
Adaptively Secure Multi-party Computation

Ran Canetti� Uri Feigey Oded Goldreichy Moni Naory

February 21, 1996

Abstract

A fundamental problem in designing secure multi-party protocols is how to deal with adaptive ad-

versaries (i.e., adversaries that may choose the corrupted parties during the course of the computation),

in a setting where the channels are insecure and secure communication is achieved by cryptographic

primitives based on the computational limitations of the adversary.

It turns out that the power of an adaptive adversary is greatly a�ected by the amount of information

gathered upon the corruption of a party. This amount of information models the extent to which

uncorrupted parties are trusted to carry out instructions that cannot be externally veri�ed, such as

erasing records of past con�gurations. It has been shown that if the parties are trusted to erase such

records, then adaptively secure computation can be carried out using known primitives. However, this

total trust in parties may be unrealistic in many scenarios. An important question, open since 1986, is

whether adaptively secure multi-party computation can be carried out in the \insecure channel" setting,

even if no party is thoroughly trusted.

Our main result is an a�rmative resolution of this question for the case where even uncorrupted

parties may deviate from the protocol by keeping record of all past con�gurations. We �rst propose a

novel property of encryption protocols and show that if an encryption protocol enjoying this property

is used, instead of a standard encryption scheme, then known constructions become adaptively secure.

Next we construct, based on the standard RSA assumption, an encryption protocol that enjoys this

property.

We also consider parties that, even when uncorrupted, may internally deviate from their protocols

in arbitrary ways, as long as no external test can detect faulty behavior. We show that in this case no

non-trivial protocol can be proven adaptively secure using black-box simulation. This holds even if the

communication channels are totally secure.

�TOC/CIS groups, LCS, MIT. canetti@theory.lcs.mit.edu.
yDepartment of Computer

Science and Applied Math,Weizmann Institute of Science, Rehovot, Israel. ffeige,oded,naorg@wisdom.weizmann.ac.il.

0

1 Introduction

Consider a set of parties who do not trust each other, nor the channels by which they communicate. Still,

the parties wish to correctly compute some common function of their local inputs, while keeping their local

data as private as possible. This, in a nutshell, is the problem of secure multi-party computation. The

parties' distrust in each other and in the network is usually modeled via an adversary that corrupts some

of the parties. Once a party is corrupted it follows the instructions of the adversary. In particular, all the

information known to this party becomes known to the adversary.

An important parameter, which is the focus of this work, is the way in which the corrupted parties

are chosen. In the case of non-adaptive adversaries, the set of corrupted parties is arbitrary, but �xed

before the computation starts. (Still, the uncorrupted parties do not know the identities of the corrupted

parties.) A more general case is where the adversary chooses to corrupt parties during the course of the

computation, based on the information gathered so far. We call such adversaries adaptive.

The di�erence between adaptive and non-adaptive adversaries may be best demonstrated via an exam-

ple. Consider the following secret sharing protocol, run in the presence of an adversary that may corrupt

t = O(n) out of the n parties: A dealer D chooses at random a small set S of m =
p
t parties, and shares

its secret among these parties using an m-out-of-m sharing scheme. In addition D publicizes the set S.

Intuitively, this scheme lacks in security since S is public and jSj � t. Indeed, an adaptive adversary can

easily �nd D's secret, without corrupting D, by corrupting the parties in S. However, any non-adaptive

adversary that does not corrupt D learns D's secret only if S happens to be identical to the pre-de�ned set

of corrupted parties. This happens only with exponentially small probability. Consequently, this protocol

is secure in the presence of non-adaptive adversaries.

Protocols for securely computing any function, in several computation models, have been known for a

while: Goldreich, Micali and Wigderson have shown how to securely compute any function in the compu-

tational setting [GMW]. (In the computational setting all the communication between the parties is seen

by the adversary. All parties, as well as the adversary, are restricted to probabilistic polynomial time).

Ben-Or, Goldwasser and Wigderson, and independently Chaum, Crepeau and Damgard, have shown how

to securely compute any function in the secure channels setting [BGW, CCD]. (In the secure channels

setting the adversary cannot eavesdrop on the communication between uncorrupted parties, and is allowed

unlimited computational power.) These constructions can be shown secure in the presence of non-adaptive

adversaries. In contrary to folklore beliefs, problems are encountered when attempting to prove adaptive

security of protocols, even in the secure channels setting. Additional problems are encountered in the

computational setting. Demonstrating, clarifying, and (partially) solving these problems is the focus of

this work.

We �rst pose the following question: To what extent can uncorrupted parties be trusted to carry out

instructions that cannot be externally veri�ed, such as erasing local data, or making random choices? This

question is intimately related to the power of an adaptive adversary, in both of the above settings, since

the adversary may gather additional information when corrupting parties that have locally deviated from

the protocol (say, by not erasing data that is supposed to be erased). If uncorrupted parties are trusted to

carry out even unveri�able instructions such as erasing local data then adaptively secure computation can

be carried out using known primitives [F, BH]. However, this trust may be unrealistic in many scenarios.

We thus consider parties that, even when uncorrupted, internally deviate slightly from their protocols. We

call such parties semi-honest. Several degrees of internal deviation from the protocol are examined with

the main focus on parties which follow their protocol with the exception that they keep record of the entire

computation. We seek protocols that are secure even if the uncorrupted parties are semi-honest rather

than honest.

1

We discuss the problems encountered in the secure channels setting, and state the amount of internal

deviation from the protocol under which adaptively secure protocols are known to exist. (In particular,

under these conditions the [BGW, CCD] protocols can be proven adaptively secure.)

Finally we concentrate on the computational setting, and on semi-honest parties that follow their

protocols with the exception that no internal data is ever erased. Is adaptively secure computation possible

in this scenario? This question has remained open since the result of [GMW] (even for the case in which

the adversary only gathers information from corrupted parties and does not make them deviate any further

from the protocol).

We answer this question in the a�rmative. The problems encountered, and our solution, are presented

via the following transformation. It is a folklore belief that any secure protocol in the secure channels setting

can be transformed into a secure protocol in the computational setting, by encrypting each message using

a standard semantically secure encryption scheme. This belief can indeed be turned into a proof, provided

that only non-adaptive adversaries are considered. Trying to prove this belief in the presence of adaptive

adversaries encounters major di�culties. We show how these di�culties are overcome if a novel encryption

protocol is used, instead of standard encryption. We call such encryption protocols non-committing.

(Standard encryption schemes are not non-committing.)

Non-committing encryption can be roughly described as follows. Traditional encryption schemes have

the extra property that the ciphertext may serve as a commitment of the sender to the encrypted data. That

is, suppose that after seeing the ciphertext, a third party requests the sender to reveal the encrypted data,

and show how it was encrypted and decrypted. Using traditional encryption schemes it may be infeasible

(or even impossible) for the sender to demonstrate that the encrypted data was any di�erent than what was

indeed transmitted. (In fact, many times encryption is explicitly or implicitly used for commitment.) In a

non-committing encryption scheme the ciphertext cannot be used to commit the sender (or the receiver)

to the transmitted data. That is, a non-committing encryption protocol allows a simulator to generate

dummy ciphertexts that look like genuine ones, and can be later \opened" as encryptions of either 1 or 0,

at wish. We note that communication over absolutely secure channels is trivially non-committing, since

the third party sees no \ciphertext".

We present several constructions of non-committing encryption protocols. All constructions consist of

a `key distribution' stage which is independent of the transmitted data, followed by a single message sent

from the sender to the receiver. In our most general construction, based on a primitive called common-

domain trapdoor system, the key distribution stage requires participation of all parties (and is valid as long

as at least one party remains uncorrupted). We also present two alternative constructions, based on the

RSA and the Di�e-Hellman assumptions respectively, where the key distribution stage consists of one

message sent from the receiver to the sender.

Related work. Independently of our work, Beaver has investigated the problem of converting, in the

computational setting, protocols which are adaptively secure against eavesdropping adversaries into proto-

cols adaptively secure against Byzantine adversaries [Be2]. No protocols adaptively secure against eaves-

dropping adversaries were known prior to our work, nor are such protocols suggested in [Be2]. We believe

that the problem of adaptive security retains its di�culty even if only eavesdropping adversaries are con-

sidered. Following our work, and motivated by the \Incoercible Voting" Problem, Canetti et. al. [CDNO]

introduced a stronger type of non-committing encryption protocol as well as an implementation of it based

on any trapdoor permutation.

Organization. The rest of this paper is organized as follows. In Section 2 we discuss the problem of

adaptive security and our solution to it in more detail. We keep the presentation informal throughout this

2

section. Precise de�nitions are given in Section 3. Our constructions for the non-erasing and honest-looking

cases are presented in Sections 4 and 5, respectively.

2 Semi-honesty and adaptive security

In this section we discuss the problem of adaptive security and our solution to it in more detail. We keep the

presentation informal throughout this section. Precise de�nitions are given in Section 3. In Subsection 2.1

we discuss the question of what can be expected from an honest party, and present several notions of semi-

honest parties. In Subsection 2.2 we describe the problems encountered when trying to prove adaptive

security of protocols in the secure channels setting, and state existing solutions. In Subsection 2.3 we

present the additional problems encountered when trying to prove adaptive security of protocols in the

computational setting, and sketch our solution.

2.1 Semi-honest parties

The problem of adaptively secure computation is intimately related to the following question: To what

extent can uncorrupted parties be trusted to carry out instructions that cannot be externally veri�ed,

such as erasing local data, or using randomness as instructed? Honest parties internally deviate from

their protocol in many real-life scenarios, such as users that keep record of their passwords, stock-market

brokers that keep records of their clients' orders, operating systems that \free" old memory instead of

erasing it or take periodic snapshots of the memory (for error recovery purposes), and computers that

use pseudorandom generators as their source of randomness instead of truly random bits. Consider for

example a protocol in which party A is instructed to choose a random string r for party B, hand r to B,

and then to erase r from its own memory. Can B be certain that A no longer knows r? Furthermore, can

A now convince a third party (or an adversary that later decides to corrupt A) that he no longer knows r?

To address this issue we introduce the notion of a semi-honest party. Such a party \appears as honest"

(i.e., seems to be following its protocol) from the point of view of an outside observer; however, internally it

may somewhat deviate from the protocol. For instance, a semi-honest party may fail to erase some internal

data, or use randomness not as instructed. (However, semi-honest parties do not collaborate.) We wish to

have protocols that are secure even when parties are not thoroughly trusted, or in other words when the

uncorrupted parties are semi-honest rather than honest. We say that a protocol �0 is a semi-honest protocol

for a protocol � if a party running �0 \appears as" an honest party running �. We want the requirements

from � to be satis�ed even if the uncorrupted parties are running any semi-honest protocol for �. (In the

sequel we use the terms `semi-honest parties' and `semi-honest protocols' interchangeably.)

The di�erence between computations in the presence of totally honest parties and computations in the

presence of semi-honest parties becomes evident in the presence of adaptive adversaries. Consider a party

just corrupted by the adversary, during the course of the computation. If the party is totally honest, then

the adversary will see exactly the data speci�ed in the protocol (in particular, any data that was supposed

to be erased will not be seen). If the party is semi-honest then the adversary may see a great deal of other

data, such as all the past random choices of the party and all the messages the party ever received and

sent. Therefore, the adversary may be much more powerful in the presence of semi-honest parties. We

elaborate on this crucial point in the sequel.

We distinguish three types of semi-honest behavior. The slightest deviation from the protocol is consid-

ered to be refraining from erasing data. We call such parties honest-but-non-erasing, or in short non-erasing.

Non-erasing behavior is a very simple deviation from the protocol, that is very hard to prevent. Even if

the protocol is somehow protected against modi�cations, it is always possible to add an external device

3

that copies all memory locations accessed by the protocol to a \safe" memory. This way a record of the

entire execution is kept. Such an external device requires no understanding of the internal structure or of

the behavior of the protocol. Furthermore, failure to erase data may occur even without intention of the

honest party (e.g., the operating system examples above).

A more severe deviation by a semi-honest party consists of executing some arbitrary protocol other than

the speci�ed one, with the restriction that no external test can distinguish between such a behavior and

a truly honest behavior. We call parties that deviate in this way honest-looking. Honest-looking parties

represent \sophisticated" parties that internally deviate from the protocol in an arbitrary way, but are

not willing to take any chance that they will ever be uncovered (say, by an unexpected audit). Note that

honest-looking parties can do other \harmful" things, on top of not erasing data. For instance, assume

that some one-way permutation f : D
1-17! D is known to all parties. When instructed to choose a value r

uniformly in D, an honest-looking party can instead choose s uniformly in D and let r = f(s). Thus, the

party cannot be trusted to not know f�1(r). (Other, more `disturbing' deviations from the protocols are

possible, we elaborate in the sequel.)

