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Abstract

In client/server systems, server integrity can be maintained by disallowing direct client

access to server data and requiring communication through well-de�ned interfaces. Typ-

ically, this communication requires expensive cross-domain calls, or even more expensive

network communication. The main goal of this thesis is to create a system with fast, safe

client/server access by allowing the server to import client code. Importing code allows the

client to access the server through direct procedure calls, which are much faster than the

indirect access that is typically used to maintain integrity. Server integrity is maintained

by using a type-safe client language and by verifying imported code.

To explore the bene�t of allowing the server to import code for client/server communi-

cations, a Java interface to the Thor object-oriented database has been implemented, using

code importing techniques for safe database access. Performance benchmarks indicate the

use of code importing in the Java interface to Thor performs 50 times faster than the Java

interface to Thor using standard communication techniques. These benchmarks also indi-

cate that the Java interface to Thor outperforms by a factor of 3 a highly optimized C++

interface to Thor. However, since Java is interpreted, and thus an order of magnitude slower

than most compiled languages, imported Java code is outperformed by code written in the

language of the database itself. In the future, the use of just-in-time compilation should

improve the performance of Java, making code-importing even more competitive.

Keywords: client/server, code importing, object-oriented database, Java, compiling, code

veri�cation, safe programming languages
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Chapter 1

Introduction

Many distributed applications use a client/server structure to both divide the computation

and to isolate the server from client errors. In these client/server systems, server integrity

can be maintained by disallowing direct client access to server data. The client communi-

cates with the server using a well-de�ned interface that provides limited access and error

checking. The main drawback of these types of client/server systems is that the indirect

client/server communication is expensive. A number of di�erent approaches to this perfor-

mance problem have been suggested. One approach is to trade-o� safety for performance.

By allowing the client to access the server data directly, increased performance is achieved

by sacri�cing server safety. Alternative approaches have aimed at reducing the commu-

nication cost between the client and server when safety is critical. The communication

cost reduction is achieved by either reducing the cost associated with a single message or

reducing the number of messages needed.

This thesis presents a client/server approach that gives high performance without sacri-

�cing safety. By importing and running client code in the server, the client code can access

the server through direct procedure calls. Server integrity is maintained by using a type-safe

client language and by verifying imported code.

1.1 RPC

In typical client/server systems, the client and server run as separate processes and use

interprocess communication (IPC) mechanisms to communicate. The most common type

of IPC used in client/server systems is some form of Remote Procedure Call (RPC), which
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provides the client with a procedural semantics for interacting with the server. Figure 1-1

illustrates the main components of RPC. Using RPC, the client calls a stub routine, which

�rst marshals the arguments (i.e., translates them into a form understood by the server),

and then uses a transport layer to send the requested call to the server. The server also

uses a stub that unmarshals the arguments, performs the call, and returns the results to

the client stub using the transport layer. The client stub then unmarshals and returns the

result of the call to the client.

Server Process

Client ServerClient
Stub

Server
Stub

Client Process

T
ransport L

ayer

call

return

call

return

Figure 1-1: Remote Procedure Call

Using RPC has three important advantages. First, RPC provides the client with familiar

semantics that are identical to those of a procedure call. Another advantage of using RPC

is that it provides heterogeneity. By having the client and server stubs convert between

representations and communicate using a well-de�ned interface, the client and server can

use di�erent languages and di�erent data representations (e.g., big-endian and little-endian).

A �nal crucial advantage of using RPC is that it allows the server to protect itself from a

misbehaving client. Since the client and server run in di�erent address spaces, the client

cannot directly access server data. By limiting the client's interaction with the server to

RPC and performing dynamic type-checking in the server stubs the server can protect itself

from accidental (or intentional) errors in the client.

In an RPC system there are a number of fundamental costs beyond the cost of the

actual procedure call. The main costs are marshaling, unmarshaling, type-checking and

validating the arguments, as well as the cost of the communication between client and

server. The performance of client/server system using RPC is poor when the client makes

a large number of RPC calls that each do only a small amount of work. When the work
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performed by each individual RPC call is small, the overhead of using RPC can easily

dominate the computation time.

1.2 Code Importing

The main goal of this thesis is to create a client/server interface that keeps many of the

bene�ts of RPC while improving performance. The client/server interface uses a form of

function shipping called code importing to download client code to run directly inside the

server. Figure 1-2 illustrates how code importing works. First, the client code is sent to the

server. The server incorporates the client code into the server process. The client code then

makes calls to stubs, which provide the interface between the imported client code and the

server. These stubs combine the functionality of the client and server stubs of RPC. The

stubs marshal the arguments, make a direct call to the server, unmarshal the result, and

return it to the client code.

Server Process

Server

call

return

call

returnStub
Client

Code

Client

Code

T
ransport L

ayer

Figure 1-2: Code Importing

This code importing design has a number of advantages. The most important is that

once the code is imported, there is no longer a performance penalty associated with calls

to the server. Since the client code runs in the same process as the server, IPC techniques

that require expensive cross-domain calls or even more expensive network communication

are not used. Instead a simple procedure call can be used. Another advantage is that the

use of stubs provides the same heterogeneity as RPC; the client code can use a di�erent

language and di�erent data representation from the server.

Since the client code runs in the same address space as the server, the server's integrity

is not guaranteed to be protected from a misbehaving client. To achieve the same safety
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that can be provided by an RPC system a type-safe client language is used along with code

veri�cation when the code is �rst imported. These techniques guarantee that the client can

only access the server through the stubs provided by the system. Additionally, since the

client language is type-safe, the stubs do not have to perform dynamic type-checking.

Code importing presents some fundamentally di�erent performance trade-o�s from RPC.

The main overhead in the code importing system are the initial downloading and verifying

of the client code and the marshaling and unmarshaling of arguments in the stubs. Because

downloading and verifying code is fairly expensive, the initial cost of using code importing

is large compared to a single RPC call. But subsequent calls from the imported client code

to the server are extremely inexpensive compared to an RPC call. Code importing shows

improved performance over RPC when the initial overhead is amortized over a large number

of calls to the server. Since code importing provides a more expressive interface than the

simple procedure call interface of RPC, code importing makes it easy to package a large

amount of work for the server into a single call. For example, an entire client application

can be downloaded to run directly inside of the server.

To evaluate the bene�ts of using code importing, I implemented two interfaces between

Thor[LDG+96], a new object-oriented database system, and clients written in the Java

programming language[Sun95a]. The �rst Java interface to Thor uses a variant of RPC

techniques for safety, communicating with Thor using TCP/IP communication. The second

Java interface to Thor imports and runs the Java client code inside the Thor server using

an embedded Java interpreter.

Performance analysis indicates that the use of code importing in the Java interface

to Thor provides a performance improvement of a factor of 50 over the RPC based Java

interface to Thor that uses TCP/IP for communication. These benchmarks also indicate

that the Java interface to Thor outperforms by a factor of 3 a highly optimized RPC based

C++ interface to Thor that uses a shared memory bu�er for IPC. Yet, because Java is

interpreted, and thus an order of magnitude slower than comparable native machine code,

importing Java code is far outperformed by code written in the language of the database

itself. In the future, the use of just-in-time compilation should allow Java performance, and

thus the code-importing Java interface to Thor, to improve substantially.
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1.3 Roadmap

The remainder of this thesis is divided into seven chapters. Chapter 2 gives some background

on the Thor object-oriented database system and the Java language. Chapter 3 introduces

the client API (Application Programmer Interface) provided by the Java interface to Thor.

Chapter 4 describes the design and implementation of a Java interface to Thor that uses

standard RPC client/server techniques. Chapter 5 describes the implementation of a Java

interface to Thor that uses code importing. Chapter 6 gives performance results and analysis

from running an object-oriented database benchmark with Thor using both standard RPC

client/server techniques and code-importing. Chapter 7 presents some comparisons with

related work. Finally, Chapter 8 provides some possible extensions to the work of this

thesis and presents some conclusions that can be drawn from this work.

17



18



Chapter 2

Background

This chapter gives a brief background on the Thor object-oriented database system and

the Java language. For a more complete background on Thor, see [LDG+96, LAC+96,

LCD+94]. For a more complete background on Java, see [Sun95a, Sun95b, Yel95].

