
Translucent Cryptography | An Alternative to Key Escrow, and

its Implementation via Fractional Oblivious Transfer�

Mihir Bellare
y

Ronald L. Rivest
z

February 18, 1996

Abstract

We present an alternative to the controversial \key escrow" techniques for enabling law-
enforcement and national security access to encrypted communications.

Our proposal allows such access with probability p for each message, for a parameter p

between 0 and 1 to be chosen (say, by Congress) to provide an appropriate balance between
concerns for individual privacy, on the one hand, and the need for such access by law-enforcement
and national security, on the other. For example, with p = 0:4, a law-enforcement agency
conducting an authorized wiretap which records 100 encrypted conversations would expect to
be able to decrypt (approximately) 40 of these conversations; the agency would not be able to
decrypt the remaining 60 conversations at all.

Di�erent values of p can be chosen for di�erent situations, such as for export. Our proposal
can be combined with other ideas, such as secret-sharing, to provide additional 
exibility. Our
scheme is remarkably simple to implement, as it requires no prior escrowing of keys.

We provide an e�cient implementation of translucent cryptography. It is based on non-
interactive oblivious transfer, as pioneered by Bellare and Micali [2], who showed how to trans-
fer a message with probability 1=2. We provide means for non-interactive fractional oblivious
transfer, which allows a message to be transmitted with any given probability p. Our pro-
tocol is based on the Di�e-Hellman assumption and uses just one El Gamal encryption (two
exponentiations), regardless of the value of the transfer probability p.

This makes the implementation of translucent cryptography competitive, in e�ciency of
encryption, with current suggestions for software key escrow such as the fair Di�e-Hellman
system [20], so that e�ciency, at least, is not a barrier to its consideration.

� An earlier version of this paper, by the second author, was titled \Translucent Cryptography: An Alternative to

Key Escrow," and was presented at the Rump session of Crypto 95. Patent pending with probability 1=2.
y Department of Computer Science & Engineering, Mail Code 0114, University of California, San Diego, 9500

Gilman Drive, La Jolla, CA 92093. E-mail: mihir@cs.ucsd.edu
z Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139. E-mail:

rivest@theory.lcs.mit.edu



1 Introduction

Our nation is in the midst of an important and critical debate on cryptographic policy. The current
administration seems committed to the idea that the government should be able to read encrypted
communications to support law-enforcement or national security objectives, when appropriately
authorized. (See NIST [21].) This position is highly unpopular with many (most?) citizens and
with much of the business community.

The purpose of this paper is not to contribute to the political debate directly. (For the record,
the views of the second author are strongly libertarian.) The reader is referred to Ho�man [17],
Denning [10], or Micali [20] for some discussion of the issues involved. Rather, our purpose here is
contribute as technologists by pointing out that there are other possible ways we might try to achieve
an appropriate balance between individual privacy and government access to communications. Key-
escrow is not the only game in town. Just as technology can produce or exacerbate a basic con
ict,
technology can also provide means for its solution.

1.1 Translucent cryptography

This paper introduces a new dimension along which debate can be framed and compromise can be
considered: the probability p with which a particular message can be decrypted by the government.
A fraction p of the messages sent from a user Alice to a user Bob will be decryptable by the
government, and the remaining 1 � p fraction will not be decryptable by the government. (To
recover messages from one user to another, the government would wiretap the communication
between them. Of the recovered messages, it will be able to decrypt a p fraction.) Of course,
the intended recipient of an encrypted message can always decrypt it; it is only the government
that gets a \partial view." The sender of an encrypted message does not know whether or not
that message will be decryptable by the government. A small value of p (say, p = 0:02) favors a
libertarian viewpoint, while a large value of p (say, p = 0:9) favors law-enforcement.

In comparison, we see that debate about key-escrow is a di�cult one because there is no \middle
ground": either the government has access (if the keys are escrowed) or it does not (if the keys are
not escrowed). With our proposal, values of p strictly between 0 and 1 form a \middle ground"
where each side of the debate has some gain, and some loss. A value of p can be chosen that
balances the relative concerns. Congress might pick the appropriate p.

The scheme is called \translucent" because it explores the space between \opaque" (strong
encryption with no key escrow) and \transparent" (no encryption or encryption with key escrow).1

With our translucent scheme, the government can decrypt some of the messages, but not all. Just
as a translucent door on a shower stall provides some privacy, but not perfect privacy, translucent
crypto provides some communications privacy, but not perfect privacy. In our scheme the degree
of \translucency" can be controlled by varying p.

The value of p does not even need to be �xed once and for all, nor need it be the same for each
kind of encryption equipment. The value of p might be chosen small today (say p = 0:02), and
increased or reduced later as judged appropriate. Or, one could have one value of p for cellular
phones and a di�erent one for email encryption programs. Or, a larger value of p could be used in
export versions of programs than is used for domestic versions. The value of p used is built into the
encrypting device or program. It is possible for the government to measure the e�ective value of p
used by an encrypting device or program, and so to monitor compliance with the overall scheme.

1Other adjectives we considered instead of \translucent" were \variable-opacity," \fractional-access," \partial-

access," and \probabilistic-access." Translucent seemed the simplest choice.

2



Because a criminal does not know which messages are decryptable and which are not, he runs
the risk every time he uses encryption that this particular message will be decrypted and will be
used against him.

Our proposal also has the advantage, compared to key-escrow techniques, that there is prac-
tically no \set-up" required. Users and manufacturers do not need to register or escrow their
cryptographic key information. More speci�cally, a manufacturer of cryptographic circuits does
not have to secretly manufacture, record, and deliver to escrow agents the secret keys of each chip,
as is the case for the \Clipper chip." Indeed, the chips can be all made identically in a non-secret
manner. Analogously, there is no need for users of public-key cryptosystems to submit their private
keys for escrowing; their private keys remain forever their own secrets. These are consequences of
the fact that our scheme discloses only the message or session key to the government, not the
long-term keys of the devices or of the users. The only set-up required is for the government to
publish a list of public keys, and for Congress to pick an appropriate value(s) for p.

This proposal can combined with previously-known techniques to achieve other objectives, such
as requiring more than one government agency to cooperate before any messages can be decrypted,
or limiting the e�ective time period of a wire-tap warrant.

This proposal is hardly perfect. One can object to it on many fronts, both political (the \other
side" of the debate gets to win a little, and could win more later if p changes) and technical (like
key escrow, our scheme is easy to subvert by techniques such as double-encryption).

Nonetheless, this proposal will serve its purpose if it opens our imaginations a bit, enlarges our
sense of the possible, and helps to bring a di�cult national debate closer to a resolution we can all
live with.

1.2 Fractional oblivious transfer

We suggest an implementation of translucent cryptography based on an implementation of non-
interactive fractional oblivious transfer. The resulting translucent scheme is as e�cient, in terms
of encryption, as current suggestions for software key escrow. Speci�cally, we need one El Gamal
encryption (two exponentiations), which is the same as the cost of encryption in the Di�e-Hellman
system.

