
Public-Key Cryptosystems

from Lattice Reduction Problems

Oded Goldreich� Sha� Goldwassery Shai Haleviz

MIT - Laboratory for Computer Science

November 12, 1996

Abstract

We present a new proposal for a trapdoor one-way function, from which we

derive public-key encryption and digital signatures. The security of the new con-

struction is based on the conjectured computational di�culty of lattice-reduction

problems, providing a possible alternative to existing public-key encryption algo-

rithms and digital signatures such as RSA and DSS.

Keywords: Public-Key Cryptosystems, Lattice Reduction Problems, Collision Free Hashing.

�
oded@theory.lcs.mit.edu. On sabatical leave from the Weizmann Institute of Science, Israel.

yshafi@theory.lcs.mit.edu.
zContact author at MIT - LCS, NE43-342, 545 Tech. Square, Cambridge, MA 02139, USA. E-mail:

shaih@theory.lcs.mit.edu

0



1 Introduction

The need for public-key encryption and digital signatures is spreading rapidly today as more people

use computer networks to exchange con�dential documents, buy products and access sensitive data.

In fact, several of these tasks are impossible to achieve without the availability of good (secure and

e�cient) public-key cryptography.

In light of the importance of public key cryptography, it is surprising that there are relatively

few proposals of public key cryptosystems which have received any attention. Moreover, the source

of security of these proposals almost always relies on the (apparent) computational intractability

of problems in �nite integer rings, speci�cally integer factorization and discrete logarithm com-

putations. In this paper we propose a new public key encryption algorithm and digital signature

scheme whose security relies on the computational di�culty of lattice reduction problems, in par-

ticular the problem of �nding closest vectors in a lattice to a given point (CVP). For comparison

with existing schemes, we �rst quickly review some of the most famous public-key encryption and

digital signatures proposals, with emphasis on the computational problems their security is based

on.

1.1 Previous proposals

The security of the RSA cryptosystem [RSA], is related to the di�culty of integer factorization

in the sense that discovering the secret key is as hard as factoring integers, although the actual

cryptanalysis problem is potentially easier than factoring integers. Other methods, whose security

relies on the di�culty of factoring integers, include Rabin's digital signature method [Ra79] (and

its variants { e.g., [Wi84]), the semantically-secure public-key encryption of [GM82, BG84], and

the existentially unforgeable signature schemes of [GMR85].

The security of the Di�e-Hellman public-key encryption scheme1 is related to the problem of

computing discrete logarithms (DLP) in �nite �elds in the sense that �nding the secret key is

as hard as computing discrete logarithms. Again, the actual cryptanalysis problem is potentially

easier than discrete log computation. The digital signature method of El-Gamal [El85] (and its

DSS modi�cation [DSS]) is also no harder to break than it is to solve discrete logarithms in �nite

�elds. A similar paradigm to the above discrete log based schemes, can be carried out over elliptic

curves. In that case, the underlying computational problem is the Elliptic Logarithm problem,

to compute logarithms in the additive group of points de�ned by elliptic-curves.

The McEliece public-key encryption scheme [Mc79] is substantially di�erent from the above

proposals, in that its security is based on a problem from algebraic coding theory. The security

of this scheme is based on the conjecture that decoding with a \random looking" linear code is

as hard as decoding with a truly random linear code, and on the widely believed intractability of

decoding with random linear codes. In terms of e�ciency, encryption and decryption amount to a

matrix-by-vector multiplication which takes time quadratic in the natural security parameter (i.e.,

the dimension of the matrix). This compares favorably to the cubic time requires in RSA and the

other number theoretic proposals above, yet the size of the public key is larger than in the case of

RSA (i.e, quadratic rather than linear). The best known cryptanalytic attack against the McEliece

system takes time exponential in the dimension of the code, yet the security of the McEliece

system has not been studied as extensively as the RSA system. No digital signature scheme based

on algebraic coding theory has been proposed to accompany the public-key encryption scheme.

1 A straightforward modi�cation of their earlier key-exchange protocol [DH76].
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In addition, there are general constructions of (semantically-secure [GM82]) public-key en-

cryption schemes based on any trapdoor function [Ya82]. Interestingly, digital signature schemes

which are existentially-unforgeable [GMR85], can be constructed based on any one-way func-

tion [NY89, Ro90], without need of trapdoor. Thus one may bene�t from the slightly more extended

variety of candidate one-way functions which, in addition to the above, include a candidate based

on the conjectured intractability of decoding random linear codes [GKL] and Ajtai's recent candi-

date [Aj96] which is based on the worst-case complexity of approximating the shortest vector in

a lattice. Unfortunately, these general constructions for digital signatures (i.e., of [NY89, Ro90])

tend to be ine�cient.

1.2 The new proposal

In this paper we propose a new trapdoor one-way function relying on the computational di�culty

of lattice reduction problems, in particular the problem of �nding closest vectors in a lattice to a

given point (CVP).

Starting with this trapdoor function, we derive a public-key encryption and digital signature

methods, which are asymptotically more e�cient than RSA and its variants, in that the computa-

tion time for encryption, decryption, signing, and verifying are all quadratic in the natural security

parameter. The size of the public key, however, is longer than for the RSA system. Speci�cally,

for security parameter k, the length of the RSA public-key is k and cost of computation time is

O(k3), whereas for the new scheme the public key is of size O(k2) and the computation time is

O(k2). Thus, our complexities are as in McEliece encryption scheme [Mc79]. We feel that it is

high time to reconsider the belief that shorter (private and public) keys are preferable to faster

encryption and decryption time (or signing and veri�cation for signatures). In particular, space

and communication costs (associated with keys) in Internet applications seem to be less restricted

than envisioned for public-key cryptography applications 20 years ago.

Our trapdoor function. The idea underling our construction is that, given any basis for a

lattice, it is easy to generate a vector which is close to a lattice point (i.e., by taking a lattice point

and adding to it a small error vector). However it seems hard to return from this \close-to-lattice"

vector to the original lattice point (given an arbitrary lattice basis). Thus, the operation of adding

a small error vector to a lattice point can be thought of as a one-way computation.

In order to introduce a trapdoor mechanism into this one-way computation, we use the fact

that di�erent bases of the same lattice seems to yield a di�erence in the ability to �nd close lattice

points to arbitrary vectors in Rn. Therefore the trapdoor information may be a basis of a lattice

which allows very good approximation of the closest lattice point problem. Thus, we use two

di�erent bases of the same lattice. One basis is chosen to allows computing the function but not

inverting it, while the other basis is chosen to allow computing the inverse function by permitting

good approximation to the closet lattice vector problem (CVP). For the sake of the introduction,

we simply call such a basis a reduced basis. In Section 2, we de�ne a reduced basis to be one

with a small dual-orthogonality defect (where `small' is a parameter). Below we give an informal

description of our trapdoor one-way function which uses the above ideas.

The parameters of the system includes the security parameter n (which is the dimension of

the lattices that we work with) and a \threshold" parameter � which determines the size of the

error-vectors which we add to the lattice points (say, in L1 norm).

A particular function and its trapdoor information are speci�ed by a pair of bases of the same

(full rank) lattice in Rn: A \non-reduced" basis B which is used to compute the function and a
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reduced basis R which serves as the trapdoor information and is used for inversion. The \reduced"

basis is selected \uniformly" and the \non-reduced" basis is derived from it using a randomized

uni-modular transformation.

The input to the function is a lattice point (which is speci�ed by an integral linear combination

of the columns of B) and an error vector whose size is bounded by �. The value of the function on

this input is just the vector sum of the two points. To invert the function, we use a reduced basis

R in one of Babai's nearest-vector approximation algorithms [Ba86] to �nd a lattice point which is

at most � away from the given vector.

The cryptanalytic problem underlying our scheme is to approximate the closest vector problem

(CVP) in a lattice, given a \non-reduced" basis for that lattice. A related problem is the problem

of reducing the given public basis (since one obvious attack is to reduce the given basis and then

use the result for inverting the function). See Section 2.1 for a description of these computational

problems in lattices.

From trapdoor function to encryption scheme. In order to use the above trapdoor function

for public-key encryption, we need a way to embed the message in the arguments to this function.

There are several ways to do that, and we discuss some of them in Section 4.2. Here we only

describe one of them, in which the message is embedded in the lattice point.

The private and public pair of keys of a user are a pair of two bases of the same lattice of

dimension n (the security parameter). The public basis will allow encryption whereas the private

basis is chosen to allow decryption. To encrypt a message we �rst map it to a lattice point by

taking the integer combinations \speci�ed" by the message of the public basis vectors, and then

add to the lattice point a \small error vector" chosen at random. To decrypt, we look for a lattice

point which is close to the ciphertext. By using the private basis, which is a reduced basis, the

correct decryption is obtained with high probability. We remark that our encryption algorithm is

similar in its algorithmic nature to McEliece's scheme [Mc79].