An even more permissive approach allows a semi-honest party to deviate arbitrarily from the protocol,

as long as its behavior appears honest to all other parties executing the protocol. Other external tests, not

speci�ed in the protocol, may be able to detect such a party as cheating. We call such semi-honest parties

weakly-honest.

The focus of our work is mainly on adaptive security in the presence of non-erasing parties (see Sec-

tion 4). This coincides with the common interpretation of the problem of adaptive security. To the best

of our knowledge, honest-looking and weakly-honest parties were not considered before.

2.2 Adaptive security in the secure channels setting

Although the emphasis of this paper is on the computational setting, we �rst present the state of knowledge,

and sketch the problems involved, in the secure channels setting. We believe that understanding adaptively

secure computation in the computational setting is easier when the secure channels setting is considered

�rst.

The state-of-the-art with respect to adaptive computation in the secure channels setting can be brie
y

summarized as follows. Adaptively secure protocols for computing any function exist in the presence

of non-erasing parties (e.g., [BGW, CCD]). However, in contrast with popular belief, not every non-

adaptively secure protocol is also adaptively secure in the presence of non-erasing parties. Furthermore,

current techniques are insu�cient for proving adaptive security of any protocol for computing a non-trivial

function in the presence of honest-looking parties.

In order to present the extra di�culty in constructing adaptively secure protocols, we roughly sketch

the standard de�nition of secure multi-party computation. (Full de�nitions appear in Section 3.) Our

presentation follows [MR, Be1, GwL, C], while incorporating the notion of semi-honest parties in the

de�nition. The de�nition follows the same outline in the secure channels setting and in the computational

settings.

Background: How is security de�ned. First an ideal model for secure multi-party computation is

formulated. A computation in this ideal model captures \the highest level of security we can expect from a

multi-party computation". Next we require that executing a secure protocol � for evaluating some function

f of the parties' inputs in the actual real-life setting is \equivalent" to evaluating f in the ideal model,

where the meaning of this \equivalence" is explained below.

A computation in the ideal model proceeds as follows. First an ideal-model-adversary chooses to corrupt

4

a set of parties (either adaptively or non-adaptively), learns their input, and possibly modi�es it. Next

all parties hand their (possibly modi�ed) inputs to an incorruptible trusted party. The trusted party then

computes the expected output (i.e., the function value) and hands it back to all parties. At this stage

an adaptive adversary can choose to corrupt more parties. Finally, the uncorrupted parties output the

value received from the trusted party whereas the corrupted parties output some arbitrary function of the

information gathered during this computation.

In the real-life model there exists no trusted party and the parties must interact with one another using

some protocol in order to compute any \non-trivial" function. We say that the execution of a protocol �

for evaluating f is \equivalent" to evaluating f in the ideal model, if for any adversary A in the real-life

model, there exists an ideal-model-adversary S that has the same e�ect on the computation as A, even
though S operates in the ideal model. That is, on any input, the outputs of the parties after running � in

the real-life model in the presence of A should be distributed equally to the outputs of parties evaluating

f in the ideal model in the presence of S. Furthermore, this condition should hold for any semi-honest

protocol �0 for � (according to either of the above notions of semi-honesty).

We require that the complexity of S be comparable to (i.e., polynomial in) the complexity of A. This
requirement can be motivated as follows. Machine S represents \what could have been learned in the ideal

model". Thus, security of a protocol can be interpreted as the following statement: \whatever A can learn

in the real-life model, could have been learned in the ideal model within comparable complexity". A much

weaker (and arguably unsatisfactory) notion of security emerges if the complexity of S does not depend

on that of A. (This holds even in the non-adaptive case.)1

Problems with proving adaptive security. A standard construction of an ideal-model-adversary, S,
operates via black-box interaction with the real-life adversary A. More speci�cally, let �0 be a semi-honest

protocol for �. S runs the black-box representing A on a simulated interaction with a set of parties

running �0. S corrupts (in the ideal model) the same parties that A corrupts in the simulated interaction,

and outputs whatever A outputs. From the point of view of A, the interaction simulated by S should be

distributed identically to an authentic interaction with parties running �0. It is crucial that S be able to run

a successful simulation based only on the information available to it in the ideal model, and in particular

without knowing the inputs of uncorrupted parties. We restrict our presentation to this methodology of

proving security of protocols, where S is restricted to probabilistic polynomial time. We remark that no

other proof method is known in this context. In the sequel we often call the ideal-model-adversary S a

simulator.

Following the above methodology, the simulator that we construct has to generate simulated messages

from the uncorrupted parties to the corrupted parties. In the non-adaptive case the set of corrupted parties

is �xed and known to the simulator. Thus the simulator can corrupt these parties, in the ideal model, before

the simulation starts. In the adaptive case the corrupted parties are chosen by the simulated adversary

A as the computation unfolds. Here the simulator corrupts a party, in the ideal model, only when the

simulated adversary decides on corrupting that party. Thus the following extra problem is encountered.

Consider a currently uncorrupted party P . Since S does not know the input of P , it may not know which

1We illustrate this distinction via the following example. Let f(x;y) = g(x � y) where g is a one-way permutation and

� denotes bitwise exclusive or. Assume that parties A and B have inputs x and y respectively, and consider the following

protocol for computing f : Party A announces x, party B announces y, and both parties compute f(x;y). Our intuition is that

this protocol is insecure against adversaries that may corrupt one party (say B): it \gives away for free" both x and y, whereas

computing x given y and f(x;y), may take the adversary a large amount of time. Indeed, if the ideal-model adversary S is

limited to probabilistic polynomial time (and one-way permutations exist), then this protocol is insecure against adversaries

that corrupt one party. However, under the model allowing S unlimited computational power regardless of A's complexity,

this protocol is considered secure since S can invert g.

5

messages should be sent by P to the corrupted parties. Still, S has to generate some dummy messages to be

sent by the simulated P to corrupted parties. When the simulated adversary A later corrupts P it expects

to see P 's internal data. The simulator should now be able to present internal data for P that is consistent

with P 's newly-learned input and with the messages previously sent by P , according to the particular semi-

honest protocol �0 run by P . It turns out that this can be done for the [BGW] protocols for computing

any function in the presence of non-erasing parties. Thus, the [BGW] protocols are adaptively secure

in the presence of non-erasing parties. Recall, however, that not every protocol which is secure against

non-adaptive adversaries is also secure against adaptive adversaries (see example in the third paragraph of

the Introduction).

In face of honest-looking parties. Further problems are encountered when honest-looking parties are

allowed, as demonstrated by the following example. Consider a protocol � that instructs each party, on

private input �, to just publicize a uniformly and independently Chosen value r in some domain D and

terminate. � looks \harmless" in the sense that no information on the inputs leaks out. However, consider

the following honest-looking variant of �. Let f0; f1 be a claw-free pair of permutations over D. Then,

on input � 2 f0; 1g, an honest-looking party can `commit' to its input by publicizing f�(r) instead of

publicizing r. If this honest-looking variant of � is shown secure via an e�cient black-box simulation as

described above, then the constructed simulator can be used to �nd claws between f0 and f1. Similar

honest-looking variants can be constructed for the [BGW, CCD] protocols. Consequently, if claw-free pairs

of permutations exist then adaptive security of the [BGW, CCD] protocols, in the presence of honest-

looking parties, cannot be proven via black-box simulation. In fact, such honest-looking variants can be

constructed for any \non-trivial" protocol, with similar e�ects.

2.3 Adaptive security in the computational setting

We sketch the extra di�culty encountered in constructing adaptively secure protocols in the computational

setting, and outline our solution for non-erasing parties. Consider the following folklore methodology

for constructing secure protocols in the computational setting. Start with an adaptively secure protocol �

resilient against non-erasing parties in the secure channels setting, and construct a protocol ~� by encrypting

each message using a standard encryption scheme. We investigate the security of ~� in the computational

setting.

Proving that ~� is non-adaptively secure. We �rst sketch how ~� can be shown non-adaptively secure

in the computational setting, assuming that � is non-adaptively secure in the secure channels setting. Let

S be the ideal-model-adversary (simulator) associated with � in the secure channels setting. (We assume

that S operates via \black-box simulation" of the real-life adversary A as described above.) We wish to

construct, in the computational setting, a simulator ~S for ~�. The simulator ~S operates just like S, with
two exceptions. First, In the computational setting the real-life adversary expects the messages sent to

corrupted parties to be encrypted. Next, the real-life adversary expects to see the ciphertexts sent between

uncorrupted parties. (In the secure channels setting the adversary does not see the communication between

uncorrupted parties.) ~S will imitate this situation as follows. First each message sent to a corrupted party

will be appropriately encrypted. Next, the simulated uncorrupted parties will exchange dummy ciphertexts.

(These dummy ciphertexts can be generated as, say, encryptions of the value `0'.) The validity of simulator
~S can be shown to follow, in a straightforward way, from the validity of S and the security of the encryption

scheme in use.

6

Problems with proving adaptive security. When adaptive adversaries are considered, the construc-

tion of a simulator ~S in the computational setting encounters the following additional problem. Consider

an uncorrupted party P . Since ~S does not know the input of P , it does not know which messages should

be sent by P to other uncorrupted parties.2 Still, ~S has to generate dummy ciphertexts to be sent by

the simulated P to uncorrupted parties. These dummy ciphertexts are seen by the adaptive adversary.

When the adversary later corrupts the simulated P , it expects to see all of P 's internal data, as speci�ed

by the semi-honest protocol �0. Certainly, this data may include the cleartexts of all the ciphertexts sent

and received by P in the past, including the random bits used for encryption and decryption, respectively.

Thus, it may be the case that some speci�c dummy ciphertext c was generated as an encryption of `0', and

the simulated P now needs to \convince" the adversary that c is in fact an encryption of `1' (or vice versa).

This task is impossible if a standard encryption scheme (i.e., an encryption scheme where no ciphertext

can be a legal encryption of both `1' and `0') is used.

We remark that Feldman, and independently Beaver and Haber, have suggested to solve this problem

as follows [F, BH]. Instruct each party to erase (say, at the end of each round) all the information involved

with encrypting and decrypting of messages. If the parties indeed erase this data, then the adversary will no

longer see, upon corrupting a party, how past messages were encrypted and decrypted. Thus the problem

of convincing the adversary in the authenticity of past ciphertexts no longer exists. Consequently, such

\erasing" protocols can be shown adaptively secure in the computational setting. However, this approach

is clearly not valid in the presence of semi-honest parties. In particular, it is not known whether the [F, BH]

protocols (or any other previous protocols) are secure in the presence of non-erasing parties.

Sketch of our solution. We solve this problem by constructing an encryption scheme that serves as an

alternative to standard encryption schemes, and enjoys an additional property roughly described as follows.

One can e�ciently generate dummy ciphertexts that can later be \opened" as encryptions of either `0'

or `1', at wish. (Here the word `ciphertext' is used to denote all the information seen by the adversary

during the execution of the protocol.) These dummy ciphertexts are di�erent and yet computationally

indistinguishable from the valid encryptions of `0' (or `1') produced in a real communication. We call such

encryption protocols non-committing.3

Let E (0) (resp., E (1)) denote the distribution of encryptions of the value 0 (resp., 1) in a public-key

encryption scheme. For simplicity, suppose that each of these distributions is generated by applying an

e�cient deterministic algorithm, denoted A(0) (resp., A(1)), to a uniformly selected n-bit string.4 In a

traditional encryption scheme (with no decryption errors) the supports of E (0) and E (1) are disjoint (and
E (0), E (1) are computationally indistinguishable). In a non-committing encryption scheme, the supports

of E (0) and E (1) are not disjoint but the probability that an encryption (of either `0' or `1') resides in

their intersection, denoted I , is negligible. Thus, decryption errors occur only with negligible probability.

