Garbage Collection in a Large, Distributed Object Store

Umesh Maheshwari
September, 1997

MIT-LCS TR-727
MIT Laboratory for Computer Science
545 Technology Square, Cambridge MA 02139

Abstract

Systems that store a large number of persistent objects over many sites in a network pose new
challenges to storage management. This thesis presents a comprehensive design for collecting
garbage objects in such systems. The design achieves scalability by partitioning the system at two
levels. Each site traces its objects independently of other sites, and the disk space at each site is
divided into partitionsthat are traced one at atime in main memory. To trace a site independently of
other sites, and a partition independently of other partitions, objects reachable from other partitions
or other sites must be treated as roots. This introduces two problems. First, maintaining up-to-
date information about inter-site and inter-partition references can stall applications and increase
usage of disk, memory, and the network. Second, treating these references as roots does not allow
collection of cycles of garbage objects spanning multiple sites or multiple partitions. Solutions to
these problems have been proposed in single-site or distributed systems, but they do not scale to
many partitions or many sites. This thesis presents scal able solutions to these problems.

The thesis provides new techniques to organize and update a potentially large amount of inter-
partition information such that the information is recoverable after a crash and disk time is used
efficiently. It also provides efficient techniques to record inter-site references in a system with
client caches and multi-server transactions. A client might cache a large number of references to
server objects; therefore, we identify a minimal subset of these references that must be recorded
for safe collection at servers. We use a new protocol to manage inter-server references created
by distributed transactions. This protocol sends messages in the background to avoid delaying
transaction commits. We use another new protocol to handle client crashes; the protocol alows
serversto safely discard information about clients that appear to have crashed but might be live.

The thesis provides different schemes to collect inter-partition and inter-site garbage cycles.
Inter-partition cyclesare collected using a site-wide marking scheme; unlike previous such schemes,
it is piggybacked on partition traces, does not delay the collection of non-cyclic garbage, and
terminates correctly in the presence of modifications. Inter-site cycles, on the other hand, are
collected using a scheme that minimizes inter-site dependence. It is the first practicaly usable
scheme that can collect an inter-site garbage cycle by involving only the sites containing the cycle.
The scheme has two parts: the first finds objects that are highly likely to be cyclic garbage, and
the second checksif they are in fact garbage. The first part uses a new heuristic based on inter-site
distances of objects. It has little overhead and it can be made arbitrarily accurate at the expense of
delay in identifying garbage. We provide two alternatives for the second part. The first migrates a
suspected garbage cycle to a single site, but unlike previous such schemes, it avoids migration as
much as possible. The second traces backwards from a suspect to check if it is reachable from a
root. We provide thefirst practical technique for back tracing in the presence of modifications.

Thesis Supervisor: Barbara Liskov
Title: Ford Professor of Engineering

Acknowledgments

Thisthesiswas guided and criticized by my research advisor, Prof. BarbaraLiskov. | have benefited
from her keen mental vision in problems of technical nature and presentation. She provided prompt
feedback on the thesis.

My thesis readers, Prof. John Guttag and Prof. Dave Gifford, helped with bringing out the
significance of this thesis. Phil Bogle, Dorothy Curtis, and Robert Ragno proofread parts of the
thesis on short notice. Much of the work presented hereis derived from papers published previously
[ML94, ML95, ML97b, ML97a]. | am grateful to the anonymous referees who judged these
papers. | am also grateful to various members of LCS who proofread these papers and gave useful
comments: Atul Adya, Chandrasekhar Boyapati, Miguel Castro, Sanjay Ghemawat, Robert Gruber,
Frans Kaashoek, Andrew Myers, Liuba Shrira, Raymie Stata, and James O’ Toole. In addition to
these people, others gave me comments during practice talks: Kavita Bala, Dorothy Curtis, John
Guttag, Paul Johnson, Ulana Legedza.

This research was supported in part by the Advanced Research Projects Agency of the Depart-
ment of Defense, monitored by the Office of Naval Research, under contract NO0014-91-J-4136.

There are some peoplewhose hel p transcendsthisthesis; to thank them hereis neither necessary
nor sufficient.

Contents

Introduction

11 TheStorageProbleminObjectStores

1.2 Goasfor GarbageCollection

1.3 Contributions.
1.3.1 Inter-PartitionReferences L.
1.3.2 Inter-partition GarbageCycles
133 Inter-SiteReferences.
134 Inter-SiteGarbageCycles o
1.35 Limitations.

14 Outline.

The Context

21 TheApplicationinterface
22 Objectsat Clients
2.3 Objectsat SEVErS L e e e e
24 Concurrency Control oL
25 CommitProtocol
26 FalureModel

Partitioned Garbage Collection

31 Partitions. e
311 WhyPartitions.
3.1.2 TheStructureof Partitions

32 BasicScheme

33 Insels e
3.3.1 ComparisonwithPreviousWork
332 MaintaningInsets

34 TracingaPartition
341 SafeTracing o
34.2 SdafeTracinginaTransactional System
343 Making
344 SWeEPINg e e e
345 DISKACCESSES . . . v v e e

35 Peformance
35.1 ImplementationDetails
352 Workload
3.5.3 Experimental Configuration

© 00

Inter-Partition Garbage Cycles

4.1 DaaStructuresandInvariants
42 StatingaPhase
4.3 Processing Modifications
4.4 Propagating SiteMarks L.
45 Termination e
46 CrashRecovery
47 RelatedWork
4.8 SUMMAY o e e e e e

I nter-Site References

51 BasicScheme e e
5.1.1 Inter-Site ReferenceListing vs. ReferenceCounting

5.2 Client-to-Server References e
521 TheEssentia Trandlist
522 NameReuseProblems.
5.23 Maintainingthe Essential Translist

5.3 Serverto-ServerReferences e
531 AddingReferences.
532 StoringInlistsandQutlists L.

54 SiteCrashes e e
541 ServerCrash e
542 ClientCrash

Inter-Site Garbage Cycles

6.1 DistanceHeuristic
6.1.1 EstimatingDistances.
6.1.2 DeviationinDistanceEstimates
6.1.3 Distanceof CyclicGarbage
6.1.4 TheThresholdDistance
6.1.5 Summary of DistanceHeuristic

6.2 Migration
6.21 WheretoMigrate
6.2.2 Whento Migrate: theSecond Threshold
6.23 Summary of Migration.

6.3 BackTracing
6.3.1 TheBasicScheme,
6.3.2 Computing Back Information
6.3.3 CONCUIENCY o o o e e e e e e
6.3.4 Back Tracing Through Partitions
6.3.5 Summary of Back Tracing and Comparison with Migration