Our signature scheme. Our signature scheme is similar to the encryption scheme. Regard the

message as a n-dimensional vector over the reals. Then, a signature of such vector, is a lattice point

which is \close" to it (where closeness is de�ned by a published threshold). The private basis is

reduced so that �nding \close" points is possible. Verifying correctness amounts to checking that

a signature is indeed a lattice point and that the message is close to the signature.

It is important to remark at the outset, that messages which are close to each other will have

the same signature. When applying the method in a setting where this property is desirable (e.g.,

signing analog signals which may change a little in time), this feature is of great bene�t. However,

when applying the method to a message space where such property is undesirable, we propose to

�rst hash the message and only then sign it. This is good practice also in case that the scheme

is subject to a chosen message attack, as otherwise being able to obtain di�erent signatures of

two messages which are close to each other when viewed as points in Rn will imply the ability to

compute a small basis for the lattice which in turn will enable the attacker to �nd close vectors

in a lattice and break the scheme. Interestingly, a family of collision-free hash functions can be

constructed assuming that Lattice-Reduction is hard on the worst-case (see below).

1.3 Discussion

Our work was inspired by a remarkable result of Ajtai [Aj96] who introduced a function which

is provably a one-way function if approximating the shortest non-zero vector (SVP) in a lattice
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is hard on the worst case. Ajtai's work may be viewed as exhibiting a samplable distribution on

lattices and proving that approximating the shortest non-zero vector in lattices chosen according

to this distribution is as hard as the worst case instance of approximating the shortest non-zero

vector in a lattice. Ajtai's construction, however, does not provide a trapdoor function and thus

does not provide a way of doing public-key encryption based on lattice problems. Constructing

such a trapdoor function is the novelty and focus of our work.

We remark that the construction of [NY89] can be applied to the one-way function of Ajtai and

thus yield a signature scheme based on the SVP problem. However, this construction is generic

and thus quite ine�cient. In contrast, the signature scheme which we suggest based on the new

trapdoor function is more e�cient, and based on the computational di�culty of the CVP. Alas, the

distribution over CVP instances, induced by our construction, is not known to enjoy the \hardness

of the worst-case" property of Ajtai's result.

In retrospect, our encryption scheme bears much similarity to McEliece's scheme [Mc79]. His

scheme utilizes a pair of matrices over GF(2), which corresponds to two representations of the

same linear code. The encryption method is probabilistic: one multiplies the public matrix by

the message vector and adds a random noise vector to the resulting codeword. Thus in both

McEliece and our encryption scheme, encryption amounts to a matrix-by-vector multiplication

and the addition of a suitable random vector to the result. However, the domains in which these

operations take place are vastly di�erent and so is the algebra. Another di�erence is in the way the

private-key is generated. In McEliece's scheme the private-key is a random Goppa code and has

structure essential for legitimate decoding. In our scheme the private-key can be chosen uniformly

and thus is \structure-less" { legitimate decoding merely depends on a property of such random

choices. In both schemes the public-key is obtained by a suitable random linear transformation of

the private-key; however, in our scheme the choice of this transformation seems richer. In general,

we believe that McEliece's suggestion as well as ours deserve further investigation, especially due

to the di�erence in computational complexity required from the legal sender and receiver in these

schemes as compared with the factoring/DLP based schemes.

What can we prove about the security of our proposal? Since complexity theory has yet to

produce a non-linear lower bounds for even one NP-complete problems, our proposal is essentially

based on the failure of past research e�orts to come up with e�cient algorithms for the relevant

lattice approximation tasks (i.e., SVP and CVP). Using the best known algorithms for approximat-

ing the closest vector problem we show in Section 6 that a natural attack on our trapdoor function

takes exponential time in the dimension of the lattice. In particular, according to our estimates

this attack should be intractable in practice for dimension 200.

Drawing an analogy from the past, in proposing the RSA, Rivest et. al. [RSA] relied on the

failure of past research to produce e�cient factoring algorithms, but did not reduce factoring to

the breaking of their proposal. By now, the assumption that RSA itself is hard to invert (rather

than factoring in general) can stand on its own, as it has been subjected to much examination and

scrutiny. The structure of our proposal (i.e the key generation process) is more complex than in

RSA and requires stating a more complex assumption. Essentially, we need to conjecture that for

some natural distribution on lattices and bases for these lattices, the CVP is hard. We don't know

if a result similar to Ajtai's can be proved for the distribution which we propose over the CVP

instances. (Similarity, it is not known whether such a result can be proved for RSA.) We hope that

our suggestion will stir up further investigation into the complexity of lattice problems.
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1.4 Organization

In Section 2 we review necessary material about lattices and lattice problems. In Section 3 we

describe our construction of a trapdoor function and discuss various parameters and attacks. Sec-

tion 4 describes our encryption scheme and Section 5 describes our signature scheme. In Section 6

we describe our experimental results

2 Lattices and Lattice Reduction Problems

Notations and conventions. In the sequel we use the following conventions: We denote the set

of real numbers by R and the set of integers by Z . We denote real numbers by small Greek letters

(e.g., �; �; � etc.) and integers by one of the letters i; j; k; l;m; n. We denote vectors by bold-face

lowercase letters (e.g., b; c; r etc.). We use capital letters (e.g., B;C;R, etc.) to denote matrices or

sets of vectors.

In this paper we only care about lattices of full rank, so the de�nitions below only deal with

those.

De�nition 1: Given a set of n linearly independent vectors in Rn; B = fb1; � � � ;bng, we de�ne
the lattice spanned by B as the set of all possible linear combinations of the bi's with integral

coe�cients, namely

L(B)
def
= f

X
i

kibi : ki 2 Z for all ig

We call B a basis of the lattice L(B). We say that a set of vectors L � Rn is a lattice if there is

a basis B such that L = L(B). If the vector v belongs to the lattice L, then we say that v is a

lattice-vector (or a lattice point).

Below we brie
y mention a few well-known facts about lattices. In the sequel we view a basis

for a lattice in Rn as an n�n non-singular matrix B whose columns are the basis vectors. Viewed

this way, the lattice spanned by B is the set L(B) = fBv : v is an integral vectorg. We note that

there are many di�erent bases for any lattice L. In fact, if the set B = fb1; � � � ;bng spans some

lattice then by taking any vector bi 2 B and adding to it any integral linear combination of the

other vectors we obtain a di�erent basis for the same lattice.

All bases have the same determinant. The �rst important fact about lattices is that all the

bases of a given lattice have the same determinant. This fact follows since there is an integer matrix

T such that BT = C and another integer matrix T�1 such that CT�1 = B.

The dual lattice Let B = b1; � � � ;bn be a basis for some lattice in Rn, L = L(B). Recall that

we think of B as an n � n matrix whose columns are the bi's. The dual lattice of L is the lattice

which is spanned by the rows of the matrix B�1. Let us denote the rows of B�1 by b̂1; � � � ; b̂n.

Orthogonality Defect The notion of of the orthogonality defect of a basis which was introduced

by Schnorr in [Sc87] plays a crucial role in the security of our schemes.

De�nition 2: Let B be a real non-singular n�n matrix. The orthogonality defect of B is de�ned

as orth-defect(B)
def
=

Q
i
kbik

det(B)
, where kbik is the Euclidean norm of the i'th column in B.
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Clearly we have orth-defect(B) = 1 if and only if the columns of B are orthogonal to one another,

and orth-defect(B) > 1 otherwise. When comparing di�erent bases of the same lattice in Rn, we

really only care about the product of the kbik's, since det(B) is the same for all of them (and serves

just as a normalization factor). In Section 3.5 we demonstrate the importance of the orthogonality

defect to the security of our schemes. In particular we show that when we use a basis B for a lattice

L = L(B) for our trapdoor function, the work load which is associated with a brute-force attacks

on the scheme is proportional to the orthogonality defect of the corresponding basis for the dual

lattice. It would therefore be convenient for us to de�ne the dual orthogonality defect for a matrix.

De�nition 3: Let B be a real non-singular n � n matrix. The dual orthogonality defect of B is

de�ned as orth-defect�(B)
def
=
Q

i kb̂ik=det(B�1) = det(B) �Qi kb̂ik, where kb̂ik is the Euclidean
norm of the i'th row in B�1.

2.1 Hard problems in lattices

The security of our constructions is related to the (conjectured) intractability of a few computational

problems in lattices.