Our implementation is based on the non-interactive oblivious transfer primitive of [2]. We
extend their scheme, which achieves transfer probability 1=2, to achieve transfer probability any
fraction p 2 [0; 1], at no added encryption cost.

In any suggestion for technical solutions to the policy debate we have been discussing, e�ciency
is a key issue. Although a scheme cannot, of course, stand on e�ciency alone, it can certainly
fail due to its ine�ciency. By providing an implementation of translucent cryptography which is
competitive, in encryption e�ciency, with implementations of key escrow, we have surmounted at
least the �rst barrier to its discussion.

Furthermore, we suggest that our implementations of fractional oblivious transfer, described in
Section 4, may be of independent interest.

We stress that our implementation of translucent cryptography based on non-interactive obliv-
ious transfer will not incur any \extra 
ows." When Alice wishes to communicate with Bob, her
only transmission is to Bob. (In particular, she doesn't communicate on-line with the government.)
If the government wants to know something about what Alice is saying to Bob, it must wiretap
their communications, and then it will be able to decrypt a fraction p of the messages it picks up.

3



2 Non-interactive oblivious transfer

Since our proposal uses non-interactive oblivious transfer techniques, we give the background for
and sketch this technology in this section.

Rabin [24] was the �rst to introduce the notion of oblivious transfer, in which one party (Alice)
can transfer a message to another party (Larry2) in such a way that:

� Larry receives the message with probability exactly 1=2.

� Alice does not know whether Larry received the message or not|that is, she is oblivious as
to whether the transfer was successful or not.

Rabin introduced the notion of oblivious transfer to help solve the problem of \exchanging secrets,"
a problem also studied by Blum [4].

Protocols for oblivious transfer have been studied by Even, Goldreich, and Lempel [11, 12],
Fischer, Micali, and Racko� [14], Berger, Peralta, and Tedrick [3], Cr�epeau [6], and others [19, 9,
16, 1]. These protocols are interactive: they require the recipient, Larry, to actively participate in
the protocol by sending messages to Alice. For our purposes, we need the oblivious transfer to be
non-interactive: Larry should not have to send any messages in order to receive Alice's message
with probability one-half. With non-interactive oblivious transfer, Larry needs merely to receive
(or overhear) Alice's message in order to decrypt it with probability one-half.

The �rst non-interactive oblivious transfer protocol is due to Bellare and Micali [2]. Further
protocols were given by De Santis and Persiano [8] and De Santis, Di Crescenzo and Persiano [7].

To make this paper concrete and self-contained, we describe the simplest proposal made by
Bellare and Micali for implementing non-interactive oblivious transfer. Our proposal does not
depend on the details of how non-interactive oblivious transfer is implemented, however, so that
other implementation techniques may be used. The rest of this section may be skipped by those
not familiar with number theory or those not wishing to get involved in the mathematical details.

An initial global set-up phase establishes the following three public values:

� a large global prime q (say at least 1024 bits in length),

� a generator g of the multiplicative group Z�

q , and

� a value U such that no one knows the discrete logarithm of U (base g, modulo q). More
precisely, computing U 's discrete logarithm should be computationally infeasible for anyone.

We denote the global prime as q, since we are already using p to stand for something else. Bellare
and Micali suggest ways that values for q, g, and U could be chosen. In our application, perhaps
the ACLU could choose these values.

The second phase is publication of public keys. Like the global set-up phase, this phase needs
to be done only once, no matter how many oblivious transfers will be performed. Larry publishes a
pair of values (V; V 0), where V 0 = V U , as his public key pair. Larry should know either the discrete
logarithm of V , or the discrete logarithm of V 0; he cannot know both. We say that V is a good key

(for Larry) if Larry knows the discrete logarithm of V , otherwise we say that V is a bad key (for
Larry).

2We explain the cast of characters: Alice and Bob are citizens, who may or may not be up to something. Larry

works for a law-enforcement agency.

4



Can Larry cheat by publishing two public keys V and V 0 that are both good for him? If it
is indeed the case that computing the discrete logarithm of U is computationally infeasible, then
Larry can not successfully cheat, since anyone can check that V 0 = UV , and thus if both V and V 0

are good for Larry, Larry could easily compute the discrete logarithm of U :

log(U) = log(V 0)� log(V ) (mod q � 1) :

Thus only one of the two public keys Larry published is good for Larry; he knows the discrete
logarithm of only one of these keys.

In the �nal communication phase, we suppose now that Alice wishes to obliviously send Larry a
message s 2 Z�

q . (We use s to denote the message, since later s will denote a session key in Alice's
conversation with Bob.) Alice can do so by picking one of Larry's two public keys at random, and
encrypting s using that public key and the ElGamal encryption algorithm [15], as follows (supposing
that V was picked):

� Alice picks a value y from f0; 1; : : : ; q�2g uniformly at random, and sends Larry the ciphertext

E(s; V ) = (c1; c2) = (gy; sV y) :

(All values computed modulo q.)

� If (and only if) Larry knows the discrete logarithm x of V , he can compute s:

s = c2=c
x
1 (mod q) :

Thus, Larry receives s with probability exactly 1=2, since only one of his two public keys is good.
The protocol is oblivious since Alice doesn't know which of Larry's keys is good.

Note that this protocol is non-interactive. Also note encryption takes two exponentiations. This
is the same as in the Di�e-Hellman public key system. (There, Bob would have public key V = gx

and private key x, and Alice would send him a message s by sending E(s; V ).)

The above protocol di�ers in presentation and inessential minor respects from that proposed
by Bellare and Micali; see their paper [2] for other methods and discussion.

It is important to note that successive oblivious transfers are not independent: if Alice sends
two successive messages using Larry's public key V , Larry either receives them both or receives
neither of them. This property of non-interactive OT has often been pointed out in the literature,
and has relevance to our application, as discussed later.

3 Translucent Cryptography

In the previous section we have explained how non-interactive oblivious transfer can be achieved,
where the probability is p = 1=2 that Larry receives the message. In the next section, section 4, we
explain how to achieve non-interactive fractional oblivous transfer can be acheived, where a wide
range probabities p can be implemented. Before diving into the mathematics required to implement
non-interactive fractional oblivous transfer, however, we explain in this section how non-interactive
fractional oblivious transfer can be used to implement translucent cryptography. This is rather
straightforward. The reader should, for the moment, accept our promise that we will explain how
to implement non-interactive fractional oblivious transfer with a variety of values for p; this promise
will be kept in section 4.

5



Assume that a probability p has been determined, and that the global quantities needed to set-
up the non-interactive fractional oblivious transfer have been determined.3 We also assume that
Larry (the government) has published his public key(s), again according to the algorithm speci�ed
by whichever scheme we are using. Thus he can obtain a message sent via oblivious transfer with
probability p.

The above computation and publication by Larry is the only set-up required by our translucent
cryptography scheme; there is no need for each user to escrow shares of his private key, or for
manufacturers to escrow shares of keys stored in each cryptographic device produced. Each cryp-
tographic product can be made in an identical manner, embodying the quantities just described.
In practice, each product would also presumably have a unique identifying serial number, so that
its messages can be distinguished from those of other products. This number does not need to be
secret.