However, the simulator can e�ciently generate a distribution Eamb which assumes values in I so that this

distribution is computationally indistinguishable from both E (0) and E (1). 5 Furthermore, each \ambiguous

ciphertext" c 2 I is generated together with two random looking n-bit strings, denoted r0 and r1, so that

A(0)(r0) = A(1)(r1) = c. That is, the string r0 (resp., r1) may serve as a witness to the claim that c is an

2 There is also the easier problem of generating the messages sent by P to corrupted parties. This was the problem discussed

in the previous subsection. However, our hypothesis that S is a simulator for the secure channel model means that S is able

to generate these cleartext messages. Thus, all that ~S needs to do is encrypt the messages it has obtained from S.
3 This \non-committing property" is reminiscent of the \Chameleon blobs" of [BCC]. The latter are commitment schemes

where the recipient of a commitment c can generate by himself de-commitments of c to both 0 and 1, whereas the sender is

\e�ectively committed" to a speci�c bit value.
4 Each of these algorithms is also given an n-bit encryption key.
5Consequently, it must be that E(0) and E(1) are computationally indistinguishable. Thus, a non-committing encryption

scheme is also a secure encryption scheme in the traditional sense.

7

encryption of `0' (resp., `1'). See Section 3.4 for a de�nition of non-committing encryption protocols.

Using a non-committing encryption protocol, we resolve the simulation problems which were described

above. Firstly, when transforming � into ~�, we replace every bit transmission of � by an invocation of

the non-committing encryption protocol. This allows us to generate dummy ciphertexts for messages sent

between uncorrupted parties so that at a later stage we can substantiate for each such ciphertext both the

claim that it is an encryption of `0' and the claim that it is an encryption of `1'. We stress that although

dummy ciphertexts appear with negligible probability in a real execution, they are computationally in-

distinguishable from a uniformly generated encryption of either `0' or `1'. Thus, using a non-committing

encryption protocol we construct adaptively secure protocols for computing any (recursive) function in the

computational model in the presence of non-erasing parties. Finally, we construct a non-committing en-

cryption protocol based on a primitive called common-domain trapdoor systems (see De�nition 4.3). We

also describe two implementations based on the RSA and Di�e-Hellman assumptions respectively. Thus,

we get

Theorem 2.1 If common-domain trapdoor systems exist, then there exist secure protocols for computing

any (recursive) function in the computational setting, in the presence of non-erasing parties and adaptive

adversaries that corrupt less than a third of the parties.

We remark that, using standard constructions (e.g., [RB]), our protocols can be modi�ed to withstand

adversaries that corrupt less than half of the parties.

Dealing with honest-looking parties. In Section 5, we sketch a solution for the case of honest-looking

parties, assuming, in addition to the above, also the existence of a \trusted dealer" at a pre-computation

stage. We stress that this result does not hold if an initial (trusted) set-up is not allowed.

3 De�nitions

In Section 3.1 we de�ne semi-honest protocols (with respect to the three variants discussed in Section 2.1).

This notion underlies all our subsequent de�nitions. In Sections 3.2 and 3.3 we de�ne adaptively secure

multi-party computation in the secure channels and the computational settings, respectively. Although the

focus of this work is the computational setting, we state this de�nition also in the secure channels setting.

This will enable us to discuss our results as a general transformation from adaptively secure protocols in the

secure channels setting into adaptively secure protocols in the computational setting, without getting into

details of speci�c protocols. In Section 3.4 we de�ne our main tool, non-committing encryption protocols.

Throughout Section 3 we assume that the reader has acquired the intuition provided in Section 2.

Let us �rst recall the standard de�nition of computational indistinguishability of distributions.

De�nition 3.1 Let A = fAxgx2f0;1g� and B = fBxgx2f0;1g� be two ensembles of probability distributions.

We say that A and B are computationally indistinguishable if for every positive polynomial p, for every

probabilistic polynomial-time algorithm D and for all su�ciently long x's,

jProb(D(Ax) = 1)� Prob(D(Bx) = 1)j < 1

p(jxj) :

We colloquially say that \Ax and Bx are computationally indistinguishable", or \Ax
c� Bx".

8

3.1 Semi-honest protocols

We de�ne semi-honest parties (or, equivalently, semi-honest protocols) for the three alternative notions

of semi-honesty discussed in Section 2.1. First we de�ne honest-but-non-erasing (or in short non-erasing)

protocols. Informally, a protocol �0 is non-erasing for a protocol �, if �0 is identical to � with the exception

that �0 may omit instructions to erase data. Actually, it su�ces to consider a non-erasing protocol which

keeps a record of the entire history of the computation.

De�nition 3.2 Let � and �0 be n-party protocols. We say that �0 is a non-erasing protocol for � if �0 is

identical to � with the exception that, in addition to the instructions of �, protocol �0 copies the contents

of each memory location accessed by � to a special record tape (inaccessible by �).

Next we de�ne honest-looking protocols. Informally, a party is honest-looking if its behavior is indistin-

guishable from the behavior of an honest party by any external test. (Internally the party may arbitrarily

deviate from the protocol.) More formally, let com�(~x;~r) denote the communication among n parties run-

ning � on input ~x and random input ~r (xi and ri for party Pi). Let com�(~x) denote the random variable

describing com�(~x;~r) when ~r is uniformly chosen. For n-party protocols � and � and an index i 2 [n], let

�=(i;�) denote the protocol where party Pi executes � and all the other parties execute �.

De�nition 3.3 Let � and �0 be n-party protocols. We say that �0 is a perfectly honest-looking protocol for

� if for any input ~x, for any n-party \test" protocol �, and for any index i 2 [n], we have

com�=(i;�)(~x)
d
= com�=(i;�0)

(~x)

(where
d
= stands for \identically distributed"). If the test protocol � is restricted to probabilistic polynomial

time, and com�=(i;�)(~x)
c� com�=(i;�0)(~x), then we say that �0 is a computationally honest-looking protocol

for �.

Here the \test" protocol � represents a collaboration of all parties in order to test whether Pi is honest.

Next we de�ne weakly-honest protocols. Here we require that De�nition 3.3 is satis�ed only with respect

to the original protocol �, rather than with respect to any test protocol �.

De�nition 3.4 Let � and �0 be n-party protocols. We say that �0 is a perfectly weakly-honest protocol for

� if for any input ~x and for any index i 2 [n], we have

com�(~x)
d
= com�=(i;�0)(~x)

If � is restricted to probabilistic polynomial time, and if com�(~x)
c� com�=(i;�0)(~x), then we say that �0 is

a computationally weakly-honest protocol for �.

3.2 Adaptive security in the secure channels setting

We de�ne adaptively secure multi-party computation in the secure channels setting. That is, we consider

a synchronous network where every two parties are connected via a secure communication link (i.e., the

adversary does not see, nor alter, messages sent between uncorrupted parties). The adversary is computa-

tionally unlimited.

We use the standard methodology presented in Section 2.2. That is, the execution of a protocol for

computing some function is compared to evaluating the function in an ideal model, where a trusted party

is used. We substantiate the de�nition in three steps. First, we give an exact de�nition of this ideal

model. Next, we formulate our (high level) notion of `real-life' protocol execution. Finally, we describe

and formalize the method of comparing computations.

9

The computation in the ideal model, in the presence of an ideal-model-adversary S, proceeds as fol-
lows. The parties have inputs ~x = x1 : : : xn 2 Dn (party Pi has input xi) and wish to compute f(x1; : : : ; xn),

where f is a predetermined function.6 The adversary S has no initial input, and is parameterized by t, the

maximum number of parties it may corrupt.

First corruption stage: First, S proceeds in up to t iterations. In each iteration S may decide to corrupt

some party, based on S's random input and the information gathered so far. Once a party is corrupted

its internal data (that is, its input) becomes known to S. A corrupted party remains corrupted for

the rest of the computation. Let B denote the set of corrupted parties at the end of this stage.

Input substitution stage: S may alter the inputs of the corrupted parties; however, this is done without

any knowledge of the inputs of the good parties. Let ~b be the jBj-vector of the altered inputs of the

corrupted parties, and let ~y be the n-vector constructed from the input ~x by substituting the entries

of the corrupted parties by the corresponding entries in ~b.

Computation stage: The parties hand ~y to the trusted party (party Pi hands yi), and receive f(~y) from

the trusted party.7

Second corruption stage: Now that the output of the computation is known, S proceeds in another

sequence of up to t� jBj iterations, where in each iteration S may decide to corrupt some additional

party, based on S's random input and the information gathered so far (this information now includes

the value received from the trusted party by parties in B). We stress that S may corrupt at most t

parties in the entire computation.

Output stage: The uncorrupted parties output f(~y), and the corrupted parties output some arbitrary

function, computed by the adversary, of the information gathered by the adversary (i.e., ~b and f(~y)).

We let the n-vector idealf;S (~x) = idealf;S(~x)1 : : : idealf;S(~x)n denote the outputs of the parties on

input ~x, trusted party for computing f , and adversary S (party Pi outputs idealf;S(~x)i).

For the bene�t of formalistic readers we further formalize the above discussion (in De�nitions 3.5 through

3.7). Other readers are advised to skip a page up to the paragraph discussing the computation in the

real-life setting.

First, we need two technical notations.

� For a vector ~x = x1 : : : xn and a set B � [n], let ~xB denote the vector ~x, projected on the indices in

B.

� For an n-vector ~x = x1 : : :xn, a set B � [n], and a jBj-vector ~b = b1 : : : bjBj, let ~x=(B;~b) denote

the vector constructed from vector ~x by substituting the entries whose indices are in B by the

corresponding entries from ~b.

De�nition 3.5 Let D be the domain of possible inputs of the parties, and let R be the domain of possible

random inputs. A t-limited ideal-model-adversary is a quadruple S = (t; b; h; O), where:

� t is the maximum number of corrupted parties.

6 A more general formulation allows di�erent parties to compute a di�erent functions of the input. Speci�cally, in this case

the range of f is a n-fold Cartesian product and the interpretation is that the ith party should get the ith component of f(~x).
7 In the case where each party computes a di�erent function of the inputs, as discussed in the previous footnote, the trusted

party will hand each party its speci�ed output.

10

� b : [n]��D��R ! [n][f?g is the selection function for corrupting parties (the value ? is interpreted

as \no more parties to corrupt at this stage")

� h : [n]� �D� �R! D� is the input substitution function

� O : D� �R! f0; 1g� is an output function for the bad parties.

The set of corrupted parties is now de�ned as follows.

De�nition 3.6 Let D be the domain of possible inputs of the parties, and let S = (t; b; h; O) be a t-limited

ideal-model-adversary. Let ~x 2 Dn be an input vector, and let r 2 R be a random input for S. The ith set

of faulty parties in the ideal model B(i)(~x; r), is de�ned as follows.

� B(0)(~x; r) = �

� Let bi
4
= b(B(i)(~x; r); ~xB(i)(~x;r); r). For 0 � i < t, and as long as bi 6=?, let

B(i+1)(~x; r)
4
= B(i)(~x; r)[fbig

� Let i� be the minimum between t and the �rst i such that bi =?. Let bfi 4
= b(B(i)(~x; r); ~xB(i)(~x;r); f(~y); r),

where ~y is the substituted input vector for the trusted party. That is, ~y
4
= ~x=(B(i�)(~x;r);h(B(i�)(~x;r);~x

B(i�)(~x;r)
;r)).

For i� � i < t, let

B(i+1)(~x; r)
4
= B(i)(~x; r)[bfi :

In De�nition 3.7 we use B(i) instead of B(i)(~x; r).

De�nition 3.7 Let f : Dn ! D0 for some sets D;D0 be the computed function, and let ~x 2 Dn be an

input vector. The output of computing function f in the ideal model with adversary S = (t; b; h; O), on input

~x and random input r, is an n-vector idealf;S(~x) = idealf;S(~x)1 : : : idealf;S(~x)n of random variables,

satisfying for every 1 � i � n:

idealf;S(~x)i =

(
f(~y) if i =2 B(t)

O(~xB(t) ; f(~y); r) if i 2 B(t)

where B(t) is the tth set of faulty parties, r is the random input of S, and ~y = ~x=(B(t);h(B(t);~x
B(t);r))

is the

substituted input vector for the trusted party.