2.1 Thor

Thor[LDG+96] is an object-oriented database being developed at MIT that provides persis-

tent and highly available storage for its objects. Thor objects are encapsulated, requiring

clients to access database objects through calls of object methods and routines. Thor pro-

vides a good �t for experimenting with code importing instead of RPC, since the standard

client interface to Thor is based on a slight variant of RPC.

2.1.1 Theta

Objects in Thor are implemented using the Theta language. Theta is a strongly-typed

language that guarantees that objects are used only by calling their methods. In addition,

all built-in Theta types do runtime checks to prevent errors, e.g., array methods do bounds

checking. Theta is based on a heap with automatic storage management. More information

on Theta can be found in [LCD+94].

2.1.2 Language-Independent Interface

The Thor system provides a language-independent interface based on RPC to allow clients

to access the Thor server. In RPC terms, the language-independent interface provided by
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Thor ServerClient

invoke, get_root
commit/abort

values, handles

handle1

handle2

Figure 2-1: Thor Language-Independent Interface

Thor consists of the server-side stubs and the communication protocol for using those stubs

from a client. To use the language-independent interface from a particular client language

client-side stubs that use the protocol provided by the language independent interface need

to be generated.

Safety

The protocol and server stubs of the language-independent interface do not make any as-

sumptions about the client language. Certain client languages are unsafe (e.g., C and C++),

and cannot be trusted with direct access to Thor objects. Thus, Thor objects and the code

for object methods are stored and run inside the Thor server. To protect the integrity

of data stored by Thor, the language-independent interface requires that clients run in a

separate address space from the Thor server, communicating using the RPC techniques

described in Chapter 1.

As Figure 2-1 indicates, clients using the language-independent interface do not store

direct pointers to Thor objects. To refer to an object the client uses an opaque pointer called

a handle, which Thor maps back to an object. The use of handles allows Thor to check the

validity of every object referenced by the client. Thor clients can also use languages that

are not type-safe (e.g., C or C++). To protect Thor from client type errors, the language-

independent interface's server-side stubs perform runtime type checking. For every method

call from a client, Thor checks that all handles refer to a valid objects, that a valid method

is being called, and that the number and types of the arguments are correct. The use of

type-checking and validation in the server-side stubs combined with running the client and

server as separate processes ensure that the Thor server is protected from client errors.
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Functionality

The protocol used by the language-independent interface provides the functionality needed

for Thor clients to interact with Thor. Clients issue to Thor one of a number of commands,

such as get root, invoke, abort, and commit along with additional information needed by

the given command. For example, for the client to call a method on a Thor object, the

invoke command is issued, followed by the object's handle, a method handle indicating

what method is to be invoked, and any additional arguments needed by the method (either

handles or basic values such as integers). When Thor receives the client message, it examines

the type of the command and dispatches to code that handles method invocations. At this

point, arguments are type-checked and handles are mapped to actual pointers to Thor

objects. Thor then performs the method call. The response from Thor indicates if the

command was successful or caused an exception. If the client command requires a return

value and did not cause an exception, a return value (a handle or basic value) is also sent.

The language-independent interface also includes a mechanism for garbage collecting

client references to Thor objects. The Thor system is garbage collected; thus memory is

reclaimed when the system determines that a particular object is no longer in use. The Thor

garbage collector takes into account that the client may hold a reference to an otherwise

unused object. Whenever Thor returns an object reference to the client, Thor assumes that

the client references that object until it is told otherwise. To allow objects referenced by

the client to be garbage collected, the client periodically sends Thor a list of handles that it

no longer uses. Relying on the client to free objects is dangerous since the client may try to

reuse a reference to a freed object. However, since Thor checks the validity of all handles,

this kind of error will be caught by Thor and will not disrupt system integrity (although it

would indicate an error in the client implementation).

Veneers

Thor is designed to allow clients to be written in many di�erent languages. A veneer provides

the functionality necessary to allow a new client language to be used. A veneer is a library

of client-side stub routines that implements the client-side of the protocol provided by the

language-independent interface. Aside from simply implementing the protocol, a veneer is

responsible for mapping between the features of Thor and the features of a given language.
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A veneer translates between basic types stored in Thor (e.g., integers) and related types

in the client language. The veneer also provides a means of interacting with Thor objects.

An automatic stub generator uses the Theta type de�nition to produce a corresponding

stub type in the application language together with operations that correspond to methods

of the Theta type. Currently, Thor veneers have been written for C, C++, Perl and Tcl.

Chapter 4 discusses the implementation of a Java veneer based on the language independent

interface.

Tcl Client

Tcl Veneer

Thor

Java Client

Java Veneer

C++ Client

C++ Veneer

Figure 2-2: Thor Client Interface

2.2 Java

Java is a new programming language from SunMicrosystems. While Java provides a number

of interesting features, two are critical to understanding this thesis. First, Java and Theta

are very similar, making Java a particularly good match as a client language for Thor.

Second, the Java language is designed to be used in systems that use code importing. Java

provides a number of language safety features that enable imported code from a remote

system to safely run locally.

2.2.1 Java and Theta

One reason that Java is interesting as a client language for Thor is that it closely resembles

Theta, the implementation language of Thor objects. Java and Theta are both statically

type checked, type-safe, garbage-collected, object-oriented languages with single inheri-

tance. Both languages provide a means of signaling and handling exceptions[LCD+94][Sun95a].
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Because of the similarity between the two languages, the client interface between Java and

Theta presents Java clients with a natural mapping of Thor's functionality to Java. Thus, a

Java client is able to use Java method calls to call Theta methods, and use Java's exception

mechanisms to handle Theta exceptions. The Java client programmer interface described

in Chapter 3 gives a more detailed description of the mapping between Java and Theta.

2.2.2 Java and Code Importing

One of the most exciting aspects of the Java language is that it is designed to allow code

to be stored remotely, sent across a network, and then executed locally. A number of Java

language features are designed to make it easy to use Java for code importing. Java code

is compiled to bytecodes for an architecture-independent virtual machine, so that the same

compiled code can be run on many di�erent platforms. Additionally, a number of security

features are built into Java to prevent code that is imported and executed from causing

problems to the local machine [JSS95].

Java Language Safety

Java, like C++, has facilities for controlling the access to the variables and methods of ob-

jects. These access controls allow objects to be used by non-trusted code with the guarantee

that they will not be used improperly. For example, the Java library contains a de�nition

for a File object. The File object has a public method (callable by any method) for reading

and a low level private method (callable only by the object's methods) for reading. The

public read method �rst performs security checks and then calls the private read method.

The Java language ensures that non-trusted code can safely manipulate a File object by

providing access only to the public methods. Thus, the access control facilities allows pro-

grammers to write libraries that are guaranteed by the language to be safe by correctly

specifying the library's access controls.

The Java language is also designed to be a type-safe language. This means that the

compile-time type and the runtime type of variables are guaranteed to be compatible. This

ensures that casts (operations that coerce a run-time type to a given compile-time type) are

checked at either compile time or run time to make sure that they are valid. This prevents

the forging of access to objects to get around access control. Using our File example from

before, this prevents malicious code from casting a File object to its own MyFile type, which
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has the same layout as the File type, but with all methods public.

Another safety feature is the elimination of pointers as a data type. This means that

pointers cannot be directly manipulated by user code (no pointer arithmetic). This pre-

vents both malicious and accidental misuse of pointers (running o� the end of an array for

example). Again using our File example, this prevents malicious code from simply access-

ing the private method directly by using pointer arithmetic starting with the File object's

pointer. Clearly this type-safety is a necessary part of the access control facilities of objects,

preventing forging.

Code Veri�cation

In the Java system, the Java compiler does not compile a program to machine code; instead it

compiles to bytecodes for an architecture-independent virtual machine. The code imported

by Thor is transported in its bytecode form. The bytecode does not have the same safety

guarantees as the Java language itself. An analysis referred to as bytecode veri�cation

needs to take place to make sure the imported bytecode follows the safety rules of the Java

language.

The Java bytecodes are an instruction set that can be statically type-checked. For

example, bytecodes that invoke methods explicitly declare the expected argument and result

types. The state in the execution model is stored in a set of local variables and on a stack.

The types of each storage location can be determined by straightforward data
ow analysis

that infers types for each stack entry and each local variable slot, at each point in the

program.