How can a user Alice now send a message M in encrypted form to another user Bob, in such a
way that Larry (who is authorized to eavesdrop on the message) can decrypt it with probability p?

First, Alice determines a \message key" (or \session key") key s in an arbitrary manner. The
key s might, for example, be freshly generated, or might be the result of a prior agreement between
Alice and Bob. Then, Alice computes, as a function of Larry's key, a string L which comprises the
message she would send to transfer s to Larry under the p-NFOT scheme in use. (For example, if
we are using the polynomial scheme of section 4 and Larry's public key is (V1; : : : ; Vm;W0; : : : ;Wa)
then Alice picks i 2 [m] at random and lets L = E(s; Vi).) Now, Alice transmits a message to Bob
consisting of the following �elds:

(F1) The encryption of message M using a standard algorithm (e.g. DES) and the message key s.

(F2) Information, if necessary, that allows Bob to determine what secret message key s is being
used.

(F3) The string L she computed above.

The third �eld, namely L, is the \LEAF" (Law Enforcement Access Field). With probability p

this information allows Larry to determine the message key s, and thus to decrypt the �rst �eld to
obtain the message m.

The second �eld would typically consist of the encryption of s under Bob's public key, as is
done for example in Privacy Enhanced Mail [18]. Bob can reliably decrypt this �eld to obtain s,
and thus to decrypt the �rst �eld to obtain the message m. In a variation, the session key s would
be encrypted in a DES key known only to Alice and Bob. Or, this information might consist of a
message that can be used in a Di�e-Hellman key-agreement protocol to establish s. There are a
variety of methods by which Alice can let Bob know what s is, any of which can be used in our
scheme.

The message might also contain the identifying serial number of Alice's cryptographic product.
This could be in the clear, or be part of the information transferred obliviously to Larry in the
third �eld.

To clarify this transmission, we stress that L is not sent to Larry; it is sent to Bob. Larry
obtains it only if he wiretaps the line between Alice and Bob. There is no direct communication
from Alice to Larry at any time.

We note that Bob can verify that Alice is following the translucent cryptography protocol
properly, by checking that the LEAF is properly constructed. In this way a correct implementation

3For the schemes described in section 4, these quantities are denoted q, g, and U if one is using the binary scheme,

or G, g and U if one is using the polynomial scheme, where no one can feasibly compute the discrete logarithm of U
to the base g.

6



can refuse to work with \rogue" implementations that do not build proper LEAF's.

This completes our description of the basic translucent cryptography protocol.

4 Non-interactive Fractional Oblivious Transfer

We call an oblivious transfer scheme fractional if the probability p that Larry successfully receives
the message may be chosen to be di�erent from 1=2. The only previous literature on fractional
oblivious transfer schemes that we know of is by Brassard et al. [5], who discuss the special case of
transferring one message out of a set of n messages. We now explain how to achieve non-interactive
fractional oblivious transfer schemes for a variety of values for p.

Let's say that a p-NFOT is a Non-Interactive Fractional Oblivious Transfer protocol in which
the transfer probability is p. Our goal is to design such protocols for given values of the probability
p 2 [0; 1]. We begin by noting simple solutions for certain values of p. Then we move on to the
general case, and present two protocols.

4.1 Some simple special cases

A one out of n NFOT. To obtain a simple form of fractional capability, it is easy to modify the
basic scheme discussed above to provide \one of n" capability non-interactively. (That is, given n,
we can design a p-NFOT with p = 1=n.) First, for technical reasons, we would work not over Z�

q

but over a multiplicative group of G of prime order q.4 As before, g is a generator (now of G) and
U 2 G is such that logg(U) is both unknown and infeasible for anyone to compute. Larry publishes
a list of values (V0; V1; : : : ; Vn�1) such that Vi = V0U

i, in such a way that only one of these keys is
good for Larry. (See below for how.) Alice checks that indeed Vi = V0U

i for i = 0; : : : ; n� 1, then
picks one of Larry's public keys at random, and uses it to encrypt the message to be sent to him.

To make his key, Larry picks x 2 Zq at random and i 2 f0; : : : ; n � 1g at random. He sets
Vi = gx, and then sets Vj = ViU

j�i for j 6= i. One can check that Vj = V0U
j for all j = 0; : : : ; n� 1.

On the other hand, no matter how Larry makes his key, he cannot know the discrete logs of
two (or more) members of the list of group elements which comprises his key. For, say, he knew
xi; xj such that Vi = gxi and Vj = gxj where 0 � i < j < n. Dividing, we see that U j�i = gxj�xi .
It follows that logg(U) can be computed, as logg(U) = (j � i)�1(xj � xi) mod q, where (j � i)�1

represents the multiplicative inverse of j � i in the �eld Zq. (It is to ensure this inverse exists that
we work in a group of prime order.)

A n� 1 out of n NFOT. Similarly for any n it is easy to obtain a p-NFOT with p = (n� 1)=n.
Larry publishes a list of values (V0; V1; : : : ; Vn�1) such that

Qn

i=0 Vi = U , in such a way that n � 1
of these keys are good for Larry. (This is easy for Larry to do; the details are omitted here.) Alice
checks the product constraint, then picks one of Larry's public keys at random, and uses it to
encrypt the message to be sent to him. The product constraint implies that Larry cannot know
the discrete logs of all the keys, so the transfer probability is (n� 1)=n.

Arbitrary p. Now our goal is to accomplish p-NFOT for an arbitrary, given value of p 2 [0; 1].
We would like, ideally, to be as e�cient as the above schemes, and use just one encryption. We
do not accomplish this in our �rst scheme, the binary scheme of Section 4.2 below, where we use

4 The order of Z�

q is q�1 which is not prime. For more on groups of prime order, refer ahead to Section 4.3 where

we use them again.

7



a number of encryptions proportional to the number of bits in the binary expansion of p. Then in
Section 4.3 we present another scheme which requires only one encryption.

4.2 The binary scheme

Here is a way to extend the basic scheme to get a fractional scheme where the probability p can be
any �nite binary fraction p = a=2n, where a is an integer in the range 1 to 2n� 1. (The cases p = 0
and p = 1 can be easily handled without any oblivious transfer; for p = 1 Alice merely needs to
encrypt s with an additional public key known to be good for Larry.) In this solution Alice will use
a number of encryptions depending on p to accomplish the transfer. (Speci�cally, 2n encryptions,
which is 4n exponentiations.)

Let the n-bit binary expansion of p = a=2n = 0:a1a2 : : :an, so that

p =
Pn

i=1 ai2
�i :

We assume the values of n, a, and p are public knowledge, as are q, g, and U|the global set-up
phase is the same as above.

