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Abstract

With the proliferation of modern monitoring and laboratory procedures, physicians
in intensive care areas may face \information overload", in dealing with very large,
complex and ever-changing quantities of clinical data, which often lacks e�cient or-
ganization. This research analyzes the medical knowledge required for formulating
decision models in the domain of hemodynamics. Based on such analysis, a knowl-
edge based expert system to track a patient's hemodynamic state has been developed
and evaluated in a laboratory setting.

The initial phase of the work utilizes a cardiovascular simulator to generate \pseudo-
ICU" waveforms as input to the expert system in order to guide the development of
the matrix of rules and search strategies. A number of pathological simulations have
been successfully analyzed by this model-based expert system, including examples of
hypertension, left ventricular failure, hypovolemia, pulmonary hypertension, etc. We
conclude that our approach is practical, and provides a mechanism for transforming
and reducing real-time physiologic data into pathophysiologic hypotheses relevant to
the management of patients.
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Chapter 1

Introduction

Intensive care units (ICU) provide continuous and often invasive measurements of

respiratory and hemodynamic status in acutely ill patients. Such monitoring enables

early detection of changes in the patient's condition and provides information that

both directs therapy and assists in evaluating the response to treatment. Needless to

say, it generates enormous amounts of real-time and o�-line data relating to the status

of these patients. The ICU medical sta� must re-assess these patients frequently on

the basis of data from clinical observations, bedside monitors, mechanical ventilators

and a wide variety of lab tests. Clinicians usually face a very large, complex and

ever-changing body of data, and it is often challenging and time consuming for them

to analyze such massive information loads. As we can imagine, with the development

of new techniques and medical equipment, the problem of information overloading

will become more and more serious. The great responsibilities of ICU sta� and high

performance expectations can lead to both emotional and physical fatigue [39]. All

of these factors may cause errors in patient care. Providing life support in the ICU is

becoming an increasingly complex task as the volume of monitoring data increases.

Improvement in the organization and interpretation of the clinical data will have the

potential of increasing quality and e�ciency in the ICU.

Most intensive care units have the basic capacity to monitor and record heart

rate and rhythm (usually with a built-in memory and recall capability), venous pres-

sure, pulmonary arterial pressure, and systemic arterial pressure. In addition, many
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units have the instruments necessary for measurement of cardiac output. In this

thesis, I design and implement a knowledge based system which interprets simulated

ICU hemodynamic data. First, multiple ICU measurable data are gathered from a

cardiovascular simulator, including central venous pressure, arterial blood pressure,

pulmonary artery pressure, ventricular pressure, cardiac output, etc. Then I de-

termine the meaning of these measurements with reference to each pseudo-patient's

clinical problem, and suggest appropriate settings for the systemic parameters of the

cardiovascular simulator to simulate the state of the pseudo-patient. The system is

intended to help physicians to diagnose and track the disease of patients.

Thorough analysis of many clinical decision making systems has given us a clearer

picture of symbolic approaches to medical decision making. Additional requirements

for decision aids in intensive care areas include programs which can handle data that

are changing over time in order to provide tracking of the patient's status during the

course of the underlying disease or in response to therapeutic intervention. The long

term objective of this research is to understand how we can manage ICU data in a

more systematic way, and represent the patients status as a set of parameters in a car-

diovascular simulator. We seek to develop methods to improve general model-based

reasoning, and try to �nd a quantitative or at least a semi-quantitative reasoning

method.

1.1 Arti�cial Intelligence

The origin of arti�cial intelligence can be traced back to the earliest days of ma-

chine computation [16]. In 1843, Ms. A. A. Byron raised the question of whether

Babbage's proposed analytical engine, the �rst programmable computing machine,

might \think". Although not called \arti�cial intelligence" at that time, lots of work

was done on machine translation beginning in the early 1950s. It was in 1956 that

arti�cial intelligence began as a separate aspect of computer science at the famous

Dartmouth conference [5]. This period was named the prehistory period in [13], be-

cause few ideas could be experimentally tested. It extended to about 1960 because

17



there was no adequate computers available then.

Around 1960, the Dawn Age [13] started. People tended to believe that in ten

years, they could make computers as \smart" as people are. The Dawn Age was

marked by some limited successes. Patrick Winston named the period from around

1965 until about 1970 the Dark Period [13], because there was almost no progress.

Then from about 1970 to 1975, people started to think about how to impress the

public, industry, etc. That was when some application systems, such as MYCIN, came

out. It was called Renaissance [13]. This was followed by the Age of Partnerships

[13], a period when researchers started to pay attention to the research fruits coming

out from other domains and to form some important liaisons.

Then from 1980 till about 1990, it was Age of the Entrepreneur [13]. During that

period, lots of start-up companies focused on designing possible intelligent systems.

After 1990, with the failure of almost all of those intelligent-wanna-be companies, I

would like to call our present age the Age of Adjustment. The name comes from my

analogy to the stock market. We cannot expect that a tree can grow to the sky. The

potential and the expectation have been oversold by the media and the public. Now

it is time to come back to re-adjust our positions and expectations for both long term

and short term.

There has been tremendous progress in some of the sub�elds of arti�cial intelli-

gence during the past several decades. Some successes are very domain speci�c, such

as: XCON (or R1) developed by Digital Equipment Corporation and Carnegie Mellon

University for doing computer con�guration; PUFF developed by Stanford University

for analyzing certain lung problems. Other successes are less domain speci�c, such as

INTELLECT, a powerful interface between decision makers and databases.

But the problem is just what Gerald Sussman et al. said [3], \The �eld overall ...

is moving increasing attention to near-term applications, retarding progress toward

comprehensive theories and deep scienti�c understanding, and ultimately, retarding

progress toward developing the science needed for higher-impact applications." Part

of the reason for people to focus on near-term applications is the growing anxiety

and lack of trust in AI research among the public. As a result, researchers are very
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eager to show some progress to the public to make them feel more comfortable and

con�dent about arti�cial intelligence. If I may make another similar analogy, we can

say that the share holders (public) are too desperate about arti�cial intelligence. But

we can not blame the general public too much, because I think part of the reason

for people to have such high expectations is that some researchers have made and

continue to make rash predictions of rapid progress in the near future.

An interesting criticism comes from some neuroscientists who claim that computer

scientists want to make a machine, but they don't even know how the machine works.

In their opinion, most arti�cial intelligence researchers should either �nd new jobs

or go home to sleep and wait until they �gure out the mechanisms of the brain. An

easy counter-argument is that we did not have to understand aerodynamics to make

a plane.

Other criticisms come from some philosophers who claim that one cannot make

another equally intelligent system with oneself, just like one cannot lift oneself, no

matter how strong s/he is.

Personally, I am optimistic about arti�cial intelligence in the long term, but pes-

simistic in the short term. Some people even express the concern that arti�cial

intelligence is the biggest joke in the 21st century. The history of the development of

science tells us that AI is very unlikely to be a joke. Now it is time for us to focus

on solving some fundamental questions of arti�cial intelligence. Shimon Ullman et

al. said [3], \Traditional approaches to arti�cial intelligence have been largely orga-

nized around unconstrained algorithms or simplistic biological models. Both lack of

constraints and incorrect constraints have imposed show-stopping penalties." Many

biologists believe that the neural network in computer scientists' dictionary should be

erased or changed, because that is an over-simpli�ed model for neurons. Then should

we all go back to the bench and look for a more complicated biological model? It

is easy to measure the detailed activity of a single neuron, but measuring the sys-

temic activity of a neural region is very di�cult because we lack the needed powerful

computer hardware and bio-techniques. One thing I can be sure of is that we need

concrete, not super�cial, cooperation between scientists in di�erent �elds. We need
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some team work. It is very naive to try to form some national team to cope with this

problem, because after all this is not the same case as �ghting some epidemic disease

like AIDS. But forming some regional or institutional cooperative teams is certainly

feasible. Gerald Sussman, Patrick Winston, Shimon Ullman Kenneth Yip, and other

colleagues have recently formed a team to try to redirect our research toward a pro-

gram focused on understanding natural intelligence and building integrated intelligent

systems. To conclude my thoughts on prospects for arti�cial intelligence, I will say:

\The light is on the way, but far away."

1.2 Knowledge-Based System

There are three major research issues concerning the knowledge based paradigm [6]:

� Knowledge Representation: In which way should knowledge be represented as

symbolic data structures for computer use?

� Knowledge Utilization: What designs are available for the inference procedure?

� Knowledge Acquisition: How can we develop a systematic way for computers

to access the knowledge?

The earliest knowledge based systems date back to the mid 1960's [35]. One of the

conspicuous systems was MACSYMA, developed by the Mathlab Group at Project

MAC at M.I.T. MACSYMA can be used to provide a very broad range of symbolic

computing capabilities, such as integration, power series and support for manipu-

lating matrices [35]. Another major early expert system is DENDRAL, developed

by Stanford University and used to determine the three dimensional structure of a

chemical compound from its chemical formula and some other information.

The success of those early expert systems boosted the development of other expert

systems. In [10], Feigenbaum reported that there were about 1500 expert system

applications in actual use and a few thousand more in �eld testing. Despite the

broad range of applications and di�erent domains, these systems focus on several

central tasks [35]:
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� Diagnosis: Focus on how to get a reasonable explanation for some abnormal

values of observables. Examples include medical diagnosis, etc.

� Selection: Focus on how to make intelligent selection. Examples include insur-

ance, credit authorization, etc.

� Con�guration and planning: Focus on how to complete a partial design or adjust

a complete design to meet some constraints. Examples include XCON.

Parallel to the development of arti�cial intelligence, knowledge-based systems are

also facing some fundamental problems [35]:

� Fragility of Encoded Knowledge: How to incorporate common sense knowl-

edge into the system? How to avoid common-sense-violating behavior? One of

the biggest issues here is that human beings have too much common sense to

explicitly encode in computers.

� Complexity in the Real World: Many systems work well for straightforward

problems but fail on the more complicated ones.

� Sources of Better Models: In many domains, we lack the ability to capture or

design the depth and breadth of the domain knowledge needed to allow the

computer to produce expert behavior.

Reviewing these problems, we may feel that we actually know too little about

ourselves, about our learning process, about our knowledge storage forms, etc. Do

we believe that the storage form of the knowledge in our brain is kind of synapse

connection, chemical compound di�usion or something else? One may argue that

probably the reason why the computer is having problems with common sense and

complexity is that the computer was made too fast to use. Human beings develop

common sense after living in society for about 20 years. Imagine a scenario, in which

we put a computer with a new-born kid together, and each time when we teach this

kid something, we will try to send the same knowledge to the computer. Would this

be enough to develop an intelligent machine? But the major problem here is that
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most of the time, we will have trouble teaching computer to learn something new and

abstract. Typically for the common sense knowledge, we do not know how to extract

the features of the common sense knowledge.

1.3 Arti�cial Intelligence in Medicine

It has long been recognized that computers could be put to bene�cial use in the

medical �eld. As early as the mid 1950's, physicians and computer scientists had

recognized that computers could be used to assist in making clinical decisions and

potentially to implement automatic decision making systems. There are several gen-

eral approaches [13]:

� Flowcharts: Encode a serial description of actions which good physicians will

take.

� Large Clinical Data Base: Search among previously studied cases and match

the current case.

� Probability Theory: Based on the observable data, derive the probabilities of

several explanations.

But starting in the 1970's, scientists involved in computer-based reasoning began

to recognize the potential bene�ts of applying symbolic reasoning techniques in clini-

cal domains [33]. The �rst medical reasoning program, known as the MYCIN System

[32], adopted symbolic processing techniques largely in response to a conviction that

computer-based consultation systems, in order to be accepted by physicians, should

be able to explain how and why a particular conclusion had been derived [32]. Sub-

sequently, a series of additional medical application programs have been created. For

example, the PIP [28] (Present Illness Program) is designed to simulate human clin-

ical cognition and the INTERNIST [27] diagnostic system of Pople and Myers is a

computerized diagnostic program which emphasizes a very broad coverage of clinical

diagnostic situations. These systems were impressive, but their use revealed many
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more problems, such as inadequate criteria for deciding when a diagnosis is complete

[36], and the need for better representation of anatomical and physiological medical

knowledge [17].

Although several expert systems were developed for medical problem solving dur-

ing the past couple of decades, AI has failed to make a signi�cant impact on health

care delivery [37]. First of all, most initial e�orts in arti�cial intelligence in medicine

(AIM) were focused on developing automated diagnosis systems, which make medical

professionals nervous and unwilling to cooperate [37]. Other reasons are the com-

plexity of medicine itself, including the complexity and inherent variability of human

anatomy and physiology, and our lack of understanding of the medical decision pro-

cess on a cognitive level. With the general dim outlook of arti�cial intelligence, AIM

is also facing its greatest challenge. We must make some applicable systems to please

society. Now AIM is focusing to a greater extent on knowledge management and

intelligent advice-giving instead of the ambitious task of automated diagnosis. It is

much easier to generate some advice than to replace physicians, both scienti�cally

and socially.

In the past several years, there has been a rise in AIM activity. Some of the

reasons for the increased activity are the increase in computer power and a rise in

physicians' interests in computer technology. Due to the increasing demands of infor-

mation processing that continue to challenge physicians, they have come to demand

computer technology for patient care purposes. Therefore, the development of meth-

ods to manage endless streams of data and to assist in making decisions using these

vast sources of information are among the top priorities of AIM researchers [32]. On

the other hand, signi�cant progress has been made in model-based reasoning, mainly

due to the development of theories and methods for qualitative modeling of physical

devices and systems. Several model-based computer programs have been devised in

medical AI, such as AI/MM [20] (dealing with a mathematical model of renal physi-

ology), LOCALIZE [11] (dealing with the localization of lesions within the peripheral

nervous system), The Heart Failure Program [21] (reasoning about the function of

the cardiovascular system), etc.

23



The current problem of AIM is that with our continued lack of fundamental under-

standing of the reasoning process, how far can AIM go? If we know that intelligence

can be represented or replaced by pure calculation, then we believe, theoretically,

that computers can replace or simulate the thinking process of human beings. Even

so, applying arti�cial intelligence techniques to the medical system would bring some

extra concerns which do not exist in other domains:

� Cost of the Computation: Obviously, we must set a time limit for running

computers when we need real-time responses. For example, we can not wait a

day for the computer's results in ICU areas.

� Legitimization: How to let those intelligent pseudo-doctors go through the le-

gitimization process? If the wrong diagnosis happens, who will be responsible?

� Social Acceptance: Patients may just refuse to be seen by those intelligent

pseudo-doctors, because they feel more comfortable in dealing with physicians

or nurses personally.

1.4 Background and Motivations

Twenty years ago, ICU care focused solely on the assessment of vital signs and lab-

oratory values. Today, routine intensive care involves a great variety of monitoring

devices, infusion pumps, drug-administration systems, sophisticated ventilators, etc.

The responsibilities of ICU sta�s are complex [31]; they usually assess more than 50

measurements, laboratory values, and physical �ndings, etc. Also, most of the current

medical monitoring systems include built-in alarms, and permit users to change the

alarm limits. However, these automated alarms operate independently, and are so

unaware of the clinical context that they have a high rate of false alarms. ICU sta�s

may delay their response to alarms that are frequently in error, or even ignore them

[24].

The large amount of monitored ICU data may create information overload, which

leads to errors and mishaps in ICU care. There are occasional tragedies, most of which
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are due to human error, reported in ICU care. In [1], Abramson estimated that about

90 of 150 adverse occurrences in a surgical ICU were caused by human error. We may

also �nd the similar results regarding human errors which happened in ICU care

[29]. So we may expect that with the development of medical instruments, more and

more clinical data are going to be presented to ICU sta�s. So information overload

will become an increasingly serious problem unless better methods are designed to

organize and present the data to the clinicians. Relative to the rapid development of

medical instruments and tests, the slow progress of information process and synthesis

may impede the overall advancement of health care. Fortunately, computer based

access to ICU data has made it possible for researchers to analyze large databases

and to create statistical prediction models which can be used to qualitatively evaluate

and predict the status of patients, such as APACHE (Acute Physiology, Age, Chronic

Health Evaluation), which predicts short-term survival in the ICU.

So far, most of the intelligent alarm systems have failed to interpret the meaning of

changes of multiple physiologic variables for the overall clinical context. Those alarms

usually only highlight important events. To perform an overall clinical context-based

interpretation will require a model for ICU patients, so that we can compare the

current status of patients with respect to their previous status in an overall clinical

context, instead of only focusing on one or two physiological signals.