The Shortest non-zero Vector Problem (SVP). This problem underlies the security of

Ajtai's construction and our collision-free hashing. In this problem we are given a basis B for

a lattice in Rn and our task is to �nd the non-zero vector in L(B) whose Euclidean norm is

minimum. There are no known polynomial-time algorithms for solving the SVP, and it is also not

known whether the SVP is NP-hard (although a version of it, where the distance is measured in

L1 norm, was shown by van Emde Boas [Bo81] to be NP-hard). There are, however, deterministic

polynomial-time approximation algorithms for the SVP. The LLL algorithm (due to Lov�asz, Lenstra

and Lenstra [LLL]) approximates the SVP in Rn up to a factor of 2n=2 in the worst case. This was

later improved by Schnorr [Sc87] to a factor of (1 + ")n for any " > 0.

No polynomial-time algorithm is known for approximating the SVP in Rn within a polynomial

factor in n. Indeed such an approximation has been conjectured to be infeasible to achieve. Re-

cently, Ajtai [Aj96] described samplable distributions which form also a \hard-core distribution"

for the SVP. Namely, any (probabilistic polynomial time) algorithm which can approximate the

SVP problem with a polynomial approximation ratio on random instances drawn with Ajtai's dis-

tribution, can be transformed into a (probabilistic polynomial time) algorithm which achieves a

polynomial approximation ratio on every instance of the SVP.

The Closest Vector Problem (CVP). This is the \non-homogeneous" version of the SVP.

In this problem we are given a basis B for a lattice in Rn and another vector v 2 Rn, and our

task is to �nd the vector in L(B) which is closest to v (in some norm). The CVP was shown by

van Emde Boas [Bo81] to be NP-hard. In terms of approximation, it was shown in [Ka] that any

algorithm which approximates the SVP to within a factor of � can be transformed into an algorithm

which approximates the CVP to within a factor of n3=2�2. Combined with Schnorr's algorithm, this

yields a polynomial-time deterministic algorithm which approximates the CVP in Rn to within a

factor of (1 + ")n for any " > 0.

As we explain in Section 3, an attack against our trapdoor function amounts to �nding an exact

solution for some instance of CVP.
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The Smallest Basis Problem (SBP). In this problem, we are given a basis B for a lattice in

Rn and our goal is to �nd the \smallest" basis B0 for the same lattice. There are many variants

of this problem, depending on the exact meaning of \smallest". In the context of this paper, we

care about bases with small orthogonality defect. Thus, we consider the version in which we look

for the basis B0 of L(B) which has smallest orthogonality defect. In out public key constructions,

�nding the private-key from the public-key requires solving some distribution over SBP instances.

For this problem too there are no known polynomial-time algorithms, and the best polynomial-

time approximation algorithms for it are again the LLL and Schnorr's algorithms which achieve an

approximation ratio of 2O(n
2

) in the worst case for SBP instances in Rn.

Worst case vs. average case. The upper-bounds above on the performance of the approxima-

tion algorithms are all worst-case bounds. However, for the security of our scheme we are more

interested in the performance of these algorithms \on the average". In fact, typically the LLL

algorithm and its variants perform much better than the above upper-bounds.

The only known theoretical result about the di�culty of \average case" lattice problems is

Ajtai's result which we mentioned above [Aj96]. As we explained in the Introduction, however,

we could not directly use Ajtai's result for our scheme. We instead propose a trapdoor function

and provide some empirical evidence to its security, by testing the di�culty of the distribution

of lattice problems which is de�ned by our scheme against some known approximation algorithms

with various parameters. We describe these tests in Section 6.

3 A Candidate Trapdoor Function

In this section we de�ne our candidate trapdoor function and analyze a few possible attacks against

it. We start by reviewing the de�nition of a collection of trapdoor functions

De�nition 4: A collection of one-way trapdoor functions consists of four (probabilistic) polynomial-

time algorithms, Generate, Sample, Evaluate and Invert

Generate. The randomized algorithm Generate takes as input the security parameter (1n) and

outputs a pair (f; t) where f describes a function and t is a trapdoor information. There is a

domain Df which is associated with every function f .

Sample. The randomized algorithm Sample takes as input a function description f (which is

part of the output of Generate) and outputs a point x 2 Df . The random choices of this

algorithm induce a probability distribution over the domain Df .

Evaluate. The algorithm Evaluate takes as input a function description f and a point x 2 Df

and returns the value f(x).

Invert. The algorithm Invert takes as input a function description f , the corresponding trapdoor

information t and a point y in the range of f , and returns a point x 2 Df for which f(x) = y.

We require that the Invert algorithm be successful with high probability, where this proba-

bility is taken over the random coin-tosses ofGenerate and Sample, and over the coin-tosses

of Invert itself (if it happens to be randomized).

A collection Generate, Sample, Evaluate is one-way if Evaluate is a polynomial-time algo-

rithm, and for any probabilistic polynomial time algorithm A, the probability that A succeeds in

inverting f - when it is only given 1n; f; f(x) - is negligible. The probability in this case is taken
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over the coin tosses of Generate, Sample and A itself, and is measured against the security

parameter which was the input to both Generate and A. Namely, we have

Pr
f;x

�
A(1n; f; f(x)) 2 f�1[f(x)]

�
= negligible(n)

where the probability is taken over the choice of f by Generate, the choice of x by Sample and

the internal coin-tosses of the A. (we say that a real-valued function is negligible in n, if as n gets

larger this function becomes smaller than any polynomial in 1=n).

3.1 Our construction

Generate On input 1n, we generate two bases B and R of the same full-rank lattice in Zn and a

positive real number �. We generate these bases so that R has a low dual-orthogonality-defect

and B has a high dual-orthogonality-defect. We describe the generation process in details

in Section 3.3. The bases B;R are represented by n � n matrices where the basis-vectors

are the columns of these matrices. In the sequel we call B the \public basis" and R the

\private basis". We view (B; �) as the description of a function fB;� and R as the trapdoor

information. The domain of fB;� consists of pairs of vectors v; e 2 Rn.

Sample Given (B; �), we output vectors v; e 2 Rn as follows:

The vector v is chosen at random from a \large enough" cube in Zn. For example, we can

pick each entry in v uniformly at random from the range f�n2;�n2 + 1; � � � ;+n2g. 2

The vector e is chosen at random fromRn, so that each entry in it has zero-mean and variance

�2. For example, we can pick each entry in e as ��, each with probability 1

2
. Alternatively,

if we want e to have integral entries we can pick each entry as equal to �d�e each with

probability �2=2 d�e2 and 0 with probability 1� �2= d�e2.
Evaluate Given B; �;v; e, we compute c = fB;�(v; e) = Bv + e.

Invert Given R and c, we use Babai's Round-O� algorithm [Ba86] to invert the function. Namely,

we represent c as a linear combination on the columns of R and then round the coe�cients

in this linear combination to the nearest integers to get a lattice point. The representation of

this lattice point as a linear combination on the columns of B is the vector v. Once we have

v we can compute e. More precisely, denote T
def
= B�1R, so we compute v  T dR�1cc and

e c�Bv.

3.2 The Inversion Algorithm

In this section we show how � can be chosen so that the inversion algorithm is successful with high

probability. Recall that the inversion algorithm succeeds in inverting the function on c if using the

private basis R in Babai's \round o�" algorithm results in �nding the closest lattice-point to c.

Below we suggest two di�erent ways to bound the value of �, based on the L1 norm and L1 norm

of rows in R�1. Both bounds uses the following lemma.

Lemma 3.1: Let R be the private basis used in the inversion of fB;�(v; e). Then an inversion

error occurs if and only if dR�1ec 6= �0.

2We do not know if the size of this range has any in
uence on the security of the construction. The value n2 is

rather arbitrary, and was only chosen to get integers of about 16 bits for the parameters which we work with.
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Proof: Let T be the unimodular transformationmatrix T = B�1R. Then the inversion algorithm

is v = T dR�1cc and e = c � Bv. Obviously, if v is computed correctly then so is e. Thus, let us

examine the conditions under which this algorithm �nds the correct vector v. Recall that c was

computed as c = Bv + e, so

T dR�1cc = T dR�1(Bv + e)c
= T dR�1Bv +R�1ec = T d(BT )�1Bv + R�1ec = T dT�1v +R�1ec

But since T is a unimodular matrix (and therefore, so it T�1) and since v is an integral vector, then

T�1v is also an integral vector. Hence we have dT�1v+ R�1ec = T�1v+ dR�1ec, and therefore

�
R�1c

�
= T ( T�1v +

�
R�1e

�
) = v + T

�
R�1e

�
Thus the inversion algorithm succeeds if and only if dR�1ec = �0.