6.4 RelatedWork

6.5 Summary

7 Conclusions 86

7.1

7.2

7.3

TheOverall Design 86
7.1.1 Recording Inter-partition and Inter-site References 86
7.1.2 Collecting Inter-partition and Inter-site GarbageCycles 87
Guidelinesfor PerformanceEvaluation 88
721 MECS. e e e 88
722 Workload Parameterso 89
723 SystemParameters. e 89
Directionsfor FutureWorko 89

List of Figures

11
12

21
2.2
2.3
24

31
3.2
3.3
34
35
3.6
3.7
38
3.9
3.10
311
312

4.1
4.2

51
5.2
53
5.4
55
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6

An object store provides ashared collection of objects. 8
A client-server implementation of anobjectstore. 12
Volatileand persistentobjects. L 16
How volatile objectsbecomepersistent. 16
Adottedpage. 17
Theflow of new and modifiedobjects. 19
INSELS. 23
Inset, outset, and tranglists. 24
Detalists. 26
Problem with applying or installing modificationsout of order. 28
Compaction by diding live objectswithintheirpage. 29
Probability distribution for referencesto nearby objects. 32
Workload parameters. 32
Effect of spaceallocatedto deltalists. 33
Breakdown of collector overhead with increasing inter-partition references. 33
Effect of spatial locality ondiskreads. 34
Effect of temporal locality ondiskreads. 35
Effect of lissmemory ondiskreads. 35
Propagation of partition-marks and site-marksduringatrace. 40
Example where a 2-part tracing scheme without rescanningfails. 41
Recording inter-sitereferences.o 45
Need for including client referencesintherootset. 47
Problem of old referenceand new copy inclientcache. 49
Problem of new referenceand old copy inclientcache. 49
Possibility of abort dueto garbagecollection. 50
Creation of anew inter-serverreference. 52
References between partitions at differentservers.o 56
The2-phasebanprotocol. 58
Two-part schemefor collecting inter-site garbagecycles. 61
Distancesof object. 61
Distances associated withinrefsandoutrefs 62
Distances drop on creation of references (dotted arrow). 64
Distances of adisconnected cycle (dotted cross). 64
Desired migration of an inter-site cycletoasinglesite. 66

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

Objectstraced from a suspected inref are batched for migration. 67

A chain reachable from a cycle may migrate to adifferentsite. 68
Inreaches of suspectedoutrefs. L 70
A backtracemay branch. 72
Tracing does not computereachability. 74
Reference modifications (dotted lines). 76
Local copy. o e 77
Firstcaseof aremotecopy. e 78
Second caseof aremotecopy.o 78
A non-atomic back trace may seeaninconsistentview. 80
Non-atomic back traceandalocal copy. L. 81
Non-atomic back traceand aremotecopy. 82

Chapter 1

| ntroduction

Object stores, also known as object databases, allow user applications to store and share objects.
Emerging distributed systems will allow applications to access objects stored at a large number of
sites, and each site may store a large number of objects on disk. The scale of such systems poses
new challengesfor efficient use of storage, especially for reclaiming the storage of unusabl e objects.
Thisthesis presents techniquesto meet these challenges. This chapter describes the context and the
contribution of the thesis.

1.1 TheStorage Problem in Object Stores

Applications view an object store as a collection of objects that contain data and referencesto each
other. An application may invoke operations that read or modify existing objects or create new
objects. Objects created by one application may be accessed by other applications, even after the
application has finished. To facilitate such access, certain objects are assigned user-level names
by which they can be accessed from any application and at any time; these objects are known as
persistent roots. Thus, an application may begin by accessing a persistent root and then traverse
references to reach other objects. This view of an object storeisillustrated in Figure 1.1.

Application
Application
persistent persistent
root root
object store

Figure 1.1: An object store provides a shared collection of objects.

New abjects require resources such as disk space and object names. Since these resources are
limited, the continual demand for them must be met by reclaiming objects that are of no further
use to applications. These objects are said to be garbage, while others are said to be live. Reusing
the storage of garbage objects does more than avoid running out of disk space: it achieves higher

spatial density of live objects. Higher spatial density results in better utilization of memory caches
and disk and network bandwidth.
There are two ways of reclaiming garbage objects:

1. Explicit deletion by the application programmers, based on their knowledge of object seman-
tics and usage.

2. Garbage collection by the underlying runtime environment, based on the reachability of
objects from applications.

Explicit deletion is used in many programming languages. It identifies garbage with little runtime
overhead; it has the potential to identify more garbage than automatic detection—and sooner—
because the programmer may exploit program semantics to decide when an object is not useful.
However, explicit deletion is a burden on programmers and is prone to errors. Two kinds of errors
are possible. If agarbage object is not deleted, its storage will be lost. On the other hand, if alive
object is deleted, an application may attempt to use the object and fail. Referencesto such an object
are called dangling references. Explicit deletion becomes even more problematic in object stores
for the following reasons. Objects may be shared by many applications and there may be many
different ways of accessingthem. Therefore, it isvery difficult for a programmer to decide when to
delete an object. Further, objects are persistent, so the effects of deleting live objects or retaining
garbage objectswill last for ever.

Therefore, object stores need garbage collection. An underlying component, the garbage
collector, automatically finds and reclaims objects that cannot be reached from applications. An
object isreachable from an application only if it is reachable from a persistent root or an application
variable. Reachability isdetermined by the existence of apath of zero or more connecting references.
This model for storage management is often known as “ persistence by reachability” [ABC*83].

In a distributed object store, objects may contain references to objects at other sites. Objects
are expected to be clustered at sites such that remote references are infrequent compared to local
references. However, garbage collection must account for local as well as remote references to
determine reachability.

Garbage collection might not be suitable for a network of sites owned by many userswith little
common interest, such asthe Internet. In such networks, the need for autonomous control of storage
overridesthe need to prevent dangling referencesfrom other sites. For examples, the administrator of
a Web server might want to remove local documents although other sites might contain references
to those documents. However, garbage collection is suitable for a network of sites owned by a
corporation or by users with a shared interest. In such networks, there is an interest in preventing
dangling references. Note that even corporate networks may be geographically distributed and may
span thousands of sites.

Indeed, many Internet-wide object stores are not based on the object model described above.
For example, most objects in the Web are relatively coarse-grained since they are meant for direct
viewing by humans, and these objects have user-level names (URL's) by which they can be accessed
provided they have not been deleted by the administrator. In contrast, this thesis applies to object
stores that are programmable, that store fine-grained objects for use by application programs, and
that provide reliable accessto data. Thus, it applies to newly popular distributed object systems
such as Java Remote Method Invocation.

1.2 Goalsfor Garbage Collection

Ideally, the garbage collector should have the following properties:

Safe It should collect only garbage objects. In general, the garbage collector should not changethe
application semantics.