1.5 Related Work

In the early 1980's, Larry Fagan developed an expert system called VM (Ventilator

Manager). VM is designed to interpret on-line quantitative data in the ICU [9]. It

was able to produce interpretation of physiological measurements over time. Since

then, a number of approaches have been developed to interpret ICU data [12]. In

intensive care areas, automated methods that monitor the hemodynamic status of

patients must reason about and respond to changes in large amounts of clinical data,

such as blood pressure, heart rate, cardiac output, etc. Many researchers have devel-

oped techniques to interpret ICU data [12]. Generally, we can divide these techniques

25



into two categories: numeric and symbolic methods. The numeric methods are rea-

soning processes for providing quantitative analysis; and symbolic methods deal with

qualitative analysis. In intensive care areas, the clinical context includes data that are

both numeric (such as that the arterial blood pressure is 120/80 mmHg) and symbolic

(such as the interpretation of an echocardiogram). Other programs included qualita-

tive information in the interpretation of patient data by applying rule-based symbolic

models. The GUARDIAN project, for example, implements an adaptive intelligent

agent to reason about monitored ICU data within the real-time constraints of ICU

care. Mathematical models are also powerful tools for simulating the quantitative

time-dependent behavior of complex, dynamic physiologic systems. Mathematical

models that include physiologic concepts and feedback mechanisms allow researchers

to study interactions among physiologic systems.

We believe that qualitative and semi-quantitative analyses for patients in the

ICU are very important when we try to estimate the parameters that describe a

patient's physiologic state. We developed a method for �nding patient-speci�c model

parameters of detailed mathematical models. The patient-speci�c model parameters

will be presented to the physicians to illuminate the fundamental pathology and to

suggest patient-speci�c treatment recommendations.

1.6 Overview of Thesis

This introductory chapter has brie
y discussed the development and the current sta-

tus of arti�cial intelligence, knowledge-based systems and the development of the spe-

ci�c domain | arti�cial intelligence in medicine. We talked about the background

and the motivations of this project, and also gave some background about related

work.

The remainder of this thesis is organized as follows:

� Chapter 2 describes the medical domain associated with this work, that is ICU

patient care. Speci�cally, it describes some cardiovascular patients. An example

case is also included for illustration.
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� Chapter 3 describes the tool, a cardiovascular simulator, used in the research.

It gives an overall picture about the structure of the hemodynamic model and

barore
ex model, which are used in the simulator. Some example cases to

simulate cardiovascular patients are also included.

� Chapter 4 details the analysis of the reasoning model. First, we talk about the

homotopy method, which is the method we used when we started the research.

Then the method used in our current system is elaborated.

� Chapter 5 describes the evaluation of the system. What is our ideal system?

How do we evaluate its performance? Finally, we lead to the discussion of the

question | What is acceptable performance?

� Chapter 6 lists the accomplishments, limitations, practical considerations and

future directions of this work.
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Chapter 2

Domain Knowledge

An intensive care unit is de�ned by its ability to provide the enviroment, facilities,

and personnel for the care of severely ill patients. The important features required of

such a unit are listed as follows [39]:

1. High nurse-to-patient ratio

2. Ready accessibility of physicians

3. Ability to provide invasive hemodynamic monitoring

4. Availability of respiratory support techniques

5. Ability to provide supervised intravenous infusions of pharmacologic agents

In severely ill patients, the interrelationship between di�erent physiological sys-

tems must be noticed. ICU sta� should not focus on one component of the illness,

even if that component is predominant and may yield a therapeutic approach. Usu-

ally, management of patients in the ICU presents lots of dilemmas. For example,

treatment directed to reduce the pulmonary capillary wedge pressure in patients with

adult respiratory distress syndrome may adversely a�ect renal and central nervous

system perfusion. On the other hand, increasing the pulmonary capillary wedge pres-

sure to optimize cardiac output in a patient with ischemic heart disease may result in
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non-cardiogenic pulmonary edema. In most cases, ICU sta� must synthesize an over-

all diagnostic and treatment strategy that considers the views of various specialists

with a narrower focus and then make some compromise.

2.1 ICU Patient Care

Most ICU areas have a very general orientation, treating almost all types of severely ill

patients. Because of the sickness of ICU patients, ICU units require clear delineation

of administrative and medical guidelines of authority and responsibility. Therefore,

a general guideline for admission and discharge of patients is required. The exis-

tence of such policies reduces the apparent ambiguity often inherent in the di�cult

environment of a ICU and enables prompt decision making by ICU sta� [39].

An ICU usually can provide continuous and often invasive measurements of respi-

ratory and hemodynamic status for severely ill patients. The complexity of monitoring

systems varies considerably, it can range from simple electrocardiographic monitoring

with only a real-time screen display to automated \closed loop" systems to regulate

intravenous infusions of 
uids and drugs.

The complications of intensive care usually are di�cult to detect from the illness

[39]. For example, cardiac arrhythmias and gastrointestinal hemorrhage are very

common in ICU patients, but they may or may not necessarily relate to the care in

the ICU. However, some complications are straightforward and clearly related to an

intervention taking place in an ICU. For example, ventricular tachycardia (VT) can

occur during the passage of a Swan-Ganz catheter through the right ventricle.

In addition to patient-related complications, the ICU care environment can also

stress ICU sta� psychologically. There have been many reports that the negative

psychologic e�ects of working under great high pressure conditions can cause ICU

sta� \burn-out".
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2.2 Respiratory Monitoring

Usually, as a minimum, respiratory monitoring should include measurement of res-

piratory rate and periodic measurement of pressure of oxygen (PaO2 ), pressure of

carbon dioxide (PaCO2
), and arterial blood pH. Respiratory rate can be measured

and recorded automatically in non-intubated patients using impedance devices. Both

respiratory rate and tidal volume delivered by the ventilator (VT ) can be monitored

in intubated, spontaneously breathing patients using a spirometer and appropriate

alarms [39].

For the mechanically ventilated patients, it is essential to monitor respiratory

rate, exhaled VT , and airway pressure. We may also use other monitoring techniques,

such as breath by breath measurements of respiratory system compliance, volume-

pressure, volume-
ow relationships, and measurements of FIO2 and exhaled carbon

dioxide and oxygen. These measurements may provide some useful information such

as early indications of changes in PaCO2
, but their usefulness remains uncertain.

The transcutaneous PO2
and PCO2

that are indirect re
ections of PaO2 and PaCO2

can be measured continuously using heat skin electrodes. The measurement of PO2

remains uncertain for adults. Pulse oximeters are noninvasive monitoring devices

that measure and record oxyhemoglobin saturation. This measurement is useful in

some clinical situations, such as evaluating oxygenation during sleep and during bron-

choscopy procedures. Indwelling catheter electrodes for measurement of PaO2 and

PaCO2
and arterial pH have been used but have some technical limitations [39].

There are four major complications related to respiratory support in ICU areas

[39]:

1. Oxygen Therapy is administered by external devices. It may cause the fol-

lowing side e�ects:

� discomfort related to the device or to administration of dry gas, which can

be managed by changing the device or improving the humidi�cation

� �res and hypoventilation because of uncontrolled administration of oxygen

in patients
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2. Arti�cial Airways are associated with a number of complications. The im-

mediate and long term injury to nose, hypopharynx, larynx or trachea, can be

caused by an endotracheal tube. It may also cause pulmonary infection.

3. Tracheostomy avoids the problems of an endotracheal tube because it bypasses

the upper airway. However, tracheostomy has more disadvantages than advan-

tages. Problems can include hemorrhage, mediastinal and tracheal stenosis. It

may also cause pulmonary infection.

4. Mechanical Ventilation can have overventilation and underventilation prob-

lems. Oxygen toxicity usually occurs in patients being mechanically ventilated

with gas mixtures containing high concentrations of oxygen [39].

2.3 Hemodynamic Monitoring

Since our project focuses on the interpretation of hemodynamic data, a detailed

description of hemodynamic monitoring in the ICU is worthwhile. Most ICUs have

the basic capacity to monitor and record heart rate and rhythm, venous pressure,

pulmonary arterial pressure, and systemic arterial pressure. Many units also have

the instruments to measure cardiac output.

Clinically, the following monitoring is usually done in ICU areas [39]:

1. Electrocardiagraphic Monitoring is of great value in patients with speci�c

cardiac disorders such as acute myocardial infarction or cardiac arrhythmia.

Also, because it is easy and relatively inexpensive, ECG monitoring has been

widely used in ICU areas. The automated detection of heart rate and rhythm is

generally an integral part of the monitoring systems. Abnormalities in heart rate

or rhythm may signal some worsening of respiration, electrolyte abnormalities,

and other noncardiac problems.

2. Systemic Arterial Pressure Monitoring is obviously of great value. Changes

in blood pressure can be detected immediately and therefore can enable beat by
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beat assessment of the e�ects associated with the changes in ventilatory pattern.

Note that beat to beat variations in systemic arterial blood pressure may not

warrant speci�c intervention. The usual technique to monitor systemic arterial

blood pressure is to insert percutaneously a Te
on catheter into an accessible

artery. The catheter is connected through a stopcock to a rigid connecting tube

that in turn is attached to a transducer.

3. Central Venous Pressure Monitoring is useful in assessing the course of

right ventricular failure, right ventricular infarction and tricuspid regurgitation.

The usual technique to monitor central venous pressure is to insert percuta-

neously a catheter into either the subclavian or the external or internal jugular

vein.

4. Pulmonary Arterial Pressure can be measured by a Swan-Ganz catheter.

This catheter has a balloon just proximal to the tip and a separate lumen

for in
ating the balloon. The Swan-Ganz pulmonary catheter can provide mea-

surement of pulmonary arterial blood pressure (PPA), pulmonary arterial wedge

pressure (PPAW ), central venous pressure (CVP) and cardiac output. However,

there are some problems with the measurement of PPA. Because of the oscilla-

tions in pleural pressure on the measured intravascular pressure, the PPA signal

must be carefully analyzed in order to obtain an accurate value.

5. Cardiac Output can be obtained using the thermistor equipped Swan-Ganz

catheter. In addition, the instrumentation for performing thermal dilution pro-

cess and a computer for processing dilution measurements and calculating car-

diac output are required.

Based on the above measurements, ICU sta� then use Table 2.1 to guide an

understanding of a patient's situation.

There are three principal types of problems associated with hemodynamic mon-

itoring: local complications related to vascular access, passage and �nal positioning

of the catheter, and inappropriate decision making based on inaccurate data or in-
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Situation �PSA �PRA �PPA �PPAW C:O: PV R SV R

Hypovolumic Shock # # # # # " "

Septic Shock # # # # " # #

Cardiogenic Shock # " " " # " "

Pulmonary Embolism # " " !# # " "

Airway Obstruction ! !" " ! ! " !

Right Ventricular Infarction # " ! #!" # ! !"

Cardiac Tamponade # " " " # ! "

End Stage Liver Disease # !# !# !# " ! #

Table 2.1: Patterns of Hemodynamic Abnormalities in Severely Ill Patients, from
[39]. �PSA: Mean Systemic Arterial Pressure; �PRA: Mean Right Atrial Pressure; �PPA:
Mean Pulmonary Arterial Pressure; �PPAW : Mean Arterial Wedge Pressure; C:O::
Cardiac Output; PV R: Pulmonary Vascular Resistance; SV R: Systemic Vascular
Resistance

complete data or misinterpretation of information from the monitoring device. The

usual complications related to hemodynamic monitoring are listed as follows:

� Systemic Arterial Pressure: The most frequent complication related to SAP

monitoring is the formation of a hematoma at the site of the arterial puncture.

The hematoma may result in the peripheral nerve damage.

� Central Venous Pressure: The complications of CVP monitoring include air

embolism, infection and venous thrombosis.

� Pulmonary Arterial Pressure: All of the complications associated with CVP

monitoring can happen here. In addition, PAP monitoring can cause a distur-

bance of cardiac rhythm or conduction or both. Premature ventricular contrac-

tions occur very commonly when the catheter passes through the right ventricle.

2.4 An Example Case

An example case in the domain of ICU patients with severe cardiovascular problems

is shown below [7]:

The patient is a 37 year old woman with a positive history for HIV and intravenous

(IV) drug abuse. She was brought into an ICU with a fever of 104F, extreme lethargy,
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scant urine output, and a tender abdomen, especially in the right upper quadrant.

She was noted to be tachycardic, hypotensive, and tachypneic. After being accepted

to the ICU, her systemic arterial pressure, central venous pressure, right ventricular

pressure, pulmonary arterial pressure, and pulmonary arterial wedge pressure were

continuously recorded for assessment.

In the following chapters, we will examine the process for automated diagnosis and

propose an iterative method for setting the systemic parameters of a cardiovascular

simulator to simulate the status of ICU patients.
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Chapter 3

Cardiovascular Simulator

Automated methods that provide treatment advice require a model of physiology to

assist them in the interpretation of ICU patient data. A lumped-parameter cardio-

vascular model is used in our expert system to represent the patient's hemodynamic

state.

The cardiovascular simulator (CVsim) is a dynamic computer simulator of hu-

man cardiovascular hemodynamics [7], originally intended for students of physiology

and medicine in Harvard-MIT Division of Health Sciences & Technology (HST). It

is implemented on SUN workstations running the X Window System, allowing stu-

dents to perform a variety of measurements in a real-time simulated cardiovascular

system, not all of which would be possible in an animal laboratory. The simulation

is based on the lumped-parameter mathematical model taught in the Cardiovascular

Pathophysiology course (HST090) in HST.

The model is shown in Figure 3-1. It includes four major components: left heart,

systemic circulation, right heart, and pulmonary circulation. Each side of the heart is

modeled by a variable capacitor (representing the pumping action of both atrium and

ventricle), two diodes representing the AV and arterial valves, and out
ow resistances.

There are 23 parameters for de�ning the status of the simulator; their normal values

are shown in Table 3.1.
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Figure 3-1: Circuit Diagram Equivalent of Lumped Parameter Model

3.1 Background

Several cardiovascular system models have been put forward since 1950's [23]. In

1959, the �rst model of the cardiovascular system was formulated by Grodins [14]. In

that model, he de�ned the steady state operation of the ventricle, then combined two

ventricles with a pulmonary circuit branch to simulate the e�ects of Starling heart-

lung relationship. This work was considered as the starting point for integrative

physiology [7]. Then in early 1960's, a six node electrical circuit model was proposed

by Defares and his colleagues [8]. In that model, each node consists of a capacitor

to ground and is connected to two adjacent nodes by impedances. The varied left

and right ventricular capacitances were used to simulate the time varying elastance

property of contraction. Early in 1970's, Dr. Arthur Guyton developed re�ned com-
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Parameter Normal Value
Heart Rate 72beats/min
Total Blood Volume 5000ml
Transthoracic Pressure -4mmHg

Capacitances:(ml/mmHg)
Left Ventricular Systolic Capacitance 0.4ml/mmHg
Left Ventricular Diastolic Capacitance 10.0ml/mmHg
Right Ventricular Systolic Capacitance 1.2ml/mmHg
Right Ventricular Diastolic Capacitance 10.0ml/mmHg
Systemic Arterial Capacitance 1.5ml/mmHg
Venous Capacitance 100.0ml/mmHg
Pulmonary Arterial Capacitance 4.3ml/mmHg
Pulmonary Venous Capacitance 8.4ml/mmHg

Zero-Pressure Volumes:(ml)
Left Ventricular Zero-Pressure Volume 15.0ml
Right Ventricular Zero-Pressure Volume 15.0ml
Systemic Arterial Zero-Pressure Volume 715.0ml
Systemic Venous Zero-Pressure Volume 2500.0ml
Pulmonary Arterial Zero-Pressure Volume 90.0ml
Pulmonary Venous Zero-Pressure Volume 490.0ml

Resistances:(PRU=mmHg*sec/ml)
Systemic Arterial Resistance 1.0PRU
Systemic Venous Resistance 0.01PRU
Pulmonary Resistance 0.08PRU
Right Ventricular Out
ow Resistance 0.003PRU
Left Ventricular Out
ow Resistance 0.006PRU
Left Ventricular In
ow Resistance 0.01PRU

Table 3.1: Normal Values of the Input Parameters in CVsim

puter models of the cardiovascular system, and a graphical approach for analyzing

the regulation of the cardiac output based on the model [15].

