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Chapter 1

Introduction

1.1 Demand-based Coscheduling

This thesis describes demand-based coscheduling, a new approach to scheduling par-

allel computations on timeshared multiprogrammed multiprocessors. The approach
is a simple one: under demand-based coscheduling, processes are scheduled simulta-
neously only if they communicate; communication is treated as a demand for coor-
dinated scheduling. The key idea behind demand-based coscheduling is also simple:
processes that do not communicate or communicate only rarely need not be cosched-
uled for e�cient execution.

The main e�ect of uncoordinated scheduling and �ne-grain communication under
timesharing is increased latency. Without coscheduling, a process performing request-
reply communication with a descheduled process will not receive a reply until the
descheduled process is scheduled. We found in our experiments (see Chapter 5) that
under conditions of heavy load, the e�ects on time to completion of the job can

be signi�cant. If the operating system performs some sort of priority boosting that
serves to schedule a process when the message eventually arrives, then it e�ectively
implements a limited form of demand-based coscheduling; latency on the experiments
we performed is typically twenty to forty percent greater than with DCS. If such a

mechanism is not used, as when polling or spinning message receipt is used or the

priority boosting mechanism is disabled, latency can be a hundred times greater than
the latency with a full implementation of demand-based coscheduling.

In order to signi�cantly reduce the number of additional context switches due to
failed attempts to synchronize communicating processes, demand-based coscheduling

requires a locality property of the processes it manages. The property is this: pro-

cesses that have communicated recently will communicate again within a timeslice.
Here an analogy may be drawn with demand paging. Just as e�cient use of demand-
based coscheduling requires that communications be clustered into times when the

process is scheduled, under demand paging, in order to reduce the number of page

faults su�ered by a process referencing a page, the page must be referenced more than
once before being ejected from main memory.

We say that demand-based coscheduling is a dynamic approach to scheduling,
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not because it di�ers from static schedules of the sort that might be drawn for mul-

tithreaded computations running on dedicated hardware | such static approaches

are not useful for general interactive applications and so we do not consider them

further | but because it coschedules processes that are currently communicating

or have done so recently and thus are expected to do so again in the near future.

Because demand-based coscheduling uses more information than does Ousterhout's

form of coscheduling [18], it can reduce the di�culty of the scheduling problem and

exploit opportunities for coscheduling that traditional coscheduling cannot. Because

it does not rely on a particular programming technique, such as task-queue-based

multithreading, demand-based coscheduling is applicable in domains where process

control [24] is not.

Demand-based coscheduling is intended for scheduling timeshared loads of parallel

jobs or mixed loads of parallel and serial jobs. While our implementation runs only on

workstation clusters, we expect forms of demand-based coscheduling to be useful on
a variety of platforms: large message-passing multiprocessors, message-passing- and

shared-memory-based departmental servers, desktop shared-memory multiprocessors
with a low degree of parallelism, as well as workstation clusters. We concentrate in
this thesis on one kind of demand-based coscheduling, dynamic coscheduling, which
is intended for message-passing processors. However, we describe in Appendix A a
scheme that might be used to implement demand-based coscheduling on a shared-

memory processor.

1.2 The Problem of Timesharing Multiprocessors

To date, parallel computers have been used mostly for the solution of scienti�c and en-
gineering problems, as dedicated platforms for transaction processing, and as testbeds
for research in parallel computation.

In these problem domains, the problem of scheduling parallel jobs is simpli�ed.
Batch scheduling may be appropriate if the problems are large and the I/O and
synchronization blocking rates are low. If the I/O and synchronization blocking rates

are low and the multiprocessor has a larger number of nodes than are demanded by the
problems, simple space partitioning and a batch queue may be the best choice. Such

job-scheduling policies are particularly appropriate for very expensive computers,

where economics will dictate careful planning of the job load, and users should be
encouraged to perform their debugging o�-line, under emulation if possible.

1.2.1 Problems with batch processing and space partitioning

However, as multiprocessors continue to follow the course set by uniprocessors over the
past forty years, they have begun to move out of laboratories and computing centers

and into o�ces. Already multiprocessors with relatively small numbers of nodes (4 {

16) have become popular as departmental servers, and we have begun to see desktop

machines with two and four nodes. In business environments, these machines do not
typically run explicitly parallel jobs, although we can expect that explicitly parallel
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computation-intensive jobs will appear once the platforms have become su�ciently

popular. Instead, they are purchased because the typical departmental server and

many desktop machines run large numbers of processes, and some of the processes

are su�ciently compute-intensive that sharing the memory, disk and display resources

of the machine is the most economical solution.

In these o�ce environments, with mixed loads of client/server jobs, serial jobs,

and (in the future) parallel jobs, the scheduling problem becomes more complex.

Batch scheduling is inappropriate, because response times must be low. Simple space-

partitioning will not be su�cient in such an environment, because the number of

processes will be high compared to the number of processors. Furthermore, it can be

di�cult to know in advance how many processes a job will require or which processes

will communicate with other processes | in an interactive environment, these might

depend on user input.

1.2.2 Independent timesharing results in poor performance

Crovella et al. have presented results in [5] that show that independent timesharing
without regard for synchronization produced signi�cantly greater slowdowns than
coscheduling, in some cases a factor of two worse in total runtime of applications.1

Chandra et al. have reported similar results in [4]: in some cases independent time-

sharing is as much as 40% slower than coscheduling. In [7], Feitelson and Rudolph
compared the performance of gang scheduling using busy-waiting synchronization
to that of independent (uncoordinated) timesharing using blocking synchronization.
They found that for applications with �ne-grain synchronization, performance could
degrade severely under uncoordinated timesharing as compared to gang scheduling.

In an example where processes synchronized about every 160�sec on a NUMA mul-
tiprocessor with 4-MIPS processing nodes, applications took roughly twice as long to
execute under uncoordinated scheduling as they did under gang scheduling.

In general, the results cited above agree with the claims advanced by Ouster-
hout in [18]: under independent timesharing, multiprogrammed parallel job loads

will su�er large numbers of context switches, with attendant overhead due to cache
and TLB reloads. The extra context switches result from attempts to synchronize

with descheduled processes resulting in blocking. As Gupta et al. have shown in

[10], the use of non-blocking (spinning) synchronization primitives will result in even
worse performance under moderate multiprogrammed loads, because, while the extra

context switches are avoided, the spinning time is large.
Although the literature to date has described experiments with relatively small

numbers of jobs timesharing a multiprocessor, we may expect (and know, from expe-
rience) that departmental servers in practice will be heavily loaded for some portion

of their lifetime. The reason is a simple economic one: a system that is not heav-
ily loaded is not fully utilized; an underutilized system is a waste of resources. We

1Crovella et al. found that hardware partitions gave the best performance in their experiments,

but, as we have discussed above, these are not feasible when one has a large number of jobs to run

on a small number of processors.
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may expect that more heavily loaded systems will su�er even higher synchronization

blocking rates under independent timesharing, and commensurately higher context

switching overhead.

1.3 Goals

Ousterhout compared parallel scheduling and virtual memory systems in [18]. He

suggested that coscheduling is necessary on timeshared multiprocessors running par-

allel jobs in order to avoid a kind of process thrashing that is analogous to virtual

memory thrashing. This kind of process thrashing arises because each process can

run for only a short period before blocking on an attempt to synchronize with an-

other process that is not currently scheduled; the result is greatly increased numbers

of context switches.
Later work has shown that the context switches themselves can be expensive

due to the cache reloads they entail; also the overhead of spinning while awaiting a
message can consume a large amount of CPU time [23]. In the present work, we shall
see that in an environment with serial jobs running in competition with a parallel
job, a parallel job using �ne-grain communication can su�er greatly increased time
to completion unless some means of coscheduling is used | at the very least, the

operating system must perform some priority-boosting to increase the probability
that processes will be scheduled when they have blocked awaiting message arrival. In
our own experiments, we have seen this increased time to completion of the job show
up as CPU time spent spinning, in the case of spinning message receipt; and as time
spent blocked awaiting message arrival, in the case of spin-block message receipt.

If coscheduling is necessary, how is it to be provided? To motivate our approach,
we return to Ousterhout's analogy of parallel scheduling to virtual memory, but rather
than building a mechanism that resembles swapping, as traditional coscheduling does,
we seek to produce a mechanism that resembles demand paging. To take the analogy
somewhat further, our goals are to produce a scheduler that is non-intrusive in the
same way that demand paging is non-intrusive: we do not want to impose on the

programmer a particular programming model. For example, while demand-based
coscheduling could be compatible with a task-queue-based multithreaded approach

like process control [24], we do not want to require that all parallel applications be

coded in a multithreaded fashion in order not to su�er excessive context-switching.
Again as with demand paging, we want an approach that is 
exible: we wish

to free the programmer and the compiler writer from consideration of exactly how
many processors are present on the target machine, in the same way that demand

paging frees the programmer and the compiler writer from considering exactly how
much physical memory is present on the target machine. This is as distinct from

traditional coscheduling [18], in which there is no clear means for scheduling jobs

with more processes than there are nodes on the multiprocessor.

Finally, we want an approach that is dynamic, and can adapt to changing con-

ditions of load and communication between processes. For example, we expect that
client/server applications will be particularly important on multiprocessor systems.
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In such applications, it may not be known ahead of time which client processes will

communicate with which servers, but if the rate of communication is su�ciently high,

coscheduling will be important. Examples might include SQL front ends communicat-

ing with a parallel database engine, or window system clients and servers, or di�erent

modules in a microkernel operating system running on a multiprocessor.

1.4 Demand-based Coscheduling

Demand-based coscheduling should meet the goals described above: it is by its nature

non-intrusive, as it accomplishes coscheduling simply by monitoring communication.

The programmer should not even need to identify the processes that constitute a

parallel job. We expect demand-based coscheduling implementations to be 
exible,

in that they only need to coschedule communicating processes, and thus if commu-
nication is not all-to-all, they simplify the scheduling problem, possibly allowing a

job with more processes than there are nodes on the machine to run e�ciently. And
�nally, we expect demand-based coscheduling to quickly adapt to changing loads:
because the algorithms we will describe have very little state, if they work at all for
a set of loads, they should adapt quickly to changes between them.

In following chapters, we will often draw an analogy between demand-based co-

scheduling and demand paging. In this analogy, if process A makes a request of
process B, we may think of process B as a page that process A accesses. If process
B is currently scheduled, it is as though the page were resident in main memory; but
if process B is descheduled, it is as though the page were on backing store.

The analogy is not exact, because in modern systems the time to schedule a

descheduled process is very small, at most hundreds of microseconds even when cache
reloads are taken into account, by comparison with about ten milliseconds for fetching
a page from backing store. What is more, in demand-based coscheduling, because
the intention is to coordinate scheduling, we do not immediately block the process
sending the message, whereas in demand paging it would be desirable to do so in
order to utilize the CPU during the very long disk access time.

Inexact though it may be, however, the analogy preserves much of the intuition
behind demand-based coscheduling: it is a low-level mechanism that attempts to

reduce the expense of an operation by exploiting locality of reference.

In what follows, we will concentrate on a particular form of demand-based cosche-
duling called dynamic coscheduling. Our analytical model and simulations will show

that under some circumstances dynamic coscheduling can cause strong coscheduling
behavior in a message-passing processor. They will also point up potential problems

with the simplest form of this idea and allow us to explore means of surmounting these
problems. Our implementation and experiments clarify some of the issues underlying

communication and scheduling, and show that dynamic coscheduling can signi�cantly

improve performance for a parallel application running on a timeshared workstation

cluster.
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1.5 Terminology

We use the word job to describe a distinct application running on a computer. The

application may be a single serial process that does not communicate with any other

control thread but the kernel; or it may be a multithreaded application consisting

of separate processes sharing a single address space; it could be a single-program,

multiple-data application communicating with message-passing; or it could even be a

client/server application consisting of one or more server processes and one or more

client processes communicating with each other. The important point is that a job is

a logically distinct application consisting of one or more processes that communicate.

We use the word process to mean the state of a serially executed program with an

address space (possibly wholly or partly shared with other processes) and a process

control block. A process may be executed on one processing node of a multiprocessor

at a time.

In order to hide the latency of certain operations or to allow more clear expression
of natural parallelism, a process may have one or more threads of control; these have
separate stacks and register states, but share the address space of the process and some
parts of its process control block. Depending on the threads implementation, they
may be dispatched by the kernel or by a user scheduler, or some combination thereof.

Demand-based coscheduling does not require multithreading, but may enhance the
performance of multithreaded applications.

1.6 Overview

The remainder of this thesis is structured as follows: in Chapter 2 we present related
work.

In Chapter 3 we present dynamic coscheduling, the particular kind of demand-
based coscheduling that we implemented, and some results of modeling and simu-
lation. We used a simple analytical model, and a slightly more complex simulation

to investigate the feasibility of dynamic coscheduling. Our results led us to the con-
clusion that dynamic coscheduling could provide strong coscheduling behavior when

processes communicate often. The rate of communication caused the degree of co-

scheduling to vary, so that when processes communicated very rarely, almost no
coscheduling resulted from dynamic coscheduling. We attempted in our model and

simulations to make weak assumptions; we nonetheless found that the region in which
coscheduling happened was a useful one for �ne-grain parallel processes.

In Chapter 4 we describe our prototype implementation of dynamic coscheduling
on a workstation cluster. Because of the limitations of the current version of the

messaging layer we used, Illinois Fast Messages, the prototype did not allow us to

experiment with more than one parallel job. Thus in all of our experiments we ran a

single parallel job under timesharing in competition with serial jobs. Although we be-

lieve based on the results of our analytical modeling and simulation that these results
will extend to multiple parallel jobs, this was nonetheless a serious limitation, because

we did not have the opportunity to con�rm this experimentally and because we were

16



unable to exercise some mechanisms with which we wished to experiment. Another

limitation of our implementation was the need to work with a Unix priority-decay

scheduler, which entangles in a single parameter, process priority, both execution or-

der and CPU share. Because coscheduling requires changing execution order while

still maintaining fairness, this con
ation in Unix priority-decay schedulers was prob-

lematic for us. Our compromise was to use a fairness mechanism that required some

tuning. Despite these limitations, however, our implementation was su�cient for us

to �nd some very useful experimental results.

Our experiments and experimental results are described in Chapter 5. We found

that dynamic coscheduling does indeed result in coordinated scheduling of a paral-

lel process across the nodes of a timeshared workstation cluster. The performance

for �ne-grained programs using spin-block message receipt is close to ideal. With

spinning message receipt, the performance is much better than under the unmodi�ed

scheduler, but an e�ciency/fairness tradeo� emerges | if fairness is maintained, ef-
�ciency su�ers; small decreases in fairness lead to large improvements in e�ciency.

We also con�rmed that dynamic coscheduling works better for �ne-grained programs
than for coarse-grained programs, as we had found through modeling and simulation
in Chapter 3. We conclude that dynamic coscheduling improves performance su�-
ciently to make it worthwhile to implement; but performance is not ideal in all cases
and further research on methods of improving it is necessary.

In Chapter 6 we draw conclusions and describe directions for future work. The
conclusions we have already reviewed here, in describing the contents of the individual
chapters. Our description of directions for future work concentrates on improvements
over our current prototype that could be realized in a future implementation and on
exploring other kinds of demand-based coscheduling. In the case of our implementa-

tion of dynamic coscheduling, we would like to build an implementation that allows
us to experiment with multiple parallel jobs, and we would like to �nd a more 
exible
mechanism for ensuring fairness. The utility and practicability of a demand-based
coscheduler for shared-memory multiprocessors is an area that would also be interest-
ing to explore; a scheme for implementing demand-based coscheduling on a bus-based

shared-memory multiprocessor is sketched in Appendix A.
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Chapter 2

Related Work

We saw in the previous chapter that some form of coscheduling in necessary for good
performance on multiprogrammed multiprocessors. We now review some of the other
work in the �eld.

2.1 Traditional Coscheduling

Ousterhout's pioneering scheduler is described in [18]. Under this traditional form of
coscheduling, the processes constituting a parallel job are scheduled simultaneously
across as many of the nodes of a multiprocessor as they require. Some fragmentation

may result from attempts to pack jobs into the schedule; in this case, and also in the
case of blocking due to synchronization or I/O, alternate jobs are selected and run.

