
545 TECHNOLOGY SQUARE; CAMBRIDGE, MASSACHUSETTS 02139

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

MIT-LCS-TR-708

OPTIMISM VS. LOCKING:
A STUDY OF CONCURRENCY CONTROL FOR

CLIENT-SERVER OBJECT-ORIENTED DATABASES

Robert E. Gruber

February 1997

This technical report (TR) has been made

available free of charge from the MIT Laboratory

for Computer Science, at www.lcs.mit.edu.

Optimism vs. Locking: A Study of Concurrency Control
for Client-Server Object-Oriented Databases

Robert E. Gruber

S.B. Massachusetts Institute of Technology (1989)

S.M. Massachusetts Institute of Technology (1989)

Submitted to the Department of Electrical Engineering and Computer Science

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1997

c
 Massachusetts Institute of Technology 1997. All rights reserved.

Author :

Department of Electrical Engineering and Computer Science

January 30, 1997

Certi�ed by :

Barbara H. Liskov

Ford Professor of Engineering

Thesis Supervisor

Accepted by :

Arthur C. Smith

Chairman, Committee on Graduate Students

Department of Electrical Engineering and Computer Science

Optimism vs. Locking: A Study of Concurrency Control
for Client-Server Object-Oriented Databases

Robert E. Gruber

Abstract

Many client-server object-oriented database systems (OODBs) run applications at

clients and perform all accesses on cached copies of database objects. Moving both

data and computation to the clients can improve response time, throughput, and

scalability. For applications with good locality of reference, retaining cached state

across transaction boundaries can result in further performance and scaling bene�ts.

This thesis examines the question of what concurrency control scheme is best able

to realize these potential bene�ts. It describes a new optimistic concurrency con-

trol scheme called AOCC (Adaptive Optimistic Concurrency Control) and compares

its performance with that of ACBL (Adaptive-Granularity Callback Locking), the

scheme shown to have the best performance in previous studies. Like all optimistic

schemes, AOCC synchronizes transactions at the commit point, aborting transactions

when synchronization fails; ACBL, like other locking schemes, synchronizes transac-

tions while they execute.

Earlier studies concluded that locking is a better choice than optimism for client-

server systems. Our research leads to the opposite conclusion. We present the results

of simulation experiments showing that AOCC outperforms ACBL across a wide

range of system and workload settings. In addition to having better performance,

AOCC is simpler than ACBL, and scales better with respect to the number of clients

using shared data.

The thesis also presents a model that allows us to understand these results. The

two major costs associated with locking are the messages that must be exchanged for

clients to acquire locks and the cost of waiting for locks held by other clients. The

major cost associated with optimism is the need to re-execute aborted transactions.

The reason AOCC performs so well (and that previously-studied optimistic schemes

did not do well) is that its design allows it to have very low abort and restart costs.

Both the model and the insights gained from the performance study should help in

the design of future client-server concurrency control schemes.

Keywords: Concurrency Control, Atomic Transactions, Optimism, Pessimism, Lock-

ing, Object-Oriented, Client-Server, Databases, Simulation, Design Analysis

Thesis Supervisor: Barbara H. Liskov

Title: Ford Professor of Engineering

Acknowledgments

First, I would like to thank my advisor, Barbara Liskov. I have learned much more

under her guidance than how to do good research. I am grateful for her counsel and

support throughout my graduate career.

Many people have provided useful feedback and encouragement for this thesis

work, including Bill Weihl, Frans Kaashoek, John Guttag, Sanjay Ghemawat, and

Atul Adya.

Of the many friends who deserve credit for making my life interesting, I owe

special thanks to the three amigos who were with me from the start: Sanjay Ghe-

mawat, Wilson Hsieh, and Anthony Joseph. My life at MIT was also enriched by my

time spent as a
oor tutor on Conner Three, as a \sta�er" at NL, as a member of

the Programming Methodology Group, and as an avid participant in Tuesday Night

Hockey.

Finally, I would like that thank all of the members of my family for their love and

support. This thesis is dedicated to them.

This research was supported in part by the Advanced Research Projects Agency of the Depart-

ment of Defense, monitored by the O�ce of Naval Research under contract N00014-91-J-4136.

Contents

1 Introduction 13

1.1 System Model : 14

1.2 Database and Workload Assumptions : : : : : : : : : : : : : : : : : : 15

1.3 Contributions : 17

1.4 Thesis Overview : 18

2 Optimistic and Locking Designs 21

2.1 Common Assumptions : 22

2.2 AOCC : 24

2.2.1 Detailed Description : 26

2.2.2 AOCC Discussion : 28

2.3 ACBL : 28

2.3.1 Detailed Description : 31

2.3.2 ACBL Discussion : 35

2.4 Design Discussion : 37

2.4.1 Undo log : 37

2.4.2 Adaptive Cache Maintenance : : : : : : : : : : : : : : : : : : 38

2.4.3 Adaptive Directory Information : : : : : : : : : : : : : : : : : 39

2.5 Design Comparison : 41

2.5.1 Low Contention : 41

2.5.2 High Contention : 44

2.5.3 Read-Only Transactions : 47

3 Related Work 49

3.1 Franklin and Carey : 50

3.1.1 C2PL vs. CBR vs. CBA : 51

3.1.2 O2PL vs. CBR : 51

3.1.3 Invalidate vs. Propagate : 53

3.1.4 O2PL vs. AOCC : 53

3.1.5 Cache Maintenance Strategies : : : : : : : : : : : : : : : : : : 54

3.2 Wang and Rowe : 55

3.2.1 C2PL vs. CBA : 55

3.2.2 NWL vs. C2PL : 56

3.2.3 NWL vs. NWL-Notify : 56

3.2.4 C2PL vs. Certi�cation : 57

7

3.3 Wilkinson and Neimat : 57

3.3.1 Cache Locks vs. Notify Locks vs. AOCC : : : : : : : : : : : : 58

3.4 Parallel Database Concurrency Control : : : : : : : : : : : : : : : : : 59

4 Experimental Framework 61

4.1 System Model and Settings : 62

4.1.1 Database : 62

4.1.2 Processors : 64

4.1.3 Server : 64

4.1.4 Client : 65

4.1.5 Network : 65

4.1.6 Disk : 66

4.2 Workload Model and Settings : 67

4.2.1 Workload Model : 67

4.2.2 Motivating the Six Workloads : : : : : : : : : : : : : : : : : : 72

4.2.3 Workload Descriptions : 73

4.2.4 Summary of Workload Generator Settings : : : : : : : : : : : 81

4.3 Related Experimental Framework : 82

5 Main Experimental Results 85

5.1 Interpreting the Simulation Results : : : : : : : : : : : : : : : : : : : 85

5.2 PRIVATE Workload : 89

5.3 HOTCOLD Workload : 91

5.4 SMALL+HOTCOLD Workload : 98

5.5 UNIFORM Workload : 102

5.6 HICON Workload : 109

5.7 TINY+PRIVATE Workload : 113

5.8 Summary of Key Insights : 117

6 Sensitivity Analysis 121

6.1 System Model Experiments : 121

6.1.1 Core System Parameters : 122

6.1.2 Future System Results : 125

6.2 Workload Model Experiments : 128

6.2.1 Write Probability, Write Clustering : : : : : : : : : : : : : : : 128

6.2.2 Read-Only/Read-Write Mix : : : : : : : : : : : : : : : : : : : 129

6.2.3 Restart Behavior : 131

6.2.4 Transaction Length : 133

6.2.5 Compute-Intensive Applications : : : : : : : : : : : : : : : : : 134

6.3 ACBL Wins Region : 135

6.4 Summary : 138

7 Conclusions 147

7.1 Results and Insights : 147

7.2 Future Work : 149

8

7.2.1 Starving Transactions : 149

7.2.2 Read-Only Transactions : 150

7.2.3 New Studies : 151

A On System Parameter Settings 153

A.1 Fixed Settings : 153

A.2 Network Settings : 155

A.2.1 Network Bandwidth : 156

A.2.2 CPU costs : 156

A.3 Disk Settings : 160

A.3.1 Choosing the Disk Bandwidths : : : : : : : : : : : : : : : : : 160

A.3.2 Choosing the Disks Per Server : : : : : : : : : : : : : : : : : : 163

9

10

List of Figures

2-1 Low Contention Message Count Model : : : : : : : : : : : : : : : : : 42

3-1 The Nine Concurrency Control Schemes Discussed : : : : : : : : : : : 50

3-2 Cache Maintenance Strategies : 54

4-1 Summary of System Parameter Settings : : : : : : : : : : : : : : : : 63

4-2 Workload Parameters : 68

4-3 UNIFORM Workload : 75

4-4 PRIVATE Workload : 76

4-5 HOTCOLD Workload : 77

4-6 SMALL+HOTCOLD Workload : 78

4-7 HICON Workload : 79

4-8 TINY+PRIVATE Workload : 80

4-9 Parameter Settings: UNIFORM, HICON, PRIVATE, TINY+PRIVATE 81

4-10 Parameter Settings: HOTCOLD, SMALL+HOTCOLD : : : : : : : : 81

5-1 PRIVATE: Throughput, % Improvement, Message Count : : : : : : : 89

5-2 PRIVATE: Server and Disk Utilization : : : : : : : : : : : : : : : : : 91

5-3 HOTCOLD: Throughput, % Improvement, Message Count : : : : : : 92

5-4 HOTCOLD: Blocks, Aborts, Accesses (per Commit) : : : : : : : : : : 93

5-5 HOTCOLD: Message Breakdown : 94

5-6 HOTCOLD: Server and Disk Utilization : : : : : : : : : : : : : : : : 97

5-7 SMALL+HOTCOLD: Throughput, % Improvement, Message Count : 98

5-8 SMALL+HOTCOLD: Message Breakdown : : : : : : : : : : : : : : : 99

5-9 SMALL+HOTCOLD: Blocks, Aborts, Accesses (per Commit) : : : : 101

5-10 SMALL+HOTCOLD: Server and Disk Utilization : : : : : : : : : : : 101

5-11 UNIFORM: Throughput, % Improvement, Message Count : : : : : : 102

5-12 UNIFORM: Message Breakdown : 104

5-13 UNIFORM: Blocks, Aborts, Accesses (per Commit) : : : : : : : : : : 105

5-14 UNIFORM: Lock Waiting and Wasted Work : : : : : : : : : : : : : : 107

5-15 UNIFORM: Server and Disk Utilization : : : : : : : : : : : : : : : : : 108

5-16 HICON: Throughput, % Improvement, Message Count : : : : : : : : 110

5-17 HICON: Message Breakdown : 111

5-18 HICON: Blocks, Aborts, Accesses (per Commit) : : : : : : : : : : : : 112

5-19 HICON: Lock Waiting and Wasted Work : : : : : : : : : : : : : : : : 113

5-20 HICON: Server and Disk Utilization : : : : : : : : : : : : : : : : : : : 114

11

5-21 TINY+PRIVATE: Throughput, % Improvement, Message Count : : : 114

5-22 TINY+PRIVATE: Message Breakdown : : : : : : : : : : : : : : : : : 116

5-23 TINY+PRIVATE: Blocks, Aborts, Accesses (per Commit) : : : : : : 117

5-24 TINY+PRIVATE: Lock Waiting and Wasted Work : : : : : : : : : : 118

5-25 TINY+PRIVATE: Server and Disk Utilization : : : : : : : : : : : : : 119

6-1 Core System Parameters: Summary of Experiments : : : : : : : : : : 123

6-2 Core System Parameter Experiments: Throughput Results : : : : : : 124

6-3 CURRENT and FUTURE Parameter Settings : : : : : : : : : : : : : 126

6-4 CURRENT vs. FUTURE: Low-Contention Example (HOTCOLD) : : 140

6-5 CURRENT vs. FUTURE: High-Contention Example (HICON) : : : 141

6-6 Varying Write Probability, Write Clustering (HOTCOLD) : : : : : : 142

6-7 SMALL+HOTCOLD: Read-Only Mix Experiment : : : : : : : : : : : 143

6-8 SMALL+HOTCOLD: Main Memory Server : : : : : : : : : : : : : : 143

6-9 Varying the Restart Change Probability : : : : : : : : : : : : : : : : 144

6-10 Varying the Average Transaction Length : : : : : : : : : : : : : : : : 144

6-11 Varying the Range of Transaction Sizes : : : : : : : : : : : : : : : : : 145

6-12 SMALL+HOTCOLD: Think Time Experiment : : : : : : : : : : : : 145

6-13 UNIFORM: ACBL Wins Region : 146

A-1 Size-Based Parameters : 153

A-2 Misc. Client and Server Costs : 154

A-3 Client and Server CPU Speeds : 154

A-4 Network Parameters : 155

A-5 Latency for 1 KB Message : 155

A-6 Kernel-Based Messaging Costs : 157

A-7 Reported Latencies: User-Level Messaging : : : : : : : : : : : : : : : 159

A-8 Disk Parameters : 160

A-9 Results of Intelligent Disk Scheduling : : : : : : : : : : : : : : : : : : 161

A-10 Disk Utilization vs. Number of Server Disks : : : : : : : : : : : : : : 164

A-11 \Masking E�ect" of Disk Saturation : : : : : : : : : : : : : : : : : : 165

12

Chapter 1

Introduction

This thesis explores concurrency control for transactional databases used in a dis-

tributed environment. In particular, we study client-server object-oriented databases

(OODBs). We focus on systems where servers provide the storage for a universe of

shared persistent objects (persistent stores), while clients run application code that

uses this object state.

For most client-server OODBs, including research prototypes such as ORION [37],

EXODUS [26], SHORE [9], and Thor [43] and also commercially available systems like

GemStone [6], O2 [16, 17], ObjectStore [40], Ontos [46], Objectivity [45], Statice [60],

and Versant [52], object accesses are performed at clients on cached copies of the

persistent objects. Moving data to the applications has two main advantages. First,

work is o�oaded from the servers to the clients, improving the scalability of the

system and allowing it to take advantage of the CPU and memory resources available

at clients. Second, many object accesses can be performed without contacting the

servers, allowing e�cient �ne-grained interaction between the application and the

OODB.

This thesis asks the following question: which concurrency control scheme should

be used for client-server OODBs, optimism or locking? Under optimism, a transaction

simply uses objects in the client cache; it \optimistically" assumes that the objects

are consistent with the committed state of the database, and that its accesses will

not con
ict with the accesses of other concurrent transactions. These optimistic

assumptions are checked at the commit point of the transaction. The only messages

that are required are fetch requests (to access missing data) and commit requests.

Locking, on the other hand, must also acquire the proper lock before using an object.

Some locking schemes require messages to acquire both read and write locks, while

others require them only for write locks. (Chapter 3 discusses speci�c examples of

these two cases.) For workloads with read-write sharing, therefore, all locking schemes

will require extra messages.

Intuitively, optimism would seem to be the preferred approach for low contention

workloads, since it uses fewer messages. However, previous work does not support

this intuition. There are two client-server studies we know of that compare optimism

with locking. One study shows that locking is always better [57, 58]; the other shows

that optimism is slightly better, but only under low contention [23, 24].

13

This thesis reverses these earlier results. It de�nes a new optimistic concurrency

control scheme, Adaptive Optimistic Concurrecy Control (AOCC), and presents the

results of detailed performance studies that compare AOCC to Adaptive-granularity

CallBack Locking (ACBL). Conventional wisdom is that most OODB applications

have low contention; ACBL is the best currently-known client-server locking scheme

for low-contention workloads. Our experiments show that AOCC outperforms ACBL

for these workloads, and also for a large majority of workload and systems settings.

The thesis also provides an analysis of why our new scheme is superior, including a

set of insights that should in
uence the design of future schemes.

In addition to performance advantages, there are other good reasons for choosing

an optimistic concurrency control scheme rather than a locking scheme. Optimistic

schemes are easier to implement, as we discuss in Chapter 2. Since optimistic schemes

use fewer synchronous round-trip requests, they are less sensitive to an increase in

latency; optimism scales better with respect to distance between client and server.

Thus, while we use a local-area network model in this thesis, we believe AOCC's

advantage over ACBL would be higher for a wide-area network. In addition, under

optimism the execution of a transaction only depends on the client executing the

transaction and the servers in the system, while locking can cause a transaction at

one client to block on a transaction running at another client. Thus, optimism is more

robust with respect to a high variance in the availability or performance properties

of clients. (Similar arguments about the bene�ts of lock-free synchronization have

been made at the multiprocessors and operating system level [31, 34].) Due to this

client-independence property, optimistic schemes are more easily extended to support

a \disconnected client" semantics [32].

The remainder of this chapter is organized as follows. Section 1.1 discusses our

system model assumptions, while Section 1.2 discusses our database and workload

assumptions. Section 1.3 then summarizes the contributions of the thesis in more

detail. Section 1.4 describes the organization and contents of the remaining chapters.

1.1 System Model

For our purposes, a client-server OODB consists of a server and a set of clients

connected by a network. The server stores database pages on a set of data disks. We

assume that objects are small and that pages contain many objects. For example,

in the OO7 benchmark [8, 7], a widely accepted object-oriented database benchmark,

most objects are smaller than 100 bytes.

The clients share the objects stored at the server. Each client has a page cache

that contains copies of some of the database pages. An application runs at each client,

issuing a sequence of transactions. A transaction accesses objects in the client cache;

if an object on page P is accessed and P is not cached, the client fetches P from the

server and installs the resulting copy of P in its cache. The server also has a page

cache. Fetch requests are serviced through this cache; server cache misses result in

disk reads. (Both the client and server caches use an LRU page replacement policy.)

A transaction's modi�cations are performed on the cached copies of the modi�ed

14

objects. When a transaction is ready to commit, copies of these objects are included

in a commit request sent from client to server. If the server allows the commit, it

installs the updates sent in the commit request so that future fetches will return the

updated object state. At the end of the commit, the client retains the cached pages

in case they may be of use to the next transaction.

The server and clients together implement a concurrency control scheme that

provides atomic serializable transactions. While the caches are page-based, con
ict

detection is performed at the object level. One result of this �ne-grained concurrency

control is that cached pages can have \holes" in them; objects within a cached page

can be marked as \missing." Both schemes studied in the thesis use object-level

marking.

1.2 Database and Workload Assumptions

In addition to assuming that the normal case for an OODB is to have multiple objects

per database page, we assume that a clustering algorithm [3, 14, 19, 51, 54, 55] is used

to produce a well-clustered database with respect to common access patterns. In other

words, a transaction accessing page P is likely to access multiple P objects.

The database can be very large (much larger than the client or server caches). We

assume the set of pages accessed by the full set of clients is larger than the server

cache size; many page fetches result in disk accesses.

We assume the client cache is large enough to hold all pages touched by a single

transaction. This assumption holds for many present-day systems and applications.

As we discuss in the concluding chapter, Chapter 7, we believe current memory

trends and recent work on more e�cient cache management both suggest that this

assumption is very likely to hold for future systems.

We expect transactions to be restartable. Although transaction abort is more

likely to occur under optimism, aborts will happen no matter what the concurrency

control scheme. We assume aborts cause the code of the aborted transaction to be

re-executed; this code must written to work correctly if such a restart occurs. As

discussed further below, a restart does not necessarily imply that the transaction

repeats exactly the same access pattern.

We expect transactions to run for a relatively short time. Long-running trans-

actions are a problem for any concurrency control scheme since they increase the

probability of con
icts. They can be avoided by implementing application-speci�c

coordination semantics. For example, a check-in/check-out model is used by many

applications that support cooperative design. Short restartable transactions (one to

check out a design and another to check it back in again) can be used to implement

this model. Thus, the application uses the transactions provided by the OODB to

implement a higher-level semantics, which is then used to do application-level con-

currency control.

The loss of \user work" due to aborts is often cited as a reason not to use an

optimistic scheme. However, for interactive applications users should observe a high-

level semantics, not OODB transaction semantics: aborts at the OODB level can be

15

masked from the user. The choice of optimism vs. locking for the OODB transactions

is orthogonal to the choice of an appropriate application-level semantics.

To study the e�cacy of concurrency control schemes, we must use workloads with

di�erent characteristics. Ideally, a scheme will work very well on the expected cases,

and reasonably well on the unexpected cases. There are three workload questions to

be addressed:

1. How do di�erent transactions at the same client relate to each other?

2. How do transactions at di�erent clients relate to each other?

3. How does a restarted transaction relate to the previous (aborted) transaction?

We expect that transactions at a given client overlap in their access patterns. This

makes sense: one transaction sets the stage for the next. It is common for traditional

applications to exhibit locality of reference, and we expect OODB applications do

as well, including locality of reference across transaction boundaries. Therefore, we

study schemes that do not discard the client cache contents at end of each transaction.

Previous studies have shown that such inter-transaction caching provides performance

bene�ts for workloads with inter-transaction locality [23, 24, 57, 58, 61]. We study

workloads with both low and high inter-transaction locality of reference.

With respect to the interaction of transactions at di�erent clients, we use three

di�erent sharing patterns (in di�erent combinations) in our workloads. The patterns

de�ne di�erent kinds of database regions. The simplest region is a uniformly shared

region: all clients access the region with equal likelihood. We also use per-client

regions, where each client \owns" a di�erent region of the database. Such client

regions can be private (only the owner accesses the region) or they can be \mostly

private" (the owner frequently accesses the region, while other clients occasionally

access the region). By varying the access probabilities and write probabilities for

di�erent regions, we produce six workloads with six di�erent sharing patterns and

six di�erent contention levels. For each workload that has contention, the contention

level also increases with additional clients. We expect the lower contention cases to

be the most common; however it is important to \degrade gracefully" as contention

increases.

Finally, we discuss the behavior of transaction restarts. When a new transaction

is executed, we say this is a �rst-run execution. If this execution aborts, its e�ects are

undone and a restart execution is performed. Restart assumptions are very important

for studies that include optimistic schemes, as such schemes have a high abort rate

relative to locking schemes. Most simulation studies use a \perfect restart" assump-

tion: exactly the same access sequence is repeated during restart. Since a �rst-run

execution will \preload" the client cache with the objects that it accesses, using per-

fect restarts can result in very low fetch costs. If a new access pattern is chosen for

a restart, the fetch costs will be closer to the fetch costs for a �rst-run execution.

One contribution of this thesis is to study a range of restart behaviors. We use a

\middle ground" that falls between perfect restarts and new-access restarts for most

of our experiments, and we also perform experiments designed to examine the impact

of restart behavior.

16

1.3 Contributions

This dissertation makes the following contributions to the �eld of client-server con-

currency control:

1. We describe a new optimistic scheme, AOCC, that has both very low message

cost under low contention and low restart costs when aborts occur (under higher

contention).

2. We summarize previous client-server concurrency control studies, and explain

why previously-studied optimistic and semi-optimistic schemes have very high

restart costs.

3. We describe an existing locking scheme, adaptive callback locking (ACBL);

ACBL has been shown to be the best locking design for low-contention work-

loads.

4. We give an analysis that contrasts the ACBL and AOCC designs. For low-

contention workloads, we argue that message count will determine the relative

performance of di�erent concurrency control schemes. We present a simple

message-count model for AOCC and ACBL that demonstrates AOCC's lower

message costs in terms of both number of messages used and number of round-

trip delays.

5. For high contention workloads, we give a model of transaction latency that

breaks down costs into components that can be compared across optimistic

and locking designs. We use this model to show that AOCC should normally

outperform ACBL under high contention.

6. We present results and analysis from a simulation study. We examined AOCC

and ACBL behavior across six di�erent workloads with di�erent sharing pat-

terns, di�erent degrees of inter-transaction locality, and di�erent contention

levels. We also describe sensitivity analysis experiments that show the impact

of varying the system and workload parameters. The results of these experi-

ments are consistent with the expected results derived from our low and high

contention models.

7. Our experiments produced a number of insights into the optimistic/locking

tradeo�:

(a) As predicted by our model, message count determines relative low con-

tention performance. AOCC outperforms ACBL, as expected.

(b) AOCC's advantage over ACBL increases with increased update frequency

and also with increased contention caused by increasing the number of

clients; AOCC scales better with the number of clients. Moreover, AOCC

is less sensitive than ACBL to the quality of write clustering : ACBL's

performance can change signi�cantly depending on whether objects that

17

tend to be updated in the same transaction are clustered together on the

server disks.

(c) For high contention workloads, ACBL su�ers from excessive blocking and

from expensive aborts (due to deadlocks). While AOCC has a much higher

abort rate, its aborts have relatively low cost; the \preloaded" client cache

contents result in fast restart executions.

8. The sensitivity analysis experiments also demonstrate two cases where ACBL

can outperform AOCC. ACBL performs better on read-only transactions, but

only for a multi-server setting, and only when the latency of the read-only

transaction execution is not signi�cantly higher than the latency of a commit

request. (For example, if a read-only transaction incurs latency due to disk

reads, AOCC's use of an extra commit request has little impact on relative

latency.) ACBL also performs better if: there is high contention; restarts do

not repeat previous accesses and moreover tend to access state that was not

recently accessed by earlier transactions; fetch costs for AOCC are much higher

than fetch costs for ACBL due to the fact that AOCC has driven the server

disks into saturation while ACBL has not. This latter case requires both atypical

restart behavior and a \disk poor" server con�guration; this case is unlikely to

occur in practice.

Both the model of transaction latency components and the insights gained from our

performance studies should prove useful for analyzing existing designs and for pro-

ducing new concurrency control designs.

1.4 Thesis Overview

The thesis is organized as follows.

� Chapter 2 presents the details of AOCC and ACBL, the optimistic and locking

schemes used in our comparison studies. It also presents a model of transaction

latency that allows us to compare their expected behavior.

� Chapter 3 discusses related work and compares our work to earlier client-server

concurrency control studies.

� Chapter 4 covers our experimental setup. It describes both our simulator and

the six workloads that we use in our studies.

� Chapter 5 presents our main experimental results for each of our six workloads.

These results are based on a set of default system parameter settings that are

realistic for hardware in use today.

� Chapter 6 describes sensitivity analysis experiments. It explores what happens

as we deviate from the assumptions used in the experiments presented in Chap-

ter 5, and shows that the conclusions drawn from our main experimental results

18

hold across a wide range of system and workload parameter settings. The ex-

periments reported in this chapter also allow us to characterize the conditions

required for locking to outperform optimism.

� Finally, Chapter 7 concludes the thesis by summarizing our contributions and

discussing some areas of future work, including improvements to our optimistic

design.

In addition, Appendix A provides a detailed description of how we chose the

default and \future" system parameter settings used in our experiments.

19

20

Chapter 2

Optimistic and Locking Designs

This chapter describes two concurrency control schemes:

� AOCC, a new optimistic scheme that we designed, is a variant of the \OCC"

scheme [1] we developed for use in the Thor OODB [43]. AOCC retains the

key elements of the OCC design but uses a di�erent underlying architecture

and a di�erent client cache maintenance policy; these changes were required to

perform a meaningful comparison to the ACBL design.

� ACBL is an adaptive-granularity callback locking scheme that is based closely

on the PS-AA scheme designed by Carey, Franklin, and Zaharioudakis [10].

PS-AA's design was inspired by the adaptive locking algorithm described by

Joshi for the VAXCluster version of Rdb/VMS [35]. We use this scheme in

our optimism vs. locking comparison study because previous client-server con-

currency control studies suggest it is the best locking choice for a client-server

OODB. Comparative performance studies by both Franklin and Carey [23, 24]

and Wang and Rowe [57, 58] conclude that callback locking is the best lock-

ing approach for low-to-moderate contention workloads. These studies used

page-level con
ict detection for all of the schemes compared. A later study

introduced adaptive-granularity callback locking and demonstrated that using

adaptive con
ict detection is better than using either purely page-level con
ict

detection or purely object-level con
ict detection [10].

In addition to describing the two schemes, this chapter presents a comparative

design analysis. We de�ne a simple model of the cost of executing a transaction. For

low contention workloads, the model shows that message cost predicts performance.

A message-count model for low contention shows that AOCC has lower message cost

for this case. For high contention workloads, all components in the transaction cost

model are relevant, where some costs are only incurred by locking schemes and some

are only incurred by optimistic schemes. We discuss expected behavior for AOCC

and ACBL in terms of these costs.

The rest of this chapter is organized as follows. Section 2.1 describes assumptions

common to both designs. Sections 2.2 and 2.3 describe the AOCC and ACBL designs,

respectively. A key design goal was to produce AOCC and ACBL schemes that

21

use similar or identical mechanisms wherever possible; this approach allows us to

focus on the fundamental di�erences between optimistic and callback locking designs.

Section 2.4 discusses details of the two designs that are related to this goal. Finally,

Section 2.5 presents the comparative design analysis.

2.1 Common Assumptions

This section describes some common design assumptions that underlie both the

AOCC and ACBL designs described in this chapter.

We assume a single-server system. Thus, multi-server issues, such as the use

of a two-phase commit protocol, are ignored. Both schemes are easily extended to

support the multiple-server case. In addition, we assume one active transaction per

client. Thus, we often use \client C" as a shorthand for \the active transaction T

running at client C." This approach simpli�es the descriptions. Both schemes can

easily be extended to support multiple transactions per client.

The underlying OODB system architecture is the same for both schemes, to allow

a direct simulation comparison of the two designs. We now describe the basic fetch,

commit, and abort processing steps that are used by both schemes, including the client

and server data structures used to carry out these steps. Mechanisms for concurrency

control are omitted from this description.

The system is a hybrid of a page-based system and an object-based system. We

assume that objects are small and do not span pages; pages contain many objects.

The page-level mechanisms are as follows. The client and server both use page-based

caches; these caches store pages and use a page-based LRU replacement strategy.

When a miss occurs in a client cache, a fetch request is used to fetch one page. The

server uses its page cache to handle fetch requests. If a requested page is not in the

cache, it is read from disk into the server cache and then sent in a fetch reply.

There are four object-level mechanisms: objects can be discarded from client

caches; clients can restore modi�ed objects to their committed states if an abort

occurs; object updates (rather than page updates) are sent to the server in commit

requests; and the server uses a modi�ed object bu�er (or MOB) to e�ciently store

recently-committed object updates in main memory. The next two sections describe

how these mechanisms are used at the client and server, respectively.

Common client architecture

A client can discard object X from cached page P by \marking" the object as missing.

Once X is marked as missing, an access to X will cause the client to re-fetch page P,

as a new version of object X must be brought into the cache. Such \object marks" are

stored in the cache along with the page, and are replaced when the page is replaced.

(A bitmap can be used to e�ciently store the object marks for a page.)

When a client fetches a page from the server, the fetch reply contains both a

new copy of the page and an initial set of object marks. (AOCC pages always begin

with no marks, while ACBL pages sometimes begin with a set of initial marks. This

22

distinction is made clear in the descriptions of the schemes.) If the page is already

cached, the new page and marks over-write the existing page and marks. There is

one exception for this over-write step: an object that has already been updated by

an active transaction is not over-written. In other words, uncommitted updates are

not replaced.

In the descriptions below, when we say that a client discards an object, this means

the object is marked as missing. When we say a client discards a page, this means

the page is dropped from the client cache along with any associated marks. When

we say that a fetch reply is installed in the client cache, we mean that the new page

and new marks are installed, possibly using the over-write step just described for the

case where an older version of the fetched page is already in the cache.

The client architecture has a restore-on-abort mechanism that restores the com-

mitted state of objects that were modi�ed by an aborted transaction. There are a

number of ways to implement such a mechanism. We chose to use an object-based

undo log to store unmodi�ed copies of modi�ed objects; object X is appended to this

log prior to the �rst write of X, where X is then updated \in place" in the client

cache. If an abort occurs, the object copies in the undo log are copied back to their

pages to \undo" the aborted modi�cations. Undo logging at the client has very low

space and time overheads. We discuss these costs in Section 2.4.1.

Common server architecture

When a read-write transaction reaches its commit point, the client sends a commit

request to the server that includes object-level updates for each modi�ed object.

At the server, a transaction's updates are written to a reliable transaction log as

part of commit processing. When the commit succeeds, these object updates are

also added to a main-memory structure called the MOB (modi�ed object bu�er).

The MOB holds main memory copies of all updated objects that are not yet safely

installed on the data disks. The MOB is similar to a standard redo log, but is more

compact: if object X has been updated many times, the MOB contains only the most

recent committed state of X. (If main memory is lost, the MOB contents can be

reconstructed from the transaction log.)

The server also has a page-based cache that is used for servicing client fetch

requests. Fetching interacts with the server cache and MOB as follows. When a

fetch for page P occurs, if P is not in the server cache, it is read from disk, and any

P updates stored in the MOB are applied to the cached page. At this point P is

up-to-date and is sent in a fetch reply. If P entries are added to the MOB while P

is cached, they are not applied to the server cache immediately, since it is not clear

that P will be fetched again before it is discarded from the server cache. As a result,

when a fetch request �nds that P is already cached, any MOB entry for P that has

not yet been applied is now applied so that an up-to-date version of P is sent in the

fetch reply. In the detailed descriptions of the schemes, we use \apply all necessary

MOB entries for P objects" as a shorthand for the application of MOB entries just

described.

A background thread at the server is responsible for \cleaning" the MOB so

23

that its size does not grow without bound. This thread selects a set of pages to

be updated based on various criteria (location on disk, time of last update, etc.).

Some of these pages will not be in the server cache; they are read from disk as part

of the update process. The necessary disk reads and writes are ordered by a disk

scheduling algorithm that minimizes seek times at each server disk, resulting in a

high e�ective disk utilization. Once page P's updates are safely on disk, they are

discarded from the MOB.

Ghemawat's dissertation includes a comparison of a MOB-based design and the

more standard approach of installing updates in the server cache at the time of

commit [28]. This study shows that the MOB design has higher write absorption

and makes more e�cient use of the server disks for installations. In addition, mes-

sage sizes are small relative to a scheme that sends page-level updates in commit

requests. (The PS-AA study [10] uses page-level commit requests and a standard

server cache. A \page-merge" operation is used for pages that are read-write shared,

where a disk read is required if the page is not already cached.)

We use a MOB-based server architecture for both concurrency control schemes;

both schemes bene�t from the improved server performance. The use of a well-

performing server is important, since it means any di�erences between concurrency

control schemes are not being masked by other, unnecessary, overheads.

We now describe the designs of the two schemes. The schemes are described

at an abstract level, in the sense that that data structures are chosen for clarity of

exposition rather than for e�cient implementation.

2.2 AOCC

AOCC allows a transaction to use objects in the client cache without any commu-

nication with the server. There are only two times that a client must communicate

with the server, when a cache miss occurs, and at the commit point of a transaction.

While transaction T is running at client C, the client keeps track of the objects

T reads and writes. Object modi�cations are performed \in place" on cached pages,

and the client retains these pages; modi�ed state is not sent to the server until T's

commit point. When this point is reached, the client sends a description of T's reads

and writes to the server along with the new states of objects that T modi�ed. The

server then validates T: it ensures T used only up-to-date versions of all objects it

accessed. In other words, T passes validation if it can be serialized after all previously-

committed transactions
1
. If this check succeeds, T commits, otherwise it aborts and

restarts. The server sends the outcome to the client using a commit reply or an abort

reply.

The basic optimistic design just described is good because it uses the minimum

number of messages required to execute a transaction (for read-write transactions).

For low contention workloads, this low message cost results in excellent performance.

1For a multi-server system, local validation at each server includes checks against other transac-

tions that are also attempting to validate and commit. An e�cient two-phase commit protocol for

this case is described in [1].

24

However, for high contention workloads, if aborts are frequent and restart execu-

tions use as many messages as �rst-run executions, then the total cost per successful

commit will be very high. It is easy to design an optimistic scheme that has good

low-contention performance; providing good performance for high contention is more

challenging.

AOCC is designed to reduce the probability of aborts. However, aborts are bound

to occur under an optimistic scheme, thus AOCC is also designed to reduce the cost

of aborts. Aborts can be detected early (prior to the end of the transaction), avoiding

some unnecessary \wasted work." In addition, restarts are designed to have low fetch

costs and thus to execute very quickly. The result is a scheme that works well across

a wide range of contention levels.

The AOCC design reduces abort probability and lowers abort costs without adding

high message overheads to the basic optimistic design described above. In fact, no ad-

ditional messages are introduced. All extra information exchanged between the client

and server for concurrency control purposes is \piggy-backed" on required messages

(fetch and commit requests and replies).

The AOCC server keeps track of which pages are cached at which clients. When

a commit occurs at the server with updates for pages cached at clients other than

the committing client, the server generates invalidation messages for these clients

so that they will discard their out-of-date state. There is an invalid set per client

used to store unacknowledged invalidation messages (including messages that have

not been sent yet). Invalid sets are piggy-backed on fetch replies and commit replies

sent to the clients, while clients piggy-back acknowledgements for invalidations on

fetch and commit requests
2
. When a server receives a client message, it removes any

acknowledged invalidations from the client's invalid set.

When a client receives an invalidation message, it discards the invalid state from

its cache. (AOCC uses both object and page discards; see Section 2.2.1.) Although

invalidations are piggy-backed after updates have already occurred, each message ex-

change with the server removes all recently-updated state. Thus, client cache contents

remain \nearly" up-to-date, and most aborts are due to real con
icts between trans-

actions executing at approximately the same time. Little cache space is \wasted" for

storing stale state.

If the current transaction T running at a client has already used an invalidated

object, this indicates a con
ict with a recently-committed transaction; the client

aborts and restarts T. Thus, invalidations cause aborts to happen early. In addition

to avoiding unnecessary transaction execution, this mechanism avoids the use of an

unnecessary commit-request/abort-reply exchange with the server, and also reduces

the cost of commit-time validation checking (described below). In other words, the

early abort mechanism \o�oads" a signi�cant amount of work from the server.

AOCC improves restart performance by restoring or updating state in the client

cache that was accessed by the failed transaction. Prior to the �rst update of an

object, a client appends the object's unmodi�ed state to an object-based undo log.

2If there is no normal message tra�c between a client and the server for a long time interval, an

\I'm alive" message exchange occurs for failure detection purposes. Thus, the exchange of invalid

sets and acknowledgements has a bounded worst-case delay.

25

If an abort occurs, the client retains its modi�ed pages. It uses its undo log to

restore the state of any modi�ed object that was not invalidated due to an update

by another client. In addition, the server sends updates in an abort reply for all

objects accessed by the failed transaction that are out-of-date in the client cache.

Due to these restore and update mechanisms, when a restart repeats an access of the

previous failed transaction, it is very likely to hit up-to-date information in the client

cache.

Note that a failed transaction execution has a natural preloading e�ect: fetches

performed during such an execution bring state into the client cache that is likely to

be used by the restart. The client-based restore-on-abort mechanism and the server-

based update-on-abort mechanism both preserve and augment this e�ect. Replacing

these mechanisms with page discards destroys the natural preloading e�ect and results

in high restart costs.

As discussed further in Chapters 4{6, our simulator uses a range of restart as-

sumptions; we do not assume perfect restarts. Even though our default setup does

not use perfect restarts, our results show that AOCC restarts normally have low fetch

costs. Relative to �rst-run executions, restarts are faster and are much more likely to

commit. Overall, fast restarts, low message costs, early abort detection, and \nearly"

up-to-date client caches all contribute to AOCC's good performance.

2.2.1 Detailed Description

AOCC sends piggy-backed information on client requests and server replies. The

server adds object invalidations to each fetch reply, commit reply, and abort reply.

In addition, the server sends object updates in an abort reply for objects that were

accessed by the aborted transaction and are currently invalid in the client's cache. A

client adds acknowledgements for the invalidations it has processed to each commit

request and abort request; it also adds discard noti�cations to inform the server of

recent page discards due to cache replacements. When a client or the server receives a

message, it always processes the piggy-backed information prior to performing other

steps.

AOCC Client Description

The client data structures include the client cache described in Section 2.1. For active

transaction T, the ROS records OIDs (object ids) of objects read by T, while theMOS

records OIDs of objects modi�ed by T. Writes are also considered reads; the MOS

is a subset of the ROS. The undo log contains unmodi�ed versions of MOS objects.

The FetchFlag indicates whether a fetch is in progress when processing invalidations.

1. First read or �rst write of object X on page P.

1a. X is missing from cache. Send server fetch for page P. On reply, process

invalidations (FetchFlag = true). Install the fetch reply; if page P replaces page

Q, send discard noti�cation for Q with next message. If invalidations caused

an abort, restart T, otherwise continue with step 1b.

26

1b. X is in cache. If read access, add X to ROS. If write access, add X to ROS

and MOS and append copy of X to undo log.

2. Transaction T reaches commit point. Send a commit request to the server

with ROS, MOS, and updated object state for each MOS object; wait for reply.

2a. Commit reply. Process invalidations (FetchFlag = false). Clear the ROS,

MOS, and undo log; begin execution of next transaction.

2b. Abort reply. Process invalidations (FetchFlag = false). Install object updates

sent in abort reply. Use undo log to restore state of any MOS object that was

not discarded or updated. Clear ROS, MOS, and undo log; restart T.

3. Processing invalidations

3a. For each invalid object X on page P, if the ROS contains no P objects, discard

page P, otherwise discard object X. Send piggy-backed invalidation acknowl-

edgement to server with highest invalidation sequence number processed and a

list of the pages that were discarded.

3b. If FetchFlag is true and a ROS object was discarded in step 3a, then abort: use

undo log to restore state of any MOS object that was not discarded; clear ROS,

MOS, and undo log. (Step 1a restarts T.)