Key setup. In the publication of public keys phase, Larry publishes a sequence of n pairs of public
keys:

(V1; V
0

1); (V2; V
0

2); : : : ; (Vn; V
0

n) ;

where exactly one key in each pair is good for Larry. For each i, 1 � i � n, Larry privately 
ips a
coin to determine whether Vi or V 0

i will be good for him, and proceeds to generate the i-th pair of
keys as follows. If the i-th coin 
ip is \heads," he �rst randomly picks a xi between 0 and q � 2,
and sets

(Vi; V
0

i ) = (gxi; Ugxi) ;

so that he knows the logarithm xi of Vi. Otherwise he randomly picks a x0i between 0 and q � 2,
and sets

(Vi; V
0

i ) = (gx
0

i=U; gx
0

i) ;

so that he knows the logarithm x0i of V
0

i . Note that V
0

i = UVi in either case, which can be checked
by anyone. Of course, Larry should not tell anyone which public keys are good for him.

Transfer. In the communication phase, Alice can non-interactively and obliviously transfer a
message s to Larry so that he receives it with probability p, as follows. This will require sending a
sequence of n triples

T1; T2; : : : ; Tn

to Larry, where each triple contains two values encrypted with Larry's keys Vi and V 0

i . (In our
application, we imagine that n probably need not be larger than about �ve to obtain satisfactory
precision in the value of p, so that this sequence is actually quite short.)

First, Alice chooses a sequence of n keys K1, K2, : : : , Kn as random values modulo q, and
computes their running sums:

L0 = 0; and

Li = K1 +K2 + : : :+Ki (mod q); for i = 1; 2; : : : ; n :

She also determines a value Ji for each i, 1 � i � n:

Ji =

(
0 if ai = 0;
s+ Li�1 (mod q) if ai = 1 :

8



Each Ji is either \junk" (0, if ai = 0) or a \jewel" (s+ Li�1, if ai = 1).

Second, Alice chooses a sequence of n \random" bits r1, r2, : : : , rn. (We will return to the
question as to how Alice might generate these bits later.)

Finally, Alice sends Larry a sequence of n triples, where the i-th triple Ti, for 1 � i � n, contains
ri and the encrypted versions of Ji and Ki, and where the encryption is performed using Larry's
public keys Vi and V 0

i as follows.

� If ri = 0, Ji is encrypted with Vi and Ki is encrypted with V 0

i ; the i-th triple is

Ti = (0; E(Ji; Vi); E(Ki; V
0

i )) :

� Otherwise (if ri = 1) the public keys are switched: Ji is encrypted with V
0

i andKi is encrypted
with Vi; the i-th triple is

Ti = (1; E(Ji; V
0

i ); E(Ki; Vi)) :

Since each triple contains ri, Larry knows which way his public keys were used. For each i, Larry
can decrypt either Ji or Ki; he knows which he can decrypt and which he cannot.

This completes our description of a rather straightforward way to implement non-interactive
fractional oblivious transfer.

Why this works. To see that this scheme works as advertised, note that Alice sends Larry exactly
n triples, and that Larry can decrypt exactly one ciphertext of each triple. On the i-th triple, if
ai = 0, Larry gets either junk (0) or a key (Ki). If ai = 1, Larry either gets a jewel (s+ Li�1), or
a key (Ki). Larry knows whether he gets junk, a jewel, or a key, since he knows ai and ri. Larry
obtains s if and only if he gets t � 1 keys followed by a jewel, for some t, 1 � t � n. He can tell if
he is able to obtain s or not. Since succeeding in position t happens only if at = 1, and then only
with probability 2�t, Larry receives s with probability exactly p, by equation (4.2).

Alice's random bits r. Note that as long as Larry chooses which of each pair of public keys are
good for him at random, then it does not matter whether or not Alice chooses the bits ri randomly;
Larry has a chance of exactly p of reading any particular message.

Similarly, as long as Alice chooses her bits r at random, then Larry will have a chance of exactly
p of reading any particular message, even if Larry did not randomly decide which of each pair of
public keys would be good.

However, we observe that Alice can in principle, if she wishes, choose her r bits to be identical or
correlated from message to message. In some situations this might give her a perceived advantage,
since this might allow Larry to read all of a sequence of messages, or none of them.

To help ensure that Alice uses appropriate randomness, one could require that Alice's random
bits r be determined in some �xed manner, say by cycling sequentially through all possible values
for r, or by hashing (taking a message digest of) the �rst �eld (the encrypted message m). It is
easy for Larry to determine whether or not Alice is complying with this standard procedure. The
second procedure is not perfect, since Alice can encrypt several variants of the same message, and
only transmit those with desired r values, but this approach may not help her, inasmuch as she
doesn't know which keys are good for Larry.

4.3 The polynomial scheme

We now propose a di�erent scheme in which Alice needs only a single encryption (costing two
exponentiations) in order to accomplish the transfer, regardless of the value of p.

9



Preliminaries. We consider a transfer probability of the form p = a=m where a;m are integers
satisfying 0 < a � m. (In the binary scheme, m = 2n was a power of two. Here we won't make this
restriction.) The scheme is based, as before, on the hardness of discrete logarithms, but this time
in a group G of prime order q > m for which the discrete logarithm problem is hard. There are
many ways to get such groups. A simple, concrete implementation is to choose a prime � = 2q + 1
where q > m is also prime, and let G be a subgroup of order q of Z�

� . (Speci�cally, we can �x and
publicize an element � 2 Z�

� of order q, and let G = h�i be the sub-group generated by �. Under
this implementation, the arithmetic operations are all in Z�

� , so have the usual costs.)

Notice that all non-trivial elements of G are generators of G. We let g be a randomly chosen
generator of G, so G = f gi : i 2 Zq g. It is important for us that the index set Zq is itself a �eld,
which is why we chose G to be of prime order q. As before, we let U 2 G be an element for which
logg(U) is unknown. We let �0 = 1 2 Zq. We also �x m distinct elements �1; : : : ; �m of Z�

q �f�0g.
(It must be that �0 = 1. But it does not matter what �1; : : : ; �m are as long as they are distinct,
non-zero, and non-one, and we suggest the reader think of them as 2; 3; : : : ; m+1. That �0; : : : ; �m

must be distinct is the reason we have q > m.)

The values p, a, m, �, q, g, and �0; : : : ; �m are all �xed and public.

The idea. Before specifying the scheme, let us try to give a brief, informal overview of the ideas.
Larry will form a public key V1; : : : ; Vm;W0; : : : ;Wa consisting of m + a + 1 elements of G. The
last a+ 1 elements will be used only by Alice to verify that Larry's key is properly made. Letting
xi = logg(Vi) 2 Zq for i = 1; : : : ; m, the key will be chosen so that:

(1) Larry knows a random, size a subset of fx1; : : : ; xmg.

(2) There exists a degree a polynomial f(x) = f0 + f1x+ � � �+ fax
a 2 Zq[x] such that

(2.1) xi = f(�i) for all i = 1; : : : ; m, and

(2.2) Larry does not know f .

Furthermore, this will be done in such a way that Alice can check the property (2). Now if Larry
does not know f then he cannot know more than a of the values x1; : : : ; xm (otherwise he could
interpolate to �nd the coe�cients of f). Thus, in fact, he knows exactly a of these values. Now
to accomplish the transfer, Alice can choose one key out of V1; : : : ; Vm at random, and use it as
before. This calls, on the part of Alice, for only a single encryption.