Relatively good performance has been reported for competent implementations of
traditional coscheduling. Gupta et al. report in [10] that when coscheduling was used
with 25-millisecond timeslices on a simulated system, it achieved 71% utilization,

as compared to 74% for batch scheduling (poorer performance is reported with 10-
millisecond timeslices). Chandra et al. conclude in [4] that coscheduling and process
control achieve similar speedups running on the Stanford DASH distributed-shared-

memory multiprocessor as compared to independent timesharing.
However, traditional coscheduling su�ers from two problems. The �rst is that,

without information about which processes are communicating, it is not clear how

to extend any of Ousterhout's three algorithms to work on jobs where the number of

processes is larger than the number of processors | the best one might do would be
an oblivious round-robin among the processes during a timeslice in which the job was

allocated the entire machine. The second is that the selection of alternate jobs to run,
either when the process allotted a node is not runnable or because of fragmentation,

is not in any way coordinated under Ousterhout's coscheduling.

We may expect the �rst problem to become signi�cant as multiprocessors become
more prevalent. Manufacturers wishing to provide systems of varying expense and

power already vary the number of nodes on the multiprocessors they sell, so that
one may buy bus-based symmetric multiprocessors with as few as two or as many as

six processors from some manufacturers. The application programmer must then be
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concerned with somehow keeping the number of processes that constitute a parallel

application 
exible. This is easy if the application is a multithreaded one using a task

queue. But if the application uses a client/servermodel, or if it consists of independent

processes communicating through message-passing or some smaller amount of shared

memory, the extra heavyweight context switches required in the case of frequent

synchronization will result in considerable overhead.

The second problem is a performance problem. Although the loads examined in

the works we have cited have typically been highly parallel ones, many parallel jobs

have relatively long sections in which many of the processes are blocked. In these

sections alternate processes must be selected to run on the nodes where the blocked

processes reside. Additionally, the internal fragmentation in Ousterhout's most pop-

ular algorithm (the matrix algorithm) results in some nodes not having processes

assigned to them by the algorithm during some timeslices; these nodes will also need

to perform this \alternate selection." Unfortunately, traditional coscheduling presents
no means of coscheduling these alternates. The result is that even in the two-job case

examined by Crovella et al. in [5], when approximately 25% of the cycles in the
multiprocessor were devoted to running alternates, their use decreased the runtime
of the application to which they were devoted only about 1%.

2.2 Distributed Hierarchical Control

Distributed hierarchical control was presented by Feitelson and Rudolph in [8]. The
algorithm logically structures the multiprocessor as a binary tree in which the pro-
cessing nodes are at the leaves and all the children of a tree node are considered a

partition. Jobs are handled by a controller at the level of the smallest partition larger
than the number of processes required by the job. The placement algorithm strives
to balance loads and keep fragmentation low.

Unlike Ousterhout's coscheduling, distributed hierarchical control has a mecha-
nism for the coordinated scheduling of alternates. Suppose K of the nodes allocated
to a job cannot run the job's processes, because these processes are blocked. Then

the placement algorithm will attempt to �nd a job with K or fewer processes to run
on these K nodes.

If a partition holds processes belonging to di�erent parallel jobs, then the parallel

jobs are gang-scheduled within the partition. Distributed hierarchical control thus
strikes a middle ground between space-partitioning and coscheduling. It is particu-

larly attractive for larger multiprocessors, where it removes the bottleneck inherent in
the centrally-controlled traditional coscheduling of Ousterhout. However, distributed

hierarchical control was not designed for smaller machines, such as the desktop ma-
chines and departmental servers we have described, on which we expect that it would

su�er from the same problems as traditional coscheduling.
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2.3 Process Control

Tucker and Gupta suggested in [24] a strategy called process control , which has some

of the characteristics of space partitioning and some of the characteristics of time-

sharing. Under process control, parallel jobs must be written as multithreaded ap-

plications keeping their threads in a task queue. The scheduler divides the number

of processors on the system by the number of parallel jobs to calculate the \number

of available processors." The system dynamically makes known to each parallel ap-

plication the number of available processors, and the application maintains as many

processes as there are available processors. The processes simply dequeue threads

from the application's task queue and run them until they block, at which point

they take another thread. If more parallel jobs exist than there are processors, the

scheduler timeshares processor sets among the parallel jobs.

One advantage of this approach is that when the processes of a parallel job switch

among threads, the switch performed is a low-overhead one that does not cross
address-space boundaries, because the multiple threads of an application share an
address space. Thus fewer heavyweight context switches need be performed. Tucker
and Gupta also cite as an advantage what they call the operating point e�ect | the
fact that many parallel jobs will run more e�ciently on a smaller number of nodes

than on a larger number of nodes, due to the overhead of communication among
larger numbers of processes.

Several published works [4, 10, 23] cite good performance for process control, but
these works also �nd that coscheduling can be modi�ed to have equivalently good
performance.

It will be clear in what follows that demand-based coscheduling is not at all
incompatible with a multithreaded approach; it might even be made to work with
process control. But we �nd process control alone to be insu�cient for the o�ce
environment we have described for two reasons: the requirement that applications
be programmed in a particular way, and the high variability of runtimes of memory-
intensive applications.

We have already discussed the �rst problem, that of intrusiveness, to some extent
above. For many parallel applications, especially data-parallel applications, a multi-

threaded approach is entirely appropriate. But for others, applications composed of

subtasks that perform distinct and logically autonomous functions, the multithreaded
approach may be inappropriate or even impracticable. Examples might include clients

and servers that require high rates of communication, but where for security reasons
the client is not allowed access to all of the server's data.

Thus process control alone is insu�cient as a scheduling approach in the environ-
ment we have described, because in requiring that all parallel applications be coded

in a task-queue multithreaded fashion, it would require that an important abstraction

be given up by the programmer in order to achieve good performance: the abstraction

of a process with its own address space. But processes o�er modularity and security,

and application writers will be loath to give up these qualities in applications where
the process abstraction is the natural one.

The second problem, that of high variability of runtimes for some sorts of processes
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under process control, results from certain parallel jobs requiring more resources than

are available on a single node in order to execute e�ciently. Under process control, the

arrival of new jobs into the system can cause the \number of available processors"

to fall below a critical level at which the performance on some jobs will begin to

deteriorate worse than linearly.

This implies that in fact the jobs in question show superlinear speedup. In fact

this is true in two examples in published works on process control. In [10], the

LU application is found to perform very poorly under process control when run on

three processors, and the authors point out that a drastically increased cache miss

rate is to blame. Similarly, in [4], the Ocean application su�ers a twofold decrease

in e�ciency when run on eight processors as compared to when it is run on sixteen

processors. Some of this decrease in e�ciency is attributed by the authors to data dis-

tribution optimizations being performed in the sixteen-processor case, but not in the

eight-processor case. The implication is that, if the data distribution optimizations
had not been performed in the sixteen-processor case, the Ocean application would

have performed nearly as ine�ciently in the sixteen-processor case as in the eight-
processor case. So far as one can tell from the published work alone, this attribution
of cause may be mistaken, because the same work shows a coscheduling experiment
in which data distribution optimizations were not performed. In this experiment, co-
scheduling among two jobs su�ered only a �ve-percent decrease in e�ciency compared

to the standalone sixteen-processor case with data distribution optimizations | thus
it seems that we can bound above the e�ect of data distribution optimizations by �ve
percent. Because the authors state that Ocean has a larger working set than the other
applications tested, we suspect that the actual cause of the ine�ciency here may be
the larger number of cache misses that result from the application being executed on

a collective cache of half the size as in the sixteen-processor case.
Helmbold and McDowell have documented this sort of \superunitary speedup

due to increasing cache size" in [11]. Because of this property of certain parallel
applications, their ideal \operating point" is larger than one | possibly considerably
larger than one. Thus forcing them to run on fewer processors will be very ine�cient.

This is not a problem under coscheduling, because under coscheduling the arrival of

new jobs does not cause fewer processors to be devoted to the execution of a parallel
job.

We believe that the phenomenon of increasing ine�ciency with higher loads under

process control may be an important problem in practice. This is because software

tends to perform near the memory boundaries available on most users' processors.

The reason for this pressure is simply economic: purchasers of computer hardware

will tend to buy as little memory as possible while still maintaining satisfactory
performance on applications; to purchase more would be wasteful. Purveyors of

software tend to use more memory to add new features to their applications in order
to gain competitive advantage. Programming so as to conserve memory requires

more e�ort and thus costs more, and will be done only insofar as is necessary to keep

customers happy.
This pushing at the boundaries of available memory will probably mean that

many commercial applications will show superlinear speedup. If process control as it
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is described in [24] were used as the only means of timesharing a multiprocessor, we

would expect that such applications would show poor performance when the job load

was high.

2.4 Runtime Activity Working Set Identi�cation

Feitelson and Rudolph describe in [9] an algorithm called \runtime activity working

set identi�cation" for scheduling parallel programs on a timeshared multiprocessor

(we shall call this algorithm RAWSI, for brevity's sake). While demand-based co-

scheduling was developed independently from RAWSI,1 the two have signi�cant simi-

larities: in both approaches, runtime mechanisms are used to identify communicating

processes so that they can be coscheduled. However, RAWSI di�ers signi�cantly from

both dynamic coscheduling (described in Chapter 3 and [21]) and predictive cosche-
duling (described in Appendix A), the two approaches to demand-based coscheduling

we present here.
One major di�erence between RAWSI in a message-passing system and dynamic

coscheduling is that RAWSI does not make the decision of what process to sched-
ule immediately upon receiving a message. Instead, RAWSI uses the sending and
receiving of messages as a means of identifying to the system the rate of communi-

cation between processes, and then uses this information to determine whether to
coschedule them. Another di�erence is that RAWSI is more similar to Ousterhout's
original matrix coscheduling algorithm in that processes are assigned to nodes and
multi-context-switching is used: that is, the assumption is that it is possible to e�ect
simultaneous context-switches across the processing nodes. This requires closer coor-

dination than dynamic coscheduling, in which scheduling decisions are made by each
node entirely independently of other nodes, and process placement is not part of the
scheduling algorithm; this is because dynamic coscheduling was originally conceived
for use in networks of workstations, where close coordination may be di�cult and
the assignment of processes to processors or their migration may be impossible or
inappropriate.

The most signi�cant di�erence between RAWSI in a shared-memory system and
predictive coscheduling is that, rather than using virtual memory system information

to automatically detect the sharing of information, RAWSI relies on the identi�ca-

tion by the programmer of distinguished data structures, or communication objects,
which are shared between processes. The compiler then inserts with every read or

write of these structures code that makes known to the system the fact that commu-
nication has taken place. Thus RAWSI on a shared-memory multiprocessor will be

more intrusive than predictive coscheduling, because it will require the use of par-
ticular compilers and the advance identi�cation by the programmer of shared data

structures. Also, we believe that use of virtual memory system structures as described

in Appendix A will be less expensive than the execution of instruction sequences to

record accesses to shared data structures.

1A description of dynamic coscheduling was �rst published in [21].
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2.5 Implicit Scheduling

Implicit scheduling is the name given by Dusseau et al.[6] to their algorithms for

adaptively modifying the spin times in spin-block message receipt to achieve good

performance on \bulk-synchronous" applications (those which perform regular barri-

ers, possibly with other communication taking place in between barriers).2 This work

has some bearing on our own, because of the similarity of problems and experimen-

tal platforms, and so we will treat it here at some length and revisit it in sections

describing our experimental results.

The experiments described in [6] were performed used the Solaris 2.4 scheduler

code in a simulation of 32 workstations running 3 parallel jobs, each having one

process residing on each of the 32 workstations.

The workloads were SPMD, consisting of loops of four phases each: in the �rst

phase, a variable amount of computation was performed; then, second, an \open-

ing" barrier synchronization was performed; third, some optional communication in
the form of request-reply exchanges was performed; and, fourth, a closing barrier
synchronization was performed.

Message receipt was by the popular spin-block mechanism described in [18], [10],
and others. Dusseau et al. found that performance with �xed-spin-time spin-block

messaging was quite good under the Solaris 2.4 scheduler when �xed spin times on the
order of a context switch were used. Spin times of two context-switch times performed
better; and varying the spin time using an adaptive algorithm that attempted to
measure the variation of the length of the computation phase worked best.

Performance was evaluated by comparing workload completion times of the entire

workload to completion times under an idealized gang scheduler that used spinning
message receipt and 500-millisecond timeslices.3 Results are presented for workloads
consisting of jobs with the same computational granularity. The conclusion of the
paper reports, however, that more coarse-grain jobs are favored by the scheduler over
more �ne-grain jobs, and that fairness can be a problem.

The contribution of this paper that has the greatest relevance to our own work is

its presentation of experimental data that show the surprisingly strong performance of
spin-block message receipt under the Solaris 2.4 scheduler. The paper correctly states

that the priority-boosting mechanism of the Solaris 2.4 scheduler is responsible (as we

con�rm experimentally in Section 5.4.1), but provides an account of this that states

2There is some ambiguity in [6] about whether the term \implicit scheduling" is also intended to

cover all approaches for achieving coordinated scheduling in a network of workstations by making

local decisions based on information about communication; but because so broad a description would

also cover demand-based coscheduling, described here and in [22], we will use the term \implicit

scheduling" to describe only the combination of spin-block message receipt with the algorithm for

adaptively determining spin times described in [6].
3Given the variable amount of computation that was performed in each cycle of these processes,

it seems possible that the use of spinning message receipt was not the most optimistic choice for the

idealized gang scheduler. Ousterhout suggested spin-block message receipt in [18] for cases where

the workload included jobs with very coarse-grain computation, because alternates might be able to

perform additional computation before blocking for message receipt.
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that the priority-boosting happens whenever a process is returned from a sleep queue

to a run queue. This is incorrect; we examine these issues further in Section 5.4.1.

A later section in [6] describes an experiment with a \round-robin" scheduler

(simulating only one run queue for the Solaris 2.4 scheduler rather than the normal

sixty),4 which found very poor performance for spin-block message receipt. This was

attributed to the absence of priorities in round-robin schedulers, which is an overly

narrow statement. The important issue in achieving coscheduling with independent

schedulers is the ability to run a process when a message arrives. We repeat the

experiment in our own work (see Section 5.4.1), and by using dynamic coscheduling

show that the use of priorities is not necessary to achieve coordinated scheduling

even with a single-queue scheduler; all that is necessary is that the scheduler run the

process when the message arrives.

4The modi�ed scheduler is not a strict round-robin scheduler, because when a process returns

from a sleep queue to a run queue in Solaris 2.4, it is always placed at the end of the run queue (even

if it has received a priority boost), and so execution order is varied even with a single run queue.
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Chapter 3

Dynamic Coscheduling

In this chapter we describe dynamic coscheduling, the demand-based coscheduling
algorithm we implemented [21, 22]. Dynamic coscheduling is well suited to imple-
mentation on message-passing processors, because it uses the arrival of a message as
a means of signalling the scheduler that the process to which the message is addressed
should be scheduled immediately.

Clearly, dynamic coscheduling is straightforward to implement; an arriving mes-
sage not addressed to the currently running process can trigger an interrupt on the
network interface device.1 Alternatively, if protection is not an important issue and
the network interface is manipulated directly in user mode, the detection of an arriv-
ing message not addressed to the currently running process can be performed by a

library routine which can execute a system call in the case when a scheduling decision
must be made.

Dynamic coscheduling should also work on many distributed-shared-memory mul-
tiprocessors. In a cache-coherence scheme such as the software schemes presented by
Chaiken et al. in [3], cache line invalidations can be treated in the same fashion as

arriving messages. We can do even better on systems with network interface proces-
sors, such as FLASH [15] or Typhoon [20]. In these systems, some of the scheduler
state can be cached in the interface processor, so that the scheduling decision can

be made without consulting the computation processor. The computation processor
could be interrupted only when a preemption was needed. In this case the number of

exceptions could be kept to the minimum necessary.
It is more di�cult to envision applying this scheme to a shared-memory multipro-

cessor with hardware-only cache-coherence protocols; for such processors predictive
coscheduling will be more appropriate.

We now develop a dynamic coscheduling algorithm by taking the simplest possible
implementation of this idea and successively modifying it to achieve fair scheduling

while maintaining good coscheduling.

1Of course, with current operating systems, arriving messages should not trigger interrupts if

the process to which they are addressed is currently running | the overhead incurred would be too

great. Instead, the messaging layer can poll for messages.

25



3.1 The \always-schedule" dynamic coscheduling

algorithm

The �rst version of the dynamic coscheduling algorithm is the simplest possible one,

in which the job for which the arriving message was destined is always immedi-

ately scheduled. We have modeled this case analytically with a Markov process for

two symmetric jobs of N processes running on N nodes, using the weak assump-

tions that messages are uniformly addressed, that the processes generating them are

memoryless, and that the run-time of processes before they block spontaneously is

exponentially distributed. We call the assumptions \weak" because we expect that

real processes exhibit greater regularity that would in fact improve the performance

of such a scheduler.