AOCC Server Description

We assume a multi-threaded server is used, where any necessary synchronization steps

are performed to ensure correct synchronization between threads processing di�erent

client requests. For example, the server must send a transaction-consistent copy of a

page in a fetch reply. We ignore such details to keep the description simple.

The server data structures include a page-based cache and a modi�ed object bu�er

(MOB), as described in in Section 2.1. For each page P, Dir(P) is the (possibly

empty) set of clients caching page P. For each client C, Invalid(C) records a sequence

of ordered invalidation messages for C that have not been sent or have not been ac-

knowledged. Each message in Invalid(C) has a set of object identi�ers and a sequence

number. The server piggy-backs the current contents of Invalid(C) on each message

sent to client C.

1. Piggy-backed information from client C.

On receipt of a message, this processing occurs �rst:

1a. For a discard noti�cation for page P, remove C from Dir(P).

1b. For an invalidation acknowledgement with sequence number N , remove any

message with sequence number � N from Invalid(C). For each page P in the

list of discarded pages sent with an acknowledgement, remove C from Dir(P).

27

2. Fetch for page P from client C. If P is not in server cache, read P from disk.

Apply all necessary MOB entries for P objects to page P. Send C a fetch reply

containing P, and add C to Dir(P).

3. Commit request from C; contains ROS, MOS, object updates.

If no ROS object is present in Invalid(C), commit, otherwise abort.

3a. Read-only commit (MOS is empty). Send commit reply to C.

3b. Read-write commit (MOS not empty). For each page P with objects

in MOS and for each client C' other than C in Dir(P), add an invalidation

message to Invalid(C') containing the P objects in MOS. Force a commit record

containing the object updates to a recoverable transaction log. Add the object

updates to the MOB. Send commit reply to C.

3c. Abort. Send abort reply to C that includes object updates for any invalid ROS

object that is available in main memory (in MOB or cache).

2.2.2 AOCC Discussion

As described above, a commit request is used for both read-only and read-write

transactions. In fact, in a single-server setting, AOCC does not need to use a commit

request for the read-only case. Section 2.5.3 discusses this optimization.

AOCC's use of invalid sets for out-of-date version checking is a novel mechanism

that has some important e�ciency properties. Most optimistic schemes maintain

version information (version numbers or timestamps) for this purpose. To perform

object-level checking, version information must be maintained for each object, re-

sulting in high overhead. For example, if the average object size is 100 bytes, an 8

byte version number adds 8% space overhead. Moreover, it may be necessary to read

version information from disk to validate the read set of a committing transaction.

The use of invalid sets avoids the above problems. No per-object state is used,

and invalid sets remain small as long as client/server interaction occurs on a regular

basis. Since invalid sets are always in main memory, validation never requires disk

reads. For read-only commit replies and for abort replies, no log force is required,

thus the server can process a commit message and generate a reply within a single

short critical section. Note that AOCC only sends new state for an invalid object

in an abort reply if this state is available in main memory; disk reads are not used

by the update-on-abort mechanism. This approach preserves the fast generation of

abort replies. Since invalid set entries for a given client correspond to recent updates

by other clients, new object state is almost always available in main memory (in the

MOB).

2.3 ACBL

To introduce callback locking, we �rst describe a non-adaptive scheme that uses only

page-level locking. We then extend the description to include ACBL's adaptive use

28

of both object-level and page-level mechanisms.

The page-based callback locking design we describe caches read locks across trans-

action boundaries (while write locks revert to read locks on commit). Following

Franklin and Carey we refer to this scheme as CBR [23, 24]. Under CBR, a page is

cached at a client if and only if the client holds a lock on the page; any cached page

that is not write-locked must be read-locked. Many clients can be caching a page

if there is no writer, while if a client holds a write lock, it must be the only client

caching the page.

When a client �rst accesses cached page P, if the access is a read access, it is

performed immediately; the presence of P in the cache implies permission to read it.

However, if the �rst access is a write, the server is sent a write lock request for P.

When a lock-granting reply is returned, the client records the fact that it now holds

a write lock on P; additional write accesses to P by the current transaction do not

require write lock requests. For a missing page, a read fetch or write fetch is sent to

the server (depending on the mode of the access that caused the fetch). A page is

returned; for a write fetch, a write lock is also returned, allowing further writes to

the page. When a successful commit occurs, write locks on cached pages are released;

normally, read locks are retained and the pages remain cached.

The server keeps track of which clients are caching which pages; a directory data

structure maps a page to the clients caching the page. The directory is updated each

time a client is sent a page and each time the server learns that a client has discarded

a page. Since additions are immediate while removals involve communication, the

directory is a conservative estimate of the actual contents of client caches. (This is

true for the directory in AOCC as well.) Every client caching page P is implicitly

holding a read permission; the directory is an e�cient way to keep track of a very

large set of read locks. (The server uses standard read-write locking structures for

pages that are being updated. The set of pages with active updaters is much smaller

than the set of all pages cached at clients.)

The server coordinates read-write access to shared pages via its handling of the

read and write fetches and write lock requests sent from the clients. When client C

sends either form of write request for page P, the server sends a callback request for P

to any client other than C that is caching page P. When a client receives a callback

for P, if the current transaction has not already read the page, P is discarded and a

callback acknowledgement is sent to the server. If the page has already been read,

the callback blocks at the client until the local transaction completes; at this point

the page is discarded and the deferred callback acknowledgement is sent to the server.

Once all callbacks for P have been acknowledged, the server knows that C is the only

client caching P, and grants a write lock on P to client C.

When a callback is blocked due to a local reader, the callback acknowledgement is

deferred, but an immediate message is sent to the server indicating that a block has

occurred. Thus, the server is informed of all blocking initiated at clients. (Additional

blocking can occur at the server.) By collecting accurate blocking information, the

server is able to detect a deadlock cycle. When such a cycle occurs, the youngest

transaction is aborted and its client discards all pages necessary to resolve the dead-

lock.

29

To understand the bene�ts of caching read locks across transaction boundaries,

one must compare CBR to a two-phase locking (2PL) scheme that does not retain

locks across transaction boundaries. A 2PL scheme uses a round-trip lock request for

each new page access, for both read and write accesses. CBR avoids lock requests

for read accesses to cached pages, but it can incur two round-trip delays for a write

lock request. Since read accesses are normally more frequent than write accesses, the

message tradeo� made by CBR should result in lower message costs when compared to

a 2PL scheme. Several performance studies have demonstrated that CBR outperforms

a 2PL scheme except when high contention workloads are used [23, 24, 57, 58].

CBR has excellent performance for read accesses, and moreover the cost of a write

lock acquisition is amortized across accesses to multiple objects on a page. However,

the use of page-level locking can perform unnecessary blocking due to false sharing :

two transactions can con
ict over page P even if the object accesses performed by

these transactions are disjoint. One can use an object-level locking scheme to avoid

this false sharing problem, but this approach introduces a new problem: if a scheme

always uses object-level locking, every object update requires a new write lock acqui-

sition. Moreover, for a callback locking scheme, if clients always discard individual

objects when they receive callback requests, a client can be sent multiple callbacks

for a set of updates to a single page.

The ACBL design uses adaptive-granularity locking to avoid unnecessary blocking

due to false sharing while still retaining the bene�t of amortized costs for most write

lock acquisitions. For pages that are not concurrently read-write shared by two or

more clients, ACBL uses page-level locking; for pages that are read-write shared,

ACBL switches to object-level locking. If concurrent read-write sharing is rare, a

client normally uses one write lock request per page updated.

In addition to using two granularities for locks, ACBL uses two granularities for

processing callback requests at clients. When possible, clients discard pages from

their caches in response to callbacks; if necessary, object discards are used instead

while the page remains cached. When a page discard is used, the client is sent only

one callback for a page when another client begins to update this page.

These two adaptive mechanisms are clearly related. In fact, the adaptive locking

mechanism requires the use of the adaptive cache discard mechanism. Therefore, we

�rst describe adaptive callbacks, and then adaptive locking.

When a client C receives a callback for object X on page P, if the local transaction

T running at the client has not read any P objects, C discards P; if T has read some

P objects but has not read object X, C discards object X but retains P; if T has

read X, C blocks the callback request until transaction T completes, then discards

the page. The server is immediately informed of which of these three cases occurs;

for the case where the callback is blocked, a callback acknowledgement is sent to the

server once page P is discarded.

At the server, when there is a write lock request for object X on page P, a callback

request containing X and P is sent to all clients caching page P. After all callback

acknowledgements have been received, one of two cases will hold: either all the call-

backs ultimately resulted in page P discards, in which case a page-level write lock is

granted, or some callbacks resulted in object X discards, in which case an object-level

30

write lock is granted.

Clients can read any object in their cache; discarded objects are not cached, and

cause page fetches if accessed. For a page P where object-level locking is used, many

clients can be caching P, but if object O is write-locked, only the write-lock holder

will have object O in its cache; the other clients have marked O as \missing" from

their caches. Such \object marks" are added to a page as objects are discarded due to

callbacks. In addition, when the server sends page P in a fetch reply, it must include

an initial set of object marks for objects that are write-locked by other clients; these

marks are installed along with the fetched page. (Most pages have no object-level

writers and no object marks.)

After the server has granted client C a page-level write lock for page P, another

client C' can send a fetch request for X on this page. In this case, the server sends

a lock de-escalate request
3
to C; this request causes C to discard its lock on P. C

retains object-level write locks on the P objects that the current transaction has

already modi�ed; it sends a list of required object-level write locks to the server in

the lock de-escalate reply, and the server grants these write locks prior to processing

the original fetch request. As long as the fetch from C' does not con
ict at object-

level with one of the locks granted to C, client C' can be granted an object-level lock

and sent a fetch reply.

Thus, page-level write locks do not cause immediate blocking. A de-escalation

is always performed when a second client wishes to use a write-locked page, and

blocking only occurs if an object-level con
ict exists. Similarly, a callback request

only blocks at a client if an object-level read-write con
ict occurs, and the server only

uses write-write blocking if it receives two write requests for the same object. Since

blocking never occurs at the page level, false sharing cannot occur.

2.3.1 Detailed Description

This section presents a detailed description of the ACBL client and server. In this

description, callback requests and lock de-escalate requests have been folded together:

\callback" requests are used for both purposes.

A client maintains a PROMISES set listing ids of objects it has \promised" to

discard once its transaction T reaches its commit point. These are objects for which

the client refused a callback since they were in use by T. Additionally, both commit

and abort replies contain a \discard list" listing ids of objects to be discarded. (An

abort reply happens in response to a fetch request when the server has broken a

deadlock by aborting this client's transaction.) These are objects where the server

did not send callbacks because it knew (because of responses to previous callbacks)

that the request would have been refused.

3If C' sent a write fetch request and C holds a page-level write lock, the lock de-escalate request

also performs a callback for X.

31

ACBL Client Description

The client data structures include the client cache described in Section 2.1 and the

ROS, MOS, and undo cache described in Section 2.2.1 (as used by the AOCC client).

Two additional sets are used. PLOCKS records page IDs for the page-level write

locks granted to the client. PROMISES records the OIDs of objects the client has

promised to discard once active transaction T reaches its commit point.

1. First read or �rst write of object X on page P.

1a. X is missing from cache or access is write and P is not in PLOCKS.

Send server fetch or lock request that includes X, P, and access mode (read or

write); wait for reply.

i. Abort reply. Discard any page containing either an object in PROMISES

or an object in the discard list sent in abort reply. Use undo log to re-

store state of any MOS object that was not discarded. Clear ROS, MOS,

PLOCKS, PROMISES, undo log; restart T.

ii. Fetch or lock reply. If fetch reply, install the page and initial marks; if

page P replaces page Q, send discard noti�cation for Q with next message.

If reply indicates page-level write lock was granted, add P's ID to PLOCKS.

If reply includes \Add to PROMISES" directive, add X to PROMISES.

Continue with step 1b. (Add to PROMISES occurs when this client was

blocked and later removed from a queue for X and other clients remain on

the queue.)

1b. X is in cache; C holds required lock. If read access, add X to ROS. If

write access, add X to ROS and MOS and append copy of X to undo log.

2. T reaches commit point.Discard any page containing an object in PROMISES.

2a. MOS is empty. If PROMISES is not empty, send the server an asynchronous

read-only commit noti�cation. No wait occurs; continue with step 2c.

2b. MOS is not empty. Send a commit request to the server with the MOS and

updated object state for each MOS object; wait for commit reply. Discard any

page containing an object in the discard list sent in the commit reply; continue

with step 2c.

2c. Clear ROS, MOS, PLOCKS, PROMISES, undo log; start running next trans-

action.

3. Callback request for object X, page P, mode (read or write). Send call-

back reply after performing steps 3a and 3b to determine contents of reply:

3a. If P is in PLOCKS, remove P from PLOCKS and include list of OIDs for P

objects that are in MOS in the callback reply.

32

3b. If mode is write, apply one of the following three cases: If no P object is in ROS,

discard page P; if a P object is in ROS but X is not, discard object X; if X is

in ROS, \refuse" to discard X and add X to PROMISES. Include description

of action taken in the callback reply.

ACBL Server Description

We assume a multi-threaded server is used, where any necessary synchronization

steps are performed to ensure correct synchronization between threads processing

di�erent client requests. In addition, to keep the description simple, we describe fetch

processing and commit processing as if they were atomic steps. (Many interesting

cases are therefore ignored; Section 2.3.2 provides an example of such a case.)

The server data structures include a page-based cache and a modi�ed object bu�er

(MOB), as described in in Section 2.1. For each page P, Dir(P) is the (possibly

empty) set of clients caching page P. C's presence in Dir(P) indicates that implicit

read permissions have been granted to C for some or all of the objects on page P.

For each page P, either zero or one client holds a page-level write lock. For some

pages the server allocates object-level locks, or O-locks. An O-lock is a read-write

locking structure with an ordered wait queue; locks are granted in request order. O-

locks are allocated (steps 2 and 5) and de-allocated (step 8) on a dynamic basis such

that the the following invariant always holds: there is an O-lock for object X if and

only if X has a writer or a write waiter. Thus, \X has an O-lock" always implies a

writer or write waiter, while \X does not have an O-lock" always implies the opposite.

If an O-lock is used to block a writer on a reader, the reader has been granted an

explicit read lock . Clients in Dir(P) hold implicit read locks for any P object that has

no O-lock.

Steps 2 and 3 describe fetch requests and fetch replies (respectively) but do not

describe write lock request processing. A write lock request for object X on page P

performs the same lock acquisition steps as a write fetch, and a page is not normally

sent in the reply. However, if this request is added to X's wait queue behind a writer

or write waiter then once the lock is granted, processing continues as if this were a

write fetch request.

1. Piggy-backed discard of page P from client C.

Remove C from Dir(P).

2. Sever receives fetch for object X, page P, mode (read or write).

If P is not cached, initiate a disk read for P. The rest of step 2 can be performed in

parallel with this read.

On fetch arrival, one of three cases holds: (2a) callbacks are required; (2b) blocking

is required; (2c) a lock can be granted immediately. The details are as follows:

2a. Dir(P) contains clients other than C and there is no O-lock for object

X. For each client C' other than C in Dir(P), send C' a callback containing X,

P, and mode. On callback completion, if page write lock was held, it has been

de-escalated and some object-level write locks are now held. If mode is write,

33

any client that refused to discard object X now holds an explicit read lock on

X. If a read or write lock now exists for X, continue with step 2b, otherwise 2c.

2b. There is an O-lock for object X. Add C's fetch request (including mode)

to the wait queue of object X; trigger deadlock detection. If a lock is granted,

continue with step 3; if an abort occurs, continue with step 4. (Blocking occurs

in either case unless an immediate abort occurs.)

2c. There is no O-lock for X and P is not write-locked. If mode is write:

if there is no O-lock for any P object, grant C a page-level write lock on P,

otherwise allocate an O-lock for X and grant C a write lock on X. Continue

with step 3.

3. Send fetch reply to C for fetch of object X on page P.

If P is not in cache, block until disk read for P completes. Apply all necessary MOB

entries for P objects to page P.

3a. There are no O-locks for P objects. Send fetch reply to C with page P (no

initial marks); reply indicates whether C holds page-level write lock on P. Add

C to Dir(P).

3b. There are some O-locks for P objects. Send fetch reply to C with initial

mark for each P object O such that O has an O-lock and C is not currently

holding a lock on O. If C holds explicit read lock (due to queued write waiter)

send \Add to PROMISES" directive in fetch reply. Add P to Dir(C).

4. Send abort reply to C for fetch of object X on page P.

(Deadlock detection discovered a cycle involving C; C's transaction was youngest in

cycle.) Send abort reply to C with object discard list containing the OID of each

object O where C holds a write lock on O and there is a write waiter. For each object

O on page Q added to this list, remove C from Dir(Q). Release all of C's object-level

locks and remove C's request from the wait queue of X. For each read lock release

for object O on page Q, remove C from Dir(Q).

5. Callback reply from C for object X, page P, mode (read or write).

5a. If C holds page-level write lock on P, allocate object-level locks and make C the

write lock holder for the list of P objects sent in callback reply, then release C's

page-level write lock on P.

5b. If mode is write, reply indicates one of three actions taken by C. If action was

page discard, remove C from Dir(P); if action was object discard, do nothing; if

action was \refusal" to discard X, grant C an explicit object-level read lock on

X (allocate locking structure for X if not already allocated). If this is last out-

standing callback reply (for X/P) resume processing of request that generated

the callback.

34

6. Commit request from C with MOS, object updates.

Release all object-level read locks held by C. For each read lock release for object

O on page Q, remove C from Dir(Q). Force a commit record containing the object

updates to a recoverable transaction log. Add the object updates to the MOB. Send

a commit reply to C with object discard list containing the OID of each object O

where C holds a write lock on O and there is a write waiter. For each object O

on page Q sent in discard list, remove C from Dir(Q). Release all object-level and

page-level write locks held by C.

7. Read-only commit noti�cation from C.

Release all of C's explicit object-level read locks. For each lock release for object O

on page Q, remove C from Dir(Q).

8. Object-level lock release for object X on page P.

(Steps 3b, 3c, 6 and 7 release object-level locks.)

8a. If no lock holder remains after lock release and there are waiters, remove �rst

request from X's wait queue and grant requested lock. If read lock granted and

the new �rst waiter is a read request, remove this waiter and grant another

read lock; repeat until queue is empty or �rst waiter is a write waiter. Server

remembers which lock requests were just granted, if any, and resumes processing

of the associated client requests after completing steps 8b and 8c.

8b. If there are no writers or write waiters for X, de-allocate X's O-lock.

8c. If all allocated O-locks for page P are write locks held by a single client C

and no other client is caching P or attempting to cache P (i.e., no in-progress

fetches, no lock waiters, no Dir(P) entries for a client other than C) then grant

a page-level write lock on P to client C and de-allocate all O-locks for page P.

Note: when a write waiter is removed from a wait queue due to an abort (step 4),

it is sometimes possible to grant read locks, and a discard of the locking structure

occurs if there is no writer or write waiter.

2.3.2 ACBL Discussion

Like AOCC, ACBL avoids per-object space overheads for concurrency control pur-

poses. ACBL ensures that cached objects are always consistent with the committed

state of the database, thus version checking is not required, and ACBL does not

maintain per-object version information. Moreover, object-level locking structures

are only used for fraction of the objects in active use by the clients.

AOCC and ACBL clients have similar complexity. The ACBL client must handle

asynchronous callback requests, but apart from this factor the two client designs are

actually very similar. However, the two server designs have very di�erent complexity:

the ACBL server is signi�cantly more complex, due to the management of multiple

locking granularities and to the asynchronous nature of the design. Since we ignored

synchronization issues, the detailed description of ACBL given above is much simpler

35

than the corresponding implementation in our simulator. In contrast, the AOCC

server description is a much closer approximation to the corresponding simulator

implementation.

In addition to ACBL's inherent complexity, there are a number of opportunities

for optimization that improve performance but also complicate the implementation

further. Here is one example of such a case. Suppose client C's write fetch request

results in a page-level write lock on page P, but a fetch reply has not been sent

yet because a disk read for P is still in progress. If another fetch request for a P

object arrives at the server, the page-level lock should be \de-escalated" immediately.

The alternative is to send the client a page-level write lock and then to immediately

send a lock de-escalate request, which is clearly more expensive. (We included this

optimization in the simulator implementation of ACBL. While we obviously did not

implement all possible optimizations, we attempted to cover cases where it is clear

that message savings can be achieved.)

In addition, all read-write locking schemes have some inherent problems that are

not shared by optimistic schemes. We discuss three such problems here.

First, for a multi-server system, a locking scheme must implement distributed

deadlock detection. This adds complexity to the implementation. More importantly,

average blocking delays increase when distributed cycles occur; high-contention per-

formance su�ers in a multi-server setting.

Second, OODB applications are highly susceptible to deadlocks due to the frequent

occurrence of reads that are later followed by writes, i.e., many lock upgrade requests

occur. It is well known that lock upgrades are a common source of deadlock. If two

clients run the same transaction code and this code reads X and later writes X, each

transaction will acquire a read lock and then both transactions will block attempting

to obtain a write lock, creating a deadlock. (This is the most straightforward case;

multiple-object cases also occur.)

In a relational database, queries that perform updates are distinguished from

queries that do not; updates are \transparent" to the system, giving the system a

chance to avoid the use of lock upgrades (at least within a single query). In con-

trast, most OODB applications are written in a declarative programming language

(the most common case being an extension of C++). In this case there is no pre-

declaration that writes will occur. Since an object's state is normally \observed"

before it is updated, most writes are preceded by reads. While one solution to this

lock upgrade problem is to allow application programmers to use special pragmas that

pre-declare the need for a write lock, this approach places an unnecessary burden on

the programmer.

A third problem is related to the lock upgrade problem. Since most writes are

preceded by reads, a combined write lock and page fetch request (a \write fetch")

will very rarely occur. In fact write fetches will be rare even if write accesses are not

preceded by read accesses: since most accesses are reads, there is a high probability

that the �rst access that \misses" on page P is a read. In particular, when object X

is on the same page as another object Y that is \traversed" to \get to" X so that X

can be modi�ed, this traversal performs a read access for object Y prior to modifying

X, causing a read fetch rather than a write fetch. Such a scenario is common. For

36

example, X might be used as part of the internal representation of Y, and objects in

such a relationship are often clustered on the same page.

In summary, there are three performance problems associated with read-write

locking: (1) distributed deadlock detection is required for multi-server systems, and

the occurrence of distributed cycles causes an increase in the average blocking delay;

(2) lock upgrade requests are common, and are prone to deadlock; (3) updates to pages

will almost always require both a fetch request and an independent write lock request.

In contrast, for all optimistic designs (including AOCC) no deadlock detection is

required. Moreover, the inability to anticipate that a write access will occur has no

impact on performance.

As discussed in Chapter 4, the workload generator for our simulation studies uses

a simple transaction model where each object accessed by a transaction is only used

once, either as a read access or as a write access. This model is used for reasons

of simplicity. Under this model, lock upgrades do not occur, while write fetches do

occur. Thus, this model \favors" ACBL, and it is likely that our results over-estimate

ACBL's performance when used with a real application workload.

2.4 Design Discussion

One of our design goals was to use the same mechanisms for both AOCC and ACBL

when this was feasible, so that our comparison study could isolate the fundamental

di�erences between these optimistic and callback locking designs. As a result, both

schemes use an undo log to restore modi�ed objects on abort, and both schemes use

an adaptive rule for deciding whether to discard an object or its page from a client

cache. Section 2.4.1 discusses the undo log, while Section 2.4.2 discusses adaptive

discard policies.

The implementations of AOCC and ACBL used in our simulation studies both

use an adaptive-granularity directory structure at the server. This directory is used

to avoid generating unnecessary invalidations or unnecessary callbacks. Section 2.4.3

discusses the advantages and disadvantages of using this approach (for both AOCC

and ACBL). Note that adaptive tracking of cache contents is not included in the

descriptions given above. Describing how to add this feature is not hard, but including

it in our summary descriptions results in too much detail.

2.4.1 Undo log

AOCC clearly gets more bene�t from undo logging, as it incurs more restarts; a

practical implementation of ACBL might not use undo logging. This raises two

fairness question for our simulation study. If undo logging were removed from ACBL,

would this signi�cantly lower ACBL's client processing costs, or would it provide a

signi�cant amount of additional memory so that more pages could be cached at the

client? If the answers to these questions were \yes," our performance study would

have under-estimated ACBL's performance.

Undo log space overhead is low due to the use of object logging. Suppose the pages

37

touched by one transaction use 25% of the client cache slots, 20% of these pages are

modi�ed, and the modi�ed objects on an updated page represent an average of 20%

of the page size. In this case the undo log state represents 1% of the client cache size.

Measurements of the Thor object-oriented database system [43] show that undo

log maintenance has very low cost. For example, for the \T2b" traversal from the

OO7 benchmark [8], the overhead for maintaining an undo log was less than 2.5% of

non-commit latency for a \hot" traversal that used no fetch requests, and less than

0.5% for a traversal that did use fetch requests [13]. For the T2b traversal, roughly

one in four object accesses is a write; we expect most workloads have low undo log

costs compared to this traversal.

Given the low overhead of undo log maintenance, we decided not to introduce

a CPU charge for copy-on-write in our simulation model. To verify that this deci-

sion does not unduly favor AOCC, we performed some simulation experiments that

compare a normal ACBL setup with an AOCC setup that uses a higher \write think

time" (the client CPU charge per write). As expected, there was little change in

relative performance (less than 1%). Thus, our decision to use the undo log for both

schemes has no signi�cant impact on our relative performance results.

Note that there is another common approach to providing client-based undo: ob-

jects are copied on �rst use or �rst update from a shared cache to a private cache, thus

unmodi�ed object copies remain at the client (in the shared cache), and discarding a

modi�ed private copy of an object \restores" its state. Many commercial and research

systems use per-application private caches, including systems that use optimism (see,

e.g., GemStone [6]) and systems that use locking (see, e.g., SHORE [9]).

2.4.2 Adaptive Cache Maintenance

The fundamental adaptive cache discard rule is this: discard the page if the current

transaction is not using it; otherwise discard the object. ACBL and AOCC both

apply this rule to callbacks and invalidations. This adaptive rule is an integral part

of ACBL's design; we \mirrored" this rule in AOCC's design so that the two schemes

would perform similar client cache maintenance actions.

There is one di�erence between the designs: di�erent approaches are used for

commit and abort processing. For AOCC, if invalidations are processed at the commit

or abort point of a transaction, invalidations cause object discards for pages that were

accessed by the completed transaction, and cause page discards otherwise. Thus,

AOCC always uses the adaptive rule, where it treats a transaction's accesses as \in

use" during commit and abort processing.

In contrast, ACBL uses page discards for \deferred callbacks" that are processed

on transaction completion (commit or abort). Discards for deferred callbacks are

recorded by the client in the PROMISES set, while an additional list of discards is

sent in commit and abort replies. Page discards are used because there is always

an associated write waiter; a page discard may allow a page-level write lock to be

granted. (A clever implementation of ACBL can detect cases where a page discard

cannot possibly result in a page-level write lock being granted; object-level discards

can be used for these cases.)

38

Our experiments show that the caching behavior of the two schemes is very similar.

While there is a time lag when you compare aggressive cache maintenance (callbacks)

and lazy cache maintenance (piggy-backed invalidations), this timing di�erence has

little impact on overall caching behavior. For both schemes, clients normally use

object discards for frequently accessed pages and page discards for other pages. The

\steady state" content of a client cache is determined by the access pattern used at

that client and the update patterns used at other clients.

It was important to \control" for caching behavior to perform our initial com-

parison study; using a di�erent cache maintenance strategy for AOCC would cloud

the analysis of our results. Now that we have performed a large set of experiments

using this controlled approach, it would be reasonable to do a \companion study"

that examines the use of several caching strategies for AOCC. Using page discards

\whenever possible" is probably \too eager" a strategy; it seems better to retain

recently-used pages and frequently accessed objects.

2.4.3 Adaptive Directory Information

If an object has been discarded from a cached page, we say the object has been

\marked" as missing. Marks are used in the descriptions of AOCC and ACBL given

above: client caches record marks as they discard objects from cached pages, and

moreover the ACBL server sends \initial marks" for page P (for objects that the

fetching client does not have permission to read). As described above, the AOCC

and ACBL servers do not track the marks in client caches; the directory at a server

only tracks which pages are cached at each client. In contrast, the implementations

of AOCC and ACBL used in our simulation study do track object marks. This

section brie
y describes this mechanism and its implications for AOCC and ACBL

performance.

Each server records marks as it learns of object discards, while the ACBL server

also records the initial marks for pages sent in fetch replies. (AOCC always sends

\full" pages.) Mark information is discarded when a page is discarded or when a page

is re-fetched and a \full" version is sent to the client. The space used for tracking

object marks is reasonable for our simulation environment. However, a practical

implementation would need to limit the space allocated for this purpose. We believe

a simple strategy would work well: for each client, the server should keep the N

most recent marks, i.e., the N most recent object-level discards. N only needs to

be large enough to retain marks for the most frequently-updated objects; the space

requirements for storing \recent marks" should be quite reasonable.

When object mark information is available, it is used as follows. Under AOCC,

an invalidation for object X is not added to client C's invalid set if C is not caching

X. Under ACBL, a callback for object X is not sent to client C if C is not caching X.

Thus, unnecessary invalidations and callbacks are avoided. When mark information is

not available and unnecessary invalidations or callbacks are used, they are \harmless;"

they do not cause additional aborts or additional blocking. Tracking object marks is

an optimization; it is not required for correctness.

Both schemes derive bene�ts from this approach. AOCC invalid sets are smaller,

39

thus message sizes are smaller, the clients perform less invalidation processing on

message reception, and the server uses a smaller invalid set when it performs a commit-

time validation check. ACBL bene�ts even more since it avoids callbacks for pages

that are read-write shared. For example, suppose a client has updated object X

using an object-level write lock, and then performs another write access to X in a

subsequent transaction. Assuming no other client is caching X, the server can grant

another object-level write lock for X immediately, even if many other clients are

caching X's page.

For both schemes, the omission of an invalidation or callback has another implica-

tion: the client that is not contacted will not discard the page. For ACBL, there is a

potential problem case due to omitted callbacks: if a client is not actively using page

P but has some \old marks" for P objects, it may not be sent a callback, in which

case it will not discard P, and page-level write locks will not be granted to clients

that are using the page.

This \old marks" problem case is easily eliminated. If the server only retains

\recent marks," as suggested above, the server will not retain \old marks" and it will

end up sending callbacks to clients that are no longer using a page with some marks

on it. (The server will only know about marks for pages that the client has accessed

recently, since marks are only generated for pages that a client is actively using.)

For our simulation study, where all marks are retained at the server, this \old

marks" case is very unlikely to occur, and, if it does occur, the phenomenon will be

short-lived. Our workload generator uses uniform random selection for choosing the

updates on a page. After client C is no longer using a page, each new update to the

page is random with respect to any marks at client C. Thus, with each update to

page P it becomes increasingly likely that C has discarded the page due to a callback.

It is true that the existence of some marks on a page can add a small delay to the

discard process. However, we believe that adding some hysteresis to the mechanism

that \switches" back to the use of page-level locking is likely to be useful. If the page

is not in use, the switch will occur. If the page is still in use, a small delay may

prevent an \eager" page discard. When a page that is actively read-write shared by

multiple clients switches to page-level locking, this switch can have signi�cant costs

associated with it: unnecessary callbacks are used, page discards occur; the page

discards are soon followed by re-fetches of the page, and these fetches are delayed

while a lock de-escalation is carried out.

The worst-case example for \eager" page discards is an ongoing false sharing

scenario between two clients. Suppose clients X and Y are read-write sharing page P,

where X is not reading objects that Y updates and vice versa. Clients X and Y never

need to use a fetch for page P: one client never needs to fetch the updates performed

by the other. If each client has marked the objects that are being updated by the

other client and the server uses this information to avoid callbacks, no callbacks are

ever used: write lock requests can be granted immediately at the server, and moreover

page P is never discarded and then re-fetched. In contrast, if a P update by one client

causes the other to receive a callback, this callback either adds latency to an object-

level write lock grant and has no other e�ect, or it causes a page P discard. In the

latter case, as soon as the client that discarded P uses it again, P is refetched; the fetch

40

itself is expensive, and it may also be necessary to carry out a lock de-escalation prior

to sending the fetch reply. (Eager discards for pages where an object is actually both

read and written by multiple clients are ultimately less costly than the false sharing

case, as fetches are required to move updated state from one client to another.)

2.5 Design Comparison

This section analyzes the expected relative performance of AOCC and ACBL. Sec-

tions 2.5.1 and 2.5.2 consider performance for workloads with low and high contention,

respectively, while Section 2.5.3 discusses read-only transaction performance. The

simulation studies presented in Chapters 4{6 validate the analysis presented here.

The average latency for a successful transaction commit can be modeled by the

following formula:

latency = success-latency + failure-latency

success-latency = Es + Fs + Ls + Bs + Cs

failure-latency = Ef + Ff + Lf + Bf + Cf
where

E = Execution latency at client for local read and write accesses

F = Fetch latency for fetch requests/replies, including disk read latency

L = Lock request latency for lock and callback requests/replies

B = Blocking latency at server due to object-level con
icts

C = Commit latency for commit requests/replies and processing at server

Note that we divide the costs associated with locking into two components. L is

the message latency due to the use of locking; B is the latency due to waiting in an

object-level lock queue at the server for a lock release. (When callbacks are used,

blocking begins after all replies have been processed.) If ACBL uses the same write

fetch request to both acquire a lock and fetch a page, the request and reply between

the fetching client and the server fall under F, while callbacks fall under L. In both

cases, any blocking that occurs falls under B.

AOCC's main advantage is that it has no L or B costs. ACBL's main advantage

is that it has low failure costs.

2.5.1 Low Contention

This section considers low-contention performance for read-write transactions. Under

low contention, an optimistic scheme incurs few aborts while a locking scheme incurs

little blocking due to real data con
icts; the failure terms and B terms are small

enough to ignore. This leaves the following latency breakdown:

latency = Es + Fs + Ls + Cs

Since each scheme tends to execute a transaction just once, the number of accesses

by each scheme is roughly the same; the same holds for number of fetches. Thus, the

41

E and F terms are roughly equal; the L and C terms determine relative performance.

Both schemes have roughly the same C cost, thus the di�erence between the schemes

is ACBL's L cost for lock and callback messages:

Read-Write Transaction

di�erence(ACBL-AOCC) = Ls cost for ACBL

For a lock request or callback request that succeeds immediately, which is the com-

mon case under low contention, processing the request is very fast: only main-memory

data structures are used. Thus, ACBL's additional cost Ls is almost entirely due to

message costs. Since both schemes use the same number of large messages (fetch

replies and read-write commit requests), the di�erence in message cost can be ap-

proximated by comparing message count . In short, message count predicts relative

performance for low contention workloads.

Low-Contention Message Count Model

Figure 2-1 presents a simple message count model for the page-level accesses per-

formed by a transaction. For low contention, we expect page-level write locks are

granted, thus we only need to consider page-level accesses to produce a message count.

The �gure also summarizes the message counts required for read-write commits.

Message Count Round-Trip Count

AOCC ACBL AOCC ACBL

read hit: 0 0 0 0

read miss: 2 2 1 1

write hit: 0 2+2K 0 1 or 2

write miss: 2 2+2K 1 1 or 2

read-write commit: 2 2 1 1

Figure 2-1. Low Contention Message Count Model

AOCC uses a round-trip request to the server only to fetch a missing page and

to request a commit. ACBL uses a round-trip request to get a page-level write lock

on a cached page that is to be written; this request results in K callbacks, where

K is the average number of clients contacted per write lock acquired; it grows with

the number of clients, since more clients will be caching the same page. When K is

zero, only 1 round-trip is used per write lock, since no callbacks are sent, otherwise

2 round-trip latencies occur. (Callbacks occur in parallel, thus a set of callbacks has

one round-trip latency.)

The reason for showing both message count and round-trip count is that the actual

messaging costs incurred by ACBL are not captured exactly by either count; callbacks

are sent in parallel, but even if the server were to use a multicast, it must process the

42

replies individually. (The server can send one message, but must receive K replies.)

So the real cost is somewhere between the apparent cost as represented by the two

counts. Regardless of which count we look at, we can clearly see that AOCC is always

the same or better.

To make things more concrete, we apply this count model to a speci�c workload.

Suppose a workload results in the following average page-level access pattern per

transaction: 12 read-hits, 4 read-misses, 3 write-hits, and 1 write-miss. (This is a

75% page hit ratio at the client and a 20% page update probability; approximately

what the HOTCOLD workload produces with perfect write clustering, i.e., the most

favorable case for ACBL.) In addition, each transaction uses a commit request and

reply. Our model gives the following counts:

AOCC message count: 12

AOCC round-trips: 6

ACBL message count: 18+8K

ACBL round-trips: 9 or 13

With K = 0 (no callbacks required to obtain a write lock), ACBL uses 50% more

messages (18 vs. 12) and 50% more round-trips (9 vs. 6). With K > 0, ACBL uses

around twice the round-trips (13 vs. 6). The number of extra messages used by ACBL

depends on the number of clients K that must be contacted (on average) to acquire

a write lock. For K = 2, ACBL uses nearly 3 times the messages (34 vs. 12).

While AOCC has lower costs than ACBL, and is clearly the better scheme for

low contention workloads, it is important to point out that ACBL is a well-designed

locking scheme: other locking schemes have higher messaging costs. For example, an

alternative to ACBL is a client-server implementation of standard two-phase locking,

where the server maintains all locks and a round-trip is required for every new read

or write access. Standard two-phase locking requires 2 messages (1 round trip) per

page access, regardless of whether the page is cached. For the speci�c example above,

standard two-phase locking would use 42 messages (21 round-trips). Thus, as long as

K is not too large, ACBL is a better scheme than standard two-phase locking.

Write Clustering In the example above, the object writes performed by the trans-

action caused 4 of 20 accessed pages to be modi�ed. In other words, if there were 40

objects writes, these writes were \clustered" onto just 4 of the 20 pages accessed. A

much worse scenario could occur: the 40 writes could be spread across all 20 of the

accessed pages, causing 20 page updates. In this case ACBL would require 22+ 20K

messages, rather than 18 + 8K. Thus, the quality of write clustering has a large

impact on ACBL's message costs. In contrast, AOCC is relatively immune to the

quality of write clustering. For the 20 page update example, AOCC's message count

would remain the same: 12 messages would still be used. Note that page updates

cause pages at other clients to be discarded; poor write clustering results in higher

fetch costs for both schemes. The key point is that AOCC is relatively immune to

write clustering as compared to ACBL.

43

For our comparison study, we chose to model three di�erent write-clustering cases:

good, average, and poor write clustering. The details are explained in Chapter 4.

Most experiments use average write clustering, while Section 6.2.1 presents sensitivity

analysis experiments that demonstrate the impact of varying the quality of write

clustering.

2.5.2 High Contention

This section considers high-contention performance for read-write transactions. As

contention increases, AOCC's failure costs increase, while ACBL's locking and block-

ing costs increase. ACBL also starts to have failure costs as contention leads to

deadlock-induced aborts.

For each successful commit, both schemes must carry out a set of successful execu-

tions and a commit request, thus Es and Cs costs are roughly equal. For transactions

that perform a number of fetches, most AOCC aborts are detected early. As a result,

the number of commit requests that fail is small. When the abort rate is factored in,

extra commit-time costs are very small; Cf is not a signi�cant factor
4
. For now we

assume ACBL's failure costs do not matter; we discuss deadlock-induced aborts at

the end of this section. The remaining costs are:

relevant AOCC latency = Fs + Ef + Ff
relevant ACBL latency = Fs + Ls + Bs

When transaction X blocks on transaction Y, the rest of Y's latency (until Y commits

or aborts) is also incurred by X. To analyze these costs it is helpful to split the average

blocking cost Bs into components Eb, Fb, Lb, and Cb. (For simplicity, Y's blocking

costs are ignored.) Eb is average time per commit spent blocking while the \blocker"

performs access executions, Fb is average time per commit spent blocking while the

\blocker" performs fetches, and so on. If we replace Bs with these sub-costs and

group terms by cost category, the remaining costs are:

relevant AOCC latency = Ef + (Fs + Ff)

relevant ACBL latency = Eb + (Fs + Fb) + (Ls + Lb) + Cb

In other words, both schemes have additional costs due to restarts or blocking for

execution and fetch costs; ACBL has additional costs due to locking and blocking

while commits occur that have no AOCC counterparts.

We �rst consider fetch costs. We give a back-of-the-envelope calculation here

to show why fetch costs are normally roughly equal. To do this, it is necessary to

choose abort and blocking rates. Our simulation results show that AOCC's abort

rate (aborts/commit) is normally lower than ACBL's blocking rate (blocks/commit).

This di�erence in rates is due to the fact that ACBL uses a symmetric con
ict relation

while AOCC uses an asymmetric con
ict relation. AOCC allows concurrent activity

4If an early abort does not occur, the abort reply from the server helps to preload the client

cache, avoiding future fetches. Thus, adding a commit request to an abort case removes one or more

fetches.

