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Abstract

We consider three problems in machine learning:

� concept learning in the PAC model

� mobile robot environment learning

� learning-based approaches to protein structure prediction

In the PAC framework, we give an e�cient algorithm for learning any function on k terms by
general DNF. On the other hand, we show that in a well-studied restriction of the PAC model
where the learner is not allowed to use a more expressive hypothesis (such as general DNF),
learning most symmetric functions on k terms is NP-hard.

In the area of mobile robot environment learning, we introduce the problem of piecemeal learn-
ing an unknown environment. The robot must learn a complete map of its environment, while
satisfying the constraint that periodically it has to return to its starting position (for refueling,
say). For environments that can be modeled as grid graphs with rectangular obstacles, we
give two piecemeal learning algorithms in which the robot traverses a linear number of edges.
For more general environments that can be modeled as arbitrary undirected graphs, we give a
nearly linear algorithm.

The �nal part of the thesis applies machine learning to the problem of protein structure predic-
tion. Most approaches to predicting local 3D structures, or motifs, are tailored towards motifs
that are already well-studied by biologists. We give a learning algorithm that is particularly
e�ective in situations where large numbers of examples of the motif are not known. These are
precisely the situations that pose signi�cant di�culties for previously known methods. We have
implemented our algorithm and we demonstrate its performance on the coiled coil motif.

Thesis Supervisor: Ronald L. Rivest, Professor of Computer Science
Thesis Supervisor: Bonnie A. Berger, Assistant Professor of Mathematics
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C h a p t e r 1

Introduction

There are many reasons we want machines, or computers, to learn. A machine that can learn is

able to use its experience to help itself in the future. Such a machine can improve its performance

on some task after performing the task several times. This is useful for computer scientists,

since it means we do not have to consider all the possible scenarios a machine might encounter.

Such a machine is able to adapt to various conditions or environments, or even to changing

environments. A machine that is able to learn can also help push science forward. It may be

able to speed up the learning process for humans, or it may be able discern patterns or do things

which humans are incapable of doing. For example, we may want to build a machine that can

learn patterns that aid in medical diagnosis, or that may be able to learn how to understand

and process speech. Or we might want to build an autonomous robot that can learn to walk

through di�cult or unexpected terrain, or that can learn a map of its environment. This robot

could then be used to explore environments that are too dangerous for humans, such as the

surface of other planets.

In this thesis, we study three particular problems in machine learning. In order to study

any machine learning problem, we must �rst specify the model of learning we are interested

in. There are many di�erent possible models, and a model should be chosen according to the

learning application we are interested in. Once we have speci�ed the model we are looking at,

we can give algorithms and show results within the model. There are several things which any

\model of learning" must specify [69, 72, 44]:

11



12 Introduction

1. Learner: Who is doing the learning? In this thesis, we consider the learner to be a

machine, such as a computer or a robot. Sometimes the machine is assumed to have

limited computational power (e.g., the machine is a �nite automaton), but in this thesis

we assume that the machine is as powerful as a Turing machine.

2. Domain: What is being learned? One of the most well-studied types of learning is

concept learning where the learner is trying to come up with a \rule" to separate positive

examples from negative examples. For example, the learner may be trying to distinguish

chairs from things which are not chairs. There are many other types of things that can

be learned, such as an unknown environment (e.g., a new city) or an unknown technique

(e.g., how to drive).

3. Prior Knowledge: What does the learner know about the domain initially? This gen-

erally restricts the learner's uncertainty and/or biases and expectations about unknown

domains. This tells what the learner knows about what is possible or probable in the

domain. For example, the learner may know that the unknown concept is representable

in a certain way. That is, the unknown concept might be known to be representable as a

disjunction of features, or as a graph.

4. Information Source: How is the learner informed about the domain? The learner may

be given labeled examples. For instance, the learner may be given examples of things

which are chairs, and examples of things which are not chairs. The learner may get

information about a domain by asking questions of a teacher (e.g, \Is a stool a chair?").

The learner may get information about its domain by actively experimenting with it (e.g,

it may learn a map of a new city by walking around in it).

5. Performance Criteria: How do we know whether, or how well, the learner has learned?

Di�erent performance criteria include accuracy and e�ciency. For accuracy, the learner

may be evaluated by its error rate, its correctness of description, or the number of mis-

takes it made during learning. For e�ciency, the learner may be evaluated on the amount

of computation it does and the amount of information it needs (e.g., the number of exam-

ples it needs). In addition, the learner may be required to have a particular hypothesis

representation of an unknown concept, or it may only need to have predictive output (i.e.,
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the learner does not need a representation of the unknown concept, just a way to label

new instances as either positive or negative).

Di�erent applications require di�erent models of machine learning. In this thesis, we con-

sider three models of machine learning. The �rst part of the thesis studies a theoretical model

of concept learning. For this model, we study learnability and give an e�cient algorithm for

learning a family of concept classes. The second part of the thesis studies mobile robot naviga-

tion and environment learning. We introduce a model of exploration, which we call piecemeal

learning, and give e�cient algorithms for piecemeal learning unknown environments. The �-

nal part of the thesis applies machine learning to the problem of protein structure prediction.

We introduce a learning technique that helps gather information on protein structures that

biologists are interested in, but do not know much about yet.

We now give a more detailed summary of this thesis, and outline some of the contributions

of this thesis to machine learning, mobile robot navigation, and protein structure prediction.

Concept learning in the PAC framework

Much of the machine learning literature has been devoted to the problem of concept learning.

We study concept learning in the Probably Approximately Correct (PAC) framework [74]. The

object of a PAC learning algorithm is to approximately infer an unknown concept that belongs

to some known concept class. For our purposes, it su�ces to view the problem as �nding

a concept consistent with a given set of labeled examples. Figure 1.1 shows the information

presented to the learner at the start of learning, and what the learner must produce in order

to learn. The examples are assumed to be a \representative sample" of future examples the

learner might see. Performance is measured by the number of examples used for learning,

the time-complexity of the learning algorithm, and the accuracy of the learned concept. We

consider two standard versions of the PAC model: in one, the learner is required to produce as

output a hypothesis belonging to the same class as the concept to be learned, and in the other,

the learner's hypothesis can be any polynomial-time algorithm.

For this model, we study the problem of learning the concept classes of functions on k

terms. Concept classes that can be represented by functions on k terms include k-term DNF

(disjunctive normal form formulae with at most k terms), k-term exclusive-or, and r-of-k-term
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threshold functions. We give an e�cient algorithm for PAC-learning any function on k terms

by general DNF. We also show that for most symmetric functions on k terms, if the learner

is required to output a hypothesis of the same concept class, then learning is NP-complete.

Thus, our results illustrate the importance of hypothesis representation. In particular, for most

concept classes of symmetric functions on k terms, learning the concept by itself is hard, but

learning it by general DNF is easy.

(a)                                                                                 (b)  

Concept

Figure 1.1: Concept learning with labeled examples. (a) Initially, the learner is given a set
of labeled examples. The positive examples are denoted by +, and the negative examples are
denoted by �. (b) The goal of the learner is to �nd a concept consistent with these examples.
That is, the learner wants to �nd a rule that di�erentiates the positive examples from the
negative examples.

Environment learning

In the second part of this thesis, we consider an active learning model where an autonomous

robot must learn a map of its environment (see Figure 1.2). No examples are presented to

the robot. Instead, it learns about the environment through active experimentation: it walks

around in the environment. We introduce the problem of piecemeal learning of an unknown

environment. The robot's goal is to learn a complete map of its environment, while satisfying

the constraint that it must return every so often to its starting position. The piecemeal con-
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straint models situations in which the robot must learn \a piece at a time." Unlike previous

environment learning work, our work does not assume that the robot has su�cient resources to

complete its learning task in one continuous phase; this is often an unrealistic assumption, as

robots have limited power. After some exploration, the robot may need to recharge or refuel.

Or, the robot may be exploring a dangerous environment, and after some time it may need to

\cool down" or get maintenance. Or, the robot might have some other task to perform, and

the piecemeal constraint enables \learning on the job."

The environment is modeled as an arbitrary, undirected graph, which is initially unknown

to the robot. The learner's performance is measured by the number of edges it traverses while

exploring. For environments that can be modeled as grid graphs with rectangular obstacles,

we give two piecemeal learning algorithms in which the robot explores every vertex and edge

in the graph by traversing a linear number of edges. For more general environments that can

be modeled by an undirected graph, we give a piecemeal learning algorithm in which the robot

traverses at most a nearly linear number of edges.

                  (a)                                                  (b)

Figure 1.2: Environment learning. (a) Initially the learner only knows its starting location.
(b) The learner must build a map of its environment.

Learning-based methods for protein structure prediction

In the last part of this thesis, we again turn to concept learning, but here the learner is given

both labeled and unlabeled examples (see Figure 1.3). Unlike the previous concept learning



16 Introduction

model, here the labeled examples that the learner is given are not representative of the examples

that the learner will see; moreover, the learner knows that this is the case. Unlike the other work

in this thesis, the performance measure we use here is empirical and not theoretical. Within

this model, we look at the particular application of protein structure prediction.

?
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? ?

?

?

?

?

?

?

?
?

?

?

?

?

? ?

?

?
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?

?

?

(a)                                                                                      (b)

Figure 1.3: Concept learning with labeled and unlabeled examples. (a) The learner is given a
set of labeled examples as well as a set of unlabeled examples. The positive examples are denoted
by +, the negative examples are denoted by �, and the unlabelled examples are denoted by
?. (b) The learner must �nd a concept which partitions these examples. The unlabeled points
within the circle are assumed positive, and the unlabeled points outside of the circle are assumed
negative.

The goal of this work is to use computational techniques to learn about protein structures

or folds which biologists do not yet know much about. Current techniques for predicting local

three-dimensional structures, ormotifs, are tailored towards folds which are already well-studied

and documented by biologists. We give a learning algorithm that is particularly e�ective in

situations where this is not the case. We generalize the 2-stranded coiled coil domain to learn 3-

stranded coiled coils, and perhaps other similar motifs. As a consequence of this work, we have

identi�ed many new sequences that we believe contain coiled coil and coiled-coil-like structures.

These sequences contain regions that are not identi�ed by the best previous computational

method, but are identi�ed by our method. These sequences include mouse hepatitis virus,
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human rotavirus, human T-cell lymphotropic virus, Human Immunode�ciency Virus (HIV) and

Simian Immunode�ciency Virus (SIV). Independently, recent laboratory work has predicted the

existence of a coiled-coil-like structure in HIV and SIV [19, 56], and our algorithm is able to

predict the regions of this structure to within a few residues. We hope that biologists will direct

their laboratory e�orts towards testing other new candidate sequences which we identify.

Organization of thesis

The thesis is organized in three self-contained chapters. In Chapter 2, we study the problem of

learning concept classes of functions on k terms in the PAC framework. In Chapter 3, we intro-

duce the problem of piecemeal learning unknown environments, and give e�cient algorithms

for this problem. In Chapter 4, we study the problem of learning protein motifs. Finally, in

Chapter 5, we �nish with some concluding remarks.





C h a p t e r 2

Learning functions on k terms

2.1 Introduction

Since its introduction, Valiant's distribution-free or PAC learning framework [74] has been a

well-studied model of concept learning. In this framework, the object of a learning algorithm is

to approximately infer an unknown target concept that belongs to some known concept class.

The learner is given examples chosen randomly according to a �xed but unknown distribution.

The goal of the learner is to �nd (with high probability) a hypothesis that accurately predicts

new instances as positive or negative examples of the concept. We consider here two standard

versions of this model: in one, the learner is required to produce as output a hypothesis be-

longing to the same class as the target concept, and in the other, the learner's hypotheses may

be any polynomial-time algorithm [64][50][66]. Several examples are known of concept classes

that are hard to learn when hypotheses are restricted to belong to the same class as the target

concept but easy to learn when they may belong to a larger class. In particular, Pitt and

Valiant [64] showed that learning the class of k-term DNF formulas (that is, functions that can

be represented by a disjunction of k monomials) is NP-hard if the learner is required to produce

a k-term DNF formula, but is easy if the learner may use a representation of k-CNF formulas.

In this chapter, we show that this phenomenon occurs for a broad class of formulas. In par-

ticular, given constant k and function f , let Ck;f be the class of concepts of the form f(T1; : : : ; Tk)

where T1; : : : ; Tk are monomials. So, for example, if f is the OR function then Ck;f is the class of

19
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k-term DNF formulas. We show that for any symmetric function f (that is, f depends on only

the number of inputs which are 1), learning the class Ck;f by hypothesis class Ck;f is NP-hard

except for f 2 f^;:^; T; Fg. The hardness result completely characterizes the complexity of

learning Ck;f by Ck;f for symmetric functions f . For f 2 fT; Fg, learning Ck;f is trivial, and for

f 2 f^;:^g, Ck;f is the class of conjunctions or disjunctions respectively, so learning Ck;f by

Ck;f is easy by a standard procedure for learning monomials.

On the other hand, we also present a polynomial-time algorithm that learns the class of Ck
of all concepts f(T1; : : : ; Tk), where f is any f0; 1g-valued function of k inputs and T1; : : : ; Tk

are monomials, using a hypothesis class of general DNF. As a consequence, this algorithm will

learn by DNF the concept classes Ck;f for which learning Ck;f by Ck;f is NP-hard.
A strategy for learning the special case of k-term DNF formulas is to learn by the hypothesis

class of k-CNF (that is, conjunctions of disjunctions of size k). Every k-term DNF can be

written as a k-CNF (since we can \distribute out" the k-term DNF) and k-CNF can be easily

learned by standard procedures. Suppose, however, that we wish to learn in the same manner

another class of concepts Ck;f (that is, other than k-term DNF) for which learning Ck;f by Ck;f
is NP-hard. Our results and related results by Fischer and Simon [41] show that exclusive-or

(XOR) is one such function. In this case, an XOR of k monomials need not be representable

as a k-CNF or as a k-DNF (for example, x1x2 � x3 written as a DNF requires one term of size

3, and written as a CNF requires one clause of size 3). In addition an XOR of k monomials

need not have representation as a conjunction of XORs of size k. Thus, the standard strategy

for learning k-term DNF or k-term CNF will not work for learning k-term XOR.

Instead, our algorithm is based on a di�erent strategy. Roughly, we use the fact that a

monomial can be made false just by setting one of the literals that appears in it to 0. So,

given a concept represented by a function on k unknown terms T1; : : : ; Tk, if we are able to

\guess" literals that appear in k � 1 of the monomials and consider only examples in which

these monomials are false, we can then focus on the term remaining. Then, once we have been

able to classify the examples that satisfy only one term of T1; : : : ; Tk, we can focus on those

that satisfy pairs of terms, and so on.
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2.2 Notation and de�nitions

We will consider learning over the Boolean domain Xn = f0; 1gn. An example is an element

~v 2 f0; 1gn and a concept c is a boolean function on examples. A concept class is a collection

of concepts. For a given a target concept c, a labeled example for c is a pair h~v; c(~v)i where ~v
is a positive example if c(~v) = 1 and a negative example if c(~v) = 0. For convenience, we will

at times think of an example as a collection of variables or attributes x. In this case, for an

example ~v and variable x 2 Xn, let ~v(x) = 1 if the bit of ~v corresponding to x is 1, and 0

otherwise. Also, we will use jcj to denote the size of concept c under some reasonable encoding.
Let k be a constant. De�ne the concept class Ck to be the set of all concepts f(T1; : : : ; Tk)

where T1; : : : ; Tk are monomials (conjunctions of literals) and f is any f0; 1g-function on k

boolean inputs. For example, class C2 includes the concept x1x2�x3x4x5, where \�" denotes the
XOR function. For a given function f , let Ck;f be those concepts in Ck of the form f(T1; : : : ; Tk)

for the given f . We say that a function f is symmetric if the value of f depends only on the

number of inputs that are 1. For a symmetric function f and integer i, we let f(i) denote the

value of f when exactly i of its inputs are 1.

We study learning in the distribution-free or Probably Approximately Correct (PAC) learn-

ing model [74, 2]. In the PAC learning model, we assume that the learning algorithm has

available an oracle EXAMPLES(c) that when queried, produces a labeled example h~v; c(~v)i
according to a �xed but unknown probability distribution D. If C and H are concept classes,

we say that algorithm A learns C by H if for some polynomial p, for all target concepts c 2 C,

distributions D, and error parameters " and �: algorithm A halts in time p(n; 1
"
; 1
�
; jcj) and

outputs a hypothesis h 2 H that with probability at least 1� � has error at most ". The error

of a hypothesis h is the probability that h(~v) 6= c(~v) when ~v is chosen from the distribution D.

For the purposes of our positive results, it will be enough to consider the following su�cient

condition for learnability [26]. An algorithm A is an \Occam algorithm" for C if on any sample

(collection of labeled examples) of size m consistent with some c 2 C, algorithm A produces a

consistent hypothesis of size at most jcj�m� for constants � < 1; � � 1. Blumer et al. show

that any Occam algorithm for C, producing hypotheses from H , will learn C by H .
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2.3 The learning algorithm

In this section, we present an algorithm that learns the class Ck by the hypothesis class of

general DNF. To illustrate the strategy used, let us consider �rst the problem of learning an

XOR of two monotone monomials.

Suppose the target concept is c = T1 � T2 for monotone monomials T1 and T2. We know

each positive example ~v satis�es one of T1 or T2 and fails to satisfy the other, and so has some

vi = 0 for xi in exactly one of T1 and T2. Given a set S of examples, let Si, for 1 � i � n,

be the set of those examples ~v for which vi = 0. If a variable xi is contained in exactly one

of fT1; T2g, say xi is in T1, then the monomial xi ^ T2 is satis�ed by every positive example in

Si and no negative example in S. Therefore, we can actually �nd a monomial consistent with

the positive examples in this Si and the negative examples in S, using the standard monomial

learning procedure.

So, we can learn an XOR of two terms as follows. For each variable xi, �nd a monomial

Mi consistent with positive examples in Si and with all negative examples, if such a monomial

exists. Then, output as hypothesis the disjunction of the Mi's. The hypothesis produced is

consistent with every negative example since no negative example satis�es any Mi. Also, since

every positive example lies in some Si for xi in exactly one of fT1; T2g, for each positive example
we will have found some monomial it satis�es.

We now present an Occam algorithm based on the above strategy that learns the class Ck
using a hypothesis class of DNF. Without loss of generality, we may assume that the target

concept is some f(T1; : : : ; Tk) where the Ti are monotone (we can think of non-monotone terms

as monotone terms over the attribute space fx1; x1; x2; x2; : : : ; xn; xng). The algorithm Learn-

k-Term takes as input a set S of m examples consistent with some function f(T1; : : : ; Tk) on k

monotone monomials and outputs a DNF of size O(nk+1) consistent with the given examples.

The basic idea of Learn-k-Term is as follows. In the �rst iteration, the algorithm \handles"

those positive examples that satisfy none of the terms. That is, if there are any such positive

examples, the algorithm �nds a set of monomials such that each of those positive examples

satis�es one of the monomials. These monomials are then added to the DNF being built. In

the second iteration, the algorithm tries to �nd a set of monomials for those positive examples

that satisfy exactly one of the terms. This process is continued so that at each iteration the
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algorithm focuses on examples that satisfy an increasing number of terms. Thus, at each value

of r in the loop, the algorithm �nds terms to handle all the positive examples that do not satisfy

exactly r terms of the target concept. The ordering of r = k down to 0 is important to ensure

that needed terms are not thrown away in step 9. Note that in step 5, we allow the ij to be

the same. This is done for purposes of simpler analysis|the algorithm would still work if we

just considered the
�
n

r

�
sets of r di�erent variables.

Learn-k-Term(S)
1 Let P = the positive examples in S

2 Let N = the negative examples in S

3 Initialize the DNF hypothesis h to fg.
4 For r = k down to 0 Do
5 For each set of r variables: fxi1

; : : : ; xirg Do
6 Let M be the monomial xi1 � � � xir .
7 Let U be the set of those examples ~v = (v1; : : : ; vn) 2 P

such that vi1 = vi2 = : : : = vir = 0. That is, U is the set
of examples in P satisfying the term M .

8 Let T be the monomial that is the conjunction of all xi

such that every example ~v 2 U has vi = 1. (T is the most
speci�c monotone monomial satis�ed by all examples in U .)

9 If no negative example in N satis�es term MT = xi1
xi2
� � �xirT

10 Then

11 add MT as a term to the hypothesis h
12 let P P � U .

Algorithm Learn-k-Term clearly runs in time polynomial in m and nk, so we just need to

prove the following theorem.

Theorem 1 Algorithm Learn-k-Term, on m examples consistent with some function f of k

monotone monomials over f0; 1gn, produces a consistent DNF hypothesis of size O(nk+1).

Proof: First notice the following facts. The DNF h produced by algorithm Learn-k-Term

has at most nk + nk�1 + : : :+ n = O(nk) terms of size O(n), so the size of the hypothesis is at

most O(nk+1). Also, the hypothesis h is consistent with the setN of negative examples, since in

step 9 any term that some negative example satis�es will never be included in the DNF. Thus
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all we need to do is prove that for every positive example ~v 2 P, there is some term added to

h which is satis�ed by ~v.

Let f(T1; : : : ; Tk) be the target concept where T1; : : : ; Tk are monotone monomials. Let Sj

for j 2 f0; : : : ; kg be the set of those positive examples seen that satisfy exactly j of T1; : : : ; Tk

(if f is the XOR function, for instance, then the sets Sj for even values of j are all empty). We

will argue by induction on the index j; in particular we will argue that after the iteration of the

loop of Learn-k-Term in which r = k� j, all positive examples ~v 2 Sj have been \captured" by

(that is, they satisfy) some term in h.

j = 0; r = k: Let ~v be a positive example that satis�es none of T1; : : : ; Tk. If such an example

exists, then any other example satisfying none of T1; : : : ; Tk must also be a positive ex-

ample. There must be some collection of variables xi1 2 T1; : : : ; xik 2 Tk (not necessarily

all di�erent) such that vi1 = vi2 = : : : = vik = 0, or otherwise ~v would satisfy some term.

Consider the iteration in which the monomial M is xi1 � � �xik . Example ~v satis�es M

and so is put into U in step 7. Any other example satisfying M cannot satisfy any of

T1; : : : ; Tk (by de�nition of xi1 ; : : : ; xik) and therefore must be positive. So, a term MT

satis�ed by ~v will be added to h in step 4.

j > 0; r = k� j: Let ~v be a positive example that satis�es exactly j of the terms T1; : : : ; Tk; for

convenience, assume ~v satis�es terms Tr+1; : : : ; Tk. Any other example satisfying exactly

those terms and no others must also be positive. Let xi1 2 T1; : : : ; xir 2 Tr be a collection

of not necessarily distinct variables such that vi1 = : : : = vir = 0.