The problem is how to set up the constraints we have discussed. Obviously we cannot have
Larry choose f , since then he would know it. Instead, we make Larry specify W0; : : : ;Wa in
some particular way, and then view the coe�cients of the polynomial as implicitly speci�ed by fi =
logg(Wi) for i = 0; : : : ; a. Furthermore, we will ensure (and Alice will check) thatW0�W1 � � �Wa = U ,
which implies that Larry doesn't know all of f0; : : : ; fa, and hence doesn't know f . (In our scheme
if Larry is honest he will in fact know the discrete logs of none of the Wi's.) Furthermore, Alice
can verify item (2.1) above using a technique of Feldman [13] and Pedersen [23] used for veri�able
secret sharing.

Larry will proceed by �rst specifying a random, size a subset of V1; : : : ; Vm in such a way that
he knows the discrete logs of these a elements. Then, we will show how he can computeW0; : : : ;Wa

by a linear algebraic technique. Finally, he will use these values to specify the remaining m � a

elements amongst V1; : : : ; Vm. Let us now describe the scheme in full.

Key setup. Larry chooses at random a size a subset of [m] = f1; 2; : : : ; mg. This choice can be
thought of as specifying an injective map � : [a]! [m], where �(1); : : : ; �(a), all distinct, are the a

10



chosen indices. He now chooses elements x�(1); : : : ; x�(a) 2 Zq at random and sets

V�(l) = gx�(l) 2 G for l = 1; : : : ; a : (1)

(This speci�es a of the elements V1; : : : ; Vm in such a way that Larry knows their discrete logs. The
other m� a still need to be speci�ed, in such a way that Larry doesn't know, and can't compute,
their discrete logs.) Now Larry de�nes the a+ 1 by a+ 1 Vandermonde matrix

A =

2
6666664

�0
0 �1

0 � � � �a
0

�0
�(1) �1

�(1) � � � �a
�(1)

...
...

...
...

�0
�(a) �1

�(a) � � � �a
�(a)

3
7777775
:

Since A is Vandermonde it is invertible. Larry computes its inverse

B = A�1 =

2
6666664

�0;0 �0;1 � � � �0;a

�1;0 �1;1 � � � �1;a
...

...
...

...

�a;0 �a;1 � � � �a;a

3
7777775
:

The arithmetic here is over the �eld Zq . (Notice that in saying this inverse exists and can be
computed we need the fact that Zq is a �eld. This is why we choose G to be of prime order q.)
Larry now sets

W0 = U�0;0 �
Q a

l=1 V
�0;l

�(l)

W1 = U�1;0 �
Q a

l=1 V
�1;l

�(l)

...
... (2)

Wa = U�a;0 �
Q a

l=1 V
�a;l

�(l) ;

the arithmetic here being in G. (We will see that by doing this, Larry has implicitly chosen the
polynomial f(x) = f0 + f1x + � � �fax

a 2 Zq[x] where fi = logg(Wi). But Larry does not know
f0; : : : ; fa.) Now Larry speci�es the remaining Vi's as follows| he sets

Vi =
Qa

j=0W
�
j

i

j for all i 2 [m] that are not in the range of � ; (3)

the arithmetic being in G. Finally, Larry outputs (V1; : : : ; Vm;W0; : : : ;Wa) as his public key.

Properties of this key. To better understand what follows, it is worth saying something about
what Larry accomplishes by the above steps. The following claim says that he is implicitly de�ning
the polynomial f(x) = f0 + f1x+ � � �+ fax

a 2 Zq [x] by the matrix equation Equation 4, and that
his key is related to this polynomial as we would like.

Claim 4.1 Suppose Larry follows the key generation procedure described above. De�ne2
6666664

f0

f1
...

fa

3
7777775
=

2
6666664

�0;0 �0;1 � � � �0;a

�1;0 �1;1 � � � �1;a
...

...
...

...

�a;0 �a;1 � � � �a;a

3
7777775

2
6666664

logg(U)

x�(1)
...

x�(a)

3
7777775
; (4)

the arithmetic being in Zq, and let f(x) = f0 + f1x+ � � �+ fax
a 2 Zq [x]. Then

11



(1) logg(Wj) = fj for all j = 0; : : : ; a, and

(2) logg(Vi) = f(�i) for all i = 1; : : : ; m, and, �nally,

(3) f0 + f1 + � � �+ fa = logg(U).

The proof of this claim is in Appendix A. Note that from item (1) we have Wj = gfj , and thus
from item (3) we have W0 �W1 � � �Wa = U , which is the product constraint that Alice will check.

Verification. Alice veri�es the public key (V1; : : : ; Vm;W0; : : : ;Wa) as follows. First, she checks
the size, namely that it really consists of m elements of G followed by another a+1 elements of G.
Then she checks two things|

U = W0 �W1 � � �Wa (5)

Vi =
Q a

j=0W
�
j

i

j for all i = 1; : : : ; m : (6)

If these checks pass, she accepts the public key as valid.

One can check that Claim 4.1 implies that if Larry is honest then these checks do succeed.
More important, however, is that even if Larry is not honest, this veri�cation guarantees Alices
that Larry will not receive the OT with probability more than p. Why this is true is discussed
below.

We note that Alice has to perform this veri�cation step only once, no matter how many messages
she sends.

Transfer. As we have already indicated, to perform the p-NFOT, Alice picks i 2 [m] at random,
and uses Vi as the key with which to encrypt her message s 2 G. Namely, she picks y 2 Zq at
random and sends E(s; Vi) = (c1; c2) = (gy; sV y

i ), the operations being in G.

Efficiency. The key feature is that transfer needs only one El Gamal encryption (which is two
exponentiations), regardless of the value of p = a=m. We pay for this in the size of the public
�le, which is O(k(m+ a)) where k = j�j is the security parameter. (In the binary scheme, it was
O(k log2(m)).) But this is not too important. The public �le is down-loaded once (or at not too
frequent intervals) and stored by Alice on her machine. The time needed to compute a ciphertext
and the size of the ciphertext don't depend on the size of this �le.

Security for Alice. The veri�cation is for Alice's security; it is supposed to guarantee her that
even if Larry is dishonest, he won't get her data with probability more than p. So consider a Larry
who tries to cheat. His goal is to somehow create the public key so that he ends up knowing logg(Vi)
for more than a values of i 2 [m]. The following claim implies Larry cannot cheat in this way. To
state it we �rst need some terminology. Given elements W0; : : : ;Wa of G, we de�ne the polynomial

de�ned by W0; : : : ;Wa as f(x) = f0+f1x+� � �+faxa where fj = logg(Wj) for j = 0; : : : ; a. Now, the
following claim says that if veri�cation succeeds then exactly the same conditions as in Claim 4.1
hold with respect to the polynomial de�ned by Larry's public key, even if Larry had tried to cheat.