Aside from simple format checks, the bytecode veri�er [JSS95][Yel95] checks that the

code:

� Does not forge pointers

� Does not violate access restrictions

� Accesses objects according to their types

� Calls methods with appropriate arguments of the appropriate type

� Does not have stack over
ows
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Chapter 3

Java Client API

The Java client API (Application Programmer Interface), which de�nes the Java applica-

tion's interface to Thor, serves two purposes. First, the client API provides the functionality

necessary to use Thor from Java in a way that is intuitive for Java programmers. Second,

the client API masks the implementation details. The same client API is provided by the

two di�erent Java veneer implementations discussed in Chapter 4 and Chapter 5. Since the

two implementations provide the same API, the exact same Java client code runs in both

versions.

The Java client API is based upon the C++ client API[LDG+96] with some additions

to take advantage of features in Java such as exception handling. The client API is divided

into two major parts. First, the Java client API provides a set of procedures for supporting

basic Thor commands. The second and more substantial part of the Java client API is a

library of stub classes that represent the Theta types used in Thor.

3.1 Basic Thor Support Commands

The Java client API presents the user with a set of procedures used for basic Thor operations.

These procedures provide the functionality of the basic commands in the Thor language-

independent interface (see Section 2.1.2) as well as providing a means for converting between

Thor types and Java types. The procedures handle all of the client interactions with Thor

except for method calls on Thor objects. Table 3.1 gives a summary of the functionality of

the provided commands.
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Procedure Functionality

th init Initialize the interface between Java and Thor.

th shutdown Terminate the interface between Java and Thor.

th get root Returns the root directory object from Thor.

th commit Commit the current transaction.

th abort Abort the current transaction.

th equal Compares if two Thor objects are equal.

th int to any Convert the speci�ed primitive value to an any object.
th bool to any
th char to any

th force to int Convert an any object to the speci�ed primitive value.
th force to bool
th force to char

string to thor string Converts a Java string to a Thor string and vice versa.
thor string to string

Table 3.1: Java Client Interface Procedures

3.2 Stub Classes

The main design goals of the Java client API is to provide Java programmers with a simple

interface to Thor that uses the features of Java. Since Java is an object-oriented program-

ming language, mapping Thor objects and methods to Java objects and methods gives

Java programmers a simple and natural interface to Thor. To provide this mapping, the

Java client API creates a Java class, called a stub class, for each Theta type that is used

in Thor.1 The stub classes are created by using an automatic stub generator. The stub

generator uses the Theta type de�nition to produce a stub class in Java that contains stub

methods that correspond to methods of the Theta type. For example, the stub generator

creates the Java stub class Th directory 2 for the Theta type directory. When the Java

client refers to Thor objects, it uses stub objects, which are instances of the stub classes.

The Java client calls Thor methods by invoking the stub method of the stub object. The

fourth line of Figure 3-1 illustrates such a method call. Because both Java and Theta use

single inheritance, the type hierarchy in Theta is duplicated exactly by the Java stub class

hierarchy. For example, in Thor any is the supertype of directory, so the Java stub class

Th any is the superclass of Th directory.

1In Theta, a type speci�es an interface that is potentially implemented by multiple classes. In Java, the

distinction between classes and types is not made. The Java client API provides only a mapping between

Theta types and Java classes. The Java API does not distinguish between di�erent Theta classes.
2The Java stubs are all in the package Veneer.stubs. Thus, the correct class name is

Veneer.stubs.Th directory, but for brevity I will omit the full package name when referring to stubs.
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Veneer.th init(); /� initialize veneer �/

Th directory root = Veneer.th get root();

Th string s = Veneer.string to thor string(\small1");

root.lookup(s); /� method call to Thor �/

Veneer.th shutdown(); /� shutdown the veneer �/

Figure 3-1: Java Client code fragment

3.2.1 Method Signatures

Each automatically generated stub class has a Java stub method for each method in the

corresponding Theta type. The generated Java stub methods correspond in the number

and type of arguments to the Theta methods. Figure 3-2 shows an example Theta method

signature, and the corresponding Java method signature.

Theta:

lookup(string name) returns (any) signals (not found)

Java:

Th any lookup(Th string name) throws ThE not found

Figure 3-2: The signatures of a Theta method and the corresponding Java method

3.2.2 Exceptions

Providing the ability to handle exceptions signaled by Thor using Java's exception capabili-

ties makes it easier for a Java client programmer to use Thor. The Java client API for Thor

maps Thor exceptions signaled by calls to Thor methods into Java exceptions. If a Theta

method declares that it signals an exception, the corresponding Java method declares that

a corresponding Java exception may be thrown. The following code fragment illustrates a

simple use of the exception mechanism:

try f root.lookup(s); g/� method call to Thor�/

catch (ThE not found e) f ... g /� code to handle Thor exception �/
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Unfortunately, the semantics of exceptions di�er slightly between Java and Theta. In

Java, exceptions are part of the class hierarchy, so a speci�c exception is actually a full

Java object. In Theta, exceptions are simply names for signaled conditions. To handle

this di�erence, the Java client API contains a corresponding exception class for each named

Theta exception. All of the Java exceptions that could arise by invoking a stub class method

are subclasses of the exception class ThorException. This feature is designed to allow the

Java client programmer to easily handle only those exceptions that came from Thor by

handling the exception type ThorException.

3.2.3 Casting

Th_any

Th_directory

Java Thor

directory

Figure 3-3: Stub Object Mapping

Imprecise Types

The Java client API does not guarantee that the Theta type that a given stub object

represents is a precise match with the Java type of that stub object. Instead, as Figure 3-3

illustrates, the type of the Java stub object is guaranteed to be a superclass of the Java

class that corresponds to the Thor object's type. In the �gure, the Thor object is of type

directory. As the �gure shows, a Java stub object representing the Thor object could

be either an instance of Th directory or the more general class Th any.3 This problem

is caused because when returning a Thor object from a stub method the Java client API

knows only the return type for the stub methods, and thus must create stub objects of that

type. For example, the Java lookup method of Figure 3-2 always returns stub objects of

type Th any even if the returned Thor object's type is a subtype of any.

Imprecise runtime types create some di�culties when trying to use the Java language's

3At �rst glance it might appear that imprecision of types will cause severe problems because the method

dispatch that occurs in Java will not be correct. This is actually not a problem since the real method

dispatch occurs inside of Thor.
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built-in casting or runtime type discrimination mechanisms with stub objects. In the fol-

lowing code fragment, even if we know that the Thor object represented by x is of type

directory, the cast will not work since the Java stub object's runtime type is Th any:

Th any x = root.lookup(s);

Th directory d = (Th directory)x; /� this cast won't work �/

The same problem occurs when trying to use the Java runtime type discrimination

mechanism instanceof. Note that this is a problem of false negatives, never false positives;

if the cast or instanceof operation does work it is guaranteed to be correct.

Coercion Procedures

To solve this problem, the Java client API to Thor provides a procedure for each class that

perform a coercion of a Java stub object to a stub object of the given class. The coercion

procedures mask the process of �rst checking the Java runtime type of an object and then

querying Thor for the Thor runtime type of the object. These procedures provide a solution

that is general enough to encompass both casting and runtime type discrimination by using

an exception if the coercion will not work. Using the coercion procedure, the previous

example could be written:

Th any x = root.lookup(s);

try f Th directory d = force to Th directory(x); g

catch (ThE wrong type eg f ... g /� if the cast does not work �/
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Chapter 4

RPC Java Veneer

To compare code importing with standard RPC techniques, a Java veneer was implemented

using the language-independent interface described in Section 2.1.2. The RPC Java veneer

does not take advantage of the safety provided by the Java language because the language-

independent interface already provides safety for any client language. Aside from serving as

a comparison, the RPC Java veneer implements the Java client API described in Chapter

3, providing remote access to Thor with a client language not previously available.

In Section 4.1, I will �rst describe some of the implementation details of the the RPC

Java veneer.1 Section 4.2 then discusses an aside about the use of the RPC Java veneer as

a simple interface between the World Wide Web and Thor.

