semantics of

sequential systems with silent moves. In E. Best, editor, Proceedings of CONCUR

93, Hildesheim, Germany, volume 715 of Lecture Notes in Computer Science, pages

66{81. Springer-Verlag, 1993.

271

[GSB94] R. Gupta, S.A. Smolka, and S. Bhaskar. On randomization in sequential and

distributed algorithms. ACM Computing Surveys, 26(1):1{86, 1994.

[GSSL94] R. Gawlick, R. Segala, J.F. S�gaard-Andersen, and N.A. Lynch. Liveness in

timed and untimed systems. In S. Abiteboul and E. Shamir, editors, Proceed-

ings 21th ICALP, Jerusalem, volume 820 of Lecture Notes in Computer Science.

Springer-Verlag, 1994. A full version appears as MIT Technical Report number

MIT/LCS/TR-587.

[GSST90] R.J. van Glabbeek, S.A. Smolka, B. Ste�en, and C.M.N. Tofts. Reactive, gener-

ative, and strati�ed models of probabilistic processes. In Proceedings 5th Annual

Symposium on Logic in Computer Science, Philadelphia, USA, pages 130{141.

IEEE Computer Society Press, 1990.

[Hal50] P.R. Halmos. Measure Theory. Springer-Verlag, 1950.

[Han91] H. Hansson. Time and Probability in Formal Design of Distributed Systems. PhD

thesis, Department of Computer Science, Uppsala University, 1991.

[Han94] H. Hansson. Time and Probability in Formal Design of Distributed Systems, vol-

ume 1 of Real-Time Safety Critical Systems. Elsevier, 1994.

[Hil93] J. Hillston. PEPA: Performance enhanced process algebra. Technical Report CSR-

24-93, Department of Computer Science, University of Edimburgh (UK), 1993.

[Hil94] J. Hillston. A Compositional Approach to Performance Modeling. PhD thesis,

Department of Computer Science, University of Edimburgh (UK), 1994.

[HJ89] H. Hansson and B. Jonsson. A framework for reasoning about time and reliability.

In Proceedings of the 10th IEEE Symposium on Real-Time Systems, Santa Monica,

Ca., 1989.

[HJ90] H. Hansson and B. Jonsson. A calculus for communicating systems with time and

probabilities. In Proceedings of the 11th IEEE Symposium on Real-Time Systems,

Orlando, Fl., 1990.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.

Journal of the ACM, 32(1):137{161, 1985.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International,

Englewood Cli�s, 1985.

[HS85] S. Hart and M. Sharir. How to schedule if you must. SIAM Journal on Computing,

14:991{1012, 1985.

[HSP83] S. Hart, M. Sharir, and A. Pnueli. Termination of probabilistic concurrent pro-

grams. ACM Transactions on Programming Languages and Systems, 5(3):356{380,

1983.

272

[JHY94] B. Jonsson, C. Ho-Stuart, and W. Yi. Testing and re�nement for nondeterministic

and probabilistic processes. In Langmaack, de Roever, and Vytopil, editors, Pro-

ceedings of the Symposium on Formal Techniques in Real-Time and Fault-Tolerant

Systems, volume 863 of Lecture Notes in Computer Science, pages 418{430, 1994.

[JL91] B. Jonsson and K.G. Larsen. Speci�cation and re�nement of probabilistic pro-

cesses. In Proceedings of the 6th IEEE Symposium on Logic in Computer Science,

pages 266{277, Amsterdam, July 1991.

[Jon91] B. Jonsson. Simulations between speci�cations of distributed systems. In Baeten

and Groote [BG91], pages 346{360.

[JP89] C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In Proceed-

ings 4th Annual Symposium on Logic in Computer Science, Asilomar, California,

pages 186{195. IEEE Computer Society Press, 1989.

[JP94] B. Jonsson and J. Parrow, editors. Proceedings of CONCUR 94, Uppsala, Sweden,

volume 836 of Lecture Notes in Computer Science. Springer-Verlag, 1994.

[JS90] C.C. Jou and S.A. Smolka. Equivalences, congruences, and complete axiomatiza-

tions for probabilistic processes. In Baeten and Klop [BK90], pages 367{383.

[JY95] B. Jonsson and W. Yi. Compositional testing preorders for probabilistic processes.

In Proceedings 10th Annual Symposium on Logic in Computer Science, San Diego,

California. IEEE Computer Society Press, 1995.