At the iteration in which the monomialM is xi1 � � �xir , example ~v is put into set U in step

7 and the term T created is satis�ed by ~v. In fact, T also has in it all variables contained

in the terms Tr+1; : : : ; Tk. The reason is as follows:

Suppose xi is contained in one of Tr+1; : : : ; Tk but not in T . Then, there must

exist some positive example ~w 2 U such that wi = 0. So, example ~w fails to

satisfy at least one of Tr+1; : : : ; Tk in addition to not satisfying any of T1; : : : ; Tr.

But, this means that ~w satis�es fewer than j terms and so must already have

been removed from P in an earlier iteration by our inductive hypothesis. (Note



2.3 The learning algorithm 25

that it is for this reason that algorithm Learn-k-Term begins with r = k and

works down to r = 0.)

So, any example satisfying MT must satisfy all of Tr+1; : : : ; Tk (since it satis�es T ) and

none of T1; : : : ; Tr (since it satis�es M) and therefore must be positive. Thus, term MT

will be added to h in step 9.

So, we have shown that algorithm Learn-k-Term, on any size input consistent with some

function f of k monotone monomials over f0; 1gn, produces a consistent hypothesis of size

O(nk+1) in time polynomial in m and nk.

Corollary 1 The concept class Ck is learnable by DNF in the distribution-free model.

In fact, if we assume without loss of generality that the target concept c = f(T1; : : : ; Tk)

has the property that f(00 � � �0) = 0 (otherwise we will learn c), then we can start algorithm

Learn-k-Term at r = k � 1 and produce a DNF of only O(nk�1) terms instead of one of O(nk)

terms. So, for example, we can learn a k-term DNF with a DNF hypothesis of O(nk�1) terms

each of size O(n). This di�ers from the standard procedure of learning k-term DNF, which

gives a k-CNF of O(nk) clauses of size k = O(1). Moreover, if we know that f outputs 0 when

only a few of its inputs are 1, then we can produce a hypothesis of smaller size. For example,

if f is the majority function, then we can start Learn-k-Term with r = k=2 and get a DNF of

only O(nk=2) terms.

2.3.1 Decision lists

An alternative way to learn Ck is to learn by the class of k-decision lists (k-DLs).1 In fact, the

proof for Algorithm Learn-k-Term can be modi�ed to show any concept in Ck can be written

as a k-decision list. In particular, let c = f(T1; : : : ; Tk) be some concept in Ck. The decision list

will consist of rules of the form \if Mi then bi," where the each Mi will correspond to one of

the monomials M in algorithm Learn-k-Term.

1A k-decision list is a function of the form: \if M1 then b1, else if M2 then b2, else : : : else if Mm

then bm else bm+1," where the Mi are monomials of size at most k and the bi are each either 0 or 1.
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Let b0 be the value of c(x) when x satis�es none of T1; : : : ; Tk. Put on the top of the decision

list all rules of the from \if xi1xi2 � � �xik then b0," where xi1 2 T1; : : : ; xik 2 Tk. Let us say that

a set of rules \captures" an example if the example satis�es the if-portion of one of them.

Thus, we have now captured all examples that satisfy none of the Ti (and have classi�ed them

correctly).

Inductively suppose we have created rules that capture (and correctly classify) all examples

satisfying j � 1 or fewer of the k terms. Append onto the bottom of the decision list the

following rules. For each subset fTt1; : : : ; Ttk�j
g � fT1; : : : ; Tkg such that all examples which

satisfy exactly the j terms remaining are positive, add all rules of the form: \if xi1xi2 � � �xik�j

then 1," where xi1 2 Tt1; : : : ; xik�j
2 Ttk�j

. For each subset fTt1; : : : ; Ttk�j
g � fT1; : : : ; Tkg such

that all examples satisfying exactly the j terms remaining are negative, add all rules of the

form: \if xi1xi2 � � �xik�j
then 0," where xi1 2 Tt1 ; : : : ; xik�j

2 Ttk�j
.

Finally, the default case of the decision list is the rule \else b," where b is the classi�cation

of examples satisfying all the terms Ti. It is clear from the above arguments that this k-decision

list is logically equivalent to the k-term function.

The mistake-bound model is a model of learning more stringent than the PAC model; here,

unlabeled examples are presented to the learner in an arbitrary order, and after each one the

learner must predict its classi�cation before being told the correct value. The learner is judged

by the total number of mistakes it makes in such a sequence. Using the halving algorithm [54],

k-decision lists can be learned in the mistake-bound model with O(nk) mistakes. Thus have

the following theorem:

Theorem 2 All functions on k terms can be learned in the mistake-bound model with O(nk)

mistakes, using a representation of k-decision lists.

In fact, we can learn k-term functions in an \attribute-e�cient" sense, where the number

of mistakes is polynomial in the number of relevant variables (variables that appear in some

term Ti) and is only logarithmic in the number of irrelevant variables. This uses a result of

Littlestone [54] as follows.

An alternation in a decision list is a pair of adjacent rules such that the boolean classi�cation

values for the rules di�er. By appropriately ordering the rules in the decision list construction
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above (listing the \negative rules" before the \positive rules" on alternate j values) one can

see that for any k-term function there is a logically equivalent k-decision list with at most k

alternations. Such a decision list can be thought of as a function in the form:

if (M1;1 OR M1;2 OR : : : OR M1;m1
) then b1, else if (M2;1 OR M2;2 OR : : : OR

M2;m2
) then b2, else : : : else if (Mk�1;1 OR Mk�1;2 OR : : : OR Mk�1;mk�1

) then bk�1

else bk,

where bi = 1� bi�1.

Decision lists with small numbers of alternations can be written as linear threshold functions

over the monomials Mi, with not too large integral weights. For instance, if bk�1 = 1, k is odd,

and m is the sum of the mi, the above decision list can be written as:

(Mk�1;1+ : : :+Mk�1;mk�1
) � m(Mk�2;1 + : : :+Mk�2;mk�2

)

+ m2(Mk�3;1+ : : :+Mk�3;mk�3
)

...

� mk(M1;1 + : : :+M1;m1
) > 0:

If only r variables are relevant to the k-term function, then the number of rules m is at

most rk. Therefore, the maximum weight in the threshold function is rk
2

.

Littlestone [54] gives an algorithm that can be used to learn such a function, where the

number of mistakes is at most O((mrk
2

)2 log(nk)) = O(kr2k+2k
2

logn). Thus, if the number r

of relevant variables is small, this can be a savings in the number of mistakes made. Thus we

have the following theorem:

Theorem 3 Any function on k terms can be learned with O(kr2k+2k
2

logn) mistakes, where r

is the number of relevant variables.

2.4 Hardness results

In this section, we show that learning the class Ck;f often requires allowing the learning algorithm
a more expressive hypothesis class than Ck;f . In the previous section, we gave an algorithm that
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learns the concept class of functions on k terms using the hypothesis class of general DNF. On

the other hand, we now show that when learning the class Ck;f , if the algorithm must produce

a hypothesis from the class Ck;f , the problem can become NP-hard. In particular, we show

that for any symmetric function f , learning the class Ck;f by hypothesis class Ck;f is NP-hard

except for f 2 f^;:^; T; Fg. The hardness result completely characterizes the complexity of

learning Ck;f by Ck;f for symmetric functions f . For f 2 fT; Fg, learning Ck;f is trivial, and for

f 2 f^;:^g, Ck;f is the class of conjunctions or disjunctions respectively, so learning Ck;f by

Ck;f is easy by a standard procedure. We show the following:

Theorem 4 For any symmetric function f on k inputs except for f 2 f^;:^; T; Fg, learning
the class Ck;f by Ck;f is NP-hard.

This theorem extends the work of Pitt and Valiant [64], which shows that learning the class

of k-term DNF formulas is NP-hard if the learner is required to produce a k-term DNF formula.

Before giving the proof of Theorem 4, we �rst provide some intuition. For k � 3, the proof

of Pitt and Valiant is essentially a reduction from graph k-colorability.2 Their reduction is as

follows. Given the graph, they create a variable xi for each vertex vi 2 V . They then create

one positive examples for each vertex so that the example corresponding to vertex i has bit

i set to 0 and all other bits set to 1. They also create one negative example for each edge

such that the example corresponding to edge (i; j) has bits i and j set to 0 and the other

bits set to 1. They then show that the set of examples is consistent with a disjunction of k

terms if and only if G is k-colorable. Their proof does not work for more general symmetric

functions f of k terms. In particular, when f is a symmetric function other than OR (e.g.,

when the concept class is 4-term exclusive-or formulas), using their reduction it is possible to

�nd a formula f(T1; T2; : : : ; Tk) that correctly classi�es all positive and negative examples, but

the corresponding coloring is invalid. The basic problem is that unlike the case of disjunction,

for arbitrary f , as the number of inputs that are 1 increases, the value of f can switch back

and forth between 1 and 0. To solve this problem, we introduce enough variables and examples

for each edge such that xi and xj are forced to occur in di�erent terms. We can use this

2The graph k-colorability problem is: given a graph G = (V;E) and a positive integer k, does there exist a

function f : V ! f1; 2; : : : ; kg such that f(u) 6= f(v) whenever (u; v) 2 E? That is, using at most k colors, is

it possible to assign a color to each vertex in the graph such that for any edge, its vertices are given di�erent

colors?
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technique to reduce graph k-colorablity to learning any symmetric function on k terms (except

^;:^; T; F ).
To show Theorem 4, we �rst consider the concept class Cmon

k;f = ff(T1; : : : ; Tk)g where

T1; : : : ; Tk are monotone monomials, and show that learning Cmon
k;f by Cmon

k;f is NP-hard. We

then give an extension of the argument that shows that learning Cmon
k;f by Ck;f is NP-hard. This

implies Theorem 4.

Theorem 5 For any symmetric function f on k inputs except f 2 f^;:^; T; Fg, learning the
class Cmon

k;f by Cmon
k;f is NP-hard.

Proof: First note that if k = 2 then the only functions f with f 62 f^;:^; T; Fg are the

functions f_;:_;�;:�g. The proof of [64] for 2-term DNF can be applied directly for these

cases; so, we assume that k � 3. Without loss of generality, we assume that f(k� 1) = 0; that

is, f outputs 0 when exactly k � 1 of its inputs are 1. Otherwise, we show that learning Cmon
k;f 0

by Cmon
k;f 0 for f 0 = f is NP-hard and the result follows.

The proof is a reduction from graph k-colorability. Given a graph G = (V;E), we create

labeled examples over n = jV j+ (k� 2)jEj variables such that there exists c 2 Cmon
k;f consistent

with these examples if and only if there is a k-coloring of the graph. We assume that G contains

no isolated vertices since such vertices do not a�ect the coloring of the graph.

We denote the n variables as follows. There is one variable xi for each vertex i 2 V , and

k � 2 variables w1
i;j; w

2
i;j; : : : ; w

k�2
i;j for each edge (i; j) 2 E. Thus, for each edge (i; j) 2 E,

we have a set Wi;j of k associated variables fxi; xj; w1
i;j; w

2
i;j; : : : ; w

k�2
i;j g. We add the wi;j's so

that ultimately any hypothesis consistent with the examples we de�ne must contain xi and xj

in di�erent terms if (i; j) 2 E. For convenience, we use the following notation to denote an

example that consists of 1's in all bits except those speci�ed by a set of variables W .

� For W a collection of variables, let g(W ) be the example ~v such that ~v(x) = 0 for x 2 W

and ~v(x) = 1 for x 62 W . Recall that ~v(x) is the bit of ~v corresponding to variable x.

For l 2 f1; : : : ; kg and (i; j) 2 E, let Sl
i;j = fg(W ) : W � Wi;j; jW j = lg. That is, set Sl

i;j is the

set of examples ~v = g(W ) for W a subset of size l of the set fxi; xj; w1
i;j; w

2
i;j; : : : ; w

k�2
i;j g. We
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now de�ne k sets of examples as follows:

S1 = fS1
i;j : (i; j) 2 Eg;

S2 = fS2
i;j : (i; j) 2 Eg;

...

Sk = fSk
i;j : (i; j) 2 Eg;

such that ~v 2 Sl; 1 � l � k, is a positive example if and only if f(k � l) = 1: That is, for each

edge (i; j) 2 E, each Sl contains
�
k

l

�
examples corresponding to that edge. Each ~v 2 Sl has

exactly l bits set to 0, where the l variables corresponding to these bits are chosen from some

set Wi;j. If f is true when exactly k � l terms are true (i.e. f(k � l) = 1), then we label all

vectors is Sl as positive examples; otherwise we label them as negative examples. For example,

if f is the XOR function and k is even, then all examples in S1; S3; : : : are labeled as positive

and those in S2; S4; : : : are labeled as negative.

We now show that there exist monotone terms T1; T2; : : : ; Tk such that f(T1; T2; : : : ; Tk) is

consistent with these examples if and only if there is a k-coloring of the graph G.

(() Given a k-coloring of the graph, then for each vertex i which is colored l, place xi in term

Tl. Then for each edge (i; j), variables xi and xj appear in di�erent terms. Now arbitrarily

place the remaining k�2 variables associated with this edge (the wi;j's) into the remaining k�2
terms such that each term receives exactly one variable. Thus for each edge (i; j), each of the

associated variables fxi; xj; w1
i;j; w

2
i;j; : : : ; w

k�2
i;j g occurs in a di�erent term. So for any example

in Sl, exactly l terms are false and k � l terms are true. Since the examples in Sl are positive

exactly when f(k � l) = 1, the concept f(T1; T2; : : : ; Tk) classi�es all examples correctly.

()) Suppose we have T1; T2; : : : ; Tk such that concept c = f(T1; T2; : : : ; Tk) is consistent with

all the examples. Now color the vertices by the function � : V ! f1; 2; : : : ; kg de�ned by �(i) =

min fj: variable xi occurs in term Tjg. Lemma 1 guarantees we have a well de�ned function,

and Lemma 2 gives us a valid coloring.

Lemma 1 Each variable xi occurs in some term.
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Proof: Suppose that some xi does not occur in any term. Let q = min fl : f(k� l) = 1 and l >

0g. That is, q is the smallest positive number of terms that can be false such that concept c is

true. Note that q is the least index such that c(~v) = 1 for ~v 2 Sq. We know that q exists for

f 62 fAND, FALSEg.
Pick j such that (i; j) 2 E (since we assumed that the graph is connected, we know some

such j exists). Now consider the positive example ~v = g(fxi; xj; w1
i;j; w

2
i;j; : : : ; w

q�2
i;j g). If xi does

not occur in any term, then ~u = g(fxj; w1
i;j; w

2
i;j; : : : ; w

q�2
i;j g) satis�es the same number of terms

as ~v, and thus c(~u) = c(~v) = 1. But ~u belongs to Sq�1, and we know all examples in Sq�1 are

negative examples by our de�nition of q (Sq is our �rst set of positive examples). Contradiction.

Lemma 2 If (i; j) 2 E then xi and xj never occur in the same term.

Proof: Suppose that for (i; j) 2 E, variables xi and xj occur in the same term. Again, let

us look at vectors in Sq where q = min fl : f(k � l) = 1 and l > 0g. In particular, consider

the positive example ~v = g(fxi; xj; w1
i;j; w

2
i;j; : : : ; w

q�2
i;j g). By Lemma 3, we know that exactly q

terms of c are not satis�ed by ~v. Then we know that each of these q terms must contain at least

one variable of fxi; xj; w1
i;j; w

2
i;j; : : : ; w

q�2
i;j g. If xi and xj occur in the same term, then we know

that some variable x 2 fxi; xj; w1
i;j; w

2
i;j; : : : ; w

q�2
i;j g occurs in at least two terms. Let r be the

number of terms that variable x appears in. We build a set S of at most q�r+1 variables such

that ~u = g(S) also makes q terms false. Initially let S = fxg. Then for each of the remaining

q�r terms not satis�ed by ~v, place into S some variable from fxi; xj; w1
i;j; w

2
i;j; : : : ; w

q�2
i;j g which

appears in that term. Now consider example ~u. The terms not satis�ed by ~u are exactly those

not satis�ed by ~v, so c(~u) = c(~v) = 1. Moreover, since S � fxi; xj; w1
i;j; w

2
i;j; : : : ; w

q�2
i;j g � Wi;j,

example ~u must lie in some set Sl where l < q. But Sq is our �rst set (the set of least index)

of positive examples, so ~u must be negative. Contradiction.

Lemma 3 Exactly q terms of c are not satis�ed by ~v.

Proof: Suppose not. That is, suppose r 6= q terms of c are not satis�ed by ~v. Since ~v is a

positive example, f(k � r) = 1 and by de�nition of q we have r > q. There are now two cases:
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Case 1: f(k � l) = 1 for all l 2 fq; q + 1; : : : ; rg.
By de�nition of q, for any set S � fxi; xj; w1

i;j; w
2
i;j; : : : ; w

q�2
i;j g of size q � 1, c(g(S)) = 0. This

implies that each ~u = g(S) satis�es at least r � q + 1 more terms of fT1; : : : ; Tkg than does

~v. But this requires each variable in fxi; xj; w1
i;j; w

2
i;j; : : : ; w

q�2
i;j g to appear without any other

variable from this set in r� q+ 1 terms. So there must exist q(r� q+ 1) terms not satis�ed by

~v. Since r > q and q 6= 1 (we know f(k � q) = 1 but f(k � 1) = 0), we have:

r(q � 1) > q(q � 1)

rq � r > q2 � q

q(r � q + 1) > r:

Thus, more than r terms are not satis�ed by ~v. Contradiction.

Case 2: f(k � l) = 0 for some l 2 fq + 1; : : : ; r� 1g.
Consider the sequence of examples:

~vq = g(fxi; xj; w1
i;j; w

2
i;j; : : : ; w

q�2
i;j g);

~vq+1 = g(fxi; xj; w1
i;j; w

2
i;j; : : : ; w

q�1
i;j g);

...

~vk = g(fxi; xj; w1
i;j; w

2
i;j; : : : ; w

k�2
i;j g):

We assign values to qi; ri; and li which maintain the following invariants: qi < li < ri and

f(k � qi) = f(k � ri) and f(k � qi) 6= f(k � li). Initially let q1 = q, r1 = r, and l1 = l.

Initially, positive example ~vq1 fails to satisfy r1 terms and there exists l1 between q1 and r1 with

f(k � l1) = 0. Thus negative example ~vl1 must fail to satisfy some r2 > r1 terms. Now let

q2 = l1 and l2 = r1, and so we have f(k � q2) = f(k � r2) = 0, f(k � l2) = 1, and q2 < l2 < r2.

Thus we know that positive example ~vl2 must satisfy some r3 > r2 terms. Letting q3 = l2 and

l3 = r2, and continuing in this fashion, we �nd an increasing sequence q1; q2; q3; : : :, such that

each example ~vqi fails to satisfy ri > qi terms. At qi = k, we have a contradiction.
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We have now �nished proving Theorem 5. We now extend the proof to the general case in

which the terms T1; : : : ; Tk may be non-monotone.

Proof of Theorem 4: We show that Cmon
k;f by Ck;f is NP-hard. This implies the theorem.

Given a graph G = (V;E) we create a new graph G0 consisting of k + 1 copies G1; : : : ; Gk+1

of G. Clearly G0 is k-colorable if and only if G is. We de�ne examples in the same way as in the

proof of Theorem 5. We must now show that there exist (non-monotone) terms T1; T2; : : : ; Tk

such that f(T1; T2; : : : ; Tk) is consistent with the examples if and only if there is a k coloring

of the graph G. Given a k-coloring of the graph G, we can easily �nd a k-coloring of graph

G0. From this coloring, we can �nd k terms such that f(T1; T2; : : : ; Tk) is consistent with the

examples, using the same method as in the proof of Theorem 5. For the other direction, we

must show that if there are non-monotone terms T1; : : : ; Tk such that f(T1; : : : ; Tk) is consistent

with the examples, then G is k-colorable. Notice that if any term Tl has in it a negated variable

corresponding to a vertex or edge of some graph Gq, then Tl is not satis�ed by any example

corresponding to graph Gr for r 6= q. If term Tl has in it negated variables from more than one

graph Gq, then no examples satisfy term Tl, and thus the concept is equivalent to the concept

with term Tl replaced by 0. If Tl contains negated variables corresponding to a vertex or edge

of just one graph Gq, then we can replace term Tl by 0 and mark graph Gq; this new concept is

still consistent with the examples corresponding to all unmarked graph copies. We continue this

procedure until all terms left have no negated variables. We never mark all the graph copies

since we mark at most one graph for each term that is set to 0, and there are more graphs than

terms. So, since each term left has no negated variables we can color any one of the remaining

unmarked graphs using the coloring given in the proof of Theorem 5.

2.5 Conclusion

We present an algorithm that learns the class Ck of all concepts f(T1; : : : ; Tk) where f is a f0; 1g-
valued function and T1; : : : ; Tk are monomials, using a hypothesis class of general DNF. We also

show that learning the class Ck;f by Ck;f where f is a symmetric function is NP-hard, except

for f 2 f^;:^; T; Fg for which learning is easy. We leave as open the problem of classifying

the learnability of Ck;f by Ck;f for more general functions f .





C h a p t e r 3

Piecemeal learning of unknown

environments

3.1 Introduction

We address the situation where a robot, to perform a task better, must learn a complete map of

its environment. The robot's goal is to learn this map while satisfying the piecemeal constraint

that learning must be done \a piece at a time." Why might mobile robot exploration be done

piecemeal? Robots may have limited power, and after some exploration they may need to

recharge or refuel. In addition, robots may explore environments that are too risky or costly for

humans to explore, such as the inside of a volcano (e.g., CMU's Dante II robot), or a chemical

waste site, or the surface of Mars. In these cases, the robot's hardware may be too expensive

or fragile to stay long in dangerous conditions. Thus, it may be best to organize the learning

into phases, allowing the robot to return to a start position for refueling and maintenance.

The \piecemeal constraint" means that each of the robot's exploration phases must be of

limited duration. We assume that each exploration phase starts and ends at a �xed start

position. This special location might be a refueling station or a base camp. Between explo-

ration phases the robot might perform other unspeci�ed tasks. Piecemeal learning thus enables

\learning on the job", since the phases of piecemeal learning can help the robot improve its

performance on the other tasks it performs. This is the \exploration/exploitation tradeo�":

spending some time exploring (learning) and some time exploiting what one has learned.