Claim 4.2 Suppose Alice's veri�cation of key (V1; : : : ; Vm;W0; : : : ;Wa) is successful, and let f(x) =
f0 + f1x+ � � �+ fax

a 2 Zq [x] be the polynomial de�ned by W0; : : : ;Wa. Then

(1) logg(Wj) = fj for all j = 0; : : : ; a, and

(2) logg(Vi) = f(�i) for all i = 1; : : : ; m, and, �nally,

(3) f0 + f1 + � � �+ fa = logg(U).

12



The proof is in Appendix A. In consequence of item (3), Larry can know at most a of the values
f0; : : : ; fa, not matter how he plays, because otherwise he would know logg(U). Intuitively, this
means he doesn't know f . But now, from item (2), it follows that Larry can know at most a of the
values logg(V1); : : : ; logg(Vm). This, intuitively, means that Larry cannot receive the transfer with
probability higher than a=m = p. Notice that Alice's security depends on the intractability of the
discrete logarithm problem for Larry.

Security for Larry. We want to argue that we have security for Larry, meaning that Alice
doesn't know which subset of a out of n keys is the one for which Larry knows the discrete logs.

Claim 4.3 Suppose Larry uses the procedure prescribed above to construct his public key (V1; : : : ;
Vm;W0; : : : ;Wa). Then the distribution on this key is the same as if the key were generated by the
following experiment:

(1) Pick f0; : : : ; fa 2 Zq at random subject to f0 + f1 + � � �+ fa = logg(U),

(2) Let f(x) = f0 + f1x+ � � �+ fax
a 2 Zq[x],

(3) For i = 1; : : : ; m let Vi = gf(�i),

(4) For j = 0; : : : ; a let Wj = gfj , and

(5) Output (V1; : : : ; Vm;W0; : : : ;Wa).

The proof of Claim 4.3 is in Appendix A. Now, clearly, presented with a key from this distribution,
Alice has no idea of what Larry knows about the logg(Vi)'s, even if she can compute discrete logs.

Based on this, one can argue that there is no \key-choosing" strategy for Alice under which
her transfer probability is reduced below p. By this we mean the following. Suppose that instead
of using a random Vi as key, Alice chooses, somehow, probabilities p1; : : : ; pm summing to 1, and
transfers as follows| she picks i 2 [m] according to the distribution Pr[i = j] = pj for all j 2 [m],
and then uses Vi as the key. (If she is honest, pj = 1=m for all j 2 [m].) Then her transfer
probability is still p, regardless of the values of p1; : : : ; pm.

As for the binary scheme, it may be simplest to specify that Alice's \random" choices are to be
made in a speci�c manner, say by cycling through all values.

5 Discussion and Variations

Set-up. Note that Alice needs no \set-up" to follow the translucent cryptography protocol. She
does not need to be a registered user, have any private keys escrowed, etc.

Efficiency. With the proposal of Section 4.3 described above, Alice needs to perform 2 modular
exponentiations (one El Gamal encryption) in order to compute the desired LEAF. An implemen-
tation can, if it wishes, precompute future session keys and their associated LEAFs as a means of
decreasing the latency in encrypting a new message.

The value of p. The value of p that is e�ective is the value of p that is embedded in Alice's
translucent cryptography implementation.

Di�erent categories of equipment could have di�erent probabilities p. For example, software
and hardware that are exported could have p = 1, while domestic versions could have p = 0:02.

Larry can monitor whether or not Alice is using the correct value of p, by monitoring what
fraction of the time he actually succeeds in getting s.

13



Warrants. To ensure that Larry must get a warrant in order to decrypt his allowed fraction of
the translucent crypto, the value transmitted obliviously should be the message key s encrypted
with the public key of Jerry (the judge), or his designated agent who can be available in real-time
to decrypt LEAFs. This encrypted block could also include the ID of the software or hardware
generating the message, if the search warrant is to be restricted to messages from a single source.

Multiple agencies and multiple probabilities The LEAF could easily contain messages for
two or more agencies that need to cooperate to get the �nal message key. Larry might receive
message key s1 encrypted with his public key, and Louis (who works for another organization)
might receive message key s2, encrypted with his public key. The actual message key s might be
the sum (or the exclusive-or) of s1 and s2.

Di�ering agencies could even receive the message key with di�erent probabilities. The FBI
might receive the message key with probability 0:02, whereas an escrow agent of the user's choice
might receive the message key with probability 1.

Stewart Baker (in a private communication that was probably intended to tease the authors)
suggested that law enforcement might �nd this proposal more attractive if it were implemented
in a related variant, making 1% of the messages accessible to law enforcement (without even a
warrant(!). Another 20% or so of the messages would become accessible if suspicious activity is
detected in the �rst 1%, and the remainder would become available to law enforcement with a court
order. It is straightforward to implement such a variation based on our ideas. (It is not so easy,
fortunately, to get around the Constitution!)

Export. Of course, non-U.S. companies may object to Larry accessing their communications,
whether this access was obtained through key escrow or through translucent cryptography. Translu-
cent cryptography is likely to fare no better in an international market than key escrow fares.

On the other hand, it is easy, for example, for U.S. manufacturers to develop products (say for
France) that give U.S. access with probability 0:5 and the French government access with probability
1:0. This would merely require the use of two LEAF �elds, one for each government.

The opening problem. A weakness of our implementations, inherited from a weakness of non-
interactive oblivious transfer, is that in some circumstances, if Larry does excercise his privilage
and decrypt the fraction p of Alice's tra�c to which he is entitled, Alice may learn some information
about Larry's secret key which would enable her, in future, to decrease the probability that Larry
recovers her messages. This happens if Larry not only decrypts, but also reveals which ciphertexts
he decrypted. (As long as Larry keeps secret the decrypted information, nothing is revealed.) For
this reason it may be desirable for Larry to have many public keys, with di�erent keys used in
di�erent programs, di�erent devices, or products produced in di�erent months. Let us explain this
issue by example.

Say we are using the polynomial scheme, and Larry's public key is (V1; V2; V3;W0;W1), and
Larry knows logg(V1) = x1. (The transfer probability here is p = 1=3.) Thus, Larry's secret key
consists of two things: a secret index, namely 1, saying which of the three keys is a \receiving" one
for Larry, and the value x1, which enables the actual receipt. Larry's security relies on the fact
that Alice does not know his secret index; if she did, she could encrypt using only the other keys,
and Larry would never be able to recover the message.

Now suppose Alice encrypts 5 messages, and her choices of keys are V2; V1; V2; V3; V2. Suppose
Larry decides to wiretap. He will obtain the second message. A priori Alice does not know which
message Larry got. But suppose now she learns, somehow, that Larry got the second message.
Then she knows that Larry knows logg(V1), because V1 was the key she used in the second message.

14



Thus she has determined Larry's secret index. Now she can fool him; in future, she will never use
key V1.