Computation in the real-life setting. Next we describe the execution of a protocol � in the real-

life scenario. The parties engage in a synchronous computation in the secure channels setting, running

a semi-honest protocol �0 for � (according to any one of the notions of semi-honesty de�ned above). A

computationally unbounded t-limited real-life adversary may choose to corrupt parties at any point during

the computation, based on the information known to the previously corrupted parties, and as long as at

most t parties are corrupted altogether. Once a party is corrupted the current contents of its memory

(as determined by the semi-honest protocol �0) becomes available to the adversary. From this point on,

the corrupted party follows the instructions of the adversary. Once the computation is completed, each

uncorrupted party outputs whatever it has computed to be the function value. Without loss of generality,

we use the convention by which the corrupted parties output their entire view on the computation. The

view consists of all the information gathered by the adversary during the computation. Speci�cally, the

11

view includes the inputs and random inputs of the corrupted parties and all the communication seen by

the corrupted parties.

We use the following notation. Let view�;A(~x;~r) denote the view of the adversary A when interacting

with parties running protocol � on input ~x and random input ~r (xi and ri for party Pi), as described

above. Let exec�;A(~x;~r)i denote the output of party Pi after running protocol � on input ~x = x1 : : : xn
and random input ~r = r1 : : :rn, and with a real life adversary A. (By the above convention, we have

exec�;A(~x;~r)i = view�;A(~x;~r) for corrupted parties Pi.) Let exec�;A(~x)i denote the random variable

describing exec�;A(~x;~r)i where ~r is uniformly chosen. Let exec�;A(~x) = exec�;A(~x)1 : : :exec�;A(~x)n.

Comparing computations. Finally we require that executing a secure protocol � for evaluating a

function f be equivalent to evaluating f in the ideal model, in the following sense.

De�nition 3.8 Let f be an n-ary function, � be a protocol for n parties and T a type of semi-honest

behavior (i.e., as in any of the De�nitions 3.2 through 3.4). We say that � t-securely computes f in the

secure channels setting, in the presence of T -semi-honest parties and adaptive adversaries, if for any T -
semi-honest protocol �0 for � and for any t-limited real-life (adaptive) adversary A, there exists a t-limited

ideal-model-adversary S, such that the complexity of S is polynomial in the complexity of A, and for every

input vector ~x we have

idealf;S(~x)
d
= exec�0;A(~x)

Remark: De�nition 3.8 is stated for a single value of n. In order to discuss asymptotic complexity (in n),

we assume that the function f , the protocol �, the simulator S and the adversary A are Turing machines

that have n, the number of parties, as part of their inputs.

Black-box simulation. In the sequel we use a more restricted notion of equivalence of computations,

where the ideal-model adversary is limited to black-box simulation of the real-life setting. That is, for

any semi-honest protocol �0 for � there should exist a ideal-model adversary S with oracle (or black-box)

access to a real-life adversary. This black-box represents the input-output relations of the real-life adversary

described above. For concreteness, we present the following description of the \mechanics" of this black-

box, representing a real-life adversary. The black-box has a random tape, where the black-box expects to

�nd its random input, and an input-output tape. Once a special start input is given on the input-output

tape, the interaction on this tape proceeds in iterations, as follows. Initially, no party is corrupted. In

each iteration l, �rst the black-box expects to receive the information gathered in the lth round. (In the

secure channels setting this information consists of the messages sent by the uncorrupted parties to the

corrupted parties.) Next black-box outputs the messages to be sent by the corrupted parties in the lth

round. Next, the black-box may issue several `corrupt Pi' requests. Such a request should be answered

by the internal data of Pi, according to protocol �
0. Also, from this point on Pi is corrupted. At the end of

the interaction, the output of the real-life adversary is de�ned as the contents of the random tape succeeded

by the history of the contents of the input-output tape during the entire interaction. We let SA denote

the ideal-model adversary S with black-box access to a real-life adversary A.
The simulator is restricted to probabilistic polynomial time (where each invocation of the black-box is

counted as one operation).8 Furthermore, we limit the operation of the simulator as follows. We require

that the startmessage is sent only once, and that no party is corrupted in the ideal model unless a request

to corrupt this party is issued by the black-box.

8For simplicity, we assume that the computed function is polynomially computable. Alternatively, the simulator is poly-

nomial in the complexity of the function.

12

If De�nition 3.8 is satis�ed by an ideal-model adversary limited to black-box simulation as described

above, then we say that � t-securely computes f in a simulatable way. In this case we call the ideal-model

adversary a black-box simulator, or in short a simulator.

We remark that the only purpose of the technical restrictions imposed on the operation of the simulator

is to facilitate proving composition theorems (such as Theorem 4.2). We stress that the security of known

protocols (e.g., [BGW]) can be shown via simulators that obey these restrictions.

3.3 Adaptive security in the computational setting

We now turn to de�ne adaptively secure multi-party computation in the computational setting. Here

the communication links between parties are insecure; that is, all messages sent on all links are seen

by the adversary.9 All parties, as well as the adversary, are restricted to probabilistic polynomial time.

Furthermore, we introduce a security parameter, determining `how close' a real-life computation is to a

computation in the ideal model. All parties are polynomial also in the security parameter. For simplicity

of presentation, we identify the security parameter and the length of the inputs with the number of parties,

denoted n.

The framework of de�ning adaptively secure multi-party computation in this setting is the same as in

the secure channels setting (Section 3.2). That is, we compare the real life computation with a computation

in the same ideal model. Since the real-life adversary is restricted to probabilistic polynomial time, so is the

ideal-model adversary. The execution of a protocol � in the real-life scenario (of the computational setting),

as well as the notation exec�;A(~x), are the same as in the secure channels setting, with the exception that

the real-life adversary sees all the communication between the uncorrupted parties. Needless to say that

the ideal model is the same in both settings.

We de�ne equivalence of a real-life computation to an ideal-model computation in the same way,

with the exception that here we only require that the corresponding distributions are computationally

indistinguishable. Black-box simulation is de�ned as in the secure channels setting, with the exception

that the information gathered by the adversary in each round includes the communication between all

parties.

De�nition 3.9 Let f be an n-ary function, � be a protocol for n parties and T a type of semi-honest

behavior (i.e., as in any of the De�nitions 3.2 through 3.4). We say that � t-securely computes f in the

computational setting, in the presence of T -semi-honest parties and adaptive adversaries, if for any T -
semi-honest protocol �0 for � and for any t-limited real-life (adaptive) adversary A, there exists a t-limited

ideal-model-adversary S, such that for every input vector ~x we have

idealf;S(~x)
c� exec�0;A(~x):

If S is restricted to black-box simulation of real-life adversaries, as described above, then we say that �

t-securely computes f in a simulatable way in the computational scenario.

3.4 Non-committing encryption

We present a concise de�nition of a non-committing encryption protocol in our multi-party scenario.

First de�ne the bit transmission function btr : f0; 1;?gn ! f0; 1;?gn. This function is parameterized

by two identities of parties (i.e., indices s; r 2 [n]), with the following interpretation. btrs;r describes

9For simplicity we assume that the links are authenticated, namely the adversary cannot alter the communication. Authen-

ticity can be achieved via standard primitives.

13

the secure transmission of a bit from party Ps (the sender) to party Pr (the receiver). That is, for

~x = x1; : : : ; xn 2 f0; 1;?gn let
btrs;r(~x)i =

(
xs if i = r

? otherwise

where btrs;r(~x)i is the i
th component of the vector btrs;r(~x). We are interested in input vectors ~x where

xs (i.e., the senders input) is in f0; 1g. All other inputs are assumed to be ?.

De�nition 3.10 Let s; r 2 [n] and s 6= r. A protocol " is a t-resilient (in the presence of T -semi-

honest parties and adaptive adversaries), non-committing encryption protocol (from Ps to Pr) if " t-securely

computes btrs;r, in a simulatable way, in the computational model, in the presence T -semi-honest parties

and an adaptive adversary.

It may not be immediately evident how De�nition 3.10 corresponds to the informal description of non-

committing encryptions, presented in Section 2.3. A closer look, however, will show that the requirements

from the simulator associated with a non-committing encryption protocol (according to De�nition 3.10)

imply these informal descriptions. In particular, in the case where the simulated adversary corrupts the

sender and receiver only after the last communication round, the simulator has to �rst generate some

simulated communication between the parties, without knowing the transmitted bit. (This communication

serves as the \dummy ciphertext".) When the sender and/or the receiver are later corrupted, the simulator

has to generate internal data that correspond to any required value of the transmitted bit.

4 Non-erasing parties

We show that any recursive function can be securely computed in the computational setting, in the presence

of adaptive adversaries and non-erasing parties. In Subsection 4.1 we show how, using a non-committing

encryption protocol, a simulatable protocol for computing some function f in the computational setting

can be constructed from any simulatable protocol for computing f in the secure channels setting. In

Subsection 4.2 we present our construction of non-committing encryption. We use the following result as

our starting point:

Theorem 4.1 The [BGW, CCD] protocols for computing any function of n inputs are (dn
3
e � 1)-securely

computable in a simulatable way, in the secure channels setting, in the presence of non-erasing parties and

adaptive adversaries.10

4.1 Adaptive security given non-committing encryption

The following theorem formalizes the discussion in Section 2.3.

Theorem 4.2 Let f be an n-ary function, t < n and � be a protocol that t-securely computes f in a sim-

ulatable way in the secure channels setting, in the presence of non-erasing parties and adaptive adversaries.

Suppose that "s;r is a t-resilient non-committing encryption protocol, resilient to non-erasing parties and

adaptive adversaries, for transmission from Ps to Pr. Let ~� be the protocol constructed from � as follows.

For each bit � transmitted by � from party Ps to party Pr, protocol ~� invokes a copy of a "s;r for transmit-

ting �. Then ~� t-securely computes f , in a simulatable way in the computational setting, in the presence of

non-erasing parties and adaptive adversaries.

10A security proof of the [BGW] construction can be extracted from [C, Chap. 3], which deals with the more involved

asynchronous model.

14

Proof (sketch): Let �0 be a non-erasing protocol for � and let S be a simulator for �0 in the secure

channels setting. For simplicity we assume that in protocol �, as well as in the interaction generated by S,
each party sends on bit to each other party in each round. Let � be the (computational-model) simulator

that corresponds to the non-erasing protocol "0 for the non-committing encryption protocol ". Given these

two di�erent simulators, we construct a simulator ~S for protocol ~� in the computational setting. The

simulator ~S will be a modi�cation of S and will use several copies of � as subroutines.

Recall that S is supposed to interact with a black-box representing a real-life adversary in the secure

channels setting. That is, at each round S generates all the messages sent from uncorrupted parties to

corrupted parties. Furthermore, whenever the black-box decides to corrupt some party P , machine S
generates internal data for P which is consistent with P 's input and with the messages previously sent by

P to corrupted parties.

The simulator ~S, interacts with a black box representing an arbitrary real-life adversary in the compu-

tational setting, denoted ~A. The simulator ~S is identical to S with the exception that for each bit sent in

the interaction simulated by S, the simulator ~S invokes a copy of � and ~S incorporates the outputs of the

various copies of � in its (i.e., ~S's) communication with ~A. Likewise, ~S extracts the transmitted bits from

the invocations of � corresponding to message transmissions from corrupted parties to uncorrupted ones.

(The way ~S handles these invocation will be discussed below.) At this point we stress that ~A is the only

adversary that ~S needs to simulate and to this end it \emulates" real-life adversaries of its choice for the

copies of �. In particular, when S asks to corrupt some party P , the simulator ~S corrupts the same party

P . When S generates P 's view in the secure channel setting, ~S will complete this view into P 's view in

the computational setting by using the various copies of �.

We describe how ~S handles the various copies of �. As stated above, ~S emulates a real-life adversary

for each copy of � using the communication tapes by which this copy is supposed to interact with its

black-box/adversary. The information that � expects to receive form its black box is extracted, in the

obvious manner, from the information that ~S receives from ~A. That is, ~S hands � the messages, sent by

the corrupted parties, that are relevant to the corresponding invocation of "0. Furthermore, all the past

and current requests for corrupting parties (issued by ~A) are handed over to �. The partial view received

from each copy of � is used in the emulation of the corresponding black-box (of this �-copy) as well as

incorporated in the information handed by ~S to ~A. When ~A asks to corrupt some party P , the simulator
~S emulates a `corrupt P ' request to each copy of � and obtains the internal data of P in the corresponding

sub-protocol " which it (i.e., ~S) hands to ~A (along with the information obtained by S { the secure channel

simulator). Finally, observe that � = �s;r (where Ps and Pr are the designated sender and receiver) also

expects to interact with parties in the ideal-model. This interaction consists of issuing `corrupt' requests

and obtaining the internal data (of the ideal model). This interaction is (also) emulated by ~S as follows.