The two-job Markov process is a skip-free birth-death process, and a closed-form

solution for the steady-state probabilities is possible. The multiprocessor has N

nodes. The states of the process are de�ned as follows: in state i, N � i nodes are
running the �rst job and i are running the second job. If we call the jobs A and B,
in our model we make use of the quantities qSA and qSB, the rates of spontaneous
context switching of processes for jobs A and B. The spontaneous switching rate

is intended to capture at once the notion of timeslice expiration and blocking due
to I/O or synchronization requirements. A node running a process will switch from
running it to the next resident process at this rate. We also use the quantities qMA

and qMB, the rates of message-sending for processes of jobs A and B | these are the
rates at which the running processes generate uniformly-addressed messages to other
processes that make up their jobs.

The Markov process is shown in Figure 3-1. In summary, state 0 is the state in
which all the nodes are running job A and no nodes are running job B. In state N ,
all the nodes are running job B and no nodes are running job A. In state N=2, half
of the nodes are running each job.

The steady-state probabilities are then given by

pk = p0

k�1Y

i=0

(N � i)qSB + iN�i
N
qMB

(i+ 1)qSA + (N � i� 1) (i+1)
N

qMA

(3.1)

where

p0 =
1

1 +
PN
k=1

Qk�1
i=0

(N�i)qSB+i
N�i

N
qMB

(i+1)qSA+(N�i�1)
(i+1)
N

qMA

(3.2)

Results for this case are shown in Figure 3-2. Here we have taken N = 64,
qSA = qSB = QS and qMA = qMB = QM . The vertical axis is steady-state probability.

The deep axis is log10(Qs=Qm). The horizontal axis along the front gives state number.

Towards the front of the graph, we see that the probabilities of being in the states
where all the nodes are running one job or the other are high, and the probabilities

of being in states where some nodes are running one job and some running the other

are low. We see then that the ratio of the rate of sending messages to the rate of
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Figure 3-1: A Markov process whose states represent the degree of coscheduling on
a N -processor system running two jobs, under the always-schedule dynamic cosche-

duling algorithm. See the text for further details.
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Figure 3-2: Steady-state probabilities found using a Markov model to calculate dy-
namic coscheduling performance on a 64-processor system running two jobs. See the
text for further details.

spontaneous switching of processes determines the steady-state probability that all
processors in the modeled system are running a single job. We found that if several
hundred or more messages are sent on average between the spontaneous context
switches, then the steady-state probability that either all processors are running one

job or all processors are running the other job is about one-half. If fewer messages
are sent between spontaneous context switches, then a binomial behavior begins to
emerge, so that when only one message is being sent on average between spontaneous
context switches, about half of the processors are running one job, and half running
another. It is to be noted, though, that when very few messages are being sent,

coscheduling is unlikely to be important.
It is encouraging that with such a simple rule, we �nd strong coscheduling behavior

under such weak assumptions. Unfortunately, this coscheduling algorithm has a fatal


aw. The 
aw is that it is completely unfair, tending to very strongly favor jobs that
send a lot of messages. Also, even if message-sending rates are equal, this algorithm

may take a very long time to switch out of a state in which most processors are
running one job, although this dynamic behavior of the algorithm cannot be seen

from the steady-state probabilities alone.
Figure 3-3 illustrates the unfairness of this algorithm, showing the steady-state

probabilities for the case where qSA = qSB = 0:005 but qMA = 0:49 and qMB = 0:5. It
can be seen that, despite the fact that the message-sending rates are very close, job

A achieves full coscheduling only about 2% of the time whereas job B achieves full

coscheduling about three times as often.
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Figure 3-3: Steady-state probabilities in the case where message-sending rates di�er

very slightly { see the text for further details.

3.2 The \equalizing" dynamic coscheduling algo-

rithm

We modi�ed the \always-schedule" dynamic coscheduling algorithm to require that
runnable processes receive equal shares of the CPU, within some constant di�erence.
We called this policy \run-time equalization." Because it was more di�cult to an-
alytically model the new algorithm, we wrote a discrete event simulator for it, and
ran experiments in which we modeled a 64-node multiprocessor running for 100,000

scheduler cycles.
We maintain for each process i a quantity ri, the number of scheduler cycles for

which it has run since the process that most recently joined the scheduler run queue
started running. We de�ne a global quantity h, which can be modi�ed to a�ect the
\volatility" of scheduling: a larger value of h causes the scheduler to take longer to

switch due to arriving messages.

Run-time equalization works as follows: when a message destined for process j
arrives at its node, which is running process i, i 6= j, we switch to process j if and
only if rj + h < ri, that is, if and only if process j lags process i by more than h

scheduler cycles. This de�nition of h means that if the system is run for no more

than H scheduler cycles, and h = �H, the \equalizing" algorithm will always behave
the same as the \always-schedule" algorithm. This is because rj cannot be greater

than H if the system is run for no more than H cycles, and so necessarily rj + h � 0,
and in this scenario process i has run for at least 1 scheduling cycle. With this very

negative value of h, then, the scheduler will always context-switch due to arriving
messages.

On the other hand, if h = H and the system is run for no more than H cycles, a

process i will never accumulate more than H scheduling cycles, and it will always be
the case that rj + h � ri (until possibly the Hth cycle, when the experiment ends).

Thus with this large positive value of h, the scheduler will never context-switch due
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Figure 3-4: Degree of coscheduling in the case where message-sending rates di�er by
a factor of two, but equalization is used. The vertical axis approximates steady-state
probability { the scale is the number of iterations out of 100,000 in which the process
was found in the indicated state.

to arriving messages.
We found that, for values of h near �1; 000, reasonably fair performance was

attained over the running of an experiment; however, little coscheduling was achieved.

The results for the more radical case of message-sending rates of :25 and :5 may be
seen in Figure 3-4.

Our intuition about the failure to coschedule under simple equalization is that, by
disregarding more opportunities to coschedule processes, we caused more thrashing.
In general, the higher the value of h, the less coscheduling was achieved. One possible

solution was to further reduce h, but in fact, we already had a mechanism that proved
to work better in practice at recovering strong coscheduling behavior, by ensuring that

the scheduler makes progress from job to job.

3.3 The \epochs and equalization" dynamic co-

scheduling algorithm

Consider a scenario in which about half of the nodes on a multiprocessor are running
one parallel job, and half the other. In our simulation, when a node running parallel

job A spontaneously switches to parallel job B, there is a probability of close to

1=2 that the next message it receives will be destined for a process belonging to job
A, provided that message-sending rates for the two jobs are equal. Thus there is a

substantial probability that the node will switch quickly back to job A without job
B ever having achieved full coscheduling. This probability is greater if switching is

mostly spontaneous.
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Figure 3-5: Degree of coscheduling achieved in the case where message-sending rates
di�er by a factor of two, and both equalization and epochs are used { the vertical axis
approximates steady-state probability, being the number of iterations out of 100,000
in which the simulator was in the indicated state.

Epoch values are used to reduce this sort of thrashing. The epoch value is main-
tained in a counter at each node. The counter is incremented at each spontaneous
context switch. When a node sends a message, the epoch value is included in the

message; when receiving a message, the node considers switching only if the equaliza-
tion criteria are met and the epoch number is higher than its own. If the node does
switch processes, it adopts the higher epoch number as its own.

The result is that nodes \defecting" from a parallel job will not return to the job
due to messages being sent by nodes remaining with the job. Progress must be made

to the new job before the node will consider switching back.
The results for this strategy can be seen in Figure 3-5, and are quite encouraging

| coscheduling behavior is achieved for more than about 300 messages per timeslice,

even given our pessimistic assumptions. As in Figure 3-4, message-sending rates of
:25 and :5 are used, so that we see that unbalanced message-sending rates are still

e�ectively handled by the equalization mechanism and fairness is preserved.
The actual composition of the epoch number in an implementation would be

slightly di�erent than in this simulation. In an actual implementation, because the
number of runnable processes on di�erent nodes in a multiprocessor would typically

di�er, the same epoch number could be reached by two nodes running di�erent pro-
cesses. In order to avoid this possibility, when incrementing the epoch number, we

embed as the least signi�cant bits of the epoch number the unique node number of

the node on which the epoch number is being increased. However, this is the only
occasion on which the node number is embedded in the epoch number | when adopt-

ing an epoch number in an incoming message or when comparing it to a local epoch
number, the epoch number is treated as a whole. The result is that a group of nodes
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running the same job will typically share an epoch number whose least signi�cant

bits are the node number of the �rst node in the group to have switched to the job.

3.4 Discussion of results of simulation and model-

ing

Simulation and modeling showed that a crucial quantity in dynamic coscheduling is

the ratio of the message-passing rate to the rate at which processes spontaneously

block. We will �nd some con�rmation of this in later experiments on a workstation

cluster, where we will see that a job performing repeated barrier synchronizations at

low communication rates does not become so strongly coscheduled as one with higher

communication rates.

We also saw that the simplest form of dynamic coscheduling su�ered from a prob-

lem with fairness | jobs performing more communication could monopolize the pro-
cessing nodes on which they executed. Our imposition of a simple fairness criterion
resulted in additional thrashing | because a processing node would often refuse to
switch to a new process for fairness reasons, the region in which strong coscheduling
behavior emergedmoved further towards high communication rates or long scheduling

quanta.
The addition of epoch numbers to our scheme reduced thrashing behavior, by

reducing the frequency of opportunities for nodes to defect from a group running a
single job. The epoch number scheme assures progress from job to job occurs in an
orderly fashion.

In conclusion, our model and simulations showed dynamic coscheduling to be

promising. Because we had made weak assumptions about communication patterns
and message interarrival times and were still able to cause strong coscheduling behav-
ior at realistic communication rates, we hoped that a real workstation cluster would
perform well under dynamic coscheduling.
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Chapter 4

An Implementation of Dynamic

Coscheduling

We describe in this chapter the version of dynamic coscheduling (DCS) we imple-
mented to run with Illinois Fast Messages, a user-level messaging layer developed at

the University of Illinois at Urbana-Champaign [19].

4.1 Experimental Platform: Illinois Fast Messages

and Myrinet

Illinois Fast Messages is a high-performance messaging layer that uses a user-level
library to provide messaging primitives without the overhead of domain crossing that
would be required by a kernel-resident device driver.

The implementation of Illinois Fast Messages we used ran on a Myrinet network [2]

connecting eight SPARCstation-2 workstations. The Myrinet switch provides a rela-
tively low-latency, high-bandwidth interconnection for workstations. The Myrinet 2.3
interface boards we used had a slow CISC processor operating at the 20 MHz speed

of the SPARCstation's SBUS peripheral bus; however, even with these obsolete work-
stations and slow network interface processors, we achieved user-space to user-space

latencies of 40 �sec with 128-byte messages, and bandwidths of 13 MB/sec.
The SPARCstation-2 processors we used were equipped with 16 MB of main mem-

ory, had 40 MHz processors, and ran the Solaris 2.4 operating system. The Myrinet
interface board memory and control registers are mapped into both kernel and user

space. In FM, the mapping into kernel space enables initialization and control of the

device in response to system calls, but is not used in the common case of sending

and receiving messages. Instead, the mapping into user space allows the user-level

FM library to control the device directly, without kernel intervention. A schematic
diagram showing the memory inclusion is shown in Figure 4-1.

One of our goals in this implementation of DCS was to implement a version that
did not require building a kernel. We hoped to distribute our version of DCS with

FM, and for legal reasons it would not have been possible to distribute a modi�ed

kernel. Thus the functionality, but not the code, of the kernel was modi�ed. We
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Figure 4-1: Address spaces in the FM implementation on Myrinet, running on Sun
SPARC processors.

modi�ed only a loadable device driver that manipulated the Solaris 2.4 scheduler

data structures to cause the scheduler to preempt and run processes as necessary.
One consequence of this approach was that we had to work with the Unix priority
decay scheduler, with the result that fairness had to be achieved through a less direct

mechanism that might have been possible had we been able to use a mechanism that
directly speci�ed the percentages of CPU time allocated to di�erent processes. A
particular disadvantage of the mechanism was that we never automated it, although

we believe it would not have been di�cult to do so; instead we manually modi�ed its

parameters for good performance.

4.1.1 Disadvantages of the experimental platform

At the inception of the project, one disadvantage of FM as a platform for testing
demand-based coscheduling was obvious. The Myrinet implementation of FM did

not allow multiple parallel jobs to be run simultaneously. The reason for this was
the nature of the implementation. Because the Myrinet device's memory was simply

mapped into the user space of the process that was using the device, the most obvious

means of having multiple processes make use of the interface simultaneously (by
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mapping its memory into each user's address space and using mutexes for the bu�ers

and control registers) would have entailed a security risk. It would still have been

possible to run multiple parallel jobs if we had had multiple Myrinet interface cards

for each processor. Unfortunately, resources were limited and this was not possible;

thus we measured the performance of DCS with a single parallel job running with

serial competitors.

As a result, we were unable to test the e�cacy of the epoch number scheme for

avoiding thrashing between multiple parallel jobs.

Another disadvantage of FM became obvious as the project proceeded. FM did

not include any means of implementing spin-block message receipt; a strict polling

model was assumed. As a result, spinning message receipt was used for earlier exper-

iments. This had two negative e�ects. The �rst was that, as other researchers have

reported [23], spinning message receipt results in very poor performance for �ne-grain

programs in a timeshared environment. Thus the Solaris 2.4 scheduler with spinning
message receipt served as implausible competition for DCS. The second was that DCS

itself was conceived and modeled for use with spin-block or blocking message receipt.
We did not know what the e�ects of using DCS with purely spinning message receipt
would be.

Thus we found it necessary to implement spin-block message receipt for FM.
However, as will be seen in the following chapter, DCS with spinning message receipt

performs almost as well as DCS with spin-block message receipt, and both perform
better than the unmodi�ed Solaris 2.4 scheduler.

4.2 Implementation

A diagram of the implementation is given in Figure 4-2. This diagram is simpli�ed,
in that it does not include a description of the spin-block code.

Our implementation of dynamic coscheduling involved modi�cations to three parts
of the system: the device driver for the Myrinet network interface card; the control
program running on the Myrinet network interface processor; and the FM library

invoked by the user process.

4.2.1 Modi�cations to the device driver

The code that actually manipulates the scheduler data structures resides in the device

driver for the Myrinet interface card. This is the code referred to as \DCS policy and

interrupt handler" in Figure 4-2.

Because FM does not allow multiplexing of the network interface, only one process
belonging to a parallel job can be resident on each node in the workstation cluster.
Thus, although in what follows, the phrase \the process that is to receive the message"

can refer to only one process, the process that opened the FM device, we refer to it

as the process that is to receive the message because this would be correct even if FM

allowed multiple parallel processes.
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Figure 4-2: Simpli�ed DCS implementation schematic (spin-block implementation
not shown).

In the normal course of receiving a message on a host that is currently running the
process to which the message is directed, the scheduling code in the device driver is

not invoked at all. However, if the message is received when the setting of a variable in
the network interface processor's memory indicates that the process that is to receive
it is not currently running, the control program running in the Myrinet interface card
will cause an interrupt to be generated. When this happens, the interrupt handler in
the device driver is invoked.

The interrupt handler �rst determines whether in fact the currently running pro-
cess is the one to which the message is directed, because, as will be explained later,
the variable in the network interface processor's memory contains only an approx-
imate value of the process that is currently running on the host. If the currently
running process is the one to which the message is directed, the interrupt routine

simply returns; but if it is another process, then if it would be fair to schedule the

process that is to receive the message, an attempt is made to preempt the currently
running process and immediately run the process that is to receive the message.

Because Solaris 2.4 processes can be multithreaded, the mechanism that attempts

to schedule the process for which the message is intended makes all of the runnable

threads belonging to the process that is to receive the message equally likely to be
scheduled next, because FM messages do not contain any information about precisely

which thread is intended to receive them. If the network interface were multiplexed
among multiple processes, then such information would have to be present in the

messages, and it would be best in multithreaded operating systems like Solaris 2.4 if
it could uniquely identify the particular thread that was to receive the message, as in

that case that thread could be scheduled immediately. The algorithm currently used

is sketched in Figure 4-3.
We attempt to run the process receiving the message by raising its priority to
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In interrupt handler:

if (running_LWP != FM_LWP) {

if (fair to preempt) {

for each kernel thread belonging to FM_LWP {

raise priority to maximum for user mode;

}

preempt currently running thread;

}

}

Figure 4-3: Sketch of the algorithm used in the device driver interrupt handler for

implementation of dynamic coscheduling.

the maximum allowable priority for user-mode timesharing proceses; with the default
Solaris 2.4 dispatcher table, this is 59. It is also placed at the front of the dispatcher
queue for that priority. Then 
ags are set that will cause the Solaris 2.4 scheduler to
run before the interrupt handler returns to the process that was running when the
interrupt occurred. Unless the process that was running when the interrupt occurred
had a higher priority than the maximum allowable priority for user mode, the process

receiving the message will run immediately upon return from the interrupt routine.