35
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The piecemeal constraint can make e�cient exploration surprisingly di�cult. We �rst con-

sider piecemeal learning in environments that can be modeled as grid graphs with rectangular

obstacles. For these environments, we give two linear-time algorithms. The �rst algorithm,

the \wavefront" algorithm, can be viewed as an optimization of breadth-�rst search for our

problem. The second algorithm, the \ray" algorithm, can be viewed as a variation on depth-

�rst search. We then extend these results by giving a nearly linear algorithm for piecemeal

learning more complicated environments that can be modeled by arbitrary undirected graphs.

For piecemeal learning of these environments, we give some \approximate" breadth-�rst search

algorithms. We �rst give a simple algorithm that runs in O(E + V 1:5) time. We then improve

this algorithm and give a nearly linear time algorithm: it achieves O(E+V 1+o(1)) running time.

An interesting open problem is whether arbitrary, undirected graphs can be learned piecemeal

in linear time.

We now give a brief summary of the rest of this chapter. Section 3.2 gives some related

work on environment learning and mobile robot navigation. Section 3.3 formalizes our model.

Section 3.4 discusses piecemeal learning of arbitrary graphs, and the problems with some initial

approaches. Section 3.5 gives an approximate solution to the o�-line version of this problem. In

addition, it gives our strategy for solving the problem we are interested in (the on-line version

of the problem). Section 3.6 introduces the notion of \city-block" graphs, discusses shortest

paths in such graphs, and gives two linear time algorithms for piecemeal learning these types

of graphs. Section 3.7 considers piecemeal learning of general graphs, and gives a nearly linear

algorithm for this problem. Section 3.8 gives an application of our algorithms to the problem

of �nding a treasure in an unknown, potentially in�nite graph. Finally, Section 3.9 concludes

with some open problems.

3.2 Related work

Theoretical approaches to environment learning di�er in how the robot's environment is mod-

eled, what types of sensors the robot has, the accuracy of the robot's sensor, if the robot has

access to a teacher, and what the performance measure is. The robot's environment is often

modeled by a �nite automaton, a directed graph, an undirected graph, or some special case of

the above. Typically, it is assumed that the robot knows what type of environment it is trying
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to learn. The robot may have vision, or may have no long-range sensors whatsoever. Sometimes

the robot is assumed to have accurate sensors, and in other models the robot's sensors may be

noisy. Performance measures for the robot's accuracy vary from requiring the robot to always

output an exact map of the environment, to requiring that the robot output a good map with

high probability. Performance in terms of e�ciency can be judged by either the total number

of steps taken by the robot, the number of queries the robot may have to ask of a teacher,

competitive ratios (e.g., the total number of steps the robot makes divided by the minimum

number of steps required had the robot known the environment), or some other measure.

Rivest and Schapire [70] study environments that can be modeled by a strongly connected

deterministic �nite automata. The robot gets information about the automaton by actively

experimenting in the environment and by observing input-output behavior. Rivest and Schapire

show that a robot with a teacher can with high probability learn such an environment. They

use homing sequences to improve Angluin's algorithm [1] to learn without using a \reset"

mechanism. Ron and Rubinfeld [71] further extend this result by giving an e�cient algorithm

that with high probability learns �nite automata with small cover time, without requiring a

teacher. Dean et al. [33] study the problem of learning �nite automaton when the output at

each state has some probability of being incorrect. They give an algorithm for learning �nite

automata, assuming that the robot has access to a distinguishing sequence. Freund et al. [43]

give algorithms for learning \typical" deterministic �nite automata from random walks.

Deng and Papadimitriou [35] and Betke [16] model the robot's environment as a directed

graph, with distinct and recognizable vertices and edges. They give a learning algorithm with

a constant competitive ratio when the graph is Eulerian or when the de�ciency of the graph

is 1. For general graphs, they give a competitive ratio that is exponential in the de�ciency of

the graph. Bender and Slonim [11] look at the more complicated case of directed graphs with

indistinguishable vertices. They show that a single robot with a constant number of pebbles

cannot learn such environments without knowing the size of the graph. On the other hand,

they give a probabilistic algorithm for two cooperating robots to learn such an environment.

Dudek et al. [38] study the easier problem of learning undirected graphs with indistinguishable

vertices, and give an algorithm for a robot with one or markers to learn such an environment.

Deng, Kameda, and Papadimitriou [34] model environments such as \rooms" as polygons
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with polygonal obstacles. They assume the robot has vision, and must learn a map of the

room. They show that if the polygon has an arbitrary number of polygonal obstacles in it,

then then it is not possible to achieve a constant competitive ratio. For the simpli�ed case of

a rectilinear room with no obstacles, they show a 2
p
2 competitive algorithm for learning the

room. Kleinberg [52] improves this to a 5

4

p
2 competitive algorithm. For a rectilinear room

with at most k obstacles, Deng et al. give an algorithm with O(k) competitive ratio. They also

give constant competitive algorithms for environments that are modeled by general polygons

with a bounded number of obstacles, but the constant they give is large.

There has also been much theoretical work in the case where the robot's goal is to get from

one point to another in an unknown environment. The robot learns parts of the environment

as it is navigating, but its primary goal is to reach a particular location. In some cases, the

robot knows exactly where there the goal location is, and in others it is assumed that the robot

will recognize the goal location.

Baeza-Yates, Culberson and Rawlins [8] study the cow path problem. The robot must search

for an object in an unknown location on 2 or more rays (the endpoints of the rays are at some

�xed start position). They give an optimal deterministic strategy for this problem. For the

case of 2 rays, they use a doubling strategy and get a competitive ratio of 9; they extend this

technique for m rays and get a competitive ratio of 1 + 2(mm=(m � 1)m�1). Kao, Reif and

Tate [49] give a randomized algorithm for this problem that has better expected performance

than any deterministic algorithm. Kao, Ma, Sipser and Yin [48] give an optimal deterministic

search strategy for the case of multiple robots.

Papadimitriou and Yanakakis [62] consider the problem of a robot with vision moving around

in a plane �lled with obstacles. The robot does not know its environment, but knows its exact

absolute location at all times, as well as its start position and its goal position. The robot's

goal is to travel from the start position to the goal position. Papadimitriou and Yanakakis show

that for the case of non-touching axis parallel rectangular obstacles, the competitive ratio is


(
p
n), where n is the length of the shortest path between the start and goal locations. For

the case of square obstacles, they give a 1

3

p
26 � 1:7 competitive algorithm, and show that any

strategy must have competitive ratio greater than 3
2
.

Blum, Raghavan, and Schieber [22] also study the problem of point to point navigation in



3.3 Formal model 39

an unknown two-dimensional geometric environment with convex obstacles. For the case of axis

parallel rectangular obstacles, they give an algorithm with competitive ratio O(
p
n), matching

the lower bound of Papadimitriou and Yanakakis. They also introduce and give an algorithm

for the room problem, where the goal of the robot is to go from a point on a wall of the room

to a speci�ed point in the center of the room. The room contains axis parallel obstacles, but

the obstacles do not touch the sides of the wall. Bar-Eli, Berman, Fiat, and Yan [10] show that

any algorithm for this problem has competitive ratio 
(logn), and give an algorithm attaining

this bound.

Blum and Chalasani [21] consider the point to point problem in an unknown environment

when the robot makes repeated trips between two points. The goal of the robot is to �nd better

paths in each trip. In environments with axis parallel obstacles, they give an algorithm with

the property that at the i-th trip, the robot's path is O(
p
n=i) times the shortest path length.

Klein [51] considers the problem of a polygon with distinguished start and goal vertices.

The robot's goal is to walk inside the polygon from the start location to the goal location. The

goal location is recognized as soon as the robot sees it. For a special type of polygon known

as a street, Klein gives an algorithm with a 1 + 3
2
� � 5:71 competitive ratio. Kleinberg [52]

improves this by giving an algorithm with competitive ratio
q
4 +

p
8 � 2:61. For rectilinear

streets, the algorithm achieves a competitive ratio of
p
2.

There are many other related papers in the literature, particularly in the area of robotics

(e.g., [57]) and maze searching (e.g., [25, 24]). Rao, Kareti, Shi, and Iyengar [68] give a survey

of work on robot navigation in unknown terrains.

3.3 Formal model

We model the robot's environment as a �nite connected undirected graph G = (V;E) with dis-

tinguished start vertex s. Vertices represent accessible locations. Edges represent accessibility:

if fx; yg 2 E then the robot can move from x to y, or back, in a single step.

We assume that the robot can always recognize a previously visited vertex; it never confuses

distinct locations. At any vertex the robot can sense only the edges incident to it; it has no

vision or long-range sensors. The robot can distinguish between incident edges at any vertex.

Each edge has a label that distinguishes it from any other edge. Without loss of generality,
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we can assume that the edges are ordered. At a vertex, the robot knows which edges it has

traversed already. The robot only incurs a cost for traversing edges; thinking (computation) is

free. We also assume a uniform cost for an edge traversal. We consider the running time of a

piecemeal learning algorithm to be the number of edge traversals made by the robot.

The robot is given an upper bound B on the number of steps it can make (edges it can

traverse) in one exploration phase. In order to assure that the robot can reach any vertex in

the graph, do some exploration, and then get back to the start vertex, we assume B allows for

at least one round trip between s and any other single vertex in G, and also allows for some

number of exploration steps. More precisely, we assume B = (2 + �)r, where � > 0 is some

constant, and r is the radius of the graph (the maximum of all shortest-path distances between

s and any vertex in G).

Initially all the robot knows is its starting vertex s, the bound B, and the radius r of the

graph. The robot's goal is to explore the entire graph: to visit every vertex and traverse every

edge, minimizing the total number of edges traversed.

3.4 Initial approaches to piecemeal learning

A simple approach to piecemeal learning of arbitrary undirected graphs is to use an ordinary

search algorithm|breadth-�rst search (BFS) or depth-�rst search (DFS)|and just interrupt

the search as needed to return to visit s. (Detailed descriptions of BFS and DFS can be found

in algorithms textbooks [32].) Once the robot has returned to s, it goes back to the vertex at

which search was interrupted and resumes exploration. We now illustrate the problems each of

these approaches has for e�cient piecemeal learning.

Depth-�rst search

In depth-�rst search, edges are explored out of the most recently discovered vertex v that still has

unexplored edges leaving it. When all of v's edges have been explored, the search \backtracks"

to explore edges leaving the vertex from which v was discovered. This process continues until all

edges are explored. This search strategy, without interruptions due to the piecemeal constraint,

is e�cient since at most 2jEj edges are traversed. Interruptions, or exploration in phases of
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limited duration, complicate matters. For example, suppose in the �rst phase of exploration, at

step B=2 of a phase the robot reaches a vertex v as illustrated in Figure 3.1. Moreover, suppose

that the only path the robot knows from s to v has length B=2. At this point, the robot must

stop exploration and go back to the start location s. In the second phase, in order for the robot

to resume a depth-�rst search, it should go back to v, the most recently discovered vertex.

However, since the robot only knows a path of B=2 to v, it cannot proceed with exploration

from that point.

v w
s

B/2

Figure 3.1: The robot reaches vertex v after B=2 steps in a depth-�rst search. Then it must
interrupt its search and return to s. It cannot resume exploration at v to get to vertex w,
because the known return path is longer than B=2, the remaining number of steps allowed in
this exploration phase. DFS fails.

Since DFS with interruptions fails to reach all the vertices in the graph, another approach

to solve the piecemeal learning problem would be to try a bounded depth-�rst search strategy.

In bounded DFS, edges are explored out of the most recently discovered vertex v which had

depth less than a given bound �. However, a straightforward bounded DFS strategy also does

not translate into an e�cient piecemeal learning algorithm for arbitrary undirected graphs.

Breadth-�rst search

Unlike depth-�rst search, breadth-�rst search with interruptions does guarantee that all vertices

in the graph are ultimately explored. Whereas a DFS strategy cannot resume exploration at

vertices to which it only knows a long path, a BFS strategy can always resume exploration.

This is because BFS ensures that the robot always knows a shortest path from s to any explored

vertex. However, since a BFS strategy explores all the vertices at the same distance from s

before exploring any vertices that are further away from s, the resulting algorithm may not be

e�cient. Note that in the usual BFS model, the algorithm uses a queue to keep track of which

vertex it will search from next. Thus, searching requires extracting a vertex from this queue.
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In our model, however, since the robot can only search from its current location, extracting a

vertex from this queue results in a relocation from the robot's current location to the location

of the new vertex. Unlike the standard BFS model, our model does not allow the robot to

\teleport" from one vertex to another; instead, we consider a teleport-free exploration model,

where the robot must physically move from one vertex to the next.

In BFS, the robot may not move further away from the source than the unvisited vertex

nearest to the source. At any given time in the algorithm, let � denote the shortest-path

distance from s to the vertex the robot is visiting, and let � denote the shortest-path distance

from s to the vertex nearest to s that is as yet unvisited. With traditional breadth-�rst search

we have � � � at all times. With teleport-free exploration, it is generally impossible to maintain

� � � without a great loss of e�ciency:

Lemma 4 A robot which maintains � � � (such as a traditional BFS) may traverse 
(E2)

edges.

Proof: Consider the graph in Figure 3.2, where the vertices are f�n;�n + 1; : : :, �1; s =

0; 1; 2; : : : ; n� 1; ng, and edges connect consecutive integers. To achieve � � �, a teleport-free

BFS algorithm would run in quadratic time, traveling back and forth from 1 to �1 to �2 to 2

to 3 : : : .

  

s

−4       −3       −2       −1         0         1         2         3         4

Figure 3.2: A simple graph for which the cost of BFS is quadratic in the number of edges.

3.5 Our approaches to piecemeal learning

In this section, we discuss our approach to piecemeal learning of general graphs. First we

de�ne the o�-line version of this problem, and give an approximate solution for it, and then we
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give a general method for converting certain types of search algorithms into piecemeal learning

algorithms.

3.5.1 O�-line piecemeal learning

We now develop a strategy for the o�-line piecemeal learning problem which we can adapt to

get a strategy for the on-line piecemeal learning problem.

In the o�-line piecemeal learning problem, the robot is given a �nite connected undirected

graph G = (V;E), a start location s 2 V , and a bound B on the number of edges traversed in

any exploration phase. The robot's goal is to plan an optimal search of the graph that visits

every vertex and traverses every edge, and also satis�es the piecemeal constraint (i.e., each

exploration phase traverses at most B edges and starts and ends at the start location). Note

that since the graph is given, the problem does not actually have a learning or exploration

component. However, for simplicity we continue using \learning" and \exploration."

The o�-line piecemeal learning problem is similar to the well-known Chinese Postman Prob-

lem [39], but where the postman must return to the post-o�ce every so often. (We could call

the o�-line problem the Weak Postman Problem, for postmen who cannot carry much mail.)

The same problem arises when many postmen must cover the same city with their routes.

The Chinese Postman Problem can be solved by a polynomial time algorithm if the graph

is either undirected or directed [39]. The Chinese Postman problem for a mixed graph that has

undirected and directed edges was shown to be NP-complete by Papadimitriou [61]. We do not

know an optimal o�-line algorithm for the Weak Postman Problem; this may be an NP-hard

problem.

We now give an approximation algorithm for the o�-line piecemeal learning problem using

a simple \interrupted-DFS" approach.

Theorem 6 There exists an approximate solution to the o�-line piecemeal learning problem

for an arbitrary undirected graph G = (V;E) which traverses O(jEj) edges.

Proof: Assume that the radius of the graph is r and that the number of edges the robot is

allowed to traverse in each phase of exploration is B = (2+�)r, for some constant � such that

�r is a positive integer. Before the robot starts traversing any edges in the graph, it looks at
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the graph to be explored, and computes a depth-�rst search tree of the graph. A depth-�rst

traversal of this depth-�rst search tree de�nes a path of length 2jEj which starts and ends at s

and which goes through every vertex and edge in the graph. The robot breaks this path into

segments of length �r. The robot also computes (o�-line) a shortest path from s to the start

of each segment.

The robot then starts the piecemeal learning of the graph. Each phase of the exploration

consists of taking a shortest path from s to the start of a segment, traversing the edges in the

segment, and taking a shortest path back to the start vertex. For each segment, the robot

traverses at most 2r edges to get to and from the segment, and �r edges to explore the segment

itself. Thus, since the total number of edge traversals for each segment is at most (2+�)r = B,

the piecemeal constraint is satis�ed. Since there are d2jEj
�r
e segments, there are d2jEj

�r
e � 1

interruptions, and the number of edge traversals due to interruptions is at most:

��
2jEj
�r

�
� 1

�
2r �

�
2jEj
�r

�
2r

� 4jEj
�

Thus the total number of edge traversals is at most (4=�+ 2)jEj = O(E).

3.5.2 On-line piecemeal learning

We now show how we can change the strategy outlined above to obtain an e�cient on-line

piecemeal learning algorithm.

We call an on-line search optimally interruptible if it always knows a shortest path back

to s that can be composed from the edges that have been explored. We refer to a search as

e�ciently interruptible if it always knows a path back to s via explored edges of length at most

the radius of the graph.

Theorem 7 An e�ciently interruptible algorithm for exploring an unknown graph G = (V;E)

with n vertices andm edges that takes time T (n;m) can be transformed into a piecemeal learning

algorithm that takes time O(T (n;m)).

Proof: The proof of this theorem is similar to the proof of Theorem 6. However, there are a
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few di�erences. Instead of using an ordinary search algorithm (like DFS) and interrupting as

needed to return to s, we use an e�ciently interruptible search algorithm. Moreover, the search

is on-line and is being interrupted during exploration. Finally, the cost of the search is not 2jEj
as in DFS, but at most T (n;m).

Assume that the radius of the graph is r and that the number of edges the robot is allowed

to traverse in each phase of exploration is B = (2+ �)r, for some constant � such that �r is a

positive integer. In each exploration phase, the robot will execute �r steps of the original search

algorithm. At the beginning of each phase the robot goes to the appropriate vertex to resume

exploration. Then the robot traverses �r edges as determined by the original search algorithm,

and �nally the robot returns to s. Since the search algorithm is e�ciently interruptible, the

robot knows a path of distance at most r from s to any vertex in the graph. Thus the robot

traverses at most 2r+ �r = B edges during any exploration phase.

Since there are dT (n;m)

�r
e segments, there are dT (n;m)

�r
e � 1 interruptions, and the number of

edge traversals due to interruptions is:

��
T (n;m)

�r

�
� 1

�
2r � T (n;m)

�r
2r

� 2T (n;m)

�

Thus, the total number of edge traversals is T (n;m) + 2T (n;m)=� = T (n;m)(1 + 2=�) =

O(T (n;m)).

For arbitrary undirected planar graphs, we can show that any optimally interruptible search

algorithm requires 
(jEj2) edge traversals in the worst case. For example, exploring the graph

in Figure 3.2 (known initially only to be an arbitrary undirected planar graph) would result in

jEj2 edge traversals if the search is required to be optimally interruptible.

Because it seems di�cult to handle arbitrary undirected graphs e�ciently, we �rst focus

our attention on a special class of undirected planar graphs. These graphs, known as city-

block graphs, are de�ned in the Section 3.6.1. For these graphs we present two e�cient O(jEj)
optimally interruptible search algorithms. Since an optimally interruptible search algorithm is

also an e�ciently interruptible search algorithm, these two algorithms give e�cient piecemeal

learning algorithms for city-block graphs. The wavefront algorithm is a modi�cation of breadth-



46 Piecemeal learning of unknown environments

�rst search that is optimized for city-block graphs. The ray algorithm is a variation on depth-

�rst search. For piecemeal learning arbitrary undirected graphs, since optimally interruptible

search algorithms are not e�cient, we look at e�ciently interruptible search algorithms. In

particular, our algorithms are approximate breadth-�rst search algorithms.

3.6 Linear time algorithms for city-block graphs

This section �rst de�nes and motivates the class of city-block graphs, and then develops some

useful properties of such graphs that will be used in Subsections 3.6.2 (which gives the wavefront

algorithm for piecemeal learning of a city-block graph) and 3.6.3 (which gives the ray algorithm).

Both the wavefront algorithm and the ray algorithm are optimally interruptible, and thus

maintain at all times knowledge of a shortest path back to s. Since BFS is optimally inter-

ruptible, we study BFS in some detail to understand the characteristics of shortest paths in

city-block graphs. Our algorithms depend on the special properties that shortest paths have

in city-block graphs. We also study BFS because our wavefront algorithm is a modi�cation of

BFS.

3.6.1 City-block graphs

We model environments such as cities or o�ce buildings in which e�cient on-line robot nav-

igation may be needed. We focus on grid graphs containing some non-touching axis-parallel

rectangular \obstacles". We call these graphs city-block graphs. They are rectangular planar

graphs in which all edges are either vertical (north-south) or horizontal (east-west), and in which

all faces (city blocks) are axis-parallel rectangles whose opposing sides have the same number

of edges. A 1� 1 face might correspond to a standard city-block; larger faces might correspond

to obstacles (parks or shopping malls). Figure 3.3 gives an example. City-block graphs are also

studied by Papadimitriou and Yanakakis [62], Blum, Raghavan, and Schieber [22], and Bar-Eli,

Berman, Fiat and Yan [10].

An m � n city-block graph with no obstacles has exactly mn vertices (at points (i; j) for

1 � i � m, 1 � j � n) and 2mn � (m + n) edges (between points at distance 1 from each

other). Obstacles, if present, decrease the number of accessible locations (vertices) and edges
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in the city-block graph. In city-block graphs the vertices and edges are deleted such that all

remaining faces are rectangles.

We assume that the directions of incident edges are apparent to the robot.

s

Figure 3.3: A city-block graph with distinguished start vertex s.

Let �(v; v0) denote the length of the shortest path between v and v0, and let d[v] denote

�(v; s), the length of the shortest path from v back to s.

Monotone paths and the four-way decomposition

A city-block graph can be usefully divided into four regions (north, south, east, and west) by four

monotone paths: an east-north path, an east-south path, a west-north path, and a west-south

path. The east-north path starts from s, proceeds east until it hits an obstacle, then proceeds

north until it hits an obstacle, then turns and proceeds east again, and so on. The other paths

are similar (see Figure 3.4). Note that all monotone paths are shortest paths. Furthermore,

note that s is included in all four regions, and that each of the four monotone paths (east-north,

east-south, west-north, west-south) is part of all regions to which it is adjacent.

In Lemma 5 we show that for any vertex, there is a shortest path to s through only one

region. Without loss of generality, we therefore only consider optimally interruptible search

algorithms that divide the graph into these four regions, and search these regions separately.

We only discuss what happens in the northern region; the other regions are handled similarly.
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s

Figure 3.4: The four monotone paths and the four regions.

Lemma 5 There exists a shortest path from s to any point in a region that only goes through

that region.