Historically, there were several hemodynamic models designed mainly for teach-

ing. In [2], Beeuwkes �rst used the analog computer in the hemodynamics teaching

laboratory at Harvard Medical School. In 1978, Katz and his colleagues introduced a

real time digital computer model for hemodynamics [18]. In his model, he simulated

a Windkessel circulation, which is an over-simpli�ed model in hemodynamic analysis.

In 1982, Campbell et al. [4] developed a �ve component model for hemodynamics. In
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that model, he incorporated linear vascular elastances , resistances and time-varying

ventricular capacitances proposed in [34].

In 1984, as part of the Athena project at M.I.T., Prof. Roger Mark proposed to

design a cardiovascular model as a teaching tool for Quantitative Physiology and Car-

diovascular Pathophysiology courses to provide students a quantitative understanding

of the hemodynamics system. Based on Robert Sah's model shown in Figure 3-1,

Timothy Davis implemented it the X window system in 1990 as his Master's project.

3.2 Hemodynamic Model

In analyzing the function of the cardiovascular system, it is convenient to represent

the hydraulic properties of the various elements in terms of electrical circuit analogs.

Table 3.2 lists the hydraulic variables and their electrical analogs.

Hydraulic Variable Electrical Variable
Pressure (P) Voltage (V)
Flow (J) Current (i)
Volume (Q) Charge (q)
Resistance R=�P

J
Resistance R=�V

i

Capacitance C=�Q
�P

Capacitance C=�q
V

Table 3.2: Analog between Hydraulic System and Electrical System

First, let us focus on the peripheral circulation. We may characterize the large

arterial vessels as a single lumped capacitance element, Ca. The microvasculature,

which includes arterioles, capillaries and venules, can be characterized as a single

resistance Ra. The main venous branches can be represented by a lumped venous

capacitance Cv. In addition, we use a resistance Rv to simulate venous return. Then

we get a simpli�ed electrical circuit model for peripheral vasculature as shown in

Figure 3-2. Actually, the venous resistance is distributed throughout the whole

venous system. So a more accurate model of the venous system would be a distributed

system for the capacitances and resistances.
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Figure 3-2: Electrical Circuit Model of Peripheral Vasculature

Now let us consider a model for the heart-lung unit. Then later on, we can

integrate this unit with the peripheral system to form the model of the whole car-

diovascular system. In [34], Sagawa et al. stated that if we examined a series of

ventricular pressure-volume loops for a range of di�erent preloads and afterloads, we

would �nd that the end systolic points all lie on a straight line. The diastolic pres-

sure volume relation may also be described by a straight line. Now we may use a

variable capacitor to simulate the behavior of left ventricle. Considering the blood


ow direction in the heart and the function of the cardiac values, we may add two

diodes in the circuit. In addition, an output resistance is added to the left ventricle

to simulate the impedance of the blood passing through the aortic valve. Then we

get the electrical circuit model of the left heart as shown in Figure 3-3.

P
D D R

P

C

f
li

l

lo
lo

a

Figure 3-3: Electrical Circuit Model of Left Ventricle

The pulmonary circulation and the right ventricle can be modeled similarly. Com-

bining the four functional units, we get a lumped parameter model shown in Figure

3-1. The normal values of the resistances and the capacitances in Figure 3-1 can be

estimated by the relative resistance and volume in a normal person's cardiovascular

system.
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3.3 Barore
ex Model

In order to generate a more realistic simulation, the CVsim adds a barore
ex model to

simulate the major cardiovascular feedback system. The primary goal of the central

regulatory mechanisms is to maintain arterial blood pressure PA within a very narrow

range. The arterial barore
ex is the principal mediator of short-term control. The

control system preserves PA by feeding back transduced values of PA. A feedback

and control diagram is shown in Figure 3-4.

Heart

Vasculature

Arterial

Barorecptors

set

PA

vagus

sympathetic

PA
ANS

+

-

Figure 3-4: Feedback and Control Diagram of Barore
ex System. The autonomic
nervous system (ANS) receives pressure di�erence then trigger the adjustment of the
hemodynamic state.

In our research, since we always assume that we deal with the data when patients

are in stable state, not in transient state, and thus we may turn o� the barore
ex.

3.4 Some Example Cases

By using CVsim, we can simulate the hemodynamic state of di�erent ICU patients:

� The primary e�ect of mitral stenosis is increased Rli. The compensatory e�ects

of mitral stenosis can be simulated by increasing heart rate, increasing total

blood volume, and increasing the contractility of the left and right ventricles.
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� The primary e�ect of vasodilation is decreased Ra. The compensatory e�ects

can be simulated by increasing heart rate, increasing total blood volume, and

increasing the contractility of the left ventricle.

� The primary e�ect of hypertension is increased Ra. The compensatory e�ects

can be simulated by increasing heart rate, decreasing venous zero-pressure vol-

ume, decreasing left ventricular diastolic capacitance, decreasing left ventricular

systolic capacitance, decreasing venous zero-pressure volume, and increasing ar-

terial resistance.

� The primary e�ect of massive bleeding is decreased total blood volume. The

compensatory e�ects can be simulated by increasing heart rate, and decreasing

left ventricular systolic capacitance.

� The primary e�ect of septic shock is decreased Ra. The compensatory e�ects

can be simulated by increasing heart rate, increasing total blood volume, and

increasing the contractility of the left ventricle.

� The primary e�ect of tricuspid stenosis is increased Rv. The compensatory

e�ects can be simulated by increasing heart rate, and increasing total blood

volume.

In the following chapters, we will develop a method to automatically identify

the actual parameters of the model based on measurable data such as arterial blood

pressure, central venous pressure, cardiac output, etc. Due to the limitation of the

con�guration of the circuit, there are some patient cases which are not possible to sim-

ulate, such as mitral regurgitation, tricuspid regurgitation, ventricular septal defect,

etc.
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Chapter 4

Reasoning Model

In this chapter, we will talk about the methodology used in our expert system. Tra-

ditionally, the �rst issue coming out of building an expert system is how to organize

and represent knowledge. That is a typical scenario when people used to give qual-

itative results. In recent years, with the rapid development of mathematical tools,

many researchers started to use pure or mainly pure numerical methods to try to get

quantitative results. During the investigation of our current system, we tried unsuc-

cessfully to use numerical methods, such as the homotopy method, to quantitatively

solve the problem. Eventually, a new non-numerical method was proposed based on

the analysis of medical decision making process.

4.1 A Typical Expert System

The process of building an expert system is often called knowledge engineering. It

typically involves a special form of interaction between the knowledge engineer and

experts in speci�c domains. The knowledge engineer \translates" the experts' knowl-

edge, procedures, and strategies for problem solving into a computer program, as

shown in Figure 4-1.

The ideal result will be a computer program successfully solving problems in the

same manner as human experts. The heart of an expert system is the corpus of knowl-

edge that accumulates during system building. In expert system design, the main role
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Expert

Knowledge
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Expert

System

Queries, problems

Answers, solutions

Strategies,
rules-of-thumb,

domain rules

Figure 4-1: Knowledge Engineering, from [38]

players are the expert system, the domain expert, the AI consultants, the knowledge

engineer, the expert system building tools, and the user. Their relationships to each

other are shown in Figure 4-2.

The domain expert is a knowledgeable person with a reputation for producing right

results in a speci�c domain. The knowledge engineer is a person with a background

in AI, and is in charge of collaborating with domain expert and AI consultants. The

AI consultants are respected persons in AI domain, who can always provide guidance

to the knowledge engineer regarding general expert system questions. In my research,

Prof. Roger Mark has been serving as the domain expert in cardiovascular diseases,

Prof. Peter Szolovits has provided some interesting thoughts in searching for the

methodology for the system as the AI consultant. I am the knowledge engineer. The

system platform is the ANSI C programming language on a normal UNIX system.

4.1.1 Representation of Knowledge

The heart of an expert system is its corpus of knowledge, as we mentioned before.

The three most widely used knowledge representation in current expert systems are

rules, semantic nets, and frames.
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Figure 4-2: Roles in Expert System Building, adapted from [38]

� A rule-based representation uses the common statement IF ... THEN ....

The matching of rule IF portions to the facts can produce inference actions.

Rules provide a natural way to describe problem-solving strategies. We can

think about a scenario when we see a doctor and tell him what the problem is.

For example, we might state:

\I have abdominal pain ..., I have ..."

The doctor will make the diagnosis based on our statements and some additional

lab tests. How do doctors make their diagnosis? One way to think about is

that they usually come up with some reasoning processes like:

\ ... because he has abdominal pain ... he may have stomach problems ..."

Actually, the physicians' inference actions result from a rule such as:

\If there is abdominal pain, then there is a possibility for the patient to have
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stomach problem."

This reasoning technique is called forward chaining, because the system uses

information on the left-hand side (IF part) to generate new information on the

right side (then part). In the situation of a very large expert system with many

rules, sometimes, backward chaining is more cost e�ective. With this inference

method, the system starts with what it wants to verify and only executes rules

that are relevant to proving it.

� A semantic-net-based representation uses a semantic net to represent knowl-

edge based on a network structure. A semantic net consists of nodes connected

by arcs that describe the relations between nodes.The isa and has-part relations

are basic relations in a semantic net. Semantic nets are very useful to represent

knowledge in domains using taxonomies [38].

� A frame-based representation uses a frame to represent knowledge. A frame

is very much like a semantic net. In a frame, the topmost nodes represent general

concepts, and the lower nodes represent some instances of the concepts. The

concept at each node is de�ned as a collection of attributes and slots that are

values of those attributes. Each slot can have several procedures attached to it.

There are three commonly used procedures: If-added, If-removed, and If-needed

procedures [38].

4.2 Problem Statement

In our present study, we used the CV simulator to generate \pseudo-clinical" test

data which was representative of a variety of disease states. This approach simpli�ed

the task of designing the expert system, and also provided a quantitative method to

evaluate the performance of our expert system. Since the actual input parameters of

the CV model are known for each test case, they can be compared directly with those

derived from the expert system.

The CV simulator is initialized by specifying each of the 23 model parameters.
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The simulator then generates the resultant pressures, 
ows, and volumes at all sites in

the CV system. The raw waveforms are then pre-processed by the \feature-detector"

which derives a set of 13 clinically observable parameters (features) such as heart

rate, mean arterial blood pressure, pulse pressure, mean central venous pressure,

pulmonary arterial wedge pressure, cardiac output, etc. (Note that clinically non-

observable parameters are not included in the feature set.) This feature set is used to

characterize the physiologic data generated by the model. The diagram of generating

and pre-processing data is shown in Figure 4-3.

Controlled

Parameters

CV

Simulator

Feature

Detector

Simulated Waveforms

Data fed to

the expert system

Figure 4-3: Diagram of Generating and Pre-processing Data

The input to the expert system is the 13 dimensional feature set from the patient

or \pseudo-patient". Now the task of our expert system has been de�ned as how

to derive a set of 23 control parameters for the CV model which result in output

waveforms and features which match those of the patient.

4.3 A Pure Numerical Method for Quantitative

Assessment

Since our task is to derive 23 control parameters for the CV model, we can think of

the problem as a 23 dimensional search problem. This led us to think about applying

some traditional pattern recognition methods to this problem.

In [40], in order to solve some non-linear algebraic equations, the homotopy

method was used. When we started to look for a good numerical method to do
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this 23 dimensional search, we applied the homotopy method to our problem. In the

following sections, I will start with an introduction to the homotopy method, then

discuss how we applied this method to our problem, and some lessons learned from

the work.

4.3.1 Introduction to the Homotopy Method

The concept of homotopy was originally introduced in topology. It is a very useful

concept in categorizing di�erent geometric shapes. Then this method was used in

computer vision research, typically in object recognition. Morgan et al. in [26] �rst

proposed to extend the homotopy concept into solving non-linear algebraic equations.

In algebra, they de�ne a homotopy as a schedule for transforming the start system (or

equations) into the target system (equations). The homotopy process can be written

as follows:

H(y; t) = (1� t)G(y) + tF (y) (4.1)

where G(y) is the starting system and F (y) is the target system. Here y represents

a set of variables. Suppose we know the solutions of G(y) (we can always assume so

because we can make up some algebraic equations with known roots) and we want to

get the solutions of F (y). Note that at t = 0, the solutions of H(y; t) = 0 are those

of G(y) = 0, and at t = 1 the solutions of H(y; t) = 0 are those of F (y) = 0. The

central idea of homotopy method is if we can track the changes of the solutions from

H(y; 0) to H(y; 1), we will be able to solve F (y), as shown in Figure 4-4.

Original Equations

H(y,0) = G(y)
Target Equations

H(y,1) = F(y)

Known Solutions Unknown Solutions

?

HOMOTOPY

Figure 4-4: Homotopy Method for Solving Non-linear Equations
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Using Eq. 4.1 to track a path from a known solution (y0; t0), we �rst predict the

solution for t = t0 +�t and then correct the prediction using Newton's method with

t �xed. For small �y and �t, the Taylor series of expansion for H gives:

H(y +�y; t+�t) �= H(y; t) + Jy�y + Jt�t (4.2)

where Jy and Jt are the Jacobians of H with respect to y and t. In the prediction

step, we have:

H(y0; t0) = 0 (4.3)

and

H(y0 +�y; t0 +�t) = 0 (4.4)

Then we can plug Eq. 4.3 and Eq. 4.4 into Eq. 4.2 and get:

�y = �J�1y Jt�t (4.5)

Since Eq. 4.5 is only an approximate solution, we correct the solution at the new

value of t by setting �t = 0 to get a correction step:

�y = �J�1y H(y; t) (4.6)

We can repeat the correction step several times till we feel comfortable with the

maximum error. Then we can incrementally increase t again, and go back to Eq. 4.2

and calculate the solutions under new t.

4.3.2 How to Apply the Homotopy Method to Our Problem

As we have discussed before, we can consider our problem as a 23 dimensional pattern

search problem. By using the homotopy method, we can construct a system with

known input parameters. For example, we can always start from the normal CV
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simulator parameters. What we know is the output feature of patients or pseudo-

patients. We can incrementally make an e�ort to closely match the output features,

and meanwhile, track the changes of the CVsim control parameters. Ideally, we will

get the patient parameters setting at the end. The diagram is shown in Figure 4-5.

CVsim
Features

Detector

CVsim
Features

Detector

Normal

Parameters

Setting

Patient

Parameters

Setting

Normal Features

Patient Features

HOMOTOPYHOMOTOPY

Figure 4-5: Diagram of Homotopy Method for Searching the Pattern of Patients

In our system, suppose ~x = (x1; x2; � � � ; xN ) is a vector representing the input

systemic parameters of CVsim and ~y = (y1; y2; � � � ; yN) is a vector representing the

output features. The procedures of applying homotopy method is as follows:

1. Set a new ~yd, anticipate the new (�x1;�x2; � � � ;�xN )) by solving the linear

equations:

8>>>>>>>><
>>>>>>>>:

�y1 �
@y1
@x1

j~x�x1 +
@y1
@x2

j~x�x2 + � � �+ @y1
@xN

j~x�xN

�y2 �
@y2
@x1

j~x�x1 +
@y2
@x2

j~x�x2 + � � �+ @y2
@xN

j~x�xN

� � �

�yM �
@yM
@x1

j~x�x1 +
@yM
@x2

j~x�x2 + � � �+ @yM
@xN

j~x�xN

(4.7)

2. Let ~x0 = ~x+ ~�x.
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3. Run CVsim and get ~y0 = (y
0

1; y
0

2; � � � ; y
0

N).

4. Set �~y0 = ~y0 � ~yd.

5. Re�ne new ~x0 by solving the linear equations:

8>>>>>>>><
>>>>>>>>:

�y
0

1 �
@y1
@x1

j~x0�x
0

1 +
@y1
@x2

j~x0�x
0

2 + � � �+ @y1
@xN

j~x0�x
0

N

�y
0

2 �
@y2
@x1

j~x0�x
0

1 +
@y2
@x2

j~x0�x
0

2 + � � �+ @y2
@xN

j~x0�x
0

N

� � �

�y
0

M �
@yM
@x1

j~x0�x
0

1 +
@yM
@x2

j~x0�x
0

2 + � � �+ @yM
@xN

j~x0�x
0

N

(4.8)

6. Repeat step 2 to step 5 until satis�ed.

7. Check whether ~yd has reached the target ~yT , if yes, then stop; otherwise go back

to step 1.

One of the problems is that we do not have the @yi
@xj

function directly available.