44

for potential read-write con
icts, while ACBL must block when there is a potential

con
ict. Some of the additional concurrency allowed by AOCC results in aborts,

but some results in commits. The commit cases determine the di�erence between

ACBL's blocking rate and AOCC's abort rate. (This argument applies because AOCC

keeps client caches \almost" up-to-date, thus most aborts are due to data contention

between clients. An optimistic scheme that does not keep caches \almost" up-to-date

incurs many more aborts due to out-of-date accesses, and its abort rate can be much

higher than the blocking rate of a locking scheme.) For our example, we use an AOCC

abort rate of 0.20 and an ACBL blocking rate of 0.25. For ACBL, when transaction A

blocks on transaction B, we assume the average case is that B has already performed

70% of its accesses when this block occurs. We also assume fetches are uniformly

distributed across a transaction's accesses, thus 30% of B's accesses and 30% of its

fetches are performed while A blocks on B.

AOCC's fetch costs (Fs + Ff) remain low due to early abort detection, the natural

preloading e�ect of failed executions, and the use of restore-on-undo to prevent page

discards. The extra costs due to aborts are also only incurred for transactions that

abort, thus the real cost is scaled by the abort rate. For example, suppose �rst-

run transactions that commit use an average of 4 fetches, while transactions that

�rst abort and then commit perform 3 fetches during the �rst-run failed execution

and 2 fetches during the restart, for a total of 5 fetches. If the abort rate is 0.2

aborts/commit, the average fetch cost is 0.8(4) + 0.2(5) = 4.2.

ACBL's fetch cost (Fs + Fb) are calculated in similar fashion. Suppose an ACBL

transaction that does not block averages 4 fetches per commit. If a \blocker" has

completed 70% of its fetches at the time blocking occurs, it performs 30% of its

fetches, or 1.2 fetches, during blocking. If a transaction that blocks performs 4 fetches

and waits for 1.2 other fetches to complete, its latency due to fetching is 5.2 fetches.

With a blocking rate of 0.25, the average fetch cost is 0.75(4) + 0.25(5.2) = 4.3.

While it appears that ACBL's extra latency of 0.3 fetches per commit is slightly

higher than AOCC's extra latency of 0.2 fetches, an additional factor must be con-

sidered. ACBL's extra fetch latency is due to blocking; the number of fetches exe-

cuted per transaction remains at the normal case of 4 fetches per commit. In con-

trast, AOCC's extra fetch latency is due to additional fetches: AOCC executes 4.2

fetches per commit. Some fraction of AOCC's extra fetches result in disk reads, thus

AOCC has slightly higher disk utilization. As a result, AOCC's average fetch latency

FLAOCC is slightly higher than ACBL's average fetch latency FLACBL. When we

scale the fetch counts by these costs, 4.2(FLAOCC) and 4.3(FLACBL) are roughly

the same.

AOCC's extra access cost Ef is somewhat higher than ACBL's extra access cost

Eb. Unlike the fetch case, the accesses performed during a failed transaction do not

reduce the number of accesses that must be performed during restart. Early abort

detection does help reduce the total access count: the number of accesses does not

double if an early abort occurs. Suppose transaction length is 200 and an early abort

is detected at the 150 access point. With an abort rate of 0.2, the extra cost of these

150 accesses is 0.2(150) = 30. For ACBL, if a \blocker" has completed 70% of its

45

accesses at the time blocking occurs, it performs 30% of its accesses, or 60 accesses,

during blocking. With a blocking rate of 0.25, the extra cost of these 60 accesses

is .25(60) = 15. This di�erence between the schemes has a relatively small impact.

Local access costs are not as relevant as the other costs in the model, for two reasons.

First, local accesses are fast. Second, local accesses do not consume server resources,

while the other costs in our latency model do involve use of the server.

We have now discussed all of AOCC's costs, and argued that they are roughly

equal to components of ACBL's cost. The remaining ACBL components represent

additional overhead that has no AOCC counterpart:

extra ACBL latency = (Ls + Lb) + Cb

ACBL's normal lock message costs (Ls) increase with an increased update frequency

(more write lock requests) and with an increase in read-write sharing of pages (more

pages require object-level locking, which is more message-intensive than page-level

locking). In addition, while a blocked transaction waits, the \blocker" is using lock

requests and callbacks (adding latency Lb). The use of lock requests and the frequency

of blocking both rise together. In summary, ACBL pays a high price for the use of

lock requests and callbacks and then pays some fraction of this cost yet again due to

blocking on other transactions.

ACBL also incurs blocking latency due to waiting while another transaction carries

out the �rst part of a commit request: a blocked transaction waits on the \blocker"

while a commit request (or read-only commit noti�cation) is generated at the client

and sent to the server; this waiting ends when the server releases the read or write

lock causing the blocking. (The commit reply sent to the \blocker" is not part of the

latency of the \blockee.")

Our performance results in later chapters will show that under very high con-

tention, ACBL's performance drops dramatically relative to AOCC's performance.

One of the reasons for this is that ACBL starts to incur high costs due to deadlock-

induced aborts. Each ACBL abort is very expensive, due to wasted lock acquisition

costs. An ACBL transaction that aborts has \wasted" all of the time that it spent

acquiring write locks, as these locks are released on abort. In addition, the lock re-

quests and callbacks used for write lock acquisition are wasted, and these messages

consume a critical shared resource, namely server CPU.

Compared to an ACBL abort, an AOCC abort is very \cheap." Since restarts

mostly hit in the client cache, restarts run much faster than �rst-run executions. The

low fetch costs result in a relatively low additional load on the server. Early abort

detection also reduces the server cost associated with aborts. As a result, much of

the resource consumption due to an abort occurs at the client. We assume a client

C only runs one transaction; this transaction incurs all of the extra latency due to

wasted CPU cycles at C. If three transactions are active at client C and one aborts,

then these three transactions have added latency due to wasted client CPU cycles

at C. The key point is that the large majority of all transactions in the system are

running at clients other than client C; these transactions are only penalized for the

server resources consumed by an abort that occurs at C.

46

This point is very important but rarely discussed: compared to single-site and par-

allel database systems, aborts due to optimism are much less expensive in client-server

systems. Client-server systems run only a few transactions at a time per client, while

these other systems often have hundreds of active transactions per node. An abort

in these other systems therefore adds latency to hundreds of transactions. Moreover,

in a client-server system the main memory of the client is dedicated to one or a few

transactions, making it feasible to retain all of the data touched by a transaction; this

makes fast restarts possible. In a system with hundreds of transactions per node, the

memory must be divided among all these transactions, making it less likely that the

data of all active transactions can �t in main memory.

As we discuss in Section 6.3, several conditions must hold for ACBL to outperform

AOCC: AOCC must have a high abort rate; restarts must perform a signi�cant

number of \new" accesses that miss in the client cache; AOCC must drive the server

disks near their saturation point (while ACBL must not drive either resource to

saturation). The �rst two conditions cause AOCC to perform many additional fetches.

The third condition causes AOCC's average fetch latency FLAOCC to be signi�cantly

higher than ACBL's average fetch latency FLACBL. If AOCC performs more fetches

but the server disks are not near their saturation point, AOCC's \blocking" costs due

to resource contention are not as high as ACBL's blocking and abort costs due to

data contention.

2.5.3 Read-Only Transactions

A read-only transaction can incur aborts or blocking during its execution. For high

contention, ACBL blocking times must be compared to AOCC's extra costs due to

restarts. If AOCC restarts add low additional fetch costs, its aggregate cost for

carrying out a read-only transaction will be lower than ACBL's aggregate cost; the

reasoning is as given above.

For low contention, we can compare expected performance by considering message

costs for a successful commit. Both AOCC and ACBL will use fetches for cache misses,

while neither scheme uses additional messages (ACBL does not use write lock requests

or callbacks). As a result, low contention performance through the commit point is

equivalent.

When a read-only transaction reaches its commit point, an ACBL client allows

an immediate commit
5
, while an AOCC client uses a commit request to ensure that

a consistent state of the database was read by the transaction. Thus, AOCC incurs

one extra round-trip compared to ACBL. We study the impact of this extra request

in Section 6.2.2. The result is an intuitive one: when the execution of the transaction

up to the commit point has low latency compared to a round-trip message exchange,

ACBL can outperform AOCC by a signi�cant margin; when the execution has high

latency compared to a round-trip exchange, the di�erence in relative performance is

small.

5Supporting an immediate commit requires that the client has a guarantee that its read locks will

not be unilaterally discarded by the server until some future time t; this time window (or lease [29])

is advanced as long as the client and server remain in contact.

47

While we describe read-only commit requests for AOCC and also use them in our

simulation study, in fact AOCC does not need to use them in a single-server system.

At the server, updates are applied in commit order, and transaction-consistent inval-

idation messages are generated due to these updates. Once a client has processed all

invalidations generated through time Treply (the time that the last fetch reply was

sent to the client) it has a consistent cache with respect the committed state of the

system at time Treply. If a read-only transaction is not aborted due to invalidations,

it can be \serialized" at this point in time; an immediate commit can occur at the

client.

This immediate commit case does not hold for a multi-server system: processing

invalidation messages sent from several di�erent servers does not result in a global

consistency property for the client cache. Therefore, supporting immediate commit

for a multi-server optimistic scheme is an area of future work; Section 7.2 discusses

this problem.

48

Chapter 3

Related Work

There is a rich literature of work on concurrency control. Concurrency control was

originally invented for centralized single-version database systems; single-version sys-

tems maintain only one copy of each data item. Fundamentally, there are two kinds of

concurrency control, pessimism (locking) and optimism. The seminal paper on stan-

dard two-phase locking is by Eswaran et. al. [21]. The seminal paper on optimism is

by Kung and Robinson [38]. Bernstein et. al. and Gray and Reuter [30] both provide

good overviews of concurrency control and recovery issues, including later work on

distributed database concurrency control.

Optimistic schemes can be classi�ed [33] into forward and backward validation

schemes. Backward validation schemes such as AOCC validate a transaction against

already-committed transactions, while forward validation schemes validate a transac-

tion against active transactions.

Multi-version concurrency control can be used for both locking schemes [59] and

optimistic schemes [6, 2, 39, 41] to isolate read-only transactions from read-write trans-

actions. Multi-version schemes ensure that read-only transactions always commit, but

have higher space overheads than single-version schemes.

An additional approach to concurrency control, not studied in this thesis, is

timestamp-ordering. Timestamp schemes choose a serial order for transactions prior

to their commit and use a combination of optimistic and pessimistic methods to try

to commit the transactions in this order. Timestamp schemes are summarized in [4].

All of these mechanisms can be applied to a client-server OODB. For example,

the GemStone [6] and Jasmine [39] OODBs use multi-version optimistic schemes.

Below we focus on work directly related to this thesis: Sections 3.1{3.3 review

three studies of single-version client-server schemes. These studies, by Franklin and

Carey [23, 24], Wang and Rowe [58, 57], and Wilkinson and Neimat [61], examine

nine di�erent concurrency control schemes that use inter-transaction caching. These

schemes use coarse-granularity (page-level) con
ict detection. (AOCC and ACBL use

�ne-granularity con
ict detection, as described in Chapter 2.) Figure 3-1 presents a

brief description of each scheme. In our review of the studies, a more complete de-

scription for each scheme is provided when the scheme is �rst discussed.

In addition to comparing di�erent inter-transaction caching schemes, each of the

studies uses a non-caching version of standard two-phase locking (Basic Two-Phase

49

Scheme Description

C2PL: Caching 2-Phase

Locking

Server-based pure locking scheme. Combined version check

and lock request on �rst access to cached page.

CBR: Callback-Read Callback locking scheme. Read locks cached with pages.

CBA: Callback-All Callback locking scheme. Read and write locks cached with

pages.

O2PL: Optimistic

2-Phase Locking

Client-based deferred locking scheme. Immediate local lock

acquisition; remote write lock acquisition deferred until

commit.

No-Wait Locking Server-based asynchronous locking scheme. Synchronous

lock acquisition on fetch, immediate asynchronous lock re-

quest on �rst access to cached page.

No-Wait Locking with

Noti�cation

No-Wait Locking augmented with explicit update messages

sent immediately after each read-write commit.

Certi�cation Backward-optimistic scheme. Version check on �rst access

to cached page.

Cache Locks Server-based deferred locking scheme. Synchronous read

lock acquisition on fetch; other read and write lock acqui-

sitions deferred until commit. Piggy-backed invalidations

used for cache maintenance and early abort checking.

Notify Locks Backward-optimistic scheme. Explicit update messages

sent immediately after each read-write commit. All vali-

dation performed at client: update messages are used for

early abort checking and also (via multi-phase handshake

with server) for commit-time validation.

Figure 3-1. The Nine Concurrency Control Schemes Discussed

Locking, or B2PL) as a \baseline" for measuring the bene�t of inter-transaction

caching. In each case the results show that retaining pages across transaction bound-

aries provides performance bene�ts when workloads exhibit some inter-transaction

locality of reference. We do not discuss the B2PL experiments below.

A �nal section discusses shared-nothing parallel database systems that use data

replication. Concurrency control for such systems requires cache maintenance, thus

these systems are related to client-server systems. Section 3.4 summarizes the dif-

ferences between such database systems and client-server systems, and discusses the

impact of these di�erences on concurrency control tradeo�s.

3.1 Franklin and Carey

Franklin and Carey [23, 24] studied a number of interesting design tradeo�s. We

summarize the key tradeo�s, and also compare the semi-optimistic O2PL (Optimistic

50

2-Phase Locking) scheme used in this study with AOCC.

3.1.1 C2PL vs. CBR vs. CBA

Three pure locking schemes are included in the study. The tradeo� studied across

these three schemes is the value of caching locks with cached pages across transaction

boundaries. C2PL (Caching 2-Phase Locking) caches pages but does not cache locks;

CBA (CallBack-All) caches all locks held at the commit point across a commit; CBR

(CallBack-Read) caches only read locks across a commit, where write locks are down-

graded to read locks as part of commit processing.

CBR was described in Section 2.2. CBA is like CBR but also caches write locks

across transaction boundaries. If a fetch occurs while a write lock is cached, the lock

must be called back. The two schemes often have similar performance, but CBA is

more sensitive to shared access frequency. Write lock caching is found to be truly

useful only for a page that is \private" to one client, where other clients do not cause

callbacks for a cached write lock.

C2PL is a caching version of basic two-phase locking (B2PL). C2PL caches pages

across transaction boundaries, but does not ensure that they are valid. On each initial

read or write access to a new page, a fetch or lock request is used. Version numbers

are kept with pages, and a lock request for a cached page will cause the page to be

updated if it is invalid. This scheme has a �xed message count, regardless of the

number of cache hits or the number of updates: a fetch request or a lock request is

used on every page access. The callback schemes use few messages compared to C2PL

when updates are infrequent and locality of reference is good, thus they perform better

for this case. Poor locality causes all schemes to use many fetches per transaction,

making their performance roughly equal. High contention causes the callback schemes

to have high message costs relative to C2PL, due to the use of many callbacks; C2PL

performs better for this case.

3.1.2 O2PL vs. CBR

Franklin and Carey also study a deferred locking scheme, O2PL (Optimistic 2-Phase

Locking). O2PL is essentially a \deferred callback" version of CBR. Each client

C uses a local lock manager, and local read and write locks are acquired by the

transactions running at C as they perform page accesses. Unlike CBR, other clients

are not forced to discard pages that are updated at C; there can be concurrent readers

and writers of a page. O2PL \optimistically" assumes that transactions at other

clients will not con
ict with the transactions at client C.

When transaction T running at client C requests a commit, the server is now

responsible for carrying out the \deferred callbacks" for T: messages are sent to all

clients other than C that are caching pages updated by T, asking these clients to

remove the pages. As with CBR callbacks, a local transaction that is reading a page

will block a page discard request until it completes. Unlike CBR, a write-write con
ict

causes an immediate abort of one of the transactions, since both transactions have

51

already updated the page. If all pages are discarded, transaction T can commit. If

any abort replies are returned instead, T aborts.

The study compares O2PL to CBR to examine the issue of locking vs. deferred

locking. O2PL has slightly better performance under low contention. O2PL uses

fewer messages than CBR for low contention, and message count predicts relative

performance, thus explaining this low-contention result. As contention increases,

O2PL's performance degrades rapidly, while CBR is more robust with respect to

contention level. As a result, CBR has much better high contention performance.

O2PL's poor high-contention performance is not due to the use of optimism alone,

but rather to the use of both optimism and locking. Under high contention, a pure

locking scheme has high blocking latency but a relatively low abort rate, while a

pure optimistic scheme has a high abort rate but performs no blocking. In contrast,

O2PL simultaneously incurs both high blocking latency and a high abort rate. This

combination produces very poor performance. Any blocking performed by an aborted

transaction is \wasted" blocking: write permissions that were acquired are dropped,

and must be acquired again during restart. Restarts are therefore very expensive:

the same blocking delays that occur during a �rst-run execution also occur during a

restart.

The combined e�ect of wasted blocking and non-wasted blocking can easily be

seen in the results reported by Franklin and Carey: under high contention, O2PL

does more blocking than CBR or C2PL. A scheme that performs more blocking

than standard two-phase locking has little in common with an optimistic scheme that

performs no blocking. For this reason, we prefer to use the term \deferred locking"

for schemes such as O2PL.

All of the deferred locking schemes described in this chapter can simultaneously

incur a high abort rate and high blocking times, and therefore all have poor high

contention performance. The schemes do di�er in one respect, however: some schemes

acquire read and write locks in roughly the same order that the read and write

accesses occur, while other schemes acquire read locks immediately and defer write

lock acquisition to the commit point. The latter approach has the following problem

for high contention workloads: deadlock cycles are more likely.

O2PL is an example of the latter type of scheme: local read and write locks are

acquired immediately, while remote write locks are acquired at the commit point. For

a scheme such as CBR where all locks are acquired immediately, if read-write blocking

occurs, a read request blocking on a writer is as likely as a write request blocking on a

reader. Under O2PL, a remote write request blocking on a local reader becomes more

probable, while the opposite case becomes less probable. Such an inequality makes a

deadlock cycle more likely. (Consider two overlapping transactions X and Y, where

X reads something Y writes and vice versa. By delaying the write lock requests, it

becomes more likely that each write lock request will end up blocking on a local read

lock held by the other transaction.)

Note that it is inter-client deadlocks that become more likely by deferring remote

write lock acquisition. Each O2PL client is responsible for detecting local deadlocks,

while the server periodically collects all local waits-for graphs at the clients and checks

for inter-client deadlock cycles. Distributed deadlocks add additional latency to all

52

transactions involved in the deadlock, due to the delay that occurs before the cycle is

detected. Although O2PL and CBR are similar designs, CBR clients send immediate

block noti�cations to the server, and the server can perform all deadlock detection.

While this approach has a higher message overhead, it is likely that deadlock detection

is more important under high contention than saving messages. However, the opposite

is true under low contention, where message costs are more important than deadlock

detection.

In summary, we have identi�ed three reasons for O2PL's high blocking times

compared to C2PL and CBR: O2PL has a higher abort rate and therefore performs

more wasted blocking, adding to its aggregate blocking time; O2PL is more likely

to incur deadlocks compared to CBR and C2PL; O2PL uses distributed deadlock

detection, while CBR and C2PL do not.

3.1.3 Invalidate vs. Propagate

For O2PL, when a committing transaction is about to update page P, all clients

caching P are contacted as part of the commit. Therefore, O2PL can either cause

these clients to discard page P, or it can install the new state of page P in the client

caches. This tradeo� is known as the invalidate vs. propagate tradeo�. Page discards

can be used prior to making a commit/abort decision, while page updates can only

be performed once a commit decision has been forced to a transaction log at the

server. Thus, the page update mechanism must carry out a two-phase protocol with

the clients, while the page discard mechanism only requires one phase.

Franklin and Carey found that invalidation is almost always the better approach.

They found one special-case workload where update proves to be more useful: a

producer/consumer workload. (One client \produces" new updates and other clients

\consume" these updates using only read accesses). They describe a dynamic heuristic

that switches to using updates for this workload while using invalidations for the

other workloads. This dynamic scheme only uses updates on commit; page discards

are always used for aborts.

3.1.4 O2PL vs. AOCC

O2PL is an example of a scheme that trades o� better low contention performance

for worse high contention performance. The reasons for its poor high contention per-

formance are described above. Since AOCC has better high contention performance

than a callback locking that is itself an improvement over CBR, while O2PL has worse

performance than CBR, relative high contention performance is clear.

With respect to low contention, message count predicts relative performance, and

AOCC has a lower message count: it does not use one or two rounds of messages

to synchronize with clients caches as part of its commit process. Moreover O2PL's

message count is based in part on the number of clients that are caching shared pages,

while AOCC's count is not; AOCC would show a larger improvement over O2PL for

higher client cases.

53

3.1.5 Cache Maintenance Strategies

Another tradeo� discussed in the Franklin and Carey study is the impact of the cache

maintenance strategy on e�ective cache size. Note that invalid pages are \useless"

since new state is always fetched when an invalid page is accessed. Thus, if 10%

of a client cache holds invalid pages, the e�ective cache size is 90% of the actual

size. Franklin and Carey compare C2PL to both CBR and O2PL to demonstrate the

impact of e�ective cache size.

C2PL uses a passive cache maintenance strategy: it detects and updates an invalid

page only when necessary, i.e., when an invalid page is accessed by a transaction. CBR

and O2PL use a proactive cache maintenance strategy: pages are removed before they

can become invalid. CBR is an eager proactive scheme: it uses callbacks to remove

pages as soon as possible (prior to allowing a write). O2PL is a lazy proactive scheme:

it integrates cache maintenance actions with commit processing, thus it performs page

removal or page update as late as possible (for a proactive scheme). (The term \cache

maintenance actions" covers both removal and update actions.)

One bene�t of proactive cache maintenance is a higher e�ective cache size. Both

CBR and O2PL \prune" the client cache of \useless" pages, providing free space

for newly fetched state. LRU discards are rarely used, and valid pages are therefore

rarely discarded. In contrast, C2PL can discard a valid page while invalid pages that

are wasting cache space are retained. Franklin and Carey found that for workloads

with low locality of reference, C2PL's passive strategy results in a poor cache hit ratio

when compared to a proactive strategy as used by CBR and O2PL.

Avoidance-Based Strategies

Strategy Description

Eager proactive Synchronous consistency actions prior to allowing a write.

(ACBL, CBR, CBA)

Lazy proactive Consistency actions integrated with synchronous commit pro-

tocol. (O2PL)

Detection-Based Strategies

Strategy Description

Eager reactive Consistency actions triggered by a commit are sent in explicit

messages. (NWL-Notify, Notify Locks)

Lazy reactive Consistency actions triggered by a commit are piggy-backed

on other messages. (AOCC, Cache Locks)

Passive Consistency action only occurs when transaction accesses in-

valid cached state. (C2PL, NWL, Certi�cation)

Figure 3-2. Cache Maintenance Strategies

54

AOCC uses a third maintenance strategy, reactive cache maintenance: pages are

not discarded proactively prior to the commit of an update, but they are discarded

soon after such a commit. (AOCC reacts to commits, which trigger cache maintenance

actions.) As with the proactive schemes, a reactive scheme frees up space in the client

cache, resulting in few LRU discards. Thus, reactive and proactive cache maintenance

strategies result in very similar e�ective cache sizes.

In addition to AOCC, three schemes described below also use a form of reactive

cache maintenance: Cache Locks uses piggy-backed invalidations, as in AOCC, while

NWL-Notify and Notify Locks both send explicit update messages after each read-

write commit completes. Thus, a commit can either trigger explicit message sends

or the generation of messages that are to be piggy-backed on other messages sent to

clients; we use the terms eager reactive and lazy reactive for these two cases.

Franklin and Carey refer to proactive schemes as avoidance-based schemes and to

other schemes as detection-based schemes [23]. Avoidance-based schemes always have

consistent caches, while detection-based schemes do not. (Detection-based schemes

must be able to detect invalid pages). For locking schemes, including deferred locking

schemes, this distinction is useful: avoidance-based locking schemes do not need to

use lock requests for read accesses. For other performance issues, however, we �nd it

useful to re�ne these categories by using the �ve cache maintenance strategies de�ned

in this section. For example, of the �ve strategies, only passive cache maintenance can

result in a low e�ective cache size. The �ve strategies are summarized in Figure 3-2,

where we also show their relationship to the avoidance/detection distinction.

Note that each of the �ve strategies is di�erent with respect to message use for

cache maintenance. Eager proactive schemes use synchronous message exchanges

with clients prior to each write. Lazy proactive schemes use synchronous message

exchanges during a read-write commit. Eager proactive schemes send explicit asyn-

chronous noti�cation messages after each commit. Lazy proactive schemes piggy-back

cache maintenance actions on other messages sent to clients. Passive schemes do not

generate cache maintenance actions on either a per-write or per-commit basis; no

attempt is made to keep caches from becoming arbitrarily out-of-date, and all main-

tenance actions occur due to accesses to invalid pages.

3.2 Wang and Rowe

Wang and Rowe [58, 57] studied a number of client-server schemes.

3.2.1 C2PL vs. CBA

Like Franklin and Carey, Wang and Rowe compare C2PL and CBA to determine the

value of caching locks with pages. Wang and Rowe summarize this tradeo� as follows:

CBA has better performance when there is locality of reference in the workload and

contention is low; the two schemes have roughly equal performance when contention is

low and locality of reference is also low; C2PL has better performance when contention

55

is high. These general results are the same as the Franklin and Carey results for this

tradeo�.

3.2.2 NWL vs. C2PL

NWL (No-Wait Locking) is the same scheme as C2PL, with two exceptions. First,

while accesses to already-cached pages cause a lock request (with cached version

number) to be sent to the server, as in C2PL, the client does not wait for a reply,

but rather \optimistically" assumes the version is correct and a lock can be granted.

Second, the server does not use lock-granting replies; it only sends a message in

response to an \optimistic" lock request if the request fails and the transaction must

abort.

NWL uses passive cache maintenance: cached pages are allowed to become arbi-

trarily out-of-date. An invalid page is only discovered when an access to this page

causes an abort, and aborts cause page discards. The result is both a very high abort

rate due to out-of-date accesses and high fetch costs during restart due to re-fetching

discarded pages. (A key lesson from this study is that passive cache maintenance and

optimism do not work well together.) The NWL abort mechanism as described by

Wang and Rowe discards all pages accessed \optimistically" by an aborted transac-

tion; it appears that all pages that were accessed out of the client cache rather than

fetched during transaction execution are discarded. If this description is correct, an

NWL abort unnecessarily discards a number of valid pages along with the invalid

pages.

It initially seems counter-intuitive that NWL does not outperform C2PL under

low contention, since NWL does not wait on lock replies. However, due to the high

abort rate and the page discard mechanism just described, aborts add signi�cant

additional messages per commit. For example, NWL's message count is nearly the

same as C2PL's message count when a 20% write probability is used.

In addition to high fetch costs during restarts, NWL's use of read-write locking

contributes to its high restart costs. Since all accesses that do not cause an abort

acquire a lock at the server, active transactions can block on other active transactions.

Thus, both the blocking rate and the abort rate increase as contention increases. As

discussed for O2PL, a scheme that can simultaneously incur both a high blocking

rate and a high abort rate will have poor high-contention performance. (Gerson

implemented no-wait locking for the Statice system [60]. His implementation switches

to two-phase locking for \hot" pages, thus attempting to avoid a high abort rate [27].

No performance study has examined this adaptive variant of NWL.)

3.2.3 NWL vs. NWL-Notify

Wang and Rowe also experimented with NWL-Notify, a variant of NWL that uses ea-

ger reactive cache maintenance. As soon as an update commits, explicit noti�cation

messages containing page updates are sent to all clients currently caching the up-

dated pages. The use of reactive cache maintenance signi�cantly reduces the number

56

of aborts due to out-of-date page accesses. However, the results show that NWL-

Notify has very high server CPU costs due to sending updates; these costs o�set the

advantage of a lower abort rate, and NWL-Notify is not an improvement over NWL.

Both variants of NWL perform poorly compared to the pure locking schemes used in

the study (CBA and C2PL).

3.2.4 C2PL vs. Certi�cation

Finally, a small comparison study is presented prior to presenting the results for the

schemes discussed above. A pure optimistic scheme, Certi�cation, is compared to

C2PL. Wang and Rowe �nd that there is no di�erence between the schemes for a

read-only workload or a very small number of clients (where contention is very low),

but otherwise C2PL outperforms Certi�cation; they therefore conclude that a purely

optimistic scheme should not be used for their main study.

As with the other schemes discussed in this chapter, Certi�cation discards mod-

i�ed pages on abort and re-fetches these pages during restart. In addition to this

standard problem, there is design
aw speci�c to the Certi�cation design that ex-

plains Certi�cation's poor performance.

Certi�cation is a purely optimistic scheme that uses the original Kung/Robinson

certi�cation check to validate commit requests [38]. As with NWL, passive cache

maintenance is used. Wang and Rowe decided that the use of passive cache mainte-

nance made it likely that out-of-date state would be accessed, thus a pre-access version

number check is used prior to allowing a cached page to be accessed. Therefore, a

round-trip exchange with the server is used on every initial page access.

The use of pre-access checks \throws away" one of key advantages of using op-

timism: an optimistic scheme can perform both read and write accesses on cached

pages without using a round-trip exchange. Due to these checks, Certi�cation has ex-

actly the same message costs as C2PL when there are no aborts, and higher message

costs when even a small number of aborts occur. (Note that Certi�cation does not

do early abort detection: a single restart doubles the number of messages used when

compared to a �rst-run execution that commits.) Given the message costs of the two

schemes, it appears that C2PL should outperform Certi�cation except when Certi�-

cation's abort rate is very low (or zero), in which case the two schemes should have

roughly the same performance. This analysis is consistent with the results presented

by Wang and Rowe.

3.3 Wilkinson and Neimat

Wilkinson and Neimat [61] performed the �rst client-server concurrency control study

to examine schemes that use inter-transaction caching. Two such schemes are de-

scribed, Cache Locks and Notify Locks.

The simulation results presented by Wilkinson and Neimat are hard to interpret:

a di�erent client cache model is used for the two schemes. One clear result is that

sending explicit updates to clients on each commit is too expensive for general-purpose

57

use. (This result is con�rmed by Wang and Rowe in their comparison of NWL and

NWL-Notify.) Given the di�erent cache models and the fact that one scheme used

very expensive update messages while one did not, no additional conclusions can

be drawn with certainty with respect to other tradeo�s present in the two designs.

Nevertheless, the two schemes are interesting with respect to examining concurrency

control design issues. Thus, we discuss the two designs below. In addition, since

each of these schemes has design elements that overlap with AOCC's design, we also

compare the two designs to AOCC.

3.3.1 Cache Locks vs. Notify Locks vs. AOCC

Cache Locks is a deferred locking scheme that uses server-based locking. All lock

requests for accesses to cached pages are deferred; read and write sets are sent with a

commit request so that the server can attempt to acquire locks for these accesses. As

in AOCC, lazy reactive cache maintenance is used: invalidations are piggy-backed on

fetch and commit replies, and are used for both cache maintenance and early abort

detection.

There are three key di�erences between Cache Locks and AOCC. First, for a

commit request, Cache Locks uses a version number check at the server to detect

any out-of-date accesses that were not caught by early abort detection at the client.

AOCC uses invalid sets for this check, resulting in much lower space overheads. Sec-

ond, Cache Locks incurs blocking and deadlocks while AOCC does not. Third, Cache

Locks does not send updates in abort replies or use an undo log to restore modi�ed

pages.

Notify Locks is a backward-validation optimistic scheme that uses eager reactive

cache maintenance: updates are sent to clients after each read-write commit. These

updates are used for cache maintenance and early abort checking, as in Cache Locks

and AOCC. Notify Locks and AOCC are similar in that they are both backward-

validation schemes: commit-time validation compares the read set of a committing

transaction to the updates of already-committed transactions. However, the two

schemes use a very di�erent implementation of this validation step. AOCC sends a

transaction's read set to the server in a commit request, to allow the server to validate

this set. Notify Locks does not send read sets in commit requests. Instead, it relies on

the early abort checking performed at the client to validate a committing transaction's

read set. Since the explicit update messages contain committed writes, the client can

check its read set against these writes. The problem with this approach is that the

full set of updates that must be used to validate a committing transaction's read set

may not have arrived at the client prior to the generation of a commit request. In

other words, the early abort checking done at the client did not necessarily do all of

the required checking.

The Notify Locks scheme solves this problem by detecting the presence of unac-

knowledged update noti�cations. If unacknowledged updates exist, the server uses

a special round-trip exchange with the client to determine whether these updates

caused an abort at the client. Once this initial check passes, Notify Locks acquires

write locks at the server; these locks are used to coordinate the transaction with

58

other concurrent commit requests. During write lock acquisition, further update no-

ti�cations can be sent to the client requesting the commit, thus after write locks are

acquired another round-trip exchange with may be required. Therefore, Notify Locks

can pay a high synchronization cost at commit time in order to avoid sending the

read set of a transaction in a commit request. The overhead of sending a read set is

(normally) not high enough to justify the Notify Locks approach.

Note that the write locks held at the server during commit processing are dropped

prior to sending explicit update noti�cations to other clients, thus client caches can

become out-of-date. If these write locks were retained until all these updates were

acknowledged, Notify Locks could ensure that client caches are always be up-to-date

and that transactions always read up-to-date state. In other words, while Notify Locks

as designed using reactive cache maintenance, it could be changed to use proactive

cache maintenance.

3.4 Parallel Database Concurrency Control

Shared-nothing parallel database systems are multiple processor systems where each

processor has its own memory and disks (see, e.g., [18]). For these systems, data

is partitioned across the processors, and access to the data \owned" by a processor

normally involves running a sub-transaction at that processor. Some shared-nothing

systems allow processors to cache copies of non-local state inde�nitely, i.e., to \repli-

cate" the data across more than one processor. In this case, the concurrency control

scheme must adopt a cache maintenance strategy for the replicated data.

Client-server schemes that use inter-transaction caching also replicate data at the

clients and must use a cache maintenance strategy. Thus, it is natural to look to

studies of shared-nothing concurrency control schemes for insights relevant to client-

server concurrency control tradeo�s. (For example, the client-server O2PL scheme

discussed in Section 3.1 was studied because Carey and Livny found that a parallel

shared-nothing version of O2PL showed some promise [12].)

However, the nature of these two types of systems is su�ciently di�erent that

results for one system do not apply to the other. In this section we brie
y present

the important di�erences and discuss their impact on concurrency control tradeo�s.

In the following comparison, we use \CS" for \client-server" and \PD" for \shared-

nothing parallel database."

1. PD systems execute many transactions at each node. These transactions share

the memory, CPU and disk resources of the node. In contrast, a CS client

executes only a few transactions at a time; the client memory and CPU are

dedicated to a small number of transactions. This di�erence has an impact on

restart costs. First, a CS client cache can normally retain the data used by

active transactions, while a PD node may not have su�cient main memory to

hold the pages touched by a large number of transactions. Thus, CS restarts

have low fetch costs, placing a small load on the critical shared resource, the

server. In contrast, PD restarts can have high disk costs; disks are an important

shared resource. Second, note that an abort wastes CPU time at a node and

59

adds latency to the active transactions at that node. A CS abort adds latency

to the active transactions at one client; these transactions represent a small

fraction of all active transactions in the system. A PD abort adds latency to

the many transactions active at a node, representing a much larger fraction of

all transactions in the system. Thus, it is more important to avoid a high abort

rate in a PD system.

2. For PD systems, we expect that most data con
icts occur between transactions

running at the same node, as transactions are placed at nodes according to

their expected data accesses, and moreover there are many transactions per

node. For CS systems, we expect most data con
icts are inter-client con
icts.

There is little or no concurrent activity at a client, and there is no attempt to

place transactions according to expected accesses. All data accesses are remote

accesses; a client does not \own" any data.

Immediate local lock acquisition as used by O2PL is likely to reduce the abort

rate for PD systems, but unlikely to do so for CS systems. At the same time,

deferring remote write lock acquisition until commit is more likely to result in

either blocking or aborts for CS systems as compared to PD systems.

3. A PD system has relatively few nodes compared to a CS system, and it is typical

for a replicated data item to be placed at a small number of nodes (e.g., 4).

In a CS system, a large number of clients can be caching the same data item.

For a PD system, the two-phase commit process used to coordinate transaction

commit involves each node that executed a sub-transaction. This set of nodes

often includes most or all of the nodes that are caching replicated items accessed

by one of the sub-transactions. For a CS system, a distributed commit requires

the involvement of participating servers; clients do not need to be contacted

unless proactive cache maintenance is used during commit. The PD version of

O2PL can piggy-back deferred write requests on the required two-phase commit

protocol, while the CS version of O2PL must contact a potentially large set of

additional nodes (participating clients) during phase one of the commit protocol.

In summary, locking and proactive cache maintenance have lower costs for a PD

system than they do for a CS system, while transaction restarts have higher costs

for a PD system than they do for a CS system. Some designs will work well in both

types of systems, while other designs will only work well in one system or the other.

60

Chapter 4

Experimental Framework

To use simulation to study di�erent client-server concurrency control schemes, it is

necessary to model all of the following elements: client, server, disk, database, and

transactions. We refer to the server, network, disk, and database models collectively

as the system model , while the workload model captures the way that transactions

run against the database, and the nature of these transactions.

Each model has a set of parameters, to allow us to vary, e.g., the speed of the

network, or the sharing pattern exhibited by transactions. With respect to the system

model, we have chosen two groups of system parameter settings that we refer to as the

CURRENT and FUTURE settings. These settings are meant to model present-

day systems and near-future systems, respectively. Section 4.1 describes our system

model and summarizes the CURRENT and FUTURE settings.

With respect to the workload model, we have chosen six groups of workload param-

eter settings that produce transactions with di�erent sharing patterns and di�erent

contention levels. We refer to each such group of settings as a workload . Section 4.2

describes our workload model and the six workloads that we use in this dissertation.

This chapter summarizes our models and settings, giving the reader all details

required for understanding our experimental setup. The interested reader can refer

to Appendix A for a more detailed discussion of how we chose our CURRENT and

FUTURE settings.

Simulator Genesis

As part of our research, we developed a new discrete-event simulation library, includ-

ing modules for the resources discussed in this chapter (client, server, network, disk)

and a module for workload generation. These modules are written in C++.1

The design of our system model is based in part on the the page-based simulation

work of Franklin and Carey [23, 24] and the adaptive-granularity locking work of

Carey, Franklin, and Zaharioudakis [10] (CFZ). As discussed in Section 4.2, our choice

of workloads is motivated by the workloads used in these other studies.

1The core discrete-event simulation engine was jointly developed with Sanjay Ghemawat, while

the higher-level modules were developed by the author.

61

Prior to the publication of the CFZ work we implemented a simulation system

that allowed us to study both purely page-based and purely object-based concurrency-

control schemes. After deciding that adaptive-granularity locking was the right lock-

ing scheme to use in our comparison study, we changed our client cache model to the

model described in Chapter 2 and implemented both ACBL and AOCC on top of the

resulting simulation framework. Section 4.3 concludes this chapter by discussing the

di�erences between our own simulation framework and that used in the CFZ work.

4.1 System Model and Settings

Figure 4-1 summarizes the set of parameters that make up the system model, along

with the settings that we use for these parameters. The �rst and second columns give

the settings for the CURRENT and FUTURE system con�gurations, respectively.

CURRENT system results are used in Chapter 5, where we present most of our

key �ndings. Chapter 6 describes experiments that cover other regions of the overall

parameter space. It includes experiments that use the FUTURE settings, as well

as a set of sensitivity analysis experiments that examine the impact of varying a

particular parameter (or pair of related parameters). The third column in Figure 4-1

gives the parameter ranges used in the sensitivity analysis experiments.

The following subsections describe di�erent components of the system model and

give the CURRENT and FUTURE parameter settings for each case.

4.1.1 Database

Each simulator run described in this thesis accesses a small subset of the database

pages. We call this set of accessed pages the working set of the simulator run. The

six workloads described in the next section have working set sizes between 1250 and

1300 pages. Our results apply to larger working set sizes: this relatively small size

is used to make our simulations tractable. The absolute size of the working set is

less important than the ratio of client or server cache sizes to total working set size.

Cache size parameters are discussed later in this section.

We assume that objects are small, and that multiple objects �t on a page. For

simplicity, we use �xed object and page sizes. The working set is thus described by

the object size, objects per page, page size, and working set size parameters. This data

model is su�cient for our purposes, as it allows us to study a concurrency control

scheme's ability to handle small objects and �ne-granularity sharing.

This set of parameters allows for per-page overhead: the product of object size and

objects per page can be less than page size. For both the CURRENT and FUTURE

systems, we use 100 byte objects, 40 objects per page, and 4 KB pages, thus each

page has 96 bytes of overhead.

62

Database Parameters

Parameter CURRENT FUTURE Chapter 6 Exp.

Object size 100 bytes 100 bytes |

Page size 4 KB 4 KB |

Objects per page 40 40 |

Working set size (pages) 1250{1300 1250{1300 |

Server Parameters

Parameter CURRENT FUTURE Chapter 6 Exp.

Server cache size 50% of WS 50% of WS 10%{100% of WS

Modi�ed object bu�er size 50% of WS 50% of WS {

Server CPU speed 50 MIPS 200 MIPS 30{400 MIPS

Register / Unregister 300 instr. 300 instr. |

Validation time per object 0{300 instr. 0{300 instr. |

Cost of deadlock detection 0 instr. 0 instr. |

Cache lookup 300 instr. 300 instr. |

Client Parameters

Parameter CURRENT FUTURE Chapter 6 Exp.