Proof: Consider a point v in some region A. Let p be any shortest path from s to the point

v. If p is not entirely contained in region A, we can construct another path p0 that is entirely

contained in region A. We note that the vertices and edges which make up the monotone paths

surrounding a region A are considered to be part of that region.

Since path p starts and ends in region A but is not entirely contained in region A, there

must be a point u that is on p and also on one of the monotone paths bordering A. Note that

u may be the same as v. Without loss of generality, let u be the last such point, so that the

portion of the path from u to v is contained entirely within region A. Then the path p0 will

consist of the shortest path from s to u along the monotone path that u is on, followed by the

portion of p from u to v. This path p0 is a shortest path from s to v because p was a shortest

path and p0 can be no longer than p.

Canonical shortest paths of city-block graphs

We now make a fundamental observation on the nature of shortest paths from a vertex v back

to s. In this section, we consider shortest paths in the northern region; properties of shortest

paths in other region are similar.
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Lemma 6 For any vertex v in the northern region, there is a canonical shortest path from v to

the start vertex s which goes south whenever possible. The canonical shortest path goes east or

west only when it is prevented from going south by an obstacle or by the monotone path de�ning

the northern region.

Proof: We call the length d[v] of the shortest path from v to s the depth of vertex v. We show

this lemma by induction on the depth of a vertex.

For the base case, it is easy to verify that any vertex v such that d[v] = 1 has a canonical

shortest path that goes south whenever possible.

For the inductive hypothesis, we assume that the lemma is true for all vertices that have

depth t�1, and we want to show it is true for all vertices that have depth t. Consider a vertex p

at depth t. If there is an obstacle obstructing the vertex that is south of point p or if p is on a

horizontal segment of the monotone path de�ning the northern region, then it is impossible for

the canonical shortest path to go south, and the claim holds. Thus, assume the point south of

p is not obstructed by an obstacle or by the monotone path de�ning the northern region. Then

we have the following cases:

Case 1: Vertex ps directly south of p has depth t � 1. In this case, there is clearly a

canonical shortest path from p to s which goes south from p to ps and then follows the

canonical shortest path of ps, which we know exists by the inductive assumption.

Case 2: Vertex ps directly south of p has depth not equal to t � 1. Then one of the

remaining adjacent vertices must have depth t�1 (otherwise it is impossible for p to have

depth t). Furthermore, none of these vertices has depth less than t � 1, for otherwise

vertex p would have depth less than t.

Note that the point directly north of p cannot have depth t � 1. If it did, then by the

inductive hypothesis, it has a canonical shortest path which goes south. But then p has

depth t � 2, which is a contradiction.

Thus, either the point west of p or the point east of p has depth t � 1. Without loss of

generality, assume that the point pw west of p has depth t� 1. We consider two subcases.

In case (a), there is a path of length 2 from pw to ps that goes south one step from pw,

and then goes east to ps. In case (b), there is no such path.
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Case (a): If there is such a path, the vertex directly south of pw exists, and by the

inductive hypothesis has depth t � 2 (since there is a canonical shortest path from

pw to s of length t� 1, the vertex directly to the south of pw has depth t� 2). Then

ps, which is directly east of this point, has depth at most t � 1 and thus there is a

canonical path from p to s which goes south whenever possible.

Case (b): Note that the only way there does not exist a path of length 2 from pw to

ps (other than the obvious one through p) is if p is a vertex on the northeast corner

of an obstacle which is bigger than 1�1. Suppose the obstacle is k1�k2, where k1 is

the length of the north (and south) side of the obstacle, and k2 is the length of the

east (and west) side of the obstacle. We know by the inductive hypothesis that the

canonical shortest path from pw goes either east or west along the north side of this

obstacle, and since the vertex p has depth t we know that the canonical shortest path

goes west. After having reached the corner, the canonical shortest path from pw to s

proceeds south. Thus, the vertex which is on the southwest corner of this obstacle

has depth l = t�1�(k1�1)�k2. If we go from this vertex to ps along the south side

of the obstacle and then along the east side of the obstacle, then the depth of point

ps is at most l + k1 + (k2 � 1) = t � 1. Thus, in this case there is also a canonical

path from p to s which goes south whenever possible.

Lemma 7 Consider adjacent vertices v and w in a city-block graph where v is north of w. In

the northern region, without loss of generality, d[v] = d[w] + 1.

Proof: The proof follows immediately from Lemma 6.

Lemma 8 Consider adjacent vertices v and w in a city-block graph where v is west of w. In

the northern region, without loss of generality, d[v] = d[w]� 1.

Proof: We prove the lemma by induction on the y-coordinate of the vertices in the northern

region. If v and w have the same y-coordinate as s, then we know that d[v] = d[w] + 1 if s is
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east of v and d[v] = d[w] � 1 if s is west of w. Assume that the claim is true for vertices v

and w with y-coordinate k. In the following we show that it is also true for vertices v and w

with y-coordinate k + 1. We distinguish the case that there is no obstacle directly south of v

and w from the case that there is an obstacle directly south of v or w.

Case 1: If there is no obstacle directly south of v and w, or there a 1� 1 obstacle with u

and w on the north side, the lemma follows by Lemma 7 and the induction assumption.

Case 2: If there is an obstacle directly south of v or w, then we assume without loss of

generality that both v and w are on the boundary of the north side of the obstacle. (Note

that v or w may, however, be at a corner of the obstacle.)

If the lemma does not hold it means that d[v] = d[w] for two adjacent vertices v and w

(because, in any graph, the d values for adjacent vertices can di�er by at most one). This

would also mean that all shortest paths from v to s must go through vertex vw at the

north-west corner of the obstacle and all shortest paths from w to s must go through

vertex ve at the north-east corner of the obstacle (vw may be the same as v, and ve may

be the same as w). However, we next show that there is a grid point m on the boundary

of the north side of the obstacle that has shortest paths through both ve and vw. The

claim of Lemma 8 follows directly.

The distance x between m and vw can be obtained by solving the following equation:

x + d[vw] = (k � x) + d[ve] where k is the length of the north side of the obstacle. The

distance x is (k+d[ve]�d[vw])=2. Using the inductive hypothesis and Lemma 6, we know

that if k is even then jd[ve] � d[vw]j is even, and if k is odd then jd[ve] � d[vw]j is odd.
Thus the distance x is integral, and m exists in the graph.

3.6.2 The wavefront algorithm

The wavefront algorithm is based on BFS, but overcomes the ine�ciency BFS has due to

relocation cost. In this section, we �rst develop some preliminary concepts and results based
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on an analysis of breadth-�rst search in city-block graphs. We then present the wavefront

algorithm, prove its correctness, and show that it runs in linear time.

Properties of BFS in city-block graphs

In city-block graphs, BFS can be viewed as exploring the graph in waves that expand outward

from the start vertex s, much as waves expand from a pebble thrown into a pond. Figure 3.5

illustrates the wavefronts that can arise.

s

Figure 3.5: Environment explored by breath-�rst search, showing only \wavefronts" at odd
distance to s.

A wavefront w can then be de�ned as an ordered list of explored vertices

hv1; v2; : : : ; vmi, m � 1, such that d[vi] = d[v1] for all i, and such that �(vi; vi+1) � 2 for

all i. (As we shall prove in Lemma 9, the distance between adjacent points in a wavefront is

always exactly equal to 2.) We call d[w] = d[v1] the distance of the wavefront.

There is a natural \successor" relationship between BFS wavefronts, as a wavefront at

distance t generates a successor at distance t + 1. We informally consider a wave to be a

sequence of successive wavefronts. Because of obstacles, however, a wave may split (if it hits

an obstacle) or merge (with another wave, on the far side of an obstacle). Two wavefronts are

sibling wavefronts if they each have exactly one endpoint on the same obstacle and if the waves

to which they belong merge on the far side of that obstacle. The point on an obstacle where the

waves �rst meet is called the meeting point m of the obstacle. In the northern region, meeting
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points are always on the north side of obstacles, and each obstacle has exactly one meeting

point on its northern side. See Figure 3.6.

ss

w

w1

w2

meeting point

Figure 3.6: Splitting and merging of wavefronts along a corner of an obstacle. Illustration
of meeting point and sibling wavefronts: w1 and w2 are sibling wavefronts which belong to
di�erent \waves." The waves merge at the meeting point.

Lemma 9 A wavefront can only consist of diagonal segments.

Proof: By de�nition a wavefront is a sequence of vertices at the same distance to s for which the

distance between adjacent vertices is at most 2. It follows from Lemma 7 and 8 that neighboring

points in the grid cannot be in the same wavefront. Therefore, the distance between adjacent

vertices is exactly 2. Thus, the wavefront can only consist of diagonal segments.

We call the points that connect diagonal segments (of di�erent orientation) of a wavefront

peaks or valleys. In the northern region, a peak is a vertex on the wavefront that has a larger

y-coordinate than the y-coordinates of its adjacent vertices in the wavefront, and a valley is a

vertex on the wavefront that has a smaller y-coordinate than the y-coordinates of its adjacent

vertices (see Figure 3.7).

The initial wavefront is just a list containing the start point s. Until a successor of the initial

wavefront hits an obstacle, the successor wavefronts in the northern region consist of two diag-

onal segments connected by a peak. This peak is at the same x-coordinate for these successive

wavefronts. Therefore, we say that the shape of the wavefronts does not change. In the northern

region a wavefront can only have descendants that have a di�erent shape if a descendant curls

around the northern corners of an obstacle, or if it merges with another wavefront, or if it splits

into other wavefronts. These descendants may then have more complicated shapes.
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s

peak valley peak

front
back

Figure 3.7: Shapes of wavefronts. Illustration of peaks and valleys, and front and back of an
obstacle. The meeting point is the lowest point in the valley.

A wavefront w splits whenever its hits an obstacle. That is, if a vertex vi in the wavefront

is on the boundary of an obstacle, w splits into wavefronts w1 = hv1; v2; : : : ; vii and w2 =

hvi; vi+1; : : : ; vmi. Wavefront w1 propagates around the obstacle in one direction, and wavefront

w2 propagates around in the other direction. Eventually, some descendant wavefront of w1 and

some descendant wavefront of w2 will have a common point on the boundary of the obstacle|

the meeting point. The position of the meeting point is determined by the shape of the wave

approaching the obstacle. (In the proof of Lemma 8, vertexm is a meeting point and we showed

how to calculate its position once the length k of the north side of the obstacle and the shortest

path distances of the vertices ve and vw at the north-east and north-west corners of the obstacle

are known: the distance from vw to the meeting point m is (k + d[vw]� d[ve])=2.)

In the northern region, the front of an obstacle is its south side, the back of an obstacle is

its north side, and the sides of an obstacle are its east and west sides. A wave always hits the

front of an obstacle �rst. Consider the shape of a wave before it hits an obstacle and its shape

after it passes the obstacle. If a peak of the wavefront hits the obstacle (but not at a corner),

this peak will not be part of the shape of the wave after it \passes" the obstacle. Instead, the

merged wavefront may have one or two new peaks which have the same x-coordinates as the

sides of the obstacle (see Figure 3.7). The merged wavefront has a valley at the meeting point

on the boundary of the obstacle.
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Description of the wavefront algorithm

The wavefront algorithm, presented in this section, mimics BFS in that it computes exactly

the same set of wavefronts. However, in order to minimize relocation costs, the wavefronts

may be computed in a di�erent order. Rather than computing all the wavefronts at distance t

before computing any wavefronts at distance t+ 1 (as BFS does), the wavefront algorithm will

continue to follow a particular wave persistently, before it relocates and pushes another wave

along.

We de�ne expanding a wavefront w = hv1; v2; : : : ; vli as computing a set of zero or more

successor wavefronts by looking at the set of all unexplored vertices at distance one from any

vertex in w. Every vertex v in a successor wavefront has d[v] = d[w] + 1. The robot starts

with vertex on one end of the wavefront and moves to all of its unexplored adjacent vertices.

The robot then moves to the next vertex in the wavefront and explores its adjacent unexplored

vertices. It proceeds this way down the vertices of the wavefront.

The following lemma shows that a wavefront of l vertices can be expanded in time O(l).

Lemma 10 A robot can expand a wavefront w = hv1; v2; : : : ; vli by traversing at most 2(l �
1) + 2dl=2e+ 4 edges.

Proof: To expand a wavefront w = hv1; v2; : : : ; vli the robot needs to move along each vertex in
the wavefront and �nd all of its unexplored neighbors. This can be done e�ciently by moving

along pairs of unexplored edges between vertices in w. These unexplored edges connect l of

the vertices in the successor wavefront. This results in at most 2(l � 1) edge traversals, since

neighboring vertices are at most 2 apart. The successor wavefront might have l + 2 vertices,

and thus at the beginning and the end of the expansion (i.e., at vertices v1 and vl), the robot

may have to traverse an edge twice. In addition, at any vertex which is a peak, the robot may

have to traverse an edge twice. Note that a wavefront has at most dl=2e peaks. Thus, the total
number of edge traversals is at most 2(l� 1) + 2dl=2e+ 4:

Since our algorithm computes exactly the same set of wavefronts as BFS, but persistently

pushes one wave along, it is important to make sure the wavefronts are expanded correctly.

There is really only one incorrect way to expand a wavefront and get something other than
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what BFS obtained as a successor: to expand a wavefront that is touching a meeting point

before its sibling wavefront has merged with it. Operationally, this means that the wavefront

algorithm is blocked in the following two situations:

(a) It cannot expand a wavefront from the side around to the back of an obstacle before

the meeting point for that obstacle has been set (see Figure 3.8).

(b) It cannot expand a wavefront that touches a meeting point until its sibling has arrived

there as well (see Figure 3.9).

A wavefront w2 blocks a wavefront w1 if w2 must be expanded before w1 can be safely expanded.

We also say w2 and w1 interfere.

w1

w2

Figure 3.8: Blockage of w1 by w2. Wavefront w1 has �nished covering one side of the obstacle
and the meeting point is not set yet.

s

w1

w2

Figure 3.9: Blockage of w1 by w2. Wavefrontw1 has reached the meeting point on the obstacle,
but the sibling wavefront w2 has not.

A wavefront w is an expiring wavefront if its descendant wavefronts can never interfere with

the expansion of any other wavefronts that now exist or any of their descendants. A wavefrontw

is an expiring wavefront if its endpoints are both on the front of the same obstacle; w will expand

into the region surrounded by the wavefront and the obstacle, and then disappear or \expire."

We say that a wavefront expires if it consists of just one vertex with no unexplored neighbors.
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Figure 3.10: Triangular areas (shaded) delineated by two expiring wavefronts.

Procedure Wavefront-algorithm is an e�cient optimally interruptible search algorithm

that can be used to create an e�cient piecemeal learning algorithm. It repeatedly expands one

wavefront until it splits, merges, expires, or is blocked. The Wavefront-algorithm takes as

an input a start point s and the boundary coordinates of the environment. It calls procedure

Create-monotone-paths to explore four monotone paths (see Section 3.6.1) and de�ne the

four regions. Then procedure Explore-area is called for each region.

Wavefront-algorithm (s, boundary)
1 create monotone paths
2 For region = north, south, east, and west
3 initialize current wavefront w := hsi
4 Explore-area (w, region)
5 take a shortest path to s

For each region we keep an ordered list L of all the wavefronts to be expanded. In the north-

ern region, the wavefronts are ordered by the x-coordinate of their west-most point. Neighboring

wavefronts are wavefronts that are adjacent in the ordered list L of wavefronts. Note that for

each pair of neighboring wavefronts there is an obstacle on which both wavefronts have an

endpoint.

Initially, we expand each wavefront in the northern region from its west-most endpoint to

its east-most endpoint (i.e., we are expanding wavefronts in a \west-to-east" manner). The

direction of expansion changes for the �rst time in the northern region when a wavefront is

blocked by a wavefront to its west (the direction of expansion then becomes \east-to-west"). In
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fact, the direction of expansion changes each time a wavefront is blocked by a wavefront that

is in the direction opposite of expansion. We introduce this notion of expanding wavefronts

in either \west-to-east" or \east-to-west" directions in order to simplify the analysis of the

algorithm.

We treat the boundaries as large obstacles. The north region has been fully explored when

the list L of wavefronts is empty. Note that vertices on the monotone paths are considered

initially to be unexplored, and that expanding a wavefront returns a successor that is entirely

within the same region.

Each iteration of Explore-area expands a wavefront. When Expand is called on a wave-

front w, the robot starts expanding w from its current location, which is a vertex at one of the

endpoints of wavefront w. It is often convenient, however, to think of Expand as �nding the

unexplored neighbors of the vertices in w in parallel.

Depending on what happens during the expansion, the successor wavefront can be split,

merged, blocked, or may expire. Note that more than one of these cases may apply.

Procedures Merge and Split (see following pages) handle the (not necessarily disjoint)

cases of merging and splitting wavefronts. Note that we use call-by-reference conventions for

the wavefront w and the list L of wavefronts (that is, assignments to these variables within

procedures Merge and Split a�ect their values in procedure Explore-area). Each time

procedure Relocate(w; dir) is called, the robot moves from its current location to the appro-

priate endpoint of w: in the northern region, if the direction is \west-to-east" the robot moves

to the west-most vertex of w, and if the direction is \east-to-west," the robot moves to the

east-most vertex of w.

Procedure Relocate(w; dir) can be implemented so that when it is called, the robot sim-

ply moves from its current location to the appropriate endpoint of w via a shortest path

in the explored area of the graph. However, for analysis purposes, we assume that when

Relocate(w; dir) is called the robot moves from its current location to the appropriate end-

point of w as follows.

� When procedure Relocate(ws; dir) is called in line 5 of Explore-area, the robot tra-

verses edges between the vertices in wavefront ws to get back to the appropriate endpoint

of the newly expanded wavefront.
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Explore-area (w, region)
1 initialize list of wavefronts L := hwi
2 initialize direction dir := west-to-east
3 Repeat

4 Expand current wavefront w to successor wavefront ws

5 Relocate (ws, dir)

6 current wavefront w := ws

7 If w is a single vertex with no unexplored neighboring vertices
8 Then

9 remove w from ordered list L of wavefronts
10 If L is not empty
11 Then

12 w := neighboring wavefront of w in direction dir

13 Relocate (w, dir)
14 Else

15 replace w by ws in ordered list L of wavefronts
16 If the second back corner of any obstacle(s)

has just been explored
17 Then set meeting points for those obstacle(s)
18 If w can be merged with adjacent wavefront(s)
19 Then Merge (w, L, region, dir)
20 If w hits obstacle(s)
21 Then Split (w, L, region, dir)
22 If L not empty
23 Then

24 If w is blocked by neighboring wavefront w0 in direction
D 2 fwest-to-east, east-to-westg

25 Then

26 dir := D

27 While w is blocked by neighboring wavefront w0

28 Do

29 w := w0

30 Relocate (w, dir)
31 Until L is empty
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� When procedure Relocate(ws; dir) is called in line 13 of Explore-area, the robot

traverses edges along the boundary of an obstacle.

� When procedure Relocate(ws; dir) is called in line 9 of Merge, the robot traverses

edges between vertices in wavefront w to get to the appropriate endpoint of the newly

merged wavefront.

� When procedure Relocate(ws; dir) is called in line 30 of Explore-area, the robot

traverses edges as follows. Suppose the robot is in the northern region and at the west-

most vertex of wavefront w0, and assume that w is to the east of w0. Note that both w0

and w are in the current ordered list of wavefronts L. Thus there is a path between the

robot's current location and wavefront w which \follows the chain" of wavefronts between

w0 and w. That is, the robot moves from w0 to w as follows. Let w1; w2; : : : ; wk be the

wavefronts in the ordered list of wavefronts between w0 and and w, and let b0; b1; : : : bk+1

be the obstacles separating wavefronts w0; w1; : : : ; wk; w (i.e., obstacle b0 is between w0

and w1, obstacle b1 is between w1 and w2, and so on). Then to relocate from w0 to w, the

robot traverses the edges between vertices of wavefront w0 to get to the east-most vertex

of w0 which is on obstacle b0. Then the robot traverses the edges of the obstacle b0 to get

to the west-point vertex of w1, and then the robot traverses the edges between vertices

in wavefront w1 to get to the east-most vertex of w1 which is on obstacle b1. The robot

continues traversing edges in this manner (alternating between traversing wavefronts and

traversing obstacles) until it is at the appropriate end vertex of wavefront w.

Merge (w, L, region, dir)
1 remove w from list L of wavefronts
2 While there is a neighboring wavefront w0 with which w can merge
3 Do

4 remove w0 from list L of wavefronts
5 merge w and w0 into wavefront w00

6 w := w00

7 put w in ordered list L of wavefronts
8 If w is not blocked
9 Then Relocate (w, dir)
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Wavefronts are merged when exploration continues around an obstacle. A wavefront can be

merged with two wavefronts, one on each end.

When procedure Split is called on wavefront w, we note that the wavefront is either the

result of calling procedure Expand in line 4 of Explore-area or the result of calling procedure

Merge in line 19 of Explore-area. Once wavefront w is split into w0; : : : ; wn, we update the

ordered list L of wavefronts, and update the current wavefront.

Split (w, L, region, dir)
1 split w into appropriate wavefronts w0; : : : ; wn in standard order
2 remove w from ordered list L of wavefronts
3 For i = 0 To n

4 put wi on ordered list L of wavefronts
5 If dir = west-to-east
6 Then w:= w0

7 Else w:= wn

Correctness of the wavefront algorithm

The following theorems establish the correctness of our algorithm.

Theorem 8 The algorithm Explore-area expands wavefronts so as to maintain optimal in-

terruptibility.

Proof: This is shown by induction on the distance of the wavefronts. The key observations

are:

� There is a canonical shortest path from any vertex v to s which goes south whenever

possible, but east or west around obstacles.

� A wavefront is never expanded beyond a meeting point.

We show that the algorithm maintains optimal interruptibility by knowing the canonical

shortest path from any explored vertex to the start vertex s. We refer to this as the shortest

path property. We show that the algorithm maintains the shortest path property by induction

on the number of stages in the algorithm. Each stage of the algorithm is an expansion of a

wavefront.
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The shortest path property is trivially true when the number of stages k = 1. There is

initially only one wavefront, the start point. Now we assume all wavefronts that exist just after

the k-th stage satisfy the shortest path property, and we want to show that all wavefronts that

exist just after the k + 1-st stage also satisfy the shortest path property.

Consider a wavefront w in the k-th stage which the algorithm has expanded in the k+ 1-st

stage to ws. We claim that all vertices in ws have shortest path length d[w] + 1. Note that

any vertex in ws which is directly north of a vertex in w de�nitely has shortest path length

d[w] + 1. This is because there is a shortest path from any vertex v to s which goes south

whenever possible, but if it is not possible to go south because of an obstacle, it goes east or

west around the obstacle.