We need to run CVsim to get a huge 23 dimensional look-up table to describe the

partial derivative function.

4.3.3 Some Lessons Learned

We implemented the homotopy method for solving the problem. Unfortunately, it

did not work as well as we expected. We have learned some lessons from it. There are

several concerns with using a pure numerical method on the model-based reasoning

system:

� The method works very well if only 1 or 2 systemic parameters have been

changed. This problem seems a traditional AI problem (System only works

for the simple cases). But the issue here is not that simple. The basic idea

of the homotopy method is more or less like a gradient method. What is the

disadvantage of using a gradient method to solve some non-linear problems? As

we all remember, the major concern is the local minimum vs. global minimum.

Of course, we can try to add some techniques, such as simulated annealing, to
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try to avoid the local minimum. Stimulated annealing allows the search to take

some uphill steps to escape from the local minimum. Theoretically, system will

escape from a local minimum, maybe after many steps. In realistic situations,

those techniques are not applicable because of time issues and stability issues.

� By using this numerical method, we must ask ourselves a question: how much

can we trust the CVsim? The reason why this comes out as an issue is that in

order to do the gradient based analysis, we need to get a huge partial derivative

look-up table. This look-up table can only be generated from running the

CVsim.

� The numerical method is always trying to minimize the total error. However,

at the same time, it ignores two main problems:

{ For each reasoning (moving) process, it does not follow some common

sense strategies. In other words, the method does not consider the real

physiological status. This is why it may give out some ridiculous answers.

{ As we will �nd out in the next chapter, the decrease of the total error of

the output features between two systems does not necessarily mean that

the input parameters are getting closer.

4.4 Design of the Current System

All is not lost with the failure of the homotopy method. It reminded us to look for

some less numerical and more heuristic methods to deal with the reasoning process.

Our goal is to produce quantitative interpretation or at least semi-quantitative inter-

pretation. Why is the quantitative analysis much more di�cult than the qualitative

analysis? If I make an analogy to the problem of searching for an apple in a room,

quantitative analysis means that we need to be able to �gure out not just the direc-

tion of the move, but also how much the move should be. Intuitively, it is almost

impossible to reach the apple by a single step move (we all have to move and then

look, then move, ...), unless we are very lucky. So in order to perform quantitative
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analysis, we can get some feeling about the design strategies from grabbing an apple

in a room. That is, the method must be iterative, must be able to tell me something

at each step, which is related to how far away toward our target after each move. In

other words, our expert system must be able to run CVsim iteratively, and search for

the best match. Then the diagram of the current system was put forward in [41], as

shown in Figure 4-6.

Initial Parameters

Set

Run

CVsim

Feature

Detector

Inference Engine
Knowledge

Base

Pseudo-patient Features

No parameter needs to be chamged

Change appropriate 

parameter(s)

Figure 4-6: Diagram of Our Expert System

We �rst establish an initial value for each of the systemic input parameters. Then

we run CVsim. From the output variables of CVsim, such as mean arterial blood

pressure, mean central venous pressure, systemic arterial pulse pressure, we use the
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inference engine to determine which input parameter(s) need to be changed in order

to decrease the di�erences between the outputs from CVsim and the pseudo-patient.

Again, after adjusting the input systemic parameters, we re-run CVsim. This iteration

process is continued until we feel satis�ed with the di�erence between the outputs

from CVsim and the pseudo-patient. The comparison between them is made by using

the following error function:

Ei =
jPseudopatient Output V alue� CV sim Output V aluej

Pseudopatient Output V alue

For example, the error function of the mean CVP (Central Venous Pressure) is

de�ned as follows:

Ecvp =
jPseudopatient mean CV P � CV sim mean CV P j

Pseudopatient mean CV P V alue

In fact, if we look at the Figure 4-6 and compare with the strategy we developed

in the homotopy method, we may notice that we actually inherited the concept of

homotopy. The only major di�erence is that we use heuristic methods to design the

inference engine instead of pure mathematical methods.

4.4.1 Initial Values of Systemic Parameters

In our system, we always start with calculating some computable systemic parameters,

including:

1. Heart Rate (beats/min).

2. Systemic Microvascular Resistance Ra (mmHg*sec/ml):

Ra =
Mean SABP �Mean CV P

Cardiac Output=60

ABP: Systemic Arterial Blood Pressure; CVP: Central Venous Pressure.
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3. Pulmonary Microvascular Resistance Rpa (mmHg*sec/ml):

Rpa =
Mean PAP �Mean PCWP

Cardiac Output=60

PAP: Pulmonary Arterial Pressure; PCWP: Pulmonary Capillary Wedge Pres-

sure.

4. Systemic Arterial Capacitance Ca (ml/mmHg):

Ca
�=

Stroke V olume

Pulse Pressure

Note that we do not calculate some resistances that look calculable, such as Right

Ventricular Out
ow Resistance. Theoretically, we can use

Rro =
Mean RV P �Mean PAP (when RV P > PAP )

Cardiac Output=60

to estimate Rro (PAP: Pulmonary Arterial Pressure, RVP: Right Ventricular Pres-

sure). The problem with the above formula is that the normal value of this resistance

is very small, equal to 0.003PRU. Assume that this person's cardiac output is nor-

mal (about 5000cc/min), then the mean pressure di�erence during systole between

pulmonary arterial pressure and right ventricular pressure will be:

0:003(mmHg � sec=ml) �
5000(ml=min)

60(sec=min)
= 0:25mmHg

We can not assume that in real clinical areas, 0.25mmHg is detectable. So unless

there is severe valvular stenosis symptom, I assume that these resistances are normal.

As a matter of fact, physicians usually make the decision about pulmonary valve

stenosis based on the instantaneous pressure gradient between the right ventricle and

the pulmonary artery.

There are also several parameters which do not change based on our assumptions.

They are:
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1. Transthoracic Pressure: The changes of the transthoracic pressure can change

the relative �lling pressure. Ignoring the changes of transthoracic pressure, we

eliminate the e�ects of the respiratory system. So our system can not be used

for the patients on ventilators.

2. All Zero-pressure Volumes: The changes of the zero-pressure volumes can be

compensated by changing the total blood volume, because from the hemody-

namic point of view, we are concerned with the e�ective blood volume (=total

blood volume - the summation of zero-pressure volumes).

3. Venous Capacitance: Clinically, incremental venous capacitance does not change

in most of the patient cases.

All of the remaining input CVsim parameters are initialized to normal default

values.

4.4.2 Flow Chart of the Reasoning Process

In our system, medical knowledge is represented as rules. We have two 
ow charts in

our system:

� Figure 4-7, Figure 4-8 and Figure 4-9 show the reasoning process for patients

with no valvular disease.

� Figure 4-10, Figure 4-11 and Figure 4-12 show the reasoning process for ana-

lyzing patients with possible mitral stenosis and/or tricuspid stenosis diseases.

To determine which 
ow chart the system uses for each patient, we start to run

our expert system while asking some questions, such as:

� Is there any diastolic murmur?

� Is there any sign of mitral stenosis from the echocardiogram?
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The detection of tricuspid stenosis is much easier than the detection of the mitral

stenosis, since we have the measurement of right ventricular pressure. We can make

the decision based on the instantaneous pressure gradient between the central venous

pressure and the right ventricular pressure.

4.4.2.1 Flow Chart for Non-valvular Disease Patients

Figure 4-7 shows the top level of the reasoning process. It always starts from checking

the di�erence of the cardiac output between the pseudo-patient and the CVsim. The

comparison gives three possible results:

� High means the cardiac output of the CVsim is higher than that of the pseudo-

patient.

� Equivalent means the cardiac output of the CVsim is within the same range

(5% for cardiac output) with that of the pseudo-patient.

� Low means the cardiac output of the CVsim is lower than that of the pseudo-

patient.

Since we assume there is no valvular disease in this 
ow chart, there is no action to

change the input and output 
ow resistances. The possible changing systemic param-

eters are: total blood volume, left ventricular systolic capacitance, right ventricular

systolic capacitance, left ventricular diastolic capacitance, right ventricular diastolic

capacitance, systemic arterial capacitance and pulmonary arterial capacitance. In

Figure 4-7, tune up means the situation of the pseudo-patient's heart is better than

that of the CVsim. In this case, we need to tune up the systemic parameters of CVsim.

Tune down is the opposite situation of tune up. Figure 4-8 continues the reasoning

process of tune up or down. In Figure 4-7, adjust means we need to change both the

systolic capacitance and the diastolic capacitance of left/right ventricle. Figure 4-9

continues the reasoning process of adjustment.

Finally, if all the measurable parameters of CVsim are considered to be equivalent

with that of the pseudo-patient, the iteration should stop. It means the current

CVsim's systemic parameters can be used to simulate the status of the pseudo-patient.
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4.4.2.2 Flow Chart for Patients with Possible Mitral Stenosis and Tricus-

pid Stenosis Diseases

From the echocardiogram, we may �nd some evidence of mitral stenosis and/or tricus-

pid stenosis. The possible changing systemic parameters are: total blood volume, left

ventricular systolic capacitance, right ventricular systolic capacitance, left ventricular

diastolic capacitance or in
ow resistance, right ventricular diastolic capacitance or

in
ow resistance, systemic arterial capacitance and pulmonary arterial capacitance.

Note that in the case of mitral stenosis, pulmonary wedge pressure is not equal to the

left ventricular end diastolic pressure. Figure 4-11 continues the reasoning process of

tune up or down. Figure 4-12 continues the reasoning process of adjustment. If there

are signs of mitral stenosis, we change the value of left ventricular in
ow resistance

instead of the value of the left ventricular diastolic capacitance. If there are signs of

tricuspid stenosis, we change the value of right ventricular in
ow resistance instead

of the value of the right ventricular diastolic capacitance.

4.4.3 Some Heuristic Components in Our Expert System

In designing an expert system, there are a number of other important factors that

we need to think about besides which parameter(s) need to be changed. A very

important factor in designing the search control process is how to de�ne the step size

for each legitimate move. An easy approach is to set a very small �xed step size. The

problem with the small �xed step size is obvious: it may take us a very long time to

get to the target point from the original point. So in our system, we decided to use

variable step sizes instead. The way that we set/change step size during the search

control process is described as follows:

� We set initial unit step sizes, which usually tend to be conservative, when we

start the search control process.

� The step size is proportional to the di�erence between the outputs of the CVsim

and the pseudo-patient. For example, we change the systemic arterial capaci-
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tance based on the di�erence of the pulse pressure of the CVsim and the pseudo-

patient. The larger the di�erence is, the larger is the step size.

Step Size of Systemic Arterial Capacitance =

jPseudopatient Pulse Pressure� CV sim Pulse Pressurej �

Unit Step Size

� We set an increase unit step size and a decrease unit step size separately for each

parameter. The reason for this strategy is that we want to avoid oscillation. The

disadvantage of de�ning only one unit step size for both decrease and increase

is shown in Figure 4-13.

� If the new proposed change for a parameter is exactly in the same direction as

the last change, we increase the appropriate unit step size by 50%. This is what

we called \Reward" strategy, as shown in Figure 4-14.

� If the new proposed change for a parameter is in the opposite direction with

the last change, we will go back to the place where we were, then decrease the

appropriate unit step size by 50%. This is what we called \Punish" strategy.

Figure 4-15 shows how it works.
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Figure 4-7: Top Level Flow Chart of Reasoning Process for Non-valvular Dis-
ease Patients. C.O.=Cardiac Output; LVEDP=Left Ventricular End-Diastolic Pres-
sure; ABP=Mean Systemic Arterial Blood Pressure; LEF=Left Ejection Frac-
tion; CVP=Mean Central Venous Pressure; PAP=Mean Pulmonary Arterial Pres-
sure; REF=Right Ejection Fraction; SAPP=Systemic Arterial Pulse Pressure;
PAPP=Pulmonary Arterial Pulse Pressure; Equv.=Equivalent. Continued with Fig-
ure 4-8 and Figure 4-9.
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Figure 4-8: Tune Up/down Reasoning Process for Non-valvular Disease Patients.
Continued for Figure 4-7 when we need to tune or down the ventricular functions.
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Figure 4-9: Adjust Reasoning Process for Non-valvular Disease Patients. Continued
for Figure 4-7 when we need to adjust the ventricular capacitances based on ejection
fraction.
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Figure 4-10: Top Level Flow Chart of Reasoning Process for Patients with Possi-
ble Mitral Stenosis and/or Tricuspid Stenosis. C.O.=Cardiac Output; LVEDP=Left
Ventricular End-Diastolic Pressure; PCWP=Pulmonary Capillary Wedge Pres-
sure; ABP=Mean Systemic Arterial Blood Pressure; LEF=Left Ejection Frac-
tion; CVP=Mean Central Venous Pressure; PAP=Mean Pulmonary Arterial Pres-
sure; REF=Right Ejection Fraction; SAPP=Systemic Arterial Pulse Pressure;
PAPP=Pulmonary Arterial Pulse Pressure. Continued with Figure 4-11 and Figure
4-12.
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and/or Tricuspid Stenosis. Continued for Figure 4-10 when we need to adjust the
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Figure 4-13: Why do we need two unit step sizes for each parameter? As we can see,
we may overshoot sometimes. If there is only one unit step size for both increase and
decrease, that may cause the system to oscillate.

1 2 3 40

Correct Value 

Parameter Value

Number of Iterations

Figure 4-14: Reward Strategy. If the proposed change is in the same direction as the
last change, we tend to think that we are still quite far away from our target, we need
to be a little bit more aggressive in order to save iteration times.
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Figure 4-15: Punish Strategy. It is another strategy to avoid oscillation.
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Chapter 5

Development and Evaluation of

the System

Evaluating an expert system is very di�cult because sometimes, there may be no

formal way to prove a given answer is correct or acceptable or the best possible. The

evaluation process usually involves consulting other experts (not the one where we

had most of the domain knowledge) in the domain. Ultimately, user acceptance can

make or kill an expert system. Obviously, users will not accept an expert system with

poor performance; neither will they accept a high performance expert system that

gives confusing answers, or is hard to learn how to use, or takes a long time to get

results.

A number of evaluations of medical expert systems have been put forward in

[19][22][25], most of them were focusing on evaluation of the qualitative analysis. In

these evaluation processes, the results from expert systems are presented to human

experts, and they are asked to �ll a sheet for the evaluation for each case. In [22],

reviewers were given the following 5 choices:

� Correct means the result is a reasonable accounting of the �ndings.

� Possible means the result is a possible interpretation of the �ndings, but not

the best.
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� Partly Correct means the result is mostly reasonable, but has some minor

mistakes.

� Wrong means the result is wrong.

� Seriously Wrong means the result is wrong and dangerous.

It is even more di�cult to evaluate the performance of our expert system, because

our system provides quantitative results. An ideal evaluation of our program would

begin by identifying a large number of actual patient cases that occur in the cardio-

vascular domain covered by this program. In this approach to evaluation, the actual

patient data play two roles. First, they tell us how frequently various conditions arise,

and therefore how important the program's performance is on such cases. Second,

they provide us a natural variety of distinct cases against which to test our program.

Performing such an evaluation is quite di�cult because of the need for a large

number of cases. In addition, we believe that relatively small variations in the pseudo-

patient case would not yield signi�cantly better or worse performance by our program.

Therefore, instead of testing on cases derived from actual patient data, we have eval-

uated our approach by simulating a varied set of clinically important and distinguish-

able cases that span the domain of expertise of the program. These cases can then

illustrate the strengths and weaknesses of the program, although we cannot expect

them to yield a statistical estimate of how frequently it would do well or poorly with

situations abstracted from actual cases. Of course, such illustrations are exactly what

we need in a formative evaluation, whose major purpose is to identify areas in which

additional work will be needed.

While we were developing the reasoning and knowledge base of our system, we

used a learning set of 16 simulated cases for both testing and re�ning the algorithms.