Whenever � wishes to corrupt a party P which is either Ps or Pr , the simulator ~S �nds out which bit, �,

was supposed to be sent in this invocation of "0r;s and passes � to �r;s. We stress that � is available to ~S
since at this point in time P has already been corrupted and furthermore ~S (which mimics S) has already
obtained P 's view in the secure channel setting. (Here we use De�nitions 3.9 and 3.10 which guarantee

that � corrupts a party only if this party is already corrupted by �'s black box. We also use the fact that
~S is playing �'s black box and is issuing a `corrupt P ' request only after receiving such a request from ~A
and having simulated this corruption as S.) In case P is neither Ps not Pr the simulator ~S passes ? (as

P 's input) to �.

Let ~�0 be a non-erasing protocol for ~� and ~A be as above (i.e., an arbitrary real-life adversary in the

computational setting). We claim that ~S ~A (i.e., the ideal-model adversary ~S with black-box access to ~A)
properly simulates the execution of ~�0. We need to show that for any adversary ~A and for any input ~x we

15

have

idealf; ~S ~
A (~x)

c� exec~�0; ~A(~x):

Here we present only a rough sketch of the proof of this claim. The plan is to construct a real-life adversary

A in the secure channels setting, and prove the following sequence of equalities by which the above claim

follows:

idealf; ~S ~
A
(~x)

d
= idealf;SA(~x)

d
= exec�0;A(~x)

c� exec~�0; ~A(~x) (1)

Regardless of what A is, the second equality follows immediately from the hypothesis that S is a simulator

for �0 (the non-erasing protocol for �) in the secure channels setting. It remains to construct A so that

the other two equalities hold.

The real-life adversary A of the secure channel setting will operate via a simulation of ~A (the real-life

adversary of the computational setting), imitating the simulation carried out by ~S. That is, for each bit

communicated by �, machine A will invoke a copy of � while emulating an adversary in accordance with ~A.
In particular, ~A will be given all ciphertexts sent in the open as well as all internal data of corrupted parties

(regardless if these parties were corrupted before, during or after the `real' transmission). Furthermore,

when ~A corrupts a party P , machine A corrupts P and hands ~A the internal data of P , along with the

outputs of the relevant copies �, just as ~S does. At the end of the computation A outputs whatever ~A
outputs (that is, A outputs ~A's view of the computation). It follows from the de�nition of A that the

execution of S, with black-box access to A, is in fact identical to the execution of ~S with black-box access

to ~A. Thus, idealf; ~S ~
A(~x)

d
= idealf;SA(~x) which establishes the �rst equality in Eq. (1).

It remains to show that exec�0;A(~x)
c� exec~�0; ~A(~x). Essentially the di�erence between these two

executions is that exec�0;A(~x) is a real-life execution in the secure channel setting which is augmented by

invocations of � (performed by A), whereas exec~�0; ~A(~x) is a real-life execution in the computational setting

in which honest parties use the encryption protocol "0. However, the security of " means that invocations

of � are indistinguishable from executions by "0 (both in presence of adaptive adversaries). Using induction

on the number of rounds, one thus establishes the last equality of Eq. (1). 2

4.2 Constructing non-committing encryption

Before describing our non-committing encryption protocol, let us note that one-time-pad is a valid non-

committing encryption protocol.11 The drawback of this trivial solution is that it requires an initial set-up in

which each pair of parties share a random string of length at least the number of bits they need to exchange.

Such an initial set-up is not desirable in practice and does not resolve the theoretically important problem

of dealing with a setting in which no secret information is shared a-priori.

Our scheme uses a collection of trapdoor permutations together with a corresponding hard-core pred-

icate [BM, Y, GrL]. Actually, we need a collection of trapdoor permutation with the additional property

that they are many permutations over the same domain. Furthermore, we assume that given a permutation

f over a domain D (but not f 's trapdoor), one can e�ciently generate at random another permutation f 0

over D together with the trapdoor of f 0. Such a collection is called a common-domain trapdoor system.

De�nition 4.3 A common-domain trapdoor system is an in�nite set of �nite permutations ff�;� :D�
1-17!

Dag(�;�)2P , where P �f0; 1g��f0; 1g�, so that

11 Assume that each pair of parties share a su�ciently long secret random string, and each message is encrypted by bitwise

xor-ing it with a new segment of the shared random string. Then De�nition 3.10 is satis�ed in a straightforward way.

Speci�cally, the simulated message from the sender to the receiver (i.e., the dummy ciphertext), denoted c, can be uniformly

chosen in f0; 1g. When either the sender or the receiver are corrupted, and the simulator has to demonstrate that c is an

encryption of a bit �, the simulator claims that the corresponding shared random bit was r = c� �. Clearly r is uniformly

distributed, regardless of the value of �.

16

� domain selection: There exists a probabilistic polynomial-time algorithm G1 so that on input 1n,

algorithm G1 outputs a description � 2 f0; 1gn of domain D�.

� function selection: There exists a probabilistic polynomial-time algorithm G2 so that on input �,

algorithm G2 outputs a pair (�; t(�)) so that (�; �) 2 P . (� is a description of a permutation over

D� and t(�) is the corresponding trapdoor.)

� domain sampling: There exists a probabilistic polynomial-time algorithm S that on input �, uniformly

selects an element of Da.

� function evaluation: There exists a polynomial-time algorithm F that on inputs (�; �) 2 P and

x 2 D� returns f�;�(x).

� function inversion: There exists a polynomial-time algorithm I that on inputs (�; t(�)) and y 2 D�,

where (�; �) 2 P , returns f�1�;�(y).
� one-wayness: For any probabilistic polynomial-time algorithm A, the probability that on input (�; �) 2
P and y = f�;�(x), algorithm A outputs x is negligible (in n), where the probability distribution is

over the random choices of � = G1(1
n), � = G2(�), x = S(�) and the coin tosses of algorithm A.

Remarks:

� The standard de�nition of trapdoor permutations can be derived from the above by replacing the

two selection algorithms, G1 and G2, by a single algorithm G that on input 1n generates a pair

(�; t(�)) so that � speci�es a domain D� as well as a permutation f� over this domain (and t(�) is

f� 's trapdoor). Thus, the standard de�nition does not guarantee any structural resemblance among

domains of di�erent permutations. Furthermore, it does not allow to generate a new permutation

with corresponding trapdoor for a given domain (or given permutation). Nevertheless some popular

trapdoor permutations can be formulated in a way which essentially meets the requirements of a

common-domain trapdoor system.

� Common-domain trapdoor systems can be constructed based on an arbitrary family of trapdoor per-

mutations, ff� :D�
1-17!D�g, with the extra property that the domain of any permutation, generated

on input 1n, has non-negligible density inside f0; 1gn (i.e., jD�j � 1
poly(j�j)

� 2j�j). We construct a

common-domain family where the domain is f0; 1gn and the permutations are natural extensions of

the given permutations. That is, we let G1(1
n) = 1n, G2(1

n) = G(1n) and extend f� into g� so that

g�(x) = f�(x) if x 2 D� and g�(x) = x otherwise. This yields a collection of \common-domain" per-

mutations, fg� :f0; 1gj�j 1-17! f0; 1gj�jg, which are weakly one-way. Employing ampli�cation techniques

(e.g., [Y, GILVZ]) we obtain a proper common-domain system.

In the sequel we refer to common-domain trapdoor systems in a less formal way. We say that two one-

way permutations, fa and fb, are a pair if they are both permutations over the same domain (i.e., a = (�; �1)

and b = (�; �2), where the domain is D�). We associate the permutations with their descriptions (and

the corresponding inverse permutations with their trapdoors). Finally, as stated above, we augment any

common-domain trapdoor system with a hard-core predicate, denoted B. (That is, B is polynomial-time

computable, but given (fa and) fa(x) is it infeasible to predict B(x) with non-negligible advantage over

1=2.)

17

Outline of our scheme. The scheme consists of two stages. In the �rst stage, called the key generation

stage, the parties arrive at a situation where the sender has two trapdoor permutations fa; fb of a common-

domain system, the trapdoor of only one of which is known to the receiver. Furthermore, the simulator

will be able to generate, in a simulated execution of the protocol, two trapdoor permutations with the

same distribution as in a real execution and such that the trapdoors of both permutations are known.

(The simulator will later open dummy ciphertexts as either `0' or `1' by claiming that the decryption key

held by the receiver is either f�1a or f�1b . The correspondence between f0; 1g and fa; bg will be chosen at

random by the simulator and never revealed). The key generation stage is independent of the bit to be

transmitted (and can be performed before this bit is even determined).

Our most general implementation of this stage, based on any common-domain system, requires partic-

ipation of all parties. It is described in Section 4.2.2. In the implementations based on the RSA and DH

assumptions (see Section 4.3) the key-generation stage consists of only one message sent from the receiver

to the sender.

The second stage, in which the actual transmission takes place, consists of only one message sent from

the sender to the receiver. This stage consists of encryption and decryption algorithms, invoked by the

sender and the receiver respectively.

We �rst present, in Section 4.2.1, the encryption and decryption algorithms as well as observations that

will be instrumental for the simulation. In Section 4.2.2 we present the key generation protocol. (A reader

that is satis�ed with a construction based on speci�c number theoretic assumptions may, for simplicity,

skip Section 4.2.2 and read Section 4.3 instead.) Finally we show that these together constitute the desired

non-committing encryption protocol.

4.2.1 Encryption and decryption

Let fa and fb be two randomly selected permutations over the domain D, and let B be a hard-core predicate

associated with them. The scheme uses a security parameter, k, which can be thought to equal log2 jDj.

Encryption: to encrypt a bit � 2 f0; 1g with encryption key (fa; fb), the sender proceeds as follows.

First it chooses x1; : : : ; x8k at random from D, so that B(xi) = � for i = 1; :::; 5k and B(xi) = 1 � �

otherwise (i.e., for i = 5k + 1; :::; 8k). For each xi it computes yi = fa(xi). These xi's (and yi's) are

associated with fa (or with a). Next, it repeats the process with respect to fb. That is, x8k+1; : : : ; x16k are

chosen at random from D, so that B(xi) = � for i = 8k + 1; :::; 13k and B(xi) = 1 � � otherwise, and

yi = fb(xi) for i = 8k + 1; :::; 16k. The latter xi's (and yi's) are associated with fb (or with b). Finally,

the sender applies a random re-ordering (i.e., permutation) � : [16k]! [16k] to y1; : : : ; y16k and send the

resulting vector, y�(1); : : : ; y�(16k), to the receiver.

Decryption: upon receiving the ciphertext y1; : : : ; y16k, when having private key f�1r (where r 2 fa; bg),
the receiver computes B(f�1r (y1)); : : : ; B(f

�1
r (y16k)), and outputs the majority value among these bits.

Correctness of decryption. Let us �rst state a simple technical claim.

Claim 4.4 For all but a negligible fraction of the �'s and all but a negligible fraction of permutation pairs

fa and fb over D�,

jProb(B(f�1b (fa(x))) = B(x))� 1

2
j is negligible (2)

where the probability is taken uniformly over the choices of x 2 D�.

18

Proof: Assume for contradiction that the claim does not hold. Then, without loss of generality, there

exists a positive polynomial p so that for in�nitely many n's, we have

Prob

�
jfy 2 D� : B(f

�1
b (y)) = B(f�1a (y))gj > (

1

2
+

1

p(n)
) � jD�j

�
>

1

p(n)

when fa and fb are independently generated from � = G1(1
n). This means that for these (�; a; b)'s

B(f�1a (y)) gives a non-trivial prediction for B(f�1b (y)). Intuitively this cannot be the case and indeed this

lead to contradiction as follows.

Given a = (�; �) 2 P and y 2 D� we may predict B(f�1a (y)) as follows. First we randomly generate

a new permutation. fb, over D�, together with its trapdoor. Next we test to see if indeed B(f�1a (z))

is correlated with B(f�1b (z)). (The testing is done by uniformly selecting polynomially many xi's in D�,

computing zi = fa(xi), and comparing B(f�1a (zi)) = B(xi) with B(f
�1
b (zi)).) If a non-negligible correlation

is detected then we output B(f�1b (y) (as our prediction for B(f�1a (y))). Otherwise we output a uniformly

selected bit. (Note that jProb(B(x) = 1)� 1
2
j must be negligible otherwise a constant function contradicts

the hard-core hypothesis.) 2

From this point on, we assume that the pair (fa; fb) satis�es Eq. (2).