How could Alice learn which ciphertext Larry decrypted? The issue is how wiretap information
is used. We expect that often Larry wiretaps for his own information; the recovered plaintexts
are not revealed to the public. In such a case, Alice, or other users, learn nothing about Larry's
secret index. But suppose Larry needs to use the wiretap information, say as evidence in a court
case. The plaintexts are then revealed, and, by their examination, Alice can determine which of
her messages were decrypted. This tells her what is Larry's secret index.

The extent to which this is a problem thus depends on the extent to which Larry intends to
publicize information obtained by wiretaps. Since this must happen to some extent, we need to
mitigate its e�ects. Our suggestion, as indicated above, is that Larry have many public keys, with
di�erent keys used in di�erent programs or devices at di�erent times.

For the bene�t of a reader familiar with non-interactive oblivious transfer (NIOT), let us add
some historical notes and comparison. The underlying issue of revelation of the secret index of a
recipient in a NIOT based on some action of the recipient arose, and was recognized, in the context
of implementing non-interactive zero-knowledge based on NIOT [2]. There the problem was that
if the sender learned that her proof had been rejected then the receiver's secret index would leak.
The suggestion of [2] to overcome this was to change the public key when a proof was rejected.
But this is not too practical, because the sender can force revelation by sending bad proofs. (This
issue, and attacks based on it, have been discussed a few times in the literature.) In comparison,
in translucent cryptography, there is much less of a problem, because it is much harder to force
Larry to reveal which ciphertexts he decrypted. Thus, our suggestion above, that Larry have many
di�erent public keys, seems to provide an acceptable resolution to this \opening" problem in this
context.

Other ways of getting around these schemes. With su�cient work, these schemes, like
other proposals, are easy to get around. Two particularly relevant references are Wyner's papers on
the \wire-tap channel" [26, 22]. Superencryption also defeats this approach, of course; these sorts
of \work-arounds" on the part of a user are problems common to any such proposal for government
access to messages.

Why NIOT? A reader may ask why NIOT is used at all. Speci�cally, how about the following
instead? Let Larry publicize a public key of a conventional public key cryptosystem such as RSA,
and let E denote encryption under this key. (Larry knows the corresponding decryption key.) When
Alice is to send a message m to Bob, she picks, as before, a session key s, uses it to produce the
�rst �eld (F1) as described in Section 3. The second �eld too is as before. She now lets s� equal s
with probability p, and 0 otherwise. She then lets the LEAF be E(s�). Larry can access the LEAF,
and has s a fraction p of the time.

This is certainly much simpler than NIOT. But the problem is that it puts greater trust in Alice.
Alice could cheat very easily, and yet evade detection. For example, whenever m is an \important"
message she would choose s� = 0, and otherwise choose s� = s, doing this in such a way that she
chooses s� = s a fraction p of the time. Then Larry gets only the unimportant stu�, but, because
he is getting a fraction p of the plaintexts, he can't really complain. In contrast, in NIOT, there is
no key-choosing strategy for Alice which lowers the transfer probability below p.

All implementations, whether of key escrow or translucent cryptography such as we discuss,
rely on some trust in Alice. The question is the degree of this trust. Our goal is to make it as hard
as possible for Alice to cheat. As discussed above, there will always be ways around the schemes;

15



but let us not make it too easy.

Comparison with key escrow. The approach proposed has the following advantages over key-
escrow schemes:

(A1) Set-up is particular easy with our scheme; there is no escrow procedure required of users or
manufacturers. We feel that this is a very signi�cant advantage of our proposal.

(A2) There are no escrow agents holding users' keys, who might be tempted (or ordered) to abuse
users' privacy. In our scheme, the corresponding agents are those parties holding the private
keys corresponding to the published public keys.

(A3) There is a �rm upper bound on the extent to which law enforcement can encroach on in-
dividual privacy; a certain fraction of Alice's messages will be private from everyone except
their intended recipients.

(A4) There is a �rm lower bound on the extent to which cryptography will prevent authorized
wiretapping from being e�ective; a certain fraction of Alice's messages will be wire-tappable
(on the average).

(A5) The scheme contains a variable-access rate p that may be changed according to the speci�c
use or the perceived risks.

(A6) Compliance with the scheme can be monitored.

(A7) The scheme can be easily elaborated or combined with other approaches to meet more detailed
requirements.

Our scheme has the following possible disadvantages:

(D1) Law enforcement may be frustrated that when it has an authorized wiretap, it is not getting
decryption of all of the messages. (Too bad; that is the nature of the compromise proposed
here.)

(D2) Individuals may be frustrated that this scheme does not provide absolute privacy for their
messages; law enforcement can read some fraction of their messages. (Too bad; that is the
nature of the compromise proposed here.)

Related work. Upton [25] has suggested using interactive oblivious transfer as a replacement
for key escrow. In his suggestion, every time Alice wishes to communicate with Bob, she must
�rst communicate with Larry, engaging in an oblivious transfer protocol in which she transfers to
Larry either the session key or a random string, she doesn't know which. But this means Larry
must actively participate in every communications session, which creates some signi�cant practical
problems.

6 Open Questions

Can one build an e�cient non-interactive fractional oblivious transfer scheme based on RSA or the
Rabin function rather than on the Di�e-Hellman assumption?

7 Conclusions

We have presented a novel alternative to standard key escrow schemes, that may allow a generally
acceptable compromise to be reached on a di�cult issue of national cryptographic policy. We

16



have proposed an e�cient implementation of it, based on a primitive that may be of independent
interest.

Acknowledgments

We thank Stewart Baker, Tony Eng, Rosario Gennaro, Oded Goldreich, and Burt Kaliski for helpful
comments and suggestions.

References

[1] D. Beaver. How to break a \secure" oblivious transfer protocol. In R.A. Rueppel, editor, Proc.
EUROCRYPT 92, volume 658, pages 285{296, 1993.

[2] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications. In G. Bras-
sard, editor, Proc. CRYPTO 89, pages 547{559. Springer-Verlag, 1990. Lecture Notes in
Computer Science No. 435.

[3] R. Berger, R. Peralta, and T. Tedrick. A provably secure oblivious transfer protocol. In T. Beth,
N. Cot, and I. Ingemarsson, editors, Proc. EUROCRYPT 84, pages 379{386. Springer-Verlag,
1985. Lecture Notes in Computer Science No. 209.

[4] M. Blum. How to exchange (secret) keys. Trans. Computer Systems, 1:175{193, May 1983.
(Previously published in ACM STOC '83 proceedings, pages 440{447.).

[5] G. Brassard, C. Crepeau, and J.-M. Robert. Information theoretic reductions among disclosure
problems. In 27th Annual Symposium on Foundations of Computer Science, pages 168{173,
Toronto, Ontario, Canada, 27{29 October 1986. IEEE.

[6] Claude Cr�epeau. Equivalence between two 
avours of oblivious transfers. In Carl Pomerance,
editor, Proc. CRYPTO 87, pages 350{354. Springer-Verlag, 1988. Lecture Notes in Computer
Science No. 293.

[7] A. De Santis, G. Di Crescenzo, and G. Persiano. Zero-knowledge arguments and public key
cryptography. Information and Computation, 121(1):23{40, 1995.