In the next section, we will present and discuss the test results of our expert system

on these cases.
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5.1 Results and Discussion

All of the relevant tables and �gures can be found in Appendix A. In this section, we

will analyze the results and discuss potential improvements for our system. For each

case, we will present two tables:

� Comparison of Pseudo-Patient Input Parameters with Estimated Input Param-

eters

� Comparison of Output Variables of Pseudo-Patient with those of Simulator

Two �gures will also be provided for each case:

� Total Output Error Function vs. Number of Iterations: The total output error

function is de�ned as:

EOUTPUT =
q
E2
1 + � � �+ E2

i + � � �+ E2
13

Ei =
jPseudopatient Output V alue� CV sim Output V aluej

Pseudopatient V alue

� Total Input Error Function vs. Number of Iterations: The total input error

function is de�ned as:

EINPUT =
q
E2
1 + � � �+ E2

i + � � �+ E2
17

Ei =
jPseudopatient Parameter V alue� Estimated Parameter V aluej

Pseudopatient Parameter V alue

Note that we have 7 volume related input parameters for CVsim, but since we can

only characterize the system state based on the total e�ective blood volume (=total

blood volume - summation of all zero-pressure volumes), only the input error of the

total e�ective blood volume is taken into account for calculating the total input error.

In addition, it is also very important to conduct a qualitative evaluation of the

performance of the system. The domain expert (Dr. Roger Mark) who had helped
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to design the system was asked to participate in the qualitative evaluation. The

system's estimated input parameters and CVsim's output variables were presented

to Dr. Mark, and he was asked to provide a corresponding clinical diagnosis. The

expert system's performance was then rated using the following scale:

� Excellent means that:

1. The diagnosis implied by the expert system's estimated parameters is con-

sistent with the original diagnosis modeled by the test case.

2. The algorithm converges.

3. The �nal total input error is less than 20%.

� Acceptable means that:

1. The diagnosis implied by the expert system's estimated parameters is con-

sistent with the original diagnosis modeled by the test case.

2. The algorithm does not converge and/or the (�nal)1 total input error is

greater than 20%.

� Unsatisfactory means that the diagnosis implied by the expert system's esti-

mated parameters is not consistent with the original diagnosis modeled by the

test case, and would probably lead to an erroneous diagnosis in clinical areas.

5.1.1 Cases without Compensatory E�ects

We start our discussion with the testing results on the cases without compensatory

e�ects. These cases represent relatively simple physiological changes with respect to

normal people.

1If the algorithm does not converge, then there is no �nal total input error.
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5.1.1.1 Blood Loss

This case represents a patient with blood loss. The status of a blood loss patient was

simulated on CVsim by decreasing total blood volume. After running about 4 minutes

(8 iterations) on a Sun SPARC-10 station, the iteration stops. Table A.1 shows the

comparison of the input parameters of the pseudo-patient to those estimated by the

expert system, with reference to their normal values. Table A.2 shows the comparison

of the output variables of the pseudo-patient to those of the simulator, with reference

of their normal values. Figure A-2 shows the output error function for each iteration.

Since we know how we set the input parameters of CVsim, we also printed out how the

input error function behaves for each iteration in Figure A-1. The �nal total input

error is 7.4%, and the �nal total output error is 12.0%. In this case, the algorithm

converges very well. The rating of this case given by the reviewer is excellent.

By comparing Figure A-2 and Figure A-1, we may notice that the drop of the

output error function does not necessarily correspond to the drop of the input error

function. For example, from the �rst iteration to the second iteration, there is a huge

drop in the output error function; however, the input error function increases. This

may be part of the reason why the homotopy method failed to solve this problem,

because the basis of the homotopy method is how to achieve a smaller output error

function for each step. In our system, we use total error function to determine whether

we should stop the iteration, but we do not use the output error function to determine

whether the move for each iteration is legitimate or not.

5.1.1.2 Arteriolar Dilation

This case represents a patient with arteriolar dilation, and was simulated on CVsim

by decreasing peripheral resistance. After running about 2 minutes (4 iterations) on

a Sun SPARC-10 station, the iteration stops. Table A.3 shows the comparison of

the input parameters of the pseudo-patient to those estimated by the expert system,

with reference to their normal values. Table A.4 shows the comparison of the output

variables of the pseudo-patient to those of the simulator, with reference to their

69



normal values. Figure A-4 shows the output error function for each iteration. The

input error function for each iteration is shown in Figure A-3. The �nal total input

error is 1.3%, and the �nal total output error is 1.6%. In this case, the algorithm

converges very well. The rating of this case given by the reviewer is excellent.

5.1.1.3 Left Ventricular Systolic Dysfunction

This case represents a patient with left ventricular systolic dysfunction. The status

of this patient was simulated on CVsim by increasing the left ventricular systolic

capacitance. After running about 3 minutes (7 iterations) on a Sun SPARC-10 station,

the iteration stops. Table A.5 shows the comparison of the input parameters of the

pseudo-patient to those estimated by the expert system, with reference to their normal

values. Table A.6 shows the comparison of the output variables of the pseudo-patient

to those of the simulator, with reference to their normal values. Figure A-6 shows the

output error function for each iteration. The input error function for each iteration is

shown in Figure A-5. The �nal total input error is 3.5%, and the �nal total output

error is 2.8%. In this case, the algorithm converges very well. The rating of this case

given by the reviewer is excellent.

5.1.1.4 Arteriolar and Venous Dilation

This case represents a patient with arteriolar and venous dilation. The case was

simulated on CVsim by increasing venous zero-pressure volume, and decreasing pe-

ripheral resistance. After running about 4 minutes (9 iterations) on a Sun SPARC-10

station, the iteration stops. Table A.7 shows the comparison of the input parame-

ters of the pseudo-patient to those estimated by the expert system, with reference to

their normal values. Table A.8 shows the comparison of the output variables of the

pseudo-patient to those of the simulator, with reference to their normal values. Figure

A-8 shows the output error function for each iteration. The input error function for

each iteration is shown in Figure A-7. The �nal total input error is 13%, and the

�nal total output error is 5.5%. In this case, the algorithm converges very well. The

rating of this case given by the reviewer is excellent.
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5.1.2 Cases with Compensatory E�ects

The following cases represent some pathological cases with compensatory e�ects. In

these cases, primary changes are caused by the disease directly, and the compensatory

e�ects are caused by various neural and humoral compensatory mechanisms.

5.1.2.1 Hypertension

This case represents a patient with hypertension. The primary e�ect was simulated

on CVsim by increasing peripheral resistance. The compensatory e�ects were in-

creased heart rate, decreased venous zero-pressure volume, increased left ventricular

contractility, decreased left ventricular diastolic compliance, and decreased arterial

compliance. After running about 10 minutes (24 iterations) on a Sun SPARC-10

station, the iteration stops. Table A.9 shows the comparison of the input parame-

ters of the pseudo-patient to those estimated by the expert system, with reference to

their normal values. Table A.10 shows the comparison of the output variables of the

pseudo-patient to those of the simulator, with reference to their normal values. Figure

A-10 shows the output error function for each iteration. The input error function for

each iteration is shown in Figure A-9. The �nal total input error is 10.0%, and the

�nal total output error is 9.7%. In this case, the algorithm converges very well. The

rating of this case given by the reviewer is excellent.

5.1.2.2 Right Ventricular Infarction

This case represents a patient with right ventricular infarction. The primary e�ect

was simulated by increasing right ventricular systolic capacitance and decreasing right

ventricular diastolic capacitance. The compensatory e�ects were increased heart rate

and increased peripheral resistance. The program did not stop by itself because it

stayed in a local minimum state. Table A.11 shows the comparison of the input

parameters of the pseudo-patient to those estimated by the expert system during the

24th iteration (system takes about 10 minutes to run 24 iterations). Table A.12

shows the comparison of the output variables of the pseudo-patient to those of the
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simulator during the 24th iteration, with reference to their normal values. Figure

A-12 shows the output error function for each iteration. The input error function for

each iteration is shown in Figure A-11. The algorithm did not converge in this case.

The rating of this case given by the reviewer is acceptable.

From Table A.12, we can see that just by comparing the output variables during

the 24th iteration, the simulator output is very much like the pseudo-patient's output.

It means that if we loosen our comparison boundary (with the sacri�ce of the precision

of results), the program could have stopped by itself. From Table A.11, we notice

that the problem is that our system tended to \think" that the right ventricular

systolic function is worse than it should be, and the right ventricular diastolic function

is better than it should be. The system gets stuck in this local minimum state.

In order to avoid the local minimum state, we may apply a similar strategy with

simulated annealing [30], which allows us to impose a probabilistic value for each

branch in the decision tree to increase the uncertainty during each iteration. For

example, if the mean pulmonary arterial pressure of the CVsim is higher than that

of the pseudo-patient, the current algorithm will always increase the right ventricular

systolic capacitance. By imposing a probabilistic value (for example: 80%) to this

rule, the algorithm may execute the rule by 80% chance or continue the search process

to check the right ventricular ejection fraction by 20% chance.

5.1.2.3 Hypertrophic Cardiomyopathy

This case represents a patient with hypertrophic cardiomyopathy without outlet ob-

struction. The primary e�ect was simulated by decreasing left ventricular systolic

capacitance, decreasing left ventricular diastolic capacitance, and decreasing right

ventricular diastolic capacitance. The compensatory e�ects were increased heart

rate, increased total blood volume, decreased venous zero-pressure volume, and de-

creased peripheral resistance. After running about 30 minutes (74 iterations) on a

Sun SPARC-10 station, the iteration stops. Table A.13 shows the comparison of

the input parameters of the pseudo-patient to those estimated by the expert system,

with reference to their normal values. Table A.14 shows the comparison of the out-
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put variables of the pseudo-patient to those of the simulator, with reference to their

normal values. Figure A-14 shows the output error function for each iteration. The

input error function for each iteration is shown in Figure A-13. The �nal total input

error is 14.6%, and the �nal total output error is 13.6%. In this case, the algorithm

converges well, but not very fast. The rating of this case given by the reviewer is

excellent.

From Figure A-14, we can see some interesting behavior of the output error

function during the 5th iteration to 11th iteration. There is a huge rise of the input

error function during the 7th iteration, and a huge drop during the 8th iteration, then

another huge rise during the 9th iteration. That is when our punish strategy started

to work. During the 7th iteration, the reasoning process increased the total blood

volume by 2983.42ml. Then during the 8th iteration, the reasoning process tended to

decrease the total blood volume. However, before it really decreased the total blood

volume, it looked backward and noticed that the problem was last time, the reasoning

process increased the total blood volume way too much. Then the program went

back to the position of the 6th iteration, and increased the total blood volume by

2237.18ml. Again, we see that the changes of the total output error function does not

necessarily correspond to the changes of the total input error function.

5.1.2.4 Pulmonary Hypertension

This case represents a patient who has pulmonary hypertension. The primary e�ect

was simulated by increasing pulmonary resistance. The compensatory e�ects were

decreased right ventricular systolic capacitance, increased heart rate, increased total

blood volume, and decreased pulmonary capacitance. The program did not stop by

itself, because it stayed in a local minimum state. Table A.15 shows the comparison

of the input parameters of the pseudo-patient to those estimated by the expert system

during the 24th iteration. Table A.16 shows the comparison of the output variables

of the pseudo-patient to those of simulator during the 24th iteration, with reference to

their normal values. Figure A-16 shows the output error function for each iteration.

The input error function for each iteration is shown in Figure A-15. The rating of
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this case given by the reviewer is acceptable.

The major problems of the result are too much e�ective blood volume and no

change of pulmonary arterial capacitance. The problem of the algorithm is because

of the negative e�ect of our punish strategy. During the 66th iteration, the algorithm

decreased the left ventricular systolic capacitance. However, on the 67th iteration,

the algorithm tended to increase the the left ventricular systolic capacitance. Then

it noticed that the problem may be because last time the left ventricular systolic

capacitance had been decreased too much. The algorithm decreased the unit step

size. Then it was still overshoot. Then according to our punish strategy, the unit

step size needed to be decreased again. Finally, it stayed in that position which

was always trying to decrease this capacitance, but never succeeded. To solve this

problem, we may impose a probabilistic value for each branch in the decision tree to

increase the uncertainty during each iteration.

5.1.2.5 Large AV Fistula

This case represents a patient with large AV �stula. The primary e�ect was simulated

by decreasing peripheral resistance. The compensatory e�ects were increased heart

rate, increased total blood volume, decreased left ventricular systolic capacitance, de-

creased right ventricular systolic capacitance, decreased venous zero-pressure volume,

and decreased pulmonary resistance. After running about 10 minutes (23 iterations)

on a Sun SPARC-10 station, the iteration stops. Table A.17 shows the comparison of

the input parameters of the pseudo-patient to those estimated by the expert system,

with reference to their normal values. Table A.18 shows the comparison of the out-

put variables of the pseudo-patient to those of the simulator, with reference to their

normal values. Figure A-18 shows the output error function for each iteration. The

input error function for each iteration is shown in Figure A-17. The �nal total input

error is 55.7%, and the �nal total output error is 6.1%. In this case, the algorithm

converges well. The rating of this case given by the reviewer is acceptable.

The major di�erence between the results and the set-up parameters is that our

expert system tended to add extra blood volume and worsen the diastolic functions of
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both ventricles a bit more. From Table A.18, we can see that the output observable

parameters are very close.

5.1.2.6 Dilated Cardiomyopathy and Bi-ventricular Congestive Heart Fail-

ure

This case represents a patient with dilated cardiomyopathy and bi-ventricular con-

gestive heart failure. The primary e�ect was simulated by increasing left ventricu-

lar systolic capacitance, increasing right ventricular systolic capacitance, decreasing

left ventricular diastolic capacitance, increasing left ventricular zero-pressure volume,

and increasing right ventricular zero-pressure volume. The compensatory e�ects were

increased heart rate, increased total blood volume, decreased arterial capacitance,

increased right ventricular diastolic capacitance, decreased pulmonary arterial capac-

itance, decreased venous zero-pressure volume, and increased pulmonary resistance.

After running about 35 minutes (82 iterations) on a Sun SPARC-10 station, the it-

eration stops. Table A.19 shows the comparison of the input parameters of the

pseudo-patient to those estimated by the expert system, with the reference to their

normal values. Table A.20 shows the comparison of the output variables of the

pseudo-patient to those of the simulator, with reference to their normal values. Fig-

ure A-20 shows the output error function for each iteration. The input error function

for each iteration is shown in Figure A-19. The �nal total input error is 52.0%, and

the �nal total output error is 16.8%. In this case, the algorithm converges well, but

not fast enough. From Figure A-20, we can �nd the similar behavior of the output

error function as discussed in hypertrophic cardiomyopathy case. The rating of this

case given by the reviewer is acceptable.

5.1.2.7 Acute Myocardial Infarction with Bi-ventricular Heart Failure

This case represents a patient with an acute myocardial infarction and bi-ventricular

heart failure. The primary e�ect was simulated by increasing left ventricular sys-

tolic capacitance, increasing right ventricular systolic capacitance, and decreasing

left ventricular diastolic capacitance. The compensatory e�ects were increased heart
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rate, decreased arterial capacitance, increased right ventricular diastolic capacitance,

decreased pulmonary arterial capacitance, decreased venous zero-pressure volume, in-

creased peripheral resistance, and increased right ventricular zero-pressure volume.

After running about 33 minutes (77 iterations) on a Sun SPARC-10 station, the iter-

ation stops. Table A.21 shows the comparison of the input parameters of the pseudo-

patient to those estimated by the expert system, with reference to their normal values.

Table A.22 shows the comparison of the output variables of the pseudo-patient to

those of the simulator, with reference to their normal values. Figure A-22 shows the

output error function for each iteration. The input error function for each iteration is

shown in Figure A-21. The �nal total input error is 14.6%, and the �nal total output

error is 10.1%. The rating of this case given by the reviewer is excellent. Again, from

Figure A-22 and Figure A-21, we may notice that sometimes, even if there is a huge

rise of the output error, there may not be a rise of the input error.

5.1.2.8 Septic Shock

This case represents a patient in septic shock. The primary e�ect was simulated by

decreasing peripheral resistance, increasing venous zero-pressure volume, and increas-

ing left ventricular systolic capacitance. The compensatory e�ect was increased heart

rate. After running about 22 minutes (51 iterations) on a Sun SPARC-10 station,

the iteration stops. Table A.23 shows the comparison of the input parameters of

the pseudo-patient to those estimated by the expert system, with the reference to

their normal values. Table A.24 shows the comparison of the output variables of

the pseudo-patient to those of the simulator, with reference to their normal values.

Figure A-24 shows the output error function for each iteration. The input error

function for each iteration is shown in Figure A-23. The �nal total input error is

14.2%, and the �nal total output error is 10.7%. In this case, the algorithm converges

well. The rating of this case given by the reviewer is excellent.
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5.1.2.9 Pulmonary Hypertension and Right Heart Failure

This case represents a patient with pulmonary hypertension and right heart failure

(cor pulmonale). The primary e�ect was simulated by increasing pulmonary resis-

tance, and increasing right ventricular systolic capacitance. The compensatory e�ects

were increased heart rate, increased total blood volume, decreased peripheral arterial

capacitance, decreased venous zero-pressure volume, increased peripheral resistance.