Lemma 4.5 Let ~y = y1; : : : ; y16k be a random encryption of a bit �. Then with probability 1� 2�
(k) the

bit decrypted from ~y is �.

Proof: Assume without loss of generality that the private key is f�1a . Then, the receiver outputs the

majority value of the bits B(f�1a (y1)); : : : ; B(f
�1
a (y16k)). Recall that 8k of the yi's are associated with fa.

Out of them, 5k (of the yi's) satisfy B(f
�1
a (yi)) = B(xi) = �, and 3k satisfy B(f�1a (yi)) = B(xi) = 1� �.

Thus, the receiver outputs 1�� only if at least 5k out of the rest of the yi's (that is, the yi's associated with

fb) satisfy B(f
�1
a (yi)) = 1��. However, Eq. (2) implies that jProb(B(f�1a (yi) = �)� 1

2
j is negligible for each

yi associated with fb. Thus only an expected 4k of the yi's associated with fb satisfy B(f
�1
a (yi)) = 1� �.

Using a large deviation bound, it follows that decryption errors occur with probability 2�
(k). 2

Simulation assuming knowledge of both trapdoors. In Lemma 4.7 (below) we show how the sim-

ulator, knowing the trapdoors of both fa and fb, can generate \dummy ciphertexts" ~z = z1; : : : ; z16k that

can be later \opened" as encryptions of both 0 and 1. Essentially, the values B(f�1a (zi)) and B(f
�1
b (zi))

for each zi are carefully chosen so that this \cheating" is possible. We use the following notations. Fix

an encryption key (fa; fb). Let the random variable �� = (�; ~x; �; ~y; r; f�1r) describe a legal encryption and

decryption process of the bit �. That is:

� ~x = x1; : : : ; x16k is a vector of domain elements chosen at random as speci�ed in the encryption

algorithm.

� � is a random permutation on [16k].

� ~y = y1; : : : ; y16k is generated from ~x and � as speci�ed in the encryption algorithm.

� r is uniformly chosen in fa; bg and f�1r is the inverse of fr . (Note that the decrypted bit is de�ned

by the majority of the bits B(f�1r (yi).)

We remark that the information seen by the adversary, after the sender and receiver are corrupted, includes

either �0 or �1 (but not both).

Let us �rst prove a simple technical claim, that will help us in proving Lemma 4.7. Let binm denote

the binomial distribution over [m].

19

Claim 4.6 There exists an e�ciently samplable distribution � over f0; 1; :::; 4kg so that the distribution

~� constructed by sampling an integer from � and adding 2k is statistically close to bin8k. That is, the

statistical distance between ~� and bin8k is 2�
(k).

Proof: Let bin8k(i) denote the probability of i under bin8k (i.e., bin8k(i) =
�8k
i

� � 2�8k). We construct

the distribution � (over f0; 1; :::; 4kg) so that Prob(�= i) = bin8k(i+ 2k) for i = 1; :::; 4n and Prob(�=0)

equals the remaining mass of bin8k (i.e., it equals
P2k
i=0 bin8k(i) +

P8k
i=6k+1 bin8k(i)).

It can be easily seen that each i 2 f2k + 1; :::; 6kg occurs under ~� with exactly the same probability

as under bin8k. Integers i such that i < 2k or i > 6k have probability 0 under ~� (whereas 2k is more

likely to occur under ~� than under bin8k). Thus, the statistical distance between ~� and bin8k equals the

probability, under bin8k, that i is smaller than 2k or larger than 6k. This probability is bounded by 2�
(k).

2

Lemma 4.7 Let (fa; fb) be the public key, and assume that both f�1a and f�1b are known. Then it is

possible to e�ciently generate ~z; ~x(0); ~x(1); �(0); �(1); r(0); r(1), such that:

1. (0; ~x(0); �(0); ~z; r(0); f�1
r(0)

)
c� �0.

2. (1; ~x(1); �(1); ~z; r(1); f�1
r(1)

)
c� �1.

Here
c� stands for `computationally indistinguishable'. We stress that the same dummy ciphertext, ~z,

appears in both (1) and (2).

Proof: Before describing how the dummy ciphertext ~z and the rest of the data are constructed, we

summarize, in Figure 1, the distribution of the hard-core bits, B(f�1a (Y1)); :::; b(F
�1
a (y16k)) and

B(f�1b (y1)); :::; B(f
�1
b (y16k)), with respect to a real encryption y�(1); : : : ; y�(16k) of the bit � = 0. Here

~b~i~n8k denotes the distribution of the number of `1's in B(f�1b (yi)) for i = 1; :::; 8k. Eq. (2) implies that

the statistical di�erence between bin8k and ~b~i~n8k is negligible. The distribution of B(f�1a (yi)) for i =

8k+ 1; :::; 16k is similar. Given only �0 (or only �1), only three-quarters of the B(f�1s (yi))'s, i 2 [16k] and

I = f1; :::; 8kg I = f8k+ 1; :::; 16kg
8i 2 I yi = fa(xi) yi = fb(xi)P
i2I B(f

�1
a (yi)) = 3k ~b~i~n8kP

i2I B(f
�1
b (yi)) = ~b~i~n8k 3k

Figure 1: The distribution of the B(f�1s (yi))'s with respect to �0, where s 2 fa; bg. (The case of �1 is

similar, with the exception that 5k is replaced for 3k.)

s 2 fa; bg, are known. Speci�cally, consider �� = (�; ~x; �; ~y; r; f�1r), and suppose that r = a. Then all the

B(f�1a (yi))'s can be computed using f�1a . In addition, for i = 8k+1; :::; 16k, B(f�1b (yi)) = B(xi) is known

too. However, for i 2 [8k], B(f�1b (yi)) = B(f�1b fa(xi))) is not known and in fact it is (computationally)

unpredictable (from ��). A similar analysis holds for r = b; in this case the unpredictable bits are

B(f�1a (yi)) = B(f�1a fb(xi))) for i = 8k + 1; :::; 16k.

Initial construction and conditions: Keeping the structure of �� in mind, we construct ~z, along

with ~x(0), ~x(1), �(0), �(1), r(0) and r(1), as follows. First, we select uniformly a bijection, �, of f0; 1g to fa; bg
(i.e., either �(0) = a and �(1) = b or the other way around) and set r(0) = �(0) and r(1) = �(1). Next, we

choose, in the way described below, two binary vectors ~
(0) =

(0)
1 ; : : : ;

(0)
16k and ~

(1) =

(1)
1 ; : : : ;

(1)
16k. We

choose random values v1; : : : ; v16k such that

(0)
i = B(f�1�(0)(vi)) and

(1)
i = B(f�1�(1)(vi)), for each i 2 [16k].

We uniformly select a permutation over [16k] and let the permuted vector v (1); : : : ; v (16k) be the dummy

ciphertext ~z = (z1; :::; z16k). It remains to determine �(0) and �(1), which in turn determine ~x(0) and ~x(1)

20

so that x
(�)
i = f�1a (z(�(�))�1(i)) for i 2 [8k] and x

(�)
i = f�1b (z�(�)(i)) otherwise. This should be done so

that both permutations �(0) and �(1) are uniformly (but not necessarily independently) distributed and so

that the known B(f�1s (y
(�)
i))'s match the distribution seen in a legitimate encryption of �. We stress that

(�; ~x(�); �(�); ~z; r(�); f�1
r(�)

) should appear as a valid encryption of �. In particular, for each � 2 f0; 1g there
should exist a permutation (�) (= (�(�))�1 � �) over [16k] so that12

1.

(��1(a))

 (�)(i)
= B(f�1a (v (�)(i))) = B(f�1a (z�(�)(i))) = B(x

(�)
i) = �, for i = 1; :::; 5k.

(E.g., if �(0) = a this means

(0)

 (�)(i)
= �.)

2.

(��1(a))

 (�)(i) = B(f�1a (v (�)(i))) = B(f�1a (z�(�)(i))) = B(x
(�)
i) = 1� �, for i = 5k + 1; :::; 8k.

(E.g., if �(0) = a this means

(0)

 (�)(i) = 1� �.)

3.

(��1(b))

 (�)(i)
= B(f�1b (v (�)(i))) = B(f�1b (z�(�)(i))) = B(x

(�)
i) = �, for i = 8k + 1; :::; 13k.

(E.g., if �(0) = a this means

(1)

 (�)(i)
= �.)

4.

(��1(b))

 (�)(i)
= B(f�1b (v (�)(i))) = B(f�1b (z�(�)(i))) = B(x

(�)
i) = 1� �, for i = 13k + 1; :::; 16k.

(E.g., if �(0) = a this means

(1)

 (�)(i)
= 1� �.)

5. Let I = [8k] if �(�) = b and I = f8k + 1; :::; 16kg otherwise. Then,

(�)

 (�)(i)
= B(f�1�(�)(v (�)(i))) =

B(f�1�(�)(z�(�)(i))) = B(f�1�(�)(f�(1��)(x
(�)
i))) equals � with probability negligibly close to 1

2
, for i 2 I .

(E.g., for �(0) = a and � = 0 we have Prob(

(0)

 (�)(i)
= 1) � 1

2
for i = 8k + 1; :::; 16k, whereas for

�(0) = a and � = 1 we have Prob(

(1)

 (�)(i)
= 1) � 1

2
for i = 1; :::; 8k.)

This allows setting �(�) = � ((�))�1 so that x
(�)

�(�)(i)
is \mapped" to zi while �

(�) is uniformly dis-

tributed (i.e., x
(�)
i = f�1a (v (�)(i)) = f�1a (z �1(�(�)(i))) = f�1a (z(�(�))�1(i)) for i 2 [8k] and x

(�)
i = f�1b (z�(�)(i))

otherwise).

Initial setting of ~
(0), ~
(1), (0) and (1): The key issue is how to select ~
(0) and ~
(1) so that the �ve

condition stated above hold (for both � = 0 and � = 1). As a �rst step towards this goal we consider the

four sums

S�1
def
=

8kX
i=1

(��1(a))

 (�)(i)
; S�2

def
=

16kX
i=8k+1

(��1(b))

 (�)(i)
; S�3

def
=

8kX
i=1

(��1(b))

 (�)(i)
; S�4

def
=

16kX
i=8k+1

(��1(a))

 (�)(i)

The above conditions imply S�1 = S�2 = 5k � � + 3k � (1� �) = 3k + 2k� as well as S�3
d
= ~b~i~n8k if �(�) = b

and S�4
d
= ~b~i~n8k otherwise. (Note that S

�
3 ; S

�
4 and ~b~i~n8k are random variables.)

To satisfy the above summation conditions we partition [16k] into 4 equal sized subsets denoted

I1; I2; I3; I4 (e.g., I1 = [4k], I2 = f4k + 1; :::; 8kg, I3 = f8k + 1; :::; 12kg and I4 = f12k + 1; :::; 16kg).
This partition induces a similar partition on the

(0)
i 's and the

(1)
i 's. The

(0)
i 's and the

(1)
i 's in each set

are chosen using four di�erent distributions which satisfy the conditions summarized in Figure 2. Suppose

�(0) = a. Then, we may set (0)([8k]) = I1[I2 and (0)(f8k+1; :::; 16kg) = I3[I4, and (1)([8k]) = I1[I3
and (1)(f8k+1; :::; 16kg) = I2[I4, where �(I) = J means that the permutation � maps the elements of the

set I onto the set J . (It would have been more natural but less convenient to write ((1))�1(I1[I3) = [8k]

12 In each of the following �ve conditions, the �rst equality is by the construction of the vi's, the second equality is by the

de�nition of the zi's, and the third equality represents the relation between ~x(�), ~z and �(�) that holds in a valid encryption (of

�). In conditions (1) through (4), the last equality represents the relation between ~x(�) and � that holds in a valid encryption

of �. In condition (5), the last equality represents the information computable from ~z using (the trapdoor) f�1

r(�)
. Here we

refer to the inverses of the zi's which are not x
(�)
i

's. The hard-core value of these inverses should be uniformly distributed.