[Kar90] R.M. Karp. An introduction to randomized algorithms. Technical Report TR-90-

024, Computer Science Division, University of California, Berkeley, CA, 1990.

[Kel76] R. Keller. Formal veri�cation of parallel programs. Communications of the ACM,

7(19):561{572, 1976.

[KR92] E. Kushilevitz and M. Rabin. Randomized mutual exclusion algorithms revisited.

In Proceedings of the 11th Annual ACM Symposium on Principles of Distributed

Computing, Quebec, Canada, pages 275{284, 1992.

[LR81] D. Lehmann and M. Rabin. On the advantage of free choice: a symmetric and

fully distributed solution to the dining philosophers problem. In Proceedings of

the 8th Annual ACM Symposium on Principles of Programming Languages, pages

133{138, January 1981.

[LS82] D. Lehmann and S. Shelah. Reasoning with time and chance. Information and

Control, 53:165{198, 1982.

[LS89] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. In Conference

Record of the 16th ACM Symposium on Principles of Programming Languages,

Austin, Texas, pages 344{352, 1989.

[LS91] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information

and Computation, 94(1):1{28, September 1991.

273

[LS92] K.G. Larsen and A. Skou. Compositional veri�cation of probabilistic processes. In

Cleaveland [Cle92], pages 456{471.

[LSS94] N.A. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized dis-

tributed algorithms. In Proceedings of the 13th Annual ACM Symposium on Prin-

ciples of Distributed Computing, Los Angeles, CA, pages 314{323, 1994.

[LT87] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed al-

gorithms. In Proceedings of the 6th Annual ACM Symposium on Principles of

Distributed Computing, pages 137{151, Vancouver, Canada, August 1987. A full

version is available as MIT Technical Report MIT/LCS/TR-387.

[LV91] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations for timing-

based systems. In de Bakker et al. [dBHRR91], pages 397{446.

[LV93a] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations { part

I: Untimed systems. Technical Report MIT/LCS/TM-486, MIT Laboratory for

Computer Science, May 1993.

[LV93b] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations { part II:

Timing-based systems. Technical Report MIT/LCS/TM-487, MIT Laboratory for

Computer Science, September 1993.

[LV95] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations { part II:

Timing-based systems. Technical Report CS-R95??, CWI, Amsterdam, ?? 1995.

[Lyn95] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1995. To

appear.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall International, Engle-

wood Cli�s, 1989.

[Mil93] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,

25:267{310, 1993.

[MMT91] M. Merritt, F. Modugno, and M. Tuttle. Time constrained automata. In Baeten

and Groote [BG91], pages 408{423.

[OL82] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs.

ACM Transactions on Programming Languages and Systems, 4:455{495, 1982.

[Par81] D.M.R. Park. Concurrency and automata on in�nite sequences. In P. Deussen,

editor, 5th GI Conference, volume 104 of Lecture Notes in Computer Science, pages

167{183. Springer-Verlag, 1981.

[Plo81] G.D. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI FN-19, Computer science Department, Aarhus University, 1981.

[Pnu82] A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer

Science, 13:45{60, 1982.

274

[Pnu83] A. Pnueli. On the extremely fair treatment of probabilistic algorithms. In Pro-

ceedings of the 15th Annual ACM Symposium on Theory of Computing, Boston,

Massachusetts, May 1983.

[PS95] A. Pogosyants and R. Segala. Formal veri�cation of timed properties of randomized

distributed algorithms. In Proceedings of the 14th Annual ACM Symposium on

Principles of Distributed Computing, Ottawa, Ontario, Canada, August 1995. To

appear.

[PZ86] A. Pnueli and L. Zuck. Veri�cation of multiprocess probabilistic protocols. Dis-

tributed Computing, 1(1):53{72, 1986.

[Rab63] M.O. Rabin. Probabilistic automata. Information and Control, 6:230{245, 1963.

[Rab76] M.O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms and

Complexity: New Directions and Results, pages 21{39. Academic Press, 1976.

[Rab82] M.O. Rabin. N -process mutual exclusion with bounded waiting by 4 logN shared

variables. Journal of Computer and System Sciences, 25:66{75, 1982.

[Rao90] J.R. Rao. Reasoning about probabilistic algorithms. In Proceedings of the 9th An-

nual ACM Symposium on Principles of Distributed Computing, Quebec, Canada,

August 1990.

[Rud66] W. Rudin. Real Complex Analysis. McGraw-Hill, 1966.