We proceed to show the bounds on �. In both the theorems below we assume that each entry

in the \error vector" e is chosen equal to ��, each with probability a half. We start by asserting

that we can choose � so that we never get any inversion errors.

Theorem 1: Let R be the private basis used in the inversion of fB;� , and denote the maximum

L1 norm of the rows in R�1 by �. Then as long as � < 1=(2�), no inversion errors can occur.

Proof: We �rst introduce a few notations. We denote d
def
= R�1e and denote the i'th entry in d

and e by �i and �i respectively. Also, we denote the i'th row in R�1 by r̂i and the i; j'th element

in R�1 by �ij.

By Lemma 3.1 above, we get an inversion error only when dR�1ec 6= �0, which means that

j�ij > 1

2
for some i. However, since all the entries in e are equal ��, we get for every i

j�ij = ĵri � ej = j
X
j

�ij�j j � � �
X
j

j�ijj � � � � < 1

2

Although Theorem 1 gives a su�cient condition to get the error-probability down to 0, we may

choose to set a higher value for � in order to get better security. The next theorem asserts a

di�erent bound on �, which guarantee a low error probability.

Theorem 2: Let R be the private basis used in the inversion of fB;� , and denote the maximum

L1 norm of the rows in R�1 by 
p
n
. Then the probability of inversion errors is bounded by

Pr[ inversion error using R ] � 2n � exp
�
� 1

8�2
2

�
(1)

Proof: We use the notations d; �i; �i; r̂i and �ij as in the proof of Theorem 1. We �rst �x some

i and evaluate Pr[j�ij � 1

2
]. Recall that �i = r̂i � e =

P
j �ij�j . Since for all j, j�ijj � 
=

p
n and

�j = ��, each with probability 1

2
, then all the random variables �ij�j have zero mean and they are

all limited to the interval [� �
p
n
;+ �
p

n
]. Therefore we can use Hoe�ding bound to conclude that

Pr

�
j�ij > 1

2

�
= Pr

2
4jX

j

�ij�j j > 1

2

3
5 < 2 exp

�
� 1

8�2
2

�
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Using the union bound to bound the probability that any such i exists completes the proof.

Remark. The last theorem implies that to get the error probability below " it is su�cient to

choose � �
�


p
8 ln(2n=")

��1
. In fact, the above bound is overly pessimistic in that it only looks

at the largest entry in R�1. A more re�ned bound can be obtained by considering the few largest

entries in each row separately and applying the above argument to the rest of the entries.

Alternatively, we can get an estimate (rather that a bound) of the error probability by using

Equation 1 as if all the entries in each row of R�1 have the same absolute value. In this case 
 is

the maximum Euclidean norm of the rows in R�1 so we get an estimate of the error-probability in

terms of the Euclidean norm of the rows in R�1. This estimate is about the same as the one which

we get by viewing each of the �i's as a zero-mean Gaussian random variable with variance (�kr̂ik)2
(where kr̂ik is the Euclidean norm of the i'th row in R�1).

To get a feeling for the size of the parameters involved, consider the parameters n = 140; " =

2�30. For a certain setting of the parameters which we tested, the Euclidean norm of all the rows

in R�1 is below 1=30. Evaluating the expression above for 
 = 1=30 yields

� �
 
1

30

s
8 ln

�
280

2�30

�!�1
� 30

14:6
� 2

For the same parameters of R, setting " = 10�4 yields � � 2:7

3.3 The Generate Algorithm

In this section we discuss various aspects of the Generate algorithm. We described in Section 3.2

how the value of � can be computed once we have the private basis R. Now we suggest a few

ways to pick R and B. Recall that R;B are two bases for some lattice in Zn, where R has small

dual orthogonality defect and B has a large dual orthogonality defect. Our high-level approach for

generating the private and public bases is to choose at random n vectors in Zn to get the private

basis and then to mix them so as to get the public one. There are two distributions to consider in

this process

� A distribution on the lattices in Zn which is induced by the choice of the private basis R.

� Once we have the private basis R, there is a distribution which is induced on the bases of

L(R) by the process of \mixing" R to get the public basis B.

To guide us through the choices of the various parameters, we relied on experimental results (See

Section 6). Below we brie
y discuss the various parameters which are involved in this process.

3.3.1 Lattice dimension

The �rst parameter we need to set is the dimension of the lattice (the value of n). Clearly, the

larger n is, we expect that our schemes will be more secure. On the other hand, both the space

needed for the key pair and the running-time of function-evaluation and function-inversion grow

(at least) as 
(n2).

The lattice-reduction algorithm which we used for our experiments is capable of �nding a

basis with very small orthogonality defect as long as the lattice dimension is no more than 60-80

(depending on other parameters). Beyond this point, the quality of the bases we get from this

lattice reduction algorithm degrades rapidly with the dimensions. In particular, we found that in

10



dimension 100, the bases we obtained had a high dial-orthogonality-defect. At the present time,

the best \practical lattice-reduction algorithm" which we are aware of is Schnorr`s block-reduction

scheme (which was used to attack the Chor-Rivest cryptosystem, see [Sc95]). We speculate that

working in dimensions about 150-200 might be good enough with respect to this algorithm.

3.3.2 Distribution of the private basis

After setting the dimension, we need to decide on the distribution according to which we choose

the private basis. We considered two possible such distributions.

1. Choosing a \random lattice": We choose a matrix R which is uniformly distributed in

f�l; � � � ;+lgn�n for some integer bound l. In our experiments, the value of l had almost

no e�ect on the quality of the bases which we got. Therefore we chose to work with small

integers (e.g, between �4), since this makes some of the operations more e�cient.

2. Choosing a \rectangular lattice": We start from the box kI in Rn (for some number k), and

add \noise" to each of the box vectors. Namely, we �rst pick a matrix R0 which is uniformly

distributed in f�l; � � � ;+lgn�n, and then compute R R0 + kI .

The larger the value of k is, this process generates a basis with smaller dual orthogonality

factor, but it may also allow an attacker to obtain a basis with smaller dual orthogonality

factor by reducing the public basis.

3.3.3 Generating the public basis

Once we have the private basis R, we should pick the public basis according to some distribution

on the bases of the lattice L(R). Since every basis of L(R) is obtained as B = RT for some

unimodular transformation matrix T , then picking B when we have R is equivalent to picking a

\random unimodular transformation". We tried two ways of generating these \random unimodular

transformations". Both methods work by multiplying many \elementary matrices", of di�erent

forms.

� One type of elementary matrices which we considered are matrices of the form

0
BBBBBBBBBBB@

1 ?
...

1 ?

1

? 1
...

? 1

1
CCCCCCCCCCCA

or

0
BBBBBBBBBB@

1

1

? � � � ? 1 ? � � � ?

1

1

1
CCCCCCCCCCA

where the ?'s represent any integers and the blanks represent zeros. (The �rst form corre-

sponds to adding to the i'th columns an integer linear combination of the other columns and

the second corresponds to adding an integral multiple of the i'th column to all the other

columns.) We typically chose the ? components at random from f�1; 0; 1g with a bias to-

wards 0 (speci�cally, we used Pr[1] = Pr[�1] = 1=7). This was done so that the size of the

numbers in the public basis will not grow too fast.
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An important parameter in this process is the number of elementary matrices which we

multiply together (which we refer to as the \number of mixing steps"). In our experiments

we only used matrices of the �rst form, and went through the values of i in order so as to

make sure that we hit them all. Our experiments indicate that using 2n such matrices is

su�cient.

� Another possible type of elementary matrices are upper- and lower-triangular matrices with

�1 on the main diagonal. We did very few experiments with these matrices. In these ex-

periments we chose the non-zero entries in L and U (which are lower- and upper-diagonal

respectively) from f�1; 0; 1g. We found that we need to multiply at least 4 LU pairs to

prevent LLL from recovering the original basis.

Comparing the two methods, we found that for the same \level of security", the second method

required a basis B with larger entries. Thus we used the �rst method in the most of our experiments.

One way to keep the entries of the public basis small (using either of the distributions above) is to

LLL-reduce the mixed basis. This does not a�ect the security of the trapdoor function (since an

attacker can do the same thing). However, when used in the encryption scheme which we suggest

in Section 4, there may be some advantage in keeping the entries in B \not too small".

3.4 Bases representation.

To make evaluating and inverting the function more e�cient, we chose the following representation

for the private and public bases. The public bases is represented by the integer matrix B whose

columns are the basis-vectors, so that evaluating fB;�(v; e) = Bv + e can be done in quadratic

time. To invert fB;� e�ciently, however, we do not store the private basis R itself. Instead, we

store the matrix R�1 and the unimodular matrix T = B�1R. Then, to compute f�1B;�(c) we set

v = T dR�1cc and e = c�Bv, both of which can be done in quadratic time.