The only time any vertex v in ws is not directly north of a vertex in w is when w is expanded

around the back of an obstacle. This can only occur for a vertex that is either the west-most or

east-most vertex of a wavefront in the north region. Without loss of generality we assume that

v is the west-most point on ws and v is on the boundary of some obstacle b. Note that w is

expanded around the back of an obstacle only when the meeting point is determined. Because

the algorithm only expands any wavefront until it reaches the meeting point of an obstacle,

vertex v is not to the west of the meeting point. The algorithm knows that v has a shortest

path from s that goes through vc and along the obstacle to v. Thus the algorithm satis�es the

shortest path property for the k + 1-st stage.

Theorem 9 If the region is not completely explored, there is always a wavefront that is not

blocked.

Proof: We consider exploration in the north region. The key observations are:

� Neighboring wavefronts cannot simultaneously block each other.

� The east-most wavefront in the north region cannot be blocked by anything to its east,

and the west-most wavefront in the north region cannot be blocked by anything to its

west.

Thus the robot can always \follow a chain" of wavefronts to either its east or west to �nd an

unblocked wavefront.
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A neighboring wavefront is either a sibling wavefront or an expiring wavefront. An expiring

wavefront can never block neighboring wavefronts. In order to show that neighboring wavefronts

cannot simultaneously block each other, it thus su�ces to show next that sibling wavefronts

cannot block each other. We use this to show that we can always �nd a wavefront ŵ which

is not blocked. The unblocked wavefront ŵ nearest in the ordered list of wavefronts L can be

found by \following the chain" of blocked wavefronts from w to ŵ. By following the chain of

wavefronts between w and ŵ we mean that the robot must traverse the edges that connect the

vertices in each wavefront between w and ŵ in L and also the edges on the boundaries of the

obstacles between these wavefronts. Note that neighboring wavefronts in list L each have at

least one endpoint that lies on the boundary of the same obstacle.

Before we show that sibling wavefronts cannot block each other we need the following

terminology. The �rst time an obstacle is discovered by some wavefront, we call the point that

the wavefront hits the obstacle the discovery point. (Note that there may be more than one

such point. We arbitrarily choose one of these points.) In the north region, we split up the

wavefronts adjacent to each obstacle into an east wave and a west wave. We call the set of all

these wavefronts which are between the discovery point and the meeting point of the obstacle

in a west-to-east manner the west wave. We de�ne the east wave of an obstacle analogously.

The discovery point of an obstacle b is always at the front of b. The wavefront that hits

at b is split into two wavefronts, one of which is in the east wave and one of which is in the

west wave of the obstacle. We claim that a descendent wavefront w1 in the west wave and

a descendant wavefront w2 in the east wave cannot simultaneously block each other. Assume

that the algorithm is trying to expand w1 but that wavefront w2 blocks w1. Wavefront w2 can

only block w1 if one of the following two cases applies. In both cases, we show that w1 cannot

also block w2.

Case 1: Wavefront w1 is about to expand to the back of obstacle b, but both of the

back corners of obstacle b have not been explored, and thus the meeting point has not

been determined. Wavefront w2 can only be blocked by w1 if w2 is either already at the

meeting point of the obstacle or about to expand to the back of the obstacle. Since none

of the back corners of obstacle b have been explored, neither of these two possibilities

holds. Thus, wavefront w1 does not block w2.
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Case 2: Wavefront w1 has reached the meeting point at the back of b. Therefore, both

back corners of the obstacle have been explored and w1 is not blocking w2.

We have just shown that if w2 blocks w1 then w1 cannot also block w2. Thus, the algorithm

tries to pick w2 as the nearest unblocked wavefront to w1. However, w2 may be blocked by its

sibling wavefront w3 on a di�erent obstacle b0. For this case, we have to show that this sibling

wavefront w3 is not blocked, or that its sibling wavefront w4 on yet another obstacle b00 is not

blocked and so forth. Without loss of generality, we assume that the wavefronts are blocked

by wavefronts towards the east. Proceeding towards the east along the chain of wavefronts will

eventually lead to a wavefront which is not blocked|the east-most wavefront in the northern

region. The east-most wavefront is adjacent to the initial monotone east-north path. Therefore,

it cannot be blocked by a wavefront towards the east.

Theorem 10 The wavefront algorithm is an optimally interruptible piecemeal learning algo-

rithm for city-block graphs.

Proof: To show the correctness of a piecemeal algorithm that uses our wavefront algorithm

for exploration with interruption, we show that the wavefront algorithm maintains the shortest

path property and explores the entire environment.

Theorem 8 shows by induction on shortest path length that the wavefront algorithm mimics

breadth-�rst search. Thus it is optimally interruptible.

Theorem 9 shows that the algorithm does not terminate until all vertices have been explored.

Correctness follows.

E�ciency of the wavefront algorithm

We now show the number of edges traversed by the piecemeal algorithm based on the wavefront

algorithm is linear in the number of edges in the city-block graph.

We �rst analyze the number of edges traversed by the wavefront algorithm. Note that the

robot traverses edges when procedures Create-monotone-paths, Expand, and Relocate

are called. In addition, it traverses edges to get back to s between calls to Explore-area.
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These are the only times the robot traverses edges. Thus, we count the number of edges

traversed for each of these cases. In Lemmas 11 to 14, we analyze the number of edges traversed

by the robot due to calls of Relocate. Theorem 11 uses these lemmas and calculates the total

number of edges traversed by the wavefront algorithm.

Lemma 11 An edge is traversed at most once due to relocations after a wavefront has expired

(Relocate in line 13 of Explore-area).

Proof: Assume that the robot is in the northern region and expanding wavefronts in a west-to-

east direction. Suppose wavefront w has just expired onto obstacle b (i.e., it is a single vertex

with all of its adjacent edges explored). The robot now must relocate along obstacle b to its

neighboring wavefront w0 to the east. Note hat w0 is also adjacent to obstacle b, and therefore

the robot is only traversing edges on the obstacle b.

Note that at this point of exploration, there is no wavefront west of w which will expire

onto obstacle b. This is because expiring wavefronts are never blocked, and thus the direction

of expansion cannot be changed due to an expiring wavefront. So, when a wavefront is split and

the direction of expansion is west-to-east, the robot always chooses the west-most wavefront to

expand �rst. Thus, the wavefronts which expire onto obstacle b are explored in a west to east

manner. Thus relocations after wavefronts have expired on obstacle b continuously move east

along the boundary of this obstacle.

Lemma 12 An edge is traversed at most once due to relocations after wavefronts have merged

(Relocate in line 9 of Merge).

Proof: Before a call to procedure Merge, the robot is at the appropriate end vertex of

wavefront w. Let's assume that the robot is in the northern region and expanding wavefronts

in a west-to-east direction. Thus the robot is at the west-most vertex of wavefront w. Note that

wavefront w can be merged with at most two wavefronts, one at each end, but only merges with

the wavefront to the west of w actually cause the robot to relocate. Suppose wavefront w is

merged with wavefront w0 to its west to form wavefront w00. Then, if the resulting wavefront w00

is unblocked, procedure Relocate is called and the robot must traverse w00 to its west-most
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vertex (i.e., also the west-most vertex of w0). However, since wavefront w00 is unblocked, w00 can

immediately be expanded and is not traversed again.

Lemma 13 At most one wavefront from the east wave of an obstacle is blocked by one or more

wavefronts in the west wave. At most one wavefront from the west wave is blocked by one or

more wavefronts in the east wave.

Proof: Consider the west wave of an obstacle. By the de�nition of blocking, there are only

two possible wavefronts in the west wave that can be blocked. One wavefront is adjacent to

the back corner of the obstacle. Call this wavefront w1. The other wavefront is adjacent to the

meeting point of the obstacle. Call this wavefront w2.

We �rst show that if w1 is blocked then w2 will not be blocked also. Then we also know

that if w2 is blocked then w1 must not have been blocked. Thus at most one wavefront in the

west wave is blocked.

If w1 is blocked by one or more wavefronts in the east wave then these wavefronts can be

expanded to the meeting point of the obstacle without interference from w1. That is, wavefront

w1 cannot block any wavefront in the east wave, and thus there will be no traversals around

the boundary of the obstacle until the east wave has reached the meeting point. At this point,

the west wave can be expanded to the meeting point without any wavefronts in the east wave

blocking any wavefronts in the west wave.

Similarly, we know that at most one wavefront from the west wave is blocked by one or

more wavefronts in the east wave.

Lemma 14 An edge is traversed at most three times due to relocation after blockage (Relo-

cate in line 30 of Explore-area).

Proof: Without loss of generality, we assume that the wavefronts are blocked by wavefronts

towards the east. Proceeding towards the east along the chain of wavefronts will eventually

lead to a wavefront which is not blocked, since the east-most wavefront is adjacent to the initial

monotone east-north path.

First we show that any wavefront is traversed at most once due to blockage. Then we show

that the boundary of any obstacle is traversed at most twice due to blockage. Note that pairs
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of edges connecting vertices in a wavefront may also be edges which are on the boundaries of

obstacles. Thus any edge is traversed at most three times due to relocation after blockage.

We know from Theorem 9 that there is always a wavefront that is not blocked. Assume that

the robot is at a wavefront w which is blocked by a wavefront to its east. Following the chain of

wavefronts to the east leads to an unblocked wavefront w0. This results in one traversal of the

wavefronts. Now this wavefront w0 is expanded until it is blocked by some wavefront w00. Note

that wavefront w00 cannot be to the west of w0, since we know that the wavefront west of w0 is

blocked by w0. (We show in the proof of Theorem 9 that if w1 blocks w2 then w2 does not block

w1.) The robot will not move to any wavefronts west of wavefront w0 until a descendant of w0

no longer blocks the wavefront immediately to its west. Once this is the case, then the west

wavefront can immediately be expanded. Similarly, we go back through the chain of wavefronts,

since - as the robot proceeds west - it expands each wavefront in the chain. Thus the robot

never traverses any wavefront more than once due to blockage.

Now we consider the number of traversals, due to blockage, of edges on the boundary of

obstacles. As wavefronts expand, their descendant wavefronts may still be adjacent to the

same obstacles. Thus, we need to make sure that the edges on the boundaries of obstacles are

not traversed too often due to relocation because of blockage. We show that any edge on the

boundary of an obstacle is not traversed more than twice due to relocations because of blockage.

That is, the robot does not move back and forth between wavefronts on di�erent sides of an

obstacle. Lemma 13 implies that each edge on the boundary of the obstacle is traversed at

most twice due to blockage.

Thus, since the edges on the boundary of an obstacle may be part of the pairs of edges

connecting vertices in a wavefront, the total number of times any edge can be traversed due to

blockage is at most three.

Theorem 11 The wavefront algorithm is linear in the number of edges in the city-block graph.

Proof: We show that the total number of edge traversals is no more than 15jEj. Note that when
the procedures Create-monotone-paths, Expand, and Relocate are called, the robot

traverses edges in the environment. In addition, the robot traverses edges in the environment

to get back to s after exploration of each of the four regions. These are the only times the
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robot actually traverses edges in the environment. Thus, to calculate the total number of edge

traversals, we count the edge traversals for each of these cases.

The robot traverses the edges on the monotone paths once when it explores them, and once

to get back to the start point. This is clearly at most 2jEj edge traversals. The robot walks

back to s four times after exploring each of the four regions. Thus the number of edges traversed

here is at most 4jEj. The proof of Lemma 10 implies that the total number of edge traversals

caused by procedure Expand is at most 2jEj. We now only need to consider the edge traversals

due to calls to procedure Relocate.

ProcedureRelocate is called four times within Explore-area andMerge. The four calls

are due to expansion (line 5 of Explore-area), expiring (line 13 of Explore-area), merging

(line 9 of Merge) and blocking (line 30 of Explore-area). Relocations after expanding a

wavefront results in a total of jEj edge traversals. Lemma 11 shows that edges are traversed

at most twice due to expiring wavefronts. Lemma 12 shows that edges are traversed at most

once due to relocations after merges. Finally, Lemma 14 shows that edges are traversed at most

three times due to relocations after blockage. Thus the total number of edge traversals due to

calls of procedure Relocate is at most 7jEj.
Thus the total number edges traversed by the wavefront algorithm is at most 15jEj. A more

careful analysis of the wavefront algorithm can improve the constant factor.

Theorem 12 A piecemeal algorithm based on the wavefront algorithm runs in time linear in

the number of edges in the city-block graph.

Proof: This follows immediately from Theorem 10 and Theorem 11.

3.6.3 The ray algorithm

We now give another e�cient optimally interruptible search algorithm, called the ray algorithm.

The ray algorithm is a variant of DFS that always knows a shortest path back to s. This thus

yields another e�cient piecemeal algorithm for searching a city-block graph. This algorithm is

simpler than the wavefront algorithm, but may be less suitable for generalization, because it

appears more speci�cally oriented towards city-block graphs.
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The ray algorithm also starts by �nding the four monotone paths, and splitting the graph

into four regions to be searched separately. The algorithm explores in a manner similar to

depth-�rst search, with the following exceptions. Assume that it is operating in the northern

region. The basic operation is to explore a northern-going \ray" as far as possible, and then

to return to the start point of the ray. Along the way, side-excursions of one-step are made to

ensure the traversal of east-west edges that touch the ray. Optimal interruptibility will always

be maintained: the ray algorithm will not traverse a ray until it knows a shortest path to s from

the base of the ray (and thus a shortest path to s from any point on the ray, by Lemma 6).

The high-level operation of the ray algorithm is as follows. (See Figure 3.11.) From each

point on the (horizontal segments of the) monotone paths bordering the northern region, a

north-going ray is explored. On each such ray, exploration proceeds north until blocked by an

obstacle or the boundary of the city-block graph. Then the robot backtracks to the beginning

of the ray and starts exploring a neighboring ray. As described so far, each obstacle creates

a \shadow region" of unexplored vertices to its north. These shadow regions are explored as

follows. Once the two back corners of an obstacle are explored, the shortest paths to the vertices

at the back of an obstacle are then known; the \meeting point" is then determined. Once the

meeting point for an obstacle is known, the shortest path from s to each vertex on the back

border of the obstacle is known. The robot can then explore north-going rays starting at each

vertex at the back border of the obstacle. There may be further obstacles that were all or

partially in the shadow regions; their shadow regions are handled in the same manner.

We note that not all paths to s in the \search tree" de�ned by the ray algorithm are

shortest paths; the tree path may go one way around an obstacle while the algorithm knows

that the shortest path goes the other way around. However, the ray algorithm is nonetheless

an optimally interruptible search algorithm.

Theorem 13 The ray algorithm is a linear-time optimally interruptible search algorithm that

can be transformed into a linear-time piecemeal learning of a city-block graph.

Proof: This follows from the properties of city-block graphs proved in Section 3.6.1, and the

above discussion. In the ray algorithm each edge is traversed at most a constant number

of times. The linearity of the corresponding piecemeal learning algorithm then follows from

Theorem 7.



70 Piecemeal learning of unknown environments

s

Figure 3.11: Operation of the ray algorithm.

3.7 Piecemeal learning of undirected graphs

For piecemeal learning of arbitrary undirected graphs, we again turn our attention to breadth-

�rst search. As we mentioned earlier, standard BFS is e�cient only when when the robot can

e�ciently switch or \teleport" from expanding one vertex to expanding another. In contrast, our

model assumes a more natural scenario where the robot must physically move from one vertex

to the next. We change the classical BFS model to a more di�cult teleport-free exploration

model, and give e�cient approximate BFS algorithms where the robot does not move much

further away from s than the distance from s to the unvisited vertex nearest to s. The teleport-

free BFS algorithms we present never visit a vertex more than twice as far from s as the nearest

unvisited vertex is from s.

Our techniques for piecemeal learning of arbitrary undirected graphs are inspired by the work

of Awerbuch and Gallager [6, 7]. We observe that our learning model bears some similarity to

the asynchronous distributed model. This similarity is surprising and has not been explored in

the past.

Our main theorem for piecemeal learning of arbitrary undirected graphs is:

Theorem 14 Piecemeal learning of an arbitrary undirected graph G = (V;E) can be done in

time O(E + V 1+o(1)).

Proof: Following the Recursive-Strip algorithm, given in Section 3.7.3, the robot always
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knows a path from its current location back to the start vertex of length at most the radius

of the graph. Thus Recursive-Strip is e�ciently interruptible. The running time of this

algorithm is O(E+V 2O(
p

logV log logV )) = O(E+V 1+o(1)). By Theorem 7, this algorithm can be

interrupted e�ciently to give a piecemeal learning algorithm with running time O(E+V 1+o(1)).

In the remainder of this section, we give three algorithms for piecemeal learning undirected

graphs. We �rst give a simple algorithm that runs in O(E + V 1:5) time. We then give a

modi�cation of this algorithm that runs in O((E + V 1:5) logV ) time. Although this algorithm

has slightly slower running time, we are able to make it recursive, giving a third algorithm

with almost linear running time: it achieves O(E + V 1+o(1)) running time. The most e�cient

previously known algorithm has O(E + V 2) running time.

3.7.1 Algorithm Strip-Explore

This section describes an e�ciently interruptible algorithm for undirected graphs with running

time O(E + V 1:5). It is based on breadth-�rst search.

A layer in a BFS tree consists of vertices that have the same shortest path distance to the

start vertex. A frontier vertex is a vertex that is incident to unexplored edges. A frontier vertex

is expanded when the robot has traversed all the unexplored edges incident to it.

The traditional BFS algorithm expands frontier vertices layer by layer. In the teleport-

free model, this algorithm runs in time O(E + rV ), since expanding all the vertices takes time

O(E), and visiting all the frontier vertices on layer i can be performed with a depth-�rst search

of layers 1 : : : i in time O(V ), and there are at most r layers. The procedure Local-BFS

describes a version of the traditional BFS procedure that has been modi�ed for our teleport-

free BFS model in two respects. First, the robot does not relocate to frontier vertices that have

no unexplored edges. Second, it only explores vertices within a given distance-bound L of the

given start vertex s. (The �rst modi�cation, while seemingly straightforward, is essential for

our analysis of Strip-Explore which uses Local-BFS as a subroutine.) A procedure call of

the form Local-BFS(s; r), where s is the start vertex of the graph and r is its radius, would

cause the robot to explore the entire graph.

Awerbuch and Gallager [6, 7] give a distributed BFS algorithm which partitions the network
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in strips, where each strip is a group of L consecutive layers. (Here L is a parameter to be

chosen.) All vertices in strip i � 1 are expanded before any vertices in strip i are expanded.

Their algorithms use as a subroutine breadth-�rst type searches with distance L.

Local-BFS(s; L)
1 For i = 0 To L� 1 Do
2 let verts = all vertices at distance i from s

3 For each u 2verts Do
4 If u has any incident unexplored edges
5 Then

6 relocate to u

7 traverse each unexplored edge
8 incident to u
9 relocate to s

Our algorithm, Strip-Explore, searches in strips in a new way. See Figure 3.12. The robot

explores the graph in strips of width L. First the robot does Local-BFS(s; L) to explore the

�rst strip. It then explores the second strip as follows. Suppose there are k frontier vertices

v1; v2; : : : ; vk in layer L; each such vertex is a source vertex for exploring the second strip. A

naive way for exploring the second strip is for the robot for each i, to relocate to vi, and then

�nd all vertices that are within distance L of vi by doing a BFS of distance-bound L from vi

within the second strip. The robot thus traverses a forest of k BFS trees of depth L, completely

exploring the second strip. The robot then has a map of the BFS tree of depth L for the �rst

strip and a map of the BFS forest for the second strip, enabling it to create a BFS tree of

depth 2L for the �rst two strips. The robot continues, strip by strip, until the entire graph is

explored.

The naive algorithm described above is ine�cient, due to the overlap between the trees in the

forest at a given level, causing portions of each strip to be repeatedly re-explored. The algorithm

Strip-Explore presented below solves this problem by using the Local-BFS procedure as

the basic subroutine, instead of using a naive BFS. (See Figure 3.12.)
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Figure 3.12: In the naive algorithm, the shaded areas are retraversed completely. In Strip-
Explore, the shaded areas are passed through more than once only if necessary to get to
frontier vertices.

Strip-Explore(s; L; r)
1 numstrips = dr=Le
2 sources = fsg
3 For i = 1 To numstrips Do

4 For each u 2sources Do
5 relocate to u

6 Local-BFS(u;L)
7 sources = all frontier vertices

In Strip-Explore, the robot searches in a breadth-�rst manner, but ignores previously

explored territory. The only time the robot traverses edges that have been previously explored

is when moving to a frontier vertex it is about to expand. This results in retraversal of some

edges in previously explored territory, but not as many as in the naive algorithm.

Theorem 15 Strip-Explore runs in O(E + V 1:5) time.

Proof: First we count edge traversals for relocating between source vertices for a given strip.

For these relocations, the robot can mentally construct a tree in the known graph connecting

these vertices, and then move between source vertices by doing a depth-�rst traversal of this

tree. Thus the number of edge traversals due to relocations between source vertices for this

strip is at most 2V . Since there are dr=Le strips, the total number of edge traversals due to

relocations between source vertices is at most d r
L
e2V � � r

L
+ 1

�
2V = 2rV

L
+ 2V .

Now we count edge traversals for repeatedly executing the Local-BFS algorithm. First,
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Figure 3.13: Contrasting BFS and Local-BFS: Consider a BFS of depth 5 from s1, followed
by a BFS of depth 5 from s2. (The depth of the strip is L = 5.) The BFS from s2 revisits
vertices a; b; c; d; e. On the other hand, if the BFS from s1 is followed by a Local-BFS from
s2, then it only revisits d; c; e. After edge (f; d) is found, vertex e is a frontier vertex that needs
to be expanded.

for the robot to expand all vertices and explore all edges, it traverses 2E edges. Next, each

time the relocate in line 9 of procedure Local-BFS is called, at most L edges are traversed.

To account for relocations in line 6 of procedure Local-BFS, we use the following scheme for

\charging" edge traversals. Say the robot is within a call of the Local-BFS algorithm. It has

just expanded a vertex u and will now relocate to a vertex v to expand it. Vertex v is charged

for the edges traversed to relocate from u to v. (We are only considering relocations within the

same call of the Local-BFS algorithm; relocations between calls of the Local-BFS algorithm

were considered above.) Source vertices are not charged anything. Moreover, the robot can

always relocate from u to v by going from u to the source vertex of the current local BFS, and

then to v, traversing at most 2L edges. Thus, each vertex is charged at most 2L when it is

expanded. Local-BFS never relocates to a vertex v unless it can expand vertex v (i.e., unless

v is adjacent to unexplored edges). Thus, all relocations are charged to the expansion of some

vertex, and the total number of edge traversals due to relocation is at most 2LV .