Achieving fairness under Solaris 2.4

As mentioned above, under Unix priority-decay scheduling, fairness must be achieved
by a less direct means than the equalization mechanism described in Section 3.2. A
limitation of our prototype was that we never implemented a mechanism to auto-
matically modify the fairness parameters, although we believe it would have been

straightforward to do so; instead we tuned the parameters for good performance on

each of the experiments we ran. The mechanism we used allowed us to reduce the
frequency with which we preempt other processes in favor of the parallel process that
is receiving the arriving message, and, in particular, to reduce it more as the number

of runnable processes in the system increased.

Our mechanism used a predicate for \fair to preempt" that was an inequality:

2E(Tc � Tp) + C � TqR (4.1)

where E; Tc; Tp; C; Tq; and R are de�ned as:

E = Exponent. We chose this value empirically.

Tc = Current time.

Tp = Time of previous priority boost and preemption attempt.
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C = Constant, in milliseconds. We chose this value empirically.

Tq = Length of time quantum { set to 20 msec under Solaris.

R = Number of jobs in the run queue.

The intention here is to limit the frequency of the preemptions to some number

of times for each cycle the scheduler makes through the run queue, assuming that

all jobs on the run queue are running at the highest priority. That is, RTq is the

\length of the run queue in time" if the jobs on the run queue are assumed to run

to the completion of their timeslices before blocking and their timeslices are assumed

to be of duration Tq. Tc � Tp is the time since the last preemption. For example,

an empirically-determined value of 1=2 for 2E would mean that we required that the

time since the last preemption attempt be at least twice the length of the run queue

in time; if this criterion was not met, we would not attempt to schedule the process

that was to receive the message.
This mechanism is crude, but as will be seen in the next chapter, it can typically

be tuned to achieve fairness very close to that achieved by the default Unix priority-
decay scheduler on serial loads. As mentioned above, a less clumsy mechanism for

achieving fairness could be implemented by writing a new scheduler that did not use
the Unix priority-decay mechanism. We also believe that it would be straightforward
to dynamically monitor the recent CPU shares of runnable processes every 1 or 2
seconds and modify the fairness parameters to achieve fairness. Because of time
constraints, we were unable to implement this approach.

Initialization; spin-block implementation

The device driver also contains routines (which can be invoked via the .ioctl in-
terface) to initialize the dynamic scheduling mechanism and set parameters in the

fairness mechanism. Initialization requires writing various variables in the network
interface processor's memory: in particular, the address of the memory location in
which the kernel maintains the address of the current lightweight process, or LWP
(which is what the entities usually called \processes" are called in Solaris 2.4), and

also the address of the LWP that opened the Myrinet network interface device.

The kernel side of spin-block message receipt is implemented by providing an
additional call that can be invoked by the user process to remove the calling process

from the run queue and place it on a sleep queue until a message arrives. The interrupt
routine in the driver is modi�ed to awaken the sleeping process upon message arrival

if it was sleeping; this mechanism works regardless of whether DCS is being used,

because spin-block message receipt must be available without DCS for performance
comparisons.

4.2.2 Modi�cations to the network interface processor con-

trol program

Because the processor that controls theMyrinet network interface is called the \LANai,"

the control program that runs on it is called the \LANai Control Program," or LCP.
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The default FM LCP is very simple: it merely dequeues outgoing messages and sends

them, performing scatter operations as necessary, and gathers incoming packets into

messages and writes them by DMA into the host's memory.

We modi�ed the LCP to periodically read by DMA from the host's kernel memory

the address of the currently running LWP. The value is read once per millisecond;

because of the expense of the operation (tens of microseconds), reading the value on

each message arrival would have imposed unacceptable overhead on message receipt.

As a result of reading the address of the current LWP only periodically, interrupts

will occasionally be issued on message arrival when the currently running process is in

fact the process to which the message was directed. The test at the beginning of the

interrupt handler, described in Section 4.2.1, serves to handle this case. In testing, we

found that this happened very rarely, so that few interrupts were spurious, and the

overhead from these was negligible. Chapter 5 will present information on the number

of interrupts and the number of priority modi�cations in each of the experiments.
The dual of this problem is slightly more complex to handle. In this case, a

message may arrive when the process for which it is intended is no longer scheduled,
but the variable in the LCP has not yet been updated to show this. In this case,
an interrupt would not be generated, although it should be. We handle this case
by checking whether any unqueued messages are in the bu�ers whenever we make
the transition from the state in which the LCP variable holds the address of the

LWP for which the message is intended to the state in which it holds some other
LWP's address. If unqueued messages remain, the LCP generates an interrupt at
this time. In one experiment with a load of two competing processes and �ne-grain
communication, these additional interrupts increased the total number of interrupts
by about 35%; however, we did not attempt to determine how many of these interrupts

succeed in causing rescheduling once the fairness mechanismdescribed in Section 4.2.1
was implemented. Possibly many of them are discarded by the fairness mechanism,
in which case it would perhaps be best to ignore the problem and not generate an
interrupt when the variable makes its transition to the state in which it indicates the
host is no longer running the program to which the message was directed.

4.2.3 Modi�cations to the FM messaging library

Few modi�cations to the FM messaging library were required. Upon initialization,

calls are made to set values in the device driver portion of the DCS implementation;

these are parameters to the fairness predicate, as described in Section 4.2.1. A call is

also made to cause the device driver to set the variable in the LANai memory that
holds the address of the kernel variable that identi�es the currently running LWP.

The spin-block message receipt interface adds a call to await the arrival of data
to the previously existing interface. The code for the call contains a polling loop. We

timed iterations of the polling loop to �nd how many iterations corresponded to a

given spin time. If the message polling call is invoked unsuccessfully for this number

of iterations, the call to await data makes the system call into the DCS code in the

device driver to block the process. When the message arrives, the network interface
processor signals an interrupt which causes the DCS code in the device driver to
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awaken the process.
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Chapter 5

Experimental Results

5.1 Overview

5.1.1 Introduction

In this chapter, we present the results of running mixed parallel and serial jobs on
the experimental implementation of dynamic coscheduling described in Chapter 4.

Through our experiments, we sought to determine whether dynamic coscheduling
could bring about coscheduling in a real system; to determine the e�ects of di�erent
synchronization mechanisms; and to probe the limitations of this method of achieving
coscheduling. The parameters we used in measuring the success of our implementation
were CPU time, response time (wall-clock time to completion), and fairness.

We ran three parallel applications in separate tests, with varying background
workloads. As discussed at greater length in Section 4.1.1, because the current version
of Illinois Fast Messages does not allow multiple processes to share a network interface,
we were unable to run experiments in which multiple parallel jobs timeshared the
cluster; instead our parallel applications timeshared the nodes of the cluster with

serial competitors. The applications were a latency test in which two nodes exchanged

a token repeatedly, a barrier test in which all the nodes in the cluster ran a simulated
SPMD workload, and a two-dimensional Laplace equation solver that used successive
over-relaxation.

We found that DCS does indeed coschedule the processes constituting a parallel

job in the experiments we ran. If the granularity of communication is relatively �ne

and spin-block message receipt is used, DCS can achieve essentially perfect results.

With spinning message receipt, there is a tradeo� between e�ciency and fairness;
slight decreases in fairness lead to signi�cant gains in e�ciency, but e�ciency under

timesharing is never quite as good as the ideal case of batch processing. We encoun-
tered limitations of DCS: as the granularity of communication increases, with spinning

message receipt, e�ciency decreases; with spin-block message receipt, response time

increases. The limitations show the need for continued work on better coscheduling
algorithms; but we conclude that DCS performs well enough to be a useful approach

until better algorithms are found.
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5.1.2 Goals of the experiments

As mentioned above, our primary goal was to establish whether dynamic coscheduling

could in fact achieve coscheduling in a workstation cluster. That is, we wanted to

determine whether the approach of scheduling a process immediately when a message

arrives can have the e�ect of coordinating the scheduling of a collection of processes

constituting a parallel job across the nodes of a workstation. We wanted particularly

to do this in the case of our DCS implementation, but when we found that the e�ect of

the priority boosting upon process wakeup performed by Solaris 2.4 (and some other

Unix systems) was sometimes to schedule processes using spin-block synchronization

immediately when a message arrived, we also wished to understand the performance

of that mechanism and to compare its e�ects to those of DCS.

In addition, we wished to �nd the limitations of DCS, and to determine in partic-

ular whether the relation between frequency of communication and degree of cosche-

duling that we had observed in the analysis and simulation described in Chapter 3

could be observed in a real system. We did not measure degree of coscheduling di-
rectly, although with hindsight comes the realization that it might have been useful
to do so. Instead we observed the performance of the system and histograms of the
elapsed time between communication and response to indirectly determine the degree
of coscheduling.

Finally, we wished to experimentally modify aspects of our implementation as a
result of testing. The most important of these modi�cations was our selection of
a �xed spin time for use in spin-block message receipt, based on our experimental
results.

Performance measures

We used three measures of performance: job response time, CPU time, and fairness.

Job response time is the total wall-clock time from the inception of the job until
its completion. If perfect fairness could be achieved, and all jobs on the system ran
to the completion of the test, then the response time would simply be the number of
jobs on the system multiplied by the total (system and user) CPU time consumed by

the job.

CPU time is the sum of system and user CPU time used by the job. We report
only the sum because in our experiments we found that system time consumed by

the jobs we ran was very low, typically less than 1%, and so it would not be visible
in the graphs we use to present our results. We sometimes refer to a closely related

quantity we call e�ciency, which we take to be the ratio of the CPU time consumed

by a program under timesharing to the CPU time it consumes in the ideal case where
it is the only program running on the machine.

Fairness is the quality of using a fair share of the processor. If the CPU time

consumed by a process over its lifetime is called TC, and its job response time is

called TE, the share of the processor it consumes is TC=TE. If N jobs are running
on the processor, the ideal fair fraction of the processor for a particular job is 1=N ,

and we compute the fairness ratio F as the ratio of the CPU share it consumes to its
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ideal fair share:

F = N
TC

TE
(5.1)

Thus if F = 1, we have ideal fairness; if F > 1, the process is consuming more

than its fair share; and if F < 1, the process is consuming less than its fair share

of the CPU. This relation shows that elapsed time and fairness are linked in a way

that will be relevant to our experimental results. In particular, if CPU time is held

constant, as it is in the case of comparisons between DCS with spin-block message

receipt and the default Solaris 2.4 scheduler with spin-block message receipt, then

fairness determines elapsed time to completion of the job, and vice-versa.

In our graphs, we did not attempt to show time consumed by operating system

tasks and demons running on the nodes we used. In our latency and barrier tests

these tasks accounted for less than 1% of the total elapsed time of the test. In the
mixed workload test, these loads were more signi�cant, but typically less than 10%.
Further work is needed to measure these loads precisely in the case of the mixed

workload test, but for the latency and barrier test we consider them insigni�cant.

5.1.3 Overview of the experiments

We performed three experiments. The �rst of these was a latency test, in which two

nodes repeatedly exchanged a virtual token; a message was sent from one node to the
other, with each node awaiting a reply before sending another message. We used the
latency test as a microbenchmark to gain some initial insight into the implementation,
in addition to using it as an overall measure of performance.

The second was a barrier test, in which all the nodes of the cluster performed
repeated barrier synchronizations, with a variable amount of simulated computation

between successive iterations of the test. The barrier test allowed us to evaluate the
result of varying the granularity of communication performed by a parallel job.

The third test was the mixed workload test, which sought to use a somewhat real-
istic mix of processes to determine whether DCS could coschedule a parallel process

against competitors that performed I/O, rather than simple spin loops.

In the case of the latency and barrier tests, the background loads were always
identical processes that ran a simple busy loop until the end of the experiment. In

the case of the Laplace equation solver, the background loads were real application
processes, as will be discussed below.

We did not attempt to duplicate in our prototype implementation the experiment

we modeled and simulated in Chapter 3. This would have been impossible in any
case, because we were unable to run multiple parallel jobs; but additionally, we did
not feel that such an experiment was as realistic as those we did perform.

5.1.4 Limitations and restrictions of the experiments

As mentioned above and in Chapter 4, our prototype implementation had two major

limitations. The �rst of these was an inability to run multiple parallel jobs, which is
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a limitation of the current version of Illinois Fast Messages. This meant that we were

unable to evaluate the epoch number mechanism described in Section 3.3, and also

that we were unable to discover any unforeseen problems associated with the use of

DCS on multiple parallel jobs.

The second limitation of our prototype was that we did not implement a means of

automatically achieving fairness. We believe that a straightforward implementation

of a feedback control mechanism would have allowed the fairness parameters to be

modi�ed with minimal overhead; however, limitations of time did not allow us to

pursue this. Instead, we simply manually modi�ed the fairness parameters C and

E described in Section 4.2.1 to achieve good fairness. For each set of experimental

results we present below, we show the fairness parameter settings we used.

Our cluster was not a large one. As mentioned above, we started with eight nodes,

and ended with seven; the results presented here used at most seven nodes. The result

is that we were unable to evaluate how DCS scales. Scaling is potentially important;
for example, due to propagation delays, DCS might not coschedule a job running on

a large cluster using a virtual ring for communication, because the time for a message
to travel around the cluster could be larger than a timeslice length.

We did not experiment with varying the timeslice lengths on the cluster. Because
DCS boosts the priority of the job to the highest value possible, which as shown in
Table 5.2 corresponds to the shortest timeslice length, and we saw in Chapter 3 that

the number of messages per timeslicewas an important determinant of performance, it
is possible that DCS could have bene�ted from a dispatch table using longer timeslice
lengths. We believe that the use of the default dispatcher table also had the e�ect of
exacerbating the ine�ciency of spinning message receipt under Solaris 2.4, by causing
even processes that started their timeslices in synchrony to su�er long spinning phases

when one ends its timeslice before others. However, limitations of time did not allow
us to experiment with varying timeslice lengths.

We also used a �xed spin time across all our experiments, and did not attempt
to �t it to individual applications. There were several other possible re�nements of
our techniques which we considered, but did not attempt. These included predictive

coscheduling techniques in which processes would attempt to \prefetch" peers with

which they often communicated, by sending them messages; as well as a technique
in which the residual lifetime of the timeslice would be included in messages and a
process scheduled as a result of message receipt would only receive a timeslice length

equal to this residual lifetime.

5.1.5 Overview of the experimental results

Our experiments showed that dynamic coscheduling can indeed realize nearly ideal

performance in the case of spin-block message receipt and relatively �ne-grained loads.
In the case of spinning message receipt, DCS also achieves much better coscheduling

and e�ciency than the default Solaris 2.4 scheduler, but e�ciency becomes signif-
icantly worse than the ideal case of batch processing unless parallel processes are

allowed to use from 1.2 to 1.5 times their ideal fair share of the processor. As men-

tioned brie
y above, we believe this is partly due to the di�ering timeslice lengths
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used in the default Solaris 2.4 dispatcher table.

As the granularity of communication increases, DCS does a worse job of coordi-

nating scheduling. In the case of spin-block synchronization, this is manifested as

increased latency; in the case of spinning synchronization, it is manifested as de-

creased e�ciency. In both cases DCS continues to do better than the unmodi�ed

Solaris 2.4 scheduler, but worse than ideal.

The default Solaris 2.4 scheduler, through priority boosting on process wakeup, is

able to accomplish some coscheduling for processes that use spin-block message re-

ceipt, but parallel jobs running under it have greater response times than under DCS.

Parallel jobs using spinning message receipt under the default Solaris 2.4 scheduler

have very poor performance, and do considerably better under DCS, although typi-

cally worse than ideal.

The results suggest to us that, while a full implementation of DCS with an au-

tomatic fairness mechanism would be a signi�cant improvement over the default So-
laris 2.4 scheduler for those running parallel jobs on workstation clusters, further

development would be worthwhile, as DCS does not achieve ideal performance in all
cases. Chapter 6 will discuss some possible directions for future research in this area.

5.2 Descriptions of the test workloads

5.2.1 Latency test

Our �rst test was the latency test, which we used initially to gain some insight into
the behavior of the implementation. The name of this test is a historical artifact;
this test is the direct descendant of one used in the Illinois Fast Messages project to
measure user-space to user-space messaging latency.