Complete Itshouldcollect all garbage objectseventually. Thisisparticularly important in persistent
systems because even small amounts of uncollected garbage can accumulate over time and
cause significant loss of storage.

Timely It should collect most garbage objects quickly enough that applications are not blocked for
free space when creating new objects. Timely collection is aso required for better spatial
locality of live objects.

Efficient It should runin the background so that it doesnot stall the applications. Further, it should
have low utilization of resources such as the processor, memory, disk, and network.

Fault Tolerant It should tolerate site crashes and lost messages. Sites should collect as much
garbage as possible even when other sites or parts of the network are down or slow.

Scalable The garbage collector should retain the above properties as more sites are added or as
more objects are added to a site.

However, as is evident in the discussion below, garbage collection in a large, distributed store is
difficult because many of these requirements conflict with each other.

A simple method to collect garbage is to trace all objects reachable from the roots and then
collect objects not visited by the trace. However, atrace of the global object graph would require all
sitesto cooperate and finish the trace before any site can collect any garbage. Such atracewould not
betimely or fault tolerant because every site must wait until the global trace hasfinished. Timeliness
and fault tolerance require that a site trace local objects independently of other sites. Thisis the
approach taken in many distributed systems [Ali85, Bev87, SDP92, JJ92, BENT93, ML94]. Local
tracing minimizes inter-site dependence. In particular, garbage that is not referenced from other
sites is collected locally. Further, a chain of garbage objects spanning multiple sites is collected
through cooperation within the sites holding the chain. We call this feature the locality property.

The problemwith aglobal trace reappearswithin asitein adifferent context. Each site may have
alarge disk space and arelatively small main memory. Often, the memory size is only a hundredth
of the disk size. Therefore, a trace of the site’'s objects is likely to thrash on disk due to poor
locality of references[YNY 94]. In particular, adisk page might be fetched and evicted many times
as different objects on the page are scanned. This is undesirable for two reasons. First, the trace
might take along time to finish, preventing timely collection of garbage. Second, which is worse,
the trace would use significant disk bandwidth and memory space, which are crucial resources for
good performance of applications. Thus, timeliness and efficiency require that the disk space be
divided into smaller partitions that are traced independently. This is the approach taken in many
single-site systems with large, disk-based heaps [Bis77, YNY 94, AGF95, MMH96, CKWZ96].
Ideally, partitions should be large enough to be an efficient unit of tracing, and small enough to fit
in afraction of main memory.

However, to trace a site independently of other sites, and a partition independently of other
partitions, objects reachable from other sites or other partitions on the same site must not be
collected. Therefore, references to objects from other sites or other partitions must be treated as
roots for tracing. Thisintroducestwo problems:

Efficiency Maintaining up-to-date information about inter-site and inter-partition references might
delay applications and increase utilization of memory, disk, and network.

Completeness Treating inter-site and inter-partition references as roots fails to collect cycles of
garbage objects spanning multiple sites or multiple partitions.

While some sol utionsto these problems have been proposed in single-siteor distributed systems, they
do not scale to many partitions or many sites. For example, they are not efficient in managing large

10

numbers of inter-partition references, and they do not preserve the locality property in collecting
inter-site garbage cycles.

1.3 Contributions

Thisthesispresentsacomprehensivedesign for garbagecollectionin alarge, distributed object store.
The design includes a collection of new techniques that meet the challenges posed in the previous
section. Thefocus of the thesis is the management of inter-partition and inter-site references.

1.3.1 Inter-Partition References

The information about inter-partition references is recorded on disk for two reasons. First, if this
information is not persistent, recomputing it after a crash by scanning the entire disk would take
a long time; until the information is retrieved, no partition can be collected. Second, a large
disk may contain enough inter-partition references that recording them in memory would take up
substantial space. Maintaining inter-partition information persistently requires care in keeping
the disk utilization low, both for the garbage collector to perform well and, more importantly, to
avoid degrading service to applications. We present new techniques to organize and update this
information with the following benefits:

1. Information about inter-partition referencesis recovered quickly after a crash.
2. Disk accessesto add new inter-partition referencesto the information are batched.
3. Unnecessary referencesin the information are dropped efficiently.

We have implemented these techniques, and we present a performance study to evaluate their
benefits. The study shows that if not enough memory is available to cache the inter-partition
information, the disk-time overhead of maintaining the information can be significant compared to
the overhead of installing modified objects on disk. Our techniques reduce the disk-time overhead
of maintaining inter-partition information by afactor of 100. These techniques exploit a stable log
of modified objects; most object stores contain such a log to support transactions. (A transaction
is a sequence of operations that behaves atomically with respect to other transactions and crashes
[Grar8].)

Partitioned garbage collection involves a wide range of other issues such as the choice of the
tracing algorithm (marking, copying [Bak78], replicating [ONG93], etc.), the selection of partitions
to trace [CWZ94], the rate of starting traces [CKWZ96], handling transactional rollback [AGF95],
etc. Thisthesis either does not cover the above issues or addresses them only marginaly. These
issues have been discussed by other researchers and most of their proposals can be applied in
conjunction with the techniques proposed in this thesis.

1.3.2 Inter-partition Garbage Cycles

Treating inter-partition references as roots retains inter-partition garbage cycles and objects reach-
able from them. Inter-partition cyclesare commonin practice; for example, in many CAD applica-
tions a container object pointsto its parts and the parts point back to the container—thus creating a
huge tree with doubly linked edges [CDN93].

We present a site-wide marking schemefor collecting cycles between partitions on the samesite.
Complementary global marking has been proposed earlier to collect cyclic garbage in partitioned
schemes. We present the first such scheme that has the following features [ML97b]:

11

1. It piggybacks site-wide marking on partition tracing, adding little overhead to the base scheme.
2. It does not delay the collection of non-cyclic garbage.
3. It terminates correctly in the presence of concurrent modifications.

The scheme also preserves the disk-efficient nature of partition tracing. Aswith all global schemes,
it can take along time for site-wide marking to terminate, but that is acceptable assuming cyclic
garbage spanning partitions is generated relatively slowly. The techniques underlying the scheme
are applicable to all partitioned collectors.

1.3.3 Inter-Site References

We present separate techniques for recording inter-partition and inter-site references to match their
efficiency and fault-tolerance requirements:

1. A siteisallowed to configureits partitions dynamically, but other sites are shielded from such
reconfigurations: they view the site as a single partition.

2. Information about an inter-partition reference is shared between the source and the target
partitions, but information about an inter-site reference is maintained on both the source and
the target sites to avoid unnecessary messages.