Number of clients 1 { 24 1 { 24 |

Client cache size 25% of WS 25% of WS 5%{50% of WS

Client CPU speed 25 MIPS 100 MIPS 15-200 MIPS

Cache lookup 300 instr. 300 instr. |

Read think time 50 instr./byte 50 instr./byte 25{1000 instr./byte

Write think time 100 instr./byte 100 instr./byte 50{2000 instr./byte

Inter-trans. think time 0 instr. 0 instr. |

Network Parameters

Parameter CURRENT FUTURE Chapter 6 Exp.

Network bandwidth 80 Mbps 160 Mbps 4{800 Mbps

Fixed network cost 6000 instr. 3000 instr. 6000{250 instr.

Variable network cost 7168 instr./KB 2048 instr./KB 7168{128 instr./KB

Disk Parameters

Parameter CURRENT FUTURE Chapter 6 Exp.

Disk setup cost 5000 instr. 5000 instr. |

Slow disk bandwidth 3322 �secs/KB 2580 �secs/KB 5000{500 �secs/KB

Fast disk bandwidth 1288 �secs/KB 990 �secs/KB 1900{190 �secs/KB

Number of server disks 4 8 |

Note: WS = Working set size

Figure 4-1. Summary of System Parameter Settings

63

4.1.2 Processors

A client or server is modeled as a simple processor with a microsecond granularity

clock. This clock advances as events running at the processor make \charges" against

it. Charges in our model are speci�ed using instruction counts, and are converted to

�secs based on the speed of the processor; the client and server speeds are speci�ed

in MIPS, or millions of instructions per second. For the CURRENT system, client

processors run at 25 MIPS and the server at 50 MIPS. For the FUTURE system,

client processors run at 100 MIPS and the server at 200 MIPS.

Events queued at a processor are executed in start-time order, where event E's

start time is the earliest time it should run. E.g., for each message sent to the

server, the network module computes a message arrival time and adds a message-

reception event to the server's queue with start time equal to the computed time. Each

processor's time advances as charges are made. Time at processor P also advances

between event executions if the earliest start time in any of the processor queues

is later than P's current time. An event never begins executions earlier than its

requested start time, but it can begin later than its start time if the processor is

heavily utilized.

A voluntary-suspension model is used; we did not feel the need to implement a

preemptive scheduler. All the client and server events that we use have short run-

lengths; an event yields the processor at any point that a signi�cant delay would

occur (such as the need to wait for a disk operation to complete).

There are a number of parameters used to specify the instruction charges for

actions that occur at the client or server. Some of these charges are described in

the \client" and \server" subsections below, while charges related to network or disk

usage are discussed in the \network" and \disk" subsections. For cache lookup, which

occurs at both client and server, we always use a 300 instruction charge.

4.1.3 Server

For schemes that either lock (unlock) objects or pages, or that register (unregister)

the fact that a client is caching (has stopped caching) a particular object or page,

a charge is used at the server for each lock, unlock, register, or unregister. If both

locking and registration are used, as in ACBL, then only a single charge is used for a

combined lock/register or unlock/unregister pair. We use 300 instructions for cache

lookup and register/unregister for both the CURRENT and FUTURE systems.

AOCC is charged for performing commit-time validation: each read-set entry is

searched for in the client's invalid set, and the cost of each search is based on the

size of the invalid set. The following charges are used for both the CURRENT and

FUTURE systems. For small invalid sets, the cost is 10 instructions per invalid set

entry; for large invalid sets, the cost is a �xed 300 instructions. These charges model

an adaptive approach where a linear search is used for small invalid sets and a hash

table lookup is used for large invalid sets. (Note that there is no validation cost if the

client's invalid set is empty.)

To ensure that our comparison study is not biased against locking schemes, we

64

intentionally underestimate those charges that only apply to lock-based approaches.

Thus, while our model has a parameter for deadlock detection, we always use a zero

setting for this parameter (i.e., deadlock detection is \free").

The �nal two server parameters specify the server cache size and the modi�ed

object bu�er size as a fraction of the working set size. For both the CURRENT and

FUTURE systems, these data structures are sized at 50% of the working set size.

The use of the MOB is described in Section 2.1.

4.1.4 Client

The number of clients in a given system is a system model parameter. We ran

experiments using 1{24 clients.

Each client has a cache whose size is speci�ed as a percentage of the overall working

set size. For both the CURRENT and FUTURE systems, client cache sizes are

25% of working set size. These caches are page-based, but support object lookup,

and individual objects can be marked as unavailable, as described in Chapter 2. We

charge a cache lookup (300 instructions) for each object access, for each processed

callback request (for ACBL), and for each processed invalid set entry (for AOCC).

For each read or write access that the client performs, the client CPU is charged a

�xed number of instructions, as speci�ed by the read think time and write think time

parameters, respectively. (These think times are speci�ed in instructions/byte; the

total instructions charged thus depends on the object size.) For both the CURRENT

and FUTURE systems, we use 50 instructions/byte for reads and 100 instruc-

tions/byte for writes. Objects are 100 bytes, thus we use 5,000 and 10,000 instructions

per read and write access.

The model also has a transaction think time, a CPU charge that can be used to

add a delay between the successful completion of one transaction and the start of the

next. This parameter was set to zero for all experiments reported in this thesis.

4.1.5 Network

Rather than using a detailed model of a particular network, such as Ethernet, FDDI,

or ATM, our network model is more abstract. We divide 1-way message latency into

three components: processor cost for sending the message, transmission across the

\wire", and processor cost for receiving the message.

The processor-based cost of sending or receiving a message is modeled as a linear

function of the message size. For both message send and receive, the appropriate pro-

cessor is charged a �xed number of instructions, plus a variable number of instructions

per KB. Since these �xed and variable system parameters are speci�ed in terms of

instructions, network latencies will go down if processor speeds are increased. (This

e�ect occurs in real systems; software overheads are a large fraction of total message

latencies.)

The wire itself is modeled as a shared FIFO queue with �xed bandwidth (speci�ed

in Mbps). The \wire time" for a message is based on the message length and the

bandwidth. Note that message latency for an unloaded network and unloaded sender

65

and receiver is just the sum of the send CPU time, the wire time, and the receive

CPU time. Even in this \unloaded system" case, a round-trip message exchange

has a signi�cant cost (i.e., compared to the cost of locally accessing an object), and

avoiding synchronous round-trip requests can lead to signi�cant savings.

This network model is a �rst-order approximation of a shared-resource network,

such as an Ethernet or a token-passing ring in which all communication uses a single

shared resource.

We ignore the second-order e�ects associated with network contention; our model

fails to approximate a real network as it nears saturation. Fortunately, when we run

our chosen workloads using the CURRENT and FUTURE system parameters, the

network does not saturate.

For the CURRENT system, network speed is 80 Mbps, �xed CPU send/receive

cost is 6000 instructions, and variable CPU cost is 7168 instructions/KB (7 instruc-

tions/byte). For the FUTURE system, network speed is 160 Mbps, �xed CPU

send/receive cost is 3000 instructions, and variable CPU cost is 2048 instructions/KB

(2 instructions per byte).

Under this network model, charges assigned to the sending and receiving pro-

cessors are not allowed to overlap any of the wire latency. In real systems, a large

message can start
owing out over the wire before the sender has fully processed the

entire message, and at the other end the receiver can start reading the message before

all of the message has crossed the wire. This partial mismatch between real systems

and our network model is discussed in Appendix A, where we describe our reasons

for choosing the above network parameter settings.

4.1.6 Disk

The database pages are stored on server disks; the number of disks is a system pa-

rameter. Pages are statically assigned to disks using a simple mapping that is not

tied to any speci�c workload. (Pages are assigned to disks using the simple formula

page number modulo number of disks.)

The server is charged a �xed number of instructions each time it initiates a disk

read or write access. This charge should re
ect all the CPU costs associated with a

single disk access. Once the charge completes, a disk access is \initiated." The disk

itself is modeled as a shared FIFO resource; accesses use up this resource in the order

they are initiated.

Like a processor, a disk is a time-based resource; each access is scheduled at its

initiation time, and makes a \charge" that advances the disk's clock. When this

charge completes, a completion event is scheduled at the server at the disk's current

clock time.

Disk reads due to fetch requests are random with respect to the current disk

head location, while disk operations used to install committed updates are intelli-

gently scheduled by the installation thread (see Section 2.1). Therefore, we use two

bandwidth parameters: slow and fast. The slow bandwidth represents the average

bandwidth one expects when a series of random page-sized reads is issued, while the

fast bandwidth represents the bandwidth one expects when a series of page accesses

66

is issued by an intelligent scheduling algorithm that selects accesses from a large pool

of possible accesses.

Appendix A discusses disk scheduling algorithms. It also describes how we chose

the following settings for the CURRENT and FUTURE systems. We use the same

CPU setup cost for both systems: 5000 instructions. (This is the same charge used

in [10].) Of course, FUTURE CPU speeds are 4 times faster, thus FUTURE disk

setup times are 4 times faster. The CURRENT system has four disks, where each

disk has a slow access time of 3322 �secs/KB and a fast access time of 1288 �secs/KB.

The FUTURE system has both more disks and faster disks: there are eight disks,

where each disk has a slow access time of 2580 �secs/KB and a fast access time of

990 �secs/KB.

4.2 Workload Model and Settings

This section describes our workload model and the six workloads used in our simu-

lation experiments. Section 4.2.1 describes the parameters of our general workload

model, while Section 4.2.3 describes the six workloads used in this thesis.

4.2.1 Workload Model

Each transaction consists of a sequence of read and write accesses, as determined by

the workload generator , a run-time component of the simulator. This generator is

con�gurable, allowing us to simulate a number of interesting workloads that exhibit

di�erent sharing patterns and di�erent levels of contention. Figure 4-2 shows the full

set of parameters for the workload generator.

Each client executes one transaction at a time. Starting with the �rst access in the

transaction sequence, it performs each access in turn, until either an abort occurs or all

accesses have been performed (in which case it attempts a commit). If a transaction

aborts, it is restarted : the client begins transaction execution again, starting with

the �rst access of the same access sequence. (The access sequence can change during

a restart execution; see the description of the restart change probability parameter

below.) If the transaction commits, the workload generator is used to create a new

transaction, and the client then executes this new sequence of accesses.

Clustering and Write Probabilities

We assume that the objects stored in the database have been placed onto pages by

some clustering process that uses information about common access patterns or the

links between objects to determine groups of objects that are likely to be accessed

together [3, 14, 19, 51, 54, 55]. Clustering is important for performance; the objects

on a page are read from disk as a group and are sent to a client as a group. We model

the quality of clustering by specifying a range of cluster sizes. The average cluster

size determines the average number of objects accessed per page.

To construct a transaction, the workload generator goes through an iterative pro-

cess, where each step adds a new cluster of accesses to the access sequence. A cluster

67

Workload Generator
Parameter Units

Transaction accesses (range)

Pages in shared-1 region pages

Pages in shared-2 region pages

Pages per private region pages

Total working set size pages

Shared-1 access prob. percentage

Shared-2 access prob. percentage

Private access prob. percentage

Other-region access prob. percentage

Shared-1 cluster write prob. percentage

Shared-2 cluster write prob. percentage

Private cluster write prob. percentage

Other-region cluster write prob. percentage

Shared-1 object write prob. percentage

Shared-2 object write prob. percentage

Private object write prob. percentage

Other-region object write prob. percentage

One cluster per page boolean

Shared-1 cluster size (range)

Shared-2 cluster size (range)

Private cluster size (range)

Other-region cluster size (range)

Restart change prob. percentage

Percent forced read-only percentage

Figure 4-2. Workload Parameters

is chosen by �rst picking the page to access and the cluster size K; K object accesses

are then selected randomly from the page. (Selecting the page and the cluster size

are discussed in detail below.)

Normally, the generator does not select the same page twice when generating a

transaction; the default is to use at most one cluster per page. This behavior can

be overridden by setting the one cluster per page parameter to \false"; in this case a

page can be selected more than once, and each time it is selected a new cluster size

K is chosen and K new accesses are added to the transaction sequence.

The generator never picks the same object twice, even when multiple clusters per

page are allowed. This invariant simpli�es concurrency control scheme implemen-

tations. For locking schemes, it ensures that an object-level lock upgrade is never

required due to a read access followed by a write access for the same object. Lock up-

grades are a source of additional deadlocks and aborts; under a workload model that

allows multiple accesses to the same object, ACBL would have lower high-contention

performance.

68

After the access type and page are chosen, the workload generator decides whether

write accesses will be allowed for the new cluster, using the cluster write probability .

If writes are allowed, then for each access the workload generator decides whether the

access is a write, using the object write probability . The net object write probability

is the product of the cluster write probability and the object write probability. For

example, with a cluster write probability of 50% and an object write probability of

20%, the net object write probability is 10%.

This two-level approach to specifying write probabilities can be used to model the

fact that the clustering process that places objects on pages may cluster objects that

tend to be read-only on some pages, while placing objects that tend to be updated

on other pages. A low cluster write probability means that the clustering process has

done a good job grouping objects according to write access patterns; only a few of

the pages accessed by a transaction will be updated.

Regions and Access Types

Each workload uses a set of pages referred to as its working set . This set is modeled

as a sequence of pages, where each page contains a �xed number of objects. A set of

four workload parameters is used to divide the working set into disjoint regions. Each

region is a contiguous sequence of pages; region boundaries fall on page boundaries.

A number of di�erent regions can be speci�ed. There are two named regions, called

shared-1 and shared-2 ; there is a parameter for each region specifying the number

of pages assigned to it. (Assigning a zero size to a region omits the region from the

workload). In addition, there is a parameter for specifying per-client private regions.

If this parameter has non-zero value K, then there is a set of private regions of K

pages each. The Nth client is said to own the Nth private region. Finally, the total

number of pages in the working set is also a parameter. Thus, in addition to the

shared-1, shared-2, and per-client private regions, there can be a �nal contiguous

sequence of pages not assigned to any of these regions; we call this set of pages the

leftover region.

Our model identi�es four types of object accesses for a given client C: shared-1

and shared-2 accesses are simply accesses to these named regions; private accesses

are accesses to C's own private region; other-region accesses are accesses to any other

region: these accesses can go to another client's private region or to the leftover

region, but cannot go to shared-1, shared-2, or C's own private region.

As shown in Figure 4-2, each access type has a set of parameters associated with

it. In addition to specifying how the total object accesses should be distributed across

the four access types, one must specify three things for each access type: a cluster size

range, a cluster write probability, and an object write probability. Thus, the di�erent

access types can have di�erent cluster sizes, or di�erent read-write characteristics.

Generating a Transaction

To produce a new access sequence for a transaction, the workload generator �rst

chooses a transaction length; the length is chosen in uniform fashion from a range

69

that is speci�ed by minimum and maximum lengths. The generator then goes through

a series of cluster-adding steps, adding the accesses for one cluster at a time until the

desired number of accesses has been generated.

Adding a Cluster For each type of access, there are parameters for specifying

an access probability and a cluster size range (a minimum and maximum number of

object accesses per cluster). The access probabilities are speci�ed as a percentage of

the total accesses; the sum of the shared-1, shared-2, private, and other-region access

probabilities must be 100%.

Given these parameters, four access weights are computed for the four access

types. For access type A, let PA be the object access probability and CA be the

average cluster size from A's cluster size range. Access weight WA is equal to PA=CA.

The workload generator randomly chooses the access type of the next cluster to add

to the transaction using a random choice that is weighted by the four access weights.

The access weights are only necessary because the access breakdown is speci�ed

in terms of desired object access probabilities, while we add entire clusters at a time.

For example, suppose we have a workload that only uses two access types, shared-1

and shared-2, where the speci�ed object access probabilities are 50% for each region,

the average shared-1 cluster size is 10, and the average shared-2 cluster size is 20.

If the workload generator simply selects shared-1 clusters half the time and shared-2

clusters half the time, we end up with twice as many shared-2 object accesses as

shared-1 object accesses. Using the access weights of 50/10 and 50/20 for shared-1

and shared-2, respectively, shared-1 clusters are selected twice as often, on average,

which produces the desired 50{50 object access breakdown.

Choosing an access type de�nes one or more regions within the working set that

can be accessed. A page from one of these regions is selected in uniform fashion.

(As discussed above, normally a page is only selected once per transaction, but this

behavior can be overridden.) The access type's cluster size range is used to choose

a cluster size S. S objects are then randomly selected from the page and added to

the transaction sequence. For each access, if writes are allowed, a random read/write

choice is made based on the object write probability.

We have now described the workload model and the details of transaction gen-

eration. Two additional workload generator parameters can be used to modify this

behavior.

Restart Change Probability

When a transaction fails and restarts, on re-execution it normally uses the same

sequence of accesses. However, this tends to favor AOCC, since AOCC does a good

job \pre-loading" the client cache with objects that will be accessed again on restart.

In a real system, even if the same transaction code is re-run when a failed transaction

is restarted, the objects that are accessed may be di�erent from the �rst execution.

For example, if the code traverses a data structure, that structure may have changed

since the �rst (failed) execution of the transaction. To allow us to examine the impact

70

of such changes, we added the restart change probability parameter to the workload

generator.

It is easiest to describe the e�ect of the restart change probability in an operational

manner. The simulator keeps a version number for each object at the server, which is

incremented each time the object is updated by a committed transaction. It also keeps

version numbers in client caches, indicating which version of the object is cached at the

client. Moreover, it records a version number sequence at a client as the client executes

a transaction: for each object accessed, the cached version number is appended to

the sequence. (Note that these version numbers are used by the simulator, not by the

concurrency control schemes.)

The version number sequence from a failed transaction is retained when the trans-

action restarts. During the re-execution, after completing an object access, the cur-

rent cached version number for the accessed object is compared to the retained version

number from the previous execution (the one that failed). If the object has changed

its value since the last time it was accessed, a random choice is made, weighted by the

restart change probability, as to whether the remaining accesses in the transaction

sequence should be replaced with new accesses. If the decision is to do a replacement,

the workload generator replaces the remaining accesses with new accesses; a su�x of

the transaction sequence is changed, but the transaction length is kept the same, and

the workload generator still ensures that there are no duplicate object accesses in the

full sequence. Execution then proceeds with the accesses in the new su�x.

If the random choice does not end up causing a su�x replacement, the client

continues with the next access in the original transaction sequence. If another ob-

ject access occurs where the object has changed its value, another random choice is

made; there can be multiple points during transaction re-execution where a su�x

replacement is possible. Since each choice is random (weighted by the restart change

probability), the original sequence may end up getting used, even if some objects have

changed. Once a su�x replacement has occurred, no further version number checking

is done; only one su�x replacement can occur per abort.

Percent Forced Read-Only

The percent forced read-only parameter is a \knob" that can be used to vary the read-

only/read-write mix. Except for one experiment in Chapter 6, this knob is not used

in this thesis (the parameter is usually set to zero). If this parameter is set to X%,

the workload generator randomly \forces" X% of all transactions to be read-only. A

forced-read-only transaction is generated in the same way as other transactions, using

the process described above, except that the cluster and object write probabilities are

simply ignored, and all accesses produced are read accesses. Thus, the forced-read-

only transactions exhibit the same average length and access pattern as the normal

transactions they are mixed with.

71

4.2.2 Motivating the Six Workloads

We chose six di�erent workloads for our experiments. This section describes our

reasons for choosing these workloads; the next section describes each workload.

For reasons of continuity, we use workloads that others have used to study client-

server systems. In particular, the client-server concurrency control studies of Franklin

and Carey [10, 23, 24] are well known in the database research community; four of

our workloads are derived from the workloads used in their studies: UNIFORM,

PRIVATE, HOTCOLD, and HICON. These workloads began as page-based

workloads [23, 24]. While transactions now consist of object accesses, we have pre-

served the same sharing patterns and the same number of average page accesses per

transaction.

These four workloads capture important sharing patterns, as we describe below.

One access pattern that is not present is the use of a small uniformly shared region

that is (1) not a signi�cant fraction of the overall working set size, and (2) not as

frequently accessed as the remainder of the working set. Such a region represents

a small set of data structures that are important to the overall application but are

not the most frequently accessed objects. Some examples include: work queues; the

upper levels of tree-structured data structures; an aggregate value such as the overall

number of parts used in a design project.

We decided to model two new shared sets that are infrequently accessed, which

we call SMALL and TINY:

� SMALL is a 50 page uniformly shared region that is accessed 10% of the time.

The net object write probability for SMALL objects is 20% or less, resulting in

moderate contention over this region.

� TINY is a 1 page uniformly shared region that is accessed only 2% of the time;

TINY is a 40 object region. The net object write probability for TINY objects

ranges from 50% to 100%, resulting in high contention over this region.

Each regions is added to one of the above workloads, creating two new workloads.

The �rst new workload is called SMALL+HOTCOLD: the 50 page SMALL

region is added to HOTCOLD. We chose to add SMALL to HOTCOLD because

it creates a moderate contention workload with both uniform and skewed sharing

patterns. Real applications will exhibit both these sharing patterns; we consider

SMALL+HOTCOLD to be the best representative of a \real" application. For

this reason, SMALL+HOTCOLD is our standard choice for the sensitivity analysis

experiments presented in Chapter 6; the other workloads are also used in a number

of the Chapter 6 experiments.

The second new workload is called TINY+PRIVATE: the 1 page TINY region

is added to PRIVATE. TINY contains \hot spot" objects (objects under high con-

tention). We chose to add TINY to PRIVATE to isolate the impact of hot spot

accesses. Without TINY, PRIVATE has no contention (no blocking and no aborts).

Under TINY+PRIVATE, all blocking and all aborts are due to TINY's hot spot

objects.

72

4.2.3 Workload Descriptions

This section describes the workloads in detail; after discussing some elements that

are common to all the workloads, it presents each workload in turn. The parameter

settings for the workload generator used to produce the six workloads are summarized

in Section 4.2.4.

Common Elements

All of the workloads (except forUNIFORM) have access patterns that use one access

type 80% of the time; the remaining 20% of the accesses are sometimes just one type

of access, and are sometimes broken down further (if more than two access types are

used). This skewed access pattern is common in many database studies; an 80{20

skew seems to be the de facto skew for concurrency control studies.

However, there are two kinds of 80{20 workloads. For earlier studies that were

not client-server studies, such as studies of single-server databases or multi-server

databases with shared disks, all clients in the system were treated uniformly: 80%

of all accesses went to a single shared region. HICON is an example of this form

of 80{20 workload. In contrast, with client-server systems, we are interested in the

e�ects of inter-transaction caching at the clients. Thus, workloads where each client

accesses its own \private" region 80% of the time became interesting. HOTCOLD,

PRIVATE, SMALL+HOTCOLD, and TINY+PRIVATE are all examples of

this form of 80{20 workload.

Most of the workloads use a cluster size range of of 5{15 (the average cluster size is

10), and a single cluster per page is the default. (The except is TINY+PRIVATE,

where a cluster size of 2 is used for accesses to the TINY region, and more than one

such cluster is allowed.) Thus, on average, one quarter of the objects on a page are

accessed when a page is touched, and the number of pages touched is equal to 1=10

of the average transaction length. Accessing 10 out of 40 objects means that the

clustering algorithm is doing a fairly good job. Better clustering is generally hard to

achieve. For example, a study by Tsangaris and Naughton found that most practical

clustering algorithms provide poor clustering [55], while algorithms that provide good

clustering were prohibitively expensive.

Default Write Probabilities. For regions that are updated, the default net write

probability is 10%. Average write clustering is used for this default, i.e., cluster write

probability is 50% and object write probability is 20%). Two regions use the reverse

case: a 20% cluster write probability 50% object write probability are used for the

\cold set" accesses used by the HICON workload and for the private accesses used

by the TINY+PRIVATE workload. In each case, these regions were used as low-

update \cold" regions that are paired with high-update \hot" regions (the \hot set"

in HICON and the TINY set in TINY+PRIVATE, respectively). We used a low

cluster write probability to produce a very low page update frequency for the cold

regions. There is just one region with a default net write probability greater than

10%: the TINY region has a default net write probability of 50% (100% cluster write

73

probability, 50% object write probability).

These default write probabilities are used for the main experiments reported in

Chapter 5. For all six workloads, we also studied many other combinations of cluster

and object write probabilities. The impact of varying the cluster and object write

probabilities is explored in Section 6.2.1.

74

UNIFORM Workload

1

1250

Client 1 Client 2

1250

40 Objects/Page -- 1250 Pages = 50,000 Objects

Total: 200 Accesses (avg)

100 %Shared
Region

1

Shared
Region

Figure 4-3. UNIFORM Workload

The UNIFORM workload is an object-based version of the page-based UNIFORM

workload from [23, 24]. Its access pattern is depicted in Figure 4-3, which shows

that every client views the working set in the same way: as a single 1,250 page

shared region. In this workload transactions average 200 object accesses (20 pages

are touched). Although clustering within pages is used, across a large number of

transactions, all objects in the working set are equally likely to be accessed.

UNIFORM is used to examine how concurrency control schemes perform when

there is little or no locality of reference across transaction boundaries.

75

PRIVATE Workload

1

25

1250

Client 1 Client 2

26

1250

50

Private

Private

40 Objects/Page -- 1250 Pages = 50,000 Objects

Total: 160 Accesses (avg)

20 %

80 %
626 626

 Shared
Read-Only

 Shared
Read-Only

Figure 4-4. PRIVATE Workload

The PRIVATE workload is an object-based version of the page-based PRIVATE

workload from [23, 24]. In this workload transactions average 160 object accesses (16

pages are touched). Each client has its own 25 page private region that it accesses

80% of the time; the other 20% of the time, it reads objects from a large (625 page)

read-only region shared by all the clients. This access pattern is depicted in Figure 4-

4.

PRIVATE was designed to model an environment where the users of the appli-

cation \divide" the work in advance, in a way that avoids con
icts. One example

would be a large CAD system, where users agree in advance to work on disjoint parts

of the design; each user updates a disjoint region, while all the users access a shared

library of components in read-only fashion.

76

HOTCOLD Workload

1

50

1250

Client 1 Client 2

51

1250

100

"Private"

"Private"

Rest-of-db Rest-of-db

40 Objects/Page -- 1250 Pages = 50,000 Objects

Total: 200 Accesses (avg)

20 %

80 %

Rest-of-db

Figure 4-5. HOTCOLD Workload

The HOTCOLD workload is an object-based version of the page-based HOTCOLD

workload from [23, 24]. Under HOTCOLD clients mostly access their own data but

sometimes access each other's data. The access pattern of HOTCOLD is depicted in

Figure 4-5. Transactions average 200 object accesses (20 pages are touched). There

are 1,250 pages in the working set. Each client has its own 50 page \private" region;

any remaining pages make up a \leftover" region whose size depends on the number

of clients. E.g., with 20 clients, 1,000 pages are used for private regions, leaving a

250 page leftover region. Each client performs private accesses 80% of the time and

other-region accesses 20% of the time. An other-region access goes anywhere except

a client's own private region: it can go to another client's private region, or it can go

to the leftover region.

HOTCOLD was designed to test the performance of client-server concurrency

control schemes that do inter-transaction caching. Each client has an a�nity for

its own objects, so inter-transaction caching should provide signi�cant performance

bene�ts. The other-region accesses cause moderate read-write sharing between clients;

HOTCOLD is useful for examining low-contention performance.

77

SMALL+HOTCOLD Workload

1

50

1300

100

Client 1 Client 2
1

50

1300

101

150

SMALL
Shared

SMALL
Shared

"Private"

"Private"

Rest-of-db

Rest-of-db

Rest-of-db

40 Objects/Page -- 1300 Pages = 52,000 Objects

Total: 200 Accesses (avg)

10 %

10 %

80 %

51

Figure 4-6. SMALL+HOTCOLD Workload

SMALL+HOTCOLD is like HOTCOLD except the SMALL region, a 50 page

uniformly-shared region, has been added. This workload is depicted in Figure 4-

6. Transactions average 200 object accesses (20 pages are touched). 10% of client

accesses are SMALL accesses, 80% are private, and 10% are other-region accesses.

Other-region accesses go to anywhere in the working set except SMALL and the

client's own private region. Like HOTCOLD, SMALL+HOTCOLD has a leftover

region whose size depends on the number of clients. Note that more accesses go to

SMALL than to the leftover region; there should be little contention over the leftover

region, and moderate contention over SMALL.

Of the six workloads, SMALL+HOTCOLD has the richest mix of sharing pat-

terns. For this reason, SMALL+HOTCOLD is the primary workload used for

sensitivity analysis (described in Chapter 6).

The SMALL region is a good challenge for caching client-server concurrency con-

trol schemes. The caching of SMALL pages should provide performance bene�ts.

However, the update frequency for SMALL pages will increase with the number of

clients, thus the actual bene�t derived from caching will depend on the e�ectiveness

of cache maintenance (e.g., piggy-backed invalidations as used by AOCC) or cache

consistency (e.g., callbacks as used by ACBL).

78

HICON Workload

1

250

1250

Client 1 Client 2

1250

Hot Set

40 Objects/Page -- 1250 Pages = 50,000 Objects

Total: 200 Accesses (avg)

20 %

80 %

251 251

Cold Set

Hot Set

Cold Set

1

250

Figure 4-7. HICON Workload

TheHICON workload is an object-based version of the page-basedHICON workload

from [23, 24]. Skewed 80{20 workloads such as HICON have been used in many

database studies, such as studies of shared-disk database systems. We use it to study

the e�ects of data contention, for the case where the contention occurs over a large

region due to a large number of accesses hitting this region.

HICON's access pattern is depicted in Figure 4-7, where a 1,250 page working

set has been split into a 250 page \hot set" that is accessed 80% of the time and a

1,000 page \cold set" that is accessed 20% of the time. The \hot set" will clearly have

more contention over it, which is why we label it \hot". Transactions average 200

object accesses (20 pages are touched). Both the hot set and the cold set in HICON

are uniformly shared by the clients.

Note that the next workload, TINY+PRIVATE, was designed to have high

contention due to a small number of accesses to a TINY hot set. In contrast, under

HICON most of the accesses go to a larger \hot set" and are a potential source of

con
ict.

79

TINY+PRIVATE Workload

2

26

Client 1 Client 2

Private
27

51
Private

40 Objects/Page -- 1251 Pages = 50,040 Objects

Total: 100 Accesses (avg)

19 %

79 %

627

 Shared
Read-Only

627

 Shared
Read-Only

1251 1251

TINY Hot Set

2 %

1
TINY Hot Set

1

Figure 4-8. TINY+PRIVATE Workload

The HICON workload just described accesses its hot set most of the time; a large

set of objects is updated frequently by all the clients. This leaves the inverse case,

where clients mostly access their own private regions, and only infrequently access a

small \hot set" of objects under high contention. For example, a count of the number

of parts in an automobile design might be updated by all the clients, even though

each client is updating a di�erent part of the overall design. This insight leads to the

TINY+PRIVATE workload.

TINY+PRIVATE is the same as PRIVATE, except a 1 page TINY region has

been added. (TINY must be very small to be \hot" because there are few accesses to

it.) The resulting access pattern is shown in Figure 4-8. Where PRIVATE has 80%

private accesses and 20% read-only accesses, TINY+PRIVATE has 79% private

accesses, 19% read-only accesses, and 2% TINY accesses.

TINY+PRIVATE transactions average 100 accesses; because they average only

2 TINY accesses, a cluster size of 2 is used for these accesses. An average cluster

size of 10 is still used for other accesses. For the TINY region, a 100% cluster write

probability is used; the default object write probability is 50%. For the private pages,

a net object write probability of 10% is always used.

TINY+PRIVATE was designed to examine how concurrency control schemes

perform when there are hot objects that are accessed rarely. Since the only contention

is over the TINY region, this workload isolates the e�ects of contention over these

hot objects.

80

4.2.4 Summary of Workload Generator Settings

Parameter UNIFORM HICON PRIVATE TINY+PRIVATE

Transaction accesses 180{220 180{220 140{180 90{110

Pages per private region | | 25 25

Pages in shared-1 region 1,250 250 | 1

Pages in shared-2 region | 1,000 625 625

Total working set size 1,250 1,250 1,250 1,251

Private access prob. | | 80% 79%

Shared-1 access prob. 100% 80% | 2%

Shared-2 access prob. | 20% 20% 19%

Private cluster write prob. | | 50% 20%

Shared-1 cluster write prob. 50% 50% | 100%

Shared-2 cluster write prob. | 20% 0% 0%

Private object write prob. | | 20% 50%

Shared-1 object write prob. 20% 20% | 50%

Shared-2 object write prob. | 50% 0% 0%

One cluster per page true true true false

Private cluster size | | 5{15 5{15

Shared-1 cluster size 5{15 5{15 | 2{2

Shared-2 cluster size | 5{15 5{15 5{15

Figure 4-9. Parameter Settings: UNIFORM, HICON, PRIVATE, TINY+PRIVATE

Parameter HOTCOLD SMALL+HOTCOLD

Transaction accesses 180{220 180{220

Pages per private region 50 50

Pages in shared-1 region | 50

Total working set size 1,250 1,300

Private access prob. 80% 80%

Shared-1 access prob. | 10%

Other-region access prob. 50% 10%

Private cluster write prob. 50% 50%

Shared-1 cluster write prob. | 50%

Other-region cluster write prob. 20% 50%

Private object write prob. 20% 20%

Shared-1 object write prob. | 20%

Other-region object write prob. 20% 20%

One cluster per page true true

Private cluster size 5{15 5{15

Shared-1 cluster size | 5{15

Other-region cluster size 5{15 5{15

Figure 4-10. Parameter Settings: HOTCOLD, SMALL+HOTCOLD

81

Figure 4-9 shows the workload generator parameters for theUNIFORM,HICON,

PRIVATE, and TINY+PRIVATE workloads. These workloads do not use other-

region accesses, so the other-region rows are not shown. Figure 4-10 shows the work-

load generator parameters for the HOTCOLD and SMALL+HOTCOLD work-

loads. These workloads do not use the shared-2 region, so shared-2 rows are not

shown. In both cases the cluster and object write probabilities are the default proba-

bilities. As discussed above, a number of di�erent combinations of cluster and object

write probabilities were used with each workload; the results of varying these param-

eters are reported in Section 6.2.1.

In addition to the parameters shown in these two �gures, there are two other

workload parameters, restart change probability and percent forced read-only . Chap-

ter 6 includes a sensitivity analysis experiment for these parameters (each is varied

from 0% to 100%).

The default forced read-only setting is 0%; the ability to \force" transactions to be

read-only is not normally used. The default restart change probability is 50%. This

setting means that during re-execution of a failed transaction, if one of the objects

accessed by the transaction has a new value, there is a 50{50 chance that this will

cause the remaining accesses in the transaction to be replaced with new accesses.

Most concurrency control studies use the same access pattern on restart (the

\perfect restart" assumption). This approach favors optimistic schemes. Our use of a

50% restart change probability results in a fairer comparison between optimism and

locking.

4.3 Related Experimental Framework

This section discusses how our simulation framework di�ers from the framework used

by Carey, Franklin, and Zaharioudakis (CFZ) in their study of adaptive-granularity

callback locking schemes [10].

Four of our workloads (PRIVATE, HOTCOLD, UNIFORM, and HICON)

are based on workloads with the same names used both in the CFZ study and also

in several earlier client-server studies [23, 24].

Our workload generator has a number of features that are extensions of the CFZ

generator. We control both the net write probability and the clustering of writes onto

pages; CFZ only control net write probability, thus writes are uniformly distributed

across all accessed pages. We control the likelihood that restarts result in a changed

access pattern; CFZ uses the \perfect restart" assumption. Finally, we can control

the mix of read-only and read-write transactions in a way that is orthogonal to the

write probabilities used for the read-write cases.

With respect to common resource settings, we use more up-to-date settings for

our CURRENT and FUTURE systems. E.g., our systems have more available disk

bandwidth at the server and faster client and server CPU speeds. The rationale for

our choice of resource settings is summarized in Appendix A. In addition, note that

Chapter 6 includes experiments that demonstrate the impact of varying all of the

core system parameter settings.

82

With respect to the system architecture that the two schemes run on, our simu-

lated system has two new data structures: an object-based undo log at the clients,

and an object-based modi�ed object bu�er (MOB) at the server. Section 2.1 de-

scribes these structures and discusses the advantages of using a MOB-based server

design. In addition, Section 2.4.1 discusses experiments that demonstrate the low

overheads associated with undo logging. Based on these experiments, we decided not

to introduce CPU charges for the undo log.

83

84

Chapter 5

Main Experimental Results

This chapter presents our main experimental results. It examines the relative per-

formance of AOCC and ACBL for all six workloads, using the CURRENT system

settings and default workload settings (as described in Chapter 4).

For each workload, we examine the results across a range of 1{24 clients. The

overall result is that AOCC outperforms ACBL across all six workloads, where the

di�erence in performance increases with number of clients across most or all of the 1{

24 client range. At a high enough number of clients, the throughput of each scheme

\levels o�" due to saturation or blocking e�ects. In each case, AOCC peaks at a

higher throughput, where its peak occurs at the same client point as ACBL's peak

or at a higher number of clients. These results show that AOCC scales better with

number of clients.

The next chapter, Chapter 6, examines the impact of varying di�erent parameter

settings. The experiments in Chapter 6 demonstrate that the relative results and

insights presented in this chapter hold across a wide range of settings.

Chapter Organization

Section 5.1 gives on overview of how we interpret our simulation results: it dis-

cusses the graphs used in this chapter and the approach we take to analyzing the

simulation results for each workload. The next six sections (Section 5.2 through Sec-

tion 5.7) present simulation results for each of the six workloads, in the following

order: PRIVATE, HOTCOLD, SMALL+HOTCOLD, UNIFORM, HICON,

and TINY+PRIVATE. Section 5.8 brie
y summarizes the key insights presented

in this chapter.

5.1 Interpreting the Simulation Results

Result Graphs

The following are general points regarding results graphs:

85

� All graphs use the following convention: AOCC results are plotted using a solid

line, with circles marking the data points; ACBL results are plotted using a

dashed line, with boxes marking the data points.

� To compute a single point for a graph, we use a set of values taken from con-

secutive batches (time intervals within a simulation run). All batches covered

at least 5000 commits. A mark (circle or box) is placed at the average value,

while a vertical error bar centered on this mark shows the size of 95% con�dence

interval. (Error bars are not visible when the con�dence interval is smaller than

the circle or box used to mark the average value.) Con�dence intervals for

TINY+PRIVATE throughput are all within 4% of average, and throughput

con�dence intervals for the other workloads are all within 2% of average. This

level of con�dence is more than su�cient for our comparison goals.

� In this chapter, the X axis always gives the number of clients in the system,

while the Y axis gives the range of values for the speci�c metric shown in the

graph. Thus, moving from left to right, each graph shows the impact of adding

additional clients to the system. (We show results for 1{24 clients.)

� Graphs have Y-axis labels that give the units for the metric reported. Graph

titles (given below each graph) give short descriptions of the metric shown. For

example, theMessage Count graph shows the averages number of messages sent

per successful commit; the Y axis is labeled messages per commit .

Like the Message Count graph, most graphs report average values per successful

commit . The following graphs have this form: Message Count (messages per commit);

Commit Requests (commit requests per commit); Client Requests (client requests |

other than commit requests | per commit); Page Replies (replies to client requests

that include a version of a page, per commit); Server Requests (callback requests sent

by the server per commit); Blocking Rate (blocks per commit); Abort Rate (aborts per

commit); Access Count (object accesses per commit); Lock Waiting (the component

of overall transaction latency due to locking actions, in ms per commit);Wasted Work

(the component of overall transaction latency due to executing aborted transactions,

in ms per commit); Wait + Waste (the combination of the previous two metrics, in

ms per commit).

For the Lock Waiting graph, any lock acquisition latency that occurs at the server,

including waiting due to the use of callbacks and waiting due to actual blocking, is

counted as lock waiting time. In addition, message latency for request/response pairs

is counted as lock waiting time, but only if this exchange does not involve a page

reply. For the case where a page is fetched from the server, the latency due to the

page fetch is not counted: any concurrency control scheme, including a scheme that

does not use locking, would incur a round-trip page-fetching cost for a missing page.

However, if an ACBL client acquires a write lock for state that is already cached at

the client, the lock request and reply are strictly used for locking purposes, and the

latency due to these messages is counted as locking waiting. (Essentially, the locking

waiting metric is a measure of the latency due to actions that are not performed by

an optimistic scheme such as AOCC.)

86

It is interesting to see how much of the total lock waiting time is due to wasted

lock waiting , i.e., to lock waiting performed by aborted transactions. Thus, the Lock

Waiting graph plots both total lock waiting time (in black) and wasted lock waiting

time (in gray).

For the Wasted Work graph, the entire execution time of an aborted transaction

counts as wasted work .

The wasted work metric is an estimate of the cost of using optimism, and lock

waiting is an estimate of the cost of using locking. Neither metric is a perfect mea-

sure of concurrency-control costs
1
, but these measures are su�cient for producing a

comparison of the nature of these costs; the Wait + Waste graph gives such a com-

parison. This graph reports the combined e�ect of locking and aborts. Wait + Waste

is always equal to the wasted work cost for AOCC, since it has no lock waiting cost.

For ACBL, Wait + Waste is computed by adding the wasted work and lock waiting

metrics and then subtracting wasted lock waiting time, so that the overlap between

the two metrics is not \double counted."