The latency test is a simple token-passing benchmark in which two nodes repeat-

edly exchange a 128-byte packet. If the nodes are called node 0 and node 1, then node
0 sends a packet to node 1 and waits for a response; upon receipt of node 0's packet
node 1 sends a packet to node 0 and waits for a response, until a speci�ed number

of exchanges have been made. The exchanges do not happen as quickly as possible,
because the nodes record the wall-clock elapsed time for each round trip, including

the sending and receiving of the packet. System calls are performed to get the time of
day before and after the round trip, adding approximately three microseconds to the

total; also the routines that record the information about the round-trip time perform

oating-point arithmetic for rounding so that the elapsed times can be stored in a

small data structure. This is why the shortest round-trip times in our tests show up

as being approximately 90 �sec rather than 80 �sec.

Figure 5-1 shows the pattern of communications and wait periods in the latency

test.
The competitors we used in the latency test were all processes that ran in a simple

spin loop for the duration of the test.
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Time

Node 0 Node 1

128-byte messages

Await response

Await response

Await response

Await response

Figure 5-1: Communication and wait periods in the latency test.

5.2.2 Barrier test

The barrier test provides not only a di�erent pattern of communication than does the
latency test, but also a di�erent granularity, in that messages are sent less often.

Because the Myrinet hardware does not support broadcast communication, we
implemented our barrier test using sequential messages between a root node and six

leaf nodes (only seven of our eight nodes were working towards the conclusion of the
work described in this thesis). The root node initially broadcast a \pass barrier"
message to all the leaves; the leaf nodes would then enter a simple spin loop intended
to mimic local computation before each sent an \at barrier" message to the root node.
When the root node received all six \at barrier" messages, the loop would begin anew.

The algorithm is schematically depicted in Figure 5-2.
Each iteration of the spin loop took approximately 78 nanoseconds, or about

three instructions on the processors we used. In most of the tests whose results
we present here, 1; 000 delay iterations were used between barrier synchronizations;
however, we also ran some tests with larger numbers of delay iterations. 100; 000

barrier synchronizations were performed in each of the experiments.
The competitors we used in the barrier test were all processes that ran in a simple

spin loop for the duration of the test.

5.2.3 Mixed workload test

We also ran an MPI FORTRAN application kernel, a two-dimensional Laplace equa-

tion solver using a successive over-relaxation technique, using an FM implementation
of MPI [16]. Because a rectangular grid of nodes was required, we used only six nodes
in the cluster for this test. Each of six nodes in the workstation cluster ran a workload

consisting of the applications shown in Table 5.1. Here \SOR" refers to the Laplace

equation solver, which performs successive overrelaxation on a 128 � 128-element

matrix. GNU tar is an archiving program that combines a set of �les into a single
archive. We used a collection of 97 �les, totalling 2.1MB. The -z option speci�es that
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On Node 0, loop:
    await “at barrier” from Nodes 1-6
    send “pass barrier” to Nodes 1-6

  delay loop, some
number of iterations

send “at barrier”
    to Node 0

 spin awaiting “pass
barrier” from Node 0

 receive “pass barrier”

On Nodes 1-6:

Figure 5-2: Barrier test performed by six leaf nodes and one root node. Delay loop

simulates computation.

Program Command line

SOR sor

GNU tar (+ GNU zip) gtar -czhvf /dev/null

/usr/local/Gnu/lib/gnuemacs/etc

Ghostscript gs -q -dNODISPLAY -dNOPAUSE

inputfiles/pakin-ms.ps

inputfiles/quit.ps

Table 5.1: Applications used in the mixed workload benchmark

GNU zip, a compression program, should be run on the result. Finally, Ghostscript

is a PostScript interpreter. The input �le is a 1.7MB, 103-page PostScript �le.

All �les were read from a remote NFS �lesystem.

5.3 Experimental results

5.3.1 Latency test results

We show the response time of the latency test with and without DCS, and under

spinning and spin-block synchronization, in Figure 5-3. In all the graphs we will

present, the mean of several runs is shown, and we show 90% con�dence intervals
computed using Student's T-distribution; however, sometimes the con�dence intervals

are too small to be seen on the graph.

The most obvious feature of the graph is that spinning message receipt without

DCS performs very poorly, taking enough additional time to complete so that a log
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Latency test, 1,000,000 message round trips
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Figure 5-3: Total wall-clock time consumed in the latency test under spinning message
receipt and spin-block message receipt, with and without DCS. In this and in all
other graphs presented here, 90% con�dence intervals computed using Student's T-
distribution are shown.

scale has been used here to allow this case to be depicted on the same graph as the

others.

Response time for the latency test with spinning message receipt under DCS is

considerably better, but much worse than with spin-block message receipt either

with or without DCS. As we will see below, there is a tradeo� here; performance
with spinning message receipt under DCS can be improved signi�cantly for a small
additional penalty in fairness; but spinning message receipt is clearly a poor choice

in this experiment under either the unmodi�ed Solaris 2.4 scheduler or DCS. As

mentioned above, we believe this is partly due to the di�ering timeslice lengths used

in the Solaris scheduler.
Before dismissing spinning message receipt althogether, however, let us note that

it is an important synchronization method for parallel computations on workstation

48



Latency test, 1,000,000 message round trips
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Figure 5-4: Total wall-clock time consumed in the latency test under spin-block
message receipt, with and without DCS. The data are the same as in Figure 5-3, but
presented here with a linear scale to show detail.

clusters. Many parallel programs are written to use polling for message receipt;
some of these may perform other work while awaiting the arrival of messages. As
we have mentioned above, these programs will not be coscheduled under the normal

Solaris 2.4 scheduler, because they do not block. Our tests with spinning message

receipt give some notion of the degree of response time penalty these programs will

su�er as a result | the penalty is quite severe. However, DCS will attempt to

coschedule programs whether they use spinning or spin-block message receipt; thus
it is a better default scheduling mechanism for parallel programs than the normal

Solaris 2.4 scheduler.
That said, the choice on which we shall mainly concentrate is spin-block message

receipt, with and without DCS. In order to show detail that cannot be seen on a log

scale, we depict again in Figure 5-4 the spin-block cases shown in Figure 5-3.
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Latency test, 1,000,000 message round trips
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Figure 5-5: Fairness in the latency test. The value shown is the ratio of the fraction
of the CPU used by the parallel process to its ideal fair share of the CPU.

Interpretation of the results: fairness and performance

We show the fraction of ideal CPU time shares consumed on one node by the latency

process in Figure 5-5. The value plotted in the case of n competitor processes is the

mean CPU fraction used by the process, including both user and system CPU time,
divided by the ideally fair CPU share 1=(n + 1). If this value is greater than 1, the

process has used more than its fair share of the CPU; if it is less than 1, the process
has used less than its fair share.

The results for the case of spinning message receipt are straightforward to un-
derstand. DCS with the fairness parameters E = �3; C = 0 is less fair than the

unmodi�ed scheduler, using slightly less than 20% more than its fair share in the

worst case, so that with 8 competitors it was using 13% of the CPU rather than the

11.1% to which it was entitled. However, examination of the graph in Figure 5-6

reveals that in this case the latency test running under DCS completes in 379 CPU-
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Latency test, 1,000,000 message round trips
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Figure 5-6: CPU usage in the latency test. The value shown is the total of user and

system CPU time, but the system CPU time was in all cases less than 1% of the

total.
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seconds, rather than the 1209 CPU-seconds taken by the latency test running under

the unmodi�ed Solaris 2.4 scheduler, so that it is much more e�cient.

However, there is a tradeo� here between fairness and e�ciency. We can drive

the e�ciency of the latency test with spinning synchronization up considerably by

using the parameters E = �2; C = 0, so that it completes in only 289.8 CPU-

seconds; however, this requires using 14.5% of the CPU instead of the 11.1% to

which the process is entitled. Clearly the \equalization" we are performing here by

refusing to preempt when it would be too unfair to do so is causing us to su�er

poorer coscheduling. This phenomenon was predicted by our simulation, described in

Section 3.2. An interesting question for future inquiry is whether we could increase

e�ciency in the case of spinning synchronization without hurting fairness, possibly

by matching timeslice lengths for the parallel jobs, by paying more attention to which

messages are discarded and which are not, or by performing some sort of predictive

coscheduling.
In summary, though, while we would prefer greater e�ciency, in every run we

performed, DCS was much more e�cient for the case of spinning synchronization
than the unmodi�ed Solaris 2.4 scheduler, and is clearly preferable to it.

The issue of fairness is more complex in the case of spin-block synchronization.
This is because CPU time is not signi�cantly di�erent with and without DCS un-
der spin-block synchronization for the tests we ran. As can be seen in Figure 5-6,

both are essentially the same as for the same program run in batch mode, because
the amount of spinning performed under the two schedulers is limited, so that the
unmodi�ed Solaris 2.4 scheduler is already essentially perfectly e�cient for programs
using spin-block message receipt. As described in Chapter 2, other researchers have
reported increased context-switch and cache-reload times due to poor coscheduling,
but, perhaps because spin-block message receipt both with and without DCS results

in some coscheduling under Solaris 2.4, we were unable to �nd any signi�cant dif-
ference under spin-block message receipt between CPU times for the ideal case of 0
competitors and under timesharing.

Therefore, under spin-block message receipt DCS cannot make the program more

e�cient; it can only change the execution order of jobs on the processor so that the

program completes sooner. As can be seen from Equation 5.1, any reduction in the
amount of time it takes for the program to complete is time taken from competitor

processes, so our goal is for DCS to change the execution order in such a way that
the parallel program receives exactly its fair share of the CPU. Because in the latency

test DCS is able to come closer to doing this than the unmodi�ed Solaris 2.4 sched-

uler, which spends more time blocked awaiting message arrivals, its elapsed time to
completion is better.

Round-trip times with spinning message receipt in the latency test

We show the wall-clock round-trip times achieved in the latency test with spinning

message receipt, with and without DCS, in Figure 5-7. In each of several runs of the

experiment, 1; 000; 000 messages were sent by each of the two nodes. Each message
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Latency test, 4 competitors, 1,000,000 round trips
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Figure 5-7: Histogram of number of message round trips taking a given time to

complete in the latency test, with four competing processes and spinning message
receipt.
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was 128 bytes long, which is the maximum length that a message can have in this

version of FM without necessitating scatter-gather operations. Four competing jobs

were run on each of the two nodes; these competing jobs were simple spin loops that

ran for the duration of the experiment. The mean round-trip times seen on one of the

nodes were recorded. A log scale is used on the vertical axis because of the widely

varying numbers of messages falling into each category.

It is worth noting that some of the features of the graph are artifacts of the data

collection method, which was intended to be fast (so as not to distort results) and to

use only a small amount of memory. Speci�cally, the buckets into which incidences are

gathered have one signi�cant digit each, and rounding is performed, with incidences

being placed in the most precise bucket possible. Thus the bucket labeled 900 contains

all incidences with round-trip times between 851 microseconds and 950 microseconds;

but the bucket labeled 1000 contains all incidences with round-trip times between

951 and 1500 microseconds | a much larger range into which more incidences fall,
showing up as a signi�cant jump in the graph.

It can be seen that our implementation of DCS slowed down the best meanmessage
round-trip time by about 10 microseconds, or 5 microseconds per message. This is
because of several extra instructions performed on message receipt under DCS in the
LANAI control program control loop.1 The overall e�ect is to add some 5 seconds
of execution time to the base case of 0 competitors, as will be seen in Figure 5-3.

However, if we examine job response time under timesharing, the better coscheduling
of DCS more than makes up for this additional CPU time, as can be seen in Figure 5-6.

This improved job response time results from DCS's signi�cant reduction of the
number of very long delays. The e�ect of these delays can be seen in Figure 5-8,
where the number of round trips falling into each category has been multiplied by the

length of the round trip in question. We see that most of the time in the case where
DCS was not used is expended in very long delays.

Selecting a maximum spin time for spin-block message receipt

Returning to Figure 5-7, the context switches that result under DCS from sending
messages to a descheduled process can be seen when one examines the number of

messages with round-trip times in the 500 �sec to 1500 �sec range. We see that

under DCS there are an increased number of such round-trip times, and a decreased
number of long delays on the order of 2 msec or more, and to a larger extent, those

of 20 msec or more. This is particularly signi�cant because 20 msec is the minimum
timeslice length under Solaris 2.4 with the default dispatch table; thus we see that

DCS limits the number of round trips in which the sender has to wait a full timeslice

length or more for a response.
The 500 �sec to 1500 �sec round-trip times, on the other hand, correspond well to

the context switch times we found empirically for the processors we were using, when

cache reload e�ects were taken into account. These times varied between 400 �sec

1If we had used Myricom's newer RISC-based interface boards, rather than the older CISC-based

boards we used, this extra time would have been considerably smaller.
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Latency test, 4 competitors, 1,000,000 round trips
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Figure 5-8: Histogram of total wall clock time consumed in message round trips

taking a given time in the latency test, for the case of four competing processes and

spinning message receipt. This is the same experiment as is shown in Figure 5-7;

one can see that the long delays are responsible for most of the time consumed by
spinning message receipt without DCS.
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and 1400 �sec, with a mean somewhere around 700 �sec. We tried varying �xed

spin times between 200 �sec and 3000 �sec in runs of the barrier test, with and

without DCS; while performance degraded at the extremes, it was not very sensitive

to changes in the range of values from 1 to 2 milliseconds. Within the resolution of

the experiment, the �xed spin time we chose provided the best performance for both

spin-block with DCS and spin-block without DCS; but the di�erences were small.

Thus we chose our maximum spin time of 1600 �sec based on the empirical evi-

dence of our experiments, which showed us that the maximum delay we saw for re-

sponse in the case where a context switch was required was approximately 1500 �sec.

In fact, we may have been overly conservative in our choice, because we did not

gather data at a su�ciently �ne granularity to allow us to determine where in the

range 951 �sec to 1500 �sec the cuto� actually occurs, but the choice of 1600�sec

would avoid edge e�ects in which we would often switch just before the message ar-

rived, and, as mentioned above, it gave us the best barrier-test times we saw, within
the resolution of the experiment.

It is also to be noted that 1600 �sec is slightly greater than twice the mean
context-switch time plus the message round-trip time. Ousterhout claims in [18] that
a two-context-switch �xed spin time is competitive (he calls the spin time the pause
in his description of two-phase waiting). The competitive arguments presented in [14]
can be used to show that this spin time is indeed competitive, with a competitive

ratio of at worst 3+M=C times the optimal spin time, for M the message round-trip
time and C the context-switch time. This worst-case performance is of course worse
than one could do with a spin time equal to the context-switch time. However, as
Karlin et al. note in [14], the competitive ratio says nothing about the mean cost of
spinning, which we found to be higher with a spin time of approximately the context

switch time than with the 1600 �sec time we picked.
Dusseau et al. also argue for this �xed spin time in [6], on the basis that two

context-switch times might be required for a processor to respond to a message if the
message arrives at the beginning of a context switch to a process that is not the one
to which the message is directed.

Latency test results with spin-block message receipt

Figure 5-9 shows the round trip times for spin-block message receipt with and without

DCS. This is the same experiment as the one whose results are depicted in Figure 5-7,
with only the exception that spin-block message receipt is used, rather than spinning
message receipt.

Once again, DCS reduces the number of very long delays of 20 msec or more for

round trip message exchanges, and instead has more delays from about 500 �sec to
about 1500 �sec.

The e�ects of the choice of scheduling algorithm and message-receipt policy on
elapsed time to completion of the job can be seen more clearly in Figure 5-10. As

in Figure 5-9, messages have been categorized according to rounded round-trip time,

but in this case the number of messages in each category has been multiplied by the
round-trip time. The result is the amount of wall-clock time consumed by messages
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Latency test, 4 competitors, 1,000,000 round trips
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Figure 5-9: Histogram of number of message round trips taking a given time to

complete in the latency test, with four competing processes and 1600 �sec maximum
spin times on spin-block message receipt.
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Latency test, 4 competitors, 1,000,000 round trips
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Figure 5-10: Histogram of total wall clock time consumed in message round trips
taking a given time in the latency test, for the case of four competing processes and

spin-block message receipt. This is the same experiment as shown in Figure 5-9; one

can see that the long delays are responsible for most of the time consumed in this
test.

58



falling into each round-trip-time category. It can be seen that the very long delays

of more than 20 msec consumed most of the elapsed time in both cases where DCS

was not used. Where DCS was used, however, the coordinated scheduling of the two

nodes led to far fewer messages su�ering very long delays.