3. Newly created inter-partition references can be processed lazily becauseasinglethread traces
thevariouspartitionsat asite. However, newly createdinter-site references must be processed
eagerly because different sites trace partitions asynchronously.

Most of the previous partitioned collectors are designed for either a distributed system with one
partition per site or a single-site system with multiple partitions. Few collectors handle multiple
partitions within multiple sites [FS96], but they do not differentiate between inter-partition and
inter-site references.

We present techniques to support client-server mechanisms such as client caching and multi-
server transactions. Server sites store objects on disk, while a client runs at each application site
and executes operations on local copies of objects. A client fetches objects from serversinto its
cache as required. New and modified objects in the client cache are sent to the servers when an
application commits the current transaction. This architecture is illustrated in Figure 1.2. Here,
inter-site references include references from client caches to server objects as well as references
between server objects.

Application Application
Client cache Client cache
fetch commit
Server Server
cache cache

Figure 1.2: A client-server implementation of an object store.

One problem is that a client may fetch and cache many objects from servers, potentialy
containing millions of references. Recording all such references would be a large overhead and

12

might even prevent the collection of some garbage objects at servers. We present an efficient
technique that allows a server to record a minimal set of references held by aclient. We show that
it is necessary and sufficient to record this set for safe collection. We also describe how this set
is maintained without adding overhead when clients fetch objects. This techniqueis applicable to
cache-coherent or transactional systems, which either ensure that objects cached by clients are up
to date or abort client modifications based on out-of-date objects.

Another problem concerns recording inter-server references. Previous distributed collectors
were mostly designed for RPC-based (or control-shipping) systems, where inter-server references
were created through remote procedure calls[BN84]. However, in client-caching (or data-shipping)
transactional systems, inter-server references are created when clients commit transactions. We
present a new protocol for recording inter-server references created this manner. This protocol is
piggybacked on the commit protocol, but it does not delay the commit by sending extra foreground
messages or by adding extra participants. All extra messages are sent in the background, so they
may be deferred and batched.

We present techniques for tolerating client and server crashes. Servers are expected to recover
from crashes while clients might not recover. Serversrecover inter-partition and inter-site informa-
tion by storing it on disk. A problem in handling client crashes is that a live client might appear
to have crashed because of communication problems. We present a protocol that allows serversto
discard state for clients that appear to have crashed. In particular, the protocol ensures that a live
client that was presumed dead does not introduce dangling references into objects at servers.

1.3.4 Inter-Site Garbage Cycles

Inter-site cycles are relatively uncommon, but they do occur in practice. For example, hypertext
documents often form complex cycles spread over many sites. A global marking scheme is not
suitablefor collecting inter-site cyclesbecause sites may fail independently or, equivalently, become
overloaded and unresponsive. Thus, global marking might never complete in alarge system. The
challenge in collecting an inter-site garbage cycle is to preserve the locality property, that is, to
involve only the sites containing the cycle. This has proven difficult: most previous schemes do
not preserve locality [Ali85, JJ92, LQP92, MKI195, RJ96]. The few that do seem prohibitively
complex or costly [SGP90, Sch89, LC97].

We present the first practical scheme with locality to collect inter-site cycles. It has two parts.
Thefirst part identifies objects that are highly likely to be cyclic garbage—the suspects. This part
is not safe in that it might suspect live objects, although a performance requirement is that few
suspectsbelive. Suspectsare found by estimating the minimum inter-site distances of objectsfrom
persistent roots. This technique preserves locality, has very little overhead, and guarantees that all
cyclic garbage is eventually detected.

The second part checks if the suspects are in fact garbage. This part has the luxury of using
techniques that would be too costly if applied to all objects but are acceptable if applied only
to suspects. We present two aternatives for checking suspects. The first migrates the suspects
such that a distributed cycle converges to a single site [ML95]. Unlike previous migration-based
proposals[SGP9(], it avoids migration as much as possible: both in the number of objects migrated
and the number of times they are migrated. The second technique traces back from the suspects
to check if they are reachable from a persistent root. Unlike forward global tracing, this approach
preserves locality and scalability. Back tracing was proposed earlier by Fuchs [Fuc95]. However,
this proposal assumed that inverseinformation was availablefor references, and it ignored problems
dueto concurrent mutations and forward local traces. We present efficient techniquesfor conducting
back tracing that handle these and other practical problems. We show that the scheme is safe and

13

collects al inter-site garbage cycles.
These techniques are applicable to both client-caching and RPC-based distributed systems, and
to transactional and non-transactional systems.

1.3.5 Limitations

Popular use of distributed object stores is in its infancy and little factual information is available
about them, especially about the distribution of garbage objects in such systems. Therefore, this
thesis provides robust techniques that will work in a wide range of workloads. It also provides
a performance analysis of some techniques using synthetic workloads that allow us to control the
distribution of object references. However, a factual assessment of the full design would require
either implementing it in a distributed system in popular use, or simulating the distribution of
garbagein such asystem. This thesis does not provide such an assessment.

1.4 Outline

Therest of thisthesisis organized as follows:

e Chapter 2 describesthe system that is the context of this work.

e Chapter 3 presents techniques for maintaining information about inter-partition references
within asite and presents a performance evaluation.

e Chapter 4 presents a marking scheme to collect inter-partition garbage cycleswithin a site.

e Chapter 5 presentstechniquesfor maintaining information about inter-site references, includ-
ing client-to-server and inter-server references.

e Chapter 6 presents a scheme with locality to collect inter-site garbage cycles, including a
technique for finding suspected cyclic garbage and two techniques for checking them.

e Chapter 7 contains conclusions on the overall design, some guidelines for evaluating the
performance, and some directions for future research.

14

Chapter 2

The Context

This thesis was developed in the context of Thor, a state-of-the-art distributed object database
[LACT96]. This chapter describes the parts of Thor that are relevant to the garbage collector.
Some details are presented for the sake of completeness; most techniques proposed in this thesis
are applicable to other distributed object stores.

2.1 TheApplication Interface

Applications view a Thor database as a shared collection of objects. An application identifies
objects by handles. It begins its interaction with Thor by asking for a handle to some persistent
root object using a user-level name. It may then invoke operations—passing handles or numeric
data as parameters and receiving handles or numeric data as results. The application may release
some handles when it has finished using them. An application releases all handles when it finishes
its interaction with Thor. A handle is meaningful only within an application and only until it is
released, just like file handles in Unix operating systems.

An application groups its operations into transactions to tolerate failures and concurrent modi-
fications by other applications. A transaction behavesasif its operations happened atomically with
respect to failures and other transactions [Gra78]. An application specifies transaction boundaries
by requesting a commit, which endsthe ongoing transaction and starts another. A transaction might
fail to commit, or abort, for various reasons. In this case, the updates made during the transaction
areundone. Further, new handles given to the application during an aborted transaction are revoked
and cannot be used subsequently.