4.1 Implementation

The implementation of the RPC Java veneer is based on the preexisting implementation of

the C++ veneer for Thor. Both veneers use the language-independent interface described

in Section 2.1.2. The RPC Java veneer implementation of the Java client API to Thor has

three major parts. First, the RPC Java veneer provides basic primitives that allow Java to

communicate with Thor. Second, it provides a mechanism for keeping track of handles for

garbage collection purposes as was discussed in Section 2.1.2. Finally, the most signi�cant

part of the RPC Java veneer is the implementation of the stub classes that provide the

client-side stubs needed by the language-independent interface.

1The RPC Java veneer uses an optimization technique called batched futures [BL94], but to simplify the

discussion, the use of futures will not be discussed.
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4.1.1 Communication Layer

The RPC Java veneer uses the Java TCP/IP socket library for the IPC required to commu-

nicate with Thor. On top of the TCP/IP socket layer, the RPC Java veneer uses another

layer to provide bu�ering and some minor bookkeeping required by the Thor-client proto-

col. A third layer of procedures implements the commands mentioned in Section 3.1. These

layers allow the rest of the RPC Java veneer to treat the communication with the server

as a black box, simply using a few high level procedures. For example, each of the basic

commands listed in Table 3.1 is implemented using this third layer of procedures.

4.1.2 Veneer Handle Table

Section 2.1.2 discussed the fact that for garbage collection purposes, the client must keep

track of which handles are still being used. The client must occasionally send to Thor a

list of handles that are no longer being used so that Thor can garbage collect the objects

referenced by those handles. The RPC Java veneer keeps track of which handles are in use

by the Java client by using a reference counting mechanism[BL94]. A veneer handle table

is used to keep track of the number of references for each handle seen by the Java client.

This table maintains the invariant that the reference count for a given handle is the same

as the number of stub objects that refer to that handle. To implement this reference count,

when a new Java stub object is created that uses a given handle, the reference count for

that handle is incremented in the table. Additionally, when a Java stub object is freed (i.e.,

collected by the Java garbage collector), the reference count for the handle referred to by

the stub object is decremented in the table (see Section 4.1.3). To send Thor the set of free

handles, the handle table is occasionally scanned (for example, after every N method calls

to Thor), to check for handles with a reference count of zero. The list of free handles is

then sent back to Thor, allowing Thor to garbage collect the corresponding objects.

Figure 4-1 illustrates the major features of the veneer handle table. As the �gure shows,

the Java stub objects store the handle table index (see Section 4.1.3). Thus, the handle 5

has two references since two stub objects store the index 1. Also, the handles 9 and 3 are

free since no object stores their handle table index. Thus, the next time the veneer frees

handles, the handles 9 and 3 will be sent back to Thor. Finally, note that as was previously

mentioned in Section 3.2.3, the same Thor object can be referenced by Java objects that
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Figure 4-1: Veneer Handle Table

are instances of di�erent Java classes (in this case the two stub objects with index 4).

4.1.3 Stub Classes

The most complex part of the RPC Java veneer is the implementation of the stub classes

for the Java client interface to Thor discussed in Section 3.2. The stub classes used by

the RPC Java veneer are generated automatically based on Theta type de�nitions. There

were three main issues in the design of the stub classes. First, a representation for the stub

objects was chosen. Second, a mechanism was designed for the stub methods. Finally, an

implementation of the coercion mechanism described in Section 3.2.3 was designed.

Stub Objects

One straightforward strategy for implementing Java stub objects would have each stub

object simply contain the handle of the Thor object it represents. This technique cannot be

used because it would not facilitate the RPC veneer's reference counting scheme (described

in Section 4.1.2). Instead, each stub object stores an index into the veneer handle table.

The creator for each stub class has a handle table index as an argument. The creator then

initializes an index variable in the new stub objects and increments the reference count in

the handle table.2

Java allows the user to associate a �nalizer procedure with each class[Sun95a]. An

object's �nalizer runs after the Java garbage collector determines that the object is no

2The stub object index, the stub object creation methods, and the handle table itself are accessible only

within the veneer package, preventing clients from creating invalid objects or objects with invalid reference

counts. In the RPC Java veneer these are only conveniences since subverting the veneer would only crash

the client. These techniques become important in Chapter 5.

33



longer in use. This allows the programmer to associate an action with the destruction of an

object. In the RPC Java veneer, when stub objects are destroyed, a reference count needs

to be decremented. Thus, stub objects have a �nalizer that decrements the reference count

associated with the handle table slot of the stub object's index variable. The monitoring

of the creation and destruction of all stub objects maintains the simple invariant that the

number of objects that have a given handle table index is equal to the reference count in

the handle table at that index.

Stub Methods

The RPC Java veneer stub generator creates a Java stub method for each method of a

given Theta type. These stub methods act as client-side stubs in the language-independent

interface to Thor. Each of the Java methods for a given stub class has an associated method

handle class variable.3 When a stub object of that class calls a method, it �rst checks if the

method handle has already been computed. If the method handle has not been computed,

before the method call is made a special call to Thor is �rst used to calculate the method

handle. The value of the method handle is then stored so that subsequent calls to that

method do not need to recompute the value.

When the stub method for a given stub object is called, it sends Thor the invoke com-

mand, followed by the object's handle, the method handle, and the method arguments.

Since the type of the arguments is known statically (i.e., at stub creation time), the method

is hard coded to send its speci�c arguments. This code uses procedures from the communi-

cation layer that take care of mapping Java types (such as int, boolean, and stub objects)

into a form understood by Thor. The stub method then attempts to get a result back from

Thor using the communication layer.

The communication layer throws a ThorException if the Thor method signals an ex-

ception. The ThorException object contains a string with the name of the speci�c Thor

exception. If the Java stub method throws a speci�c exception, the name of the speci�c

exception is compared against each of the known exceptions to determine which excep-

tion to throw. This allows the Java client to use Java's own exception handling mechanisms

when handling exceptions signaled from Thor. For example, the directory method lookup

signals not found. Thus, the Java stub method lookup for Th directory ends with:

3A class variable is a variable that is shared by all instances of the class.
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catch (ThorException e) f

String m = e.getMessage();

if (m.equals(\not found")) throw new ThE not found();

throw new Failure(\bad Thor exception: lookup"+m);

g

If the Thor method returns successfully, the return value is mapped back to the corre-

sponding Java type. If the return value is a handle, the veneer needs to return a stub object

of the appropriate type. Unfortunately, when the veneer receives a handle as a return value,

it does not get any information about the runtime type of the Thor object represented by

the handle. The veneer knows only the declared compile time type (i.e., the method's return

type). Thus, the Java stub method will return a new stub object that is an instance of

the declared return type for the method. This lack of knowledge about the runtime type of

returned objects explains the imprecision of types mentioned in Section 3.2.3. For example,

if the return type of a method is Th any (the most general stub type), even if the handle

returned corresponds to a directory (i.e., a subtype of any), a Th any is created with the

given handle. To create this object, the veneer �rst gets the returned handle's index from

the handle table, and then creates the new stub with that index.

4.1.4 Implementation of Casting

Each stub class Th X implements a force to Th X method that is used for casting as dis-

cussed in Section 3.2.3. The force to Th X is fairly simple. Given any Java stub object, it

should either return an equivalent stub object of the requested type or signal an exception.

The basic strategy is to �rst check if a simple Java coercion would work, and query Thor

about the actual types only if necessary (the Thor query is much more expensive). Thus,

a check is �rst made to determine if the runtime Java type is a subtype of the required

type. If this check returns true, the object itself is returned. Otherwise, a call to the the

stub object's Thor method getClass is made. This call returns an object of type Th Class

that represents the Thor class of the object. Then a call to the Th Class method subtype

is made to determine if the Thor class is a subtype of the requested class. If this call re-

turns true, a new object of the required type is created using the handle table index from
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the passed in object. If the subtype call returns false, the exception ThE wrong type is

thrown. Unfortunately, this implementation makes casting is a fairly expensive operation,

often costing two calls to Thor.

4.2 Applets as Clients

One of the main reasons for the popularity of Java is the ability to run Java programs (known

as Applets) over the World Wide Web through browsers such as Netscape Navigator. Java

enabled Web browsers load Java code from remote Web servers, and run the Java code on

the browser's machine. Since the RPC Java veneer is written entirely in the Java language,

programmers can use the veneer in applets. This makes it simple to create Java applets

that take advantage of the persistent storage of Thor. Using Java applets over the World

Wide Web has the advantage that it gives users platform independent network access to

clients that use Thor.