5.3.2 Barrier test results

As described in Section 5.2.2, these experiments were run on a seven-node cluster,

due to the failure of one of the nodes in our original eight-node cluster. We ran the

same number of competing processes on each of the seven nodes. The results of the

performance tests are shown in Figure 5-11. We use a logarithmic scale because the

time to completion of the barrier test with spinning synchronization and without DCS

is very large.

The times shown here are those experienced on the root node. However, these

times are representative of those on the leaves as well, because the barrier test requires
repeated synchronizations between the root node and the leaf nodes and so the root
and leaves complete at the same times (except for message transmission delays).

Barrier test results in the case of spinning message receipt

It can be seen from Figures 5-11 and 5-12 that, as in the case of the latency test, spin-
ning message receipt without DCS results in both decreased e�ciency and increased

response time. With DCS, e�ciency is drastically improved by comparison with the
case where DCS is not used, but su�ers by comparison with spin-block message re-
ceipt. The same tradeo� applies as in the latency test: we were able to drive up
e�ciency in other barrier test experiments (not shown here) by decreasing fairness.

It is interesting that the results for spinning synchronization without DCS are so
much worse in the barrier test than in the latency test. One possible reason for this

is the increased probability as the number of nodes increases that some node will
not be scheduled simultaneously with the others because of a fairness constraint. We
also conjecture that the di�ering timeslice lengths used in the Solaris 2.4 scheduler
(shown in Table 5.2) mean that with an increased number of nodes, the probability

that the participants have the same timslice lengths when running decreases, and so

the time spent spinning after a peer's shorter timeslice has expired increases. This
e�ect will obtain to some extent for DCS with spinning message receipt, but here it

is most likely that only one of the nodes (the one that awakened �rst) has a di�erent
timeslice length than the others, which will have been awakened by message receipts

and will run at the highest priority, and so will all have 20-millisecond timeslices

Also interesting is the fact that, in the case of spinning message receipt without
DCS, CPU time decreases slightly as the number of competitor processes increases.
We believe that priority compression is the reason for this. As the number of runnable

jobs increases, their mean priority also increases, because priorities are increased once

per second of wall-clock time, but are decayed only on timeslice expirations, which

happen less frequently as load increases. If the mean priority of jobs increases, then
in Solaris 2.4 this means that their mean timeslice length decreases, as shown in
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Barrier test, 100,000 barriers, 1,000 delay iterations
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Figure 5-11: Barrier test wall-clock times to completion under a variety of scheduling

and synchronization methods. Loads were balanced; 1; 000 delay iterations totalling
78 �sec were performed by all nodes between successive barriers.
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Barrier test, 100,000 barriers, 1,000 delay iterations
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Figure 5-12: Barrier test CPU usage for the experiment of Figure 5-11. The value

shown is the total of user and system CPU time, but the system CPU time was in all
cases less than 1% of the total.
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Barrier test, 100,000 barriers, 1,000 delay iterations
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Figure 5-13: Fairness in the barrier test experiment of Figure 5-11. The value shown

is the ratio of the fraction of the CPU used by the parallel process to its ideal fair

share of the CPU.
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Barrier test, 100,000 barriers, 1,000 delay iterations
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Figure 5-14: Wall-clock times to completion in the barrier test with spin-block mes-
sage receipt only. These are the same results presented in Figure 5-11, but with a
linear scale so more detail can be seen.

Table 5.2. As a result, the length of time for which a process will spin before yielding
the processor to other jobs decreases.

Results in the case of spin-block message receipt

The wall-clock times to completion in the case of spin-block message receipt only

can be seen repeated in Figure 5-14, where more detail is visible than was possible

with the logarithmic scale of Figure 5-11. As can be seen from the fairness results in

Figure 5-13, it would have been possible to improve somewhat on the DCS results for
the 8-competitor case by using more aggressive fairness parameters, but we did not

pursue the search.

As with the latency test, it can be seen in Figure 5-12 that both cases of spin-

block message receipt, with and without DCS, are completely e�cient: neither uses
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Mixed workload test
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Figure 5-15: Wall-clock times to completion in the mixed workload test. In the batch
case, jobs were executed in sequence; bars show time from the beginning of the entire
test to the completion of the job.

signi�cantly more CPU time than the 0-competitor case. Also as with the latency
results, DCS achieves better wall-clock times to completion by using its full share of
the machine, or close to its full share of the machine.

5.3.3 Mixed workload test results

Figure 5-15 shows the wall-clock time to completion of each job in the mixed workload

test. \Batch" represents the time needed to run each job in turn; the bars in this

case show the time from the beginning of the experiment, when all three jobs were
submitted to the batch queue, to the completion of the job in question. In the cases

of spin-block and spinning message receipt with and without DCS, the jobs actually
ran under timesharing, in competition with each other. In all cases, the length of the

longest bar indicates the time to completion of the entire workload.
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Mixed workload test
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Figure 5-16: CPU times in the mixed workload test.

It can be seen that the major di�erence in overall elapsed times is between the case

of spinning message receipt and the default Solaris 2.4 scheduler, and all the other

cases. This is re
ected in the CPU times consumed by the jobs in the workload,

shown in Figure 5-16. Without DCS or spin-block message receipt, the parallel job
took about twice as many CPU-seconds to complete as with DCS.

The combination of DCS and spin-block message receipt took very slightly less
CPU time than spin-block message receipt alone; also it required very slightly less

overall time to complete, both of these e�ects presumably being the result of fewer
context switches and reduced cache contention due to better coscheduling. The most

signi�cant advantage of using DCS with spin-block message receipt in this case, as in

the other tests we have seen, is that it reduces latency for the parallel job over the
use of spin-block message receipt alone.

The fairness results, shown in Figure 5-17, also echo the results of previous exper-
iments. It can be seen that it is possible with DCS and spin-block message receipt

to give the parallel job its fair share of the CPU, whereas spin-block message receipt
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Mixed workload test
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Figure 5-17: Fairness in the mixed workload test. The value shown is the ratio of the
fraction of the CPU used by the parallel process to its ideal fair share of the CPU.

alone causes the parallel job to be a weak competitor for the CPU. It can also be seen

that it was necessary to give the spin-only job about 20% more than its fair share of

the CPU to allow it to coschedule e�ciently.

5.4 Further analysis

Our initial experimental results raised a number of questions, which we sought to
answer in further experiments. The most salient of these questions was raised by the

unexpectedly good performance of parallel programs using spin-block message receipt
under Solaris 2.4; we sought to �nd the reasons for this in a series of experiments.

We were also interested in the e�ects of varying the granularity of communication,

and of using the Unix nice() command to boost base priorities of parallel programs
under the unmodi�ed Solaris 2.4 scheduler.
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Each of these issues is examined below.

5.4.1 Spin-block message receipt under Solaris 2.4

Prior work

Other researchers [10, 23] have reported improved response times and e�ciency with

spin-block synchronization with no active coscheduling mechanism, and the reasons

for this are clear: with spin-block synchronization, CPU time that would otherwise be

wasted in spinning can be used by other processes present on the node. However, as

we mentioned in Section 2.5, Dusseau et al. reported in [6] that SPMD programs that

used �xed spin times and spin-block message receipt when running on a simulated

workstation cluster under the Solaris 2.4 scheduler had performance that was within

a factor of two of that found under an idealized gang scheduler. Dusseau et al.

attributed this relatively good performance to the priority-boosting behavior of the

Solaris 2.4 scheduler in [6].
Their attribution of this performance describes coordinated scheduling arising as

follows. First, a process awaiting a message from a descheduled process on another
node will block when its maximumspin time has elapsed. Then, when the descheduled
process is scheduled and sends its message, on the receiving node, the interrupt routine

for the network interface will unblock the receiving process, and the operating system
will move it from a sleep queue to a run queue. In [6], the next step is described as
one in which the newly-awakened process receives a signi�cant priority boost from
the Solaris 2.4 scheduler; although, as we shall see below, this is not invariably true.
Finally, the dispatcher schedules the highest-priority job in the system; because of

the priority boost, this is probably the newly-awakened process. Now the newly-
awakened process begins a timeslice in near-synchrony with the process that sent it
a message.

Note that this is a description of achieving coscheduling by running a process
immediately when a message arrives; that is, what we have called dynamic cosche-

duling. It is not a description of all of dynamic coscheduling: if the process has

been preempted while spinning and is not on a sleep queue, this mechanism will not
cause it to be scheduled when the message arrives. Because this happens more of-
ten with coarse-grain programs than with �ne-grain programs, the performance of

priority boosting on process wakeup is also worse than that of a full implementation

of DCS on more coarse-grained programs, as will be seen in Section 5.4.3. Also if

the process is one that receives messages only by polling, whether periodically during

computation or in a spin loop, then this mechanism will not be invoked, whereas
DCS will still coschedule such processes. However, for the case of spin-block message

receipt with �ne-grain message-passing and short spin times, where it is quite unlikely
that the process has been preempted while runnable but spinning, this mechanism as

described does indeed implement the most signi�cant part of dynamic coscheduling.2

2Although our earlier paper [22] on dynamic coscheduling is brie
y cited in [6], Dusseau et

al. apparently failed to notice that achieving coscheduling by scheduling a process when a message
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Quantum

Prio. (ms) ts slpret

lowest priority 0{ 9 200 50

10{19 160 51

20{29 120 52

30{34 80 53
35{39 80 54

40{44 40 55

45{49 40 56
50{54 40 57

55{58 40 58
highest priority 59 20 59

Table 5.2: Default Solaris 2.4 dispatch table

As we mentioned brie
y above, a newly-awakened process does not invariably
receive a priority boost under Solaris 2.4.3 The actual behavior is slightly more
complex. Once per second, the scheduler routine ts update runs. This routine

increases the priority of processes on run queues, but which are not running. It does so
by incrementing and examining a per-process counter called dispwait that is zeroed
whenever a process begins a new timeslice; if dispwait exceeds a value speci�ed in
the dispatcher table, the priority of the process is boosted by a value also speci�ed
in the dispatch table. However, dispwait serves a dual purpose. The counter is

also incremented for processes that are blocked and therefore on sleep queues. When
a process is returned to a run queue, if the counter is nonzero, the priority of the
process is boosted (typically quite substantially) to the value ts slpret speci�ed in
the dispatcher table shown in Table 5.2.

Thus we see that the priority boost will probably not happen for processes that
have been blocked for only a short while when the message for which they are waiting

arrives. This is because, when the message arrives, an interrupt occurs and the

interrupt routine immediately removes the job from the sleep queue and places it on
a run queue; the awakened job only receives the priority boost if ts update has run
while it was asleep.

Nonetheless, as we saw in Section 5.3.1, even with this only occasional priority

destined to it arrives, which is the phenomenon underlying the relatively good performance of parallel

processes using spin-block message receipt under Solaris 2.4, is �rst proposed and analyzed in our

work.
3We had also believed that this was the behavior of the Solaris 2.4 scheduler, because, in addi-

tions to the description in [6], the Solaris 2.4 time-sharing dispatcher parameter table manual page

(ts dptbl) [13] describes it this way; but a series of experiments we undertook to show that such

behavior would allow a user-mode program to receive an unfairly large proportion of CPU time

failed to demonstrate that the priority boosting happened invariably, and a reading of the sources

showed how the mechanism actually works.
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boosting on process wakeup, the performance of parallel processes using spin-block

message receipt under Solaris 2.4 is relatively good. It is indeed remarkable that

the priority-boosting mechanism that has been present in Unix at least since 4.3BSD

and which was originally intended to enhance responsiveness for serial interactive

processes (as described in [17]) has the e�ect of coscheduling communicating processes

on separate workstations.

Passive coscheduling

We conjectured that a particular behavior, which we called passive coscheduling,

might arise in systems where spin-block message receipt was used without any active

coscheduling mechanism. The scenario we envisioned was as follows: if the two

communicating processes did not begin their timeslices at nearly the same time, then

after the spin time the one that started �rst would block, waiting for the other to be
rescheduled and respond. Because the response would not awaken the �rst process
immediately, the second would block, and so on until they started within a spin period
of each other, when they would run together for a timeslice. If scheduling quanta

were very long, one would expect the passive coscheduling e�ect to be enhanced, as
the overhead of the multiple very short timeslices in which the two processes sent
only a single message, spun, and blocked would be amortized over the occasional very
long timeslices in which the processes started in near-synchrony. Passive coscheduling
would also work better if all the processes running on the multiprocessor were parallel

processes with �ne-grain communication, because then none of them would run unless
coscheduled. However, if there was no active coscheduling mechanism, then outside
of these special circumstances we expected to see the e�ect decline quickly as the
number of competing processes increased, because then it would take longer for the
case in which the processes started in near-synchrony to arise.

We believe it is possible that passive coscheduling may account for part of the

relatively good performance of parallel programs using spin-block message receipt
under Solaris 2.4 in our experiments. This would explain why only occasional priority
boosts serve to coordinate scheduling as well as they do. Because our competitor
loads are typically balanced and do not block, the e�ect would be enhanced. Further

investigation, using di�erent sorts of competitors, will be necessary to determine

whether this behavior is in fact arising.

Reasons for improved performance under spin-block message receipt

We sought to con�rm experimentally the claim in [6] that the priority boosting per-

formed by the scheduler was responsible for the relatively good performance we ob-
served in programs using spin-block message receipt. To do so, we ran a simple ex-

periment. We ran our barrier test, described in Section 5.2.2 above, with an altered

timesharing dispatcher table that gave reawakened processes exactly the priority they
had had when they went to sleep; that is, in Table 5.2, we set the value of ts slpret

for each queue n to n. As described in Section 5.3.1, we used a �xed maximum spin

time of 1600 �sec, and ran the barrier test with 1; 000 delay iterations for 100; 000
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Balanced barrier test, 100,000 iterations
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Figure 5-18: Barrier test wall-clock times to completion under spin-block message

receipt with no priority boost, with and without DCS. For comparison, times with

the normal Solaris 2.4 dispatcher table are also shown.
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Balanced barrier test, 100,000 iterations
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Figure 5-19: Barrier test wall-clock times to completion under spin-block message
receipt with a single run queue, with and without DCS. For comparison, times with
spin-block message receipt with the normal Solaris 2.4 dispatcher table are also shown.

barriers in competition with a varying number of serial jobs. The serial competitor

jobs were balanced; the same number were present on each of the nodes, including
the root.

The results are shown in Figure 5-18. In each data series, the �gure shows the

mean of between 3 and 10 runs. Because each of the longer runs took more than 10

hours, some of these cases have larger con�dence intervals, as time did not permit
more data to be gathered. The results unequivocally con�rm that the priority boost

is responsible for the relatively good performance of spin-block message receipt under
Solaris 2.4: without the priority boost, job completion times under simple spin-block

synchronization are on the same order as under spinning synchronization, which is to
say, very much greater than under spin-block synchronization with priority boosts,

or under DCS with spinning synchronization alone, or under DCS with spin-block

synchronization, which achieves the best performance of all.
It was hypothesized in [6] that the reason others who had investigated the per-

formance of parallel programs on timeshared multiprocessors using uncoordinated
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scheduling with spin-block synchronization had found poor performance was that

they had used a round-robin scheduler, rather than a priority scheduler. Dusseau et

al. ran an experiment in which they used a single run queue, rather than the sixty

run queues normally used by Solaris 2.4 for timesharing and interactive jobs, and

saw that spin-block message receipt performed very poorly. Because the Solaris 2.4

timesharing dispatcher maintains separate sleep queues, and waking jobs are placed

at the back of their run queue, even without DCS, the single-run-queue scheduler is

not a strict round-robin scheduler; execution order varies when jobs wake and sleep.

We also ran such an experiment, and found similar results for spin-block message

receipt with the standard Solaris 2.4 scheduler; but DCS performed relatively well

even with only a single run queue, although fairness parameter values had to be

set to very aggressive values to achieve good performance. We ran our barrier test

experiment with a round-robin scheduler, which we achieved by using a modi�ed

dispatcher transition table in which all transitions were to a single run queue, so that
within one timeslice all processes were on this single queue. As mentioned above, the

Solaris 2.4 scheduler services individual run queues in round-robin order, except in
the case of transitions from sleep queues, where the newly awakened process is placed
at the end of the queue. In our case, DCS used its usual message-driven scheduling
algorithm, which allows it to vary execution order by placing jobs for which messages
have arrived at the front of their run queues. The results are shown in Figure 5-

19. Once again, we see that running the process when the message arrives results in
good performance; good performance can be achieved regardless of whether a priority
scheduler is used.