Applications may use handlesobtained during onetransaction in subsequent transactions. Some
other systems constrain applications to release al handles with each transaction [AGF95], so an
application must start each transaction from the persistent root. This constraint impliesthat garbage
collection need not account for the handles held by applications. However, it makes writing
applications inconvenient. More importantly, it does not allow use of volatile objects across
transactions; volatile objects are a useful optimization discussed in Section 2.2. Therefore, our
model does not have this constraint.

2.2 Objectsat Clients

Thor isimplemented asaclient-server system. A Thor client runs at an application site and executes
application requests on local copies of abjects. Thismay requirefetching objectsfrom serversinto a
local cache. New objects created when executing an operation are kept in avolatile heap within the

15

client. A volatile object becomes persistent when atransaction makesit reachable from a persistent
root. The notion of volatile and persistent objectsisillustrated in Figure 2.1.

Application
Application handles
handles

persistent persistent
I‘OOt root
volatile heap é—vﬁe&p
persistent heap
persistent heap

Figure 2.1: Volatile and persistent objects.

When a transaction commits, the client does the following:

e |t sends copies of persistent objects that were modified during the transaction to the servers

where they reside.
e |t sendscopiesof al volatile objectsreachable from some modified persistent object to chosen

server sites.

For example, in Figure 2.2, the client has cached persistent objectsa and b. It modifiesb to point to
the volatile abject e. When the transaction is committed, e and f become persistent and are copied
to the server along with the modified copy of b. Note that the committed state of a persistent object
never pointsto a volatile object, although a volatile object may point to a persistent object.

client client client
d e f d e f d e f
hand|e__.o_.o_.o | |
handle _| | |
a b \ a b a b LEGEND
\ » \ » O voldtile
° !
. a b c a b c a b c persistent
persistent __,._,._,i __,._,._,i _
root
e f
server server server
(i) before modification (i) after modification (iii) after commit

Figure 2.2: How volatile objects become persistent.

Note that an application’s volatile objects cannot be reached from other applications. Further,
when the application finishes, the volatile heap becomes unreachable (garbage). The volatile

16

heap is a useful optimization because it provides cheap storage for temporary objects used by an
application. The application may hold handles to volatile as well as persistent objects and access
them in subsequent transactions. Without thisfacility, all objectsthat an application needsto access
across transactions must be copied to servers, which would delay applications and waste resources.

Madifications might make a persistent object e unreachable from persistent roots while it is
reachable from an application handle. For simplicity, Thor does not revert the status of such an
object to volatile: e continues to be stored at the server. The application from which e is reachable
might make it reachable from persistent roots again.

Thevolatile aswell asthe persistent heaps need to be garbage collected. Sincethe volatile heap
in aclient is not referenced from other sites and is not persistent, its collection is similar to that in
conventional environments. This thesis focuses on the garbage collection of the persistent objects
at the servers. However, the garbage collection at the servers must account for references from
volatile heaps and handles at clients.

2.3 Objectsat Servers

Persistent objects are stored in disk pages at server sites. A page is a fixed-sized unit for reading
and writing the disk. Objects do not cross page boundaries; objects that would be larger than a page
are implemented as a collection of smaller objects. Further, an object does not grow or shrink in
size after it is created, which simplifies storage management. Abstractions such as resizable arrays
areimplemented as a tree of fixed-size blocks.

When an object becomespersistent, it isassigned aglobally unique name by which other objects,
possibly at other sites, may refer to it. These names are designed to locate objects efficiently. A
name identifies the server site, the page where the object resides, and an index within the page.
A header within each page maps indexes to the offsets of the objects within the page. Thus, an
object may be moved within its page without changing the name by which it is referenced. This
organization isillustrated in Figure 2.3; it is similar to slotted pages used in databases.

L Offset——
— table ——

free

object 3

object 2

object 1

Figure 2.3: A slotted page.

Object names arerecycled to save space. That is, after agarbage object is deleted, its name may
be assigned to a new object. Successive objects assigned the same name are called incarnations.
If an incarnation number were used to make names unique across time, each reference would use
more space. A small incarnation number would not suffice because of the danger of its wrapping
around.

Objects may contain references to objects at other server sites. We assume that objects are
clustered such that remote references are infrequent compared to local references. This assumption

17

is likely to be valid because a server stores a large number of abjects, potentially billions, which
provides ample opportunity for clustering objects to improve locality.

In most cases, a server treats an object as a vector of untyped fields. However, the garbage
collector needs to distinguish references and numeric data stored in an object in order to trace
objects. Thisinformation isfound in aclass object that describesthe layout of all objects belonging
to the class. The header of each object contains areference to its class object.

A server maintains a cache of pagesto serve fetch requests from clients. Besides a page cache,
the server contains a modified object buffer to store newly persistent or modified copies of objects
returned by clients [Ghe95]. Thisbuffer allows the server to defer and batch the installation of new
and modified objects into their disk pages.

2.4 Concurrency Control

The techniques described in this thesis are applicable to a wide range of transactional systems. In
particular, aclient need not lock objectsbefore using them; locking objectswould require contacting
the server and possibly other clients[CFZ94]. Not locking objects putsagreater demand on garbage
collection because clients might cache old copies of objects that are invalid. For concreteness, we
describe the transactional mechanisms employed in Thor.

Thor uses optimistic concurrency control [AGLM95]. A transaction does not lock the objects
it uses; instead, it is validated against previous transactions when it commits. Validation requires
information about the objects read and modified by the transaction. This information islogged by
the client and sent to the servers at commit time. In the current design, the client is dedicated to a
single running application, so the client runs one transaction at atime.

In order to validate transactions, a server keeps aconservative record of the pagesthat any given
client may have cached. When a client X commits a transaction modifying object b, the server
puts b in the invalid set of all clients other than X that might have cached b. Further, the server
sends an invalidation message to each such client in the background. When a client receives an
invalidation for an object b, it evictsb fromitslocal cache. Also, if the client hasused b in its current
transaction, it aborts the transaction. When the client acknowledges the invalidation message, the
server removes b from the invalid set of the client. Finaly, when validating a transaction, if the
server finds that an object used by atransaction is in the client’s invalid set, the server aborts the
transaction.

A client may evict pages that it read during the current transaction, but proper invalidation
requiresthat the server keep information about these pagesuntil theend of thetransaction. Therefore,
clientsinform servers of evicted pagesonly at the end of transactions.