21

I = I1 I = I2 I = I3 I = I4P
i2I

(0)
i

d
= 3k 0 2k �P

i2I

(1)
i

d
= � 4k 2k k

Figure 2: The distribution of the
(0)'s and
(1)'s. (� is as in Claim 4.6.)

and ((1))�1(I2 [I4) = f8k + 1; 16kg.) We claim that, for each � 2 f0; 1g, the above setting satis�es the

three relevant summation conditions. Consider, for example, the case � = 0 (depicted in Figure 3). Then,

I = f1; :::; 8kg= ((0))�1(I1 [I2) I = f8k + 1; :::; 16kg= ((0))�1(I3 [I4)P
i2I

(0)
i = S0

1 = 3k + 0 = 3k S0
4 = 2k + �

d
= ~b~i~n8kP

i2I

(1)
i = no condition S0

2 = 2k + k = 3k

Figure 3: Using (0) the

(0)
i 's and

(1)
i 's satisfy the summation conditions S0

1 , S
0
2 and S0

4 .

S0
1 =

P8k
i=1

(0)
i = 3k and S0

2 =
P16k
i=8k+1

(1)
i = 3k as required. Considering S0

4 =
P16k
i=8k+1

(0)
i we observe

that it is distributed as 2k+� = ~� (of Claim 4.6) which in turn is statistically close to ~b~i~n8k. We stress that

the above argument holds for any way of setting the (�)'s as long as they obey the equalities speci�ed (e.g.,

for any bijection � : I1[I2 1-17! I1[I3, we are allowed to set (1)(i) = �(i) for all i 2 I1[I2). The case � = 1

follows similarly; here S1
1 =

P
i2I1[I3

(0)
i = 5k, S1

2 =
P
i2I2[I4

(1)
i = 5k and S1

3 =
P
i2I1[I3

(1)
i = �+2k (see

Figure 4). In case �(0) = b we set (0)([8k]) = I3 [I4, (0)(f8k+ 1; :::; 16kg) = I1 [I2, (1)([8k]) = I2 [I4

I = f1; :::; 8kg= ((1))�1(I1 [I3) I = f8k + 1; :::; 16kg= ((1))�1(I2 [I4)P
i2I

(0)
i = S1

1 = 3k + 2k = 5k no conditionP
i2I

(1)
i = S1

3 = � + 2k
d
= ~b~i~n8k S1

2 = 4k + k = 5k

Figure 4: Using (1) the

(0)
i 's and

(1)
i 's satisfy the summation conditions S1

1 , S
1
2 and S1

3 .

and (1)(f8k + 1; :::; 16kg) = I1 [I3. The claim that, for each � 2 f0; 1g, the above setting satis�es the

three relevant summation conditions, is shown analogously.

Refinement of ~
(0), ~
(1), (0) and (1): However, the above summation conditions do not guarantee

satisfaction of all the �ve conditions. In particular, we must use permutations (�) which guarantee the

correct positioning visible bits within the 8k-bit long block. That is, we must have

(

(��1(a))

 (�)(1)
; :::;

(��1(a))

 (�)(8k)
) = (�5k; (1� �)3k)

(

(��1(a))

 (�)(8k+1)
; :::;

(��1(a))

 (�)(16k)
) = (�5k; (1� �)3k)

that is, equality between the sequences and not merely equality in the number of 1's. Clearly there is no

problem to set the (�)'s so that these equalities hold and thus Conditions (1) through (4) are satis�ed. It

is left to satisfy Condition (5).

Suppose that �(�) = a. In this case the third summation requirement guarantees
P16k
i=8k+1

(�)

 (�)(i)

d
=

~b~i~n8k. This is indeed consistent with the requirement that these

(�)

 (�)(i)
's are almost uniformly and in-

dependently distributed. But this is not su�cient. In particular, we also need
P
i2J

(�)

 (�)(i)

d
= ~b~i~n3k,

22

where J = f8k < i � 16k :

(1��)

 (�)(i)
= 1 � �g and furthermore the above sum needs to be independent ofP

i2f8k+1;:::;16kg�J

(�)

 (�)(i)
(which in turn should be statistically close to bin5k). Let us start with the case

� = 0. In this case we need X
i2J

(0)
i

d
= ~b~i~n3k; (3)

where J = fi 2 I3 [I4 :
(1)i = 1g, and this sum needs to be independent of
P
i2I3[I4�J

(0)
i . By Figure 2

we have jJ \ I3j = 2k. We further restrict the distributions

(0)
i 's and

(1)
i 's so that in part I3 the four

possible outcomes of the pairs (

(0)
i ;

(1)
i) are equally likely (e.g., for exactly k integers i 2 I3 we have

(

(0)
i ;

(1)
i) = (0; 0)). Consider J 0 = J \ I4 (note jJ 0j = k). To satisfy Eq. (3) we construct a random

variable �0 2 f0; 1; :::; kg (analogously to Claim 4.6) so that pj
def
= Prob(�0 = j) = bin3k(k + j) for j 2 [k]

(with the rest of the mass on �0 = 0) and constrain the

(0)
i 's to satisfy Prob(

P
i2J 0

(0)
i = j) = pj. We getP

i2J

(0)
i = k+�0

d
= ~b~i~n3k (analogously to Claim 4.6). A minor problem occurs: the new restriction on the

(0)
i 's conditions

P
i2I4�J 0

(0)
i which we want to be distributed as some �00

d
= bin5k� 2k and independently

of �0 (the reason being that �0 + �00 should be distributed equally to �). However this condition has a

negligible e�ect since we can sample �0 and � and set the

(0)
i 's accordingly, getting into trouble only in

case � < �0 which happens with negligible probability (since Prob(� < �0) < Prob(� < k) = 2�
(k)).

The case � = 1 gives rise to the requirement

X
i2J

(1)
i

d
= ~b~i~n3k; (4)

where J = fi 2 I1 [I3 :

(0)
i = 0g, and this sum needs to be independent of

P
i2I1[I3�J

(1)
i . To satisfy

Eq. (4) we restrict the

(1)
i 's in J 0

def
= J \ I1 analogously to satisfy

P
i2J 0

(1)
i = �0. Finally, we observe that

generating the

(0)
i 's and

(1)
i 's at random so that they satisfy the above requirements makes them satisfy

Condition (5).

Beyond the five conditions. In the above construction we have explicitly dealt with conditions which

obviously have to hold for the construction to be valid. We now show that indeed this su�ces. Namely,

we claim that

(�; ~x(�); �(�); ~z; r(�); f�1
r(�)

)
c� �� = (�; ~x; �; ~y; r; f�1r): (5)

Consider the case � = 0. Both r(0) and r are uniformly chosen in fa; bg and so we consider, w.l.o.g.,

r = r(0) = a. Furthermore, �(0) is a random permutation and fa(x
(0)
i) = z�(0) for i = 1; :::; 8k, and

fb(x
(0)
i) = z�(0) for i = 8k + 1; :::; 16k, which matches the situation w.r.t �, ~x and ~y. It remains to

compare the distributions of B(f�1s (�))'s, s 2 fa; bg, with respect to ~x(0) and with respect to ~x. By

the above analysis we know that the entries corresponding to s = a and to (s = b) ^ (i � 8k) are

distributed similarly in the two cases. Thus, we need to compare B(f�1b (fa(x
(0)
1))); :::;B(f�1b (fa(x

(0)
8k)))

and B(f�1b (fa(x1))); :::;B(f
�1
b (fa(x8k))). Recall that the xi's are selected at random subject to B(xi) = 0

for i = 1; :::; 5k and B(xi) = 1 for i = 5k + 1; :::; 8k. An analogous condition is imposed on the x
(0)
i 's

but in addition we also have B(f�1b (fa(x
(0)
i))) = 1 for i = 1; :::; 4k, and some complicated conditions on

B(f�1b (fa(x
(0)
i))) = 1, for i = 4k+1; :::; 8k (i.e., the distribution of 1's here is governed by � and furthermore

in the �rst k elements the number of 1's is distributed identically to �0). Thus, distinguishing ~x from ~x(0)

amounts to distinguishing, given fa; fb : D 7! D and the trapdoor for fa (but not for fb), between the two

distributions

1. (u1; :::; u8k), where the ui's are independently selected so that B(ui) = 0 if i 2 [5k] and B(ui) = 1

otherwise; and

2. (w1; :::; w8k), where the wi's are uniformly selected under the conditions

23

� B(wi) = 0 if i 2 [5k] and B(ui) = 1 otherwise,

� B(f�1b (fa(wi))) = 1 for i 2 [4k],

� P5k
i=4k+1B(f

�1
b (fa(wi))) = �0, and

� P8k
i=5k+1B(f

�1
b (fa(wi))) = �00, for some �00

d
= �� �0.

We claim that distinguishing these two distributions yields a contradiction to the security of the hard-core

predicate B. Suppose, on the contrary that an e�cient algorithm A can distinguish these two distributions.

Using a hybrid argument we construct an algorithm A0 which distinguishes the the uniform distribution

over D0 def
= fx 2 D : B(x) = �g and a distribution over D0 that is uniform over both D0

0

def
= fx 2 D0 :

B(f�1b (fa(x))) = 0g and D0
1

def
= fx 2 D0 : B(f�1b (fa(x))) = 1g, where � is a bit which can be e�ciently

determined. (We stress that the latter distribution is not uniform on D0 but rather uniform on each

of its two parts.) Without loss of generality, we assume � = 0. It follows that A0 must distinguish

inputs uniformly distributed in D0
0 from inputs uniformly distributed in D0

1. We now transform A0 into

an algorithm, A00, that distinguishes a uniform distribution over fy 2 D : B(f�1b (y)) = 0g from a uniform

distribution over fy 2 D : B(f�1b (y)) = 1g. On input y 2 D� and fb : D 7! D, algorithm A00 �rst generates

another permutation fa, over D, together with the trapdoor for fa. Next, it computes x = f�1a (y) and

stop (outputting 0) if B(x) = 1 (i.e., x 62 D0). Otherwise, A00, invokes A0 on x and outputs A0(x). In

this case B(f�1b (fa(x))) = B(f�1b (y)) (and B(x) = 0) so the output will be signi�cantly di�erent in case

B(f�1b (y))) = 0 and in case B(f�1b (y))) = 1. We observe that Prob(B(x) = 0) � 1
2
(otherwise a constant

function violates the security of B), and conclude that one can a random y with B(f�1b (y)) = 0 from a

random y with B(f�1b (y)) = 1 (which contradicts the security of B). 2

4.2.2 Key generation

We describe how the keys are generated, based on any common-domain trapdoor system. We use Oblivious

Transfer [R, EGL] in our constructions. Oblivious Transfer (OT) is a protocol executed by a sender S

with inputs s1 and s2, and by a receiver R with input � 2 f1; 2g. After executing an OT protocol, the

receiver should know s� , and learn nothing else. The sender S should learn nothing from participating in

the protocol. In particular S should not know whether R learns s1 or s2. We are only concerned with the

case where R is uncorrupted and non-erasing.

We use the implementation of OT described in [GMW] (which in turn originates in [EGL]). This

implementation has an additional property, discussed below, that is useful in our construction. For self

containment we sketch, in Figure 5, the [GMW] protocol for OT of one bit.

It can be easily veri�ed that the receiver outputs the correct value of �� in Step 4. Also, if the receiver

is semi-honest in the non-erasing sense, then it cannot predict �3�� with more than negligible advantage

over 1
2
. 13 The sender view of the interaction is uncorrelated with the value of � 2 f1; 2g. Thus it learns

nothing from participating in the protocol.

The important additional property of this protocol is that, in a simulated execution of the protocol,

the simulator can learn both �1 and �2 by uniformly selecting z1; z2 2 D, and having the receiver R

send f(z1); f(z2) (in Step 2). Furthermore, if R is later corrupted, then the simulator can \convince"

the adversary that R received either �1 or �2, at wish, by claiming that in Step 2 party R chose either

(x1; x2) = (z1; f(z2)) or (x1; x2) = (f(z1); z2), respectively.

In Figure 6 we describe our key generation protocol. This protocol is valid as long as at least one party

remains uncorrupted.

13This statement does not hold if R is semi-honest only in the honest-looking sense. Ironically, this `
aw' is related to the

useful (non-committing) feature discussed below.

24

Oblivious Transfer (OT)

The parties proceed as follows, using a trapdoor-permutations generator and the associated hard-core pred-

icate B().

1. On input �1; �2 2 f0; 1g, the sender generates a one-way trapdoor permutation f : D ! D with its

trapdoor f�1, and sends f to the receiver.

2. On input � 2 f1; 2g, the receiver uniformly selects x1; x2 2 D, computes y� = f(x�), sets y3�� = x3�� ,

and sends (y1; y2) to the sender.