Estimating the number of priority boosts

It would have been interesting to instrument the Solaris 2.4 kernel to count the
number of priority boosts performed with spin-block message receipt, and evaluate

whether the boosts would cause the process to run immediately. It would have been
possible to do so without building a new kernel, because our device driver was invoked
both when a process blocked awaiting a message and when it was awakened when
the message arrived (see Section 4.2.1). Thus we could have examined the value of

dispwait at this point to determine whether the process would experience a priority

boost on being returned to a run queue. However, constraints of time did not permit
this instrumentation to be installed.

We can bound the number of priority boosts above by the number of seconds for
which the program ran. This is because a priority boost happens only if ts update

runs while the process is on a sleep queue, and ts update runs once per second.

For the barrier test with spin-block message receipt, these values varied between

about 33 seconds with 0 competitors to about 447 seconds with 8 competitors. For
comparison, under DCS, on the root node, we saw about 75 priority modi�cations in

the base case of 0 competitors, where the test also ran in 33 seconds, and about 1450
with 8 competitors, where DCS ran the test to completion in about 347 seconds.

As a consistency check, we can derive another estimate of the number of priority

boosts due to blocking in the case of spin-block message receipt by examining his-
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Barrier test, 100,000 iterations, eight competing processes, 
spin-block, no DCS
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Figure 5-20: Barrier test inter-barrier times for the case of spin-block message receipt
with 8 competing processes.

tograms of the time between the sending of a \pass barrier" message sent by the root

and the receipt of the last \at barrier" message from a leaf node. We show such a

histogram in Figure 5-20, for the case of 8 competing processes. Note once again that
some of the features of the graph are artifacts of the data collection method | see
the text in Section 5.3.1 describing the histogram in Figure 5-7 for details.

We can estimate the number of priority boosts from blocking by assuming random

incidence of the beginnings of blocked periods into the 1-second intervals between runs
of ts update. Recall that if ts update runs while a process is on a blocked queue,
then that process will experience a priority boost upon returning to a run queue. We
will ignore cases in which the end of a timeslice for the barrier test process came

about because of preemption at the end of a quantum. Then if we assume random

incidence of the beginnings of blocked periods into the 1-second intervals between

runs of ts update, the probability that a blocked period spans a run of ts update is
simply the length of the blocked period divided by one second.

Knowing that the �xed spin time is 1600 microseconds, we can easily compute the

expected number of priority boosts from the histogram. If we perform this calculation
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using the histogram in Figure 5-20, we get 388 as our estimated number of priority

boosts due to blocking | a number only a little lower than the 447 runs of ts update.

Of course, if the process is not blocked, but not running, it will receive a priority boost

from ts update anyway, in the routine's other capacity as an anti-starvation device.

It is interesting that spin-block synchronization can achieve performance only 22

percent worse than DCS with such a small number of priority modi�cations. In fact,

in the case of the latency program, which is as �ne-grain a program as we can write

with FM, it is possible to improve the coscheduling at some expense to fairness by

additionally using the Unix nice() call to boost its base priority (see Section 5.4.2).

We might conjecture that another phenomenon involved here is that processes be-

ing placed on blocked queues will have higher mean priorities than processes selected

at random with uniform probability from the set of all processes on run queues. This

is so because a process that blocks has not reached the end of its quantum, and so

is not demoted in priority as are processes that reach the ends of their quanta; and
it was necessarily the highest-priority process in the system when it blocked, because

it was running when it blocked. Thus even if a process on a blocked queue does not
receive a priority boost while blocked, it may well be the highest-priority process in
the system when it returns from blocking. However, we know that this e�ect cannot
be responsible for \most" of the performance of spin-block, because our experiment
of removing the priority boost would have left this e�ect intact, and yet performance

declined to approximately the level of spin-only.
Further investigation into sources of the performance of spin-block message receipt

is warranted here; but we would also point to the fact that the competing loads
here are balanced and consist of simple spin loops, which may allow some passive
coscheduling behavior to persist in periods between successive runs of ts update:

due to symmetry across the nodes in the cluster, after becoming coordinated once
through priority boosts, they run through several quanta in step. Other sorts of
competing loads | more realistic ones | might shed further light on the way in
which this mechanism achieves what it does.

In conclusion, simple spin-block message receipt under Solaris 2.4 performs unex-
pectedly well due to priority boosting on process wakeup by the Solaris 2.4 scheduler;

this priority boosting e�ectively provides a partial implementation of DCS. A full im-

plementation of DCS can perform better because it can schedule on message arrival
programs that are not on sleep queues, as well as those that are on sleep queues. This

matters tremendously for programs that poll for message arrivals; they achieve no
coscheduling with the unmodi�ed Solaris 2.4 scheduler. It also matters for programs

that use spin-block message receipt, if these have relatively coarse-grain communica-

tion, because under simple spin-block synchronization in Solaris, preempted processes
(those whose timeslices have expired without their having blocked on I/O) are not
normally scheduled immediately by the dispatcher on message arrival.

Possibly another e�ect at work in the better performance of a full implementation

of DCS is that newly reawakened processes are less likely to run immediately under

the default Solaris 2.4 dispatcher than under our full DCS implementation. Under our
implementation the newly reawakened process is placed at the front of the highest-
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priority run queue, if doing so does not starve other processes, while in the default

Solaris 2.4 scheduler, the process is always placed on the back of some queue.

5.4.2 E�ects of boosting the base process priority with nice()

As we saw in Section 5.3.1, under spin-block without DCS, the latency test fails to

use its fair share of the machine. Interestingly, this is a program that spends nearly

all of its time sending and receiving messages (that is, waiting for the LANAI network

interface to send and receive messages), so it is quite likely that nearly half the time

when one of the latency processes is not running, it is on a sleep queue | that is,

the processes have the opportunity to be rescheduled together about as often as one

might deem possible with the priority boost on wakeup in Solaris 2.4.

We would like to understand the reason for this reduced performance. Unfortu-

nately, we have not had the time to answer the question fully; we record here some

conjectures and the results of an experiment. We begin by noting that the program
might have failed to use its fair share of the processor because its timeslices were too
short, or because it received too few timeslices, or both.

The timeslices could be too short because of insu�cient coscheduling: that is,
one process could have been scheduled on one node, sent a message to its peer on
the other node, and blocked while waiting for the response; then the peer could be

scheduled after the �rst process had blocked, could respond to its message, and block
while waiting for the response, and this scenario could be repeated often, so that
the two processes each ran for the duration of one message transmission. This is the
processor-thrashing behavior that Ousterhout originally described in [18], and which
we have reproduced by disabling priority boosts on process wakeup in our experiment

of Section 5.4.1, the results of which are shown in Figure 5-18. This behavior could
still occasionally occur even with the priority boost in place, because the priority
boost is not as strong an imperative for scheduling on message arrival as it might be:
the priority is only raised somewhat; the process goes to the back of the run queue
on which it is placed.

The second possibility is that the coscheduling mechanism is su�cient so that

very few timeslices are very short, but that timeslices do not start often enough. If
the process often blocks and on return from blocking is placed at the end of its queue,
then if it has not received a priority boost, it may not be scheduled immediately. It

is conceivable that this might happen often enough so that fewer timeslices start for

the parallel process than for the competitor processes.
Finally, of course, both phenomena could be occurring. Metering would tell us the

answer, but time constraints did not allow us to meter the kernel in this way. However,
we performed a related experiment. If either of the cases we described above obtained,

better performance would be achieved by raising the base priority of the process using
the Unix nice() command. In the �rst case, the process would already be running

at a higher priority on average before blocking, so when returning from blocking it

would have a higher priority on average whether or not the priority boost occurred;
thus it would be scheduled on return from blocking more often than without the

use of nice(); better coscheduling would result. In the second case, maintaining a
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Latency test, 1,000,000 message round trips
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Figure 5-21: Fairness in the latency test under spin-block synchronization without
DCS, but with priority boosts on process wakeup and an additional priority boost
from nice(-1). The value shown is the ratio of the fraction of the CPU used by the
parallel process to its ideal fair share of the CPU.

higher mean priority would mean more timeslice initiations for the process. Thus
the experimental result would not di�erentiate between the two phenomena, but may

nonetheless be related to both.

We tried this experiment, using the lowest possible priority boost of �1.4 The

fairness results are shown in Figure 5-21. It can be seen that, with this increased base

priority, the latency program using spin-block message receipt with priority boosting
on process wakeup achieves quite good performance, except that it seizes too large

a share of the CPU in many cases, where DCS can be controlled more �nely by

4Arguments to the Unix nice() library call increase the priority of the job if they are negative

and decrease it if they are positive.
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manipulating its fairness parameters.5 Because �1 is the smallest possible priority

increase available with nice(), the latency program cannot be made more fair in the

case without DCS.

Leaving aside the underlying mechanisms for now, we note that from the perspec-

tive of �nding an engineering solution to the problem of scheduling parallel programs,

for this very �ne-grained program, if spin-block synchronization with priority boosting

is used, the tools available in Solaris 2.4 can result in su�cient coscheduling to pro-

duce quite a good result. Without the use of nice(), the elapsed time to completion

is at worst 25% worse than with DCS; with the use of nice(), the fairness is at worst

about 25% worse than with DCS. We conjecture that a program with coarser com-

munication granularity would prove more di�cult to coschedule fairly with nice()

and priority boosts on process wakeup, because the priority-boosting mechanism is

invoked less often for programs with coarser communication granularity. Constraints

of time have not allowed us to experiment further along these lines, but they are
an interesting area for future research. We do in any case believe that a full imple-

mentation of DCS with an adaptive mechanism for setting the fairness parameters
would be a better engineering solution, because it would allow �ner control of fairness
and would also allow coscheduling of programs that do not block for message receipt.
However, the combination of spin-block message receipt, priority boosting on process
wakeup, and judicious use of nice() may be su�cient in many practical cases.

5.4.3 Coarse-grain computation: varying the granularity of

the barrier test

We sought to evaluate the e�ects of increasing the granularity of communication in
our experiments. In particular, we wished to determine whether the result we found
with the simple model and simulation of Chapter 3, where we saw that increasing

granularity led to decreased coscheduling under DCS, also appeared in our experi-
mental system.

In our initial experiments, with only spinning message receipt, we used a variety
of communication resolutions on an eight-node system. We ran experiments with

granularities as large as 100; 000 delay iterations, which is to say, 7:8 milliseconds.

The results were intriguing, but each run took a very long time to complete and

the variances of the results at high granularities were very large. Constraints of time

do not allow us to run these experiments in su�cient number to achieve reasonable
con�dence intervals | we estimate that to do so would require a dedicated month or

more of cluster time.
Thus we will simply summarize the observations we made. As the granularity

of the computation increased, performance of the barrier test running under the
unmodi�ed Solaris 2.4 scheduler decreased rapidly, for 1, 2, and 4 competitors, so

5Presumably an automatic method for manipulating the fairness parameters adaptively would

allow DCS to achieve fairness even closer to perfect than it does; because experiments took a long

time, and we were only interested in demonstrating the practicality of the scheme, we simply did

some binary searching in the parameter space and chose the best values we found after a few trials.
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that the user CPU time (not elapsed time!) for the one-competitor case and 100; 000

delay iterations took as much as nine times as long as for the 0-competitor case.

Performance also declined for DCS in this case, but only to a factor of about three

times the base case.

The granularity of communication in this case bears some examination. 100; 000

delay iterations is approximately 7:8 milliseconds. Because parallel processes run-

ning under DCS are typically running at the maximum priority, they usually use

20-millisecond timeslices, and thus we have only 2:6 messages being sent on average

per timeslice in this case. Some exploration of the space revealed that performance

began to deteriorate severely at 30; 000 delay iterations, or about 9 messages per

timeslice, with user CPU time around twice that of batch in this case.

This behavior, in which the e�ectiveness of dynamic coscheduling decreases as the

granularity increases, was predicted by our models, described in Chapter 3. In the case

of spinning synchronization with DCS, if messaging is relatively inexpensive, some
relief can be a�orded by arti�cially decreasing the granularity of the computation, by

periodically \prefetching" peer processes by sending them empty messages; further
research is required to determine how this might be done most e�ciently.

In the case of spin-block synchronization, we were able to conduct one of these
experiments again with the coarser granularity of 10; 000 delay iterations, or about
0:78 milliseconds of delay between barriers. We see in Figures 5-22 and 5-23 the

results. For both spin-block synchronization alone and spin-block synchronization
with DCS, fairness declines as load increases, but fairness declines more quickly in the
case where DCS is not used. However, even with its fairness mechanism completely
disabled (which is what use of the parameters E = 20; C = 0 will do), DCS is unable
to maintain perfect fairness. Possibly arti�cially increasing the base priority with
nice() would help; we did not pursue this line of inquiry. As with the spinning

message-receipt results, we suggest that arti�cially decreasing granularity may be
one solution here, and research is required to determine just how this would best be
done.

In conclusion, DCS is not as successful in coscheduling applications with coarse-
grain communication as in coscheduling those with �ne-grain communication. In

the case of spinning message receipt, it is much more successful than the completely
uncoordinated scheduling of the default Solaris 2.4 scheduler, but does not approach

the performance of batch processing. Our models, in Chapter 3, had predicted this
result.

In the case of spin-block message receipt, both DCS and the unmodi�ed Solaris 2.4
scheduler (with priority boosts on process wakeup) are less successful at coscheduling

as the granularity of the computation increases. DCS does better than the unmodi�ed

Solaris 2.4 scheduler, but does not cause parallel processes to receive their full share of
the CPU. This does not create an e�ciency problem| CPU time is not substantially

di�erent from the 0-competitor CPU time in either case | but it does create a latency
problem.

In the case of DCS, in both spinning and spin-block message receipt, the degree

78



Barrier test, 100,000 barriers, 10,000 delay iterations
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Figure 5-22: Barrier test wall-clock times to completion with 10; 000 delay iterations,

or 0.78 milliseconds of delay between barriers. Loads were balanced.
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Barrier test, 100,000 barriers, 10,000 delay iterations
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Figure 5-23: Fairness in the barrier test experiment of Figure 5-22, where 10; 000

delay iterations were used. The value shown is the ratio of the fraction of the CPU
used by the parallel process to its ideal fair share of the CPU.
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of coscheduling can be increased by decreasing the granularity of communication by

sending empty \prefetching" messages. Further research is required to determine how

this might be done most e�ciently.

5.5 Summary of experimental results

We have seen that our dynamic coscheduling implementation does cause coordinated

scheduling of the parallel programs we tested.

In the case of spin-block message receipt, performance on �ne-grained programs

under DCS was close to ideal | CPU time was close to that in the 0-competitor case,

and the fairness parameters could be tuned to bring the fairness ratio to 1, so that

elapsed time was as small as it could be without hurting fairness.

In the case of spinning message receipt, performance was much better with DCS
than without, but e�ciency was not close to perfect when processes were restricted to

using less than 1.5 times their fair share of the processor. E�ciency could be brought
closer to perfect by decreasing fairness; small decreases in fairness led to large increases
in e�ciency. We believe that this problem is exacerbated in Solaris 2.4 by the varying
scheduling quanta used by the dispatcher (shown in Table 5.2), which can cause even
processes that start their timeslices in synchrony to su�er long spinning phases when

one ends its timeslice before others.
Performance for spin-block message receipt without DCS was surprisingly good,

although not as good as that with DCS. We experimentally veri�ed the claim made
in [6] that the reason for this relatively good performance was priority boosting on
process wakeup by the Solaris 2.4 scheduler. By causing descheduled processes to

sometimes be scheduled on message arrival, this behavior has the e�ect of a partial
implementation of DCS.

For the latency test with spin-block message receipt, we were able to increase
the coscheduling realized by the unmodi�ed Solaris 2.4 scheduler by using the Unix
nice() call to boost the base priority of the parallel process, but fairness su�ered.
Still, this raised the possibility that for �ne-grained programs using spin-block mes-

sage receipt, the tools available in the unmodi�ed Solaris 2.4 implementation may be
su�cient to achieve good performance. We conjecture that it would be more di�cult

to achieve good performance for more coarse-grained programs.

Performance for spinning message receipt without DCS was terrible, with elapsed
times sometimes as much as a hundred times greater than those under DCS.

We found that when we increased granularity of communication, both the un-
modi�ed Solaris 2.4 scheduler and DCS su�ered decreased performance, although the

performance of DCS was still better than that of the unmodi�ed scheduler. Under
spinning synchronization, the decreased performance was manifested as decreased ef-

�ciency. Under spin-block synchronization the decreased performance shows up as

increased response time.