When a client learns that its transaction was aborted, it revokes the handles created during the
transaction and reverts the modified objects to their states when the transaction started. To aid this,
the client makes a base copy of an object before it is modified in atransaction. It retains the base
copies of volatile objects until the transaction ends. It need not retain base copies of persistent
objects, since they are available at the servers.

2.5 Commit Protocol

The commit protocol is relevant to garbage collection becauseit dictates how object modifications
are applied. At commit time, the client finds the participant servers whose objects were read or

A background message is buffered in the send queue until an opportune moment, such aswhen another message must
be sent immediately or when many background messages have accumul ated.

18

written during the transaction. If there is more than one participant, it usesthe following two-phase
commit protocol [Gra78]. It sendsthe copies of new and modified objectsto a participant chosen as
the coordinator. The coordinator sends a prepare message to each participant. A participant tries
to validate the transaction. If the transaction cannot be committed for some reason, the participant
sends a negative vote to the coordinator; otherwise, it sends a positive vote. If the coordinator
receives a negativevote, it aborts the transaction and sends an aborted message to the client and the
participants where objects were created or modified. Otherwise it logs a commit record and sends
a committed message.

Theflow of new and modified objectsfrom the client cacheto disk pagesisshownin Figure 2.4.
When a server prepares atransaction, it stores the new and modified objectsinto a prepare record in
astablelog. Conventional systems use a disk-based log, but Thor uses anin-memory log replicated
on several machines [Ghe95]. Modifications stored in prepare records are not visible to clients.
When a transaction commits, the server applies the objects in the prepare record by moving them
into the modified object buffer, which is also a part of the in-memory stable log. Modifications of
single-site transactionsare appliedimmediately after validation, but those of distributed transactions
are applied after receiving a committed message.

Since committed messagesfor prepared transactions might not be received in the order in which
the transactions are serialized, their modifications might be applied out of order. Further, objectsin
the modified buffer are installed into the disk pages in the background to optimize disk utilization.
Again, modifications might be installed out of order. Applying and installing modifications out of
order makesit difficult for the garbage collector to obtain a safe view of the object graph.

prepare

Prepare record

apply | (upon commit) the stable log

| Modified object buffer |

install

Disk page

Figure 2.4: The flow of new and modified objects.

Some object stores use steal buffer management [EH84], which allows uncommitted modifica-
tions to be installed on disk pages. Thor does not use this policy for reasons provided in [Ghe95].
Not installing uncommitted data also simplifies garbage collection. Other researchers have solved
garbage-collection problems due to uncommitted data that is installed [AGF95]. Their solutions
can be used in conjunction with the techniques suggested in this thesis.

2.6 Failure Modd

A server is expected to recover from crashes without much delay. When a server crashes, it loses
the dataiin its main memory but retains the dataon its disk. Further, the server log is stable through
replication [LGGT91]. This thesis does not account for disk failures or other non-recoverable
failluresin servers.

19

A Thor client might crash at any time and never recover. We assumethat clientsarewell-behaved
and their crashes do not cause arbitrary or malicious behavior. We account for the possibility that a
network partition might be mistaken for aclient crash even whentheclient isalive. Thisis because
network failures are practically indistinguishable from failures of the communicating sites.

Clients and servers may be distributed over a wide-area network. We assume the presence of a
reliable channel for ordered delivery of messages between any pair of sites. Such delivery can be
provided efficiently evenif the underlying network isunreliable[Pos81, LSW91, Mah97]. However,
al practical protocolsfor reliable delivery might lose the last messageif an end-site crashes. In this
case, the end-siteis aware of this possibility, but it cannot tell whether a message was lost for sure.

20

Chapter 3

Partitioned Garbage Collection

This chapter describes techniques for independent tracing of disk partitions at a server. Partitions
are needed because atrace of the entire disk using arelatively small main memory would thrash on
the disk. For a partition trace to be safe, references to its objects from other partitions and other
sites must be treated as roots. The chapter focuses on maintaining information about inter-partition
references such that the information is recoverable and efficient to use and update. The chapter
ignores the management of inter-site references; they are discussed in Chapter 5. The chapter is
organized as follows:

Section 3.1 givestherationale for partitions and describes their structure.

Section 3.2 describes the basic schemefor partitioned collection.

Section 3.3 describes how inter-partition information is maintained.

Section 3.4 describes techniquesfor tracing a partition in the presence of transactions.
Section 3.5 presents a performance study to evaluate some of the techniques.

3.1 Partitions

A server partitions its disk such that a partition can be traced independently within the available
main memory. These partitions are for the purpose of separate tracing only; they are different from
disk partitions for file systems and they are mostly invisible to the rest of the system.

3.1.1 Why Partitions

Partitioned tracing provides several benefits over tracing the entire disk as a unit. First, the main
memory available for tracing is a small fraction, often less than a hundredth, of the disk space.
Therefore, a trace of the entire disk is likely to have poor locality of reference with respect to
available memory. It would thrash on disk, i.e., fetch and evict a disk page many timesin order to
scan different objects in the page [YNY 94, AGF95]. On the other hand, a partition trace fetches
the pages of one partition into memory and scans al live objects in them before fetching another
partition. This saves disk bandwidth, which is a performance bottleneck in many object stores and
is crucial for good performance of many applications [Ghe95].

Second, avoiding thrashing on disk also results in faster collection of garbage. However, faster
collection through partitioned tracing is based on the assumption that most garbageiseither local toa
partition (i.e., not reachable from outside the partition), or is reachable from garbage chains passing
through few partitions. As described later in Section 3.2, collection of a garbage chain passing
through many partitions might take along time. Similarly, collecting inter-partition garbage cycles

21

requires another technique, which might also take a long time, as described later Chapter 4. The
assumption that most garbage is local or on short chains is likely to be valid if partitions are
constructed such that inter-partition references are relatively infrequent.

Third, partitions provide an opportunity for faster and more efficient garbage collection because
the collector can focus on partitions that are likely to contain the most garbage. This is similar
to generational collectors which collect newer partitions more frequently [Ung84]. Although the
age-based heuristics of generational collectors are not applicable to persistent stores[Bak93], other
heuristics are available for selecting partitions [CWZ94].

Fourth, if the server crashesin the middle of atrace, the work done during the trace is wasted.
Theloss of work isinsignificant when tracing a partition, but it might be significant whenthedisk is
traced asaunit. (Thetrace of a10 gigabyte disk might take aday to finish.) It ispossibleto conduct
atrace such that it can be resumed after a crash, but this adds substantial complexity [KW93].