As an example and proof of concept of a Java applet that uses the RPC Java veneer,

I created an applet version of the performance benchmarks that were used for the Java

veneer (see Chapter 6). Creating the Applet proved to be straightforward. Both the Java

veneer code and the client code worked without modi�cation; only additional code for a

user interface was written. Previously, Thor had been accessible only on the DEC Alpha.

This Applet was subsequently run, without modi�cation, using Netscape Navigator on a

Sun Sparcstation, an HP 9000, and a DEC Alpha. Because of the popularity of Java and

its ability to make Thor available over the World Wide Web, there are currently plans for

creating other Java applets such as a Thor object browser, and an Internet mail client using

Thor.
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Chapter 5

Code Importing Java Veneer

As discussed in Section 1.2, using code importing in client/server systems has a number of

potential advantages. The key advantage over RPC is the potential for improved perfor-

mance in certain applications. This chapter discusses the issues involved in implementing a

Java client interface to Thor that uses code importing to provide good performance while

still maintaining server integrity. I describe the key reasons for the performance improve-

ments of code importing and show that by using a safe client language server safety is not

threatened.

The chapter is divided into three sections. First, the general architecture of the code-

importing Java veneer is described. In Section 5.2 the safety of the code-importing Java

veneer will be discussed. Section 5.3 moves on to discuss how the code-importing Java

veneer was implemented.

5.1 System Design

The code-importing Java veneer implements the Java client API discussed in Chapter 3,

presenting the same interface to Java applications using Thor as the RPC veneer discussed in

Chapter 4. The code-importing Java veneer provides two main functions. First, the system

allows imported Java code to run in the same address space as the normal Thor server. The

ability to run imported Java code is achieved by compiling and linking a slightly modi�ed

Java interpreter with the Thor server. The second function that the system provides is a

mechanism for calling Thor methods from Java code. The Java interpreter provides native

methods [Sun95a] for calling routines implemented in C. By using native methods in Java,
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a library of C stub routines provides the interface for Java to call Thor operations directly.

Imported
Code

Java Interpreter Thor Server

call

return

call

return

Server Process

Veneer

Stub

Figure 5-1: Code-Importing Java Veneer

From a performance standpoint, the code-importing veneer design has a number of

advantages compared with the RPC veneer. The code importing system uses a simple

procedure call to communicate between the client and the server instead of expensive IPC

techniques. As �gure 5-1 shows, the Java client can also store direct pointers to Thor

objects, eliminating an extra indirection. The RPC veneer could not take advantage of

the type-safety of the Java language because the language-independent interface does not

di�erentiate between client languages. Since the code-importing Java veneer guarantees

that Java is being used as the client language, it can take advantage of Java's type-safety

by eliminating runtime type-checks from calls to Thor.

Two other aspects of the code-importing veneer design are important. In normal

client/server systems, the client runtime environment cannot be modi�ed. Using code im-

porting, the client's runtime environment can be modi�ed to �t the needs of the server. For

example, Section 5.3.2 and Section 5.3.3 show some minor modi�cations to the embedded

Java interpreter that provide signi�cant optimizations for use with the Thor system. The

system also provides a narrow, well controlled interface between the client and the server by

only allowing the client to interact with the server through the veneer stubs. By providing

a narrow interface, it is much easier to reason about properties such as safety.

5.2 Java Safety and Thor

In the RPC veneer, the language-independent interface provides safety by running the Java

client and the Thor server in separate address spaces, requiring communication with a
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restricted interface, and runtime type checking. In the code-importing Java veneer, the

client code runs in the same address space as the server, and calls are not type-checked

at run-time. Safety in the code-importing Java veneer is provided by combining the safety

properties of the Java language, described in Section 2.2.2, with the system design described

in Section 5.1. The use of code veri�cation when the code is �rst imported guarantees that

the imported code follows the safety rules of the Java language.

For the integrity of Thor to be maintained with a Java client running in the same

address space, two conditions need to be met. First, the Java client must interact with

Thor only through the stub routines provided by the code-importing veneer. Second, the

stub routines must be called only with valid arguments that are of the correct types. The

�rst property is satis�ed by the safety mechanisms of the Java language. Java cannot

directly access memory. Additionally, Java code can only call Java code or C code that

speci�cally provides a Java interface.

The second condition for safety is somewhat more complex. The type-safety of Java

guarantees that the stub routines are called with Java objects of the correct type. The

more di�cult aspect of the second condition is showing that Java stub objects will refer

to valid Thor objects with compatible types. By using the access control capabilities of

the Java language, the code-importing veneer ensures that stub objects are created only

by veneer stub methods, and that the client cannot modify the stub objects. Since the

Java stub methods simply call equivalent Thor methods that are type-safe, the stub objects

created by the veneer hold valid pointers of the correct type.1 To prevent client modi�cation

of the stub objects, the variable that stores the stub object's pointer to the Thor object it

represents is a private variable, which can be accessed only from the veneer's code.2

5.3 Implementation

Many of the implementation techniques such as the automatic generation of stubs are similar

to techniques used in the RPC veneer. The section focuses on the implementation details

that are substantially di�erent in the two veneers. I will �rst discuss the implementation

1The correctness of the garbage collection algorithm used by the code-importing veneer is needed to show

that invalidated references are not used by the client. For simplicity, a proof of correctness is omitted.
2The code-importing veneer methods are implemented in C, and since they can access private variables

they do not have to follow the access restrictions of Java.
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of the stub classes, and then give some details about two optimizations used in the code-

importing Java veneer.

5.3.1 Stub Classes

As with the RPC veneer, the code-importing Java veneer uses a stub generator to automat-

ically create Java stub classes based on the Theta type de�nitions. For each stub class, the

stub generator for the code-importing Java veneer generates both a Java class that provides

the interface for Java code (i.e., method signatures), and a C stub method for each of the

type's methods. The types and method signatures provided by the interface for the classes

are exactly the same as those of the RPC veneer. The coercion implementation discussed

in Section 3.2.3 uses the client API, and thus remains the same in the code-importing Java

veneer.

Stub Objects

Unlike the RPC veneer, in the code-importing Java veneer the obvious implementation of

stub objects works. A Java stub object stores a pointer to the Thor object it represents.

Because the �eld that holds the pointer is a private member of the stub class, only the veneer

code can access or modify that �eld. Also, unlike the RPC veneer, reference counting is not

used in the code-importing Java veneer (see Section 5.3.2), and the stub object creator and

destructor do not need to do any special work.

Stub Methods

The automatic stub generator provides a C stub method for each of the stub methods

provided by the Java veneer. The stub methods used by the code-importing Java veneer

provide the equivalent functionality of both the client and server side stubs in an RPC

system. The stub is responsible for marshaling arguments, calling the actual routine, and

unmarshaling and returning the result. However, the code-importing veneer stubs are sim-

pler because they do not need to use IPC to communicate and because they do not perform

type-checking and validation of arguments.

The implementation of the stub methods in the code-importing Java veneer is straight-

forward. The Thor object represented by the Java stub object is obtained through a �eld
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access. The arguments to the Java method are �rst mapped to Thor arguments appropri-

ately (i.e., for other stub objects, the Thor object �eld is obtained).3 The stub method

then uses a statically known o�set to access the appropriate method from the Thor object's

method dispatch vector. That Thor method is then called directly. If the Thor method

signals an exception (by setting a global variable), the value of the exception is compared

against the exceptions the method throws to determine the correct Java exception to create

and throw. If the Thor method returns successfully, the return value (if there is one), is

mapped back to the appropriate Java type. If the return value is a Thor object, a new stub

object of the Java method's return type is created (using a pointer to the returned Thor

object) and returned.

5.3.2 Garbage Collection

The RPC Java veneer described in Chapter 4 uses a reference counting mechanism to keep

track of Thor objects used by the client, so that the Thor garbage collector could free

objects that were once referenced by the client. The integration of the code-importing Java

veneer with the Thor system enables a more natural and e�cient mechanism to be used.

The code-importing Java veneer does not use reference counting; instead it uses the Java

garbage collector itself to determine which stub objects are still in use. The code-importing

Java veneer uses this technique to tell Thor exactly which objects are still in use by the

client, instead of sending a set of objects that are not in use anymore.