In addition to the per-commit graphs above, the following graphs are used: the

Throughput graph gives overall system throughput in commits per second ; the Server

Utilization graph gives average server CPU utilization (the percent of total available

CPU instructions that are utilized); and the Disk Utilization graph gives the average

disk utilization across all the server disks, where each disk's utilization is given by

the percentage of the total batch time that the disk used to carry out read and write

requests.

Finally, for each Throughput graph there is a corresponding Percent Improvement

graph. This graph reports on the di�erence between AOCC and ACBL throughput

values as a percentage of the smaller value. We use a bar graph format for this graph,

where a bar is drawn for each of the following client values: 1, 2, 4, 8, 12, 16, 20, and

24. Suppose `AOCC' and `ACBL' stand for the AOCC and ACBL throughput values

for a system with C clients. The bar for the C client case is drawn as follows:

� If AOCC > ACBL, percent improvement is given by (AOCC�ACBL)=ACBL

and is shown as a bar rising above the X axis.

� ForACBL > AOCC, percent improvement is given by (ACBL�AOCC)=AOCC

and is shown as a bar dropping below the X axis.

Note that the smaller throughput value is always used as the denominator; percent

improvement indicates the gain in performance achieved if one switches from using

the slower scheme to using the faster scheme. We use the direction of the bar (above

or below the X axis) to show whether it is AOCC or ACBL that is the better scheme.

1For example, pages fetched during an aborted transaction might be accessed during a restart, or

even by some future transaction, thus not all work performed during an abort is \wasted." At the

same time, fetches that are not useful can add to the server load and lengthen average client request

times for all client requests, including those performed during successful transaction executions.

Unless the access pattern of a transaction is very likely to change on restart, useful fetches are more

likely than non-useful fetches; we expect the wasted work metric to be an under-estimate of abort

costs.

87

In this chapter, AOCC is always the better scheme, thus all bars are above the X

axis. (Chapter 6 reports on some experiments that have Percent Improvement graphs

with bars that drop below the X axis.)

Examing Simulation Results

We use total system throughput in commits per second as our main metric for com-

paring the performance of the two schemes. Since we use a closed simulation model

(each client is always executing a transaction), throughput and latency are inversely

related: the scheme that has better throughput also has lower average latency.

The reader should keep in mind that our simulator was not designed to predict

the performance for a speci�c database system, but rather to explore the relative per-

formance of the two schemes, using a range of di�erent system con�gurations. Thus,

we are interested in the relative positioning (as well as the \shapes") of the AOCC

and ACBL throughput curves, while speci�c throughput values are less interesting.

(If one scheme achieves 100 commits per second while the other achieves 200 commits

per second, the doubling of performance is more interesting than the values \100"

and \200.")

For each workload we present two discussions, Main Results and Peak Throughput

Results. The �rst discussion presents the general reasons for AOCC's better per-

formance and for the increasing performance gap as clients are added to the system.

The second discussion presents the reason that each scheme's total system throughput

approaches or attains some peak value.

Note that while our throughput graphs show a degrading throughput beyond the

client point where the peak value is achieved, it is possible to design an admission

control policy for a database system that attempts to keep the system performing

at near-peak performance at client points that are higher than the \ideal" number

of clients. [11] A discussion of how one would implement admission control for either

AOCC or ACBL is beyond the scope of this thesis. However, we can still consider

the impact of adding such policies to the two schemes: each scheme would have a

curve that rises to its peak throughput value, falls to some near-peak value, and

then remains at roughly the same value through 24 clients (and beyond). Thus, if

admission control were used, the performance gap between the two schemes would be

(roughly) constant above the client point where both schemes have peaked, and the

size of the performance gap would be roughly the size of the gap between the two

peak values.

Since a peak vs. peak throughput comparison is interesting, the peak vs. peak per-

cent improvement is given at the top of each Percent Improvement graph (centered

above the bar graph). The maximum throughput values in the 1{24 client region

are used to compute this value. For certain workloads, one or both of the through-

put peaks occurs beyond the 24 client point. For these workloads, since AOCC's

throughput is always rising faster than ACBL's throughput at 24 clients, the actual

peak vs. peak percent improvement is larger than the peak vs. peak percent improve-

ment given in the Percent Improvement graph.

88

5.2 PRIVATE Workload

In the PRIVATE workload, each client has its own 25 page private region that it

both reads and modi�es; in addition, the PRIVATE working set includes a 625

page read-only region. On average, 80% of a client's accesses go to its own pri-

vate region, and 20% go to the read-only region. (Note that in HOTCOLD and

SMALL+HOTCOLD, one client can access another client's private region; this is

not the case for PRIVATE.)

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

100

200

300

400

C
om

m
it

s
/ S

ec
on

d

Throughput
Clients

0 %

10 %

20 %

30 %

40 %

50 %

% Improvement

1 2 4 8 12 16 20 24

8.
6

8.
9 9.
5 11

.7 15
.2

21
.6

30
.7

42
.0

(Peak-vs-Peak % Improv. = 42.0 %)

1 4 8 12 16 20 24

Clients

0

5

10

15

20

M
es

sa
ge

s
/ C

om
m

it

Message Count

CURRENT System, Default Workload Settings

Figure 5-1. PRIVATE: Throughput, % Improvement, Message Count

Since PRIVATE has no data contention, there are no abort costs or blocking

costs; messaging costs alone determine the relative performance of the two schemes.

Figure 5-1 gives the Throughput, Percent Improvement, and Message Count graphs

for PRIVATE. The Message Count graph shows that messages per commit is
at

across the 1{24 client range, where ACBL always uses 11.2 more messages per commit

than AOCC. AOCC has lower messaging costs and higher throughput. The Percent

Improvement graph shows that AOCC outperforms ACBL by 8.6% at one client and

by 42% at 24 clients. (Due to the scale of the Y axis, low-client throughput di�erences

are not visible in the Throughput graph. E.g., at one client, the throughput values

for AOCC and ACBL are 22.9 and 21.1 commits per second, respectively.)

The performance gap between the two schemes increases as clients are added,

where this gap widens at a faster rate in the 12{24 client range than in the 1{12

client range. We �rst discuss the general reasons for AOCC's better performance

and for the widening performance gap as clients are added to the system. We then

89

discuss peak throughput issues and the reason for the more rapid change in percent

improvement for the higher client range.

Main Results

The message count di�erence of 11.2 messages per commit shown in Figure 5-1 is

easily explained. ACBL uses write lock requests for the updates that are performed

on private pages, and (since there is no contention) these requests always result in

page-level write locks. Thus, ACBL uses one write lock request/write lock reply pair

for each page that is updated, while AOCC does not use these locking messages.

For the default PRIVATE settings, an average of 5.6 private pages are updated per

commit, producing an average of 11.2 additional messages.

The PRIVATE workload demonstrates an important point: the cost of using

additional messages per commit depends on the number of clients in the system. As

clients are added, even though the gap in message count per commit is a constant

11.2 messages, there is a widening gap in message cost per commit, due to increasing

contention for use of the server CPU.

Each client request has server CPU costs, including the costs for receiving the

request and sending the reply. As more clients compete for use of the server CPU,

the average delay incurred at the server (per client request) increases. When the

server CPU is not close to its saturation point, the increase in delay due to resource

contention is linear with respect to both message count and number of clients. If there

are C clients, the added cost of using K extra requests per commit is proportional to

CK. (Once the server CPU is near its saturation point, the added cost of an extra

message is worse than linear with respect to CK.)

Peak Throughput Results

Figure 5-2 gives the Server Utilization and Disk Utilization graphs for PRIVATE.

Consider �rst each scheme's relative use of the total available CPU and disk resources:

at any client point C, AOCC's server utilization is always higher than its disk uti-

lization, and the same is true for ACBL. Server CPU is thus the critical resource for

both schemes: as the server CPU is driven to saturation, system throughput levels

o� and eventually peaks. (The terms level o� and peak are shorthands for \asymp-

toticly approach a peak throughput value" and \reach a peak throughput value,"

respectively.)

Since server CPU is the critical resource for both schemes, and ACBL saturates

this resource faster than AOCC (as shown in the Server Utilization graph), AOCC will

peak at a higher number of clients than ACBL. We can this see from the Throughput

graph in Figure 5-1: ACBL's throughput levels o� (and nearly peaks) by 24 clients,

while AOCC's throughput does not.

When one scheme levels o� at a client point where the other scheme's throughput

is still rising, the performance gap between the two schemes increases rapidly from the

point where the �rst scheme starts to level o� to the point where the second starts to

level o�. For PRIVATE, we see such a rapid change in percent improvement starting

90

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

Se
rv

er
 U

ti
liz

at
io

n

Server Utilization

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

D
is

k
U

ti
liz

at
io

n

Disk Utilization

CURRENT System, Default Workload Settings

Figure 5-2. PRIVATE: Server and Disk Utilization

at roughly 16 clients; this rapid increase will stop somewhere beyond the 24 client

point used in our experiments, at the point where AOCC's throughput starts to to

level o�.

Neither scheme peaks by 24 clients, thus we cannot compute the peak vs. peak

percent improvement. Since AOCC's throughput is rising more rapidly than ACBL at

24 clients, the actual peak vs. peak improvement is higher than the 42% improvement

reported in the Percent Improvement graph. (The Percent Improvement graph reports

on the di�erence in the two maximum throughput values for the 1{24 client range).

Both schemes use roughly the same number of disk operations per commit , but

this is not apparent in the Disk Utilization graph. AOCC's lower messaging costs

allow it to commit more transactions per second , thus AOCC performs more disk

operations per second ; this results in higher disk utilization for AOCC, as shown in

the Disk Utilization graph.

5.3 HOTCOLD Workload

The working set for the HOTCOLD workload is 1250 pages in size. This working set

is divided into a set of 25 regions (50 pages per region), where each client in the system

is the \owner" of one private region; the rest of the regions are unclaimed regions.

(With 2 clients in the system, there are 2 private regions and 23 unclaimed regions;

with 24 clients in the system, there are 24 private regions and just one unclaimed

region.)

On average, each client accesses its own private region 80% of the time; its other

accesses are other-region accesses that go to any of the other 24 regions of the working

set. An other-region access by client Ci can either access an unclaimed region or the

91

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100
C

om
m

it
s

/ S
ec

on
d

Throughput
Clients

0 %

5 %

10 %

15 %

% Improvement

1 2 4 8 12 16 20 24

6.
7

7.
9

9.
7

12
.8

12
.0

10
.8

10
.4

10
.6

(Peak-vs-Peak % Improv. = 10.4 %)

1 4 8 12 16 20 24

Clients

0

10

20

30

40

50

M
es

sa
ge

s
/ C

om
m

it

Message Count

CURRENT System, Default Workload Settings

Figure 5-3. HOTCOLD: Throughput, % Improvement, Message Count

private region of some other client Cj. We call the latter case an invasion of client

Cj's private region; such invasions are the major reason for data con
icts under

HOTCOLD. (Data con
icts can also occur if two clients both happen to access

the same unclaimed region using other-region accesses, but such con
icts are rare

compared to con
icts due to invasions of private regions.)

Figure 5-3 gives the Throughput, Percent Improvement, and Message Count

graphs for HOTCOLD. AOCC again has lower messages per commit and higher

throughput. Unlike the PRIVATE workload, however, messages per commit for

both schemes rises as clients are added to the system. Moreover, ACBL's message

count rises faster than AOCC's message count, causing the percent improvement to

climb faster under HOTCOLD than it does under PRIVATE. (From 1{8 clients,

PRIVATE percent improvement rises by 3.1% while HOTCOLD percent improve-

ment rises by 6.1%.)

We �rst discuss the general reasons for AOCC's better performance and for the

widening message gap; we then discuss peak throughput issues.

Main Results

Figure 5-4 shows the Blocking Rate, Abort Rate, and Access Count graphs. The level

of data contention increases linearly with number of clients in the system, resulting in

a nearly linear blocks per commit for ACBL and and aborts per commit for AOCC.

(Restarts have a lower abort rate than �rst-run executions, thus AOCC aborts per

commit is not perfectly linear.)

ACBL's increasing blocking rate means that the average waiting time due to

blocking increases. It also (indirectly) implies more object-level locking is used, and

92

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0.0

0.2

0.4
B

lo
ck

s
/ C

om
m

it

Blocking Rate

1 4 8 12 16 20 24

Clients

0.0

0.1

0.2

A
bo

rt
s

/ C
om

m
it

Abort Rate

1 4 8 12 16 20 24

Clients

0

200

400

600

O
bj

ec
t

A
cc

es
se

s
/ C

om
m

it

Access Count

CURRENT System, Default Workload Settings

Figure 5-4. HOTCOLD: Blocks, Aborts, Accesses (per Commit)

thus more lock and callback requests are used. (Since ACBL only blocks at the object

level, the presence of blocking implies the use of object-level locks.)

AOCC's increasing abort rate means that more object accesses occur per commit,

as accesses performed during a failed transaction are \wasted." The Access Count

graph in Figure 5-4 shows that AOCC's accesses per commit rises from 200 to 240 as

we move from 1 to 24 clients. In contrast, ACBL remains at a
at 200 accesses per

commit, due to its low abort rate. (At 24 clients ACBL has reached 201 accesses per

commit.)

Since an abort rate of 0.28 adds 40 accesses to the average transaction length, the

average length of a failed execution is roughly 143 accesses. This average is below

200 accesses per commit because AOCC clients perform early abort detection using

the piggy-backed invalidations that arrive in fetch replies. Early abort detection

saves unnecessary commit requests, and also some unnecessary accesses. (Since failed

transactions average 143 accesses, 57 accesses are saved per abort, on average.)

An increasing abort rate can also imply the use of additional commit requests and

additional fetch requests (and the corresponding replies). For HOTCOLD, however,

such an increase does not occur; we discuss the reasons below.

While the blocking rate and abort rate metrics for HOTCOLD do rise to non-

trivial values, blocking and abort costs are not the primary component of transaction

latency; for the default settings, HOTCOLD is not a high-contention workload.

Therefore, message cost is still the primary determinant of relative performance. We

now examine the message behavior of the two schemes in detail.

Figure 5-5 gives the message breakdown graphs: Commit Requests, Client Re-

quests, Server Requests, and Page Replies.

Since large messages have higher send and receive costs compared to small mes-

sages, it is possible that one scheme could send more total messages but still have a

93

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0.0

0.5

1.0

1.5

2.0

C
om

m
it

 R
eq

ue
st

s
/ C

om
m

it

Commit Requests

1 4 8 12 16 20 24

Clients

0

5

10

15

C
lie

nt
 R

eq
ue

st
s

/ C
om

m
it

Client Requests
(Fetch+Lock Requests)

1 4 8 12 16 20 24

Clients

0

2

4

6

P
ag

e
R

ep
lie

s
/ C

om
m

it

Page Replies

1 4 8 12 16 20 24

Clients

0

2

4

6

Se
rv

er
 R

eq
ue

st
s

/ C
om

m
it

Server Requests
(Callback Requests)

CURRENT System, Default Workload Settings

Figure 5-5. HOTCOLD: Message Breakdown

lower messaging cost. Thus, it is important to compare the schemes with respect to

their use of the two largest message types, commit requests and page replies. (Com-

mit requests are large because they contain modi�ed object state to be installed at

the server. Page replies are large because they contain 4 KB pages.)

We can see from the Commit Requests and Page Replies graphs in Figure 5-5

that the two schemes use roughly the same number of large messages. Even though

AOCC's abort rate rises to 0.28 aborts per commit, its commit requests per commit

remains near 1.0. Under HOTCOLD, the large majority of AOCC aborts occur at

the clients; the need to abort is almost always detected prior to reaching the commit

point, and very few commit requests are sent for transactions that end up aborting.

(ACBL's commit requests per commit remains near 1.0 because its use of locking

keeps its abort rate very low.)

One might think that the extra accesses performed during restart by AOCC would

mean additional fetches, and thus additional page replies. However, the Page Replies

graph shows that this is not the case: both schemes use roughly the same number

94

of page replies per commit, where this number increases with additional clients. The

reason for this phenomenon is that both schemes have very similar caching behavior,

even though AOCC transactions sometimes abort and ACBL transactions do not.

Most accesses performed by a client are to its own private pages. A private

access results in a fetch only when the accessed object or its containing page has

been modi�ed by some other transaction, causing the object to be marked or the

containing page to be dropped. Under both schemes, when some invaliding client I

modi�es objects on a page owned by another client C, this usually results in exactly

one fetch:

� Under AOCC's optimistic approach, either a transaction running at client C

will end up aborting due to this update, or it will not. The �rst case occurs if

an out-of-date version of an object written by client I is read from C's cache.

In this case the updated page is fetched during restart. The second case occurs

if objects updated by I are removed from C's cache before a transaction at C

happens to read an out-of-date version. In this case some transaction at client

C will eventually access one of these updated objects, and a fetch will occur.

� Under ACBL's locking approach, it is possible that a transaction running at

client C will block on transaction I due to one of I's updates; in this case C

is resumed once I commits, and C will fetch the page updated by I. It is also

possible that no transaction at C will block on the updater at I, either because

the updater at I is the one that ends up blocking, or because no blocking

occurs. In either of these non-blocking cases, the updated state is removed

from C's cache either when a callback is received or when a committing C

transaction processes its \promises" to mark objects as unavailable. As above,

some transaction will eventually access one of the removed objects and a page

fetch will occur.

In summary, an update by an invading client causes a single fetch by the owning client

at some point after the update has occurred. An abort can occur under AOCC, but

this does not change the number of fetches it uses to obtain the new object state.

The above reasoning relies on the fact that the owners of private pages access these

pages more frequently than these pages tend to be updated by \invading" clients. The

skew in access frequency makes it unlikely that multiple updates to a given private

page P by \invaders" will occur during a time interval that spans two accesses to

page P by P's owner, and thus each update by an invader triggers a single fetch by

the owner. (The UNIFORM workload does not have such a skew; see Section 5.5.)

Note that aborts would result in additional page replies per commit if AOCC did

not use undo logs at the clients. The state stored in an undo log is used to undo any

uncommitted updates performed on objects updated locally by an aborted transaction

(except for those objects removed from the cache due to piggy-backed invalidations).

If undo logs were not used, updated state would be removed on an abort, rather

than restoring it. This would result in more fetches per commit: aborts would cause

frequently accessed state (such as private state) to be removed from client caches.

95

It is clear that restoring a private page is better than dropping it, given the high

frequency of private accesses. Whether it is useful to restore an infrequently-accessed

page (e.g., an unclaimed page modi�ed by an other-region access) depends on the

application's restart behavior. For the experiments reported in this chapter, a 50%

restart change probability is used; some pages restored on abort will not be accessed

during restart. If we used a \perfect restart" assumption, all restored pages would

be used immediately; this would magnify the bene�t of using undo logs.

So far we have shown that aborts cause AOCC to use more object accesses than

ACBL, but not more commit requests or page replies. As a result, AOCC aborts are

very inexpensive for this workload. While average transaction latency at 24 clients

is 245.3 ms per commit, the total wasted work time is only 56.6 ms per commit. Of

this 56.6 ms, only 3.2 ms is due to the additional \think time" charged to the client

CPU (for 32 extra read accesses and 8 extra writes). Almost all of the measured

wasted work time is due to fetches that occur during aborted transactions. As we

argue above, most such fetches are in fact useful fetches.

While AOCC's abort costs are low, ACBL's locking-induced costs are not. As

contention increases, ACBL transactions spend more time blocked at the server wait-

ing on locks. However, since HOTCOLD is not a high-contention workload, this

blocking time is relatively small. The most signi�cant locking cost incurred by ACBL

is the time spent sending and receiving messages as part of acquiring locks.

As shown in the Client Requests graph in Figure 5-5, ACBL uses more client

requests per commit than AOCC. It also uses an increasing number of callback

requests per commit, as shown in the Server Requests graph, where AOCC uses no

such requests. As with PRIVATE, the gap in client requests is due to the use of

lock requests. Unlike PRIVATE, both schemes show an increasing number of client

requests per commit as clients are added to the system. More clients means a higher

update rate, resulting in more object marking and more page dropping at each client

cache during a given client transaction's execution. As more data is removed from

caches, it becomes more likely that fetches will be required, thus both schemes show

an increase in both client requests and page replies.

In combination, the extra client requests and callback requests result in a message

gap that increases as clients are added to the system. AOCC's messaging advantage

over ACBL increases with the number of clients in the system.

Finally, it is interesting to examine the \knee" that occurs in the Server Requests

graph at roughly 8 clients. (This change in slope also causes the total message count

to have a \knee," as can be seen in the Message Count graph in Figure 5-3.) This

knee occurs because the rate of growth in the number of callback requests sent by the

server is di�erent for the low-client and high-client regions.

For the low-client region, 20% of the accesses are other-region accesses, and these

usually go to unclaimed pages, since most of the 25 regions in the working set are

unclaimed. Pages in unclaimed regions are rarely updated, thus the expected number

of clients caching an unclaimed page grows as clients are added to the system. A

growth in the number of cachers translates to a growth in the number of callbacks

required to obtain a write lock.

For the high-client region, most of the 25 regions are owned by some client. 80%

96

of the accesses go to a client's own private region, and most of the remaining accesses

go to some other client's private region. The pages in a private region are frequently

updated by their owner; the system is constantly driven towards a state where each

client is the only cacher of its private pages. If C owns private page P, an access

to P by invading client I will typically cause either one or two callbacks, depending

on whether P is updated by client I. For an update, client C is �rst sent a callback

due to I's write lock request. For either a read-only or update access by client I, an

update by C will eventually cause a callback to be sent to I.

More than two callbacks per \invasion" can occur when there are overlapping

accesses to C's private page P by two or more invaders, or when the system switches

to using object-level locking for page P, due, e.g., to client C refusing to drop P from

its cache. However, the number of callbacks per invasion remains low. There is a

growth in callbacks per commit, but this is mainly due to the fact that the number

of invasions per commit rises with the number of clients in the system.

Peak Throughput Results

Figure 5-6 gives the Server Utilization and Disk Utilization graphs for theHOTCOLD

workload. AOCC uses more available disk bandwidth than available server CPU per

commit; the disks are the critical resource for AOCC. ACBL's use of the two server

resources is nearly balanced, with CPU usage a little higher than disk usage; both

resources are critical resources for ACBL. The two schemes have similar per-commit

disk costs, thus the di�erence in relative use of the two server resources is due to

ACBL's higher messaging costs.

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

Se
rv

er
 U

ti
liz

at
io

n

Server Utilization

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

D
is

k
U

ti
liz

at
io

n

Disk Utilization

CURRENT System, Default Workload Settings

Figure 5-6. HOTCOLD: Server and Disk Utilization

Both schemes drive their critical server resource(s) towards saturation at a faster

rate than they do under PRIVATE. Both have a system throughput that levels o�

97

and peaks at 20 clients. Due to the similar saturation rates, the percent improvement

(shown in Figure 5-3) is relatively stable above the 12 client point, remaining close

to the peak vs. peak percent improvement of 10.4%.

5.4 SMALL+HOTCOLD Workload

SMALL+HOTCOLD modi�es the HOTCOLD workload by adding the SMALL

region, a 50 page uniformly shared region, and by switching half of the other-region

accesses to SMALL accesses. (Each transaction averages 80% private accesses, 10%

other-region accesses, and 10% SMALL accesses.) SMALL+HOTCOLD averages

200 object accesses and 20 object updates per transaction.

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

50

100

150

C
om

m
it

s
/ S

ec
on

d

Throughput
Clients

0 %

10 %

20 %

30 %

40 %

% Improvement

1 2 4 8 12 16 20 24

8.
6 10

.1 12
.1

16
.2

20
.6

26
.8

33
.2

38
.2

(Peak-vs-Peak % Improv. = 36.2 %)

1 4 8 12 16 20 24

Clients

0

10

20

30

40

50

M
es

sa
ge

s
/ C

om
m

it

Message Count

CURRENT System, Default Workload Settings

Figure 5-7. SMALL+HOTCOLD: Throughput, % Improvement, Message Count

Of the six workloads, SMALL+HOTCOLD has the richest mix of sharing pat-

terns. It includes both skewed sharing (one client accesses a region more frequently

than other clients) and uniform sharing (all clients are equally likely to access a

region). For this reason, SMALL+HOTCOLD is used in the majority of the sen-

sitivity analysis experiments presented in Chapter 6.

Figure 5-7 gives the Throughput, Percent Improvement, and Message Count

graphs for SMALL+HOTCOLD. As with HOTCOLD, AOCC has a lower mes-

sage count than ACBL, and the gap in message count increases as clients are added

to the system. AOCC's throughput peaks later and higher than ACBL's throughput,

where the AOCC peak has not been reached by 24 clients. The result is that percent

improvement increases across the entire 1{24 client range.

We �rst discuss general results, with a focus on the impact of changing half of

the other-region accesses found in HOTCOLD to SMALL accesses. We then discuss

98

peak throughput issues.

Main Results

The overall results are similar to theHOTCOLD results, except the performance gap

for this workload widens at a slighter faster rate as clients are added to the system.

Consider the 1{8 client region, where saturation e�ects do not yet play a major role

in the throughput results. For HOTCOLD, percent improvement rises form 6.7%

to 12.8% in this region (see Figure 5-3), while for SMALL+HOTCOLD percent

improvement rises from 8.6% to 16.2%.

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0.0

0.5

1.0

1.5

2.0

C
om

m
it

 R
eq

ue
st

s
/ C

om
m

it

Commit Requests

1 4 8 12 16 20 24

Clients

0

5

10

15

C
lie

nt
 R

eq
ue

st
s

/ C
om

m
it

Client Requests
(Fetch+Lock Requests)

1 4 8 12 16 20 24

Clients

0

2

4

6

P
ag

e
R

ep
lie

s
/ C

om
m

it

Page Replies

1 4 8 12 16 20 24

Clients

0

2

4

6

Se
rv

er
 R

eq
ue

st
s

/ C
om

m
it

Server Requests
(Callback Requests)

CURRENT System, Default Workload Settings

Figure 5-8. SMALL+HOTCOLD: Message Breakdown

Since this workload has replaced some of the other-region accessed performed

in HOTCOLD with accesses to the SMALL region, the changes are due based on

di�erences in SMALL accesses vs. other-region accesses:

� The level of contention for SMALL accesses is roughly double the level of con-

tention for other-region accesses. However, we have only changed the contention

99

(probability that a con
ict occurs) for 10% of a transaction's accesses: abort and

blocking rates are higher, but not signi�cantly higher, than under HOTCOLD.

� At a low number of clients, SMALL accesses tend to hit in client caches, since

clients access these shared pages more often than they are updated. In contrast,

other-region accesses often require a page fetch, even at a low number of clients.

As we add clients to the system, however, more clients are modifying the same

set of SMALL pages, and thus the rate at which SMALL pages are dropped

from client caches increases. The result is that more fetches occur for SMALL

accesses, and there is no longer a di�erence in client hit ratio when we compare

SMALL accesses to other-region accesses. Thus, message costs start slightly

lower for SMALL+HOTCOLD than for HOTCOLD, but become roughly

equal as clients are added to the system.

� While both other-region accesses and SMALL accesses cause cache misses and

thus page fetches, and the fetch rate equals out eventually (as just discussed),

there is still a cost di�erence between these two kinds of cache misses. When

a miss occurs on a SMALL page, this page is always present in the server

cache; misses occur frequently enough on the set of 50 SMALL pages that they

remain cached. On the other hand, for a client miss on an unclaimed page or

a private page, the fetch operation at the server may have to read the page

from disk, since not all private and unclaimed pages are cached (they don't

all �t in the server cache). Thus, while SMALL accesses can cause as many

fetches as other-region accesses, they do not cause disk reads. The result is that

SMALL+HOTCOLD transactions perform fewer disk operations per commit

than HOTCOLD transactions.

The most important di�erence discussed above is the di�erence in disk cost. Because

SMALL+HOTCOLD requires less disk bandwidth per commit than HOTCOLD,

both AOCC and ACBL show higher throughput. In addition, while the message

counts are not very di�erent between the two workloads, the fact that AOCC uses

fewer messages than ACBL has more of an impact on the gap in performance under

SMALL+HOTCOLD, since messaging costs are a larger fraction of overall trans-

action latency. This explains why we see a wider performance gap (higher percent

improvement numbers) for this workload.

Peak Throughput Results

Figure 5-10 gives Server and Disk Utilization graphs for SMALL+HOTCOLD.

While AOCC saturated the disk under HOTCOLD, the relatively lower disk costs

for SMALL+HOTCOLD cause AOCC to drive the server CPU and server disks

towards saturation at roughly the same rate; both are critical resources for AOCC

under this workload. ACBL's high messaging costs cause the server CPU to be the

critical resource, as was the case with HOTCOLD.

Thus, both schemes have the server CPU as a critical resource. AOCC drives

this resource towards saturation at a slower rate, due to its lower messaging costs,

100

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0.0

0.2

0.4

0.6

B
lo

ck
s

/ C
om

m
it

Blocking Rate

1 4 8 12 16 20 24

Clients

0.0

0.1

0.2

0.3

A
bo

rt
s

/ C
om

m
it

Abort Rate

1 4 8 12 16 20 24

Clients

0

200

400

600

O
bj

ec
t

A
cc

es
se

s
/ C

om
m

it

Access Count

CURRENT System, Default Workload Settings

Figure 5-9. SMALL+HOTCOLD: Blocks, Aborts, Accesses (per Commit)

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

Se
rv

er
 U

ti
liz

at
io

n

Server Utilization

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

D
is

k
U

ti
liz

at
io

n

Disk Utilization

CURRENT System, Default Workload Settings

Figure 5-10. SMALL+HOTCOLD: Server and Disk Utilization

101

causing it to peak at a higher number of clients. ACBL reaches a peak throughput at

20 clients, while AOCC's throughput has not yet peaked by 24 clients. Given AOCC's

high server and disk utilization at 24 clients, it is likely that AOCC will peak shortly

after the 24 client point. The peak vs. peak improvement will thus be somewhere

near the peak vs. peak value of 36.2% that we computed using the 24-client AOCC

value and the 20-client ACBL value.

5.5 UNIFORM Workload

As with HOTCOLD and SMALL+HOTCOLD, UNIFORM averages 200 ac-

cesses and 20 object updates per transaction. Every page in UNIFORM's 1250 page

working set is equally likely to be accessed. (Across many transactions, every object

on every page is equally likely to be accessed.)

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

5

10

15

20

25

C
om

m
it

s
/ S

ec
on

d

Throughput
Clients

0 %

5 %

10 %

% Improvement

1 2 4 8 12 16 20 24

2.
1

3.
9

6.
8

7.
9

6.
6

5.
0

5.
0

6.
0

(Peak-vs-Peak % Improv. = 6.0 %)

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

M
es

sa
ge

s
/ C

om
m

it

Message Count

CURRENT System, Default Workload Settings

Figure 5-11. UNIFORM: Throughput, % Improvement, Message Count

Unlike UNIFORM, the other �ve workloads have an access skew : 80% of a

client's accesses go to a region of the working set that is small enough to �t in the

client cache. Except for PRIVATE, clients do not retain all frequently accessed

objects in their caches: updates by other clients cause object marks and page drops

that remove some of these objects. Nevertheless, many of these objects are cached

at any given time, resulting in a better client hit ratio for these workloads than for

UNIFORM. The other workloads thus use fewer fetch requests and fewer disk reads

per commit. (At a high number of clients, HICON begins to perform more fetch

requests per commit than UNIFORM, due to the frequency of object marks and

page drops for frequently accessed pages. However, these pages are always cached

102

at the server; HICON does not perform nearly as many disk reads as UNIFORM,

even when it uses more fetches than UNIFORM.)

Aborts cause AOCC to use use slightly more fetches and disk operations than

ACBL, as we show below. This di�erence is small compared to the total fetches and

disk reads used, thus both schemes have a high shared overhead due to UNIFORM's

high client cache miss ratio. Given this high shared cost, any di�erences in other costs

(such as di�erences in the use of messages) have less relative impact on throughput

than they do for the other workloads; AOCC's percent improvement over ACBL is

lower under UNIFORM than under the other workloads.

Figure 5-11 gives the Throughput, Percent Improvement, and Message Count

graphs for UNIFORM. AOCC has a lower message count, and the gap in message

count grows as clients are added to the system. AOCC has better throughput than

ACBL, where the performance gap is relatively small, as just discussed.

Percent Improvement rises from 2.1% to 7.9% from 1{8 clients; in this region

saturation- and thrashing-related costs do not dominate the results. UNIFORM

has higher data contention than the previous three workloads, resulting in a higher

AOCC abort rate. We �rst examine why AOCC still outperforms ACBL even with

this higher abort rate; we then discuss the saturation/thrashing results for the client

region beyond 12 clients, where the percent improvement essentially stabilizes near

the peak vs. peak improvement of 6%.

Main Results

Figure 5-12 gives our usual message breakdown for UNIFORM: the Commit Re-

quests, Client Requests, Server Requests, and Page Replies graphs are shown. Fig-

ure 5-13 shows the Blocking Rate, Abort Rate, and Object Access Count graphs. We

�rst use the graphs in these two �gures to discuss the impact of aborts on AOCC.

The Abort Rate shown in Figure 5-13 shows that AOCC's abort rate rises to over

0.7 aborts per commit at 24 clients. The message breakdown graph shows the impact

of these aborts on the two largest message types, commit requests and page replies.

Commit requests per commit remains at one across the entire client range; AOCC

and ACBL use roughly the same number of commit requests. Since invalidations are

piggy-backed on fetch replies, each reply is an \opportunity" for a client to detect

that its current transaction should be aborted and restarted. The relatively high

number of fetches per commit under UNIFORM means that most aborts occur at

the clients, thus the commit requests per commit for AOCC remains close to 1.0.

While AOCC does not use more commit requests per commit, it does use more

page replies. The page replies for both AOCC and ACBL increase gradually as clients

are added to the system, and AOCC begins to use more page replies per commit than

ACBL as its abort rate rises. At 8 clients, the AOCC abort rate is 0.2 and this causes

AOCC to use an additional 0.6 page replies per commit. At 24 clients, the 0.7 aborts

per commit cause AOCC to use an additional 2.4 page replies per commit. Thus, on

average an AOCC abort results in a little over 3 extra page fetches. These fetches

cause additional disk operations per commit, making AOCC's disk costs per commit

higher than ACBL's disk costs per commit.

103

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0.0

0.5

1.0

1.5

2.0

C
om

m
it

 R
eq

ue
st

s
/ C

om
m

it

Commit Requests

1 4 8 12 16 20 24

Clients

0

10

20

30

C
lie

nt
 R

eq
ue

st
s

/ C
om

m
it

Client Requests
(Fetch+Lock Requests)

1 4 8 12 16 20 24

Clients

0

5

10

15

20

P
ag

e
R

ep
lie

s
/ C

om
m

it

Page Replies

1 4 8 12 16 20 24

Clients

0

5

10

15

20

Se
rv

er
 R

eq
ue

st
s

/ C
om

m
it

Server Requests
(Callback Requests)

CURRENT System, Default Workload Settings

Figure 5-12. UNIFORM: Message Breakdown

Abort-induced fetches are a direct result of our use of a 50% restart change prob-

ability. Roughly half of all aborts result in a changed access pattern during restart,

and the pages accessed during restart thus include some pages that were not accessed

by the previous (failed) execution. These new page accesses have a good chance of

not being cached at the client, given the uniform access pattern. In contrast, consider

the case of a HOTCOLD transaction that aborts and restarts. Even if the access

pattern changes, it is still the case that 80% of the new accesses will go to the client's

private pages, and these pages are likely to be cached at the client. In general, if

a workload includes private regions, such that each client mostly accesses its own

region of the working set, restarts cause relatively few additional page fetches. The

UNIFORM and HICON workloads do not have this property, and thus aborts cause

relatively more page fetches under these workloads.

In addition to causing new page fetches, aborts also result in a higher average

number of object accesses at the client per successful commit. The Object Access

Count graph in Figure 5-13 shows this result: while ACBL's access count remains near

104

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0.0

0.5

1.0

B
lo

ck
s

/ C
om

m
it

Blocking Rate

1 4 8 12 16 20 24

Clients

0.0

0.2

0.4

0.6

A
bo

rt
s

/ C
om

m
it

Abort Rate

1 4 8 12 16 20 24

Clients

0

200

400

600

O
bj

ec
t

A
cc

es
se

s
/ C

om
m

it

Access Count

CURRENT System, Default Workload Settings

Figure 5-13. UNIFORM: Blocks, Aborts, Accesses (per Commit)

the average transaction length of 200 accesses across the entire client range, AOCC's

access count climbs to 298 accesses per commit at 24 clients. Additional accesses

cause additional work for the client CPU's. This extra work is relatively inexpensive

compared to, e.g., the cost of an additional fetch that incurs an extra disk read. AOCC

does not saturate the client CPU's due to the execution of additional object accesses.

Moreover, note that extra work performed at a client has less impact than extra work

performed at the server. Extra work at client C slows down one transaction: the

transaction executing at C. Extra server work slows down all transactions in the

system, since all transactions are contending for use of this shared resource.

ACBL incurs three costs that grow as clients are added to the system: messaging

costs, blocking costs, and abort costs (wasted work). We discuss each in turn.

ACBL's use of lock requests and callbacks causes its overall message count to rise

considerably faster than AOCC's overall message count, as we see in the Message

Count graph in Figure 5-11. Figure 5-12 gives the message breakdown. Note that

ACBL's client requests per commit rises faster than AOCC's client requests per com-

mit, and moreover the ACBL server's use of callbacks increases with added clients

(while AOCC does not use such messages).

AOCC and ACBL both use an increasing number of fetches per commit as clients

are added, due to the growth in the number of object marks and page drops that

occur during the lifetime of a single transaction. On top of this shared cost, AOCC

also sends some additional fetches and page replies due to restarts. The additional

fetches used by AOCC can be determined by examing the Page Replies graph. Note

that the gap in page replies per commit is relatively small, compared to the gap in

total client requests per commit as shown in the Client Request graph, where ACBL

uses considerably more client requests overall.

ACBL's client request count grows faster than AOCC's client request count due to

105

its use of write-lock requests. At a small number of clients, page-level locks are almost

always granted, and the number of write lock requests is based on the number of pages

that are modi�ed. As clients are added to the system, more lock requests result in

object-level write locks, since it becomes more likely that some other client is using

the page containing the object to be write-locked. The use of object-level locking

prevents unnecessary blocking, but does result in additional messages as compared

to page-level locking: when ACBL switches to using object-level locking for a given

page, multiple updates to this page require multiple write-lock requests.

The Server Request graph shows that the ACBL server's use of callback requests

also rises as clients are added to the system. This graph is rather interesting, as there

is a \bend" or \knee" to this graph at around eight clients. At a low number of

clients, the number of callbacks per commit grows with the number of clients in the

system: with more clients in the system, a given object that must be \called back" is

more likely to be cached by some client other than the lock requester. However, as we

approach the higher client range, more and more updates occur, causing more object

marking and page dropping, and the average number of clients caching any given

object or page eventually starts to decrease with added clients. Thus, fewer callbacks

are used per lock request. However, as pointed out above, more lock requests are used

per commit as clients are added. The total callbacks per commit thus continues to

rise even when the number of callbacks per lock request is decreasing, but the rate of

growth slows compared to the small-client rate of growth, thus explaining the \knee"

in the callbacks per commit curve.

Finally, note in Figure 5-13 that ACBL's abort rate approaches 0.07 aborts per

commit at 24 clients. (As data contention increases, deadlocks are more likely, and

ACBL's abort rate thus rises with number of clients.) ACBL's abort rate is one tenth

of AOCC's abort rate; one might expect that the impact is very small. However,

ACBL aborts are potentially very expensive (compared to AOCC aborts). Like an

AOCC abort, an ACBL abort causes some additional fetches and additional object

accesses. Unlike an AOCC abort, execution of additional accesses results in additional

lock requests per commit, and thus additional lock waiting time per commit. The

cost of an ACBL abort thus depends heavily on the average lock waiting time. Since

more aborts occur as contention increases, and lock waiting times also increase with

increased contention, ACBL's abort-related costs can grow rapidly with rising data

contention.

So far we have shown that AOCC uses more disk operations per commit due to

an abort-induced \fetch gap" that slowly increases with the number of clients. In

contrast, ACBL uses more server CPU per commit due to a much higher \message

gap" that widens signi�cantly with the number of clients. Moreover, Figure 5-13

shows that ACBL's blocking rate increases linearly with the number of clients, thus

the average lock waiting time will increase as clients are added to the system. There

is also a small abort rate for ACBL that may have some impact on its performance.

This summary is derived from our count-based metrics, such as number of messages

per commit, number of page replies per commit, etc. A key point of this thesis is that

such count-based metrics are useful for understanding performance, but time-based

metrics are often required to gain a fuller understanding of the behavior of di�erent

106

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

100

200

300

400

500

L
oc

k
W

ai
ti

ng
 (

m
s/

co
m

m
it

)

Lock Waiting

1 4 8 12 16 20 24

Clients

0

100

200

300

W
as

te
d

W
or

k
(m

s/
co

m
m

it
)

Wasted Work

1 4 8 12 16 20 24

Clients

0

100

200

300

400

500

L
oc

k
W

ai
ti

ng
 +

W
as

te
d

W
or

k
(m

s/
co

m
m

it
)

Wait + Waste

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

L
oc

k
W

ai
ti

ng
 +

 W
as

te
d

W
or

k
(a

s
%

 o
f

av
g.

 la
te

nc
y)

Wait + Waste:
% of Avg. Latency

CURRENT System, Default Workload Settings

Figure 5-14. UNIFORM: Lock Waiting and Wasted Work

concurrency control schemes.