3.1.2 The Structure of Partitions

A partition may contain many pages, possibly non-adjacent. This approach has important advan-
tages. Firdt, the page sizeis chosen for efficient fetching and caching, while a partition is chosen to
be an efficient unit of tracing. Second, it is possible to configure a partition by selecting pages so
asto reduceinter-partition references without reclustering objects on disk. For example, a partition
can represent the set of objects used by some application, and the size of the partition can be chosen
to match the set. Thisthesis does not prescribe a heuristic for configuring partitions, but it assumes
that some heuristic is used to find clusters of inter-connected objects and to reduce inter-partition
references.

Thereisatradeoff in selecting the size of apartition. Small partitions mean more inter-partition
references, which has two disadvantages. First, the space and time overheads for maintaining and
using inter-partition information are higher. Second, there are likely to be more inter-partition
garbage chains and cycles, which take longer to collect. On the other hand, big partitions mean
more memory space used by the collector, which reduces the memory available for the server
cache. Further, if the partition does not fit in the available memory, the trace would thrash on disk
[AGF95]. Therefore, partitions should fit in afraction, say, atenth, of main memory. Given current
memory sizes, a partition may be a few megabytes to tens of megabytes. Since pages are about
ten kilobytes, a partition may contain about a thousand pages, and a ten gigabyte disk may contain
about athousand partitions.

A reference identifies the page of the referenced object, but not its partition. Therefore, we use
apartition map to map a pagetoits partition and apartition to its pages. The partition map isstable,
but it is cached in memory for efficient access.

3.2 Basic Scheme

The basic scheme for partitioned collection works as follows. For each partition P, the server
records the set of objectsin P that are referenced from other partitions; this set is called the inset
of P. For simplicity, persistent roots are treated as references from a fictitious partition. To collect
garbage objectsin P, the server traces objects from the inset of P, but does not follow references
going out of P. Objectsin P not visited by the trace are known to be garbage and are deleted. For
example, in Figure 3.1, the server will trace P from a and f and will collect object d.

The insets of partitions must be updated to reflect the creation and removal of inter-partition
references. When areferenceto an object in partition Q is stored into an object in P, safety requires
adding the reference to the inset of @ so that a trace of @@ does not missit. On the other hand, as

22

partition P partition Q partition R

. a] |
persistent | -2 o e | .0 o 2
root

de e h
f o< g
. a b c
insets [f e h
g

Figure 3.1: Insets.

inter-partition references are removed by applications and by the collector, an object in the inset of
@ might not be referenced from other partitions anymore. Complete collection requires removing
such references from insets, but this may be done lazily. A convenient time to detect and remove
unnecessary references is when partitions are traced. A trace of partition P visits al references
going out of P that are reachable from P’sinset. Therefore, any reference e that is in the inset
of another partition on account of P alone and that was not visited by the trace of P is removed.
However, identifying such references requires additional information, which varies among existing
schemes for partitioned or distributed collection, e.g., remembered sets [Ung84, Sob88], reference
counts [Bev87, Piq91], and reference source-listing [Bis77, SDP92, BEN'93, ML94, AGF95,
MMH96]. Section 3.3 presentsa new form of reference source-listing that makesit efficient to both
add and remove referencesin insets, while using less space than any previous scheme.

The above scheme successfully collects chains of garbage objects across multiple partitions. In
the examplein Figure 3.1, tracing P removes e from theinset of @, so tracing @ the next time will
collect e, and tracing P after that will collect f. In general, consider a garbage object f that is
reachable from a chain of garbage objects through a sequence of partitions P at some point in time.
Suppose the sequence in which partitions are selected for tracing after thistimeisT. Then, f will
be collected when T contains P as asubsequence. For example, in Figure 3.1, P for f is PQP, so
one possible T that will collect f is PQRP. If agarbage object is reachable from multiple chains,
then it will be collected when T contains all of them as subsequences.

Coallection of garbage chains passing through many partitions might take along time. Suppose
a chain passes through m partitions and there are n total partitions. If the partitions are traced in
round-robin order, the chain might be collected in m tracesin the best case (when the round-robin
order matches the chain order), and in m x n tracesin the worst case (when the round-robin order
is opposite to the chain order). Collection of garbage chains can be accelerated by using suitable
heuristics for selecting partitions. It is desirable to select a partition that contains a lot of garbage
or whose trace will lead to the collection of alot of garbage in other partitions. We suggest the
reduced-inset heuristic as one of the heuristics for selecting partitions:

Increase the trace-priority of any partition whose inset has reduced since the last time
it was traced.

This heuristic favors tracing partitions that contain the head-ends of garbage chains; therefore, it
is likely to make quick progress in collecting garbage chains. Cook et al. have suggested some
other heuristicsfor selecting partitions [CWZ94]. Thisthesis does not examine these heuristics any
further; thisissueis an important direction for future work.

23

3.3 Insets

This section describes new techniquesfor organizing and updating insets. Theinset of apartition @
contains references to objectsin @ that are persistent roots or are referenced from other partitions.
For efficiency in adding and removing referencesin theinset, it isrepresented asaunion of translists
from other partitionsto Q. A tranglist from partition P to @ contains the set of referencesin P to
objectsin Q; wecall P the sourceand @ thetarget of the trandlist. Persistent rootsin @, if any, are
stored in atrangdlist from a fictitious source partition denoted as#. The inset of @ isimplemented
as adata structure containing pointers to the translists from other partitionsto@. In Figure 3.2, the
inset of) contains pointers to the trandist from P to @ and the tranglist from R to Q.

partition P partition Q partition R
persistent—| ~o—~e—~e=~ D e e S2gC
root
de e h
fo g

A N AL R A

. #->P Q->P P->Q R->Q P->R Q>R
trandlists [a f b g c c
e h
outsets

Figure 3.2: Inset, outset, and tranglists.

The set of references going out of a partition P is called the outset of P. It isimplemented as
a data structure containing pointers to the trangdlists from P to other partitions. It is not necessary
to record outsets for tracing partitions; however, the outset of a partition provides an efficient
mechanism to remove unnecessary references in the insets of the target partitions. Specifically,
when the partition is traced, the references in its outset that were not visited are removed, which
by itself removes the references from the insets of the target partitions. For example, in Figure 3.2,
when P istraced, e isremoved from the outset of P, whichremovese fromtheinset of Q. Arranging
inter-partition referencesinto translistsand sharing them between insets and outsets providesacheap
mechanism to maintain both insets and outsets.

3.3.1 Comparison with Previous Work

Most other single-site partitioned collectors implement insets as a sequence of pairs (reference,
source-partition) and do not provide mechanismsto find the outset [AGF95, MMH96]. The scheme
by Amsaleg et al. scans the insets of all partitions after a trace to remove untraced references
[AGF95]. This approach would not scale to a large number of partitions. The scheme by Moss et
al. computes the outset whenever a page is fetched and also when a modified page is evicted, and
applies the differences to insets [HM92, MMH96]. This approach would delay applications when
they fetch pages.