Thus the total number of edge traversals is at most 2rV=L + 2V + 3LV + 2E, which is

O(rV=L+ LV +E). When L is chosen to be
p
r, this gives O(E + V 1:5) edge traversals.

Procedure Strip-Explore, and the generalizations of it given in later sections, maintain

that � � 2� at all times|the robot never visits a vertex more than twice as far from s as the

nearest unvisited vertex is from s. The worst case is while exploring the second strip.
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3.7.2 Iterative strip algorithm

We now describe Iterative-Strip, an algorithm similar to the Strip-Explore algorithm.

It is an e�ciently interruptible algorithm for undirected graphs inspired by Awerbuch and

Gallager's [6] distributed iterative BFS algorithm. Although its running time of O((V 1:5 +

E) logV ) is worse than the running time of Strip-Explore, its recursive version (described in

Section 3.7.3) is more e�cient. (It is not clear how to recursively implement Strip-Explore

as e�ciently, because the trees in a strip are not disjoint.)

With Iterative-Strip, the robot grows a global BFS tree with root s strip by strip, in a

manner similar to Strip-Explore. Unlike Strip-Explore, here each strip is processed several

times before it has correctly deepened the BFS tree by
p
r. We next explain the algorithm's

behavior on a typical strip by describing how a strip is processed for the �rst time, and then

for the remaining iterations.

Iterative-Strip(s; r)
1 For i = 1 To

p
r Do

2 For each source vertex u in strip i Do

3 relocate to u

4 BFS from u to depth
p
r, but do not enter previously

explored territory
5 While there are any active connected components Iterate
6 For each active connected component c Do
7 Repeat

8 let v1; v2; v3; : : : be active frontier vertices
exclusively in c with smallest depth among
active frontier vertices in c

9 relocate to each of v1; v2; v3; : : :, and expand
10 Until no more active frontier vertices exclusively in c

11 determine new and active connected components

In the �rst iteration, a strip is explored much as in Strip-Explore. The robot explores

a tree of depth
p
r from each source vertex, by exploring in breadth-�rst manner from each

source vertex, without re-exploring previous trees. Whenever the robot �nds a collision edge

connecting the current tree to another tree in the same strip, it does not enter the other tree.

Unlike Strip-Explore, the robot does not traverse explored edges to get to the active frontier

vertices on other trees. Therefore, after the �rst iteration, the trees explored are approximate
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BFS trees that may have frontier vertices with depth less than
p
r from some source vertex.

These vertices become active frontier vertices for the next iteration. Thus, the current strip

may not yet extend the global BFS tree by depth
p
r, so more iterations are needed until all

frontier vertices are inactive and the global BFS tree is extended by depth
p
r (see Figure 3.14).

global BFS treeS

s

c

active
frontier 
verticess

s 1

2

3

s 4

depth D

c1

2

e
1

e2

current strip

Figure 3.14: The iterative strip algorithm after the �rst iteration on the fourth strip. Two
connected components c1; c2 have been explored. The collision edges e1 and e2 connect the
�rst three approximate BFS trees. The dashed line shows how source vertices s1; s2; s3 connect
within the strip. There are three active frontier vertices with depth less than D +

p
r.

In the second iteration (see Figure 3.15), the robot uses the property that two trees connected

by a collision edge form a connected component within the strip. (The graph to be explored is

connected, and thus forms one connected component; but we refer to connected components of

the explored portion of the graph contained within the strip.) The robot need not traverse any

edges outside the current strip to relocate between these active frontier vertices in the same

connected component. In the second and later iterations, the robot works on one connected

component at a time.

The robot explores active frontier vertices in one connected component as follows. It com-

putes (mentally) a spanning tree of the vertices in the current strip. This spanning tree lies

within the strip. Let d be the least depth of any active frontier vertex in the component from a

source vertex. It visits the vertices in the strip in an order determined by a DFS of the spanning

tree. As it visits active frontier vertices of depth d, it expands them. It then recomputes the

spanning tree (since the component may now have new vertices) and again traverses the tree,

expanding vertices of the appropriate next depth d0. Traversing a collision edge does not add

the new vertex to the tree, since this vertex has been explored before. This process continues
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Figure 3.15: The iterative strip algorithm after the second iteration. Now the circled vertices
which were active frontier vertices at the beginning of the iteration are expanded. One of the
expansions resulted in a collision edge. Now the strip consists of only one connected component
(shaded area). There are six frontier vertices which become source vertices of the next strip.
All frontier vertices have depth D +

p
r.

(at most
p
r times) until no active frontier vertex in the connected component has distance less

than
p
r from some source vertex in the component.

The robot handles each connected component in turn, as described above. In the next

iteration it combines the components now connected by collision edges, and explores the new

active frontier vertices in these combined components. Lemma 15 states that at most logV

iterations cause all frontier vertices to become not active. That is, all frontier vertices are depth
p
r from the source vertices of this strip. These frontier vertices are the new sources for the

next strip.

Lemma 15 At most log V iterations per strip are needed to explore a strip and extend the

global BFS tree by depth
p
r.

Proof: If there are initially l source vertices, then after the �rst iteration there are at most l

connected components. If a component does not collide with another active component, then

it will have no active frontier vertices for the next iteration. The only active components in

the next iteration are those that have collided with other components, and thus, each iteration

halves the number of components with active frontier vertices. After at most logV iterations

there is no connected component with active frontier vertices left. The robot then has a complete

map of the current strip and of the global BFS tree built in previous strips, so it can combine

this information and extend the global BFS tree by depth
p
r.
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Theorem 16 Iterative-Strip runs in time O((E + V 1:5) logV ).

Proof: We �rst count the number of edge traversals within a strip. Let Vi and Ei be the

number of vertices and edges explored in strip i. For each component, vertices of distance t

from some source vertex are expanded by computing a spanning tree of the component, doing

a DFS of the spanning tree, and expanding all vertices of distance t from some source vertex

(line 9). At each iteration (line 5), components are disjoint, so relocating to all vertices in the

strip of distance exactly t takes at most O(Vi) edge traversals. Thus, in one iteration, relocating

to all vertices in the strip within distance
p
r takes at most O(

p
rVi) edge traversals. Moreover,

note that in order for the robot to expand each vertex, it traverses at most O(Ei) edges. Thus,

the total number of edge traversals for strip i in one iteration is O(Ei+
p
rVi). Combining this

with Lemma 15, the total number of edge traversals within strip i to completely explore strip i

takes O((Ei +
p
rVi) logV ) edge traversals.

Now we count edge traversals for relocating between source vertices in strip i. As in the

proof of Theorem 15, in each iteration the robot traverses at most 2V edges to relocate between

source vertices. Since there are at most logV iterations, this results in 2V logV edge traversals

between source vertices to explore strip i. Thus, the total number of edge traversals to explore

strip i is O((Ei +
p
rVi) logV + 2V logV ). Summing over the

p
r disjoint strips gives O((E +

p
rV ) logV + 2V

p
r logV ) = O((E +

p
rV ) logV ) = O((E + V 1:5) logV ).

3.7.3 A nearly linear time algorithm for undirected graphs

This section describes an e�ciently interruptible algorithm Recursive-Strip, which gives a

piecemeal learning algorithm with running time O(E + V 1+o(1)). Recursive-Strip is the

recursive version of Iterative-Strip; it provides a recursive structure that coordinates the

exploration of strips, of approximate BFS trees, and of connected components in a di�erent

manner. The robot still, however, builds a global BFS tree from start vertex s strip by strip.

The robot expands vertices at the bottom level of recursion.

In Recursive-Strip, the depth of each strip depends on the level of recursion (see Fig-

ure 3.16). If there are k levels of recursion, then the algorithm starts at the top level by splitting

the exploration of G into r=dk�1 strips of depth dk�1. Each of these strips is split into dk�1=dk�2
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global BFS treeS
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depth r
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depth L’

unexplored
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Figure 3.16: The recursive strip algorithm processing an approximate BFS tree from source
vertex s2 to depth dk�1 = L. Recursive calls within the tree are of depth dk�2 = L0.

searches of strips of depth dk�2, etc. We have r = dk > dk�1 > : : : > d1 > d0 = 1.

Each recursive call of the algorithm is passed a set of source vertices sources, the depth to

which it must explore, and a set T of all vertices in the strip already known to be less than

distance depth from one of the sources. The robot traverses all edges and visits all vertices

within distance depth of the sources that have not yet been processed by other recursive calls

at this level. Recursive-Strip(fsg; r; fsg) is called to explore the entire graph.

At recursion level i, the algorithm divides the exploration into strips and processes each strip

in turn, as follows. Suppose the strip has l source vertices v1; : : : ; vl. The strip is processed in

at most log l = O(logV ) iterations. In each iteration, the algorithm partitions T into maximal

sets T1; T2; : : : ; Tk such that each set is known to be connected within the strip. Let Sc denote

the set of source vertices in Tc. A DFS of the spanning tree of the vertices T gives an order for

the source vertices in S1; S2; : : : ; Sk; this spanning tree is used for e�cient relocations between

these source vertices. Note that all source vertices are known to be connected through the

spanning tree of the vertices in T , but they might not be connected within the substrips. Since

relocations between the vertices in Sc in the next level of recursion use a spanning tree of Tc,

for e�ciency the vertices of Tc must be connected within the strip. After partitioning the

vertices into connected components within the strip, for each connected component Tc, the

robot relocates (along a spanning tree) to some arbitrary source vertex in Sc. It then calls the

algorithm recursively with Sc, the depth of the strip, and the vertices Tc which are connected

to the sources Sc within the strip.



80 Piecemeal learning of unknown environments

Recursive-Strip(sources, depth,T)

1 If depth = 1
2 Then

3 let v1; v2; : : : ; vk be the depth-�rst ordering of sources
in spanning tree

4 For i = 1 To k Do

5 relocate to vi
6 If vi has adjacent unexplored edges
7 Then traverse vi's incident edges
8 T = T [ fnewly discovered verticesg
9 Return

10 Else

11 determine next depth

12 number-of-strips  depth/next-depth

13 For i = 1 To number-of-strips Do

14 determine set of source vertices
15 For j = 1 To number-of-iterations Do

16 partition vertices in T into maximal sets T1; T2; : : : ; Tk

such that vertices in each Tc are known to be
connected within strip i

17 For each Tc in suitable order Do
18 let Sc be the source vertices in Tc

19 relocate to some source s 2 Sc

20 Recursive-Strip(Sc, next-depth, Tc)
21 T = T [ Tc

22 relocate to some s 2 sources

23 Return
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The remaining iterations in the strip combine the connected components until the strip is

�nished. Then the robot continues with the next strip in the same level of recursion. Or, if it

�nished the last strip, it relocates to its starting position and returns to the next higher level

of recursion.

Theorem 17 Recursive-Strip runs in time O(E + V 1+o(1)).

Proof: At a particular call of Recursive-Strip, there are 4 places the robot traverses edges:

1. expansion of vertices in line 7

2. relocating to sources in lines 5 and 19

3. relocations due to recursive calls in line 20

4. relocation back to a beginning source vertex in line 22

We count edge traversals for each of these cases. First we give some notation. We consider

the top level of recursion to be a level-k recursive call, and the bottom level of recursion to

be a level-0 recursive call. For a particular level-i call of Recursive-Strip, let Ci denote the

number of edge traversals due to relocations, and let Ei denote the number of distinct edges

that are traversed due to relocation. Let Vi denote the number of vertices incident to these

edges and whose incident edges are all known at the end of this call. Let �i be a uniform upper

bound on Ci=Vi. Thus, if the depth of recursion is k then the total number of edge traversals

is bounded by O(V �k).

First we observe that each vertex is expanded at most once, so there are at most O(E+ V )

edge traversals due to exploration at line 7 in the bottom level of recursion.

For a level-i call, we count the number of edge traversals for relocation between source

vertices (lines 5 and 19). Since all the source vertices in the call are connected by a tree of

size O(Vi), relocating to all source vertices at the start of one strip takes O(Vi) edge traversals.

With di=di�1 strips and logV iterations per strip, there are Vi log V
di

di�1

edge traversals for

relocations between source vertices.

We now count traversals for recursive calls (line 20) within a level-i call. Note that our

algorithm avoids re-exploring previously explored edges. Thus, for a level-i call, when working
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on a particular strip l, for each iteration within this strip, the sets of vertices whose edges are

explored in each recursive call are disjoint. Suppose that, in this strip, in one iteration the

procedure makes k recursive calls, each at level i � 1. Then let C
(j)
i�1, 1 � j � k, denote the

number of edge traversals due to relocations resulting from the j-th recursive call, and let V
(j)
i�1

denote the number of vertices adjacent to these edges. Furthermore, let Vl;i denote the number

of vertices which are in strip l of this procedure call at recursion level i. Then we would like �rst

to calculate
Pk

j=1C
(j)
i�1, which is the number of edge traversals due to relocation in recursive

calls in one iteration within this strip. This is at most
Pk

j=1 �i�1V
(j)

i�1 = �i�1
Pk

j=1 V
(j)

i�1. Since

the recursive calls are disjoint,
Pk

j=1 V
(j)
i�1 = Vl;i, and thus the number of edge traversals due to

relocations in recursive calls in one iteration within this strip is at most �i�1Vl;i. Finally, since

there are logV iterations in each strip, and all strips are disjoint from each other, the number

of edge traversals due to recursive calls is at most �i�1Vi log V .

Finally, note that we relocate once at the end of each procedure call of Recursive-Strip

(see line 22). This results in at most Vi edge traversals.

Thus, the number of edge traversals due to relocation (not including relocations for expand-

ing vertices) is described by the recurrence Ci � Vi logV
di

di�1

+ �i�1Vi log V + Vi. Normalizing

by Vi, we get the following recurrence:

�i =

�
di

di�1
+ �i�1

�
log V + O(1)

Solving the recurrence for �k gives:

�k �
�

dk

dk�1

�
logV +

�
dk�1

dk�2

�
log2 V + : : :+

�
d1

d0

�
logk V + �0 log

k V +
k�1X
i=0

logi V

�
�

dk

dk�1

�
logV +

�
dk�1

dk�2

�
log2 V + : : :+

�
d1

d0

�
logk V +O(logk V )

We note that �0 = O(1), since at the bottom level, if there are V 0 vertices expanded, then the

number of edge traversals due to relocation is O(V 0). The product of the �rst k terms in the

recurrence is dk
d0
(logV )(k+1)k=2 = r(logV )(k+1)k=2. We choose dk�1; dk�2; : : : by setting each of

the �rst k terms equal to the k-th root of this product. (Note that this also speci�es how to
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calculate depth di�1 from depth di.) Substituting, we get:

�k � kr1=k(logV )(k+1)=2 +O(logk V ):

We �nd the value of k that minimizes this by taking the logarithm and di�erentiating with

respect to k. Choosing k =
�

logV

log logV

�1=2
and simplifying gives us �k � 2O(

p
log V log log V ), and

thus Ck is at most V 2
O(
p

logV log logV ), which is V 1+o(1). Adding the edge traversals for relocation

to the edge traversals for expansion of vertices gives us O(E+ V 1+o(1)) edge traversals total.

3.8 An Application to Treasure Hunting

We now consider an application of our algorithms to the problem of �nding a treasure (or a lost

child, or a particular landmark) in an unknown, potentially in�nite graph G = (V;E). If the

robot searching for the treasure knows that the treasure is close to its start location, it should

explore in a manner such that it does not get too far away from this location.

We give the procedure Treasure-Search, which uses the Recursive-Strip algorithm as

a subroutine. If the treasure is distance �T away from the source vertex, this algorithm maintains

the condition that the robot is never further from the source than �, where � � �T + o(�T ).

Following procedure Treasure-Search, the robot traverses O(E + V 1+o(1)) edges, where E

and V are the total number of distinct edges and vertices within radius � from the source.

The robot explores the graph for the treasure in phases. In each phase, the size of the strip to

be explored changes. The change at phase i depends on �i = 1=
p
i. Initially, the robot explores

the graph out to distance r1 = 1 + �1. Next, the robot extends its exploration by a factor of

1+�2. That is, the size of the next strip is (1+�1)(1+�2)�(1+�1), and at the end of the second

phase, the robot has learned the graph out to distance r2 = (1 + �1)(1 + �2). After extending

the next strip, the robot has learned the graph out to distance r3 = (1 + �1)(1 + �2)(1 + �3),

and so on. In each phase i, the robot initially calls Recursive-Strip from each of the source

vertices (vertices at distance ri�1). When the robot �nds collision edges, it does not re-explore

edges. Thus, within each phase, it may take up to logV iterations (as in Iterative-Strip and

Recursive-Strip) before it has explored the entire strip.
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Treasure-Search(s)
1 i = 0
2 r0 = 1
3 Do until treasure is found
4 i = i+ 1
5 �i = 1=

p
i

6 ri = ri�1 � (1 + �i)
7 If i = 1
8 Then

9 Recursive-Strip(fsg; r1; fsg)
10 Else

11 let T be be the set of source vertices distance
ri�1 away from s

12 For j = 1 To number-of-iterations Do

13 partition vertices in T into maximal sets T1; : : : ; Tk

such that vertices in each Tc are known to be
connected within strip i

14 For each Tc in suitable order Do
15 let Sc be the source vertices in Tc

16 relocate to some source s 2 Sc

17 Recursive-Strip(Sc, next-depth, Tc)
18 T = T [ Tc

Lemmas 16 and 17 bound the number of phases in the Treasure-Search procedure. Using

Lemma 16, we can show that the robot does not get too far away from the source vertex, and

using Lemma 17, we can bound the number of edges the robot traverses.

Lemma 16 The number of phases in Treasure-Search is at least log �T .

Proof: Since �1 > �2 > �3 : : :, we know that, for any j, (1 + �1)(1 + �2) : : :(1 + �j) � (1 + �1)j.

Thus, if we let j be the smallest number such that (1 + �1)
j � �T , then we know that the

number of phases i to reach the treasure at �T is at least j. Since �1 = 1, we have 2j � �T , or

j � log �T .

Lemma 17 The number of phases in Treasure-Search is at most 4 ln2 �T + 1.
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Proof: A treasure at depth �T = 1 is found in the �rst phase, so we consider only �T > 1. We

know that for any j, (1+�j)
j � (1+�1)(1+�2) : : :(1+�j). Thus, if (1+�j)

j � �T , we know that the

number of phases i is at most j. So we show the lemma by showing that (1+�4 ln2 �T )
4 ln2 �T � �T .

Equivalently, we would like to show 4 ln2 �T ln(1 + �4 ln2 �T ) = 4 ln2 �T ln(1 +
1

2 ln �T
) � ln �T .

For jxj < 1, using a Taylor expansion, we have ln(1+x) = x� x2

2
+ x3

3
� x4

4
+� � �. For 0 < x < 1,

we have ln(1+x) > x� x2

2
. So 4 ln2 �T ln(1+

1

2 ln �T
) > (4 ln2 �T )(

1

2 ln �T
� 1

8 ln2 �T
) = 2 ln �T � 1=2,

which is at least ln �T for �T � 2.

Theorem 18 The robot is never further than �T + �T=
p
log �T from the source vertex.

Proof: Let � be the furthest distance the robot gets from the source vertex. Let i be the

number of phases that need to be explored to get out to depth �T . Then, � � �T is at most

the depth of the strip in the i-th phase. That is, � � �T � (1 + �1)(1 + �2) : : :(1 + �i) �
(1 + �1)(1 + �2) : : :(1 + �i�1) = (1 + �1)(1 + �2) : : :(1 + �i�1)�i < �T �i. Lemma 16 shows that

the total number of strips explored is at least log �T . Thus, �i is at most 1=
p
log �T , and

� � �T + �T =
p
log �T = �T + o(�T ):

Theorem 19 Procedure Treasure-Search traverses at most O(E+V 1+o(1)) edges, where E

and V are the total number of distinct edges and vertices within radius � from the source.

Proof: Since the edges in the di�erent phases are disjoint, the number of edges traversed,

ignoring relocations between source vertices in line 16, is at most O(E + V 1+o(1)). To get

between source vertices in line 16, a spanning tree of the known vertices can be used. (Note

that for recursive calls of Recursive-Strip, the algorithm relocates between source vertices

using the vertices connected within the appropriate strip.) By Lemma 17, we know the number

of phases is at most 4 ln2 �T+1, and in each phase it may take up to log V iterations to explore

the entire strip. Thus there are an additional (4 ln2 �T + 1)V logV edge traversals due to

relocations between source vertices, and this gives a total of O(E + V 1+o(1)) edge traversals for

the entire Treasure-Search procedure.
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3.9 Conclusions

We have presented an e�cient O(E + V 1+o(1)) algorithm for piecemeal learning of arbitrary,

undirected graphs. For the special case of city-block graphs, we have given two linear time

algorithms. We leave as open problems �nding linear time algorithms (if they exist) for the

piecemeal learning of:

� grid graphs with non-convex obstacles,

� other tesselations, such as triangular tesselations with triangular obstacles, and

� more general classes of graphs, such as the class of planar graphs.

� arbitrary, undirected graphs



C h a p t e r 4

Learning-based algorithms for

protein motif recognition

4.1 Introduction

One of the most important problems in computational biology is that of predicting how a

protein will fold in three dimensions when we only have access to its one-dimensional amino acid

sequence. Structure prediction has practical importance, as the biological function of a protein

depends upon its structure or fold. Unfortunately, determining the three-dimensional structure

of a protein is very di�cult. Experimental approaches such as NMR and X-ray crystallography

are expensive and time-consuming (they can take years), and often do not work at all. Therefore,

computational techniques that predict protein structure based on already available sequence

data can help speed up the understanding of protein functions.

An important �rst step in tackling the protein folding problem is a solution to the structural

motif recognition problem: given a known local three-dimensional structure, or motif, determine

whether this motif occurs in a given amino acid sequence, and if so, in what positions. In this

chapter, we focus on a special type of �-helical motif, known as the coiled coil motif (see

section 4.2), although the techniques presented can be applied to other motifs as well.

Most approaches to the motif recognition problem work only for motifs that are already well-

studied | that is, they are known to occur in many su�ciently diverse proteins. This knowledge

usually comes from biologists who have studied many examples of the motif. However, there

87
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are many motifs for which only a small subset of examples are known, and this subset is often

not rich enough to be representative of the motif. Thus, for lack of data, current prediction

methods ranging from straightforward sequence alignments to more complicated methods such

as those based on pro�les of the motifs often fail to successfully identify such motifs.