Figure 5-14 presents three such time-based metrics: Lock Waiting, Wasted Work,

and Wait + Waste. The Lock Waiting graph shows average time in ms performed

by ACBL to acquire locks, where this time includes both message delays due to lock

requests and callbacks and blocking time due to data con
icts. The gray line in this

graph shows the fraction of this time that is due to wasted lock waiting (lock waiting

performed by aborted transactions). For UNIFORM, very little of the total lock

waiting is wasted work.

The Wasted Work graph shows the average time per successful commit used to

execute aborted transactions. AOCC has higher wasted work cost than ACBL, as we

would expect. However, as we can see in the Wait + Waste graph, the combination

of lock waiting and wasted work for ACBL is higher than the wasted work per-

formed by AOCC. This combined metric allows us to compare the total concurrency-

control costs incurred by each scheme: it shows that AOCC's abort-induced costs

are lower than the combination of ACBL's locking-induced and abort-induced costs.

(Wait + Waste is computed by adding lock waiting and wasted work and then sub-

107

tracting the overlap; wasted lock waiting is not \double counted.")

In this case we could simply compare lock waiting to wasted work to see which

scheme has lower concurrency control costs. (ACBL's lock waiting rises to 532 msec

at 24 clients, while AOCC's wasted work rises to 363 msec at 24 clients.) However,

ACBL's abort costs become non-trivial by 24 clients, and the Wait +Waste graph

thus provides a better picture of the overall concurrency control costs incurred by

each scheme.

Peak Throughput Results

Figure 5-15 gives the Server Utilization and Disk Utilization graphs for UNIFORM.

Due to the high client and server miss rates underUNIFORM, both schemes consume

more of the available server disk resources than server CPU resources. AOCC's higher

fetches per commit (due to aborts) results in the use of more disk operations per

commit, and AOCC also commits more transactions per second. These factors cause

AOCC to drive the server disks towards saturation at a faster rate than ACBL.

AOCC's peak throughput occurs at 12 clients, where its server disk utilization has

risen to 84%. While an extra client gives the system the opportunity to perform more

concurrent transactions (and thus to commit more transactions per second), it also

causes each client transaction to incur more disk latency per commit, due to higher

resource contention. Resource contention over the disks increases both because there

are more clients vying for use the disks and because the increased abort rate results

in an increasing number of disk operations per commit (in the 12{24 client region).

This cost/bene�t tradeo� balances out at roughly 12 clients, where we observe a peak

throughput, and throughput degrades beyond this point as disk latency per commit

continues to rise.

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

Se
rv

er
 U

ti
liz

at
io

n

Server Utilization

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

D
is

k
U

ti
liz

at
io

n

Disk Utilization

CURRENT System, Default Workload Settings

Figure 5-15. UNIFORM: Server and Disk Utilization

108

ACBL's throughput peaks due to a di�erent tradeo�. Each additional client pro-

vides the potential for more commits per second, but it also results in more lock

waiting time for each transaction in the system, due to both rising blocks per com-

mit (more waiting time at the server) and to the increase in messaging costs (more

messages are used, and the cost of using messages rises with a rising level of resource

contention over the server CPU). As we saw in Figure 5-14, ACBL's lock waiting time

rises rapidly with the number of clients in the system. This tradeo� balances out at

roughly 16 clients, where ACBL hits its peak throughput value. In this case neither of

the server resources has saturated. ACBL transactions spend an increasing amount of

time blocked at the server as more clients are added to the system, and transactions

do not consume resources while they are blocked. Note that ACBL's server CPU

utilization has leveled o� by 24 clients, while its disk utilization is actually dropping

by 24 clients. Thus, ACBL is clearly su�ering from \too much blocking" at a high

number of clients.

Both schemes could bene�t from an admission control policy for this workload.

If ACBL allows \too many" clients into the system, this results in a level of data

contention (and blocking) that results in less total work than can be achieved using

a smaller number of clients. Similarly, if AOCC allows \too many" clients into the

system, this results in a high level of disk resource contention that produces less total

work than can be achieved at a smaller number of clients. Admission control would al-

low both schemes to have a total throughput that levels o� near the peak throughput,

rather than degrading beyond this point. If both schemes used an admission control

scheme, the peak vs. peak gap would be stabilize at the current gap of roughly 6%.

While ACBL peaks later than AOCC, its throughput does not change signi�cantly

between the two peaks (from 12 to 16 clients). Both schemes have a drop in through-

put beyond their peak values due to rising lock waiting (for ACBL), disk latency,

and other costs. As the throughput values \degrade" at roughly the same rate, the

percent improvement becomes relatively stable at 16 clients and beyond, remaining

near the peak vs. peak percent improvement of 6%.

5.6 HICON Workload

The HICON workload divides its 1250 page working set into a 250-page hot (high-

contention) region and a 1000-page cold (low-contention) region. 80% of all accesses

go to the hot region, while the remainder go to the cold region. As with HOTCOLD,

SMALL+HOTCOLD, and UNIFORM, HICON averages 200 accesses and 20

object updates per transaction.

Main Results

Figure 5-16 gives the Throughput, Percent Improvement, and Message Count graphs

for HICON.

HICON has the highest contention of our six workloads; blocking and abort costs

have a signi�cant impact on system throughput even for small client cases.

109

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

10

20

30

40

C
om

m
it

s
/ S

ec
on

d

Throughput
Clients

0 %

20 %

40 %

60 %

80 %

100 %

% Improvement

1 2 4 8 12 16 20 24

4.
4 12

.3
23

.0

50
.2

73
.7 80

.2

81
.8 85

.7

(Peak-vs-Peak % Improv. = 68.3 %)

1 4 8 12 16 20 24

Clients

0

50

100

M
es

sa
ge

s
/ C

om
m

it

Message Count

CURRENT System, Default Workload Settings

Figure 5-16. HICON: Throughput, % Improvement, Message Count

Note that each update to a hot object O on page P causes all clients (other than

the updater) to either mark O as unavailable or to drop P. The frequency of such

marking and dropping increases with the number of clients in the system, causing

the number of fetches per commit to rise for both schemes as more hot fetches occur

per commit. AOCC's higher abort rate causes it to fetch more pages overall. The

result of these hot fetches is that the pages sent per commit metric for HICON rises

rapidly. AOCC's pages sent rises faster than ACBL's pages sent, but both schemes

use a signi�cant number of fetches. (AOCC's pages sent per commit at 24 clients is

28.9, compared to ACBL's 23 pages sent per commit.)

Although the number of page sends is high, HICON is not a disk-intensive work-

load, when compared to a workload such as UNIFORM. The hot pages are fetched

frequently enough by the clients that they remain cached at the server, thus fetches

for hot pages do not cause disk reads. Cold accesses that miss in a client cache do

cause disk reads, but cold accesses make up only one �fth of the average transaction

accesses.

Due to the relatively low disk costs, the di�erences between AOCC and ACBL

have a high impact on their relative performance. Prior to the peak throughput

points, Percent improvement rises from 4.4% to 50.2% from 1 to 8 clients. AOCC's

throughput peaks later than AOCC's (at 12 clients rather than 8), causing percent

improvement to rises rapidly from 8{12 clients, to 73.7%. Beyond 12 clients, AOCC's

throughput \degrades" at a slightly slower rate than ACBL's throughput; percent

improvement increases slowly from 12{24 clients, rising from 73.7% to 85.7%.

As with UNIFORM, AOCC's data contention costs are lower than ACBL's data

contention costs. Both schemes have a higher abort rate under HICON. While

AOCC has a much higher abort rate than ACBL, AOCC's cost per abort is much

lower than ACBL's per-abort cost.

110

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0.0

0.5

1.0

1.5

2.0

C
om

m
it

 R
eq

ue
st

s
/ C

om
m

it

Commit Requests

1 4 8 12 16 20 24

Clients

0

10

20

30

40

C
lie

nt
 R

eq
ue

st
s

/ C
om

m
it

Client Requests
(Fetch+Lock Requests)

1 4 8 12 16 20 24

Clients

0

5

10

15

20

25

P
ag

e
R

ep
lie

s
/ C

om
m

it

Page Replies

1 4 8 12 16 20 24

Clients

0

10

20

30

Se
rv

er
 R

eq
ue

st
s

/ C
om

m
it

Server Requests
(Callback Requests)

CURRENT System, Default Workload Settings

Figure 5-17. HICON: Message Breakdown

ACBL aborts result in more write lock requests per commit, since all write

locks are dropped when a transaction aborts. Aborts also result in more combined

fetch/read-lock requests, since some of the objects accessed during an aborted trans-

action are marked or dropped from the client cache prior to being re-accessed during

a restart. ACBL's abort rate is much higher under HICON than under the four

previous workloads, producing a new result: wasted lock waiting time becomes a

signi�cant component of the total lock waiting time.

As clients are added to the system and contention increases, two things occur:

(1) the average time required for each lock acquisition increases, due to increased

blocking and also to a higher level of server CPU contention; (2) the average number

of lock requests per commit increases due to aborts, as discussed above. These two

e�ects have a compounding e�ect, and cause a rapid increase in both the wasted lock

waiting time and the total lock waiting time per commit.

The impact of data contention is much greater under HICON than under the

previous workloads. One way to consider the impact of data contention is to measure

111

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

1

2

3

4

B
lo

ck
s

/ C
om

m
it

Blocking Rate

1 4 8 12 16 20 24

Clients

0

1

2

A
bo

rt
s

/ C
om

m
it

Abort Rate

1 4 8 12 16 20 24

Clients

0

200

400

600

O
bj

ec
t

A
cc

es
se

s
/ C

om
m

it

Access Count

CURRENT System, Default Workload Settings

Figure 5-18. HICON: Blocks, Aborts, Accesses (per Commit)

the percent of the average transaction latency under AOCC that is due to wasted

work (where the rest of the average latency is due to transaction executions that

successfully commit). For SMALL+HOTCOLD, average AOCC wasted work rises

to 24% of the average transaction latency by 24 clients; for HICON, wasted work

rises to 61% of transaction latency.

Peak Throughput Results

Figure 5-20 gives the Server Utilization and Disk Utilization graphs. As discussed

above, disk costs are low relative to server CPU costs, due to the fact that most fetch

requests are for hot pages that are present in the server cache. Server CPU is thus

the critical resource for AOCC.

Note that ACBL does not saturate either of the two server resources. Average

blocking time at the server increases with added clients. Beyond 12 clients, the

addition of new clients causes more additional blocking than additional useful work;

overall resource utilization decreases due to this added blocking latency.

ACBL approaches this excessive blocking point faster than AOCC approaches

server CPU saturation, causing ACBL's throughput to peak earlier than AOCC's

throughput. Due to this di�erence, there is a rapid growth in percent improvement

between 8 and 12 clients: as shown in the Percent Improvement graph in Figure 5-16,

percent improvement rises from 50.2% to 73.7% in this client region. Beyond this

region, ACBL's throughput degrades (due to excessive blocking) at a slightly faster

rate than AOCC's throughput degrades (due to abort-induced saturation). Percent

improvement rises slowly in the 12 to 24 client region (from 73.7% to 85.7%).

112

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

200

400

600

800

L
oc

k
W

ai
ti

ng
 (

m
s/

co
m

m
it

)

Lock Waiting

1 4 8 12 16 20 24

Clients

0

100

200

300

400

W
as

te
d

W
or

k
(m

s/
co

m
m

it
)

Wasted Work

1 4 8 12 16 20 24

Clients

0

200

400

600

800

1000

L
oc

k
W

ai
ti

ng
 +

W
as

te
d

W
or

k
(m

s/
co

m
m

it
)

Wait + Waste

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

L
oc

k
W

ai
ti

ng
 +

 W
as

te
d

W
or

k
(a

s
%

 o
f

av
g.

 la
te

nc
y)

Wait + Waste:
% of Avg. Latency

CURRENT System, Default Workload Settings

Figure 5-19. HICON: Lock Waiting and Wasted Work

5.7 TINY+PRIVATE Workload

The TINY+PRIVATE region was designed to examine the impact of very hot pages

(pages with very high contention) that are accessed infrequently . It is identical to

the PRIVATE workload, except a uniformly shared TINY region has been added,

and 2% of the total accesses have been changed from other-region accesses to TINY

accesses. (80% of the accesses are private accesses, 18% are other-region accesses,

and 2% are TINY accesses.)

The default is for the TINY region to be exactly one page in size. Although only

2% of all accesses go to this region, its very small size makes it likely that trans-

actions will perform con
icting object-level accesses. As a result, even though 98%

of all accesses do not cause data con
icts, TINY+PRIVATE is a high contention

workload.

This is a workload where ACBL's adaptive-granularity locking is very impor-

tant. ACBL uses page-level locks for the private updates that each client per-

forms, and object-level locks for all accesses to the the TINY region. Since most

113

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

Se
rv

er
 U

ti
liz

at
io

n

Server Utilization

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

D
is

k
U

ti
liz

at
io

n

Disk Utilization

CURRENT System, Default Workload Settings

Figure 5-20. HICON: Server and Disk Utilization

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

100

200

300

C
om

m
it

s
/ S

ec
on

d

Throughput
Clients

0 %

20 %

40 %

60 %

80 %

100 %

120 %

% Improvement

1 2 4 8 12 16 20 24

4.
6 8.

7
11

.0 20
.3

43
.9

73
.0

92
.7

10
6.

0

(Peak-vs-Peak % Improv. = 71.1 %)

1 4 8 12 16 20 24

Clients

0

10

20

30

M
es

sa
ge

s
/ C

om
m

it

Message Count

CURRENT System, Default Workload Settings

Figure 5-21. TINY+PRIVATE: Throughput, % Improvement, Message Count

114

TINY+PRIVATE transactions modify the TINY page, page-level contention be-

tween transactions is signi�cantly higher than the actual object-level contention present

in the workload. (At the page level, every transaction that modi�es the TINY page

is in con
ict with every other such transaction.) Thus, compared to ACBL's blocking

and abort rates as presented here, the blocking and abort rates for a static page-level

locking scheme would be much higher; ACBL would signi�cantly outperform a page-

level scheme. ACBL would also outperform a static object-level locking scheme, as

such a scheme would use more write lock requests for updates to private pages.

Figure 5-21 gives the Throughput, Percent Improvement, and Message Count

graphs for TINY+PRIVATE. The results are similar to the HICON results. For

both of these high contention workloads, AOCC's throughput peaks later and rises

higher than ACBL's throughput due to the fact that AOCC's abort-based costs are

lower than the combination of ACBL's lock waiting and abort-based costs.

Main Results

TINY+PRIVATE is designed to observe the impact of a single very hot (high

contention) page on overall performance. The results for this workload are similar

to the HICON results. Thus we learn that a very small region that is accessed

infrequently (one page, accessed 2% of the time) can have roughly the same impact

as a larger region that is accessed much more frequently (250 pages, accessed 80% of

the time).

The results of HICON and TINY+PRIVATE are similar in the following ways:

� ACBL's abort rate becomes signi�cant at higher clients. Due to the compound-

ing e�ect of a rising abort rate and rising lock waiting times, ACBL's wasted

work rises rapidly and eventually surpasses AOCC's wasted work.

� ACBL's combined Wait + Waste metric is always higher than AOCC's wasted

work metric.

There are also di�erences, of course. The main di�erence is due to the fact that

TINY+PRIVATE has a very low fetches per commit, due to a shorter transaction

length and infrequent TINY accesses. Under AOCC, each fetch reply represents an

opportunity for an AOCC client to \catch" the need to abort. With few fetches

per commit, there are few opportunities to perform early aborts, and more aborts

are therefore detected at the server rather than at the clients. Notice in the Commit

Requests graph in Figure 5-22 that the commit requests per commit rises to nearly 1.5

requests per commit at 24 clients. (In contrast, under HICON the commit requests

per commit approaches 1.2 at 24 clients.)

As a result, AOCC's special server mechanism that sends object updates in abort

replies has a major impact on the caching behavior under TINY+PRIVATE. This

mechanism is meant to reduce the number of fetches used during restart, but it is

not used much for the other �ve workloads, since for these other workloads most

aborts occur at the clients. For this workload, when an abort occurs at the server,

updates for certain out-of-date TINY objects are returned in the abort reply (for any

115

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0.0

0.5

1.0

1.5

2.0

C
om

m
it

 R
eq

ue
st

s
/ C

om
m

it

Commit Requests

1 4 8 12 16 20 24

Clients

0

1

2

3

4

5

C
lie

nt
 R

eq
ue

st
s

/ C
om

m
it

Client Requests
(Fetch+Lock Requests)

1 4 8 12 16 20 24

Clients

0

1

2

3

P
ag

e
R

ep
lie

s
/ C

om
m

it

Page Replies

1 4 8 12 16 20 24

Clients

0

2

4

6

8

Se
rv

er
 R

eq
ue

st
s

/ C
om

m
it

Server Requests
(Callback Requests)

CURRENT System, Default Workload Settings

Figure 5-22. TINY+PRIVATE: Message Breakdown

TINY object that was read by the failed transaction and is currently out-of-date in

the committing client's cache). Due to the updates sent in an abort reply, it is more

likely that the resulting restart will not need to fetch the TINY page due to a missing

TINY object, thus saving some fetches of this page.

The net result is that the combination of a commit request and abort reply can

have the same impact as a fetch request and reply; failed commit requests tend to

replace fetch requests. Note that abort replies do not count as page replies, since

only updated objects are sent. AOCC's page replies per commit thus turns out to

be lower than ACBL's page replies per commit, even though AOCC performs more

accesses per commit.

Note in the Percent Improvement graph in Figure 5-21 that percent improvement

does not rise rapidly until after 8 clients. This is due to the fact that AOCC's wasted

work costs grow in roughly linear fashion, while ACBL's wasted work costs start low

but rise rapidly once ACBL's abort rate starts to become signi�cant. Thus we can

see in the Wait + Waste graph in Figure 5-24 that the gap between AOCC's and

116

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0.0

0.5

1.0

B
lo

ck
s

/ C
om

m
it

Blocking Rate

1 4 8 12 16 20 24

Clients

0.0

0.2

0.4

0.6

A
bo

rt
s

/ C
om

m
it

Abort Rate

1 4 8 12 16 20 24

Clients

0

100

200

300

O
bj

ec
t

A
cc

es
se

s
/ C

om
m

it

Access Count

CURRENT System, Default Workload Settings

Figure 5-23. TINY+PRIVATE: Blocks, Aborts, Accesses (per Commit)

ACBL's combined metric only begins to widen rapidly beyond the 8 client point.

Peak Throughput Results

Figure 5-25 gives Server and Disk Utilization graphs for TINY+PRIVATE. As

with HICON, AOCC uses more available server CPU than server disk, and the

server CPU is the critical resource. ACBL also uses more server CPU than disk, but

reaches a client point where excessive blocking limits its resource utilization; it does

not saturate either server resource.

Because AOCC approaches server CPU saturation at a slow rate compared to the

rate that ACBL approaches its excessive blocking point, AOCC's throughput peaks

later than ACBL's throughput: ACBL peaks at 12 clients, while AOCC peaks at 20

clients. Due to this di�erence, there is a rapid increase in percent improvement above

eight clients, as shown in the Percent Improvement graph in Figure 5-21.

5.8 Summary of Key Insights

In this chapter we presented results for our CURRENT system settings and default

workload parameter settings. The system parameters were chosen to represent a rea-

sonable model of a present-day system, and the workloads were chosen to allow us to

explore a range of di�erent access patterns and contention levels. AOCC consistently

outperforms ACBL for this main set of experiments. In this section we summarizes

the key insights that explain AOCC's better performance.

In Chapter 2 we model average transaction latency using the following formula:

117

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

20

40

60

80

L
oc

k
W

ai
ti

ng
 (

m
s/

co
m

m
it

)

Lock Waiting

1 4 8 12 16 20 24

Clients

0

10

20

30

W
as

te
d

W
or

k
(m

s/
co

m
m

it
)

Wasted Work

1 4 8 12 16 20 24

Clients

0

50

100

L
oc

k
W

ai
ti

ng
 +

W
as

te
d

W
or

k
(m

s/
co

m
m

it
)

Wait + Waste

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

L
oc

k
W

ai
ti

ng
 +

 W
as

te
d

W
or

k
(a

s
%

 o
f

av
g.

 la
te

nc
y)

Wait + Waste:
% of Avg. Latency

CURRENT System, Default Workload Settings

Figure 5-24. TINY+PRIVATE: Lock Waiting and Wasted Work

latency = success-latency + failure-latency

success-latency = Es + Fs + Ls + Bs + Cs

failure-latency = Ef + Ff + Lf + Bf + Cf
where

E = Execution latency at client for local read and write accesses

F = Fetch latency for fetch requests/replies, including disk read latency

L = Lock request latency for lock and callback requests/replies

B = Blocking latency at server due to object-level con
icts

C = Commit latency for commit requests/replies and processing at server

We now use this model to discuss the results reported above. ACBL invests heavily in

lock and callback messages and in blocking (for higher contention cases): its Ls and

Bs costs are high. The motivation for this approach is that this locking investment

will pay dividends in the form of reduced failure costs, since locking keeps the abort

rate low.

In contrast, AOCC is designed to minimize message costs, possibly at the expense

118

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

Se
rv

er
 U

ti
liz

at
io

n

Server Utilization

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

D
is

k
U

ti
liz

at
io

n

Disk Utilization

CURRENT System, Default Workload Settings

Figure 5-25. TINY+PRIVATE: Server and Disk Utilization

of higher failure costs due to a higher abort rate. Some aborts are avoided by using

piggy-backed invalidations to keep client caches \nearly" up-to-date. This approach

is e�ective with respect to eliminating many unnecessary aborts due to \sequential

sharing" (where a transaction that updates object X commits before a transaction

that reads X begins). However, concurrent or near-concurrent data con
icts do occur;

all optimistic schemes will have a high abort rate when there is high contention in

the workload. For this reason, AOCC is designed to minimize failure costs, with an

emphasis on keeping total fetch cost (Fs + Ff) and total commit cost (Cs + Cf)

from rising rapidly with an increased abort rate.

AOCC has three mechanisms designed for keeping failure costs low: the use of

early abort detection at the clients avoids unnecessary commit requests (and also

o�oads validation work from the server); the use of the undo log to restore mod-

i�ed objects on abort avoids some unnecessary fetches during restart; the use of

object updates in abort replies also avoids some fetches during restarts. These three

mechanisms are very e�ective. Our results show that most aborts are early aborts

that are detected at clients. As a result, total commit cost (Cs + Cf) is almost

unchanged with an increasing abort rate. For workloads with very few fetches per

commit (namely TINY+PRIVATE) the number of commit requests does increase.

However, as more aborts occur at the server, more object updates are sent in abort

replies, and fetch costs decrease.

With respect to fetch costs, the combination of the three mechanisms described

above results in a total fetch and disk read costs per commit (Fs + Ff) that remains

very close to ACBL's fetch and disk read costs under low contention and reasonably

close to ACBL's costs under high contention (even though AOCC has a signi�cantly

higher abort rate).

119

ACBL's cost for lock and callback messages (Ls + Lf) results in total message

costs that are high compared to AOCC's message costs, where the message gap in-

creases with number of clients. Moreover, as contention increases, ACBL has rising

blocking costs. Successful blocking (Bs) increases steadily across the entire client

range, while failed blocking (Bf) rises rapidly at the high end of the client range,

where aborts due to deadlocks become a signi�cant factor. Aborts also result in

wasted lock message costs (Lf). AOCC's failure cost per commit are very low, as

AOCC has no Bf or Lf costs. For the two highest contention workloads, HICON

and TINY+PRIVATE, ACBL's failure costs can be higher than AOCC's failure

costs, even though ACBL's abort rate remains much lower.

In summary, ACBL's investment in locking does not pay su�cient dividends,

regardless of contention level. This chapter demonstrates this result for our default

settings. The next chapter shows the robustness of this result across a wide range of

settings.

120

Chapter 6

Sensitivity Analysis

In the previous chapter (Chapter 5) we showed that AOCC outperforms ACBL when

we use our default system and workload settings. This chapter shows that this result

is robust: we present a set of sensitivity analysis experiments which show that the

relative superiority of AOCC holds across a wide range of parameter settings.

Section 6.1 presents experiments that vary parameters of the system model, while

Section 6.2 presents experiments that vary parameters of the workload model. Across

these two sections, the performance gap (the percent improvement of AOCC over

ACBL) can narrow or widen as parameters are varied. Normally, AOCC remains the

better scheme across an entire parameter range; the two schemes sometimes become

roughly equal at \extreme" parameter settings. One notable exception is presented in

Section 6.2.2: ACBL can signi�cantly outperform AOCC for a workload where most

or all transactions are read-only and there is very little disk tra�c per commit.

Neither Section 6.1 nor Section 6.2 includes an experiment where ACBL signi�-

cantly outperforms AOCC on a read-write workload. However, the experiments that

show a narrowing performance gap \point" towards a region of the overall parameter

space where ACBL should be the better scheme. Section 6.3 characterizes this re-

gion, which we refer to as the \ACBL Wins" region. It also gives simulation results

supporting this characterization, and argues that this region represents an unlikely

scenario.

In addition to showing the robustness of our results, the sensitivity analysis ex-

periments provide new insights into AOCC vs. ACBL tradeo�s. These insights and

the key results from the experiments are summarized in Section 6.4.

6.1 System Model Experiments

This section describes system model experiments. Section 6.1.1 presents sensitivity

analysis experiments for the core system parameters (disk and network bandwidth,

processor speed, etc.). These experiments show the e�ect of varying a single param-

eter at a time. Section 6.1.2 examines the impact of changing all of the core system

parameters together, moving from the default settings to a set of \future system"

settings.

121

6.1.1 Core System Parameters

Eight sensitivity analysis experiments are used to examine the impact of changing

the core system parameters, i.e., the parameters for the network, disk, client, and

server models. A pair of �gures describe the setup and results for these experiments:

the table in Figure 6-1 describes the parameter range used for each experiment and

summarizes the percent improvement results observed across this parameter range,

while Figure 6-2 presents eight throughput graphs, one for each experiment.

These experiments use the SMALL+HOTCOLD workload. We chose this work-

load because it is the best representative of a \real" OODB workload: we expect real

applications have low to medium contention and exhibit both uniform and skewed

sharing patterns. A 20% net object write probability and average write clustering

is used. Settings other than the parameter under study are all set to default val-

ues. This section reports on results for the 12-client case. We also performed 6- and

24-client experiments; the same relative results hold for these other client cases.

Each row in the Figure 6-1 table describes one of the eight experiments. The

�rst column indicates the parameter that is varied. The second column indicates

the parameter range, where range X ! is expressed such that the range moves from

\worse" setting X to \better" setting Y. Thus, we move from smaller to larger

main memory data structures, from slower to faster processors, from high to low

disk access times, and from high to low CPU charges. The third column summarizes

percent improvement results for this parameter range: PX ! PY gives the percent

improvement at X and Y, respectively. Thus, the third column shows whether the

performance gap narrows or widens as the parameter moves to a \better" setting.

The overall result is that relative performance does change as the core system

parameters are varied, but AOCC remains the better scheme. In �ve cases the per-

formance gap widens as a parameter shifts to an improved setting, while in three

cases it narrows. The performance gap widens with larger client or server caches,

faster client CPUs, lower disk access times, and higher network bandwidth. The gap

narrows with a faster server CPU and lower (�xed or variable) network CPU charges.

AOCC is more sensitive to changes that a�ect the server disks: improvements

to disk speed or reductions in disk use widen the performance gap. ACBL is more

sensitive to changes that a�ect the server CPU: a faster CPU or reductions in CPU

use narrow the performance gap. These sensitivity results are due in part to actual

use of each resource per commit: additional fetches due to restarts cause AOCC to

have a slightly higher disk use per commit, while lock and callback requests cause

ACBL to have a much higher server CPU cost per commit. In addition, relative use

of the two resources a�ects sensitivity. For example, since AOCC has low server CPU

costs due to a low message count, its use of the disks is a relatively larger fraction of

its total costs. Therefore, even if the two schemes had identical disk cost per commit,

AOCC would still be more sensitive to changes that a�ect the disks and ACBL would

still be more sensitive to changes that a�ect the server CPU.

Server CPU Speed (See top-right graph, Figure 6-2.) ACBL is more sensitive to

server CPU; increasing the server CPU speed narrows the performance gap.

122

Resulting % Improv.

Parameter(s) Settings Used SMALL+HOTCOLD

(12 Clients)

Client Cache Size 5% ! 50% of DB 14.5% ! 23.1%

Server Cache Size 10% ! 100% of DB 9.3% ! 31.5%

Client CPU Speed 15 ! 200 MIPS 19.8% ! 32.0%

Server CPU Speed 30 ! 400 MIPS 39.4% ! 13.3%

Slow Disk Access 20 ! 2 msec 16.7% ! 34.2%

Time for 4 KB Page

Network Bandwidth 4 ! 800 Mbps 1.6% ! 22.2%

Var. Network CPU Cost 7168 ! 128 instr./KB 8.0% ! 5.6%

(�xed net. CPU = 250 instr.)

Fixed Network CPU Cost 6000 ! 250 instr. 18.2% ! 5.6%

(var. net. CPU = 128 instr./KB)

Figure 6-1. Core System Parameters: Summary of Experiments

Disk Access Times (See middle-right graph, Figure 6-2.) For the disk access

time experiment, we vary both the slow and fast disk access times using a �xed ratio

of 0.38. This ratio approximates the fast:slow ratio used for the CURRENT and

FUTURE disk settings. AOCC is more sensitive to server disk; faster disks increase

the performance gap.

Client and Server Caches (See bottom row, Figure 6-2.) A larger client cache

means fewer fetches (and thus fewer disk reads). A larger server cache reduces the

number of fetches that require disk reads. In both cases, allocating more cache space

reduces disk costs. Since AOCC is more sensitive to this change, the performance

gap widens.

Client CPU Speed (See middle-left graph, Figure 6-2.) Increasing the client CPU

while holding the server CPU constant causes a higher load on both the server CPU

and server disks. A similar increase in load occurs when the client CPU charges

(or \think times") for object accesses are lowered; think times are examined in Sec-

tion 6.2.5. As disussed in Chapter 2, for workloads where contention is not so high

that ACBL performs \too much blocking," the impact of AOCC's extra fetches is

smaller than the impact of ACBL's extra messages. As a result, increasing the load

on both server resources has a higher relative impact on ACBL, and the performance

gap widens.

Network Bandwidth (See center graph, Figure 6-2.) For this experiment, a band-

width less than 20 Mbps results in high network contention. Below this bandwidth

point, delays due to network contention are a large component of average transaction

123

Legend: AOCC ACBL

6000 4000 2000 250

Fixed Net CPU Cost (instr)

0

20

40

60

80

100

C
om

m
it

s
/ S

ec
on

d

Throughput

7168 5120 3072 1024 128

Var Net CPU Cost (instr/KB)

0

20

40

60

80

100

C
om

m
it

s
/ S

ec
on

d

Throughput

30 400100 200 300 400

Server CPU Speed (MIPS)

0

20

40

60

80

100

C
om

m
it

s
/ S

ec
on

d

Throughput

15 20050 100 150 200

Client CPU Speed (MIPS)

0

50

100

C
om

m
it

s
/ S

ec
on

d

Throughput

4 800200 400 600 800

Net Bandwidth (Mbps)

0

20

40

60

80

100

C
om

m
it

s
/ S

ec
on

d

Throughput

20 14 8 2

Disk Speed (ms/rand 4 KB read)

0

50

100

C
om

m
it

s
/ S

ec
on

d

Throughput

5 5010 20 30 40 50

Client Cache Sz (% of DB)

0

20

40

60

80

100

C
om

m
it

s
/ S

ec
on

d

Throughput

10 10020 40 60 80 100

Server Cache Sz (% of DB)

0

50

100

C
om

m
it

s
/ S

ec
on

d

Throughput

CURRENT System, Default Workload Settings

Figure 6-2. Core System Parameter Experiments: Throughput Results

124

latency. Since both schemes incur these delays, the performance gap is small in this

region. AOCC has a slightly higher bytes per commit ; it sends fewer messages, but

uses piggy-backed information and read set information not used by ACBL. This

byte-count di�erence has an impact at very low bandwidth. Thus, in the low band-

width region an increasing bandwidth causes a widening performance gap. Above 20

Mbps, however, further increases in bandwidth have little impact on relative perfor-

mance.

It is important to note that AOCC's higher byte-count is much less signi�cant than

ACBL's higher message count. For example, for the 12 client SMALL+HOTCOLD

case, AOCC sends 23,607 bytes using 11.0 messages while ACBL sends 22,417 bytes

using 41.2 messages (per commit). Thus, AOCC uses 5% more bytes, but ACBL uses

275% more messages.

Network CPU Costs (See top-left and top-middle graphs, Figure 6-2.) For the

two experiments involving the �xed and variable network CPU charges, in each case

one parameter is varied and the other is set to a low constant value so that the overall

CPU charge will be controlled by the parameter under analysis.

Reducing either the �xed or variable network CPU charge results in less server

CPU overhead per message. ACBL is more sensitive to changes in server CPU use.

Moreover, since CPU charges at both the client and server are lower, latency for a

round-trip client-server exchange is reduced. Compared to AOCC, ACBL uses more

round-trip exchanges per commit; ACBL is more sensitive to round-trip latency. Due

to both of these factors, the performance gap narrows.

The top-left and top-middle graphs in Figure 6-2 show that the impact of lowering

the �xed CPU charge is greater than the impact of lowering the variable CPU charge.

ACBL's higher message costs are due to lock and callback messages. Since these

messages are small, the �xed CPU charge is the more signi�cant of the two network

charges.

6.1.2 Future System Results

Of the eight experiments described above, �ve show that moving a single system pa-

rameter (or a pair of related parameters) towards a \better" setting causes AOCC's

percent improvement over ACBL to increase, while three experiments show the oppo-

site result. These \better" settings describe a likely future system: we expect system

resources will become faster (larger, etc.) over time
1
. Thus, we decided to explore

the impact of switching all of the system parameters to a set of values that represent

one possible \future" system.

Figure 6-3 summarizes the parameter settings for the CURRENT and FUTURE

systems. Parameters not listed are set to their default values (as given in Section 4.1).

Note that the third column in Figure 6-3 shows the range of values used in the single-

parameter sensitivity analysis experiments presented in Section 6.1.1.

1Chapter 7 considers the impact of moving to a wide-area network (WAN), where latency will

be higher rather than lower.

125

Parameter CURRENT FUTURE Section 6.1.1 Experiment

Server CPU speed 50 MIPS 200 MIPS 30{400 MIPS

Client CPU speed 25 MIPS 100 MIPS 15-200 MIPS

Network bandwidth 80 Mbps 160 Mbps 4{800 Mbps

Fixed network cost 6000 instr. 3000 instr. 6000{250 instr.

Variable network cost 7168 instr./KB 2048 instr./KB 7168{128 instr./KB

Slow disk bandwidth 3322 �secs/KB 2580 �secs/KB 5000{500 �secs/KB

Fast disk bandwidth 1288 �secs/KB 990 �secs/KB 1900{190 �secs/KB

Number of server disks 4 8 |

Figure 6-3. CURRENT and FUTURE Parameter Settings

Moving from the CURRENT to FUTURE system parameters, CPU speeds

quadruple, network bandwidth doubles, network CPU charges drop by more than

half, the number of disks per server doubles, and the speed of each disk improves

(average access time is roughly 22% lower). Appendix A describes the approach we

used to choose these settings.

We experimented with these FUTURE parameter settings with all six workloads,

using a number of di�erent cluster and object write probabilities. One important

change is that the ratio of client to server resources has shifted: for the FUTURE

system, the server is relatively more powerful, allowing it to support more concurrent

clients: for the 1{24 client range, none of the six workloads causes AOCC or ACBL

to fully saturate any resource. (For the CURRENT system, AOCC always saturates

one of the two server resources in the 1{24 client range.)

As we move from CURRENT to FUTURE, one of two changes occurs. For low

contention cases, the performance gap between AOCC and ACBL becomes smaller,

while for higher contention cases, the performance gap becomes larger.

For low contention workloads (and for the low-client cases of all the workloads)

message use is the key di�erence between AOCC and ACBL. Unlike the CURRENT

system experiments, under the FUTURE settings message costs do not \blow up"

in the 1{24 client range due to server CPU saturation. The same increasing message-

count gap occurs, but the resulting performance gap (as measured by the percent

improvement metric) is smaller.

For high contention workloads, AOCC's abort costs grow with data contention

level (increasing abort rate) and resource contention level (increasing cost of using

the server CPU or server disks). The FUTURE system can support more concurrent

clients than the CURRENT system (prior to resource saturation). As a result, while

AOCC's abort rate grows at the same rate under both systems, its abort costs are

relatively lower, and AOCC's throughput peaks at a higher number of clients.

The increased server resources of the FUTURE system produce a higher ACBL

throughput at each client point. However, unlike AOCC, the number of clients re-

quired for ACBL to reach a peak throughput does not shift to a much higher client

point. ACBL's high-contention peak occurs due to \too much blocking," and the

126

server resources do not saturate (for either the CURRENT or FUTURE systems).

Compared to AOCC, the location of ACBL's peak throughput is relatively more de-

pendent on contention level (which is based only on number of clients) and relatively

less dependent on available server resources. As a result, the increase in server re-

sources has only a small impact on the number of clients ACBL can handle before it

reaches its peak throughput.

In summary, with high contention ACBL does not capitalize on the FUTURE

system's ability to support a larger number of concurrent clients, while AOCC does.

The result is a rapid widening of the performance gap beyond the point where ACBL

nears its peak throughput.

The above insights are based on examining the six workloads using a number

of di�erent write probabilities. To demonstrate these insights, we present one low-

contention example and one high-contention example.

Figure 6-4 gives an example of the general low-contention result: throughput and

percent improvement graphs are given for the HOTCOLD workload, for both the

CURRENT and FUTURE settings. In this case, the FUTURE system percent

improvement is lower than the corresponding CURRENT system percent improve-

ment across the entire 1{24 client range. (CURRENT percent improvement falls

between 6.7% and 12.8%, while FUTURE percent improvement falls between 2.1%

and 5.6%.)

Figure 6-5 gives an example of the general high-contention result, showing the

same graph types for theHICON workload. Moving fromCURRENT toFUTURE,

note the change in the shape of AOCC's throughput curve: the peak throughput shifts

from 12 clients to 20 clients. ACBL's throughput curve has roughly the same shape

in both cases, where peak throughput moves from 8 to perhaps 10 clients (the 8 and

12 client points for the FUTURE curve are at the same level, suggesting the peak

is between these points).

Under the CURRENT system, percent improvement does \stabilize" above 16

clients. Under the FUTURE system, due to the shift in the location of AOCC's

peak, percent improvement continues to rise through 24 clients. The lower latency

and lower resource utilization produced by the new FUTURE system settings have

an impact even for this high contention example: the FUTURE percent improve-

ment is somewhat smaller than CURRENT percent improvement from 1{12 clients.

At 16 clients and above, however, we see the impact of the shift in AOCC peak

throughput: FUTURE percent improvement becomes larger than CURRENT per-

cent improvement.

Across all of our simulation experiments, the FUTURE experiments produced

some of the highest performance di�erences. E.g., for this HICON experiment, per-

cent improvement rises to 125% at 24 clients; AOCC more than doubles ACBL's

throughput.

127

6.2 Workload Model Experiments

This section describes workload model experiments. Section 6.2.1 examines varying

both write probability and write clustering; Section 6.2.2 examines varying the mix of

read-only vs. read-write transactions in the workload; Section 6.2.3 examines varying

the restart behavior; Section 6.2.4 examines varying the average transaction length

and also the varying the range of transaction lengths (the distance between shortest

and longest lengths); Section 6.2.5 examines varying the local client computation time

per access (the \think" time).

6.2.1 Write Probability, Write Clustering

Experiments were performed across all six workloads to examine the impact of vary-

ing the write probability and the quality of write clustering. In addition, for each

combination of write probability and write clustering, we used a range of client cases

(1{24 clients). All of these experiments show the same relative results: ACBL is more

sensitive to update frequency, contention level, and the quality of write clustering.

This section uses results from HOTCOLD workload experiments to demonstrate

these points. Since ACBL is more sensitive to contention, workloads with higher con-

tention produce larger changes as write probability and write clustering are changed.

HOTCOLD was chosen as the example workload to demonstrate that signi�cant

changes in performance occur even for a low contention workload.

Figure 6-6 shows the result of varying the write probability and also of varying

the quality of write clustering. The six result graphs shown are for the HOTCOLD

workload and CURRENT system settings. For each row in the graph, we show three

di�erent combinations of cluster write probability and object write probability that

produce a 10% net write probability (top row) or 20% net write probability (bottom

row). Moving from left to right across a row, the net write probability does not change:

the three experiments in each row have the same average number of object writes per

commit. However, the average number of page updates does change. For the left

column, roughly one �fth of all accessed pages are updated; for the middle column,

roughly half of the pages are updated; for the right column, most of the accessed

pages are updated. Moving from top graph to bottom graph in each column, the

opposite conditions hold: the average number of page updates remains �xed, while

the average number of object writes doubles.

Each of the six graphs shows results for 1{24 clients, and in each graph we observe

the same overall result shown in Chapter 5, namely that the performance gap increases

with number of clients, until the point where both schemes are nearing their peak

values.