Representing B; T is easy since they are integral matrices, but R�1 is not an integral matrix, so

we need to consider how it should be represented. One possibility, of course, is to keep the exact

values of all the entries in R�1. After all, the entries of R�1 are all rational, and the number of bits it

take to write them down is at most polynomial in the number of bits of R. This approach, however,

is rather expensive in terms of running time. Although the entries in R are small (typically, only

2-3 bits) the determinant of R is much larger (about 200 bits if R is a 100�100 matrix) which

means that we need to work with very large numbers in order to perform operations on R�1. A

di�erent approach is to only keep a few bits of each entry in R�1. This, of course, may introduces

errors. If we only keep ` bits per entry then we get an error of at most 2�` in each entry.

Clearly, this has no e�ect on the security of the system (since it only e�ects the operations

done using the private basis), but it may increase the probability of inversion errors. Since we only

perform linear operations on R�1, it is rather straightforward to evaluate the e�ect of adding small

errors to its entries. Denote the \error matrix" by E = (�ij). That is, �ij is the di�erence between

the value which is stored for (R�1)ij and the real value of that entry. Then we have j�ij j < 2�` for

all i; j. When inverting the function, we apply the same procedure as above, but uses the matrix

R0 def= R�1 +E instead of the matrix R�1 itself.

Recall that the value of the function is c = Bv + e, where v is an integer vector and e is the

\error vector". Thus the vector v0 computed by the inversion routine is

v0 = T dR0cc = T
�
(R�1 + E)(Bv+ e)

�
= v+ T

�
R�1e+ E(Bv+ e)

�
where the last equality follows since R�1Bv is an integral vector so we can take it out of the

rounding operation and then we have TR�1Bv = v. Therefore, we invert correctly if and only if
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dR�1e+E(Bv+ e)c = �0, which means that all the entries in R�1e+E(Bv+ e) are less than a 1

2

in absolute value. The size of the entries in the vector R�1e is analyzed in Section 3.2, so here we

only consider the vector E(Bv+ e).

Recall that all the entries in E are less than 2�` in absolute value, and that the error vector

e consists only of small entries (e.g., for our parameters, the entries in e are always less than 10).

Thus the contribution of the vector Ee can be at most 10 � 2�` in each coordinate, so we might as

well ignore it. To evaluate the entries in EBv, assume that we represent each entry in the matrix

B using k bits, and each entry in the vector v using m bits. Then, each entry in the vector EBv

must be smaller than n � 2k+m�` in absolute value.

For example, if we work in dimension 200, use 16 bits for each entry in B and 16 bits for each

entry in v, and keep only the 64 most signi�cant bits of each entry in R�1 then the entries in EBv

will be bounded by 200 � 216+16�64 � 2�24. Thus, a su�cient condition for correct inversion is that

each entry in R�1e is less than 1

2
� 2�24 in absolute value (as opposed to less than 1

2
which we get

when we store the exact values for R�1). Clearly, this has almost no e�ect on the probability of

inversion errors.

3.5 Security Analysis

In this section we provide some analysis for the security of the suggested trapdoor function by

considering several possible attacks and trying to analyze their work-load. We start with evaluating

the work-load of a brute-force attack.

3.5.1 Brute-Force Attack

An obvious pre-processing step in every attack on this construction is to reduce the public basis

B to get a better basis B0 which can then be used to invert the function. Notice that the only

feature of R which we used when we analyzed the error-probability is that the rows of R�1 have

small Euclidean norm (in other words, R has a very small dual orthogonality defect). If we can

�nd another basis with this property, then we can use it just as well. However, �nding a basis with

a very low dual orthogonality defect is assumed to be a hard problem.

Thus, we assume that even after the lattice reduction, the attacker still have a basis B0 with a

rather large dual orthogonality defect.3 For the sake of simplicity, we assume that the basis used

by the attacker is the public basis B. Trying to use the basis B for inverting the function in the

same manner as we use the basis R means that given the ciphertext c = Bv + e, we compute

B�1c = v + B�1e. Then we can do an exhaustive search for the vector d
def
= B�1e. Below we

give an approximate analysis for the size of the search space that the attacker needs to go through

before it �nds the correct vector d.

Denote the i'th entry in d and e by �i and �i respectively. The i'th row of B�1 by b̂i and the

(i; j)'th element in B�1 by �ij. Using these notations we can write �i = b̂i � e =
P

j �ij�j , and

therefore

E[�i] = 0 and VAR[�i] =
X
j

�2ijE[�
2

j] = (�kb̂ik)2

where kb̂ik is the Euclidean norm of the i'th row of B�1.

To evaluate the size of this search space for d, we make the simplifying assumptions that

each entry �i in d is Gaussian, and that the entries are independent. Based on these simplifying

3This will be the case, for example, if the public basis B is obtained by applying a \good lattice-reduction

algorithm" to the basis which was obtained by mixing the private basis R.
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assumptions, the size of the e�ective search space is exponential in the di�erential entropy of the

Gaussian random vector d. Recall that the di�erential entropy of a Gaussian random variable x

with variance �2 is h(x) = 1

2
log(�e�2). Since we assume that the �i's are independent, then the

di�erential entropy of the vector d equals the sum of the di�erential entropies of the entries, so we

get

h(d) =
1

2

X
i

log(�e�2kb̂ik2) = n

2
log(�e�2) +

X
i

log kb̂ik

so the size of the search space is 2h(d) = (�e)n=2 ��n �Qi kb̂ik = (�e)n=2 ��n �orth-defect�(B)=det(B).
Note that the term det(B) in the last expression depends only on the lattice and is independent of

the actual basis B.

Typical numeric values. In the experiments which we performed (in dimension 100 with � = 2)

evaluating this last expression on the (LLL-reduced) public bases resulted in typical work-load of

about 1070 � 2230.

3.5.2 Other Attacks

In this section we discuss other possible lines of attack against the scheme. One rather obvious

improvement on the brute force attack which is described above is to use a better approximation

algorithm for the CVP. In particular, instead of using Babai's \Round-o�" algorithm we can use

the \Nearest-plane" algorithm which was also described in [Ba86]. On a high-level, the di�erence

between the Round-o� and the Nearest-plane algorithms is that in the Nearest-plane, the rounding

in the di�erent entries are done adaptively (rather that all at once).

One way to describe the Nearest-plane algorithm (which is somewhat di�erent than the way it is

described in [Ba86]) is as follows: Given the point c and the (LLL reduced) basis B = fb1; � � � ;bng
(in the order induced by the LLL reduction). We compute the representation of c as a linear

combination of the bi's, c =
P

i �ibi, but we only look at the last coe�cient �n. We then replace c

with the point c0 = c�d�ncbn, and replace bn with a vector b�n which is orthogonal to all the other

basis vectors. Denote the new basis by B0 = fb�n;b1; � � � ;bn�1. We then apply the same process to

c0 and B0 (this time looking at the coe�cient of bn�1). We repeat this until we eliminate all the

vectors from the original basis B. It is clear that if at each step we got the right coe�cient then

the vector which is left at the end is just the error vector e.

As was pointed to us by Don Coppersmith, this attack can be improved in practice in several

di�erent ways:

� Instead of picking the vectors by the order which was induced by LLL, we can pick them

by the size of the Euclidean norm in the corresponding rows of B�1. As we showed in the

analysis of the brute-force attack, this choice maximizes the probability that the coe�cients

obtained by rounding are really the right coe�cients.

� We can apply a lattice-reduction procedure to the remaining basis-vectors after each iteration

(or once every few iterations). This improvement is particularly useful since the performance

of the lattice-reduction algorithm improves rapidly as the dimension decreases. Also, we

can round more than one coe�cient at a time (if there are several vectors for which the

corresponding rows of B�1 have small norm).

� If all the rows in B�1 have a large Euclidean norm, we can apply an exhaustive search similar

to our brute force attack to the few entries which has the smallest Euclidean norm. That is,
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we try to continue the same algorithm for each plausible setting of these entries. Since we

only a few entries (and we picked the ones with the smallest norm), we expect that the size

of this exhaustive search will be rather small.

To defeat this attack, we must make the dimension of the original lattice large enough so that all

the rows in B�1 will have large Euclidean norm. Although we did not perform extensive tests of

this attack, the data that we have so far indicates that when using LLL as our lattice-reduction

algorithm, we need to do some exhaustive search even for dimension 120. It seems that when

using LLL, this attack is infeasible for dimensions above 140. We still do not have data about the

performance of this attack using better lattice-reduction algorithms.