For example, in the case of the coiled coil motif, most known instances are 2-stranded coiled

coils (i.e, coiled coils consisting of 2 �-helices). As a result, known prediction algorithms work

well for predicting 2-stranded coiled coils [14, 13, 12, 42, 58, 63], but do not work as well for the

related 3-stranded coiled coil motif (i.e., coiled coils consisting of 3 �-helices), due to the lack

of known 3-stranded coiled coil sequences. That is, for 3-stranded coiled coils, these algorithms

have a large amount of overlap between the scores for sequences that do not contain coiled coils

and sequences that do.

Our results

In this chapter, we use learning theory to improve existing methods for protein structural motif

recognition, particularly in the case where only a few examples of the motif are known. Our

main result is a linear-time learning algorithm that uses information obtained from a database

of sequences of one motif to make predictions about a related or similar motif.

The problem we explore can be viewed as a concept learning problem, where the algorithm

is given labeled and unlabeled examples, and its goal is to �nd a concept which gives labels

to all the examples. Unlike many concept learning frameworks, this problem is not completely

supervised|this type of learning, which we refer to as semi-supervised learning, is often neces-

sary in real-life learning problems. We �nd this to be true in our test domain, where our goal is

to identify sequences that contain coiled coils from a set of protein sequences which may or may

not contain coiled coils. In particular, we are interested in recognizing both 2- and 3-stranded

coiled coils. Unfortunately, the majority of data we have is comprised of 2-stranded coiled coils.

In addition, although many biologists are interested in 3-stranded coiled coils, there is little

well analyzed data available on them. Thus, because of the lack of data and current biological

knowledge, supervised learning (i.e., the algorithm is given a large enough set of examples of

both 2- and 3-stranded coiled coils on which to train) is not currently feasible for our problem,

and semi-supervised or even unsupervised learning (with no labeled examples) is the only type
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of learning which is possible. At �rst glance, this learning problem seems like a challenging

problem, since we are trying to come up with an algorithm which generalizes the data we have

for 2-stranded coiled coils to also pick out 3-stranded coiled coils. However, we show empirically

that for our test domain, semi-supervised learning gives excellent results. In particular, we have

tested our program and show that our algorithm's performance is substantially better than that

of previously known algorithms for recognizing 3-stranded coiled coils.

Our algorithm starts with an original database of a base motif, and the goal is to develop a

more general database of a target motif, which is related to the base motif in structure. (The

target motif includes the base motif as a special case.) In other words, we would like to convert

a good predictor for the base motif into a good predictor for the target motif. Our algorithm

has the following key features:

� The algorithm iteratively scans a large database of test sequences to �nd sequences that

are presumed to fold into the target motif. The selected sequences are then used to update

the parameters of the algorithm; these updates a�ect the performance of the algorithm

in the next iteration.

� In each iteration, the algorithm scores all the sequences based on its current estimates of

the parameters and the theoretical framework developed in [12].

� In each iteration, the algorithm uses randomness to select which sequences are presumed

to fold into the target motif.

� The selected sequences are used in the beginning of the next iteration to update the

parameters of the algorithm in a Bayesian-like weighting scheme.

There are several ways in which our iterative algorithm is kept running in a \safe" fashion,

without increasing the false positive rate by incorporating sequences into the �nal database that

do not fold into the motif. First, we begin with a mathematically sound scoring subroutine,

that experimentally has a low false positive rate. Second, our method of computing likelihoods

ensures that only a certain fraction of all residues are scored as positive examples of the motif

(see section 4.3). Finally, while evaluating our program, we run the program with sequences

that are known not to contain coiled coils, and this has helped us determine when the algorithm

is performing well.
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This methodology does not appear to have been explored much in the biological literature.

Although a few papers have dealt with iterative algorithms [73, 3, 46, 36], they do not use

randomness and weighting for updating of parameters. In our experience, we �nd that these

components of the algorithm are critical to achieving good performance.

Implementation results

In order to demonstrate the e�cacy of our methods, we test them on the domain of 2- and

3-stranded coiled coils (see section 4.4).

First, we show how to use our methods to recognize 3-stranded coiled coils given examples of

2-stranded coiled coils. In other words, starting with a base motif of 2-stranded coiled coils, we

learn the target motif comprising of 2- and 3-stranded coiled coils. The initial predictor already

has good performance on 2-stranded coiled coils, so we test our algorithm by its performance

on 3-stranded coiled coils.

We evaluate our algorithm on 3-stranded coiled coils with respect to two statistical cross

validation tests: the \leave one out" test and the \leave half out" test. In the �rst scenario,

the algorithm starts with data from the 2-stranded coiled coil database, and iterates on a test

set that contains sequences which are known to form 3-stranded coiled coils, sequences which

are thought to form 3-stranded coiled coils, sequences for which no structural information is

available, and sequences which are known not to contain coiled coils. The category of each

sequence in this test set is not known to the algorithm, and the sequences which do not contain

coiled coils are given to the algorithm in order to test its robustness. At the end of the procedure,

the algorithm is evaluated by the number of the 3-stranded coiled coil sequences which it

recognizes. Each time a sequence that is present in the database the algorithm is building is

scored, it is removed from that database to avoid the possibility of unfairly biasing the test. In

this scenario, we �nd that our algorithm greatly enhances the recognition of 3-stranded coiled

coils, without a�ecting its performance on sequences that are known not to contain coiled coils.

In particular, we are able to select 93% of the sequences that are conjectured by biologists to

contain coiled coils, with no false positives out of the 286 sequences known not to contain coiled

coils. Previously, the best performance without false positives is 67%.

We also test our algorithm on 3-stranded coiled coils in a much more di�cult scenario.
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In particular, instead of cross validating our procedure by leaving out just one sequence at

a time when testing, the algorithm iterates on test sequences that contain only half of the

sequences known to form 3-stranded coiled coils. It is then evaluated by its performance on

the 3-stranded coiled coil sequences that are not iterated upon. In this scenario, we also �nd

improved performance. The 3-stranded coiled coil sequences are split in half 3 times, and on

average, the algorithm is able to select 85% of the left out 3-stranded coiled coil sequences,

with likelihood scores higher than that of the highest scoring negative sequence. On average,

the previous best performance without false positives is 67%.

Finally, we test our program on subfamilies of 2-stranded coiled coils using the leave one

out criterion. For 2-stranded coiled coils, we have a good data set consisting of a diverse set

of sequences. However, to test our program, we simulate a limited data problem by testing

our program LearnCoil on subfamilies of 2-stranded coiled coils. That is, one subfamily of

2-stranded coiled coils is chosen to make up the base motif, and the class of all 2-stranded coiled

coils is the target motif. Here we �nd that we have excellent performance; i.e., we are able to

completely learn the coiled coil regions in our entire 2-stranded coiled coil database starting

from a database consisting of coiled coils from any one subfamily. Based on our experiments,

such performance does not appear to be possible without the use of our iterative algorithm. In

particular, the best performance for the non-iterative approach ranges between 70 and 88%.

Biological signi�cance

As a consequence of this work, we have identi�ed many new sequences that we believe con-

tain coiled coils or coiled-coil-like structures, such as the envelope proteins of mouse hepatitis

virus and human rotavirus. One of our more striking �ndings is the existence of one and oc-

casionally two coiled-coil-like regions in the envelope proteins of many retroviruses, including

Human Immunode�ciency Virus (HIV), Simian Immunode�ciency Virus (SIV), and Human T-

cell Lymphotropic Virus (HTLV). Independent experimental investigations have also predicted

these coiled-coil-like regions in HIV and SIV [19, 56].
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4.2 Further background

The coiled coil motif is found in �brous proteins, DNA binding proteins, and in tRNA-synthetase

proteins. Recently it has been proposed that the 3-stranded coiled coil motif acts as the cell

fusion mechanism for many viruses, and algorithms for predicting these structures could aid in

the study of how viruses invade cells. Computational methods [14, 58] have already identi�ed

such coiled coil regions in in
uenza virus hemagluttinin and Moloney murine leukemia virus

envelope protein; both of these predictions have been corroborated in the laboratory [30, 40].

Coiled coils are a particular type of �-helix, consisting of two or more �-helices wrapped

around each other with a slight left-handed superhelical twist. Coiled coils have a cyclic repeat

of seven positions, a, b, c, d, e, f , and g (see Figure 1). The seven positions are spread out

along two turns of the helix. Coiled coils show a characteristic heptad repeat with hydrophobic

residues found in positions a and d, and this repeat makes coiled coils particularly amenable to

recognition by computational techniques.

Computational methods have been quite successful for predicting coiled coils [63, 58, 42, 12,

13, 14]. These techniques can be described, broadly, as follows:

1. Collect a database of known coiled coils and available amino acid subsequences.

2. Determine whether the unknown sequence shares enough distinguishing features with the

known coiled coils to be considered a coiled coil.

Standard approaches [63, 58] look at the frequencies of each amino acid residue in each of

the seven repeated positions. Overall this singles method does pretty well. When the NewCoil

program of Lupas et al. [58] is tested on the PDB (the database of all solved protein structures),

it �nds all sequences which contain coiled coils. On the other hand, 2/3 of the sequences it

predicts to contain coiled coils do not. That is, the false positive rate for the standard method

is quite high.

These approaches based on the singles method build a table from the coiled coil database

that represents the relative frequency of each amino acid in each position; that is, there is a table

entry for each amino acid/coiled coil position pairing. For example, for Leucine and position

a, the entry in the table is the percentage of position a's in the coiled coil database which are

Leucine, divided by the percentage of residues in Genbank (a large protein sequence database)



4.2 Further background 93

a

b

c
d

e

f

g
a

b

c
d

e

f
g

a

d
e

a

f
g

b

c
d

(a)                                                                             (b)

Figure 4.1: (a) Top view of a single strand of a coiled coil. Each of the seven positions fa; b; c; d; e; f; gg
corresponds to the location of an amino acid residue which makes up the coiled coil. The arrows between
the seven positions indicate the relative locations of adjacent residues in an amino acid subsequence.
The solid arrows are between positions in the top turn of the helix, and the dashed arrows are between
positions in the next turn of the helix. (b) Side view of a 2-stranded coiled coil. The two coils are next
to each other in space, with the a position of one next to the d position of another. The coils also slightly
wrap around each other (not shown here).

which are Leucine. For example, if the percentage of position a's in the coiled coil database

which are Leucine is 27%, and the percentage of residues in Genbank which are Leucine is 9%,

then the table entry value for the pair Leucine and position a is 3. Intuitively, this table entry

represents the \propensity" that Leucine is in position a in a coiled coil.

The singles method approach [58] actually looks at 28�long windows, since stable coiled

coils are believed to be at least 28 residues long. Thus for each residue, it looks at each possible

position (a through g), and at all 28-long windows that contain it. It then calculates the relative

frequencies for each residue in the window. If the product of the relative frequencies for each

residue in some window is greater than some threshold, it concludes that the residue is part of

a coiled coil.

Recently researchers have put this problem within a probabilistic framework [12, 13, 14],

and have given linear-time algorithms for predicting coiled coils by approximating dependencies

between positions in the coiled coil using pairwise frequencies. This method for prediction uses

estimates of probabilities for singles and pair positions. For example, in addition to estimating

the probability that a Leucine appears in position a of a coiled coil, it also estimates the
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probability that a Leucine appears in position a of a coiled coil with a Valine appearing in the

following d position. For a given residue's contribution to the score, the algorithm considers

residues at the structurally relevant distances i = 1, i = 2 and i = 4, calculating the geometric

mean of the three quantities P (k; k+ i)=P (k+ i), where P (k; k+ i) is the probability of �nding

residues k and k + i distance i apart in a coiled coil, and P (k + i) is the probability of �nding

residue k + i in a coiled coil.

This method of predicting coiled coils has been very e�ective. When tested on the PDB, the

PairCoil algorithm based on this method selects out all sequences that contain coiled coils,

and rejects all the sequences that do not contain coiled coils. Furthermore, when tested on a

database of 2-stranded coiled coils (with a sequence removed from the database at the time it

is scored), each amino acid residue in a coiled coil region is correctly labeled as being part of a

coiled coil.

Since the PairCoil algorithm has better performance than the singles method algorithm,

particularly with respect to the false-positive rate, this is the scoring method we build on, as

well as the scoring method to which we compare our results.

Other types of iterative approaches have been applied to sequence alignment and protein

structure prediction by researchers [73, 3, 46, 36]. Algorithmically, our approach di�ers from

these approaches in two major ways. The �rst is our use of randomness to incorporate sequences

into our database, and the second is our use of weighting to update the database (see section 4.3).

In addition, several of these papers are directed toward sequence alignment, and sequence

alignment is not so e�ective a tool for predicting coiled coils, as the various subfamilies of coiled

coils do not align well to each other. Also, since the goal of these other methods is often to

output potential matching alignments, the testing of these algorithms is quite di�erent. In

particular, although some of these approaches use the \leave one out" criterion, to the best of

our knowledge, none of them test performance with the \leave half out" criterion.

Various machine learning techniques have been applied to the protein structure prediction

problem. The two main approaches are neural nets (e.g., [47, 67, 59]) and hidden Markov

models (e.g., [53, 9]). Both of these approaches require adequate data on the target motif,

since there is a \training session" on sequences that are known to contain the target motif.

Our approach di�ers from these methods since it does not require well analyzed data on the
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Figure 4.2: Our basic learning algorithm. Initially, the algorithm starts o� with a test set of examples
and a set of initial parameters. In each iteration, the algorithm selects new examples, and re-estimates
its parameters.

target motif per se. Instead it uses already available data on a base motif and generalizes it

to recognize the target motif, by running on a large number of sequences, some of which are

suspected to fold into the target motif.

Other learning approaches which have been applied to protein structure prediction include

rule-based methods (e.g., [60]).

4.3 The algorithm

We �rst describe the general framework for our algorithm. Namely, we are initially given a set

of parameters that help characterize our base concept, and a set of test examples. Our goal is to

decide which of these test examples are positive examples of some target concept. In addition,

we know that the target concept is a generalization of the base concept. Our algorithm takes

advantage of the fact that the base concept is somewhat related to the target concept. In

particular, once the algorithm has identi�ed some of the test examples that are presumed to be

related to the base concept, it can modify its database by \adding" these newly found examples.

Examples are selected by a randomized procedure based on likelihoods. This process is then
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iterated, as the added examples change the scores of other examples. (See �gure 4.2.)

We have implemented our learning algorithm for the protein motif recognition problem. In

particular, our learning algorithm LearnCoil proceeds as follows. It is given two inputs: a

database of a base motif which is related to the target motif we are interested in, and a large

database of iteration test sequences which is comprised of sequences that we believe contain the

target motif as well as many other sequences of unknown structure. In practice, we generally

include in the iteration test sequences some fraction of the PIR (a large protein sequence

database), the sequences from the PDB (the database of solved protein structures) that are

known not to fold into the target motif, and sequences conjectured by biologists to fold into

the target motif.

Initially, the algorithm estimates pair and singles amino acid residue probabilities for the

motif's positions. Then the algorithm iterates four basic steps:

1. The algorithm uses its estimates of the pair and singles probabilities to determine a

likelihood function, which maps residue scores to a likelihood of the residue belonging to

the target motif.

2. The algorithm scores each of the iteration test sequences using the estimated probabilities,

and calculates the likelihoods for each of these sequences.

3. The algorithm 
ips coins with probability proportional to the likelihood of each score to

determine which parts (if any) of each sequence are presumed to be part of the target

motif. The residues which are thus determined to be presumed examples of the target

motif make up the new database for the next iteration.

4. The algorithm uses the base motif database and the new database just determined in this

iteration to update its estimates of the singles and pair probabilities for the target motif

using a Bayesian-like weighting scheme (see section 4.3.4).

The algorithm continues iterating until the new database stabilizes.

We now describe each of the components of the algorithm in more detail, using coiled coils

as an example, although the algorithm can be applied to other protein motifs.
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4.3.1 Scoring

In our implementation, we use the PairCoil program described by Berger et al. [14] as our

scoring procedure, although any good prediction algorithm with a low false positive rate can

be used for scoring. This scoring method uses correlation methods that incorporate pairwise

dependencies between amino acids at multiple distances. The scoring procedure gives a residue

score for each amino acid in a given sequence, as well as a sequence score, which is the maximum

residue score in the sequence.

In order to use this scoring procedure, we must have estimates for the probabilities for the

singles and pair positions for the motif. Initially, we have estimates for the probabilities based

on the database of sequences of the base motif, and after each iteration of the algorithm, we

use updated probabilities. In each iteration after the �rst, when we score a sequence we check

to see if it was identi�ed in the previous iteration. If it was, we remove this sequence from the

database and adjust the probabilities before scoring.

Given good estimates for the probabilities for the singles and pair positions for the motif,

and reasonable assumptions about dependencies in the motif, the PairCoil scoring method

which we use as a subroutine is mathematically justi�ed [12].

4.3.2 Computing likelihoods

Once we have a sequence score, we assess it by converting it into a likelihood that the sequence

contains the target motif. In each iteration of the algorithm, we compute a function that takes

a residue score and computes the likelihood that the residue is part of the target motif.

We compute this likelihood function in a manner described in [14]. In particular, every

sequence in a large sequence database is scored. (Ideally, this large sequence database is the

PIR. However, in practice, to save time, we use a sampled version of the PIR, which is 1=25-th

the size; the likelihood function calculated using this sampled PIR is a good approximation

to the likelihood function calculated using the entire PIR.) The sampled PIR residue score

histograms are nearly Gaussian distributed with some extra probability mass added on the

right-hand tail. This extra mass is attributed to residues in the target motif, since they are

expected to score higher. In the case of the coiled coil motif, given the biological data currently

available, it is estimated that between 1=50 and 1=30 of residues in the PIR are in a coiled coil.
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To �t a Gaussian to the histogram data, we calculate the mean so that the extra probability

mass on the right side of the mean corresponds to between 1=50 and 1=30 of the total mass of

the PIR. We then compute the standard deviation using only scores below that mean, where

a Gaussian better �ts the histogram data. The likelihood that a residue with a given score is

a coiled coil is estimated as the ratio of the extra histogram mass above the Gaussian at that

score (corresponding to data assumed to be coiled) to the total histogram mass at that score.

A least square �t line is then used to approximate the likelihood function in the linear region

from 10 to 90 percent. This line then gives an approximation for the likelihoods corresponding

to all scores.

One feature of this method of computing likelihoods is that it does not allow too many

residues to be considered as part of coiled coils. This helps keep the false positive rate of the

algorithm low.

4.3.3 Randomized selection of the new database

Once we have obtained the likelihood function for an iteration, we wish to use the likelihoods

to build a new database of sequences presumed to fold into the target motif. At the beginning

of each iteration, our new database contains no sequences. Then for each sequence in the set of

test sequences, we do the following. First, we score each sequence and then convert its sequence

score to a likelihood. Next, we draw a number uniformly at random from the interval [0; 1]. If

the number drawn is less than or equal to the likelihood of the sequence, then the sequence is

added to the new database. All residues in this sequence that have scores equal to the sequence

score or greater than the 50% likelihood score (which is the algorithm's cuto� for a residue

being in a coiled coil) are added to the database. Once we have processed every sequence in our

test set, then we have our new database of sequences presumed to fold into the target motif.

In practice, we �nd that adding randomness substantially improves the performance of

our algorithm. In fact, if the procedure is written just to accept sequences that have greater

than 50% likelihood, then the algorithm fails to recognize many sequences which are known to

contain 3-stranded coiled coils. On the other hand, if the procedure lowers the threshold value

for acceptance, then its false positive rate increases.
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4.3.4 Updating parameters

Once we have a new database of sequences which are thought to contain the target motif, we

need to update the parameters used by the algorithm for scoring. In our case, in each iteration

of the algorithm, the scoring procedure needs updates of the estimates of probabilities for

singles and pair positions. The most straightforward way to update the probabilities is to use

a maximum likelihood estimate from frequency counts from the new database. However, this

does not work that well in practice. Instead, we update each probability by taking a weighted

average of the probability given by the base motif database and the probability given by the

new database.

We now describe a theoretical framework for updating probabilities in this manner in each

iteration of our algorithm. The approach we give is motivated by a Bayesian viewpoint [45, 15].

In particular, we think of the probabilities we are trying to estimate as the parameters of a

Multinomial distribution, and we use the Dirichlet density to model the prior information we

have about these probabilities. In fact, the approach we give is not completely Bayesian, as we

will use the seen data to pick the parameters of the prior distribution; this is sometimes called

a Bayes/Non-Bayes compromise [45].

We will use frequency counts from our databases to estimate singles and pair probabilities.

For simplicity, we focus on the case of updating singles probabilities; updating pair probabilities

is analogous.

Initially, we have a database of sequences which fold into a particular base motif. Thus, for

each position in the motif, we have a 20-long count vector, one for each of the 20 amino acids.

For example, for a given database of known coiled coils, for position a, we know how many

times each amino acid appears. In addition, after each iteration of the algorithm, we have a

new database of sequences that we have selected and which we presume fold into the target

motif. This new database also gives us a 20-long count vector for each position in the motif.

We update the probabilities using these frequency count vectors. In particular, we �x a

numbering of the amino acids from 1 to 20. Then for each position q in the motif (for coiled

coils, q 2 fa; b; c; d; e; f; gg), we have a count vector ~x(q) = (x(q)1 ; x
(q)
2 ; : : : ; x

(q)
20 ), where x

(q)

i is the

number of times amino acid i appears in position q of the motif in the base motif database. In

addition, we have a count vector ~y(q) = (y(q)1 ; y
(q)
2 ; : : : ; y

(q)
20 ), where y

(q)
i is the number of times
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amino acid i appears in position q of the motif in the new database (i.e., the database consisting

of the sequences we have picked in this iteration of the algorithm).

Let ~p(q) = (p
(q)
1 ; p

(q)
2 ; : : : ; p

(q)
20 ) be the actual probabilities for the amino acids appearing in

position q of the motif. We assume, for simplicity, that the count vectors for each position

are independent of each other. Thus, we focus on updating the probabilities of one position

independent of the other positions. For notational convenience, we �x a position and drop the

superscript q. We assume that for a �xed position, the count vector is generated at random

according to the Multinomial distribution with parameter ~p = (p1; p2; : : : ; p20). The parameters

p1; p2; : : : ; p20 are the \true" probabilities of seeing the amino acids in the �xed position in the

motif we are interested in. These are the parameters we wish to estimate.

In our case, we have very strong a priori knowledge about the probabilities. Since we are

trying to learn a particular target structural motif from a related base structural motif, we can

use the probabilities estimated from the base motif as prior probabilities. In fact, because these

structural motifs are related, we expect the updated probabilities for the target motif to be

similar to the original probabilities for the base motif.