To have the veneer keep track of the Thor objects that are being referenced by the Java

client, the Java memory allocator and garbage collector were slightly modi�ed.4 A simple

array of veneer stub objects is used to keep track of objects that store direct pointers to

Thor objects. This array is used to tell Thor which objects are being referenced by the

Java client. When a new stub object is allocated by Java, the stub object is added to

the system's array of stub objects. Since stub objects may be freed by the Java garbage

collector, the Java garbage collector has been appropriately modi�ed to splice out from the

array the freed stub objects at garbage collection time.

3The C methods in the Java veneer violate the access restriction on the private variables of the stub

objects. But since the C code is trusted, this access violation does not e�ect the system's safety properties.
4The design of the system allowed modi�cations to the Java interpreter since all Java client code would

use the embedded interpreter. This approach would be unreasonable for the RPC Java veneer, since the

client code should be able to run with any Java interpreter.
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The main modi�cation to the garbage collection mechanism occurs when the Thor

garbage collector is called. When the Thor garbage collector is called, a call is �rst made

to the Java garbage collector. When called from Thor, the Java garbage collector performs

its normal operation (freeing unused Java objects), with one additional function. Since

the Java client stores direct pointers to Thor objects, the Thor garbage collector needs to

be told that those objects are still in use. Thus, for each stub object in the array of stub

objects, the Java garbage collector tells the Thor garbage collector that the associated Thor

object is referenced. After the Java garbage collector �nishes, the Thor garbage collector

continues its normal function.

Used alone, this garbage collection scheme is only slightly better than the reference

counting mechanism used in the RPC Java veneer (because there is no reference counting

at stub object creation and destruction). Section 5.3.3 describes another optimization that

takes advantage of this garbage collection mechanism as well as making the technique more

e�ective.

5.3.3 A Stub Object Caching Optimization

In both Java veneers the stub methods create a new stub object every time a Thor object

is returned by a stub method even if an equivalent stub object already exists. Using this

simple implementation for stub methods, the cost of object creation can easily become a

dominant cost. For example, with the simple stub method implementation the benchmark

discussed in Chapter 6 runs in 14.01 seconds, with over 7 seconds devoted purely to stub

object creation. Caching stub objects proved to be an e�ective optimization, giving an 88

percent hit rate and reducing the benchmark time to 6.7 seconds.

Section 5.3.2 discussed how the code-importing Java veneer keeps track of stub objects

for garbage collection purposes using a simple array of stub objects. The stub object

caching mechanism is implemented in the code-importing Java veneer by taking advantage

of this array of stub objects. Figure 5-2 illustrates the basic idea of the stub object caching

implementation. Thor objects store an index into the stub object array if a Java stub object

points to that Thor object. Before a stub method creates a new stub object, it can �rst

check to see if the Thor object holds an index. The invariant that needs to be maintained

is that for any Thor object obj that stores an index n, the stub object at index n of the

stub object array refers to obj.
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Figure 5-2: The Stub Object Caching Optimization

By storing an index in Thor objects, the Java stub methods can be changed as follows.

Instead of creating a new stub object every time a method returns a Java stub object,

the method �rst checks if the Thor object has an index into the stub object array. If the

Thor object does not have an index, a new stub object is created, and the index for that

stub object is stored in the Thor object. If there is a cached stub object, we would like to

return that object. First, a check needs to be made that the cached object is a subtype

of the method's return type.5 If this check passes, the cached object is returned since it

will match the return type of the method. Otherwise, a new object of the return type is

created and the index for that stub object replaces the old index in the Thor object. This

process is shown in Figure 5-3. By using the new index, the Thor object stores a cached

stub object that more closely matches its type, and is more likely to be able to be used in

future operations. The old object is kept to make sure that the garbage collection algorithm

will work as before.

This technique has a number of advantages. First, it eliminates much of the unnecessary

object creation that occurs in the Java veneer. Optimally, there would be exactly one stub

object for every Thor object that the veneer uses. The original strategy instead created a

stub object every time a stub method returned. The improved strategy creates a new stub

object only when a method returns a type more speci�c than any previously seen types for

a given object. Another advantage of this technique is that the Java runtime type for a

5A subtype check is needed before a cached object is returned because of the type imprecision mentioned

in Section 3.2.3 (e.g., the cached object is of type Th any, but the return type is Th directory).
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Figure 5-3: Stub Object Caching Optimization: Adding an Object

given Thor object will often more closely approximate the object's true type. For example,

suppose a Thor object dir is of type directory, and the �rst time it is returned to Java is

as type Th directory. Suppose another Java method returns the same object dir, but this

time as a Th any. Since dir already has a cached stub object, the Java stub object of type

Th directory will be returned. Thus, this optimization improves the performance of the

casting mechanisms discussed in Section 3.2.3, more often allowing the casting operation to

use a simple Java cast instead of multiple Thor calls to check the actual Thor type.

Since this object caching optimization works well in the code importing veneer, one might

wonder why object caching is not used in the RPC Java veneer. For example, a cached

stub object could be stored in the RPC veneer handle table (see Section 4-1) along with

the reference count. Unfortunately, keeping a pointer to a stub object will prevent the Java

garbage collector from deleting that object. If the object is not deleted, the handle stored

by that stub object cannot be freed because the reference count will never be zero.6 One

standard solution that garbage-collected languages use to allow programs to store pointers

to objects and still have those objects garbage collected is to have weak pointers. A weak

pointer is a pointer that the garbage collector will not count as a reference when determining

if an object should be garbage collected. Java does not have such a mechanism built into

6The reference count for a handle in the RPC Java veneer is the number of stub objects that refer to that

handle. It is not a count of the number of pointers to the stub object. Java does not provide the ability to

overload assignment and copy operators to keep such a reference count.
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the language. The reason that the code-importing Java veneer was able to use the caching

optimization was that the modi�cation of the Java runtime allowed the garbage collector

to consider its own stub object array as weak pointers. For the RPC veneer, a similar

modi�cation to the Java runtime would work. Such a modi�cation would be impractical

because the modi�cation would be needed for every Java system that wanted to use the

veneer.
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Chapter 6

Performance

To evaluate the e�ectiveness of code importing for client server systems, a number of ex-

periments were designed and run. This chapter describes the results of the experiments

and gives some analysis of those results. This chapter is organized as follows. Section

6.1 presents a model that describes the performance in terms of four costs. Section 6.2

outlines the main experiments used to measure performance. Finally, Section 6.2.1 and

Section 6.3 provides the experimental results and analysis of the results using the presented

performance model.

6.1 Performance Model

The execution time of an application using Thor can be explained by the following model

based on a model presented in [LACZ96]. Suppose the client invokes N methods on Thor

objects. Each of these calls has an associated cost S. S takes into account the average

communication cost, safety costs such as runtime type-checking, and the marshaling and

unmarshaling costs. The N method calls to the server use a total of X pairs of domain

crossings, each of which has a cost C. The remaining time is divided between the compu-

tation performed at the client RC and the computation performed at the server RS .
1 The

total application running time T can be expressed with the equation:

T = X � C +N � S +RC +RS (6:1)

1The model presented in [LACZ96] combines RC and RS into a single cost R.

47



6.2 The Experiments

The intended experiment to compare the performance of code importing against standard

RPC techniques involved measuring the performance of the two implementations of the Java

veneer. Unfortunately, this experiment provided an unfair comparison since the RPC Java

veneer showed extremely poor performance for reasons that were not fundamental to using

RPC (see Section 6.2.2). To provide a more meaningful comparison, the code importing

Java veneer is compared against a highly optimized C++ veneer based on RPC.

The experiments used were modeled on the experiments used in [LACZ96]. The exper-

iments ran the single-user OO7 benchmark [CDN94]. The OO7 database contains a tree

of assembly objects, with leaves pointing to three composite parts chosen randomly from

among 500 such objects. Each composite part contains a graph of atomic parts linked by

connection objects; each atomic part has 3 outgoing connections. The database used has

20 atomic parts per composite part and a total size of 7 MB.