4 Encryption Scheme

Our public-key Encryption scheme is based on our candidate one way trapdoor function in the usual

way. That is, to encrypt a message we embed it inside the argument to the function, compute the

function and the result is the ciphertext. To decrypt, we use the trapdoor information to invert

the function and extract the message from the argument.

Recall from Section 3 that, in high level, our one way trapdoor function takes a lattice vector

and adds to it a small error vector. In the context of an encryption scheme, we say that we `encrypt

a lattice vector' by adding to it a small error vector, and the resulting vector in Rn is the ciphertext.

To encrypt arbitrary messages, we specify an (easily invertible) encoding which maps messages into

lattice vectors which are then encrypted as above. Decrypting the ciphertext amounts to solving a

particular type of CVP instances which was discussed in Section 3. In a nutshell, the Encryption

scheme can be described as follows (using the algorithms Generate, Sample, Evaluate and

Invert from the description of our trapdoor function).

Generating Keys. On security parameter 1n, run algorithm Generate(1n) to get the triplet

(B;R; �). We let the public key be (B; �) and the secret key to be (R�1; T ) where T = B�1R.

Encryption. On input message s and public key (B; �), we �rst apply some (randomized) en-

coding function v  Enc(s) to encode s as a vector v 2 Zn. We note that this encoding is in

fact the only component of the encryption scheme which is not directly implied by the trapdoor

function construction. We discuss this encoding function in Section 4.2. (For now, we let Enc;Dec

denote a pair of public and easy to compute functions such that Dec(Enc(s)) = s.)

Once we computed v, we pick at random an \error-vector" e 2 Rn according to the distribution

induced by the Sample algorithm from Section 3. We then apply the function fB;� to v and e to

get the ciphertext c fB;�(v; e) = Bv + e.

The operations involved in encrypting a message are therefore: (1) Encoding it as a integer

vector; (2) Choosing a random vector; and (3) Performing one matrix-vector multiplication and

one vector addition. Thus we have an O(n2) algorithm for encryption (where n is the dimension

we work in).

Decryption. To decrypt c we use the private key to invert the function fB;� by setting v  
T dR�1cc. We then extract the message s from the vector v by setting s = Dec(v). Decrypting

a message amounts to two matrix-vector multiplications and one rounding operation on a vector.

Thus we also have an O(n2) algorithm for decryption.
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Detecting decryption errors. One property of the above decryption procedure is that although

there is a probability of error, it is still possible to verify when the message is decrypted correctly.

This enables the legitimate user to identify decryption errors, so that it can take measures to

correct them. Recall that we encrypt the lattice point p by adding to it a small error vector e,

thus obtaining the ciphertext c = p+ e. When we decrypt c and �nd a lattice point p0 (which we

hope is the same as p), we can verify that this is the right lattice point by checking that the error

e0 = c � p0 is indeed small. For example, if we pick the error vector so that it never contains any

entry larger than �, then we can check that �i � � in each component. Thus we get

Fact 4.1: If the underlying lattice does not contain any non-zero vector with L1 � 2� then

decryption errors can always be detected.

Plaintext Awareness. It seems that our scheme enjoys some weak notion of \plaintext aware-

ness" in that there is no obvious way to generate from scratch a valid ciphertext (i.e., one which

the decryption algorithm can decrypt) without knowing the corresponding lattice point. Still this

plaintext awareness is limited, since after seeing one valid ciphertext c, it is possible to generate

other valid ciphertexts without knowing the corresponding lattice-points (simply by adding any

lattice point to c).

4.1 Partial Information Attacks

In addition to the attacks on the underlying trapdoor function which were outlined in Section 3.5,

there are types of attacks which only make sense in the context of encryption scheme. Namely,

rather than trying to recover the original message itself, the attacker can instead try to extract

from the ciphertext some partial information about the message (e.g., the value of a speci�c bit in

it). On way in which such partial information attacks can be mounted against this scheme is as

follows:

Recall that the ciphertext is computed as c = Bv + e and therefore B�1c = v + d, where d is

de�ned d
def
= B�1e. Thus, the i'th entry of (B�1c) is equal to �i + �i (�i; �i are the i'th entries in

v;d respectively). We saw in Section 3.2 that if the Euclidean norm of the row b̂i in B�1 is small,

then the variance of �i will also be small (notice that the dual-orthogonality-defect of B may still

be large because of other rows in B�1 that have much larger Euclidean norm). In particular, if

� � kb̂ik < 1 then there is a reasonable probability that j�ij < 1=2, in which case �i is just the i'th

entry of the rounded vector [B�1c].

Thus, an attacker could just focus on the rows of B�1 which have low Euclidean norm, and try

to compute the corresponding entries in v. Knowing some of the entries in v may - in turn - give

some partial information about the message s. More generally, the adversary may view the i'th

entry of B�1c as an estimate for �i (which is probably accurate up to �kb̂ik), and use this partial

knowledge about the entries in v to obtain some partial knowledge about s.

Somewhat surprisingly, for the purpose of this attack - reducing the basis B does not seem

to help (of course, as long as the resulting basis is not \reduced enough" to break the underlying

trapdoor function). To see why, consider the unimodular transformation T 0 between the original

basis B and the reduced basis B0 (T 0 = (B0)�1B). Since c is computed using the original matrix

B, then when trying to extract partial information using B0 we compute

v0 = (B0)�1c = (B0)�1(Bv + e) = (B0)�1Bv + (B0)�1e = T 0v+ (B0)�1e

If (B0)�1 has rows with small Euclidean norm, then the attacker may be able to learn the corre-

sponding entries in T 0v, but this still does not seem to yield an estimate about any entry in v. It
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follows that in this encryption scheme, it may be useful to publish public basis which is not LLL

reduced.

In any case, foiling the partial information attacks requires a careful design of the encoding

scheme v Enc(s), so that partial information that can be revealed about v will not yield partial

information about s. This is discussed next.

4.2 Encoding messages as vectors in Zn

In this section we discuss ways to encode messages as vectors in Zn. As we mentioned above, we

would like to have an encoding scheme such that knowing a few entries in v exactly and knowing

some rough estimate on all the other entries still yields \almost no information" about s.

In choosing an encoding function, there are other parameters (besides security) which need to

be considered. Perhaps the most important of them is to obtain high bandwidth: Since for every

encryption operation we end up sending the vector c = Bv + e, we would like to use as much of

this bandwidth as possible for message bits.

The Trapdoor Function Paradigm: Using hard bits. The �rst approach is a generic one.

Since we have a candidate for a trapdoor one-way function, we may use hard-core bits of this

function as the message bits. In particular, we can use the general construction of Goldreich-Levin,

[GL84]) which shows how and where to hide hard core bits in a pre-image of any one-way function.

(This construction enables hiding logn bits in one function evaluation.)

This approach has the advantage of being able to prove that it is impossible to even distinguish in

polynomial time between any two messages, under the assumption that we started with a trapdoor

function. The major drawback is in terms bandwidth, since we can only send logn bits at a time

for one function evaluation. Moreover, since this approach is generic, it doesn't provide us with

any insight which we may exploit to increase the bandwidth.

Using the low-order bits in v. Another approach is to embed the bits of s directly in the

vector v. Since an attacker can get an estimate for the entries in v, then it is clear that we need

to embed s in the least signi�cant bits of these entries. Also, the fact that the attacker may be

able to learn exactly some of the entries in v implies that we should not put any bits of s in those

entries. Note that we know in advance which are the \weak entries", since these correspond to the

rows in B�1 with small Euclidean norm.

We start by examining the simple case in which we only use the least-signi�cant-bit of each

entry (except for the \weak entries"). and pick all the other bits at random. Then, given an

estimate ~�i = �i + �i for the entry �i, the attacker should decide whether the number in that entry

was even or odd (that is, whether the message bit is a 0 or 1).

If we assume that each entry in ~�i can be approximated by a Gaussian random variable with

mean �i and variance �2kb̂ik2 (which is reasonable since ~�i is a sum of n independent random

variable which are all \more or less the same", then given the experimental value ~�i, the statistical

advantage jPr[�i is even j ~�i]� Pr[�i is odd j ~�i]j is exponentially small in �kb̂ik. Thus, if the

Euclidean norm of b̂i is large enough, then the attacker, who knows ~�i, gets only a small statistical

advantage in guessing the corresponding bit of s. If we have a row of B�1 with very high Euclidean

norm, then we may be able to use the corresponding entry of v for ` message-bits. It can be

shown that the statistical advantage in guessing any of these bits is at most exponentially small in

�kb̂ik=2`. If the Euclidean norm of each individual row in B�1 is too small, we can represent each
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bit of s using several entries by making that bit the XOR of the least signi�cant bit in all those

entries.