[Sai92] I. Saias. Proving probabilistic correctness: the case of Rabin's algorithm for mutual

exclusion. In Proceedings of the 11th Annual ACM Symposium on Principles of

Distributed Computing, Quebec, Canada, August 1992.

[Sei92] K. Seidel. Probabilistic communicating processes. Technical Report PRG-102,

Ph.D. Thesis, Programming Research Group, Oxford University Computing Lab-

oratory, 1992.

[SGG+93] J.F. S�gaard-Andersen, S.J. Garland, J.V. Guttag, N.A. Lynch, and

A. Pogosyants. Computer-assisted simulation proofs. In C. Courcoubetis, editor,

Proceedings of the �fth international conference on Computer Aided Veri�cation,

volume 697 of Lecture Notes in Computer Science. Springer-Verlag, 1993.

[She87] G.S. Shedler. Regeneration and Networks of Queues. Springer-Verlag, 1987.

[SL94] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes. In

Jonsson and Parrow [JP94], pages 481{496.

[SL95] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes.

Nordic Journal of Computing, 1995.

[SLL93] J.F. S�gaard-Andersen, N.A. Lynch, and B.W. Lampson. Correctness of com-

munication protocols. a case study. Technical Report MIT/LCS/TR-589, MIT

Laboratory for Computer Science, November 1993.

275

[SS90] S. Smolka and B. Ste�en. Priority as extremal probability. In Baeten and Klop

[BK90], pages 456{466.

[Tof90] C. Tofts. A synchronous calculus of relative frequencies. In Baeten and Klop

[BK90].

[Var85] M.Y. Vardi. Automatic veri�cation of probabilistic concurrent �nite-state pro-

grams. In Proceedings of 26th IEEE Symposium on Foundations of Computer

Science, pages 327{338, Portland, OR, 1985.

[VL92] F.W. Vaandrager and N.A. Lynch. Action transducers and timed automata. In

Cleaveland [Cle92], pages 436{455.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

veri�cation. In Proceedings Symposium on Logic in Computer Science, pages 332{

344. IEEE Computer Society Press, 1986.

[Whi80] W. Whitt. Continuity of generalized semi-markov processes. Mathematics of Op-

erations Research, 5, 1980.

[WLL88] J.L. Welch, L. Lamport, and N.A. Lynch. A lattice-structured proof technique

applied to a minimum spanning tree algorithm. Technical Report MIT/LCS/TM-

361, MIT Laboratory for Computer Science, June 1988.

[WSS94] S.H. Wu, S. Smolka, and E.W. Stark. Composition and behaviors of probabilistic

I/O automata. In Jonsson and Parrow [JP94].

[YCDS94] S. Yuen, R. Cleaveland, Z. Dayar, and S. Smolka. Fully abstract characterizations

of testing preorders for probabilistic processes. In Jonsson and Parrow [JP94].

[YL92] W. Yi and K.G. Larsen. Testing probabilistic and nondeterministic processes. In

Protocol Speci�cation, Testing and Veri�cation XII, pages 47{61, 1992.

[Zuc86] L. Zuck. Past Temporal Logic. PhD thesis, The Weizman Institute of Science,

1986.

276

Table of Symbols

We list the symbols that are used in this thesis in the order they appear in the presentation.

Each symbol is listed with a short description and a reference to the pages where it is �rst

de�ned.

 Sample space. 33

F �-�eld. 33

�(C) �-�eld generated by a family of sets C. 33

� Measure 33

P Probability measure. 34

E Event. 34

completion() Completion of a measure. 34

 Product of �-�elds, of measures, and of discrete probability spaces. 35

j Conditional of an event and of an event schema. 36

j Conditional of a probabilistic execution fragment. 57

P Probability space. 37

D() Dirac distribution. 37

U() Uniform distribution. 37

Probs(C) Set of discrete probability spaces (
;F ; P) with no 0-probability

elements such that
 � C.