The results reported are for traversal T1, which performs a depth-�rst, read-only traver-

sal of the assembly tree and executes an operation on the composite parts referenced by the

leaves of this tree. This operation is a depth-�rst, read-only traversal of the entire graph

of a composite part. This traversal was coded in the client language (i.e., Java or C++),

using a separate call to Thor for each use of a database object. In total, the T1 traversal

requires 450886 call from the client to Thor.

All experiments were run on an isolated DEC 3000/400 workstation with 128 MB of

memory using OSF/1 version 3.2 with the client running locally. Unless noted otherwise,

the results reported are the average elapsed times obtained in 10 separate trials of each

experiment.

The experiments were designed to eliminate costs not associated with computation at

the client and server and the communication between them. In particular, the server used

a cache large enough to hold the entire database, ensuring that there is no disk I/O. Addi-

tionally, the cost of committing the changes performed by the transaction is not included

in the measured traversal times.
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Figure 6-1: OO7 Traversal Comparison

6.2.1 Results

Figure 6-1 shows a comparison between the three di�erent techniques for running the OO7

benchmark.2 The experiment labeled Java TCP used the Java client with the RPC Java

veneer. The experiment labeled C++ SHM used a C++ client with an RPC based C++

veneer that uses a shared memory bu�er to communicate with Thor. The experiment labeled

Java inside represents the technique presented in Chapter 5. The Java inside experiment

used the same Java client as the Java TCP experiment, but used the code-importing Java

veneer to provide the interface with Thor. These results show that the code-importing

Java veneer performs over 50 times better than the RPC Java veneer and almost 3 times

better than the highly optimized RPC C++ veneer. Since the RPC Java veneer performs

so poorly, the analysis in Section 6.3 will focus on comparing the RPC Java veneer and the

C++ veneer.

6.2.2 Why the RPC Java Veneer is Slow

The results from Figure 6-1 show that the RPC Java veneer performs about 20 times slower

than the RPC C++ veneer. The main reason for this di�erence is that the RPC Java

veneer uses TCP/IP to communicate with the server, while the RPC C++ veneer uses a

much faster shared memory bu�er for communication. Running a PC-sampling pro�ler on

the RPC Java veneer con�rmed that the TCP/IP communication was the dominant cost,

representing 81% of the traversal time (264 of the 326 seconds). The cost of using TCP/IP

2The experiment labeled Java TCP in Figure 6-1 is based on 3 runs (composed of 5 traversals) instead

of 10 due to the large amount of time to perform the experiment.
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was magni�ed by the use of an immature implementation of Java that provided poor I/O

performance.3 When the client and server are on the same machine, a version of the RPC

Java veneer that used an e�ciently implemented shared memory bu�er for communication

could be used. Such a veneer would have communication characteristics similar to the C++

SHM veneer used.

6.3 Analysis

I have performed analysis and additional experiments to explain the results of Section

6.2.1 in terms of the equation presented in Section 6.1. Table 6.1 and Figure 6-2 present

the breakdown of the execution time for the C++ SHM experiment and the Java inside

experiment. They show that by eliminating context switching, and severely reducing the

communication, safety, and marshaling costs, the code importing veneer outperforms the

RPC technique. The table also shows that the performance of the Java client is the major

bottleneck in the Java inside experiment. In the future, the use of just-in-time compilation

to native machine code should improve the speed of Java. The rest of this section describes

how this breakdown was derived.

C++ SHM Java Inside

Context Switching (X � C) 6.8 0

Communication, Safety and Marshaling (N � S) 11.2 .97

Server Compute (RS) .7 .59

Client Compute (RC) 0 5.18

Total 18.7 6.74

Table 6.1: Breakdown of elapsed time for the C++ SHM and Java Inside experiments

Note that for the C++ SHM experiment, the separate server and client computation

times were not computed. The .7 second �gure represents the combined cost of the client and

server computation time. Also note that the cost of code importing and code veri�cation

was not included in the traversal time of the Java inside experiment. These costs are

discussed in Section 6.3.2.

3The implementation of Java that was used is the author's port to the DEC Alpha based on the imple-

mentation provided by Sun Microsystems.
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Figure 6-2: Breakdown of elapsed time for the C++ SHM experiments and Java Inside

6.3.1 C++ SHM

The breakdown of the C++ SHM experiment is based on the analysis given in [LACZ96],

which provides a more extensive treatment of the performance bene�ts of di�erent tech-

niques such as batched futures. The C++ SHM experiment presented here uses the RPC

based technique that has the best performance. Batched futures are used to reduce the

number of context switches and shared memory is used instead of TCP/IP to reduce com-

munications costs. Table 6.1 shows that the dominant cost in the C++ SHM experiment

is the overhead of context switching, communication, safety, and marshaling. The actual

computation accounts for less than 4 percent of the total running time.

The All-Inside Experiment

To determine the total computation cost RC+RS, an additional experiment was performed.

The all-inside experiment, which took .7 seconds, runs the OO7 traversal completely inside

of Thor, using a Theta implementation of the benchmark. The .7 seconds represent only

the combined client and server computation time since the all-inside traversal does have any

extra costs associated with context switching, communication, safety or marshaling. The .7

seconds is a conservative estimate since the C++ code that performs the client computation

(RC) is faster than the equivalent Theta code that performs the client computation in the

all-inside experiment [LACZ96].

The all-inside experiment was optimized with cord and ftoc, two utilities that reorder

procedures in an executable to reduce misses in the code cache. Since these utilities were
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not applicable to the code-importing Java veneer, the server compute time calculated for

the Java inside experiment does not correspond precisely with the server compute time of

the C++ SHM experiment (although they should still be fairly close).

Context Switching

An estimate of the context switching overhead was determined by combining the theoretical

cost X � C with data that gave the number of context switches (X) and an experiment

that provided the average cost of context switching (C). The number of context switches

performed in the C++ SHM experiment was directly calculated to be 138020. By using a

version of the C++ SHM veneer that was allowed to (unsafely) run in the same process as

the Thor server, the average cost of a pair of context switches was computed to be 49 �s.

An estimate for the total context switching cost was thus computed to be 6.8 seconds.

Communication, Safety and Marshaling

The communication, safety and marshaling cost N �S comprised the remaining 11.2 seconds

of the total time. The cost N �S includes the costs associated with dynamically type-checking

all calls and validating client references as well marshaling and unmarshaling the arguments

and return values. The use of batched futures, which improve performance by reducing the

number of context switches, increases the communication cost by adding overhead required

by the additional machinery that handles batching.

6.3.2 Java Inside Breakdown

The subdivisions provided by the performance model described in Section 6.1 clearly show

how code importing can outperform the RPC techniques. The major costs in the RPC

experiment are almost entirely eliminated in the Java inside experiment that uses code im-

porting. Since the client code runs inside the server process, there are no context switches.

To calculate times for the other three costs, an experiment that gathered data using a

PC-sampling pro�ler was performed while running the Java inside traversal. The pro�ler

provides statistical data that indicates where the program is spending its time by periodi-

cally sampling the program counter and recording what procedure is being executed.

The results from the pro�ler allowed the Java inside experiment to be broken into three

major sections corresponding to the three costs of the performance model. The Java inside
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experiment spent 76.8 percent of its time directly in the Java interpreter, indicating that

the client computation cost RS is roughly 5.18 seconds. The Java client code communicates

with Thor by calling stub procedures that performs the marshaling of arguments and un-

marshaling of results. Thus, the cost N � S can be calculated by examining the total time

spent in these stub procedures. PC-sampling shows that 14.4 percent of the Java inside

traversal is spent in the stub procedures, yielding a total N � S time of .97 seconds.4 The

rest of the time was spent in Thor procedures that perform the server computation. This

remaining 8.8 percent yields a server cost RC of .59 seconds.

Extra Costs of Code Importing

The performance model presented does not fully describe all the overheads of code im-

porting. The results in Figure 6-1 and Table 6.1 do not take into account the overhead

of downloading and verifying the Java code. This is because the methodology used in the

OO7 benchmarks averages the times of the middle trials of a number of runs to account for

cache warming e�ects. Since the transport and veri�cation overhead of the code importing

veneer only occurs in the �rst run, that overhead is not represented. To determine the cost

of verifying the Java code, a simple experiment was run that measured the total time used

in verifying client code during the OO7 benchmark. The results show that .084 seconds are

spent verifying a total of 5 client classes. To determine the cost of downloading the client

code, a simple experiment was run that used TCP/IP to send the 5 client classes between

two processes. This experiment showed that transporting the code between processes on

the same machine took .007 seconds per �le for a total of .035 seconds. Sending the code

from a non-local machine would increase this time considerably. But the code importing

Java veneer would pay the penalty of a non-local network communication only once, while

RPC techniques would be penalized on every call. The total cost of downloading and veri�-

cation for a local machine was .119 seconds. If this cost were added to the time for a single

traversal it would not present an overwhelming cost. Since the downloading and veri�cation

was actually amortized over 5 traversals, the cost is even smaller.