Reducing mod 2 Notice that using only the least signi�cant bits for the bits of s is really a

linear operation, since we can write v = s+ 2r, where s is the f0; 1g vector with the message bits

and r is a random integer vector. Therefore, when using this encoding we should consider attack in

which all the matrices involved are reduced modulo 2, and the attacker tries to compute the vector

v mod 2.

Namely, we have c = Bv + e = Bs + 2Br+ e, so when reduce the last equation mod 2 we get

c = Bs + e (mod 2). We can now compute the inverse of B mod 2 over Z2. If such an inverse

exists then denote it by B�1
2 . In this case we get B�1

2 c = s + B�1
2 e (mod 2). Notice, however,

that e mod 2 is a random binary vector which is 1 with probability �2, and so - for each entry �i of

d = B�1
2 e mod 2 - the statistical di�erence jPr[�i = 0]� Pr[�i = 1]j is exponentially small with n.

5 Signature scheme

In this section we describe a slight modi�cation of our trapdoor function which is more suitable for

a signature scheme, and provide an initial assessment of its properties. In this signature scheme,

just like in the encryption scheme, the user uses its private basis B to �nd lattice points which are

close to some given vectors in Rn. In this scheme, we \sign a vector in Rn" by providing a lattice

point which is \rather close" to that vector. The public key for the signature scheme contains a

public basis B for the lattice, and a threshold � > 0 which de�nes how close should the lattice

point be to the given vector. The choice of � is discussed in Section 5.3.1.

5.1 Operation

The key-generation procedure amounts to the generation of two bases (as in the Generate pro-

cedure of the trapdoor function) and to the determination of the threshold � .

Signature. To sign a message s, we �rst need to interpret s as a vector in Rn. For this we use

some encoding function to get u Enc(s) (see Section 5.3.2). Then, using the private key (R�1; T )

we apply the exact same procedure as for decrypting a message, namely compute v  T dR�1uc.
The vector v is the signature on s. The signing time is O(n2) just like for encryption, provided

that the encoding time is so bounded.

Notice that v is an integral vector, which we view as a representation of the lattice point

p = Bv. The reason that we expect p to be \rather close" to u is that the representation of u

as a linear combination of the columns of R is R�1u, while the representation of p as a linear

combination of the columns of R is dR�1uc, and these two representations di�er by at most a half

in each coordinate. We discuss this further in Section 5.3.1.

Veri�cation. To verify a signature v on message s w.r.t. the public key (B; �), we compute the

vectors u  Enc(s); p  Bv, and check that the Euclidean distance between them is less than

� . Namely, the veri�cation process consists of checking the inequality kEnc(s)� Bvk < � . This

process too takes time O(n2), provided again that the encoding time is so bounded.
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5.2 On the analog nature of the scheme

We note that because of its \analog nature", our scheme has some properties which are very di�erent

than those of other known signature schemes. In particular, notice that if u;u0 are two vectors in

Rn which are very close to each other (much closer than the threshold �), then it is very likely

that a signature on u will also be a signature on u0. This \metric preserving" property suggests

di�erent signing procedures for digital versus analog data.

If we are signing digital data then we should make sure that a signature on one message could

not be used to obtain a signature on another message. This can be achieved by the use of a \good

hash function" to hash the message before we interpret it as a vector in Rn (or, alternatively, as

the means to map messages to such vectors). If indeed the hash function is good enough, it will

ensure that even if two messages to be signed are close to each other at the outset, they will be

far apart after being hashed and thus be mapped to di�erent signatures. Note that the hashing

and signing paradigm is what is necessary and in fact done in practice when using the RSA and

DSA signature schemes. The reason is to ensure the di�culty of forging the signature of messages

related to those messages signed previously by a legitimate user { a forgery which is otherwise easy

in both the case of \bare" RSA and DSA.

On the other hand, the \metric preserving" property may useful when signing analog data

such as music, speech, images etc. In employing a traditional digital signature scheme to such data,

the natural procedure is to �rst sample the data so as to obtain digital representation of it, and

next to apply the signature scheme to this digital representation. This procedure has the disad-

vantage of potentially mapping close analog signals to di�erent (yet close) digital representations.

In particular, minor changes in the either the sampling process or in the analog signal itself, may

result in a di�erent digital representation. Consequently, the signature may not be valid when the

analog signal changes a little. Thus, a method such as ours, where the analog signal may be signed

directly have an advantage of supplying signatures which remain valid (or at least meaningful)

under small changes of the analog signal.

Note that the above discussion depends on the encoding of data as vectors in Rn. Each of the

two settings calls for a di�erent type of encoding. In the \digital" setting we wish the encoding

to scramble messages so to destroy any structure (e.g., related messages should yield unrelated

encoding). In the \analog" setting we want the encoding to preserve the metric of the data space

(e.g., close analog signals should yield close encoding in Rn). For further details see Section 5.3.2.

5.3 Various choices

In addition to the choices made for the process of selecting the private and public bases (discussed in

Section 3), there are two important choices to be made: Firstly, we need to determine the threshold

parameter � , and secondly we need to determine the method of encoding data as vectors in Rn.

5.3.1 Choosing the threshold

In this section we show how the threshold � should be chosen so that the signature algorithm is

successful with high probability, and in Section 5.4 we examine the e�ects of the choise of the

security of the signature scheme.

In the analysis below we use the following notations. Let A be a basis for some lattice in

Rn. We denote by RoundA(u) the lattice point which is generated from u by considering the

representation of u as a linear combination of the vectors in B and rounding the coe�cients to the

nearest integers. That is, RoundA(u)
def
= A dA�1uc.
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Consider now a random vector u 2 Rn and we try to evaluate the distance between u and

RoundR(u), where R is the private basis. Recall that conceptually, the lattice point RoundR(u)

is the signature on the vector u (though the actual signature is the representation of that point

w.r.t. the public basis B). De�ne the \error vector"

e
def
= [R�1u]� R�1u

that is, the i'th entry �i in e is the di�erence between the i'th coe�cient in the representation of u

as a linear combination of the vectors in R and the nearest integer. Then the distance between u

and RoundR(u) is just the Euclidean norm of the vector Re. Clearly, we have j�ij � 1=2 for all i,

since this is just the di�erence between some real number and the nearest integer. This immediately

gives us

Claim 5.1: Let R be the private basis used for signing and denote the maximum L1 norm of any

row in R by 
. If we set � = 

p
n=2 then the signing algorithm always succeeds (with probability

1).

Proof: Denote d
def
= Re. We can write the i'th entry in d as �i =

P
j �ij�j where �ij is the i; j'th

entry in R and �j is the j'th entry in e. Therefore j�ij �
P

j j�ij�j j � 1

2

P
j j�ijj � 1

2

 and so

kdk =
vuut nX

i=1

�2i �
vuut nX

i=1

�
1

2



�2
= 

p
n=2

As for the trapdoor function, we may choose to set a lower value for � to get a better security.

We now describe an \approximate analysis" which enables us to estimate the failure probability

for lower values of � .

(As opposed to the situation with the trapdoor function, however, even these approximate

estimates are not very good. Experimentally, we found that we can set the value of � to be about

half the value which we get from the analysis below.)

Recall that the distance between u and RoundR(u) is the Euclidean norm of the vector Re

where j�ij � 1=2 for all i. Moreover, if u is chosen uniformly at random from a large enough box

in Rn then the distribution induced over the vector e is close to the uniform distribution over

(�1

2
;+1

2
]n.

To see that, notice that if we choose u uniformly from the parallelepiped fPi 
iri : 0 � 
i < 1g
(where ri is the i'th column of R) then the induced distribution on e is exactly the uniform

distribution. Moreover, every large enough box in Rn can be viewed as union of many disjoint

parallelepipeds like that, plus some \left over" volume. As the volume of the box increases, the

fraction of this \left over" volume decreases. Thus, the induced distribution of the vector e gets

closer to the uniform distribution.

Thus, to evaluate the distance between u and RoundR(u) when u is uniform in some large box

in Rn, we need to evaluate the Euclidean norm of the vector Re when e is uniform in (�1

2
;+1

2
]n.

We can write each entry in this vector as �i =
P

j �ij�j where �ij is the i; j'th entry in R and �j is

the j'th entry in e.