[8] A. De Santis and G. Persiano. Public-randomness in public-key cryptography. In I.B. Damg�ard,
editor, Proc. EUROCRYPT 90, volume 473, pages 46{62, 1991.

[9] B. den Boer. Oblivious transfer protecting secrecy. In I.B. Damg�ard, editor, Proc. EURO-
CRYPT 90, volume 473, pages 31{45, 1991.

[10] Dorothy E. Denning. Resolving the encryption dilemma: The case for the Clipper Chip.
Technology Review, pages 48{55, July 1995.

[11] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. In R. L.
Rivest, A. Sherman, and D. Chaum, editors, Proc. CRYPTO 82, pages 205{210, New York,
1983. Plenum Press.

[12] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. Commu-

nications of the ACM, 28:637{647, 1985.

17



[13] P. Feldman. A practical scheme for non-interactive veri�able secret sharing. In Proc. 28th
IEEE Symp. on Foundations of Comp. Science, pages 427{438, Los Angeles, 1987. IEEE.

[14] M. Fischer, S. Micali, and C. Racko�. Presentation made at Eurocrypt 84.

[15] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Inform. Theory, 31:469{472, 1985.

[16] L. Harn and H.-Y. Lin. An oblivious transfer protocol and its application for the exchange
of secrets. In H. Imai, R.L. Rivest, and T. Matsumoto, editors, Advances in Cryptology{

ASIACRYPT '91, volume 739, pages 312{320, 1993.

[17] Lance J. Ho�man, editor. Building in Big Brother: The Cryptographic Policy Debate. Springer-
Verlag, 1995.

[18] Stephen T. Kent. Internet privacy enhanced mail. Communications of the ACM, 36(8):48{60,
August 1993.

[19] J. Kilian. Founding cryptography on oblivious transfer. In Proc. 20th ACM Symp. on Theory

of Computing, pages 20{31, Chicago, 1988. ACM.

[20] Silvio Micali. Fair public-key cryptosystems. In Ernest F. Brickell, editor, Proc. CRYPTO 92,
pages 113{138. Springer-Verlag, 1992. Lecture Notes in Computer Science No. 740.

[21] National Institute of Standards and Technology (NIST). FIPS Publication 185: Escrowed

Encryption Standard, February 9, 1994.

[22] L.H. Ozarow and A.D. Wyner. Wire-tap channel II. In T. Beth, N. Cot, and I. Ingemars-
son, editors, Proc. EUROCRYPT 84, pages 33{50. Springer-Verlag, 1985. Lecture Notes in
Computer Science No. 209.

[23] T.P. Pedersen. Distributed provers with applications to undeniable signatures. In D.W. Davies,
editor, Proc. EUROCRYPT 91, volume 547, pages 221{242, 1991.

[24] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard
Aiken Computation Laboratory, 1981.

[25] Jimmy Upton. Unpublished comment made to Whit Di�e before Crypto 93, and mentioned
by Di�e in the Crypto '93 rump session.

[26] A. D. Wyner. The wire-tap channel. Bell Sys. Tech. J., 54:1355{1387, 1975.

A Proofs of Claims

Proof of Claim 4.1: From Equation 4 we have

fj = �j;0 logg(U) +
P a

l=1 �j;lx�(l) for j = 0; : : : ; a : (7)

Now from Equation 2 we have

logg(Wj) = logg

�
U�j;0 �

Qa

l=1 V
�j;l

�(l)

�
= �j;0 logg(U) +

P a

l=1 �j;l logg(V�(l))

= �j;0 logg(U) +
P a

l=1 �j;lx�(l)

= fj ;

18



proving item (1) of the claim. (Here we used Equation 1, namely the fact that V�(l) = gx�(l) by
de�nition.) Now, multiply both sides of Equation 4 by the matrix A, and use the fact that AB = I ,
to get 2

6666664

�0
0 �1

0 � � � �a
0

�0
�(1) �1

�(1) � � � �a
�(1)

...
...

...
...

�0
�(a) �1

�(a) � � � �a
�(a)

3
7777775

2
6666664

f0

f1
...

fa

3
7777775
=

2
6666664

logg(U)

x�(1)
...

x�(a)

3
7777775
:

In other words,

P a

l=0 �
l
0fl = logg(U) (8)P a

l=0 �
l
�(j)fl = x�(j) for j = 1; : : : ; a : (9)

But recall that �0 = 1. Thus Equation 8 directly gives us item (3) of the claim. Furthermore, note
that Equation 9 is the same as

f(��(j)) = x�(j) for j = 1; : : : ; a ;

which establishes item (2) for all i in the range of �. Now we must check item (2) for i not in the
range of �. For these i we know that Vi is de�ned by Equation 3. Taking discrete logs of both sides
of that equation we have

logg(Vi) = logg

�Q a

j=0W
�
j

i

j

�
=
P a

j=0 �
j
i logg(Wj) =

Pa

j=0 �
j
ifj = f(�i) ;

as desired. This completes the proof.

Now, we would like to discuss the security. Refer to Section 4.3 for the de�nition of the polynomial
de�ned by some elements of G.

Proof of Claim 4.2: Item (1) is a tautology. Taking discrete logs of both sides of Equation 6
gives

logg(Vi) = logg

�Q a

j=0W
�
j

i

j

�
=
P a

j=0 �
j
i logg(Wj) =

Pa

j=0 �
j
ifj = f(�i) ;

establishing item (2). Finally, taking discrete logs of both sides of Equation 5 proves item (3).

Proof of Claim 4.3: Fix the map � chosen by Larry. Now let f0; : : : ; fa 2 Zq be arbitrary
subject to their sum being logg(U). We argue that there is a unique choice of x�(1); : : : ; x�(a) 2 Zq

such that Equation 4 holds, namely

2
6664
x�(1)
...

x�(a)

3
7775 =

2
6664
�0
�(1) �1

�(1) � � � �a
�(1)

...
...

...
...

�0
�(a) �1

�(a) � � � �a
�(a)

3
7775

2
6666664

f0

f1
...

fa

3
7777775
: (10)

19



To see that this choice makes Equation 4 hold, �rst note that since �0 = 1 and f0+� � �+fa = logg(U)
we have 2

6666664

logg(U)

x�(1)
...

x�(a)

3
7777775

=

2
6666664

�0
0 �1

0 � � � �a
0

�0
�(1) �1

�(1) � � � �a
�(1)

...
...

...
...

�0
�(a) �1

�(a) � � � �a
�(a)

3
7777775

2
6666664

f0

f1
...

fa

3
7777775
;

and now multiplying both sides byB yields Equation 4. On the other hand the choice of Equation 10
is unique because multiplying both sides of Equation 4 by A recovers it.

This means that for any �xed �, any vector f0; : : : ; fa with f0 + � � �+ fa = logg(U) has the same
probability of being de�ned by Larry's choices in his key construction process. Since the other
quantities, namely V1; : : : ; Vm;W0; : : : ;Wa, are uniquely de�ned given f0; : : : ; fa, we have established
Claim 4.3.

20