3. Upon receiving (y1; y2), the sender sends the pair (�1 �B(f�1(y1)); �2 �B(f�1(y2))) to the receiver.

4. Having received (b1; b2), the receiver outputs s� = b� �B(x�) (as the message received).

Figure 5: The [GMW] Oblivious Transfer protocol

key-generation ("G)

For generating an encryption key (fa; fb) known to the sender, and a decryption key f�1r known only to the

receiver (R), where r is uniformly distributed in fa; bg.

1. The receiver generates a common domain D� and sends � to all parties.

2. Each party Pi generates two trapdoor permutations over D�, denoted fai and fbi , and sends (fai ; fbi)

to R. The trapdoors of fai and fbi are kept secret by Pi.

3. The receiver R chooses uniformly � 2 f1; 2g and invokes the OT protocol with each party Pi for a

number of times equal to the length of the description of the trapdoor of a permutation over �. In

all invocations the receiver uses input � . In the jth invocation of OT, party Pi acting as sender uses

input (�1; �2), where �1 (resp., �2) is the j
th bit of the trapdoor of fai (resp., fbi). (Here we use the

convention by which, without loss of generality, the trapdoor may contain all random choices made by

G2 when generating the permutation. This allows R to verify the validity of the data received from

Pi.)

4. Let H be the set of parties with which all the OT's were completed successfully. Let fa be the

composition of the permutations fai 's for Pi 2 H, in some canonical order, and let fb be de�ned

analogously (e.g., a is the concatenation of the ai with i 2 H). Let r = a if � = 1 and r = b otherwise.

The trapdoor to fr is known only to R (it is the concatenation of the trapdoors obtained in Step 3).

5. R now sends the public key (fa; fb) to the sender.

Figure 6: The key generation protocol

4.2.3 Simulation (Adaptive security of the encryption protocol)

Let " denote the combined encryption and decryption protocols, preceded by the key generation protocol.

Theorem 4.8 Protocol " is an (n � 1)-resilient non-committing encryption protocol for n parties, in the

presence of non-erasing parties.

25

Proof (sketch): Let Pr be the sender and let Ps be the receiver. Recall that a non-committing encryption

protocol is a protocol that securely computes the bit transmission function, btrs;r, in a simulatable way. Let

"0 be a non-erasing protocol for ". We construct a simulator S such that idealbtrs;r;SA(�)
d
= exec"0;A(�),

for any (n� 1)-limited adversary A and for any input � 2 f0; 1g of Ps.
The simulator S proceeds as follows. First an invocation of the key generation protocol "G is simulated,

in such a way that S knows both trapdoors f�1a and f�1b . (This can be done using the additional property

of the [GMW] Oblivious Transfer protocol, as described above.) For each party P that A corrupts during

this stage, S hands A the internal data held by P in the simulated interaction. We stress that as long as

at least one party remains uncorrupted, the adversary knows at most one of f�1a ; f�1b . Furthermore, as

long as Pr remains uncorrupted, the adversary view of the computation is independent of whether Pr has

f�1a or f�1b .

Once the simulation of the key generation protocol is completed, S instructs the trusted party in the

ideal model to notify Pr of the function value. (This value is Ps's input, �.) If at this point either Ps
or Pr is corrupted, then S gets to know the encrypted bit. In this case S generates a true encryption

of the bit �, according to the protocol. If neither Ps nor Pr are corrupted, then S generates the values

~z; ~x(0); ~x(1)�(0); �(1); r(0); r(1) as in Lemma 4.7, and lets ~z be the ciphertext that Ps sends to Pr in the

simulated interaction.

If at this stage A corrupts some party P which is not the sender or the receiver, then S hands A the

internal data held by P in the simulated interaction. If A corrupts Ps, then S corrupts Ps in the ideal

model and learns �. Next S hands A the values ~x(�); �(�) for Ps's internal data. If A corrupts Pr , then S
corrupts Pr in the ideal model, learns �, and hands A the value f�1

r(�)
for Ps's internal data.

The validity of the simulation follows from Lemma 4.7 and from the properties of the [GMW] Oblivious

Transfer protocol. 2

4.3 Alternative implementations of non-committing encryption

We describe two alternative implementations of our non-committing encryption scheme, based on the RSA

and DH assumptions, respectively. These implementations have the advantage that the key generation

stage can be simpli�ed to consist of a single message sent from the receiver to the sender.

An implementation based on RSA. We �rst construct the following common-domain trapdoor sys-

tem. The common domain, given security parameter n, is f0; 1gn. A permutation over f0; 1gn is chosen as

follows. First choose a number N uniformly from [2n�1 : : :2n], together with its factorization (via Bach's

algorithm [B]). Next choose a prime 2n < e < 2n+1. (This way, we are assured that gcd(e; �(N)) = 1,

where �() is Euler's totient function, even if the factorization of N is not known.) Let fN (x) = xe(mod N)

if x < N and fN (x) = x otherwise. With non-negligible probability N is a product of two large primes.

Thus, this construction yields a collection of common-domain permutations which are weakly one-way.

Employing an ampli�cation procedure (e.g., [Y, GILVZ]) we obtain a proper common-domain system.

This common-domain trapdoor system can be used as described in Section 4.2. However, here the key-

generation stage can be simpli�ed considerably. Observe that it is possible to choose a permutation from

the above distribution without knowing its trapdoor. Speci�cally, this is done by choosing the numbers N of

the di�erent instances of fN in the direct way, without knowing their factorization. Thus, the receiver will

choose two trapdoor permutations fa; fb, where only the trapdoor to fr (i.e., f
�1
r) is known, r 2R fa; bg.

Both fa; fb are now sent to the sender, who proceeds as in Section 4.2.1. In a simulated execution the

simulator will choose both fa and fb together with their trapdoors.14

14A similar idea was used in [DP].

26

An implementation based on DH. Consider the following construction. Although it fails to satisfy

De�nition 4.3, it will be `just as good' for our needs. The common domain, given security parameter n,

is a prime 2n�1 < p < 2n where the factorization of p � 1 is known. Also, a generator g of Z�
p is �xed.

p and g are publicly known. All computations are done modulo p. To choose a permutation over Z�
p ,

choose an element v 2R Z�
p�1 and let fv(x) = xv. The public description of fv is y

4
= gv. The `trapdoor' is

u
4
= v�1(mod p� 1).

This construction has the following properties:

� Although it is hard to compute fv if only p; g; y are known, it is easy to generate random elements

x 2R Z�
p together with fv(x): choose z 2R Z�

p , and set x = gz and fv(x) = yz. (This holds since

fv(x) = xv = gzv = yz.)

� If u is known then it is easy to compute f�1v (x) = xu.

� An algorithm A that inverts fv given only p; g; y can be easily transformed into an algorithm A0 that

given p; g; g�; g� outputs g�� (that is, into an algorithm that contradicts the Di�e-Hellman (DH)

assumption). Speci�cally, Assume that A(p; g; gv; xv) = x. Then, on input p; g; g�; g�, algorithm A0

will run A(p; g�; g; g�) to obtain g��.

� It is possible to choose a permutation from the above distribution without knowing its trapdoor.

Speci�cally, this is done by uniformly choosing numbers y 2R Z
�
p until a generator is found. (It is

easy to decide whether a given y is a generator of Z�
p when the factorization of p� 1 is known.)

Note that both in the encryption process and in the simulation it is not necessary to compute the

permutations f on arbitrary inputs. It su�ces to be able to generate random elements x in the domain

together with their function value f(x). Thus, this construction is used in a similar way to the previous

one.

A concluding remark to Section 4. Our solutions for non-erasing parties may appear somewhat unsat-

isfactory since they are based on `trusting' the receiver to choose trapdoor permutations without knowing

the trapdoor, whereas the permutation can be chosen together with its trapdoor by simple `honest-looking'

behavior. Recall, however, that if honest-looking parties are allowed then no (non-trivial) protocol can be

proven adaptively secure (via black-box simulation if claw-free pairs exist). We do not see a meaningful

way to distinguish between the `honest-looking behavior' that foils the security of our constructions and

the `honest-looking behavior', described in Section 2.2, that foils provability of the adaptive security of any

protocol.

5 Honest-looking parties

Our construction for honest-looking parties assumes the existence of a \trusted dealer" at a pre-computation

stage. The dealer chooses, for each party P , a truly random string rP , and hands rP to P , to be used as

random input. (We call rP a certi�ed random input for P .) Next, the dealer generates n� 1 shares of rP ,

so that rP can be reconstructed from all n � 1 shares, but any subset of n � 2 shares are independent of

rP . Finally the dealer hands one share to each party other than P .

Now, all parties are able to jointly reconstruct rP , and thus verify whether P follows its protocol.

Consequently, if party P is honest-looking (i.e., P does not take any chance of being caught cheating),

then it is forced to use rP exactly as instructed in the protocol. Party P is now limited to non-erasing

behavior, and the construction of Section 4 applies. (We note that the use of certi�ed random inputs

27

does not limit the simulator. That is, upon corruption of party P , the simulator can still compute some

convenient value r0P to be used as P 's random input, and then \convince" the adversary that the certi�ed

random input of P was r0P . The adversary will not notice anything wrong since it will never have all the

shares of the certi�ed random input.)

References

[B] E. Bach, \How to generate factored random numbers", SIAM J. on Comput., Vol. 17, No. 2, 1988,

pp. 179-193.

[Be1] D. Beaver, \Foundations of Secure Interactive Computing", CRYPTO, 1991.

[Be2] D. Beaver, \Adaptive Zero Knowledge and Computational Equivocation", 28th STOC, 1996.

[BH] D. Beaver and S. Haber, \Cryptographic Protocols Provably secure Against Dynamic Adversaries",

Eurocrypt, 1992.

[BGW] M. Ben-Or, S. Goldwasser and A. Wigderson, \ Completeness Theorems for Non-Cryptographic

Fault-Tolerant Distributed Computation", 20th STOC, pp. 1-10, 1988.

[BM] M. Blum, and S. Micali, \How to generate Cryptographically strong sequences of pseudo-random

bits", SIAM J. on Computing, Vol. 13, 1984, pp. 850-864.

[BCC] G. Brassard, D. Chaum and C. Crepeau, \Minimum Disclosure Proofs of Knowledge", JCSS, Vol.

37, No. 2, 1988, pp. 156-189.

[C] R. Canetti, \Studies in Secure Multi-Party Computation and Applications", Ph.D. Thesis, Depart-

ment of Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel, June

1995.

[CDNO] R. Canetti, C. Dwork, M. Naor and R. Ostrovsky, \Deniable Encryptions", manuscript.

[CCD] D. Chaum, C. Crepeau and I Damgard, \Multi-party unconditionally secure protocols", 20th STOC,

pp. 11-19, 1988.

[DP] A. De-Santis and G. Persiano, \Zero-Knowledge proofs of knowledge without interaction", 33rd

FOCS, pp. 427-436, 1992.

[EGL] S. Even, O. Goldreich and A. Lempel, \A randomized protocol for signing contracts", CACM, vol.

28, No. 6, 1985, pp. 637-647.

[F] P. Feldman, personal communication via Cynthia Dwork, 1988.

[GILVZ] O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan and D. Zuckerman, \Security Preserving

Ampli�cation of Hardness", 31st FOCS, 1990, pp. 318{326.

[GrL] O. Goldreich and L. Levin, \A Hard-Core Predicate to any One-Way Function", 21st STOC, 1989,

pp. 25-32.

[GMW] O. Goldreich, S. Micali and A. Wigderson, \How to Play any Mental Game", 19th STOC, pp.

218-229, 1987.

28

[GwL] S. Goldwasser and L. Levin, \Fair Computation of General Functions in Presence of Immoral

Majority", CRYPTO, 1990.

[MR] S. Micali and P. Rogaway, \Secure Computation", CRYPTO, 1991.

[R] M. Rabin, \How to exchange secrets by oblivious transfer", Tech. Memo TR-81, Aiken Computation

Laboratory, Harvard U., 1981.

[RB] T. Rabin and M. Ben-Or, \Veri�able Secret Sharing and Multi-party Protocols with Honest Ma-

jority", 21st STOC, 1989, pp. 73-85.

[RSA] R. Rivest, A. Shamir, and L. Adleman, \A Method for Obtaining Digital Signatures and Public

Key Cryptosystems", CACM, Vol. 21, Feb. 1978, pp. 120{126.

[Y] A. Yao, \Theory and applications of trapdoor functions", 23rd FOCS, 1982, pp. 80-91.

29