Denote the largest entry in R by �max, then each of the random variables �ij�j is distributed

in the interval [��max
2
;+�max

2
] and has zero mean. Using Hoe�ding bound we conclude that for any

� > 0

Pr[j�ij > �n] < 2 � exp
�
�2�

2n

�2
max

�
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which implies that

Pr
�kdk2 > �2n3

� � Pr
�9 i s:t: �2i > �2n2

� � 2n � exp
�
�2�

2n

�2
max

�

Therefore, to make the error probability less than " it is su�cient to set � > (�max � ln(2n=")=2n),
which means that the threshold is set to

� =
p
�2n3 � �max

2
ln(2n=")

p
n (2)

Typical numeric values. The value of the threshold which we obtain from Equation 2 with

" = 2�30 and n = 140 is

� =
�max

2
ln(280 � 230)

p
140 � 156�max

In our experiments we typically have �max = 4, which implies that � � 625. If we are willing to

settle for " = 10�4 the we can make � � 350. As we said above, we found that experimentally

we can actually use threshold value which is about half of what we get from these bounds. In

particular, for the setting above we can set � = 200 to get the error probability below 10�4.

5.3.2 Encoding messages as vectors in Rn

Recall that in the above scheme, a lattice-point p is considered a valid signature on a vector v if

the two vectors are \close enough". This means that the same lattice point p is valid with respect

to many di�erent vectors (in fact, all the vectors in a sphere of radius � centered at p). This fact

has two implications: On one hand, we can allow many \slightly di�erent" representations of the

same \logical datum" without e�ecting the validity of the signature. On the over hand, vectors

which represent di�erent \logical datum" must be very di�erent from one another.

Signing analog data. As a simple example of an analog data, consider attaching a digital

signature to a FAX document (say, by printing a bar-code containing the signature on the document

itself). Clearly, in this case we cannot expect that the senders digital representation of the document

will be identical to the representation obtained by the receiver after the document is printed.

However, suppose that we could represent the \contents" of the FAXed document using some small

set of parameters, in such a way that

� Printing and re-scanning the document does not change its parameters very much; and

� Documents which contains di�erent contents are represented by very di�erent sets of param-

eters.

If we have such representation, we could use these sets of parameters to represent a document as

a vector in Rn. Consequently, it will be very likely that a digital signature on some representation

of the document will still be valid even after the document was printed and re-scanned. We will

need to assume that such a representation will be su�ciently rich in the sense that documents of

interest will results in representations in a su�ciently large box of Rn. (Clearly, signatures are

easy to forge if documents of interest are all mapped to a small region of Rn { and carrying the

argument to an extreme, we de�nitely do not want all documents to be mapped to within distance

� of the same lattice point.) Furthermore, it should be infeasible to obtain a meaningful document

which matches a random vector in this large box of Rn.
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Signing digital data. When signing digital data, we do not have the \multiple representation"

problem as above { there is a unique binary string which represents the logical datum. What we

need is an encoding of binary strings as \random" points in Rn. We may assume, without loss

of generality, that the string has length n, since shorter and longer strings can be handled using

well-known methods (such as padding and collision-free hashing, respectively). So what we need is

a mapping of f0; 1gn to Rn which does not map two di�erent strings too close to one another (i.e.,

to within proximity �). This is very easy to do. However, we want the range of this mapping to be

su�cient \random" so that �nding a close lattice point will be hard for these mapping-images.

5.4 Security of the Signature Scheme

To get some initial indication for the security of this scheme, we consider what happens when

we try to execute the signing algorithm using the public basis B. Here we do not even have an

approximate analysis. Instead we conducted experiments to evaluate how close to the threshold

we can get when using the public basis for signing. For the same setting as the \typical numeric

values" in Section 5.3.1, (n = 140, max-entry in R = 4), we got distances which were all above 520

(we tried 5 di�erent LLL-reduced bases, 10000 \signatures" for each basis). This suggests that for

these parameters, picking the threshold at � = 200 may be good enough to counter this attack, at

least when using LLL as our lattice-reduction algorithm.

6 Experimental Results

We performed several experiments in order to measure the e�ect of various parameters in the basis

generation process on the security of our scheme. Since, as we described in Section 3.5, the security

of the scheme is related to the dual-orthogonality-defect of the bases involved, we view the ratio

between the dual-orthogonality-defect of the public and private bases as our \measure of security".

Testing methods. For our experiments we used an implementation of the LLL lattice reduction

algorithm due to the LiDIA group [Li95]. In each experiment, we chose a private and public bases-

pair and evaluated the ratio between their dual-orthogonality-defects. We generated the public

basis from the private one by mixing it (as described in Section 3.3) and LLL-reducing the result.

To gain some con�dence in our results, we repeated this experiment several times for each setting

of the parameters.

� For each private basis, we generated �ve public bases and used the ratio between the minimum

dual-orthogonality-defect of these public bases and the dual-orthogonality-defect of the private

basis as the \security-level" of this private basis.

� For each setting of the parameters, we generated seven private bases with these setting and

considered the median \security-level" of these seven bases.

Parameters. The parameters which we tested are

1. The dimension of the lattice, denoted by n. We performed most of the tests in dimensions

80-120.

2. The range of integers (f�l; � � � ;+lg) from which we choose the entries in the private basis.

Below we refer to this range as the `l-parameter' of the private basis.
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3. How \cube-like" is the private basis. Namely, we generated the private basis as R = k � I +
rand(�l) for several values of k. (Where I is the identity matrix and rand(�l) is a random

matrix with entries in f�l; � � � ;+lg.) Below we refer to this parameter as the `k-parameter'

of the private basis.

4. How many \mixing steps" are used to generate the public basis from the private one.

6.1 Generating the Private Basis

We �rst measured the e�ects of the parameters involved in choosing the private basis, namely

lattice dimension (n), range of integers (l) and \cube-likeness" (k). For each setting of k; l, we

tested dimensions 80 through 120 (in increments of 10).

Entry size (l). We tested the l-parameter settings of 1, 4 and 10, working with both \random

lattices" (k = 0) and \cube-like lattices" (k = l d1 +pne). The results of these experiments are

summarized in Figure 1. In all these experiments, we applied 2n \elementary mixing mixing-steps"

to the private bases and LLL-reduced the result to obtain the public basis (See Section ??. As can

be seen from these results, the l-parameter had no e�ect on the \security-level" of the bases which

we obtained.

\Cube-like" parameter (k). The settings of the k-parameter which we tested are k = 0; k =
1

2
l d1 +pne and k = l d1 +pne. The reason that we express k in \units" of l

p
n is that the

expected length of a random vector in f�l � � �+ lgn is O(l
p
n). We tested these settings with l = 1

and l = 4. The results are summarized in Figure 2. Varying the value of k had the following e�ects

� Increasing the value of k increases the dimensions in which LLL can recover the private basis.

For example, LLL could recover the private basis in dimension 80 when we set k = l d1 +pne,
but failed for the smaller values of k.

� When the dimensions increase beyond some threshold, the ratio of the dual-orthogonality-

defect becomes much larger for large values of k. The reason is that the dual-orthogonality-

defect of the private basis becomes smaller (since the private basis is more \cube-like"). In

fact, for k = l d1 +pne, the dual-orthogonality-defect of the private basis is already very

close to one. On the other hand, the dual-orthogonality-defect of the corresponding public

basis is not a�ected by this change (since beyond some threshold dimension, LLL fails to

take advantage of the \cube-likeness" of the lattice). Thus, the ratio between the dual-

orthogonality-defect of the public and private basis increases considerably.

6.2 How Many Mixing Steps

We also tested the number of \elementary mixing steps" which we apply to the private basis in

order to get the public basis. In each elementary mixing step, we pick one of the basis vectors and

add to it a random integral linear combination of the other vectors. In our experiments we chose

the coe�cients of this linear combination from f�1; 0; 1g with Pr[1] = Pr[�1] = 1=7. To make sure

that we replace all the vectors in the private basis, we must make at least n mixing steps. To make

sure that we hit them all, we chose a random permutation over f1; � � �ng and picked the vectors

according to the order in that permutation.

To evaluate how \secure" is the resulting public basis, we LLL-reduced it and compared the

dual-orthogonality-defect of the result with that of the private basis. In our experiments we tried
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Figure 1: The e�ect of varying the entry size l for k = 0 (upper �gure) and k = d1 +pne � l (lower
�gure).
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Figure 3: Making only n mixing-steps. Notice that for a cube-like lattice, we were able to recover

the private basis in all the dimensions.
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to make n and 2n mixing steps before the LLL-reduction. The results for 2n mixing steps (with

various parameters of the private basis) are presented in Figures 1 and 2. The results we get when

we only make n mixing steps (for l = 4 and k = 0; k = l d1 +pne) are summarized in Figure 3.

It can be seen that when making only n mixing steps on a cube-like lattice, LLL was always

able to recover the private basis. Another problem with making so few mixing steps (which is not

re
ected in Figure 3) is that the variance which we get for each setting of the parameters is much

larger than what we get for 2n mixing steps. In fact, although the median results for k = 0 seem

to increase exponentially with the dimension, the minimum results are very close to one even in

dimension 120.
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