Moving top-to-bottom, at each client point, the increase in write probability causes

ACBL's message costs to increase (more lock requests are used, and moreover more

of these requests result in object-level locks). More blocking also occurs. AOCC's

abort rate rises, but its wasted work costs do not rise as rapidly as ACBL's locking

costs. As a result, doubling the write probability increases the performance gap (at

every client point).

128

Note that it is possible to increase contention level by increasing the number

of clients or by increasing the write probability. Our results show that both cases

normally cause the performance gap to widen. The performance gap does not neces-

sarily widen across the entire range of clients or write probabilities used, however. For

increasing clients, resource saturation (or excessive blocking) places limits on peak

throughput, as we show in Chapter 5. For increasing write probability, the same

e�ect can occur.

Moving left-to-right, we �nd (at each client point) that decreasing the quality of

write clustering results in a larger performance gap. This is a new result (not shown

in Chapter 5): AOCC is less sensitive to how well the static placement of objects

onto disk pages matches the temporal grouping of write accesses within transactions.

(ACBL uses more write lock requests per transaction as we decrease the quality of

write clustering.)

Since throughput peaks can occur at di�erent client points, it is also interesting

to compare peak vs. peak percent improvement. The following table gives this metric

for the six experiments in Figure 6-6. Note that AOCC's peak throughput advantage

over ACBL increases with either an increase in net write probability or a decrease in

quality of write clustering.

Net Write Quality of Write Clustering

Probability Good Average Poor

10% 4.7% 10.4% 16.4%

20% 4.9% 12.4% 23.4%

Peak vs. Peak Percent Improvement

6.2.2 Read-Only/Read-Write Mix

As discussed in Section 2.5.3, for a single-server setting, both AOCC and ACBL can

commit read-only transactions without contacting the server. However, in a multi-

server setting AOCC does need to use a commit request (or set of commit requests)

to validate the read set of a read-only transaction. Although our simulation study

uses a single server, we are interested in supporting the multi-server case. Therefore,

our implementation of AOCC for this study does use a commit request for read-only

transactions. This section examines the impact of this additional round-trip exchange

on the relative performance of AOCC and ACBL. (For a transaction where just one

object is written, ACBL uses more messages than AOCC; it is only the full read-only

case where ACBL has a lower message count.)

Since read-only and read-write transactions do interact, we decided to explore the

impact of varying the \mix" of read-only vs. read-write transactions in the workload.

This is accomplished using the percent forced read-only parameter in our workload

model. This parameter is normally set to zero percent; we normally do not \force"

any transactions to be read-only. If set to X%, the workload generator ignores the

write probability settings for X% of the transactions generated (and simply produces

read-only transactions).

129

The experiments presented in this section vary the percent forced read-only from

0% to 100%. We chose SMALL+HOTCOLD for this set of experiments because,

as mentioned earlier, it is the best representative of a \real" OODB workload. At 0%

forced read-only we obtain the our standard result (AOCC outperforms ACBL); at

100% read-only we know that ACBL has a lower message count and should outper-

form AOCC. There are two interesting questions, then: where does the crossover in

performance occur, and what is ACBL's peak advantage over AOCC (for the 100%

read-only case)?

Figure 6-7 shows the result of varying the mix of read-only and read-write trans-

actions for the SMALL+HOTCOLD workload with default settings. Transactions

that are not forced to be read-only use a net object write probability of 20% (with

average write clustering). The 1, 12 and 24 client cases are shown. The X axis is

the percent forced read-only, while the Y axis is commits per second. (Note that the

scale of the Y axis is di�erent for the 3 graphs : the peak throughputs achieved at 1,

12 and 24 clients are 16, 146, and 171 commits per second, respectively.)

For the 12 and 24 clients cases, ACBL equals AOCC's throughput at a workload

mix of 98% read-only transactions. (For the 1 client case, the crossover occurs with a

90% read-only mix, due to the fact that ACBL uses no callbacks.) The throughputs

match at the point where AOCC and ACBL messaging costs are roughly equal. As we

can see from this experiment, the workload must consist almost entirely of read-only

transactions for this case to occur.

The small percent improvement shown for ACBL is due to the fact that the

average latency of a SMALL+HOTCOLD transaction is much higher than the

latency of a round-trip commit request, due to the client CPU time and fetch costs

that result from performing 200 object accesses (on average). If transactions were

shorter and did not perform any disk reads as part of fetching, we would see a much

larger advantage for ACBL at 100% read-only. To show this case, we ran a special

SMALL+HOTCOLD experiment where the think times are reduced by a factor of

10 and the server cache is set to 100% of the database size. The client cache size

remains at 25% of database size: fetches can still occur, but no disk reads occur.

Due to these changes, transaction latencies are much lower, making the extra commit

request used by AOCC relatively expensive.

Figure 6-8 shows the throughput and percent improvement graphs for these ex-

periments. There is a crossover in throughput somewhere between 80% and 100%

forced read-only. With a fully read-only workload, ACBL's outperforms AOCC by

25.2%.

In summary: ACBL can outperform AOCC due to read-only transactions, but

there are two requirements for read-only transactions to be a signi�cant factor: most

transactions in the workload must be read-only; average transaction latencies for the

execution of object accesses must be low relative to a round-trip commit latency. For

the latter case to occur, there must be very little disk activity per commit: almost

all accesses must hit in the client or server caches.

Recall that the comparison performed in this section is only relevant for a multi-

server system. However, our experiments use only one commit request, while several

servers can be contacted in the multi-server case. Thus, the crossover point and

130

percent improvement results given here are only approximate results; further study

of the multi-server case is needed. In addition, we believe it is possible to design

an optimistic scheme for the multi-server case that normally does not need to use a

commit request for read-only transactions. Studying this issue is an area of future

work.

6.2.3 Restart Behavior

Most concurrency-control simulation studies (including the client-server studies most

similar to our work [10, 23, 24, 57, 58]) use a \perfect restart" assumption: on an

abort, the access pattern of the failed transaction is used without modi�cation for

the subsequent restart execution.

Even if exactly the same transaction code is re-executed for a restart, the restart

execution does not necessarily access the same set of objects in the same order.

E.g., consider a search tree whose nodes are all represented as individual objects

within the database. Suppose a transaction performs a traversal from the root node

to a leaf node, selecting branches according to a search criteria. If this transaction

fails and restarts, re-execution (using the same root and search criteria) can result in

a di�erent traversal of the tree: the traversal will normally follow the same path, but

the new traversal can \diverge" from the original traversal at any node in the original

path whose state has changed since the previous traversal visited the node.

In the above example, encountering a modi�ed object can cause a su�x of the

original access sequence to be replaced with a new set of object accesses. Our sim-

ulator models this su�x-replacement scenario. A restarted transaction begins with

the same access sequence. However, when object X is accessed during a restart, if

X's value has changed since it was accessed during the previous (failed) execution,

the remaining accesses in the sequence are replaced with new accesses, with prob-

ability P . The original accesses continue to be used with probability (1-P). If the

non-replacement case is selected, another su�x-replacement decision occurs if another

changed object value is encountered. We refer to probability P as the restart change

probability .

A restart change probability of 0% is the \perfect restart" assumption: there

is zero chance that a modi�cation will cause the access sequence to change during

restart. A restart probability of 100% means that the access sequence will always

change during restart, for all restarts where a committed update by another client

has been performed for one of the objects in the original access sequence.

When undo caches are used at the clients, most modi�ed pages can be restored and

retained on abort. Without undo caches, modi�ed objects must be dropped at abort

time, and these objects will cause page fetches if they are re-accessed. Therefore, a

perfect restart assumption aids restart performance if undo caches are used, but hurts

restart performance if undo caches are not used.

We do use undo caches in our experiments. Since AOCC has a higher abort rate

than ACBL, a restart change probability of 0% (perfect restart) favors AOCC, while

a change probability of 100% favors ACBL. The default setting (used for most of our

experiments) is the \middle ground" setting of 50%.

131

If a workload has good inter-transaction locality, we expect it to have low fetch

costs for both �rst-run executions and restarts: the client cache should be e�ective

in both cases. If a workload has poor inter-transaction locality, its �rst-run fetch

costs will be high, as the client cache will not be e�ective across transaction commits.

Unlike the good locality case, restart fetch costs for the poor-locality case can vary

dramatically with restart change probability. If restarts mostly repeat the accesses

performed by the failed execution (if the change probability is low), the client cache is

\preloaded" with useful state, and restart fetch costs will be low. However, if restarts

mostly access new objects (if the change probability is high), restarts will have the

same bad cache behavior as �rst-run executions, and restart fetch costs will be high.

Figure 6-9 shows the impact of varying the restart change probability for two di�er-

ent workloads, SMALL+HOTCOLD and UNIFORM. These workloads are used

to demonstrate high locality (SMALL+HOTCOLD) and low locality (UNIFORM)

results. In both cases the CURRENT system settings were used, with 12 clients and

a net object write probability of 20% (with average write clustering). Since ACBL

has a low abort rate, its throughput shows little change for both workloads. For

SMALL+HOTCOLD (left graph), AOCC shows only a small change in through-

put as the restart change probability is varied from 0% to 100%, and there is only a

small change in percent improvement (from 25.1% to 21.2%). For UNIFORM (right

graph), AOCC shows a larger change in throughput, and there is a larger change in

percent improvement (from 20.7% to 5.6%).

As the change probability increases, AOCC's fetches per commit increases, due to

more restart-incurred fetches. For SMALL+HOTCOLD, 12 clients (the case shown

in Figure 6-9), AOCC's fetches per commit rises from 4.2 to 4.5 as we move from 0%

to 100% change probability, a change of 0.3 fetches. ForUNIFORM, AOCC's fetches

per commit rises from 17.9 to 21.0 as we move from 0% to 100% change probability, a

change of 3.1 fetches. Note that UNIFORM not only has a larger increase in fetches

per commit, its per-fetch costs are high relative to SMALL+HOTCOLD's per-fetch

costs, due to more contention over the server disks. E.g., for the 12 client AOCC

case, SMALL+HOTCOLD disk utilization is less than 65%, while UNIFORM's

disk utilization is greater than 83% (across all change probabilities).

The largest impact of a high restart change probability occurs when the server

disks are (nearly) saturated, since fetch costs \blow up" when this occurs. Thus the

impact of change probability increases with the number of clients: a higher number of

clients results in additional disk load per client and also in an increase in fetches per

commit generated by each client. (As we saw in Chapter 5, fetches per commit climbs

with number of clients, for both AOCC and ACBL: a higher number of clients means

a more rapid removal of state from each client's cache, due to committed updates

by other clients, causing client caches to become less e�ective. For AOCC, a higher

number of clients also means a higher abort rate and thus additional fetches due to

restarts.)

Combining our observations about client numbers and inter-transaction locality,

our general results are as follows. For workloads with good inter-transaction locality,

restart behavior normally has little impact, while for high client cases a high restart

change probability does narrow the performance gap, but the impact is small relative

132

to the changes that occur with poor-locality workloads. For workloads with poor inter-

transaction locality, increasing the restart change probability results in a decrease in

the performance gap. The impact of an increased change probability is small for small

client cases and grows larger as we move to higher client cases.

Overall, for the CURRENT system settings, we did not see a case where a high

restart change probability causes ACBL to outperform AOCC. Section 6.3 shows

that a high restart change probability can be combined with speci�c changes to our

default system settings to produce a scenario where ACBL is the better performer.

6.2.4 Transaction Length

The minimum and maximum transaction length parameters are used to set the range

of transaction lengths produced by the workload generator: lengths are chosen uni-

formly from the speci�ed range. For our default setup, TINY+PRIVATE uses the

range 90{110, PRIVATE uses the range 140{180, and the remaining four workloads

use the range 180{220; this produces average lengths of 100, 160, and 200 object ac-

cesses, respectively. We performed two sensitivity analysis experiments to study the

impact of transaction sizes: one that varies the average transaction length, and one

that varies the size of the range used for selecting transaction lengths (while holding

the average length constant). We chose SMALL+HOTCOLD for these experiments

because we consider it to be the best representative of a \real" OODB workload.

The transaction length experiment uses the SMALL+HOTCOLD workload

with average lengths between 100 and 400 accesses. In each case, the minimum and

maximum lengths are 10% below and above the average. (E.g., for average length 100,

the range used is 90{110.) Contention varies with the square of transaction length.

For example, moving from length 100 to length 400 causes a sixteen-fold increase in

contention level. Large changes in contention level would dominate any other e�ects

of changes in transaction length, i.e., those changes we want to examine in this ex-

periment. To maintain a constant contention level, we take advantage of the fact that

contention varies inversely with database size: for each transaction length we use a

di�erent database size, such that contention levels are roughly the same in all cases.

The CURRENT system parameters and a 10% net object write probability (average

write clustering) are used for this experiment.

Figure 6-10 gives the 12-client throughput results for this experiment. As one

would expect, throughput (transactions per second) drops for both schemes with

longer transactions. An increasing transaction length does cause the performance

gap to shrink, but not rapidly: moving from 100 to 400 average accesses, percent

improvement changes from 27.7% to 18.8%.

Since the �rst experiment uses transaction lengths that are all within 10% of

average, it does not test the case where a workload uses transactions with a wide range

of di�erent lengths. To examine this case, the second transaction size experiment

holds average transaction length constant, at 200 accesses, and uses di�erent widths

for the transaction range (di�erent pairs of minimum and maximum lengths) to vary

the mix of transaction sizes. The smallest width used is 100 (range 150{250) while the

largest width is 360 (range 20{380). The CURRENT system parameters and a 20%

133

net object write probability (average write clustering) were used for this experiment.

Figure 6-11 gives the 12-client throughput results for this experiment. Note that

the average transaction length has not changed, thus we do not expect average system

throughput to drop rapidly, as in the �rst experiment. We do �nd, however, that

increasing the range of transaction lengths causes system throughput to drop slightly,

as shown in the Figure 6-11 throughput graph. A wider variance in lengths has

slightly more impact on ACBL than on AOCC: moving from width 100 to width 360,

the percent improvement changes from 22% to 28%.

For a locking scheme, short transactions can block on long transactions; including

longer lengths in the transaction mix potentially hurts all transactions, and it is not

surprising to �nd a decrease in ACBL throughput. For an optimistic scheme, as the

range in transaction lengths widens, more short transactions can execute during the

timespan of a long transaction, and it therefore becomes more likely that transactions

with longer lengths will abort and restart. Therefore, it is also not surprising to �nd

a decrease in AOCC throughput.

One might assume that longer transactions will abort several times before they

manage to commit, due to their length. However, a restart execution has lower fetch

costs (normally) compared to a �rst-run execution, and therefore executes faster. In

other words, \longer" transactions turn into \shorter" transactions.

On Starvation

Finally, we note that with a wide variance in transaction lengths, starvation is possible

for an optimistic scheme. A starving transaction repeatedly attempts to commit and

fails, due to frequent repetitive short update transactions that always manage to

commit a new update that con
icts with the (longer) starving transaction. This case

does not occur for the above experiments because the workload that is used does not

ensure that there is always a short transaction running (which interferes with some

longer transaction). Repetitive aborts can occur, but this is a transient phenomenon.

While we expect starvation to be rare, we note that it is possible to add a mech-

anism to an optimistic scheme to detect and \rescue" a starving transaction. This

idea is discussed in the future work section (Section 7.2).

6.2.5 Compute-Intensive Applications

The read think and write think parameters are client CPU charges that model local

client computation per read or write access respectively. These parameters are meant

to model the work of the application itself, and not of the underlying OODB. (Other

charges, such as the 300 instruction cache lookup charge, are meant to model the

system-level costs of an object access.) As a default, we use 5000 instructions per

read access and 10,000 instructions per write access (50 and 100 instructions/byte,

respectively).

AOCC incurs more aborts than ACBL, and performs more object accesses per

commit. Therefore, an increase in the read and write think times would appear to

\hurt" AOCC more than ACBL. However, consider that a single block event will

134

cause one ACBL client to wait for another client to complete its current transaction.

Thus, on average, an ACBL transaction performs its own object accesses and also

waits for some other-client object accesses to be performed. As contention rises,

ACBL transactions wait on more accesses performed by other transactions, whereas

AOCC transactions re-execute more of their own accesses (but never wait on the

accesses of other transactions). As a result, both schemes are \hurt" by increasing

the think times.

This section presents experiments that examine the impact of changing the read

and write think charges. We chose SMALL+HOTCOLD for these experiments

because, as mentioned above, it is the best representative of a \real" OODB workload.

Figure 6-12 gives SMALL+HOTCOLD throughput results for read think charges

of 50 and 500 instructions per byte (5000 and 50,000 instructions per object access,

respectively). For each experiment, the write think time is set to twice the read think

time. The CURRENT system parameters and a 20% net object write probability

(with average write clustering) were used for these experiments.

As expected, both schemes are hurt by the ten-fold increase in think times;

throughput drops signi�cantly for both schemes. (Note that the height of the Y-

axis di�ers for the two graphs in Figure 6-12.)

As the time spent performing object accesses (or waiting on object accesses per-

formed by other clients) becomes a larger fraction of total transaction latency, the

main advantage of using AOCC (messaging cost savings) becomes a smaller fraction

of total latency. In addition, server CPU utilization drops as think times increase;

delays due to contention over this server resource become smaller. The result is that

the performance gap shrinks with increasing think times, but the relative performance

of the two schemes does not change. Percent improvement for the 50 instruction/byte

case ranges from 9% to 43%, while percent improvement for the 500 instruction/byte

case ranges from 1% to 23%.

For the same SMALL+HOTCOLD experiment, if think times are decreased,

the performance gap increases. E.g., if read and write think times are changed to 5

and 10 instructions per byte, respectively, percent improvement ranges from 22% to

59%.

In general, a change in think times results in an inverse change in the size of the

performance gap, while the relative positioning of the two schemes does not change.

There is an exception to this general rule; we discuss this case in Section 6.3.

6.3 ACBL Wins Region

Section 6.2.2 shows that ACBL can outperform AOCC when the large majority of

transactions are read-only and there is very little disk tra�c per commit. This section

examines the question of what conditions are required for ACBL to outperform AOCC

when most transactions are read-write transactions.

From the workload model experiments, we know that a high restart change prob-

ability can have a large negative impact on AOCC, but only when the workload has

low locality of reference. Informally, we can say that restarts must \behave badly"

135

with respect to the current client cache contents. Restarts must perform new accesses

that are not repeats of the accesses of the previous (failed) execution. In addition,

these new accesses must not be accesses to objects that were recently used by earlier

transactions. (The latter requirement rules out the use of workloads with high locality

of reference.)

For restart costs to matter, AOCC's abort rate must be high, therefore contention

must be high. However, we know that ACBL can su�er from \too much blocking"

at very high contention. Thus, contention should not be as high as the contention

produced by, for example, the HICON workload.

The UNIFORM workload has low locality of reference and reasonably high con-

tention (but not as high as HICON's contention). It meets the requirements above,

and is a good \killer workload" for AOCC. However, the UNIFORM restart change

probability experiment in Section 6.2.3 did not show ACBL could outperform AOCC.

(It did show a large drop in AOCC's performance with increased change probability:

AOCC's throughput drops down to ACBL's throughput, but there is no crossover.)

This suggests it is also necessary for the system setup to favor ACBL.

From the system model experiments, we know that the following changes from

our default system setup should \help" ACBL more than AOCC: lower CPU charges

for message send/receive, a faster server CPU, lower disk bandwidth, and a smaller

server cache. The latter two changes have the same impact: the disks become more

utilized with either a lower bandwidth or a smaller server cache.

Using these insights, we de�ne a new set of system parameter settings that favor

ACBL; we refer to these settings as the \ACBL Wins" settings. Starting with the

CURRENT settings, the following changes are made:

1. The server CPU speed was doubled (from 50 to 100 MIPS).

2. The �xed and variable CPU charges for sending and receiving messages were

lowered to 3000 �xed instructions and 2048 instructions per KB (i.e., we shifted

to the FUTURE settings for these two parameters).

3. The server cache size was reduced from 50% to 10% (of the working set size).

Note that we chose to reduce server cache size but not to reduce disk bandwidth; as

discussed above, either change makes the disks more heavily utilized.

To further \help" ACBL, we use a high quality of write clustering when experi-

menting with the ACBL Wins system: a net object write probability of 10% is used,

where cluster write probability is 20% and object write probability is 50%. (ACBL

only needs to use write locks for one �fth of all pages that are accessed.)

Figure 6-13 gives throughput and percent improvement graphs for an experiment

that uses this ACBL Wins system with the UNIFORM workload and a 100% restart

change probability. Note that a negative percent improvement result indicates a case

where ACBL outperforms AOCC, and is drawn as a bar dropping below the X axis

on the percent improvement graph.

The percent improvement graph in Figure 6-13 shows us that AOCC slightly

outperforms ACBL for small client cases (by less than 1%); for the 8{24 client range,

136

ACBL outperforms AOCC by up to 6.5%. (The peak vs. peak percent improvement

is in ACBL's favor by 6.0%.)

It is important to note that the 8 client point is the point where ACBL begins to

saturate the server disks; ACBL does not outperform AOCC prior to this point. By

8 clients, AOCC's disk utilization has reached 80%. We believe that this saturation

or disk thrashing condition is required for ACBL to outperform AOCC.

The need for high disk contention is explained as follows. ACBL has high blocking

costs under high contention. Even though an ACBL transaction performs fewer disk

operations per commit, it also blocks on other transactions, and thus waits on the

disk operations of other transactions. Disk waiting costs can therefore be equal (or

in AOCC's favor) even if each AOCC commit uses more disk operations than each

ACBL commit. Once AOCC begins to saturate the disks, however, its disk waiting

times rise sharply (while ACBL's disk waiting times do not).

In summary, the \ACBL Wins" region is bounded by the following three condi-

tions:

1. Contention must be high, but not so high that ACBL performs \too much

blocking."

2. The accesses performed during restarts must cause enough fetches for AOCC's

fetch count to be signi�cantly worse than ACBL's fetch count (per commit).

For this to occur, the overlap between restart accesses and the accesses of the

previous failed transaction must be low and the workload as a whole must have

poor inter-transaction locality.

3. It must be the case that the locking scheme does not drive the server CPU

towards saturation faster than the optimistic scheme drives the server disks

towards saturation. In addition, the optimistic scheme must drive the server

disks near saturation; disk resource contention at the server must be high.

We performed some additional experiments to test these conditions. Starting with

the \ACBL Wins" system, UNIFORM workload, and 100% change probability, as

used in the above experiment, we made one modi�cation per experiment:

� If \perfect restarts" are used (0% restart change probability), ACBL does not

outperform AOCC.

� If we use SMALL+HOTCOLD rather than UNIFORM, ACBL does not

outperform AOCC.

� The ACBL Wins system is essentially a partial switch from CURRENT to

FUTURE system settings, where only the changes that favor ACBL were made.

If we also use the FUTURE settings for disk, network bandwidth, and client

CPU, ACBL does not outperform AOCC. (This additional experimental setup

di�ers from the default FUTURE setup in only two ways: change probability

is set to 100%, and the server cache is set to 10%.)

137

� If the read and write think times are set to 500 and 1,000 instructions per byte,

the server resources do not saturate in the 1{24 client region, and ACBL does

not outperform AOCC.

(This shows there is an exception to the think time results given in Section 6.2.5.

For a case where ACBL outperforms AOCC, a su�ciently large increase in

think times moves the system \out of" the ACBL Wins region, and AOCC

then outperforms ACBL.)

These experiments con�rm our characterization of the three conditions that de�ne

the \ACBL Wins" region. This region has bounded scope, and is unlikely to occur

in practice. Conventional wisdom is that OODB applications do not have high con-

tention, thus the �rst condition is not expected. Even for high contention workloads,

we expect that restarts normally do overlap signi�cantly with previous failed accesses.

We also do not expect most OODB systems are con�gured in a \disk poor" manner

such that the disks approach saturation at a client point that is much lower than the

desired number of users of the system.

6.4 Summary

This chapter explores how the relative performance of ACBL vs. AOCC changes

as we vary di�erent system and workload parameter settings. For a wide range of

settings, the performance gap (AOCC's percent improvement over ACBL) can narrow

or widen, but AOCC remains the better scheme. Thus, while Chapter 5 gives results

and analysis for the CURRENT system and default workload settings, the same

relative results and the same insights hold across a large region of the overall workload

and parameter space.

In addition to demonstrating the robustness of our results, the experiments de-

scribed in this chapter provide new insights. The important new results are as follows:

� AOCC is more robust with respect to contention level, update frequency, and

the quality of write clustering. The performance gap widens with an increase

in either the number of object writes per commit or in the number of page

updates per commit; the gap also increases when contention is increased by

adding clients to the system.

� Sensitivity analysis experiments for the core system parameters (server, client,

network, and disk) show that changes that reduce disk load relative to server

CPU load cause the performance gap to widen, while changes that reduce server

CPU load relative to disk load cause the performance gap to narrow. Thus, the

gap widens with faster disks, faster client CPUs, larger client caches, and a

larger server cache. The gap narrows with a faster server CPU and lower CPU

charges for message send/receive.

� Changing all system parameters from CURRENT to FUTURE settings has

a di�erent impact for low and high contention cases. For low contention, the

138

decrease in message costs is the most signi�cant change; relative performance is

based on message costs, thus the performance gap narrows. For high contention,

the increase in available system resources is the most signi�cant change. AOCC

is able to make good use of the additional resources, while ACBL is not (due

to its high blocking costs). The result is a wider performance gap. In addition,

both schemes exhibit a shift in the location of their peak throughput (to a higher

client point), where AOCC's shift is more dramatic.

� If transaction restarts mainly repeat previous (failed) accesses, this favors AOCC;

if restarts mainly perform new accesses, this hurts AOCC. Restart change

probability has little impact on performance gap if the workload has good

inter-transaction locality, while the performance gap narrows if the workload

has poor inter-transaction locality. The impact of a high change probability

increases with increased server disk utilization.

� Increasing the average transaction length causes a small narrowing of the per-

formance gap. Increasing the range of transaction sizes used by the workload

causes a small increase in the performance gap.

� Increasing the client computation time (the think time) per access narrows the

performance gap, while decreasing the time widens the gap.

Our experiments found two cases where ACBL can outperform AOCC. First, if

the workload mix mostly consists of read-only transactions and transaction latencies

are small relative to round-trip latencies, ACBL can signi�cantly outperform AOCC.

This case requires very few disk operations per commit; almost all accesses must hit

in the client or server cache. In addition, this case only applies to a multi-server

system. While we simulated an AOCC read-only commit request to approximate this

multi-server case, a more realistic study of multi-server performance is needed; this

is an area of future work.

Second, for read-write transactions, we identi�ed an \ACBL Wins" region of the

overall system and workload parameter space. This region is bounded in scope.

There are three necessary conditions. There must be high contention. There must

be a restart access pattern that does not match the \preloaded" client cache contents

(accesses of the failed transaction are mostly not repeated, and the workload in general

has low locality of reference). AOCC must saturate the server disks faster than ACBL

saturates the server CPU, and moreover AOCC must actually start to saturate the

disks before ACBL can signi�cantly outperform AOCC.

It is interesting to note that callback locking schemes are designed to perform well

for workloads with low contention and good inter-transaction locality. Such cases

clearly fall outside the \ACBL Wins" region. Thus, AOCC outperforms ACBL on

the workloads that motivate the use of callback locking.

Our general conclusion is that optimism is robust for the workloads and systems

covered by the scope of this thesis: when the average transaction size is smaller than

the client cache size, our optimistic scheme exhibits excellent performance across

di�erent sharing patterns, across good and bad write clustering, across low and high

contention, and across low and high locality of reference.

139

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

C
om

m
it

s
/ S

ec
on

d

HOTCOLD Throughput
CURRENT System

Clients

0 %

5 %

10 %

15 %

HOTCOLD % Improvement
CURRENT System

1 2 4 8 12 16 20 24

6.
7

7.
9

9.
7

12
.8

12
.0

10
.8

10
.4

10
.6

(Peak-vs-Peak % Improv. = 10.4 %)

1 4 8 12 16 20 24

Clients

0

50

100

150

200

C
om

m
it

s
/ S

ec
on

d

HOTCOLD Throughput
FUTURE System

Clients

0 %

5 %

10 %

HOTCOLD % Improvement
FUTURE System

1 2 4 8 12 16 20 24

2.
1 2.
2

4.
3

5.
7

5.
6

5.
2

5.
0

4.
7

(Peak-vs-Peak % Improv. = 4.7 %)

CURRENT System, Default Workload Settings

Figure 6-4. CURRENT vs. FUTURE: Low-Contention Example (HOTCOLD)

140

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

10

20

30

40

C
om

m
it

s
/ S

ec
on

d

HICON Throughput
CURRENT SYSTEM

Clients

0 %

20 %

40 %

60 %

80 %

100 %

HICON % Improvement
CURRENT System

1 2 4 8 12 16 20 24
4.

4 12
.3

23
.0

50
.2

73
.7 80

.2

81
.8 85

.7

(Peak-vs-Peak % Improv. = 68.3 %)

1 4 8 12 16 20 24

Clients

0

50

100

150

C
om

m
it

s
/ S

ec
on

d

HICON Throughput
FUTURE System

Clients

0 %

20 %

40 %

60 %

80 %

100 %

120 %

140 %

HICON % Improvement
FUTURE System

1 2 4 8 12 16 20 24

1.
3 6.

0 14
.9

40
.2

68
.8

89
.7

11
2.

3 12
5.

0

(Peak-vs-Peak % Improv. = 81.8 %)

CURRENT System, Default Workload Settings

Figure 6-5. CURRENT vs. FUTURE: High-Contention Example (HICON)

141

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

50

100

C
om

m
it

s
/ S

ec
on

d

10% Net Object Write
(20% Cluster Write,
50% Object Write)

1 4 8 12 16 20 24

Clients

0

20

40

60

80

100

C
om

m
it

s
/ S

ec
on

d

10% Net Object Write
(50% Cluster Write,
20% Object Write)

1 4 8 12 16 20 24

Clients

0

50

100

C
om

m
it

s
/ S

ec
on

d

10% Net Object Write
(100% Cluster Write,
10% Object Write)

1 4 8 12 16 20 24

Clients

0

50

100

C
om

m
it

s
/ S

ec
on

d

20% Net Object Write
(20% Cluster Write,
100% Object Write)

1 4 8 12 16 20 24

Clients

0

50

100

C
om

m
it

s
/ S

ec
on

d

20% Net Object Write
(50% Cluster Write,
40% Object Write)

1 4 8 12 16 20 24

Clients

0

50

100

C
om

m
it

s
/ S

ec
on

d

20% Net Object Write
(100% Cluster Write,
20% Object Write)

CURRENT System, Default Workload Settings

Figure 6-6. Varying Write Probability, Write Clustering (HOTCOLD)

142

Legend: AOCC ACBL

0% 20% 40% 60% 80% 100%

% Forced Read-Only

0

5

10

15

C
om

m
it

s
/ S

ec
on

d

1 Client

0% 20% 40% 60% 80% 100%

% Forced Read-Only

0

50

100

150

C
om

m
it

s
/ S

ec
on

d

12 Clients

0% 20% 40% 60% 80% 100%

% Forced Read-Only

0

50

100

150

C
om

m
it

s
/ S

ec
on

d

24 Clients

CURRENT System, Default Workload Settings

Figure 6-7. SMALL+HOTCOLD: Read-Only Mix Experiment

Legend: AOCC ACBL

0% 20% 40% 60% 80% 100%

% Trans. Forced Read-Only

0

200

400

600

C
om

m
it

s
/ S

ec
on

d

12 Clients
Large Server Cache
Small Think Times

% Forced Read-Only

-40%

-20%

0%

20%

40%

60%

% Improvement

0 20 40 60 80
100

52
.6

46
.0

38
.6

29
.6

16
.4

-2
5.

2

CURRENT System, Default Workload Settings

Figure 6-8. SMALL+HOTCOLD: Main Memory Server

143

Legend: AOCC ACBL

0% 20% 40% 60% 80% 100%

Restart Change Probability

0

20

40

60

80

100

C
om

m
it

s
/ S

ec
on

d

SMALL+HOTCOLD Throughput
12 Clients

0% 20% 40% 60% 80% 100%

Restart Change Probability

0

5

10

15

20

25

C
om

m
it

s
/ S

ec
on

d

UNIFORM Throughput
12 Clients

CURRENT System, Default Workload Settings

Figure 6-9. Varying the Restart Change Probability

Legend: AOCC ACBL

100 200 300 400

Avg. Transaction Length

0

50

100

150

200

C
om

m
it

s
/ S

ec
on

d

SMALL+HOTCOLD Throughput
12 Clients

CURRENT System, Default Workload Settings

Figure 6-10. Varying the Average Transaction Length

144

Legend: AOCC ACBL

100 200 300 360

Access Range Width
(Avg Fixed at 200)

0

20

40

60

80

100

C
om

m
it

s
/ S

ec
on

d

SMALL+HOTCOLD Throughput
12 Clients

CURRENT System, Default Workload Settings

Figure 6-11. Varying the Range of Transaction Sizes

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

50

100

C
om

m
it

s
/ S

ec
on

d

SMALL+HOTCOLD: Throughput
Read Think Time = 50

1 4 8 12 16 20 24

Clients

0

10

20

30

C
om

m
it

s
/ S

ec
on

d

SMALL+HOTCOLD: Throughput
Read Think Time = 500

CURRENT System, Default Workload Settings

Figure 6-12. SMALL+HOTCOLD: Think Time Experiment

145

Legend: AOCC ACBL

1 4 8 12 16 20 24

Clients

0

5

10

15

C
om

m
it

s
/ S

ec
on

d

UNIFORM Throughput
‘‘ACBL Wins’’ Settings

Clients

-10 %

-5 %

0 %

5 %

UNIFORM % Improvement
‘‘ACBL Wins’’ Settings

1 2 4
8 12 16 20 240.

2 0.
6

0.
6

-2
.2

-4
.3

-6
.0 -5

.5

-6
.5

(Peak-vs-Peak % Improv. = -6.0 %)

CURRENT System, Default Workload Settings

Figure 6-13. UNIFORM: ACBL Wins Region

146

Chapter 7

Conclusions

7.1 Results and Insights

In a client-server system, the goal of moving both data and computation to clients is

to produce a system that has high throughput, low response times, and good scaling

properties. Moreover, for workloads that have inter-transaction locality of reference,

retaining cached state at clients across transaction boundaries should provide ad-

ditional bene�ts. The choice of concurrency control scheme has a large impact on

whether these performance and scalability goals are met.

In this thesis we study two schemes that both attempt to minimize the required

synchronization steps between client and server. ACBL, a callback locking design, can

avoid read lock requests for cached data if these locks are cached across transaction

boundaries. This approach works reasonably well when updates to shared objects are

infrequent and when accesses to read-write shared pages are infrequent. However,

we show that the performance of this scheme is sensitive to many di�erent variables:

the number of clients using a shared data set, the frequency of update, the degree of

object-level contention (real data con
icts), the degree of page-level contention (false

sharing), and the likelihood that objects modi�ed by a single transaction are clustered

onto a small number of pages (write clustering). All of these variables can have a

large impact on ACBL's client-server synchronization costs.

AOCC, our new optimistic scheme, has low synchronization overhead for the low-

contention case; it outperforms ACBL by a small but signi�cant margin on the work-

loads that ACBL is designed to perform well on. This result supports conventional

wisdom, which says that optimism can outperform locking when the abort rate is low.

We also show that AOCC is more robust with respect to all of the variables listed

above: as the number of clients increases, as the frequency of updates increases, as

real data con
icts or false sharing increases, and as the quality of write clustering

decreases, the performance gap between the two schemes widens.

Relative to ACBL, AOCC's abort rate rises much faster with contention level.

However, AOCC is the better scheme even when it has a high abort rate. In fact,

AOCC outperforms ACBL by a wider margin under high contention than under

low contention. This result is the opposite of conventional wisdom, which equates

a high abort rate with low performance. Our results are di�erent because AOCC

147

uses mechanisms designed to improve restart performance, while previously studied

optimistic (or semi-optimistic) designs do not.

The primary AOCC design goal was to keep client-server interaction to a min-

imum. However, since optimistic schemes do incur high abort rates, reducing the

number of interactions due to aborts and restarts was considered an integral part of

this goal. Thus, AOCC's design includes mechanisms for (1) avoiding aborts due to

out-of-date accesses; (2) detecting the need to abort early to avoid an unnecessary

commit request; (3) restoring and updating the state of a client cache on abort to

avoid fetch requests during restarts. This combination of mechanisms works very

well: AOCC's round-trip synchronization costs do not rise rapidly with a rising abort

rate. Note that early abort detection combined with low fetch costs during restart

\protects" the server from high restart costs: much of the cost of a restart is paid at

the client that executed the failed transaction. Therefore, restarts don't have a large

impact on the server's ability to scale to many clients.

One of the fundamental assumptions that de�nes the scope of our study is that

client caches are large enough to retain the objects accessed by a transaction. AOCC's

low restart costs do not necessarily apply outside of this scope. However, we believe

that our results have wide applicability: the client cache assumption holds for many

present-day systems and applications, and will encompass more cases in the future,

due to improved cache designs and increasing cache sizes. Main memory at clients

will continue to increase. Furthermore, hybrid cache designs [36, 47] retain both useful

pages and useful objects, resulting in more e�ective use of cache space. In addition,

cooperative caching designs allow fetches to be serviced by other clients [15, 22, 25],

while main-memory databases (e.g., DaliJagadish94) are becoming more common; it

is increasingly likely that additional fetches due to aborts will be serviced from client

or server memory rather than server disk.

In addition to its good performance properties, AOCC is the better scheme with

respect to simplicity, scalability, and robustness:

Simplicity. AOCC is much simpler to implement than an adaptive-granularity call-

back locking scheme such as ACBL. The di�erence in the complexity of the two de-

signs is easily seen in Chapter 2. A locking scheme must use multiple locking granu-

larities to reduce locking overhead while still achieving high concurrency. In contrast,

AOCC obtains high levels of concurrency without the need to dynamically switch

its con
ict-detection granularity. Unlike a locking scheme, an optimistic scheme can

perform all con
ict detection at object-level without incurring high message costs.

Scalability. In general, a locking scheme has high message overhead compared to

AOCC. For a callback locking scheme such as ACBL, message costs grow with the

number of clients in the system that are sharing data. Thus, with respect to message

costs, AOCC scales better with number of clients.

In addition, we believe AOCC scales better than ACBL with respect to the dis-

tance between client and server. Note that we simulated a local-area network (LAN),

but not a wide-area network (WAN). AOCC's low use of synchronous round-trip ex-

148

changes makes it less sensitive than a locking scheme to high network latencies, and

we believe AOCC's advantages over a locking scheme will increase as one moves from

a LAN to a WAN setting.

Robustness. AOCC transactions executing at di�erent clients have minimal inter-

action; synchronization between transactions occurs at the server, and only at the

commit point of a transaction. Under a callback locking scheme both the use of

blocking and the use of callbacks makes it likely that the performance of a transac-

tion running at client X will depend on the performance properties of another client

Y. Thus, we believe AOCC is more robust with respect to a high variance in the

availability or performance properties of clients.

Con�rming AOCC's advantages for a WAN system and for a system with a high

variance in client properties remains an area of future work. The remainder of this

chapter discusses some additional future work. To keep this discussion short, we have

restricted our discussion to two issues: improving the design of our optimistic scheme,

and improving the simulation testbed.

7.2 Future Work

7.2.1 Starving Transactions

A transaction is starving if it repeatedly fails to validate and commit, due to frequent

repetitive updates performed by other transactions that do manage to commit. This

scenario is rare and often transient. Starvation can end without the intervention of a

special mechanism if the interfering clients move on to other work.

Starvation is a well-known potential problem for optimistic schemes, and a number

of solutions have been proposed. The original Kung/Robinson paper on optimistic

methods discusses detecting a starving transaction by placing a limit on the num-

ber of successive aborts. The system can then rescue this transaction by holding a

semaphore during its next restart execution that e�ectively locks the entire database,

ensuring that the restart will succeed [38]. Thomasian and Rahm proposed a page-

level variant of this idea: on abort, page-level locks can be acquired for the pages

accessed by failed transaction T, ensuring that T's restart will succeed as long T does

not access any new pages during restart [48]. The Thomasian/Rahm scheme uses

locking on the very �rst abort; it attempts to avoid all multiple-restart scenarios.

A possible area of future work is to use simulation to investigate the e�ectiveness

of di�erent starvation solutions. A solution requires two components, detection and

\rescue." For detection, one could study di�erent heuristics used to trigger a rescue

mission. While the solutions described above use an abort count (of either 1 or N),

other criteria could be applied, such as the age of a transaction.

For rescue, two questions arise. First, for a starving transaction T, how does the

system identify the state that should be protected from update during T's restart

execution. T's current read set is a good starting point; perhaps the system can

149

identify other objects that are likely to be accessed during restart. Second, what

level of granularity should be used to lock this state? If restarts are \perfect" then

object-level locking can be used. If restarts perform some new accesses but these

accesses still use the pages accessed by the previous execution, page-level locking will

successfully protect the restart from abort. If restarts are less predictable, it may be

necessary to lock units larger than pages.