DCS improves performance su�ciently so that a full implementation with an

automatic mechanism for modifying fairness parameters will be worth implementing.
It can coschedule both parallel programs using spin-block message receipt, and those
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using spinning message receipt, with good control over fairness if the programs have

relatively �ne-grained communication. However, the performance of DCS in the cases

of spinning message receipt and of spin-block message receipt with coarse-grained

computation is less than ideal. Further research is required to determine how to

improve this performance.
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Chapter 6

Conclusions and Future Work

We have presented demand-based coscheduling, a new approach to scheduling parallel
computations on multiprogrammed multiprocessors that achieves good performance
by coscheduling those processes that communicate with each other. Demand-based
coscheduling was designed to be:

� Non-intrusive | the programmer is not required to write parallel programs in a

particular style. E.g., multithreading is not required; if full-
edged processes are
a better abstraction, they can be used instead. Process placement or migration
algorithms are not imposed by demand-based coscheduling.

� Flexible | If a job composed of a large number of processes is run on a multi-
processor with a small number of nodes, demand-based scheduling can take ad-

vantage of local communication patterns that may provide better performance.

� Dynamic | Newly-initiated communication between processes is detected au-
tomatically as a demand for synchronization by demand-based coscheduling.
Thus it is well-suited to newer programming paradigms (e.g., OLE) that may
result in �ne-grain communication between processes the programmer could not

have anticipated would communicate.

� Decentralized | scheduling decisions are made locally in demand-based cosche-

duling. Unlike in traditional coscheduling, there is no \alternate coscheduling
problem," because there is no centrally imposed notion of a single currently

scheduled job.

6.1 Conclusions

6.1.1 Conclusions drawn from our model and simulations of

dynamic coscheduling

We presented analytical and simulation results that show that the number of mes-

sages sent per timeslice is a key factor in achieving good coscheduling behavior un-
der dynamic coscheduling, and that with a mean communication rate of more than
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approximately 300 messages per timeslice in our simulations, strong coscheduling be-

havior was achieved. Our simulations also showed that even under very pessimistic

assumptions, dynamic coscheduling could achieve strong coscheduling behavior while

maintaining fairness in scheduling, if the granularity of communication was small

enough.

6.1.2 Conclusions drawn from our implementation of dyna-

mic coscheduling

We implemented dynamic coscheduling on a network of workstations running So-

laris 2.4. The implementation su�ered from two limitations. The �rst was that

multiple parallel jobs could not be run, because the current version of the messag-

ing layer we used, Illinois Fast Messages, did not allow multiplexing of the network

interface. The second was that our implementation of equalization (enforcement of
fairness) required manual tuning, although we believe that a straightforward feedback
control implementation would allow the tuning to be done automatically.

Experimental results found using our DCS implementation showed that dynamic

coscheduling could provide good performance for a single parallel process running
on a cluster of workstations, in competition with serial processes. Performance was
close to ideal for the case of �ne-grained processes using spin-block message receipt.
E�ciency su�ered for processes using spinning message receipt, although there was
a tradeo� here: substantial increases in e�ciency could be attained through small

decreases in fairness; and e�ciency under DCS was still far better than under the
unmodi�ed Solaris 2.4 scheduler, by a factor of as much as a hundred in some cases.

Increased granularity of communication caused performance to decline, as had
been seen in the models and simulations we performed. The decreased performance
was still better than that of the unmodi�ed Solaris 2.4 scheduler. The performance

decrease was manifested as increased response time in the case of spin-block syn-
chronization and decreased e�ciency in the case of spinning synchronization. We
conjectured that a \prefetching" scheme in which processes arti�cially increased their

granularity of communication by sending empty messages to processes with which
they would soon communicate would improve performance in this case, but we did
not experiment with such a scheme.

We found that parallel jobs using spin-block message receipt under the Solaris 2.4

scheduler performed unexpectedly well due to priority boosting on process wakeup.
This behavior results in some of the e�ects of DCS, by scheduling processes when

messages destined for them arrive at their node. However, parallel processes using
spin-block message receipt under Solaris 2.4 still did not perform as well as those

running under DCS. We were able to improve the performance of a very �ne-grained

process by using the Unix nice() call to boost its priority, but fairness su�ered; and
we conjectured that it would be more di�cult to achieve the same e�ect with more

coarse-grained programs.
We concluded that dynamic coscheduling performed well enough with both spin-

block and spinning message receipt so that we can recommend that a version with
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an automatic fairness mechanism be added to operating systems or messaging layers

meant to be used on workstation clusters. However, the performance on coarse-

grained programs and under spinning message receipt is su�ciently far from ideal

so that we also feel that further work in this area is needed in order to improve

performance in these cases.

6.2 Future Work

A number of areas might pro�tably be explored in future research on dynamic co-

scheduling.

6.2.1 Multiple processes

Perhaps the most important open question about dynamic coscheduling is how it will

perform with multiple processes. While dynamic coscheduling would still be useful if
it allowed only a single parallel job to be coscheduled on a network of workstations,
clearly the ability to timeshare the cluster among multiple parallel jobs would be very
useful. Our simulation and modeling showed that a thrashing behavior can emerge
when a fairness policy is implemented in simulation, and that the epoch mechanism

ameliorates the problem; thus we expect that in practice epochs will be important.
An implementation allowing multiple parallel jobs is required to allow the mechanism
to be tested.

6.2.2 Spinning synchronization

As mentioned in previous sections, the di�ering timeslice lengths used in Solaris 2.4
hurt coscheduling with DCS under spinning synchronization because the �rst job
to awaken after a period of sleeping in a group of communicating processes may
have a di�erent, and longer, scheduling quantum than the processes it awakens by

sending messages. The processes it awakens will have short timeslices, because they

are running at the highest priority; therefore their timeslices will probably end before
those of the �rst process, which will then spin to the end of its timeslice, resulting
in reduced e�ciency. It would be useful to attempt an implementation of DCS with

a dispatcher that provided uniform timeslice lengths to processes | we conjecture

that with scheduling quantum length matching, the e�ciency of DCS with spinning

synchronization would improve dramatically.

6.2.3 Coarse-grained processes

As described above, we found in our experiments that the performance of our imple-

mentation decreased as the granularity of communication by the parallel job became
coarser. We conjectured that a predictive mechanism that attempted to eagerly pre-

schedule other processes with which a process could be expected to communicate soon

might improve performance. This is an important area for future work.
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6.2.4 Fairness and scheduling

In order to achieve good performance, our fairness mechanism required tuning for

individual loads. An automatic mechanism for performing this tuning dynamically

should be straightforward to implement.

We might have mitigated the narrow applicability of a single setting of our fairness

parameters somewhat by decreasing the priority of a process that is part of a parallel

job after its scheduling quantum expired. This could be done without modi�cation

of the scheduler as follows: if an interrupt had recently been raised due to a message

arrival, then when the transition from the \FM job believed running" state of the

LCP to the \FM job believed not running" state took place, the LCP could set a


ag and signal an interrupt. The 
ag would be used to signal the meaning of the

interrupt. When set to one value, an interrupt would be treated by the device driver

as signifying that a message had arrived; but when set to another value, the interrupt

would mean that the FM job's timeslice had recently expired. The device driver could

then manipulate the run queues appropriately to decrease the priority of the FM job.
As a result, the priority boost would not have the lasting e�ect of increasing the job's
processor share beyond the timeslice that had just expired.

It would be best, however, to implement a fairness mechanism in a scheduler in
which precise processor shares could be allotted to processes. Priority-decay sched-

ulers confuse execution order (which is important in coscheduling) with processor
share (which should be separately modi�able).

Dusseau et al. stated in [6] that fairness was not yet a solved problem in im-
plicit scheduling; they observed that �ne-grained processes su�ered decreased pro-
cessor shares when sharing a processor with coarse-grained processes in their sim-

ulation. They conjectured that this was because the �ne-grained processes blocked
often, yielding the processor. This might upon �rst examination appear to contra-
dict our �nding that dynamic coscheduling coschedules �ne-grained programs better
than coarse-grained programs, because priority boosting on process wakeup e�ectively
implements part of DCS. However, note that under the Solaris 2.4 scheduler, the fre-

quency in time of priority boosts that a process using spin-block synchronization can

receive as a result of message arrivals is bounded above by a constant | 1 per sec-
ond. Thus �ner-grained communication under the unmodi�ed Solaris 2.4 scheduler
does not result in �ner-grained information being provided to nodes about demands

for coscheduling, and we believe that this is the probable cause of the discrepancy

between their �ndings and ours. However, it would be best to inquire further into

this issue with an implementation that allowed multiple parallel jobs to be run.

6.2.5 Other application types

We have speculated that dynamic coscheduling might be useful in a variety of ap-

plication domains, including implementations of shared memory through message-
passing and distributed client-server applications with �ne-grain synchronization re-

quirements. Due to limitations of the experimental platform and of time, however,

we were unable to test such applications. In the case of client-server applications, we
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would like to explore the performance bene�ts of coscheduling; some bene�ts might

include increased locality of reference due to smaller bu�er sizes when the appli-

cations are coscheduled, or simply improved performance in the case of �ne-grain

synchronization requirements.

The case of implementing shared memory by message-passing raises another ques-

tion: that of treating di�erent types of messages di�erently with respect to scheduling.

In the case of a shared-memory implementation, for example, if the platform allows

reads to be e�ected regardless of which process is currently scheduled on the node

(this is possible in, e.g., the FLASH multiprocessor [15]), it might not be necessary or

desirable to treat every memory read as a demand for coscheduling; but cache line in-

validations might need to be treated as demanding coscheduling. An implementation

would allow experimentation with di�erent schemes.

Similarly, it may be the case that some messages in scienti�c applications should

be treated di�erently with respect to coscheduling than others.

6.2.6 Predictive coscheduling

We describe in Appendix A a scheme for predictive coscheduling on a shared-memory
multiprocessor. Further work would be required to evaluate the utility of this scheme.

However, the techniques of predictive coscheduling need not be limited to bus-

based shared-memory multiprocessors, and one could envision using them together
with a dynamic coscheduler. That is, the application could \preschedule" (by analogy
with prefetching) other processes with which it would soon communicate by sending
them \wake-up" messages, or the scheduler could do the same at the beginning of
a process's timeslice by watching outgoing message tra�c and sending messages to

recent correspondents. Such techniques might serve to maximize time spent cosched-
uled.

6.2.7 Other issues

We found we achieved good performance with a �xed spin time and after initial ex-

perimentation settled on one. However, in [6], Dusseau found that adaptive variation

of spin times enhanced the performance of SPMD programs using spin-block message
receipt under Solaris 2.4. We believe that some of the conclusions reached in [6] were
peculiar to the communication patterns of the limited set of applications examined

in that work; however, it is possible that adaptive variation of spin times would also

improve the performance of a broader class of applications, and that further work in
this area might prove fruitful.

We considered a scheme in which outgoing messages would contain the residual
lifetime of the sender's current timeslice (assuming it went to completion), so that

recipients would be scheduled for only that period, to achieve greater synchrony of

scheduling, but we did not implement it. In further experiments, it would be useful
to characterize the synchrony of scheduling (the degree to which timeslices actually

overlap) with a variety of applications and consider whether it is too low. If so,
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the technique of sending residual lifetimes of timeslices in messages might improve

performance.
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Appendix A

Predictive Coscheduling

We considered a scheme for implementing demand-based coscheduling on a simple
bus-based shared-memory multiprocessor, called predictive coscheduling. We did not
implement or simulate this scheme, and so we present it here in an appendix as an
indication of a possible direction for future work.

If we wish to implement coscheduling on a bus-based shared memory multiproces-

sor, with hardware-only cache-coherence protocols, the detection of communication
becomes more complicated than on message-passing architectures. If the program
uses library routines for heavyweight remote procedure calls or for semaphores, the
invocation of the kernel to deliver messages, perform blocking tests of semaphores,
or set semaphores will allow the scheduler to be aware of communication between

processes, and dynamic coscheduling can be used.
But if instead processes communicate only through shared memory pages in user

mode, the kernel is not invoked, and cannot detect communication when it happens.
We might consider using memory protection on shared memory pages to signal the
kernel the �rst time during a process's lifetime that it requests access to a shared

memory page, but this could be quite expensive if a large number of shared memory
pages are touched and memory protection traps are slow.

Another possibility is to recognize that coscheduling is a performance optimiza-

tion, and is not required for correctness, so that it is feasible to use a mechanism
that simply provides hints as to which processes are likely to communicate with each

other. If such a mechanism is correct with high probability, it will be su�cient to
allow good performance.

We proceed by describing predictive coscheduling in the next section, and then
proceed to describe an inexpensive mechanism for detecting communication using

virtual memory hardware.

A.1 Correspondents

Under predictive coscheduling, processes that have recently communicated with each

other are called correspondents. As in LRU demand paging, past behavior is treated

as a predictor of future behavior, and so predictive coscheduling works by coscheduling
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runnable correspondents. In particular, when a process is scheduled on a node, an at-

tempt is made to simultaneously schedule on other nodes its runnable correspondents.

On a message-passing multiprocessor, this could be done by sending messages to the

nodes on which the correspondents resided. On a bus-based shared-memory proces-

sor, other processes would be selected for preemption, interrupts would be signalled

on their nodes, and the correspondents would be scheduled.

We have not yet tested this strategy, although it appears promising. Clearly

a runtime equalization mechanism would be necessary to ensure fairness; possibly

a mechanism like epochs would be desirable to reduce thrashing. The selection of

processes for preemption is another open question. It might be desirable to select for

preemption the processes with the fewest correspondents, because such processes will

be runnable in the future under a wider variety of circumstances.

It is also worth noting that if communication between processes is entirely mem-

oryless | so that one pair of processes that have recently communicated is no more
likely to communicate in the future than is any other pair of processes | predictive

coscheduling will not perform well. This is because predictive coscheduling attempts
to predict future behavior on the basis of past behavior, a strategy that will work no
better than random selection with uniform probability for memoryless processes. Of
course, this scenario is unlikely to arise in most parallel jobs, where the constituent
processes will communicate with each other repeatedly.

A.2 Detecting Communication through Shared Mem-

ory on Bus-Based Shared-Memory Multipro-

cessors

It remains to describe a means of identifying correspondents on bus-based shared-
memorymultiprocessors | that is, detecting communication through shared memory.
Because, as we noted above, we do not think that this information need be perfect, we

propose using the information in translation lookaside bu�ers (TLBs) on processors

where these are readable. Processor-readable TLBs are becoming more common,
because of the attractiveness of handling TLB misses in software on RISC processors.
Among the processors that have readable TLBs are MIPS processors, DEC Alpha

processors, and HP PA-RISC processors. Intel 486-series processors also provide a

means of reading the TLB through the test instruction interface; reading the TLB
does not require disabling virtual memory.

The algorithm for �nding correspondents is simple. In the process control block
(PCB) for each user process that shares memory, we maintain a �eld that contains

a list of correspondents. We maintain in kernel memory a data structure, keyed
by virtual page address, that contains an entry for each of the shared memory pages

mapped by any user process. The structure is called the Shared Page Recent Accessors

Table (SPRAT). Each entry in the SPRAT contains a list of processes that have
recently accessed the page. At certain points in the execution of a process, we iterate

over the TLB, �nding entries for shared data pages in this process's address space.
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TLB, viewed during
execution of process T1

Shared Page Recent
Accessors Table
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T2, T7, T5, T1

PCB for process T1

Correspondents T2, T7, T5, T1

Figure A-1: Data structures used in proposed algorithm for predictive coscheduling.

For each such entry, we �nd the corresponding page entry in the SPRAT and add
the current process to the list there. Then we add the processes in the SPRAT entry

to the correspondents list in this process's PCB. The data structures are depicted in
Figure A-1.

Because the TLB is typically small (256 or fewer entries), it can be searched
quickly. Because the replacement policy is typically approximate LRU within a set
(or simply LRU on fully-associative TLBs), the TLB contains information about

which pages have been read or written recently. We may choose to search it just
before descheduling a process, or perhaps also at other convenient times, such as

system calls and exceptions.

Entries will also need to be cleared from the SPRAT and the correspondents list
in the PCB. One inexpensive possibility is to maintain the lists as FIFOs of �xed

and limited size | for example, the number of nodes on the machine would be a
good limit. Another possibility is simply to clear the information at pseudorandom

intervals | this can also be implemented inexpensively.
There are likely to be other means of detecting communication through shared

memory on bus-based shared-memory multiprocessors using virtual memory infor-

mation | as has been found in the �eld of lifetime-based garbage collection, the

information maintained by a virtual memory system is very rich.
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