After running about 23 minutes (50 iterations) on a Sun SPARC-10 station, the it-

eration stops. Table A.25 shows the comparison of the input parameters of the

pseudo-patient to those estimated by the expert system, with the reference to their

normal values. Table A.26 shows the comparison of the output variables of the

pseudo-patient to those of the simulator, with reference to their normal values. Fig-

ure A-26 shows the output error function for each iteration. The input error function

for each iteration is shown in Figure A-25. The �nal total input error is 6.6%, and

the �nal total output error is 12.8%. In this case, the algorithm converges very well.

From Figure A-26, we can see again the punish strategy has worked. The rating of

this case given by the reviewer is excellent.

5.1.2.10 Mitral Stenosis I

This case represents a patient with mitral stenosis. The primary e�ect was simulated

by increasing left ventricular in
ow resistance. The compensatory e�ects were in-

creased heart rate, increased total blood volume, decreased right ventricular systolic

capacitance and increased pulmonary resistance. In this case study, we intentionally

indicated to the algorithm that there is no evidence of mitral stenosis and tried to

see what results we would get. After running about 13 minutes (30 iterations) on

a Sun SPARC-10 station, the iteration stops. Table A.27 shows the comparison of

the input parameters of the pseudo-patient to those estimated by the expert system,

with reference to their normal values. Table A.28 shows the comparison of the out-

put variables of the pseudo-patient to those of the simulator, with reference to their

normal values. Figure A-28 shows the output error function for each iteration. The
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input error function for each iteration is shown in Figure A-27. The �nal total input

error is 120.3%, and the �nal total output error is 7.3%. The rating of this case given

by the reviewer is unsatisfactory.

The major di�erence of our results with set-up parameters are the left ventricular

in
ow resistance and the left ventricular diastolic capacitance. However, clinically, it

is also very hard to determine the mitral stenosis case without knowing this person's

left ventricular pressure. Our expert system explained the problem as a left ventricular

�lling problem, which is correct because with a very high left ventricular diastolic

pressure, we usually turn our concern to this person's diastolic problems.

5.1.2.11 Mitral Stenosis II

This case represents a patient with mitral stenosis. The primary e�ect was simulated

by increasing left ventricular in
ow resistance. The compensatory e�ects were in-

creased heart rate, increased total blood volume, decreased right ventricular systolic

capacitance and increased pulmonary resistance. In this case study, we indicated

to the algorithm that there is evidence of mitral stenosis. After running about 11

minutes (27 iterations) on a Sun SPARC-10 station, the iteration stops. Table A.29

shows the comparison of the input parameters of the pseudo-patient to those esti-

mated by the expert system, with reference to their normal values. Table A.30

shows the comparison of the output variables of the pseudo-patient to those of the

simulator, with reference to their normal values. Figure A-30 shows the output error

function for each iteration. The input error function for each iteration is shown in

Figure A-29. The �nal total input error is 16.5%, and the �nal total output error is

11.1%. The algorithm converges well in this case. The rating of this case given by

the reviewer is excellent.

The current algorithm for analyzing the valvular disease is based on the assump-

tion that if there is any in
ow valvular problem, we assume that the diastolic capac-

itance is normal.
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5.1.2.12 Tricuspid Stenosis

This case represents a patient with tricuspid stenosis. The primary e�ect was sim-

ulated by increasing right ventricular in
ow resistance. The compensatory e�ects

were increased heart rate, and increased total blood volume. After running about

10 minutes (23 iterations) on a Sun SPARC-10 station, the iteration stops. Table

A.31 shows the comparison of the input parameters of the pseudo-patient to those

estimated by the expert system, with reference to their normal values. Table A.32

shows the comparison of the output variables of the pseudo-patient to those of the

simulator, with reference to their normal values. Figure A-32 shows the output error

function for each iteration. The input error function for each iteration is shown in

Figure A-31. The �nal total input error is 4.3%, and the �nal total output error is

4.6%. The algorithm converges very well in this case. The rating of this case given

by the reviewer is excellent.

5.2 Summary of the Testing

We tested our expert system on 16 typical cases, in which 11 cases were rated as

excellent, 4 cases were rated as acceptable and 1 case was rated as unsatisfactory.

For the unsatisfactory case, the reason for the wrong diagnosis is lack of knowledge.

This evaluation provides us with a reasonable picture of the diagnostic performance

of our expert system. The number of cases in the evaluation was too small to measure

the performance relative to physicians. In general, the more complicated the case is,

will the longer time the system take to �gure out the problem. There is no serious

error made by the expert system, but there are some problems, such as time issues,

and lack of convergence. They imply that further re�nement of the reasoning process

is needed rather than the fundamental changes to the reasoning mechanisms and

methodology. Currently, we are pleased with the results and believe that the system

can be improved.
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Chapter 6

Conclusion

In this thesis, we have developed an expert system for quantitatively or semi-quantita-

tively analyzing ICU hemodynamic data. We have designed a new iterative approach,

which uses a cardiovascular simulator as a model. The application of this method-

ology can also be applied outside the area of medicine to solve system identi�cation

problems. In our system, clinical rules and other available test results (such as an

echocardiogram) have been used to guide the direction of the iteration in our system.

The results of our case studies suggested that this approach is promising for solving

other clinical problems. There are also some unsolved problems in our system:

� How can we analyze aortic stenosis and pulmonary stenosis? For pulmonary

stenosis, we can make the quantitative analysis based on the pressure gradient

between right ventricular pressure and pulmonary arterial pressure. For aortic

stenosis, it will be very di�cult, because left ventricular pressure monitoring is

not a routine procedure in ICU areas. Without left ventricular pressure data,

aortic stenosis can possibly be detected by echocardiogram. However, we need

to be careful to use the quantitative description provided by the echocardiogram.

� How to further increase the e�ciency of the system? Or how to decrease the

iteration times? Setting more aggressive unit step sizes may be one way, but

that may also increase the instability of the system.
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Due to the limitation of the cardiovascular simulator that we used in our research,

our system can not be used to analyze some cases such as mitral regurgitation.

6.1 Practical Consideration

Of course, eventually, we hope to use our system in ICU areas by feeding the system

with real patient data. Then there will be several major problems that need to be

solved:

� Time issue: what is an acceptable time period for the system to converge on an

answer?

� As we have shown in two of our cases, sometimes the system may just stay in

a local minimum state and may iterate forever. Obviously, we cannot count

on the end-users to stop the program in that case. Then how to avoid this

situation? We may set a maximum iteration time, once the total iteration time

reaches the maximum iteration time, we can just stop the program and choose

the input parameters which correspond to the minimum output error as our

estimation.

� We need to pre-process the real ICU data to get rid of noise, artifacts, etc.

6.2 Future Related Work

There are a number of improvements that can be made to our current system:

� For realizing the real time analysis, we need to have some temporal rules instead

of static rules. Actually, real time analysis may be easier than �guring out the

problem for the �rst time, because we do not expect a dramatic change from

one minute to another minute. It means that the distance from the \target" to

the \original" state is closer.
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� During the period of writing this thesis, I came up with an idea: we can set

up some typical cases as the starting point for our system. For example, if we

roughly know what kind of problems that the patient may have, for instance,

tricuspid stenosis, then we can set a tricuspid case as our original parameters

instead of always starting from normal values. It will certainly save lots of

iterations and decrease the possibility of getting wrong answers. An intuitive

explanation to this idea is that again, the distance from the \target" to the

\original" state is closer.

� Since clinically ECG is very easy to record and get, we can connect our sys-

tem with ECG analysis that may help our search process. For example, ECG

diagnoses for myocardial infarction (MI), hypertrophy, etc., can be used in es-

tablishing the initial diagnosis.

� We can also try other ways to do the reasoning process. For example, in our

current system, we use a 
ow chart to describe the reasoning process. It is

part of the reason that most of the answers seem to favor left ventricular prob-

lem. A change that we can make is that for each iteration, we �nd the biggest

di�erence among all observable data and think about how to decrease this dif-

ference instead of always starting from matching cardiac output, pulmonary

wedge pressure, etc. Or we can impose a probabilistic value to each decision

branch. In that way, we may increase the possibility of escaping from a local

minimum state.

� We noticed that part of the reason why sometimes the system seems to get

stuck, is because it is hard for the system to �gure out that, \Hey, I have

been here before". How to detect and describe this situation? We may de�ne

several domains in the multi-dimensional space to categorize the states of the

system. Once we �nd out the system is back to a previous state, we can apply

another reward strategy to increase the unit step size in this situation, so that

the system can possibly get out from the local minimum state.
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� In the long term, we hope to apply these methods to actual patient data. More

summative evaluation methods will then need to be devised.

� Another problem we noticed is that the algorithm always tried to minimize

the output errors for only the next step. That means our program lacks a

global view of the problem. Just like playing the Chess game, sometimes, we

may have to take a sacri�ce in order to win the game eventually. Currently, our

algorithm is not smart enough to sacri�ce the output errors in certain iterations

to eventually decrease the �nal total output error. How to make our system

smarter? We may need to apply some general guidelines for each case, so that

the system may seem to know which parameter(s) will need to be focused on

globally.

6.3 Summary

In this project, we have developed an iterative method for quantitatively or semi-

quantitatively analyzing ICU hemodynamic data. The key idea embodied in our

method is that with the help of a model, it is possible to solve a multi-dimensional

search problem by iteratively running the model, that is, test and see. The other

qualitative description may help the search process. As concluded from the above

discussion, we still have a long way to go before we can fully, accurately and e�ciently

automate the interpretation process. However, we believe that we have developed a

successful prototype of the �nal system that will guide us towards our objective. Just

as the IBM Deep Blue computer has won the Chess game, we are also optimistic that

our system can be improved for practical use in ICU areas in the foreseeable future.
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Appendix A

Case Study Results for Testing

Expert System

In this appendix, we will present the case study results for testing our expert syetm.

For each case, two tables:

� Comparison of Pseudo-Patient Input Parameters with Estimated Input Param-

eters

� Comparison of Output Variables of Pseudo-Patient with those of Simulator

and two �gures:

� Total Output Error Function vs. Number of Iterations

� Total Input Error Function vs. Number of Iterations

will be presented.
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A.1 Cases Without Compensatory E�ects

A.1.1 Blood Loss

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 72 72 0%

Total Blood Volume (ml) 5000 4500
1

4528.78

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 0.4 0.4 0%

LVdiast 10.0 10 10 0%

Arterial 1.6 1.6 1.69 5.6%

Venous 100.0 100.0 100.0 0%

RVsyst 1.20 1.2 1.18 1.7%

RVdiast 10.0 10.0 10.0 0%

Pulm. Art. 4.30 4.30 4.30 0%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 15.0 15.0

Arterial 715.0 715.0 715.0

Venous 2500.0 2500.0 2500.0

RV 15.0 15.0 15.0

Pulm. Art. 90.0 90.0 90.0

Pulm. Venous 490.0 490.0 490.0

Total E�ective Blood Volume 1175 675 703.78 4.2%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.01 0.01 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 1.00 0.99 1%

Venous 0.01 0.01 0.01 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 0.08 0.079 1.3%

Total Number of Iterations 8 Total Input Error 7.4%

Table A.1: Comparison of Pseudo-Patient Input Parameters with
Estimated Input Parameters in Blood Loss Case

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 63.2 64.5 2.1%

Maximum Systemic Arterial Pressure (mmHg) 113.2 76.1 77.1 1.3%

Minimum Systemic Arterial Pressure (mmHg) 75.6 50.5 52.0 3.0%

Mean Central Venous Pressure (mmHg) 6.6 3.2 3.4 6.3%

Cardiac Output (ml/min) 5321 3634 3739 2.9%

Heart Rate (beats/min) 72 72 72 0%

Mean Right Ventricular Pressure (mmHg) 10.6 6.0 6.2 3.3%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 9.9 10.2 3.0%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 13.9 14.3 2.9%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 6.1 6.3 3.3%

Pulmonary Wedge Pressure (mmHg) 9.2 5.0 5.3 6%

Left Heart Ejection Fraction (%) 55 52 52 0%

Right Heart Ejection Fraction (%) 62 58 59 1.7%

Total Number of Iterations 8 Total Output Error 12.0%

Table A.2: Comparison of Output Variables of Pseudo-Patient with
those of Simulator in Blood Loss Case

1The items in bold type are di�erent from the normal values.
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Figure A-1: Input Error Function vs. Number of Iterations in Blood Loss Case

Figure A-2: Output Error Function vs. Number of Iterations in Blood Loss Case
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A.1.2 Arteriolar Dilation

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 72 72 0%

Total Blood Volume (ml) 5000 5000 5000 0%

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 0.4 0.4 0%

LVdiast 10.0 10 10 0%

Arterial 1.6 1.6 1.6 0%

Venous 100.0 100.0 100.0 0%

RVsyst 1.20 1.2 1.2 0%

RVdiast 10.0 10.0 10.0 0%

Pulm. Art. 4.30 4.30 4.30 0%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 15.0 15.0

Arterial 715.0 715.0 715.0

Venous 2500.0 2500 2500.0

RV 15.0 15.0 15.0

Pulm. Art. 90.0 90.0 90.0

Pulm. Venous 490.0 490.0 490.0

Total E�ective Blood Volume 1175 1175 1175 0%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.01 0.01 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 0.5 0.50 0%

Venous 0.01 0.01 0.01 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 0.08 0.079 1.3%

Total Number of Iterations 4 Total Input Error 1.3%

Table A.3: Comparison of Pseudo-Patient Input Parameters with
Estimated Input Parameters in Arteriolar Dilation Case

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 55.4 55.2 0.4%

Maximum Systemic Arterial Pressure (mmHg) 113.2 75.4 75.0 0.5%

Minimum Systemic Arterial Pressure (mmHg) 75.6 37.0 36.6 1.1%

Mean Central Venous Pressure (mmHg) 6.6 7.3 7.3 0%

Cardiac Output (ml/min) 5321 5830 5838 0.1%

Heart Rate (beats/min) 72 72 72 0%

Mean Right Ventricular Pressure (mmHg) 10.6 11.2 11.2 0%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 16.2 16.2 0%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 22.6 22.6 0%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 10.2 10.1 1.0%

Pulmonary Wedge Pressure (mmHg) 9.2 8.5 8.5 0%

Left Heart Ejection Fraction (%) 55 64 64 0%

Right Heart Ejection Fraction (%) 62 64 64 0%

Total Number of Iterations 4 Total Output Error 1.6%

Table A.4: Comparison of Output Variables of Pseudo-Patient with
those of Simulator in Arteriolar Dilation Case
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Figure A-3: Input Error Function vs. Number of Iterations in
Arteriolar Dilation Case

Figure A-4: Output Error Function vs. Number of Iterations in
Arteriolar Dilation Case
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A.1.3 Left Ventricular Systolic Dysfunction

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 72 72 0%

Total Blood Volume (ml) 5000 5000 5000

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 1 0.99 1%

LVdiast 10.0 10 10 0%

Arterial 1.6 1.6 1.64 2.5%

Venous 100.0 100.0 100.0 0%

RVsyst 1.20 1.2 1.2 0%

RVdiast 10.0 10.0 10.0 0%

Pulm. Art. 4.30 4.30 4.30 0%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 15.0 15.0

Arterial 715.0 715.0 715.0

Venous 2500.0 2500 2500.0

RV 15.0 15.0 15.0

Pulm. Art. 90.0 90.0 90.0

Pulm. Venous 490.0 490.0 490.0

Total E�ective Blood Volume 1175 1175 1175 0%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.01 0.01 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 1.0 0.98 2%

Venous 0.01 0.01 0.01 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 0.08 0.079 1.3%

Total Number of Iterations 7 Total Input Error 3.5%

Table A.5: Comparison of Pseudo-Patient Input Parameters with Estimated
Input Parameters in Left Ventricular Systolic Dysfunction Case

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 81.0 80.3 0.9%

Maximum Systemic Arterial Pressure (mmHg) 113.2 96.6 95.6 1.0%

Minimum Systemic Arterial Pressure (mmHg) 75.6 65.2 64.9 0.5%

Mean Central Venous Pressure (mmHg) 6.6 5.8 5.9 1.7%

Cardiac Output (ml/min) 5321 4588 4623 0.8%

Heart Rate (beats/min) 72 72 72 0%

Mean Right Ventricular Pressure (mmHg) 10.6 11.1 11.1 0%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 19.5 19.3 1.0%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 24.7 24.6 0.4%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 14.6 14.5 0.7%