37

A Automaton. 37

states() States of. 37

start() Start states of. 37

sig() Action signature of. 37

ext() External actions of. 37

int() Internal actions of. 37

acts() Actions of. 37

trans() Transitions of. 37
a
�! Transition with action a. 38

=) Weak transition. 38

� Execution (fragment). 39

fstate() First state of. 39

lstate() Last state of. 39

frag() Execution fragments of. 39

exec() Executions of. 39
a Concatenation of executions. 39
a Transition pre�xing operator. 52

277

� Pre�x of. 39

. Su�x operator. 39

. Transition su�xing operator. 52

� Trace. 40

traces() Traces of. 40

vT Trace preorder. 40

k Parallel composition operator. 41

M Probabilistic automaton. 46

� Termination or deadlock symbol. 46

ctrans() Combined transitions of. 48

H Probabilistic execution (fragment). 49

prfrag() Probabilistic execution fragments of. 49

prexec() Probabilistic executions of. 49

�# From an execution of a probabilistic execution fragment to an ex-

ecution fragment of a probabilistic automaton.

51

�"q0 From an execution fragment of a probabilistic automaton to an

execution of a probabilistic execution fragment.

51

tr Transition. 51

Ptr Probability space in the transition tr , i.e., tr = (s;Ptr) or, if tr is

simple, tr = (s; a;Ptr).

51

V Set of actions. 51

U Set of states. 51

trMs Transition leaving from state s in the fully probabilistic automaton

M .

51

PH Probability space associated with the probabilistic execution frag-

ment H .

52

C� Cone with pre�x �. 53
a
�!C Combined transition. 58
a

=)C Weak combined transition. 59

O Generator of a weak transition. 60

� Action restriction operator. 64

d Projection operator. 65

e Reverse of projection. 66

Rename�() Renaming operator. 72

HideI() Hiding operator. 73

Advs() Adversaries for. 80

prexec(M;A; �) Probabilistic execution fragment of M generated by adversary A

with starting condition �.

80

e Event schema. 82

Cones() Function that identi�es the points of satisfaction of a �nitely satis-

�able event schema.

83

�Cones Concatenation of two event schemas. 83

PrAdvs;�(e) R p Probabilistic statement. 84

(�; F) Oblivious relation. 92

FIRST(: : :) Coin event: �rst occurrence of an action among many. 107

278

OCC(i; : : :) Coin event: i-th occurrence of an action among many. 109

GFIRST(S; E)() Coin event: �rst occurrence of an action among many with several

outcomes.

122

GCOIN (S; E)() General coin event. 125

D Trace distribution. 138

tdistr() Trace distribution of. 138

tdistrs() Trace distributions of. 138

itrace() Internal trace of. 139

itdistr() Internal trace distribution of. 139

itdistrs() Internal trace distributions of. 139

vD Trace distribution preorder. 141

vDC Trace distribution precongruence. 143

CP Principal context, timed principal context. 145

ptdistrs() Principal trace distributions of. 146

vR Lifting of a relation to probability spaces. 168

' Existence of a strong bisimulation. 169

vSS Existence of a strong simulation. 169

'P Existence of a strong probabilistic bisimulation. 171

vSPS Existence of a strong probabilistic simulation. 171

=P Existence of a weak probabilistic bisimulation. 172

vWPS Existence of a weak probabilistic simulation. 172

vFS Existence of a probabilistic forward simulation. 174

vis() Visible actions of. 196

! Trajectory. 197

ltime() Last time of. 197

t-frag() Timed execution fragments of. 199

t-exec() Timed executions of. 199

t-exec�() Extended timed executions of. 199

te-frag() Time-enriched execution fragments of. 201

te-prfrag() Probabilistic time-enriched execution fragments of. 202

te-prexec() Probabilistic time-enriched executions of. 202

sample() Function that applied to a probabilistic time-enriched execution

H of a probabilistic timed automaton M returns a probabilistic

execution H 0 of M that samples H .

209

t-sample() Function that applied to a probabilistic time-enriched execution

fragment H of a probabilistic timed automaton M returns a prob-

abilistic timed execution fragment H 0 of M that t-samples H .

211

a
; Move. 217

EU;Advs [e] Worst expected time for success of the event schema e starting from

a state of U under the action of an adversary from Advs.