We model our a priori beliefs by the Dirichlet density. The value of a Dirichlet density

D(�) (with parameter ~� = (�1; �2; : : : ; �k), where �i > 0 and �0 =
P
�i) at a particular point

~x = (x1; x2; : : : ; xk), where
P
xi = 1 is given by:

f(~xj~�) = �(�0)Qk
i=1 �(�i)

kY
i=1

x
(�i�1)

i :

The gamma function �(�) is:

�(�) =

Z
1

0

e�xx��1dx:

The mean of Dirichlet density is (�1=�0; �2=�0; : : : ; �k=�0), and the larger �0 is, the smaller

the variance is.

Thus a Bayesian estimate for the probabilities p1; p2; : : : ; p20 can be found by looking at

the posterior distribution. The Dirichlet distribution is conjugate for the Multinomial, and the

posterior distribution is the Dirichlet distribution D(~�+~y) [15, 45]. That is, the new parameter

of the distribution is the vector sum of the original parameters and the observed data. Thus, a
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Bayesian estimate for probability pi after seeing the data ~y is

�i + yi

�0 + y0
; where y0 =

20X
i=1

yi:

We still have not addressed the issue of how the parameters of the prior distribution are

chosen. We depart from the traditional Bayesian approach, and choose the parameters of the

prior distribution after seeing the data. In particular, since the base motif and the target motif

are related, we want the base motif database to have a strong e�ect on the estimates for our

probabilities, and thus we choose the variance of the prior distribution accordingly.

The mean of the Dirichlet density is speci�ed by the estimated probabilities of the base

motif. The variance of the density is picked as follows. If 0 < � < 1 is the e�ect, or weight,

that we want the base motif database to have, then we let �i = xi � �
1��

y0
x0
, where x0 =

P20
i=1 xi

and y0 =
P20

i=1 yi. (Actually, we have to be careful in the case where xi = 0.) It is easy to

verify that our estimate for the probability pi is given by � xi
x0
+(1��) yi

y0
. Namely, our updated

probability is a weighted average of the probability given by the base motif database and the

probability given by the new database.

In practice, we have found that our method of updating probabilities has worked well. It

is superior to a maximum likelihood approach which uses just the current iteration's frequency

counts. These estimates of the probabilities are especially problematic in the zero frequency

case. Our method also performs better than an unweighted approach using both the initial

frequency counts and the current iteration's frequency counts. These estimates of the proba-

bilities are largely dependent on the size of the original database, and the number of residues

that are presumed at each iteration to be part of the target motif. In our test domain of coiled

coils, we found that this method of updating probabilities missed more sequences that contain

coiled coils than did our method for updating probabilities.

Using Dirichlet mixture densities as priors to estimate amino acid probabilities has been

studied by Brown et al. [29]. Their approach uses as a prior the maximum likelihood estimate

of a mixture Dirichlet density, based on data previously obtained from multiple alignments

of various sets of sequences. Their approach is a pure Bayesian approach, and their prior

distribution has a smaller e�ect on the �nal probability estimates.
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4.3.5 Algorithm termination

The iteration process terminates when it stabilizes; that is, when the number of residues added

from the previous iteration changes by less than 5%. Usually the procedure converges in around

six iterations; otherwise, we terminate it after 15 iterations. In practice, we found that the

algorithm rarely had to to be terminated due to lack of convergence.

In our implementation, the running time of the entire algorithm is linear in the total number

of residues in all sequences which are given as input. The basic operation in each iteration is

scoring every sequence using the PairCoil algorithm. For each sequence, the PairCoil scoring

program takes time linear in the number of residues. Since we have at most a �xed number of

iterations, the entire algorithm is linear-time.

After running LearnCoil, the \learned" target concept contains both 2- and 3-stranded

coiled coils. The problem of distinguishing one set from the other remains. The MultiCoil

program of Wolf, Kim, and Berger [unpublished results] is being developed for this purpose and

in initial experiments performs well.

4.4 Results

We have implemented our algorithm in a C program called LearnCoil. We test our program on

the domain of 3-stranded coiled coils and subclasses of 2-stranded coiled coils. First we describe

the databases we use to test the program, and then we follow by describing the program's

performance.

4.4.1 The databases and test sequences

Our original database of 2-stranded coiled coils consists of 58; 217 amino acid residues which

were gathered from sequences of myosin, tropomyosin, and intermediate �lament proteins [14].

We also have separate databases containing sequences from each of these protein subclasses

individually. A synthetic peptide of tropomyosin is the only solved structure among these.

We test LearnCoil on the 3-stranded coiled coils by starting the algorithm with the base

database of all 2-stranded coiled coils. We test LearnCoil on the 2-stranded coiled coils by

starting the algorithm with a base database of one of the subfamilies of the 2-stranded coiled
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coils.

The set of iteration test sequences for testing performance on 3-stranded coiled coils consists

of the following 5516 sequences: 286 known non-coiled coils from the non-redundant version

of the PDB created in [14] (the PDB is the database of solved protein structures); 2% of the

sequences in OWL (a large non-redundant composite database, where no two sequences in

the database are exactly the same and no two sequences show only \trivial" di�erences [20]),

with any obvious members of the PDB removed (2815 total); sequences in OWL whose names

contain the strings actinin, alpha spectrin, dystrophin, tail �ber, laminin, �brinogen, env,

spike, glycoprotein, bacteriophage T4 wac, bacteriophage K3 �britin, heat shock transcription,

or macrophage scavenger receptor, as well as the 3-stranded coiled coil mutant for GCN4 (2415

total, of which many are thought to contain 3-stranded coiled coils, and the 46 sequences given

below are known to contain them).

The 3-stranded coiled coil set is comprised primarily of laminin and �brinogen sequences,

as well as in
uenza virus hemagluttinin, Moloney murine leukemia envelope protein, 2 heat

shock transcription factors, bacteriophage T4 and K3 wac proteins, the trimeric GCN4 mutant,

2 macrophage scavenger receptors, and bacteriophage T3 and T7 tail �bers.

Our set of iteration test sequences for 2-stranded coiled coils includes: 1=23 of the PIR

(1553 total); the 286 known non-coiled coils; and the two of the subfamilies out of myosins,

tropomyosins, and intermediate �laments. (For example, when we start with a database of

intermediate �laments, our iteration test sequences include myosins and tropomyosins.)

Note that most of the sequences in our 2- and 3-stranded coiled coil data sets do not have

solved structures. However, there is strong experimental support that they contain coiled coils,

although often the boundaries of the coiled coil regions are di�cult to specify exactly. We do

not know the three dimensional structure for most of the protein sequences in our iteration test

sets (except for the sequences from the PDB and portions of the sequences making up the 2-

and 3-stranded coiled coil data sets).

4.4.2 Learning 3-stranded coiled coils

Our techniques improve non-learning based approaches, such as PairCoil [14], which often

fails to identify 3-stranded coiled coil regions.
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Base Set Evaluation Performance Performance

Set without LearnCoil with LearnCoil

% of seqs # of false % of seqs # of false

positive seqs positive seqs

2-str CCs 46 3-str CCs 67% 0=286 93% 0=286

Table 4.1: Learning 3-stranded coiled coils from 2-stranded coiled coils using the leave one
out criterion.

We test the algorithm on 3-stranded coiled coils in two ways: the \leave one out" test and

the \leave half out" test. In both cases, LearnCoil improves recognition of 3-stranded coiled

coils starting with an initial database of 2-stranded coiled coils. We measure LearnCoil's

performance on the 286 non-coiled coil proteins, and an evaluation set consisting of 3-stranded

coiled coil sequences. We assume that a false negative prediction has occurred when a sequence

in the 3-stranded coiled coil evaluation set receives a score with a corresponding likelihood less

than 50%. We assume a false positive has occurred when a non-coiled coil protein scores at least

50% likelihood. Since our algorithm is randomized, the �nal likelihoods are found by averaging

LearnCoil outputs over �ve runs.

In the �rst \leave one out" scenario, the algorithm is run with all the 5516 iteration test

sequences described in section 4.4.1. Once the algorithm terminates, each of the 46 sequences

in the 3-stranded coiled coil set is scored with respect to parameters calculated from the new

database in the �nal iteration minus the e�ects of this sequence. That is, since the 46 3-

stranded coiled coil sequences are included in the iteration test set, if a sequence appears in the

�nal database, before scoring this sequence, the sequence is removed to avoid the possibility of

unfairly biasing the test.

The weight of the original database (i.e., relative to the new database) was chosen empirically

to be � = 0:1. This makes sense because 2- and 3-stranded coiled coils are su�ciently di�erent;

thus, it may require much more weight for the newly identi�ed sequences to e�ectively broaden

the new database to contain 3-stranded coiled coils. We also experimented with weights in the

range 0 � � � 0:5 but � = 0:1 gave the best results.

Our algorithm LearnCoil positively identi�es 43 out of 46 (93%) of the 3-stranded coiled

coil sequences and makes no false positive predictions. In contrast, PairCoil positively identi-
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�es 31 out of 46 (67%) of the 3-stranded coiled coils and also makes no false positive predictions

(see Table 4.1). Moreover, using the �nal databases that LearnCoil produced, we are able

to recognize all the sequences in the 2-stranded coiled coil database. Thus the �nal databases

produced by the LearnCoil algorithm performs well on both 2- and 3-stranded coiled coils.

In the second \leave half out" scenario, we split the 3-stranded coiled coil sequence set

in half in the following manner. First, the 46 3-stranded coiled coil sequences are divided

into the following subgroups: �-�brinogens, �-�brinogens, 
-�brinogens, laminins, tail �bers,

heat shocks, and all remaining protein sequences. Next, each of these subgroups is randomly

divided into two parts, one for each half; this ensures that in the �nal split, each half is fairly

representative of examples of the 3-stranded coiled coil motif.

We split the 3-stranded coiled coil sequences 3 times in the above manner. This then gives

us six di�erent iteration and evaluation sets. Each evaluation set consists of 23 3-stranded

coiled coil sequences, and the corresponding iteration test set consists of 5493 sequences (the

original 5516 sequences, minus the 23 sequences in the evaluation set). We run LearnCoil

on each of the six iteration test sets, and evaluate the algorithm by its performance on the

corresponding evaluation sets (namely, those 3-stranded coiled coil sequences which are not

included in the iteration test set). Note that the set of sequences with solved structures that

do not contain coiled coils are included in all iteration test sets, and are scored using the leave

one out criterion.

For each iteration test set, our algorithm is again run 5 times with � = :1, and with �nal

likelihoods averaged over the runs. Table 4.2 gives the performance of our algorithm on the

di�erent evaluation sets. On average, LearnCoil selects out 85% of the 3-stranded coiled coil

sequences not originally in the set of sequences upon which it iterates. In contrast, PairCoil

on average selects out 67% on the same sets of sequences. In all but one of the six experiments,

the algorithm does not get any false positives from the set of solved structures. In the one

scenario when it does get a false positive, the likelihood of all sequences in the corresponding

evaluation set (B1) that score above 50% also score higher than this false positive.

The average performance of LearnCoil on the 3-stranded coiled coil sequences included

in the iteration test set is 88%. (Individual performance data for each of the six experiments is

not shown.) This average does not seem to be signi�cantly higher than the algorithm's average
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Base Set Evaluation Performance Performance

Set without LearnCoil with LearnCoil

% of seqs # of false % of seqs # of false

positive seqs positive seqs

2-str CCs Set A1, 23 3-str CCs 65% 0=286 87% 0=286

2-str CCs Set A2, 23 3-str CCs 70% 0=286 83% 0=286

2-str CCs Set B1, 23 3-str CCs 74% 0=286 87% 1=286

2-str CCs Set B2, 23 3-str CCs 61% 0=286 78% 0=286

2-str CCs Set C1, 23 3-str CCs 70% 0=286 96% 0=286

2-str CCs Set C2, 23 3-str CCs 65% 0=286 78% 0=286

Table 4.2: Learning 3-stranded coiled coils from 2-stranded coiled coils using the leave half out
criterion. The 3-stranded coiled coil sequences are split 3 times, giving us six di�erent iteration
and evaluation sets. The evaluation sets are A1, A2, B1, B2, C1 and C2 (A1 and A2 are a
result of one split, etc.).

performance on the sequences in the evaluation set. Thus in comparing the results in Table 4.2

with the results in Table 4.1, it appears that the decreased performance on these runs with

the splits is the result of fewer available 3-stranded coiled coil sequences to the algorithm, and

not upon whether the evaluation criterion is the leave one out criterion or the leave half out

criterion.

4.4.3 Learning subclasses of 2-stranded coiled coils

Our results on subclasses of the 2-stranded coiled coil motif indicate that we are able to \learn"

coiled coil regions in one family of proteins using a database consisting of coiled coils from

another family of proteins. For example, we are able to learn coiled coils in intermediate

�laments from a database of coiled coils in either myosins or tropomyosins. Our techniques

improve non-learning based approaches, such as the PairCoil program [14], which fail to

identify conjectured coiled coil residue positions.

We tested LearnCoil on three di�erent domains (Table 4.3): tropomyosins (TROPs) as a

base set and myosins (MYOs) and intermediate �laments (IFs) as an evaluation set; myosins

as a base set and tropomyosins and IFs as an evaluation set; IFs as a base set and myosins

and tropomyosins as an evaluation set. A di�erent set of iteration test sequences was used for
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Base Set Evaluation Performance Performance

Set without LearnCoil with LearnCoil

% of # of false % of # of false

residues positive seqs residues positive seqs

TROPs MYOs + IFs 71% 4=286 99% 1=286

MYOs TROPs + IFs 89% 2=286 99% 1=286

IFs MYOs + TROPs 83% 4=286 99% 2=286

Table 4.3: Learning 2-stranded coiled coils from a restricted set

each of these tests; that is, the set that includes sequences of the two protein families in the

evaluation set. For these experiments, we have residue data, and thus our performance measure

is with respect to these. False negatives are residues of sequences in the evaluation set which

do not have at least a 50% likelihood. False positives are de�ned as in section 4.4.2

Here the weight of the original database was empirically chosen to be � = 0:3. One possible

explanation for this is since the subclasses of 2-stranded coiled coils has more similarities than

di�erences, the program does not have to be so aggressive in picking up the evaluation set.

Moreover, the goal is a target set of 2-stranded coiled coils, and this is best achieved by weighting

each of the 3 types of proteins equally. We also experimented with weights of � = 0:1 and

� = 0:5, and while their overall performance was similar, they produced more false positives.

First, we consider experiments with tropomyosins in the base set and myosins and IFs in

the evaluation set. LearnCoil positively identi�es 99% of the myosin and IF residues in

the 2-stranded database and makes one false positive prediction. This is in contrast to Pair-

Coil, which obtained a performance of 70:9%, with four false positive and two false negative

predictions.

Next we consider experiments with a base set of myosins and an evaluation set of tropo-

myosins and IFs. LearnCoil positively identi�es 99% of the tropomyosin and IF residues

and makes one false positive prediction. This is in contrast to PairCoil, which obtained a

performance of 88:8%, with two false positive and one false negative predictions.

Lastly, we consider experiments with a base set of IFs and an evaluation set of tropomyosins

and myosins. LearnCoil positively identi�es 99:4% of the tropomyosin and IF residues and

makes two false positive predictions. One possible explanation for more false positives here is
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that the IFs have a less obvious coiled-coil structure and there very well may be non-coiled coil

residues in the database; consequently, starting with a table of solely IFs may select out non-

coiled coils for the target database. In contrast, PairCoil obtained a performance of 83:3%,

with four false positive predictions.

For all three above experiments, LearnCoil improved performance of PairCoil in iden-

tifying coiled coil residues, while also improving its false positive rate.

We also tested LearnCoil with the NewCoils program [58] used as the underlying scoring

algorithm. For subclasses of 2-stranded coiled coils, we found that LearnCoil enhanced the

performance of NewCoils as well. It obtained a performance of 96:2% when tropomyosins

were used as the base set, a performance of 95:3% when myosins were used, and a performance

of 98:2% when IFs were used. The program did not make any false positive predictions when

run on these three test domains. In contrast, the non-learning based version of NewCoils had

substantial overlap between the residue scores for coiled coils and non-coiled coils in all of the

three test domains.

4.4.4 New coiled-coil-like candidates

The LearnCoil program has identi�ed many new sequences that we believe contain coiled-

coil-like structures. Table 4.4 lists some examples of \newly found" viral proteins (i.e., proteins

for which PairCoil indicates that no coiled coil is present, but LearnCoil indicates a coiled-

coil-like structure is present). We believe that the proteins given in Table 4.4 either contain

coiled coils or coiled-coil-like structures. For example, recent biological work has identi�ed a

coiled-coil-like structure which is believed to consist of a parallel, trimeric coiled coil encircled

by three helices packed in an antiparallel formation; this structure is thought to be in the

envelope glycoproteins of both HIV and SIV (Simian Immunode�ciency Virus) [19, 56].

Our program seems to be able to accurately predict this new coiled-coil-like structure. For

example, it identi�es two coiled-coil-like regions in the envelope protein of SIV. Independently,

the biological investigation of SIV by Blacklow et al. predicts that these are the two regions

that are part of the coiled-coil-like structure [19]. One of these regions (comprising the outer

three helices) is predicted by the NewCoil program and is given a 26% likelihood by the

PairCoil program. The other region (comprising the trimeric coiled coil) is only predicted by
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our LearnCoil program. This region corresponds to the N-terminal fragment in the paper

of Blacklow et al. In fact, the region LearnCoil predicts and the region that Blacklow et al.

�nd are almost identical: LearnCoil predicts a coiled-coil-like structure starting at residue

553 and ending at residue 601, whereas Blacklow et al. start the region at residue 552 and end

it at residue 604.

PIR Name LearnCoil PairCoil

Likelihood Likelihood

mouse hepatitis virus E2 glycoprotein precursor >90% 23%

human rotavirus A glycoprotein NCVP5 >90% <10%

human respiratory syncytial virus fusion glycoprotein >90% <10%

human T-cell surface glycoprotein CD4 precursor 77% <10%

human T-cell lymphotropic virus { type I, env >90% <10%

equine infectious anemia virus, env >90% <10%

fruit 
y 14-3-3 protein 52% <10%

HIV, env >90% <10%

SIV, env >90% 26%

Table 4.4: Newly discovered coiled-coil-like candidates

Moreover, there is biological evidence that several other of the sequences in Table 4.4 contain

coiled-coil-like structures. Our predictions were made independently of these results. Recently,

the crystal structure of two 14-3-3 proteins have been solved [55, 75]. The paper of Liu et al.

studies the zeta transform of the 14-3-3 structure in E. coli, and they report a 2-stranded anti-

parallel coiled coil structure. On the other hand, the paper of Xiao et al. studies the human

T-cell � dimer, and they report helical bundles. Although there is some uncertainty here, it

is likely that the 14-3-3 protein we have identi�ed contains a coiled-coil-like structure, if not a

coiled coil itself. The Human T-cell lymphotropic virus and equine infectious anemia virus are

closely related to HIV, and thus their envelope proteins are also likely to contain coiled-coil-like

structures.

The proteins reported in Table 4.4 are compared to the PairCoil program. The NewCoil

program of Lupas et al. �nds some of these proteins; however, in general, this program �nds

a signi�cant number of false positives. The 14-3-3 protein, the human T-cell lymphotropic

virus envelope protein and the human T-cell surface glycoprotein CD4 precursor are found only
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using our LearnCoil program. As mentioned above, there is some biological evidence that at

least two of these proteins (the 14-3-3 protein and human T-cell lymphotropic virus envelope

protein) contain coiled-coil-like structures.

We anticipate that the identi�cation of likely coiled-coil-like regions in important protein

sequences (such as those in Table 4.4) will facilitate and expedite the study of protein structure

by biologists. In addition, since our program LearnCoil is able to identify the new coiled-

coil-like motif in HIV and SIV, it is possible that our program will help aid in the discovery of

this structure in other retroviruses.

4.5 Conclusions

In this chapter, we have shown that a learning-based algorithm that uses randomness and

statistical techniques can substantially enhance existing methods for protein motif recognition.

We have designed a program LearnCoil and demonstrated its ability to \learn" the 2-stranded

and 3-stranded coiled coil motif. It has identi�ed new sequences that we believe contain coiled-

coil-like structures. It is our hope that biologists will use this program to help identify other

new coiled-coil-like structures.

There is evidence that our program may have identi�ed a new coiled-coil-like motif that

occurs in retroviruses, and future work involves studying retroviruses and this motif more

closely.

In the future we plan to apply the LearnCoil program to motifs other than those that

have coiled-coil-like properties. Limited data is a problem for many protein structure prediction

problems. There are newly discovered protein motifs for which biologists cannot yet predict, and

more importantly, do not yet even know the structural features that characterize the motifs. We

hope to extend the techniques developed here to aid in the determination of crucial structural

features that give rise to these motifs, as well as to learn how to predict which proteins exhibit

this motif.
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Concluding remarks

In this thesis, we have studied three problems in machine learning. In the �rst part of the thesis,

we examined Valiant's PAC model, and considered learnability in this model. In particular, we

studied concept classes of functions on k terms, and gave an algorithm for learning any function

on k terms by general DNF. On the other hand, we showed that if the learner is restricted so

that it must output a hypothesis which is a member of the concept class being learned, then

learning the concept class of any symmetric function on k terms is NP-hard (except for the

concept classes of AND, NOT AND, TRUE and FALSE). Our results completely characterize

the learnability of concept classes of symmetric functions on k terms. We leave as an open

problem whether concept classes for more general functions on k terms can be learned when

the learner's output hypothesis is restricted.

The second part of the thesis introduced the problem of piecemeal learning an unknown

environment. For environments that can be modeled as grid graphs with rectangular obstacles,

we gave two piecemeal learning algorithms in which the robot traverses a linear number of

edges. For more general environments that can be modeled as arbitrary undirected graphs, we

gave a nearly linear algorithm. An interesting open problem is whether there exists a linear

algorithm for piecemeal learning arbitrary undirected graphs. Piecemeal learning takes into

account just one of the limitations on a robot's resources. It would be interesting to come up

with models and algorithms to handle other practical limitations of a robot, such as incorrect
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data that a robot may receive (due to noisy sensors) and di�culties a robot may have in motor

control. Other extensions of the work might include the scenario of multiple robots, or multiple

\refueling stations."

In the last part of the thesis, we applied machine learning techniques to the problem of

protein folding prediction. We gave an iterative learning algorithm that is particularly e�ective

for folds for which there is not much currently available data. We implemented our algorithm,

and showed its e�ectiveness on the 3-stranded coiled coil motif. There are other motifs for

which there is a lack of data, such as �-rolls and �-helices, and it would interesting to extend

our techniques to work on these motifs. In addition, there is evidence that our program may

have identi�ed a new coiled-coil-like motif that occurs in retroviruses, and future work involves

studying this motif more closely.
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