Pulmonary Wedge Pressure (mmHg) 9.2 13.4 13.3 0.7%

Left Heart Ejection Fraction (%) 55 36 36 0%

Right Heart Ejection Fraction (%) 62 57 57 0%

Total Number of Iterations 7 Total Output Error 2.8%

Table A.6: Comparison of Output Variables of Pseudo-Patient with those of
Simulator in Left Ventricular Systolic Dysfunction Case
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Figure A-5: Input Error Function vs. Number of Iterations in
Left Ventricular Systolic Dysfunction Case

Figure A-6: Output Error Function vs. Number of Iterations in
Left Ventricular Systolic Dysfunction Case
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A.1.4 Arteriolar and Venous Dilation

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 72 72 0%

Total Blood Volume (ml) 5000 5000 4742.47

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 0.4 0.45 13%

LVdiast 10.0 10 10 0%

Arterial 1.6 1.6 1.57 1.9%

Venous 100.0 100.0 100.0 0%

RVsyst 1.20 1.2 1.2 0%

RVdiast 10.0 10.0 10.0 0%

Pulm. Art. 4.30 4.30 4.30 0%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 15.0 15.0

Arterial 715.0 715.0 715.0

Venous 2500.0 2750.0 2500.0

RV 15.0 15.0 15.0

Pulm. Art. 90.0 90.0 90.0

Pulm. Venous 490.0 490.0 490.0

Total E�ective Blood Volume 1175 925 917.47 0.8%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.01 0.01 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 0.25 0.25 0%

Venous 0.01 0.01 0.01 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 0.08 0.079 1.3%

Total Number of Iterations 9 Total Input Error 13%

Table A.7: Comparison of Pseudo-Patient Input Parameters with Estimated
Input Parameters in Arteriolar and Venous Dilation Case

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 27.2 26.8 1.5%

Maximum Systemic Arterial Pressure (mmHg) 113.2 44.2 43.8 0.9%

Minimum Systemic Arterial Pressure (mmHg) 75.6 13.7 13.2 3.6%

Mean Central Venous Pressure (mmHg) 6.6 5.9 5.8 1.7%

Cardiac Output (ml/min) 5321 5163 5108 1.1%

Heart Rate (beats/min) 72 72 72 0%

Mean Right Ventricular Pressure (mmHg) 10.6 9.0 9.0 0%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 12.9 13.0 0.8%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 18.6 18.5 0.5%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 7.6 7.7 1.3%

Pulmonary Wedge Pressure (mmHg) 9.2 6.1 6.2 1.6%

Left Heart Ejection Fraction (%) 55 68 67 1.5%

Right Heart Ejection Fraction (%) 62 64 63 1.6%

Total Number of Iterations 9 Total Output Error 5.5%

Table A.8: Comparison of Output Variables of Pseudo-Patient with
those of Simulator in Arteriolar and Venous Dilation Case
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Figure A-7: Input Error Function vs. Number of Iterations in
Arteriolar and Venous Dilation Case

Figure A-8: Output Error Function vs. Number of Iterations in
Arteriolar and Venous Dilation Case
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A.2 Cases With Compensatory E�ects

A.2.1 Hypertension

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 100 100 0%

Total Blood Volume (ml) 5000 5000 5268.53

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 0.30 0.31 3.3%

LVdiast 10.0 6.0 6.07 1.2%

Arterial 1.6 0.9 0.86 4.4%

Venous 100.0 100.0 100.0 0%

RVsyst 1.20 1.20 1.29 7.5%

RVdiast 10.0 10.0 10.22 0.2%

Pulm. Art. 4.30 4.30 4.30 0%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 15.0 15.0

Arterial 715.0 715.0 715.0

Venous 2500.0 2200.0 2500.0

RV 15.0 15.0 15.0

Pulm. Art. 90.0 90.0 90.0

Pulm. Venous 490.0 490.0 490.0

Total E�ective Blood Volume 1175 1475 1443.53 2.1%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.01 0.01 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 2.00 1.96 2%

Venous 0.01 0.01 0.01 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 0.08 0.078 2.5%

Total Number of Iterations 24 Total Input Error 10.0%

Table A.9: Comparison of Pseudo-Patient Input Parameters with
Estimated Input Parameters in Hypertension Case

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 217.4 210.7 3.1%

Maximum Systemic Arterial Pressure (mmHg) 113.2 246.0 239.8 2.5%

Minimum Systemic Arterial Pressure (mmHg) 75.6 188.6 181.2 3.9%

Mean Central Venous Pressure (mmHg) 6.6 7.4 7.3 1.4%

Cardiac Output (ml/min) 5321 6427 6311 1.8%

Heart Rate (beats/min) 72 100 100 0%

Mean Right Ventricular Pressure (mmHg) 10.6 16.2 15.8 2.5%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 28.8 28.1 2.4%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 33.9 33.1 2.4%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 23.7 23.1 2.5%

Pulmonary Wedge Pressure (mmHg) 9.2 20.4 20.0 2.0%

Left Heart Ejection Fraction (%) 55 42 41 2.3%

Right Heart Ejection Fraction (%) 62 52 50 3.8%

Total Number of Iterations 24 Total Output Error 9.7%

Table A.10: Comparison of Output Variables of Pseudo-Patient with
those of Simulator in Hypertension Case
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Figure A-9: Input Error Function vs. Number of Iterations in Hypertension Case

Figure A-10: Output Error Function vs. Number of Iterations in Hypertension Case
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A.2.2 Right Ventricular Infarction

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 125 125 0%

Total Blood Volume (ml) 5000 5000 5000

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 0.4 0.40 0%

LVdiast 10.0 10 9.23 7.7%

Arterial 1.6 1.6 1.72 7.5%

Venous 100.0 100.0 100.0 0%

RVsyst 1.20 5 6.06 21.2%

RVdiast 10.0 7.5 9.34 24.5%

Pulm. Art. 4.30 4.30 4.30 0%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 15.0 15.0 0%

Arterial 715.0 715.0 715.0 0%

Venous 2500.0 2500 2500.0 0%

RV 15.0 15.0 15.0 0%

Pulm. Art. 90.0 90.0 90.0 0%

Pulm. Venous 490.0 490.0 490.0 0%

Total E�ective Blood Volume 1175 1175 1175 0%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.01 0.01 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 1.3 1.46 12.3%

Venous 0.01 0.01 0.01 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 0.08 0.09 12.5%

Total Number of Iterations 1
2 Total Input Error 38%

Table A.11: Comparison of Pseudo-Patient Input Parameters with
Estimated Input Parameters in Right Ventricular Infarction Case

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 81.0 85.2 5.2%

Maximum Systemic Arterial Pressure (mmHg) 113.2 88.1 91.3 3.6%

Minimum Systemic Arterial Pressure (mmHg) 75.6 74.1 78.9 6.5%

Mean Central Venous Pressure (mmHg) 6.6 8.0 7.7 3.8%

Cardiac Output (ml/min) 5321 3010 3042 1.1%

Heart Rate (beats/min) 72 125 125 0%

Mean Right Ventricular Pressure (mmHg) 10.6 7.9 8.0 1.3%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 8.1 8.3 2.5%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 9.2 9.5 3.3%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 6.9 6.9 0%

Pulmonary Wedge Pressure (mmHg) 9.2 3.6 3.5 2.8%

Left Heart Ejection Fraction (%) 55 35 33 5.7%

Right Heart Ejection Fraction (%) 62 21 19 9.5%

Total Number of Iterations 1 Total Output Error 20.0%

Table A.12: Comparison of Output Variables of Pseudo-Patient with
those of Simulator in Right Ventricular Infarction Case

2
1 means the program did not stop by itself.
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Figure A-11: Input Error Function vs. Number of Iterations
in Right Ventricular Infarction Case

Figure A-12: Output Error Function vs. Number of Iterations
in Right Ventricular Infarction Case
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A.2.3 Hypertrophic Cardiomyopathy

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 100 100 0%

Total Blood Volume (ml) 5000 6000 6565.28

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 0.1 0.11 10%

LVdiast 10.0 3.00 3.02 0.7%

Arterial 1.6 1.6 1.72 7.5%

Venous 100.0 100.0 100.0 0%

RVsyst 1.20 1.2 1.29 7.5%

RVdiast 10.0 4.0 4.24 6%

Pulm. Art. 4.30 4.30 4.30 0%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 15.0 15.0

Arterial 715.0 715.0 715.0

Venous 2500.0 2000 2500.0

RV 15.0 15.0 15.0

Pulm. Art. 90.0 90.0 90.0

Pulm. Venous 490.0 490.0 490.0

Total E�ective Blood Volume 1175 2675 2740.28 2.4%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.01 0.01 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 0.5 0.50 0%

Venous 0.01 0.01 0.01 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 0.08 0.079 1.3%

Total Number of Iterations 74 Total Input Error 14.6%

Table A.13: Comparison of Pseudo-Patient Input Parameters with Estimated
Input Parameters in Hypertrophic Cardiomyopathy Case

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 113.2 116.3 2.7%

Maximum Systemic Arterial Pressure (mmHg) 113.2 126.0 128.5 2.0%

Minimum Systemic Arterial Pressure (mmHg) 75.6 99.3 102.7 3.4%

Mean Central Venous Pressure (mmHg) 6.6 20.4 20.6 1.0%

Cardiac Output (ml/min) 5321 5614 5831 3.9%

Heart Rate (beats/min) 72 100 100 0%

Mean Right Ventricular Pressure (mmHg) 10.6 23.9 24.4 2.1%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 27.3 28.6 4.8%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 31.3 32.6 4.2%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 22.9 23.9 4.4%

Pulmonary Wedge Pressure (mmHg) 9.2 20.0 20.9 4.5%

Left Heart Ejection Fraction (%) 55 67 67 0%

Right Heart Ejection Fraction (%) 62 50 49 2%

Total Number of Iterations 74 Total Output Error 13.6%

Table A.14: Comparison of Output Variables of Pseudo-Patient with
those of Simulator in Hypertrophic Cardiomyopathy Case
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Figure A-13: Input Error Function vs. Number of Iterations
in Hypertrophic Cardiomyopathy Case

Figure A-14: Output Error Function vs. Number of Iterations
in Hypertrophic Cardiomyopathy Case
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A.2.4 Pulmonary Hypertension

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 120 120 0%

Total Blood Volume (ml) 5000 6000 6386.48

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 0.4 0.42 5%

LVdiast 10.0 10 9.88 1.2%

Arterial 1.6 1.6 1.72 7.5%

Venous 100.0 100.0 100.0 0%

RVsyst 1.20 0.4 0.42 5%

RVdiast 10.0 10.0 9.67 3.3%

Pulm. Art. 4.30 2.5 4.30 72%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 15.0 15.0

Arterial 715.0 715.0 715.0

Venous 2500.0 2500 2500.0

RV 15.0 15.0 15.0

Pulm. Art. 90.0 90.0 90.0

Pulm. Venous 490.0 490.0 490.0

Total E�ective Blood Volume 1175 2175 2561.48 17.8%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.01 0.01 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 1.0 0.98 2%

Venous 0.01 0.01 0.01 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 1.0 0.98 2%

Total Number of Iterations 1 Total Input Error 75.0%

Table A.15: Comparison in Pseudo-Patient Input Parameters with Estimated
Input Parameters in Pulmonary Hypertension Case

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 155.9 154.3 1.0%

Maximum Systemic Arterial Pressure (mmHg) 113.2 158.3 170.1 7.5%

Minimum Systemic Arterial Pressure (mmHg) 75.6 137.3 138.4 0.8%

Mean Central Venous Pressure (mmHg) 6.6 11.5 12.0 4.3%

Cardiac Output (ml/min) 5321 8881 8974 1.0%

Heart Rate (beats/min) 72 120 120 0%

Mean Right Ventricular Pressure (mmHg) 10.6 60.3 60.1 0.3%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 158.3 156.7 1.0%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 169.8 163.5 3.7%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 146.0 149.4 2.3%

Pulmonary Wedge Pressure (mmHg) 9.2 13.1 13.4 2.3%

Left Heart Ejection Fraction (%) 55 46 46 0%

Right Heart Ejection Fraction (%) 62 47 47 0%

Total Number of Iterations 1 Total Output Error 10.1%

Table A.16: Comparison of Output Variables of Pseudo-Patient
with those of Simulator in Pulmonary Hypertension Case
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Figure A-15: Input Error Function vs. Number of Iterations
in Pulmonary Hypertension Case

Figure A-16: Output Error Function vs. Number of Iterations
in Pulmonary Hypertension Case
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A.2.5 Large AV Fistula

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 120 120 0%

Total Blood Volume (ml) 5000 5500 7319.73

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 0.20 0.23 15%

LVdiast 10.0 10 9.74 2.6%

Arterial 1.6 1.6 1.63 1.9%

Venous 100.0 70.0 100.0 42.9%

RVsyst 1.20 0.6 0.67 11.7%

RVdiast 10.0 10 9.66 3.4%

Pulm. Art. 4.30 4.30 4.30 0%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 15.0 15.0

Arterial 715.0 715.0 715.0

Venous 2500.0 1500 2500.0

RV 15.0 15.0 15.0

Pulm. Art. 90.0 90.0 90.0

Pulm. Venous 490.0 490.0 490.0

Total E�ective Blood Volume 1175 2675 3494.73 30.6%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.01 0.01 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 0.10 0.10 0%

Venous 0.01 0.01 0.01 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 0.04 0.04 0%

Total Number of Iterations 23 Total Input Error 55.7%

Table A.17: Comparison of Pseudo-Patient Input Parameters with
Estimated Input Parameters in AV Fistula Case

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 70.6 69.8 1.1%

Maximum Systemic Arterial Pressure (mmHg) 113.2 116.5 113.7 2.4%

Minimum Systemic Arterial Pressure (mmHg) 75.6 35.7 36.1 1.1%

Mean Central Venous Pressure (mmHg) 6.6 25.5 26.0 2.0%

Cardiac Output (ml/min) 5321 27362 26804 2.0%

Heart Rate (beats/min) 72 120 120 0%

Mean Right Ventricular Pressure (mmHg) 10.6 34.9 35.4 1.4%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 46.2 45.9 0.6%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 61.2 60.4 1.3%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 30.1 30.1 0%

Pulmonary Wedge Pressure (mmHg) 9.2 28.3 28.5 0.7%

Left Heart Ejection Fraction (%) 55 86 85 1.2%

Right Heart Ejection Fraction (%) 62 82 80 2.4%

Total Number of Iterations 23 Total Output Error 6.1%

Table A.18: Comparison of Output Variables of Pseudo-Patient with
those of Simulator in AV Fistula Case
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Figure A-17: Input Error Function vs. Number of Iterations in AV Fistula Case

Figure A-18: Output Error Function vs. Number of Iterations in AV Fistula Case
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A.2.6 Dilated Cardiomyopathy and Bi-Ventricular Conges-

tive Heart Failure

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 125 125 0%

Total Blood Volume (ml) 5000 6300 6684

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 1.2 1.6 33.3%

LVdiast 10.0 5.0 6.2 24%

Arterial 1.6 1.0 1.1 10%

Venous 100.0 100.0 100.0 0%

RVsyst 1.20 3.6 4.4 22.2%

RVdiast 10.0 11.0 13.3 20.9%

Pulm. Art. 4.30 2.5 2.7 8%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 50 15.0

Arterial 715.0 715.0 715.0

Venous 2500.0 2200 2500.0

RV 15.0 50.0 15.0

Pulm. Art. 90.0 90.0 90.0

Pulm. Venous 490.0 490.0 490.0

Total E�ective Blood Volume 1175 2705 2859.04 5.7%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.01 0.01 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 0.9 0.88 2.2%

Venous 0.01 0.01 0.01 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 0.14 0.14 0%

Total Number of Iterations 82 Total Input Error 52.0%

Table A.19: Comparison of Pseudo-Patient Input Parameters with Estimated
Input Parameters in Dilated Cardiomyopathy and
Bi-Ventricular Congestive Heart Failure Case