227

seq() Sequence of a timed sequence pair. 243

tsp() Timed sequence pairs over some given set. 243

t-trace() Timed trace of. 244

t-tdistr() Timed trace distribution of. 246

t-tdistrs() Timed trace distributions of. 247

279

vDt Timed trace distribution preorder. 249

vDCt Timed trace distribution precongruence. 249

pt-tdistrs() Principal timed trace distributions of. 250

'Pt Existence of a probabilistic timed bisimulation. 257

vPt Existence of a probabilistic timed simulation. 258

vFSt Existence of a probabilistic timed forward simulation. 258

280

Index

abstract complexity, 238

action, 37

discrete, 196

hiding operator, 73

renaming operator, 72

restriction, 139, 249

signature, 37

time-passage, 196

visible, 196

adversary, 19, 75, 79, 224

deterministic, 79, 80, 224

oblivious, 91

schema, 80

with partial on-line information, 79

alternating model, 28

automaton, 37

fully probabilistic, 47

probabilistic, 18, 46

probabilistic Input/Output, 265

probabilistic MMT, 265

probabilistic semi-timed, 196

probabilistic timed, 196

simple probabilistic, 47

timed, 195

behavioral semantics, 135

bisimulation

probabilistic timed, 257

strong, 169

strong probabilistic, 171

weak probabilistic, 172

coin

event, 103

lemma, 103, 104

coin lemma, 19

compatibility, 41, 61

compositionality, 136

concatenation

of two event schemas, 83

of two executions, 39

of two time-enriched executions, 201

of two timed executions, 199

of two trajectories, 199

conditional

event, 36

of a probabilistic execution, 57

of a probabilistic time-enriched execu-

tion, 203

of a probabilistic timed execution, 207

probability space, 36

Dirac distribution, 37

event, 34

schema, 82, 224

execution, 39

admissible timed, 198

extended, 50

�nite timed, 198

probabilistic, 19, 49

probabilistic time-enriched, 202

probabilistic timed, 200, 205

time-enriched, 201

timed, 198

timed extended, 199

Zeno timed, 198

execution correspondence structure, 177

timed, 259

execution-based

adversary schema, 79, 91

event schema, 79, 83

expected time of success, 227

expected value of a random variable, 36

�nite

281

probabilistic execution, 55

probabilistic time-enriched execution, 203

probabilistic timed execution, 206

�nite-history insensitivity, 86

�nitely satis�able

event, 53

event schema, 82

generative process, 23, 25

generator

of a �-�eld, 33

of a weak transition, 60

internal trace, 139

distribution, 139

lebeled transition system, 37

measurable

function, 34

set, 33

space, 33

measure induced by a function, 35

measure space, 34

complete, 34

discrete, 34

model checking, 17, 30, 31

move, 217

oblivious relation, 92

observation, 135

observational semantics, 135

parallel composition

of automata, 41

of simple probabilistic automata, 61

of simple timed probabilistic automata,

218

partial on-line information, 92

partition technique, 20, 132

patient

construction, 197

point of extension, 56

point of satisfaction, 83

precongruence, 20, 136

timed trace distribution, 249

trace distribution, 20, 137, 143

pre�x

of a probabilistic execution, 56

of a probabilistic time-enriched execu-

tion, 203

of a probabilistic timed execution, 206

of a time-enriched execution, 201

of a timed execution, 199

of a trace distribution, 139

of an execution, 39

preorder

timed trace distribution, 249

trace distribution, 20, 137, 141

principal

context, 20, 137, 145

timed context, 21, 243, 250

timed trace distribution, 250

trace distribution, 20, 137, 146

probabilistic statement, 19, 84

probability

distribution, 34

measure, 34

space, 34

progress statement, 19, 85

timed, 21, 223, 226

projection

of a probabilistic execution, 62, 65

of a probabilistic time-enriched execu-

tion, 218

of a probabilistic timed execution, 218

of an execution, 41

qualitative analysis, 29

quantitative analysis, 29

random variable, 36

reachable state, 39, 60

reactive process, 23, 24

sample space, 34

scheduler, 79

�-additivity, 34

�-�eld, 33

simulation

method, 137, 167

probabilistic forward, 20, 174

probabilistic timed, 257

282

probabilistic timed forward, 258

strong, 169

strong probabilistic, 171

weak probabilistic, 172

strati�ed process, 24, 25

substitutivity, 136

su�x

of a probabilistic execution, 57

of a probabilistic time-enriched execu-

tion, 203

of a probabilistic timed execution, 207

of a time-enriched execution, 201

of a timed execution, 199

of an execution, 39

terminal state, 60

time deadlock, 199

timed sequence, 243

timed sequence pair, 243

trace

distribution, 20, 137, 138

of an execution, 40

timed, 21, 243, 244

timed distribution, 243, 246

trajectory, 195, 197

axioms, 195, 197

transition, 37

action restricted, 64

combined, 47

pre�xing, 52

relation, 37

su�xing, 52

time-enriched, 202

timed, 205

weak, 38, 58

weak combined, 59

uniform distribution, 37

weight function, 168

283

284