7.2.2 Read-Only Transactions

Allowing a read-only transaction to choose a serialization point somewhere \in the

past" with respect to the current committed state of the database is a standard

approach to improving read-only commit performance. For example, some multi-

version concurrency control schemes (such as the scheme by Agrawal et. al. [2]) choose

a start point Tstart at the start of read-only transaction T and then ensure that all of

T's accesses are consistent with this time. Thus, T always commits by choosing this

point as its serialization point. This guarantee of a commit is a very nice property

(especially for an optimistic scheme).

However, multi-version schemes have potentially high space overhead. For the

above example, while T is executing, if an update to object O is installed with a

commit time later than Tstart, an \old" version of O that is consistent with Tstart

must be maintained so that if T should happen to read object O, it will read a

version of O that is consistent with its chosen start time. If there are many read-only

transactions in the system, the management and garbage collection of old versions

adds signi�cant overhead to the system.

In a client-server system, the starting state of a client cache where a read-only

transaction is about to run can retain \old" versions of recently updated objects

simply by not updating the cache with new state. This is not a full solution, however,

because the cache may not start out with all of the state that will be used by the

read-only transaction. Moreover, once the transaction commits, a signi�cant amount

of work may be required to bring the cache back up to date with respect to the

committed state of the database. Finding a solution to these problems (that does not

have the same high overhead as a standard multi-version scheme) is an interesting

area of future work.

For single-version systems, it is also possible to allow a read-only transaction to

choose a serialization point that is \in the past." As discussed in Section 2.5.3,

our optimistic design does not need to use read-only commit requests for a single-

server system. At the server, updates are applied in commit order, and transaction-

consistent invalidation messages are generated due to these updates. Thus, a client

that has processed all invalidations generated through time Treply (the time that

the last fetch reply was sent to the client) has a consistent cache with respect the

committed state of the system at time Treply. If a read-only transaction is not aborted

due to invalidations, it can be \serialized" at this point in time.

Thus, allowing an immediate commit with serialization time Treply improves com-

mit performance. An area of future work is to develop an algorithm that allows such

immediate commits for multi-server systems. For such systems, a client can know

150

that the server S1 objects in its cache are consistent with respect to time TS1�reply,

and the server S2 objects are consistent with respect to time TS2�reply. However, this

information does not imply global consistency for the client cache.

7.2.3 New Studies

Our simulation environment can be extended to support some of the future work that

we have described. One required feature is the ability to model heterogeneous clients.

For example, to create a starvation case, one client could run a workload with \longer"

transactions while the other clients could run a workload with \shorter" transactions.

Similarly, one client could have a slower CPU, or a lower-bandwidth client-server

network connection as compared to the other clients in the system.

A real system runs a mix of workloads, where groups of clients are each running

a di�erent application. Thus, it would be interesting to examine system behavior for

di�erent workload mixes.

Finally, where our current simulator allows us to study steady-state behavior,

it would also be interesting to study dynamic behavior. For example, suppose an

application uses working set A for time period T1 and then switches to working set B

for time period T2. During each time interval there is high inter-transaction locality

of reference for the working set in use. At the beginning of time period T2, working

set B pages are not cached at the clients; there will be a transition period where B

pages are \swapped in." It would be interesting to examine the behavior of di�erent

schemes across this transition period.

151

152

Appendix A

On System Parameter Settings

The system model and the CURRENT and FUTURE settings are presented in

Section 4.1. This appendix discusses the process we used to select the two sets

of parameter settings, giving some additional insight into our experimental setup.

This additional information is interesting, but is not needed for understanding our

simulation results.

A.1 Fixed Settings

Parameter Setting

Object size 100 bytes

Page size 4 KB

Objects per page 40

Working set size 1250{1300 pages

Server cache size 50% of working set size

Modi�ed object bu�er size 50% of working set size

Client cache size 25% of working set size

Used for both CURRENT and FUTURE systems.

Figure A-1. Size-Based Parameters

We begin by discussing the parameter settings that do not change as we move

from the CURRENT to the FUTURE system. In particular, we chose to keep

the size-based parameters the same, as shown in Figure A-1, which summarizes the

settings for all of the size-based parameters.

A small object size was chosen because we expect many small objects to be present

in real OODBs. For example, in the OO7 benchmark [8, 7], a widely accepted object-

oriented database benchmark, most objects are smaller than 100 bytes. Also, small

objects are the most interesting case to study with respect to concurrency control.

With a 4 KB page size and 40 objects per page, a scheme like ACBL can lock 40

153

objects with a single write lock request; this allows us to explore the bene�ts of using

an adaptive locking scheme. We chose a 4 KB page size as a reasonable size for fetch

requests, given current network costs.

The parameters that change as we move to the FUTURE system all involve speed

rather than size: we wanted to isolate the impact of moving to a faster system, and

size changes would have complicated the picture. For example, had we switched to

a larger page size for the FUTURE system, there would be more objects per page.

This would mean ACBL would need fewer page-level locks, but it would also mean

that ACBL would switch to object-level locking more frequently, since there would be

more false sharing at the page level. Thus, by �xing the size parameters, it is easier

to reason about the changes that occur as we move from CURRENT to FUTURE

system.

Parameter Cost

Cache lookup 300 instr.

Register / Unregister 300 instr.

(Lock / Unlock)

Validation time per object 0{300 instr.

Cost of deadlock detection 0 instr.

Used for both CURRENT and FUTURE systems.

Figure A-2. Misc. Client and Server Costs

Some CPU charges when expressed as a number of instructions do not change as

we move from the CURRENT to the FUTURE system. Figure A-2 summarizes the

settings for these parameters. (The FUTURE processors are faster, so in this sense

these parameters do change; they take less time.) The settings for these parameters

are justi�ed in Chapter 4.

Client and Server Settings

Parameter CURRENT FUTURE

Server CPU speed 50 MIPS 200 MIPS

Client CPU speed 25 MIPS 100 MIPS

Figure A-3. Client and Server CPU Speeds

Figure A-3 gives the client and server CPU speeds. For the CURRENT system,

the client and server processors execute 25 and 50 million instructions per second,

respectively. The FUTURE system has processors that are four times as fast. It

can be argued that faster speeds make more sense given that faster processors are

already available commercially. Chapter 6 has an experiment that varies the client

and server CPU speeds and shows the e�ect of using faster processors.

154

A.2 Network Settings

Parameter CURRENT FUTURE

Network bandwidth 80 Mbps 160 Mbps

Fixed network cost 6000 instr. 3000 instr.

Variable network cost 7168 instr./KB 2048 instr./KB

Figure A-4. Network Parameters

80 Mbps Network

wire
time

102 usecs

50 MIPS Server

fixed
cost

120 usecs

variable
cost

143 usecs

25 MIPS Client

fixed
cost

240 usecs

variable
cost

286 usecs

Total: 892 usecs

CURRENT System

160 Mbps Network

wire
time

51 usecs

200 MIPS Server

fixed
cost

15 usecs

variable
cost

10 usecs

100 MIPS Client

fixed
cost

30 usecs

variable
cost

20 usecs

Total: 126 usecs

FUTURE System

Figure A-5. Latency for 1 KB Message

Figure A-4 summarizes the network parameter settings for the CURRENT and

FUTURE systems. Given these settings, and the fact that our FUTURE CPU's are

faster than ourCURRENT CPU's, latencies are signi�cantly lower in our FUTURE

system. This is demonstrated in Figure A-5, which gives a breakdown of the 1-way

latency for a 1 KB message, for both the CURRENT and FUTURE systems. Note

that in each case the server CPU is twice as fast as the client CPU; while the server

and client are charged the same number of �xed and variable instructions, the server

executes these instructions in half the time.

Brie
y, the reason we use a lower �xed cost for the FUTURE system is that we

expect future operating systems will require fewer kernel interactions per message.

At the same time, the variable cost will be lower because user-level processes will be

given more direct access to the network interface: this will result in less unnecessary

copying (it also enables the use of messaging protocols that are tailored to individual

155

applications or system environments). We present some results for an experimental

version of such a user-level messaging system below.

The remainder of this section discusses how we chose the speci�c CURRENT

and FUTURE settings shown in Figure A-4.

A.2.1 Network Bandwidth

A 10 Mbps Ethernet is probably the most common network in use today. However,

when used with our other CURRENT settings, a 10 Mbps bandwidth can cause

the network to saturate at 10 clients or less. We want to run experiments with up

to 24 clients, and we want the characteristics of the di�erent concurrency control

schemes under study, rather than the maximum bandwidth of the network, to dic-

tate the performance results. (Moreover, as explained above, our network model is

inaccurate under saturation.) For these reasons, we use a bandwidth of 80 Mbps for

our CURRENT system. This bandwidth is available as a \commodity item" today,

using an FDDI network (a �ber token-ring). We use a FUTURE bandwidth of 160

Mbps. Such speeds are already available with ATM technology.

A.2.2 CPU costs

Determining reasonable �xed and variable instruction costs for the CURRENT and

FUTURE systems turned out to be an interesting challenge. Ultimately, we decided

to calculate estimates for these costs by examining some reported latency measure-

ments from actual systems. To produce estimates for the CURRENT system, we

examined latency measurements from present-day \monolithic-kernel" operating sys-

tems, such as Mach 2.5 and Ultrix 4.2; for the FUTURE system, we examined

latency measurements from experimental user-level messaging systems.

For monolithic-kernel operating systems, all message protocol processing runs

within the kernel. Every send or receive requires protection domain crossings (con-

text switches). In addition, unnecessary copying costs are incurred if the message

must be copied between user space and kernel space; this is required if there is no

shared-memory support to give the kernel direct access to user-level data. Network

protocols have traditionally been built using a layered approach, where each layer

queues a packet on the input queue of the next layer; this approach has the advan-

tage of being modular, but has additional overhead compared to an approach that

uses a single end-to-end implementation.

Newer approaches such as the ones described in [5, 20, 56] move most of the

network code to user-level. For protection and fairness reasons, kernel interaction is

still required to set up user-level communication. Shared memory regions are used to

provide the required level of protection. However, once such regions are established,

user-level processes can communicate without using kernel calls. As [56] points out,

an ideal \zero copy" protocol would be possible if the network interface could \map

in" arbitrary memory from the user-level address space (send and receive queues could

contain arbitrary descriptors of message contents). Most current I/O architectures

do not allow I/O devices to do arbitrary mapping. Thus, a limited amount of shared

156

message bu�er memory is allocated to each user-level process, and message data must

be copied to/from this space by the user-level process. Even such a 1-copy approach

saves copying compared to a monolithic kernel that does not share message bu�ers

with user-level processes.

Von Eicken [56] gives a good summary of the advantages of the user-level ap-

proach. For backward compatibility, user-level libraries can implement the protocols

commonly available in existing kernels (e.g., UDP and TCP). However, where a kernel

implementation of such a protocol is generally tuned to perform well across a range

of applications, if the same protocol is provided as a user-level library, it can be tuned

on an per-application basis. Moreover, one can implement a new protocol tailored to

the speci�c communication requirements of a particular application.

Machine 5000/200 5000/200 5000/200 5000/200

Network Ethernet Ethernet Ethernet Ethernet

Bandwidth (Mbps) 10 10 10 10

Operating System Mach 2.5A Mach 2.5A Ultrix 4.2 Ultrix 4.2

Message Protocol TCP UDP TCP UDP

Small Msg. (bytes) 54 42 54 42

1-Way Time (�secs) 700 725 760 760

Wire Time (�secs) 43 34 43 34

CPU Time (�secs) 657 691 717 726

Longer Msg. (bytes) 1514 1514 1514 1514

1-Way Time (�secs) 3020 2940 3065 3025

Wire Time (�secs) 1211 1211 1211 1211

CPU Time (�secs) 1809 1729 1854 1814

Fixed Cost (�secs) 307 331 337 347

Var. Cost (�secs/KB) 404 361 398 378

SPECInt92 Rating 19.5 19.5 19.5 19.5

Fixed Cost (instr.) 5990 6448 6581 6776

Var. Cost (instr./KB) 7877 7041 7770 7379

Latencies taken from Table 2 in Maeda/Bershad [44]; note that our message sizes

are an estimate of the total bytes sent.

Figure A-6. Kernel-Based Messaging Costs

We estimate the �xed and variable CPU costs associated with message processing

using a simple back-of-the-envelope calculation. Starting with two reported round-

trip latencies (for a small and a large message size), we halve these numbers to get

1-way latencies and then subtract out the 1-way wire times; this should leave us

with just the CPU-based costs. Assuming a simple linear model, we get �xed and

variable costs in �secs and �secs/KB; we divide these results in half since our model

assigns half the cost to the sending processor and half to the receiving processor.

Finally, since our network model has instruction-based parameters, we multiply by

the SPECInt92 rating of the machine used: our �nal �xed and variable CPU costs

are in terms of instructions and instructions/KB (to be charged at both the sender

and receiver). Note that the same machine was used as both sender and receiver in

157

these studies, thus it does not matter whether we convert to instructions before or

after we divide the computed costs in half.

Figure A-6 shows how this process works, by estimating �xed and variable CPU

costs based on reported latencies from a Maeda/Bershad study [44] that used two

DECStation 5000/200's and a 10 Mbps Ethernet. (Other studies report similar la-

tencies for monolithic kernels, e.g., [53] reports similar Ethernet/Ultrix latencies for

the 5000/200.) Each column shows one back-of-the-envelope calculation; the �nal

estimated costs are at the bottom. We give the estimates for two monolithic kernels

(Mach 2.5A and Ultrix 4.2) and two network protocols (TCP and UDP). It is clear

that there is some consistency across operating systems and also across protocols.

The �xed cost range is 5990{6776 instructions, while the variable cost range is 7041{

7877 instructions/KB. Given these ranges, we chose a �xed cost of 6000 instructions

and a variable cost of 7168 instructions (7 instructions/byte) for our CURRENT

system.

As discussed in Section 4.1.5, our network model assumes there is no overlap

between the \wire time" of a message and the component of message latency that

is due to CPU costs at the sender and receiver. Also, the entire message traverses

the network as a single unit. The accuracy of this model depends in part on the

preferred (or standard) size of a network packet, and on the size of the message. If

a real system uses packetization and reassembly, the \wire time" of one packet can

overlap with the CPU time involved in the processing of another packet.

In an Ethernet setting, messages larger than 1514 bytes use multiple packets, and

some overlap will occur. Based on some simple experiments that we ran using the

same machines as the ones used by Maeda/Bershad, the \apparent" variable cost for

a large message is roughly 4 instructions/byte. For smaller messages, we observed

the same variable cost of 7 instruction/byte that we calculated above. In other

words, while the actual variable cost is 7 instructions per byte, there is roughly a 3

instruction/byte overlap between CPU time and wire time, producing an apparent

variable cost of 4 instructions/byte.

Since we did not want to change our network model, we were faced with a choice:

we could stick with the computed variable cost, or we could use a lower one. The

�rst choice produces the correct instruction charges at each end, but results in over-

estimates of message latencies for large messages. (For a 4 KB message, the resulting

latency is roughly 15% too high.) The second choice produces more accurate large-

message latencies, but the sending and receiving processors are under-charged. We

decided to stick with the original 7 instructions/byte variable charge, for two reasons.

First, note that large messages are mostly used for fetch replies (which send 4 KB

pages). AOCC and ACBL use the same number of fetches per commit, unless AOCC

has a high abort rate, in which case it can use more fetches than ACBL. Thus, the

higher latency for large messages is incurred by both schemes in a roughly equal

amount. The main messaging di�erence between the two schemes is that ACBL uses

lock requests and callback requests that AOCC does not; these requests (and the

resulting replies) are small, thus our model computes correct latencies for them. Sec-

ond, our network model assumes that there is no other message tra�c in the system;

in reality, an distributed OODB would share a network with other applications, and

158

thus a 15% stretching of large message latencies hardly seems out of line.

Note that our choice produces both the correct charges and the correct wire uti-

lization charge; the only thing it gets wrong is the overlap of these two charges. In

contrast, using a lower variable cost of 4 instructions/byte changes this cost by a

factor of 3=7, or 43%. We felt that using the more accurate present-day charge for

message CPU costs was important, since a primary distinction between AOCC and

ACBL is the number of messages sent. Under-charging for messages would not accu-

rately re
ect the e�ect of high message tra�c on the server CPU, and we expected

this e�ect would prove to be important in our experiments.

Machine Sparc-20 Sparc-20

Network Fore ATM Fore ATM

Bandwidth (Mbps) 140 140

Message Protocol TCP UDP

Small Msg. (bytes) 48 48

1-Way Time (�secs) 79 69

Wire Time (�secs) 3 3

CPU Time (�secs) 76 66

Longer Msg. (bytes) 1000 1000

1-Way Time (�secs) 180 170

Wire Time (�secs) 57 57

CPU Time (�secs) 123 113

Fixed Cost (�secs) 37 32

Var. Cost (�secs/KB) 25 25

SPECInt92 Rating 98.2 98.2

Fixed Cost (instr.) 3615 3124

Var. Cost (instr./KB) 2484 2484

Latencies are from the Figure 9 graph in von Eicken et. al. [56]; the numbers we

use are \best guesses" for some data points on this graph.

Figure A-7. Reported Latencies: User-Level Messaging

We now consider FUTURE system CPU costs. Figure A-7 shows our back-

of-the-envelope calculations for TCP and UDP latencies over a prototype user-level

messaging system [56] called UNet. Note that the measured latencies have dropped

dramatically from those in Figure A-6. The variable cost for both cases is only 25

�secs per KB. The �xed cost is 32{37 �secs. Since a faster machine was used, when

we convert to instructions using the Sparc-20's SPECInt92 rating, the improvement

in terms of instructions is still good, but less dramatic.

For the present-day CPU costs that we computed using the Maeda/Bershad study,

an Ethernet was used and at most one packet was sent per message. In contrast, for

these future CPU costs, an ATM packet size that holds 48 data bytes was used; there

was clearly overlap between computation and \wire time." Thus, our computed costs

are probably under-estimates of the actual CPU costs associated with U-Net messag-

ing. Nevertheless, we decided to use these numbers; perhaps this moves us \further"

into the future than the current U-Net implementation. Since U-Net was built with

159

existing hardware, even better performance should be possible in the future. Starting

with the numbers in Figure A-7, we \round down" to obtain 3000 instructions �xed

cost and 2 instructions/byte variable cost (2048 instructions/KB) for our FUTURE

system.

In contrast to the CURRENT system, where our goal was to accurately model

present-day costs based on measurements of existing operating systems, we can only

guess at future costs; the von Eicken results simply act as a guide. Since our hope

was that we could use the FUTURE system to study the impact of much lower

messaging costs, we push the von Eicken values in this direction. (Note that our

FUTURE server has a MIPS rating that is roughly twice the SPECInt92 rating

from the von Eicken study; thus while we use instruction estimates that are based on

the U-Net results, we end up with lower latencies by simulating a faster processor.)

A.3 Disk Settings

Parameter CURRENT FUTURE

Disk setup cost 5000 instr. 5000 instr.

Slow disk bandwidth 3322 �secs/KB 2580 �secs/KB

Fast disk bandwidth 1288 �secs/KB 990 �secs/KB

Disks per server 4 8

Figure A-8. Disk Parameters

Figure A-8 gives the CURRENT and FUTURE settings for the disk parameters.

All disk accesses are 4 KB accesses, the size of a database page. The CPU cost

charged to the server should re
ect the total cost of setting up a 4 KB disk access.

(Since the simulator does not charge for the interrupt and event scheduling that

occurs when a disk access completes, the setup cost should also re
ect completion-

based costs as well.) We use the same CPU setup cost for our CURRENT and

FUTURE systems: 5000 instructions. (This is the same charge used in [10].) Since

the FUTURE CPU's are 4 times faster, FUTURE disk setup times are 4 times

faster.

A.3.1 Choosing the Disk Bandwidths

We chose the slow and fast bandwidths for the CURRENT system using the char-

acteristics of a Seagate Barracuda, an existing drive in common use. Its average seek

time is 8.75 ms, its rotation time is 8.33 ms, and its average transfer rate for 4 KB

is 0.37 ms. An average 4 KB read should therefore take 13.3 ms (using the average

seek time, half the rotation time, and the average transfer time). We use this random

4 KB access time for our slow bandwidth. Using the units of our disk model, the slow

160

bandwidth is thus 3322 �secs/KB.1

Scheduler % of Total Bandwidth % of Average Seek

Random 7% 100%

Seek Based 17% 37%

+ Rotation Based 25% 23%

Numbers Derived from Seltzer et. al. [50]

Figure A-9. Results of Intelligent Disk Scheduling

For the fast bandwidth, we need to determine the bandwidth one would expect

from the Barracuda if an intelligent scheduling algorithm were used to install the

object updates stored in the modi�ed object bu�er (MOB). In a real system, a MOB

could hold a very large set of object updates. When the MOB grows large enough

to trigger an update installation process, there could be thousands of pages requiring

update; there would be many pages for an intelligent scheduling algorithm to choose

from.

Fortunately, the problem of scheduling disk accesses out of a large pool of possible

choices has already been studied. In Seltzer, Chen, and Ousterhout [50], a detailed

disk simulator is used to compare di�erent scheduling algorithms for scheduling up

to 1000 4 KB disk writes. Three schedulers are compared: a random scheduler, a

scheduler that optimizes seek times but ignores rotational latency (it scans across the

disk in one direction), and a scheduler that takes both seek and rotational latencies

into account (essentially a shortest-time-�rst strategy, modi�ed to also force the disk

arm to move across the disk). The last approach achieves the best throughput, but

requires the scheduler to know more about the disk's performance characteristics.

Figure A-9 reports two metrics for each scheduler: bandwidth achieved, expressed

as a percent of the disk's total bandwidth (the speed that the bits are
ying under

the disk head); and the average seek plus rotation time, expressed as a percent of the

random scheduler's seek plus rotation time. The improvements achieved by the two

intelligent schedulers are impressive, and we believe that similar schedulers could be

used by our server to install updates from the MOB.

Note that unlike the write-only schedulers just described, our scheduler would

need to schedule both a read and a write for some pages; pages with updates in the

MOB are not necessarily in the server cache. Thus, the scheduling algorithms from

the Seltzer study would need to be modi�ed. A simple strategy is possible here: use a

two-step scheduling process where K reads are followed immediately by K+N writes

(the K pages that were just read would be written, plus an additional N nearby

pages that were already cached could be updated). If the schedule for the K reads is

a good one, the schedule for the K+N writes should be as good, and possibly better,

1A separate detailed disk simulator [42] was used to simulate random 4 KB reads for the Bar-

racuda; the average access time was very close to our calculated value.

161

since there may be more operations (for N > 0). There might be an additional seek

between the read and write phase. E.g., a seek-based algorithm could scan in one

direction to do K reads, seek back to the �rst read location, and scan in the same

direction to do K + N writes. The cost of the extra seek would be amortized over

the 2K + N disk operations, and should be negligible. In general, then, we believe

algorithms that are as e�ective as the ones described in Seltzer et. al. are possible

for a database server.

Since the two intelligent algorithms optimize seek time or seek plus rotation time,

the second column in Figure A-9 gives us a scaling factor that we can apply to other

disk drives. (In contrast, the reported bandwidth percentages in the �rst column are

speci�c to the Fujitsu Eagle drive that was used in the study, and cannot be applied

directly to other drives.) We assume an algorithm that does as well as the seek-based

algorithm, achieving 37% of the seek plus rotation time of a random scheduler. Using

numbers from the Barracuda, our fast bandwidth comes out to 1288 �secs/KB, based

on a 5.15 ms 4 KB access time. (The smarter algorithm would give us a bandwidth of

836 �secs/KB. However, the seek-based algorithm is easier to implement, and is not

dependent on the characteristics of a particular disk drive, so it is clearly the better

choice from a practical standpoint.)

The performance of FUTURE disk drives is hard to predict. Ruemmler and

Wilkes [49] note that while rotational speed was stuck at 3600 RPM for many years,

it has been steadily increasing (high performance disks are currently using 7200 RPM)

and should continue to increase at a compound rate of 12% per year. They also note

that linear density is increasing by about 12% per year. Interestingly, they do not

discuss future seek times directly. They do mention that the number of tracks per

inch is increasing at roughly 41% per year (with the improved linear density factored

in, overall density should improve at 60% per year). Thus, the standard disk size

used by most workstations will eventually be smaller than the size used today. This

should reduce seek times; there is less distance to travel, and sti�er disk arms can

be used for smaller disks (allowing for high acceleration). However, \settling" of the

disk head onto the desired track should get harder with more tracks packed into less

space. If we assume that seek times are roughly tied to disk size, and that we will

switch from 3.5 inch disks to 2.5 inch disks, average seek times might drop by around

25%. If this takes two years, the drop in seek times will be 12% per year compounded

| perhaps 12% is a magic number for disks!

Let us assume, then, that a 12% per year improvement applies to linear density,

rotational speed, and average seek time. Starting with the Barracuda numbers, in two

years we can expect a disk that spins at 9032 RPM (6.64 ms rotational latency), has

an average seek time of 6.78 ms, and has an average 4 KB transfer time of 0.225 ms.

As a result, our small bandwidth would be 2580 �secs/KB and our fast bandwidth

would be 990 �secs/KB (again assuming that an intelligent scheduler can reduce seek

plus rotation time to 37% of that achieved by a random scheduler.) We decided to

use these bandwidths for our FUTURE system.

162

A.3.2 Choosing the Disks Per Server

While future disk performance is hard to predict, there is one thing we do know for

certain: disk performance is not improving as fast as CPU or network performance.

Thus, for overall disk bandwidth to \keep pace" with the other system components,

more disk drives (or more disk heads per disk drive) will be required. We expect

future systems will use many more disks per server, thus our FUTURE system has

twice as many disks per server as our CURRENT system. We chose 4 and 8 disks

per server, respectively. Below, we describe how we arrived at the 4 disk setting for

the CURRENT system. (For the FUTURE system, we were more arbitrary; we

simply doubled the number of disks.)

For most system parameters, such as disk and network bandwidth, we looked to

existing technology to choose a CURRENT parameter setting. The number of disks

per server, on the other hand, varies widely from system to system. In fact, system

administrators tend to add disk capacity as necessary, when the current server disks

become a resource bottleneck. As a result, we could choose almost any setting (within

practical bounds) for the number of server disks and claim that this was a reasonable

choice. However, the number of disks used (and the resulting overall disk bandwidth)

is important with respect to a comparative study of concurrency control schemes; it

would be a mistake to simply choose an arbitrary value for this setting.

Instead, it is important to look at the characteristics of the workloads used, and

to choose an aggregate bandwidth that satis�es two conditions. First, the disk band-

width should not be so low that all of the workloads saturate the disks at only a

few clients. This case is clearly uninteresting for a concurrency control study: the

performance of all of the schemes will depend almost entirely on the disk bandwidth;

any performance di�erences between schemes that might have been observed using

a higher disk bandwidth will be \masked," and all concurrency control schemes will

appear to have roughly the same performance. Second, the disk bandwidth should

not be so high that it is impossible for any of our workloads, regardless of setup, to

saturate the disks. At least one of our workloads, the UNIFORM workload, exhibits

very poor locality of reference, causing many fetch requests. Since we expect real ap-

plications will exhibit better locality, and thus will require less overall disk bandwidth,

it is unlikely that systems will be con�gured with enough disks to handle UNIFORM

without at least approaching disk saturation. In other words, our hypothetical system

administrator is not going to purchase twice as many disks as are actually needed to

provide users with the performance that they expect from the system.

Keeping these conditions in mind, we settled on the following approach for choos-

ing the number of disks per server. First, looking at average disk operations per

commit, we chose the HOTCOLD workload as our \mean workload" with respect to

use of the server disk. We then ran some experiments that used all other CURRENT

settings as speci�ed but varied the number of disks per server, and we chose the lowest

disks-per-server setting that did not cause the disk utilization to rise above 90% until

the number of clients reached 20 or more. This approach ensured two things. First,

for HOTCOLD in particular, we know that we will be able to examine both the case

where the disks are not saturated (e.g., in the 1{20 client range) and also the case

163

where the disks are saturated (above 20 clients). Second, since HOTCOLD is our

\median workload," we expect that some of our workloads will not saturate the disks

at all, while some will saturate the disks more quickly than HOTCOLD does. We

�nd this to be the \intuitively correct" setup for our experiments: workloads that use

the server disks frequently should run into disk saturation problems, while workloads

that rarely use the server disks should not.

5 10 15 20

Clients

0

20

40

60

80

100

D
is

k
U

ti
liz

at
io

n

20 % Net Object Write
(20 % Cluster Write, 100 % Object Write)
HOTCOLD under AOCC: Current System

Disks=1
Disks=2
Disks=3
Disks=4

Figure A-10. Disk Utilization vs. Number of Server Disks

Figure A-10 shows the average disk utilization when we run HOTCOLD under

the CURRENT system and vary the number of disks from 1 to 4. A 20% net object

write probability was used. We show AOCC disk utilization since in it is higher than

the ACBL utilization. Note that the dotted line shows the 90% disk utilization point:

a 1-disk system reaches this point by 4 clients; a 2-disk system by 10 clients; a 3-disk

system by 16 clients; and a 4-disk system by 20 clients.

For the 4-disk case, we expect that di�erences between AOCC and ACBL can be

observed, if there are any (at least below the 20 client point, where AOCC reaches

90% disk utilization). For the 1-, 2-, and 3-disk cases, on the other hand, we expect

the high disk utilization to \mask" any di�erences between the two schemes. These

expectations prove to be correct. In Figure A-11, we show the throughput results

for AOCC and ACBL for both a 2-disk and 4-disk system; the 2-disk system results

are on the left, while the 4-disk results are on the right. For the 2-disk system,

the two schemes perform almost identically across the entire client range. For the

4-disk system, however, we see that AOCC can outperform ACBL. AOCC is the

better scheme for this workload; given su�cient disk bandwidth, it can run more

transactions per second. However, without su�cient bandwidth, it is constrained to

run the same number of transactions per second as ACBL.

There are two other points we should make using the graphs in Figure A-11. First,

note that once the server disks are saturated, adding clients to the system tends

164

5 10 15 20

Clients

0

20

40

60

80

C
om

m
it

s
/ S

ec
on

d

20 % Net Object Write
(20 % Cluster Write, 100 % Object Write)

HOTCOLD: Current System, 2 Disks

ACBL
AOCC

5 10 15 20

Clients

0

20

40

60

80

C
om

m
it

s
/ S

ec
on

d

20 % Net Object Write
(20 % Cluster Write, 100 % Object Write)

HOTCOLD: Current System, 4 Disks

AOCC
ACBL

Figure A-11. \Masking E�ect" of Disk Saturation

to reduce system throughput. The system cannot perform any more commits per

second once its disks are saturated, and thus adding additional clients simply places

additional load on the server, and causes additional blocking or aborts, thus causing a

net drop in overall performance. (In fact one might like to prevent additional clients

from \entering" the system once the peak performance level has been reached; see

the discussion of adaptive admission control in Chapter 5.) Second, note that both

AOCC and ACBL have much better performance under the 4-disk system. Both

schemes incur long disk delays due to high disk utilization under the 2-disk system.

Thus, there is nothing AOCC-speci�c about our choice of disks-per-server; even if

we were comparing ACBL to another locking scheme, we would still select a 4-disk

system for such a study.

165

166

References

[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. E�cient optimistic concur-

rency control using loosely synchronized clocks. In ACM SIGMOD International

Conference on Management of Data, pages 23{34, San Jose, CA, May 1995.

[2] D. Agrawal, A. J. Bernstein, P. Gupta, and S. Sengupta. Distributed multi-

version optimistic concurrency control with reduced rollback. Distributed Com-

puting, 2(1), 1987.

[3] V. Benzaken and C. Delobel. Enhancing performance in a persistent object store:

Clustering strategies in O2. Technical Report 50-90, Altair, August 1990.

[4] P. Berstein and N. Goodman. Concurrency control in distributed database sys-

tems. ACM Computing Surveys, 13(2):185{222, June 1981.

[5] M. Blumrich, C. Dubnicki, E. W. Felton, and K. Li. Memory-mapped network

interfaces. IEEE Micro, pages 21{28, February 1995.

[6] P. Butterworth, A. Otis, and J. Stein. The Gemstone database management

system. CACM, 34(10), October 1991.

[7] M. Carey, D. DeWitt, C. Kant, and J. Naughton. A status report on the

OO7 OODBMS benchmarking e�ort. In OOPSLA'94: 9th ACM Conference on

Object-Oriented Programming Systems, Languages and Applications, Portland,

OR, October 1994.

[8] M. Carey, D. DeWitt, and J. Naughton. The OO7 benchmark. In ACM SIGMOD

International Conference on Management of Data, pages 12{21, Washington,

DC, May 1993.

[9] M. Carey et al. Shoring up persistent applications. In ACM SIGMOD Interna-

tional Conference on Management of Data, Minneapolis, MN, May 1994.

[10] M. Carey, M. Franklin, and M. Zaharioudakis. Fine-graned sharing in a page

server OODBMS. In ACM SIGMOD International Conference on Management

of Data, pages 359{370, Minneapolis, MN, May 1994.

[11] M. Carey, S. Krishnamurthi, and M. Livny. Load control for locking: The `half-

and-half' approach. In 9th ACM Symposium on Principles of Database Systems,

pages 72{84, Nashville, TN, April 1990.

167

[12] M. Carey and M. Livny. Con
ict detection tradeo�s for replicated data. ACM

TODS, 16(4):703{746, December 1991.

[13] M. Castro, March 1996. Private Communication.

[14] E. Chang and R. Katz. Exploiting inheritance and structure semantics for ef-

fective clustering and bu�ering in an object-oriented DBMS. In ACM SIGMOD

International Conference on Management of Data, pages 348{357, Portland, OR,

June 1989.

[15] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperative caching:

Using remote client memory to improve �le system performance. In 1rst Usenix

Symposium on Operating System Design and Implementation, 1994.

[16] O. Deux et al. The story of O2. IEEE Transactions on Knowledge and Data

Engineering, 2(1):91{108, March 1990.

[17] O. Deux et al. The O2 system. CACM, 34(10), October 1991.

[18] D. DeWitt, P. Futtersack, D. Maier, and F. Velez. A study of three alternative

workstation architectures for object-oriented database systems. In 16th Inter-

national Conference on Very Large Data Bases (VLDB), Brisbane, Australia,

1990.

[19] P. Drew and R. King. The performance and utility of the Cactis implementation

algorithms. In 16th International Conference on Very Large Data Bases (VLDB),

pages 135{147, Brisbane, Australia, 1990.

[20] P. Druschel, L. L. Peterson, and B. S. Davie. Experience with a high-speed

network adaptor: A software perspective. In ACM SIGCOMM Conference on

Applications, Technologies, Architectures, and Protocols for Computer Commu-

nication, pages 2{13, London, England, August 1994.

[21] K. Eswaran, J. Gray, R. Lorie, and I. Traiger. The notion of consistency and

predicate locks in a database system. CACM, 19(11):624{633, November 1976.

[22] M. Feeley, W. Morgan, F. Pighin, A. Karlin, H. Levy, and C. Thekkath. Im-

plementing global memory management in a workstation cluster. In 15th ACM

Symposium on Operating System Principles, 1995.

[23] M. Franklin. Caching and memory management in client-server database sys-

tems. Technical Report (Ph.D.) 1168, Computer Sciences Dept., University of

Wisconsin-Madison, July 1993.

[24] M. Franklin and M. Carey. Client-server caching revisited. In Int'l Workshop on

Distributed Object Management, Edmonton, Canada, August 1992.

[25] M. Franklin, M. Carey, and M. Livny. Global memory management in client-

server DBMS architectures. In 18th International Conference on Very Large

Data Bases (VLDB), 1992.

168

[26] M. Franklin, M. Zwilling, C. Tan, M. Carey, and D. DeWitt. Crash recover in

client-server EXODUS. In ACM SIGMOD International Conference on Man-

agement of Data, San Diego, CA, June 1992.

[27] D. Gerson, May 1989. Private Communication.

[28] S. Ghemawat. The Modi�ed Object Bu�er: a Storage Manamement Technique for

Object-Oriented Databases. PhD thesis, Massachusetts Institute of Technology,

1995.

[29] C. G. Gray and D. R. Cheriton. Leases: An e�cient fault-tolerant mechanism

for distributed �le cache consistency. In 12th ACM Symposium on Operating

System Principles, Litch�eld Park, Arizona, December 3{6 1989.

[30] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Mor-

gan Kaufmann, San Mateo, CA, 1993.

[31] M. Greenwald and D. Cheriton. The synergy between non-blocking synchroniza-

tion and operating system structures. In 2nd Usenix Symposium on Operating

System Design and Implementation, October 1996.

[32] R. Gruber, F. Kaashoek, B. Liskov, and L. Shrira. Disconnected operation in the

thor object-oriented database system. In IEEE Workshop on Mobile Computing

Systems and Applications, Santa Cruz, CA, December 1994.

[33] T. Haerder. Observations on optimistic concurrency control schemes. Informa-

tion Systems, 9(2):111{120, June 1984.

[34] M. P. Herlihy and J. E. B. Moss. Transactional memory: Architectural sup-

port for lock-free data structures. Technical Report DEC/CRL 92/07, Digital

Equipment Corp. Cambridge Research Lab., Cambridge, MA, December 1992.

[35] A. Joshi. Adaptive locking strategies in a multi-node data sharing system. In

17th International Conference on Very Large Data Bases (VLDB), Barcelona,

September 1991.

[36] A. Kemper and D. Kossmann. Dual-bu�er strategies in object bases. In 20th

International Conference on Very Large Data Bases (VLDB), Santiago, Chile,

1994.

[37] W. Kim, J. F. Garza, N. Ballou, and D. Woelk. Architecture of the ORION

next-generation database system. IEEE Transactions on Knowledge and Data

Engineering, 2(1):109{124, March 1990.

[38] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control.

ACM TODS, 6(2):213{226, June 1981.

[39] M. Y. Lai and W. K. Wilkinson. Distributed transaction management in Jasmin.

In 10th International Conference on Very Large Data Bases (VLDB), August

1984.

169

[40] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database

system. CACM, 34(10), October 1991.

[41] G. Lausen. Formal aspects of optimistic concurrency control in a multi-version

database system. Information Systems, 8(4):291{301, 1983.

[42] E. K. Lee. Software and performance issues in the implementation of a RAID

prototype. Technical Report UCB/CSD 90/573, University of California, Berke-

ley, 1990.

[43] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Mahesh-

wari, A. C. Myers, and L. Shrira. Safe and e�cient sharing of persistent objects

in Thor. In ACM SIGMOD International Conference on Management of Data,

pages 318{329, Montreal, Quebec, Canada, June 1996.

[44] C. Maeda and B. N. Bershad. Protocol server decomposition for high-

performance networking. In 14th ACM Symposium on Operating System Prin-

ciples, pages 244{255, Asheville, NC, December 1993.

[45] Objetivity. Inc. objectivity/db documentation vol. 1, 1991.

[46] ONTOS. Inc. ONTOS db 2.2 reference manual, 1992.

[47] J. O'Toole and L. Shrira. Hybrid caching for scalable object systems (think glob-

ally, act locally. In 6th Int'l Workshop on Persistent Object Systems, Tarascon,

France, September 1994.

[48] E. Rahm and A. Thomasian. A new distributed optimistic concurrency control

method and a comparison of its performance with two-phase locking. In 10th

Int'l Conference on Distributed Computing Systems, 1990.

[49] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE

Computer, 27(3):17{28, March 1994.

[50] M. Seltzer, P. Chen, and J. Ousterhout. Disk scheduling revisited. In Winter

Usenix Technical Conference, pages 313{324, Washington, DC, winter 1990.

[51] J. W. Stamos. Static grouping of small objects to enhance performance of a

paged virtual memory. ACM TOCS, 2(2):155{180, May 1984.

[52] V. O. Technology. VERSANT system reference manual, release 1.6, 1991.

[53] C. Thekkath, T. Nguyen, E. Moy, and E. Lazowska. Implementing network proto-

cols at user level. In ACM SIGCOMM Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication, San Francisco, CA,

September 1993.

[54] M. M. Tsangaris and J. F. Naughton. A stochastic approach to clustering. In

ACM SIGMOD International Conference on Management of Data, pages 12{21,

Denver, CO, May 1991.

170

[55] M. M. Tsangaris and J. F. Naughton. On the performance of object cluster-

ing techniques. In ACM SIGMOD International Conference on Management of

Data, pages 144{153, San Diego, CA, June 1992.

[56] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A user-level network

interface for parallel and distributed comuting. In 15th ACM Symposium on

Operating System Principles, Copper Mountain, CO, December 1995.

[57] Y. Wang. Performance Studies of Cache Consistency and Concurrency Control

Algorithms in a Distributed Client/Server Architecture. PhD thesis, University

of California, Berkeley, 1992.

[58] Y. Wang and L. A. Rowe. Cache consistency and concurrency control in a

client/server DBMS architecture. In ACM SIGMOD International Conference

on Management of Data, pages 367{376, Denver, CO, May 1991.

[59] W. Weihl. Distributed version management for read-only actions. IEEE Trans-

actions on Software Engineering, SE-13(1), January 1987.

[60] D. Weinreb, N. Feinberg, D. Gerson, and C. Lamb. An object-oriented database

system to support an integrated programming environment. Database Engineer-

ing, 7(1):85{95, 1988.

[61] K. Wilkinson and M. Neimat. Maintaining consistency of client-cached data. In

16th International Conference on Very Large Data Bases (VLDB), pages 122{

133, Brisbane, Australia, 1990.

171