4The cost of the stub procedures is higher than necessary because Java automatically creates its own

stubs for calling native methods. This technique means that two procedure calls are actually made for every

call from Java to Thor; �rst the stub for calling the native method, and then the stub for calling the Thor.

By combining the stub generators, the extra procedure call could be eliminated.
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Benchmarking Java's Performance

Table 6.1 shows that the time spent in client computation using the Java client was far

greater than the time spent in the client computation using C++. To con�rm the estimate

for the client computation cost of Java and to benchmark Java against C++, I ran an

experiment that implements the OO7 traversal with both a Java and C++ program that

mimic the Theta code used in the all-inside experiment. These versions of the OO7 traversal

did not use Thor, and thus present times that represent only the cost of computation in the

given language.
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Figure 6-3: Performance comparison of Java against C++

Figure 6-3 shows the comparison between the all-inside traversal that runs in Theta,

the traversal written in Java, and a version of the traversal written in C++. In the �gure,

the di�erence between the C++ version and the Theta version is due to the extra overhead

in Theta of array bounds checking, exception handling, and concurrency control. As the

�gure shows, this experiment gives a rough con�rmation for the computed value of the Java

client computation cost. The experiment also indicates that Java is about 20 times slower

than C++ for this application. The overwhelming reason for this di�erence is that the Java

experiment is interpreting Java bytecode instead of running native machine code. The use

of native machine compilation should improve the performance of Java considerably, making

natively compiled Java code competitive with C++ code. Improving the performance of

the Java client code should make the code-importing Java veneer more competitive with

the all-inside traversal implemented in Theta.
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Chapter 7

Related Work

This Chapter presents some comparisons with related work in Thor client optimizations as

well as comparisons with work in code importing.

7.1 Thor Client Optimizations

Two recent mechanisms have been presented to reduced communications cost in the Thor

Client interface. The �rst mechanism was presented in Phillip Bogle's thesis on Batched

Futures[BL94]. Bogle presents a mechanism for combining (batching) a number of database

calls into a single message. The return values of many calls are used only as intermediate

value. Combining calls is achieved by deferring such calls, and sending all pending calls

when the client needs the actual result of a call. The batched futures technique provides

an e�ective and transparent method for improving performance.

Unfortunately, for most programs, the batching factor (i.e., the number of calls that are

sent at once) is fairly small, making the overall gain smaller than is desirable. The use of

Batched Control Structures (BCS), presented by Zondervan[Zon95], extends the applicabil-

ity of call batching. In many programs the batching size using batched futures is limited by

conditionals such as those used in loop control structures. BCS allows increased batching

size by sending the server additional information about the structure of the program.

The main di�erence between these techniques and the code importing Java veneer is

that they rely on using the same communication technique, but make communications less

frequent while the code-importing Java veneer uses a di�erent communication technique

(i.e., code importing and then procedure calls). These two mechanisms have some draw-
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backs compared with the code-importing Java veneer. First, they trade o� performance for

exactness of exceptions. If a client program wants to handle a given exception, the call can-

not be batched since the exception result is used immediately. In the veneers that use these

techniques, this is handled by requiring the client to explicitly request exception informa-

tion. For client languages that use exceptions (e.g., Java), this technique is unsatisfactory

since it does not allow the language's own exception mechanisms to be used. Second, while

BCS improves the batching factor, the technique is no longer transparent to the client pro-

grammer. BCS requires the use of a slightly modi�ed programming language (i.e., macros

are used to replace some control blocks), and requires restructuring of programs that do

not use standard control structures. Finally, batched futures requires additional client-side

bookkeeping mechanisms in the Thor veneer.

7.2 Code Importing

A number of systems have used code importing for a variety of reasons. For example,

the Safe-Tcl language [Bor94] (an extension of the Tcl language) attempts to provide for

\Enabled Mail" that would allow users to send email with embedded Safe-Tcl programs.

Safe-Tcl uses a variety of techniques to make sure that the language satis�es strong security

and portability constraints. Another example is Telescript from General Magic, which also

provides code importing in the form of executable content, while claiming to still maintain

safety and security[GM]. Currently, a number of World Wide Web browsers use Java to

allow users to import code and safely run that code locally. In each of these systems, code

importing is used to add functionality to the system. In the code-importing Java veneer,

code importing is used for performance reasons.

Importing code has also been shown to be useful in operating systems for improv-

ing system performance. The Aegis[EKJ95] operating system allows untrusted code to be

downloaded into the kernel. The untrusted code is made safe by using code inspection and

sandboxing[WLAG93]. This use of code importing to improve performance is similar to the

code-importing Java veneer. The main di�erences are that veri�cation of Java relies upon

type safety of the language, and that once veri�cation is performed the Java code can run

without modi�cation. In contrast, sandboxing relies on augmenting the imported code with

runtime checks.
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The SPIN operating system also allows applications to safely download extensions into

the kernel[BSP+95]. The safety of the system is achieved by requiring extensions to be

written in a type-safe language. The code-importing Java veneer is similar to SPIN in that

it relies upon the type safety of the imported language. In SPIN, the imported code uses

the same language as the SPIN system language. Unlike SPIN, the Java interface to Thor

is importing code from a language (Java) that is di�erent from the language of Thor itself

(Theta). Additionally, the imported Java code is already compiled and must be separately

veri�ed.
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Chapter 8

Conclusion

This �rst part of this chapter presents a summary of the work done in this thesis as well

as some conclusions that can be drawn from that work. Section 8.2 concludes with some

suggestions for future work.

8.1 Summary

This thesis has presented a comparison of two techniques for safe client/server communica-

tions. First, a Java veneer for Thor was implemented using the standard safety technique

of isolating the client from the server. After the baseline veneer was implemented, a Java

veneer for Thor was designed and implemented that used code importing of a type-safe lan-

guage combined with code veri�cation to maintain server integrity. This technique proved

to be very e�ective, allowing a number of optimizations that provided much higher perfor-

mance. I expect that the use of code importing in other client/server systems will show

similar performance increases while preserving server integrity.

8.2 Future Work

There are a number of di�erent directions for future work that could be explored. The

most obvious extension to the code-importing Java veneer would be to use compilation

techniques to improve performance. Compiling Java to native machine code should proba-

bly increase speed by about a factor 10. Since the bottleneck in the code importing Java

veneer is the speed of the Java client, compilation should provide considerable performance
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improvements. Many Java developers are exploring the idea of just-in-time (JIT) compi-

lation. With this technique, key pieces of the Java code are compiled as needed, after the

code has been imported and veri�ed to be safe. JIT compilation would clearly be applicable

to the code-importing Java veneer.

Adding the ability to use the code-importing Java veneer non-locally is another straight-

forward improvement. Currently, no mechanism has been provided to allow remote clients

to connect to Thor and send Java client code to run. A simple version of this extension

merely requires a protocol to be implemented for the client to initiate and send Java code,

as well as a mechanism for Thor to request any other Java classes that are needed to run the

imported client. This simple extension would allow clients to use the code-importing Java

veneer non-locally only in a very coarse manner. In other words, the required computation

needs to be completely expressed in one full Java program. A more complex area for future

work is the design of a mechanism to allow Java clients to use the performance advantages

of the code-importing Java veneer in a more �ne grained manner. For example, the client

may want to send code to Thor that is not self contained (i.e., that relies upon local state).

A number of interesting, but fairly involved extensions involve integrating Java more

closely with Thor. For example, Thor could be extended to store Java objects as well as

Theta objects. Another example is that Thor could use Java bytecodes as a stored code

standard. Because of the popularity of Java, it is likely that many languages will develop

compiler backends to produce Java bytecode. Using Java bytecode as a code standard for

Thor might allow those languages to easily use Thor.
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