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 95.1 96.6 1.6%

Maximum Systemic Arterial Pressure (mmHg) 113.2 108.4 110.0 1.5%

Minimum Systemic Arterial Pressure (mmHg) 75.6 79.6 81.4 2.3%

Mean Central Venous Pressure (mmHg) 6.6 18.1 18.4 1.7%

Cardiac Output (ml/min) 5321 5247.7 5475 4.3%

Heart Rate (beats/min) 72 125 125 0%

Mean Right Ventricular Pressure (mmHg) 10.6 31.0 31.5 1.6%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 44.3 45.4 2.5%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 49.5 50.5 2.0%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 38.6 40.0 3.6%

Pulmonary Wedge Pressure (mmHg) 9.2 32.5 33.5 3.1%

Left Heart Ejection Fraction (%) 55 19 19 0%

Right Heart Ejection Fraction (%) 62 15 14 0%

Total Number of Iterations 82 Total Output Error 16.8%

Table A.20: Comparison of Output Variables of Pseudo-Patient with
those of Simulator in Dilated Cardiomyopathy and
Bi-Ventricular Congestive Heart Failure Case

103



Figure A-19: Input Error Function vs. Number of Iterations in
Dilated Cardiomyopathy and Bi-ventricular
Congestive Heart Failure Case

Figure A-20: Output Error Function vs. Number of Iterations in
Dilated Cardiomyopathy and Bi-ventricular
Congestive Heart Failure Case
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A.2.7 Acute Myocardial Infarction with Bi-Ventricular Heart

Failure

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 110 110 0%

Total Blood Volume (ml) 5000 5000 5748.93

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 2.5 2.6 4%

LVdiast 10.0 8.0 8.21 2.6%

Arterial 1.6 0.5 0.50 0%

Venous 100.0 100.0 100.0 0%

RVsyst 1.20 4.0 4.4 10%

RVdiast 10.0 15 15.7 4.7%

Pulm. Art. 4.30 2.0 1.9 5%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 15.0 15.0

Arterial 715.0 715.0 715.0

Venous 2500.0 1800.0 2500.0

RV 15.0 25.0 15.0

Pulm. Art. 90.0 90.0 90.0

Pulm. Venous 490.0 490.0 490.0

Total E�ective Blood Volume 1175 1865 1653 11.4%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.01 0.01 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 1.40 1.34 4.3%

Venous 0.01 0.01 0.01 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 0.08 0.077 3.8%

Total Number of Iterations 77 Total Input Error 14.6%

Table A.21: Comparison of Pseudo-Patient Input Parameters with
Estimated Input Parameters in Acute Myocardial
Infarction and Bi-ventricular Heart Failure Case

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 78.3 76.3 2.6%

Maximum Systemic Arterial Pressure (mmHg) 113.2 94.8 93.3 1.6%

Minimum Systemic Arterial Pressure (mmHg) 75.6 59.3 56.8 4.2%

Mean Central Venous Pressure (mmHg) 6.6 10.0 10.5 5%

Cardiac Output (ml/min) 5321 3054 3066 0.4%

Heart Rate (beats/min) 72 110 110 0%

Mean Right Ventricular Pressure (mmHg) 10.6 21.2 21.4 0.9%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 35.0 34.4 1.7%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 40.0 39.1 2.3%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 31.4 30.8 1.9%

Pulmonary Wedge Pressure (mmHg) 9.2 31.1 30.6 1.6%

Left Heart Ejection Fraction (%) 55 10 10 0%

Right Heart Ejection Fraction (%) 62 12 12 0%

Total Number of Iterations 77 Total Output Error 10.1%

Table A.22: Comparison of Output Variables of Pseudo-Patient with
those of Simulator in Acute Myocardial Infarction
and Bi-Ventricular Heart Failure Case
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Figure A-21: Input Error Function vs. Number of Iterations in
Acute Myocardial Infarction and Bi-ventricular Heart Failure Case

Figure A-22: Output Error Function vs. Number of Iterations in
Acute Myocardial Infarction and Bi-Ventricular Heart Failure Case
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A.2.8 Septic Shock

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 150 150 0%

Total Blood Volume (ml) 5000 5000 4519.74

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 0.5 0.6 10%

LVdiast 10.0 10 10.4 4%

Arterial 1.6 1.6 1.64 2.5%

Venous 100.0 100.0 100.0 0%

RVsyst 1.20 1.2 1.2 0%

RVdiast 10.0 10.0 10.0 0%

Pulm. Art. 4.30 4.30 4.30 0%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 15.0 15.0

Arterial 715.0 715.0 715.0

Venous 2500.0 3000.0 2500.0

RV 15.0 15.0 15.0

Pulm. Art. 90.0 90.0 90.0

Pulm. Venous 490.0 490.0 490.0

Total E�ective Blood Volume 1175 675 694.74 2.9%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.01 0.01 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 0.25 0.25 0%

Venous 0.01 0.01 0.01 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 0.08 0.08 0%

Total Number of Iterations 51 Total Input Error 14.2%

Table A.23: Comparison of Pseudo-Patient Input Parameters with
Estimated Input Parameters in Septic Shock Case

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 30.4 30.8 1.3%

Maximum Systemic Arterial Pressure (mmHg) 113.2 39.4 39.8 1.0%

Minimum Systemic Arterial Pressure (mmHg) 75.6 21.3 21.6 1.4%

Mean Central Venous Pressure (mmHg) 6.6 3.9 4.0 2.6%

Cardiac Output (ml/min) 5321 6483 6662 2.8%

Heart Rate (beats/min) 72 150 150 0%

Mean Right Ventricular Pressure (mmHg) 10.6 8.2 8.5 3.7%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 13.1 13.4 2.3%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 15.9 16.3 2.5%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 9.5 9.8 3.2%

Pulmonary Wedge Pressure (mmHg) 9.2 4.5 4.7 4.4%

Left Heart Ejection Fraction (%) 55 54 53 1.9%

Right Heart Ejection Fraction (%) 62 53 53 0%

Total Number of Iterations 51 Total Output Error 10.7%

Table A.24: Comparison of Output Variables of Pseudo-Patient with
those of Simulator in Septic Shock Case
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Figure A-23: Input Error Function vs. Number of Iterations in Septic Shock Case

Figure A-24: Output Error Function vs. Number of Iterations in Septic Shock Case
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A.2.9 Pulmonary Hypertension with Right Heart Failure

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 152 152 0%

Total Blood Volume (ml) 5000 6500 6712.44

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 0.4 0.41 2.5%

LVdiast 10.0 10 9.7 3%

Arterial 1.6 0.80 0.80 0%

Venous 100.0 100.0 100.0 0%

RVsyst 1.20 4 4.06 1.5%

RVdiast 10.0 10.0 10.0 0%

Pulm. Art. 4.30 4.30 4.30 0%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 15.0 15.0

Arterial 715.0 715.0 715.0

Venous 2500.0 2200 2500.0

RV 15.0 15.0 15.0

Pulm. Art. 90.0 90.0 90.0

Pulm. Venous 490.0 490.0 490.0

Total E�ective Blood Volume 1175 2975 2887.44 2.9%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.01 0.01 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 1.4 1.38 1.4%

Venous 0.01 0.01 0.01 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 1 0.96 4%

Total Number of Iterations 50 Total Input Error 6.6%

Table A.25: Comparison of Pseudo-Patient Input Parameters with Estimated Input
Parameters in Pulmonary Hypertension and Right Heart Failure Case

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 95.5 92.3 3.4%

Maximum Systemic Arterial Pressure (mmHg) 113.2 106.3 102.8 3.3%

Minimum Systemic Arterial Pressure (mmHg) 75.6 85.1 82.1 3.5%

Mean Central Venous Pressure (mmHg) 6.6 22.8 22.1 3.1%

Cardiac Output (ml/min) 5321 3163 3115 1.5%

Heart Rate (beats/min) 72 152 152 0%

Mean Right Ventricular Pressure (mmHg) 10.6 38.7 37.2 3.9%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 54.2 51.7 4.6%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 55.9 53.3 4.7%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 52.4 49.9 4.8%

Pulmonary Wedge Pressure (mmHg) 9.2 3.7 3.8 2.7%

Left Heart Ejection Fraction (%) 55 26 26 0%

Right Heart Ejection Fraction (%) 62 7.5 7.6 1.3%

Total Number of Iterations 50 Total Output Error 12.8%

Table A.26: Comparison of Output Variables of Pseudo-Patient with those of
Simulator in Pulmonary Hypertension and Right Heart Failure Case
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Figure A-25: Input Error Function vs. Number of Iterations in
Pulmonary Hypertension and Right Heart Failure Case

Figure A-26: Output Error Function vs. Number of Iterations in
Pulmonary Hypertension and Right Heart Failure Case
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A.2.10 Mitral Stenosis I

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 100 100 0%

Total Blood Volume (ml) 5000 5500 5530.11

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 0.4 0.42 5%

LVdiast 10.0 10 2.69 73.1%

Arterial 1.6 1.6 1.49 6.9%

Venous 100.0 100.0 100.0 0%

RVsyst 1.20 0.9 0.91 1.1%

RVdiast 10.0 10.0 9.67 3.3%

Pulm. Art. 4.30 4.30 4.30 0%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 15.0 15.0

Arterial 715.0 715.0 715.0

Venous 2500.0 2500 2500.0

RV 15.0 15.0 15.0

Pulm. Art. 90.0 90.0 90.0

Pulm. Venous 490.0 490.0 490.0

Total E�ective Blood Volume 1175 1675 1705.11 1.8%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.2 0.01 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 1.0 0.98 2%

Venous 0.01 0.01 0.01 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 0.30 0.29 3.3%

Total Number of Iterations 30 Total Input Error 120.3%

Table A.27: Comparison of Pseudo-Patient Input Parameters with
Estimated Input Parameters in Mitral Stenosis Case I

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 93.9 92.3 1.7%

Maximum Systemic Arterial Pressure (mmHg) 113.2 107.2 104.0 3.0%

Minimum Systemic Arterial Pressure (mmHg) 75.6 80.7 78.6 2.6%

Mean Central Venous Pressure (mmHg) 6.6 7.8 8.2 5.1%

Cardiac Output (ml/min) 5321 5286 5258 0.5%

Heart Rate (beats/min) 72 100 100 0%

Mean Right Ventricular Pressure (mmHg) 10.6 26.0 26.1 0.4%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 59.1 58.6 0.8%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 63.7 63.3 0.8%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 54.1 53.7 0.7%

Pulmonary Wedge Pressure (mmHg) 9.2 33.1 33.1 0%

Left Heart Ejection Fraction (%) 55 47 47 0%

Right Heart Ejection Fraction (%) 62 41 41 0%

Total Number of Iterations 30 Total Output Error 7.3%

Table A.28: Comparison of Output Variables of Pseudo-Patient with
those of Simulator in Mitral Stenosis Case I

111



Figure A-27: Input Error Function vs. Number of Iterations
in Mitral Stenosis Case I

Figure A-28: Output Error Function vs. Number of Iterations
in Mitral Stenosis Case I
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A.2.11 Mitral Stenosis II

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 100 100 0%

Total Blood Volume (ml) 5000 5500 5544.33

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 0.4 0.43 7.5%

LVdiast 10.0 10 10 0%

Arterial 1.6 1.6 1.8 12.5%

Venous 100.0 100.0 100.0 0%

RVsyst 1.20 0.9 0.93 3.3%

RVdiast 10.0 10.0 10.6 6%

Pulm. Art. 4.30 4.30 4.30 0%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 15.0 15.0

Arterial 715.0 715.0 715.0

Venous 2500.0 2500 2500.0

RV 15.0 15.0 15.0

Pulm. Art. 90.0 90.0 90.0

Pulm. Venous 490.0 490.0 490.0

Total E�ective Blood Volume 1175 1675 1719.33 2.6%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.2 0.19 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 1.0 0.98 0%

Venous 0.01 0.01 0.01 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 0.30 0.29 3.3%

Total Number of Iterations 27 Total Input Error 16.5%

Table A.29: Comparison of Pseudo-Patient Input Parameters with
Estimated Input Parameters in Mitral Stenosis Case II

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 93.9 96.8 3.1%

Maximum Systemic Arterial Pressure (mmHg) 113.2 107.2 109.3 2.0%

Minimum Systemic Arterial Pressure (mmHg) 75.6 80.7 84.1 4.2%

Mean Central Venous Pressure (mmHg) 6.6 7.8 7.8 0%

Cardiac Output (ml/min) 5321 5286 5529 4.6%

Heart Rate (beats/min) 72 100 100 0%

Mean Right Ventricular Pressure (mmHg) 10.6 26.0 26.4 1.5%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 59.1 60.4 2.2%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 63.7 65.2 2.4%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 54.1 55.2 2.0%

Pulmonary Wedge Pressure (mmHg) 9.2 33.1 33.6 1.5%

Left Heart Ejection Fraction (%) 55 47 46 2.1%

Right Heart Ejection Fraction (%) 62 41 41 0%

Total Number of Iterations 27 Total Output Error 11.1%

Table A.30: Comparison of Output Variables of Pseudo-Patient with
those of Simulator in Mitral Stenosis Case II
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Figure A-29: Input Error Function vs. Number of Iterations
in Mitral Stenosis Case II

Figure A-30: Output Error Function hvjkcxvs. Number of Iterations
in Mitral Stenosis Case II
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A.2.12 Tricuspid Stenosis

Parameter Normal Pseudo-Patient Estimation Error

Heart Rate (beats/min) 72 120 120 0%

Total Blood Volume (ml) 5000 5500 5525.11

Trans-thoracic Pressure (mmHg) -4 -4 -4 0%

Capacitances: (ml/mmHg)

LVsyst 0.4 0.4 0.4 0%

LVdiast 10.0 10 10.0 0%

Arterial 1.6 1.6 1.6 0%

Venous 100.0 100.0 100.0 0%

RVsyst 1.20 1.2 1.2 0%

RVdiast 10.0 10.0 10.0 0%

Pulm. Art. 4.30 4.30 4.30 0%

Pulm. Venous 8.40 8.40 8.40 0%

Zero-Pressure Volumes: (ml)

LV 15.0 15.0 15.0

Arterial 715.0 715.0 715.0

Venous 2500.0 2500 2500.0

RV 15.0 15.0 15.0

Pulm. Art. 90.0 90.0 90.0

Pulm. Venous 490.0 490.0 490.0

Total E�ective Blood Volume 1175 1675 1700.11 1.5%

Resistances: (mmHg*sec/ml)

LV In
ow 0.01 0.01 0.01 0%

LV Out
ow 0.006 0.006 0.006 0%

Microvascular 1.0 1.0 0.98 2%

Venous 0.01 0.1 0.1 0%

RV Out
ow 0.003 0.003 0.003 0%

Pulmonary 0.08 0.08 0.08 0%

Total Number of Iterations 23 Total Input Error 4.3%

Table A.31: Comparison of Pseudo-Patient Input Parameters with
Estimated Input Parameters in Tricuspid Stenosis Case

Measurable Variables Normal Pseudo-Patient Simulator Output Error

Mean Systemic Arterial Pressure (mmHg) 94.3 86.2 86.7 0.6%

Maximum Systemic Arterial Pressure (mmHg) 113.2 95.5 96.0 0.5%

Minimum Systemic Arterial Pressure (mmHg) 75.6 76.7 77.4 0.9%

Mean Central Venous Pressure (mmHg) 6.6 13.0 13.2 1.5%

Cardiac Output (ml/min) 5321 4409 4436 0.6%

Heart Rate (beats/min) 72 120 120 0%

Mean Right Ventricular Pressure (mmHg) 10.6 5.9 6.1 3.4%

Mean Pulmonary Arterial Pressure (mmHg) 16.3 10.9 11.0 0.9%

Maximum Pulmonary Arterial Pressure (mmHg) 22.1 13.5 13.6 0.7%

Minimum Pulmonary Arterial Pressure (mmHg) 10.7 7.9 8.0 1.3%

Pulmonary Wedge Pressure (mmHg) 9.2 5.0 5.1 2%

Left Heart Ejection Fraction (%) 55 41 41 0%

Right Heart Ejection Fraction (%) 62 50 50 0%

Total Number of Iterations 23 Total Output Error 4.6%

Table A.32: Comparison of Output Variables of Pseudo-Patient with
those of Simulator in Tricuspid Stenosis Case
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Figure A-31: Input Error Function vs. Number of Iterations
in Tricuspid Stenosis Case

Figure A-32: Output Error Function vs. Number of Iterations
in Tricuspid Stenosis Case
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