Some generational collectors implement insets as remembered sets [Ung84, Sob88]. They
record the locations—at the level of a word, object, or page—that may contain inter-partition
references. The location information allows the collector to update references when an object is

24

moved for compacting storage. However, this scheme is not suitable for disk-based heaps because
tracing a partition requires examining and updating locations in other partitions. Further, storing
locations at a fine granularity results in more information if multiple locations contain the same
reference. Some other generational schemes use card marking, which remembers a single set of
pagesthat might contain inter-partition references—undistinguished by the target partition [Sob88].
Any partition trace scans all of these pagesfor relevant roots.

On the other hand, many distributed collectors maintain both insets and outsets for inter-site
references [SDP92, BENT93, ML94]. However, insets and outsets at different sites do not share
tranglists. The outset of a site contains the tranglists to other sites, while the inset either contains
copies of the trangdlists from other sites or it consists of a single set of incoming references with a
count of the source sites for each reference [Bev87, Piq91]. If this organization were used for inter-
partition references, it would have a higher space overhead and require safety invariants between
insets and outsets. We experimented with such a technique earlier [ML96]; it was much more
complex than the current technique due to the need to maintain invariants.

In Emerald distributed system, the inset stores only the set of incoming references with no
additional information, making it impossible to determine when to remove references from it
without doing a global trace [JJ92]. Such systems rely on a complementary global trace to collect
inter-partition cyclesas well as chains.

3.3.2 Maintaining Insets

Trandlists, insets, and outsets are kept on disk for two reasons. Firgt, if this information is not
persistent, recomputing it after a crash by scanning the entire disk would take a long time. Until
the information is retrieved, no partition can be collected. Second, alarge heap may have enough
inter-partition references that recording them in memory would take up substantial space. For
example, in a heap where every tenth word is a reference and every tenth reference points outside
the containing partition, the inter-partition information would occupy a hundredth of the disk space.
This space, athough a small fraction of the disk, may be large compared to main memory.

Therefore, we maintain translists, insets, and outsets as persistent objects. Maintaining translists
persistently requires care in keeping the disk-time utilization low, both for the garbage collector
to perform well and, more importantly, to avoid degrading application performance. Trandlists are
accessed for three methods:

1. Tracing a partition P needsto use referencesin the trangliststo P asroots.
2. After tracing a partition P, untraced referencesin the tranglists from P need to be removed.
3. New inter-partition references need to be added to the appropriate tranglists.

Wereducedisk accessesfor thefirst by clustering trangliststo the same partition together. Removing
referencesfromtranslistsisdescribed in Section 3.4. Below wedescribetechniquesfor reducing disk
accesses when adding new references. This part is important because addition of new references
is a steady-state activity—unlike tracing partitions, which can be scheduled occasionally. The
significance of these techniquesis evaluated in Section 3.5.

New inter-partition references are found lazily by scanning modified objectsin the log. (Other
garbage collectorshave used thelog to processmodified objectslazily for variouspurposes| ONG93].)
We refer to scanning objects for inter-partition references as inter-scanning to distinguish it from
scanning objects as part of atrace. An object in the log must be inter-scanned before it isinstalled,
since information about the modification is lost at that point.

Adding references to trangdlists requires either caching them in main memory or reading them
from disk. We save cache space and defer reading or writing the disk as follows. When a modified

25

object in partition P isinter-scanned, areferenceto another partition () is recorded in an in-memory
delta list from P to). Trandlists and delta lists maintain the following inter-partition invariant
when the log is fully inter-scanned:

(Referencesfrom P to Q) C (trandlist from P to @ U deltalist from P to Q)

The trandlist and the delta list from P to @ might contain some unnecessary references because
deletion of references contained in P are not reflected into the trandlist or the delta list until P is
traced. Further, referencesin a deltalist might already be in the corresponding tranglist. Systems
where old copies of modified objects are available can reduce such references in deltalists by not
recording references already present in the old copies. However, a delta list might still contain
references already in the trandlist because those references might be contained in other objectsin
the source partition.

Eventually, adeltalist is merged into its tranglist. This happens either when it growstoo big or
when thereis potential of losing its information in a crash. We discuss these possihilities below.

The total memory provided for delta lists is limited. When this space fills up, we select the
largest delta list, fetch the corresponding tranglist, and merge the delta list into the tranglist. The
sequence of eventsis depicted in Figure 3.3. If there is no corresponding trandlist, one is created
and added to the appropriate inset and outset. Since trandlists to the same partition are clustered
together, we merge all other delta lists to that partition at this point. Modifications to tranglists,
insets, and outsets are handled like other objects; they are logged using an internal transaction.

deltaist(Q, R
deltalist(P, R) et | deltaist(P, Q)
deltal it;st(P, Q| — b

modified| ;
object | ool e
buffer

Cc

C

merge—l

trand ibst(P, Q)

trandist(P, Q)
c c
d d

Figure 3.3: Ddltalists.

If a server crashes, its delta lists are lost, but it can recover them by scanning the stable
log. However, information in the log is truncated when modified objects are installed; therefore,
information about inter-partition references in modified objects must be made stable by then. This
is achieved by first finding the delta lists that might contain information from the installed objects.
These delta lists can be made stable by either logging them or merging them into the trandlists.
These actions need to be taken infrequently because the log is truncated only when the modified
object buffer fills up.

The upshot of this schemeisthat deltalists defer and batch disk accessesfor updating tranglists.
Deltalists may be viewed asa summary of inter-partition referencesin thelog that are not yet added
to the trangdlists. The deltalists to a partition are treated as roots when tracing the partition. Thus,
they avoid the need to re-inter-scan the entire log whenever a partition is traced.

26

3.4 Tracing aPartition

Most techniques described in this chapter can be used with a variety of tracing algorithms. We
chose a mark-and-sweep scheme for tracing. A copying collector would use twice the space used
by mark-and-sweep. Further, persistent stores often have little garbage to be collected [Bak93], so
a copying collector would spend significant time copying many live objects. Finally, the use of
slotted pages allows a mark-and-sweep schemeto compact live objects by dliding them within their
pages, as discussed later in Section 3.4.4. Amsaleg et al. also chose a mark-and-sweep scheme for
these reasons in the context of another object database [AGF95].

34.1 SafeTracing

A trace that runs concurrently with ongoing transactions needsto see a safe view of the object graph
such that it does not miss any references due to concurrent modifications.

A view is safe if it reflects the creation of all references up to some point in time, and
does not reflect the deletion of any reference after that time.

We refer to the point in time as the snapshot time of the trace. Objects that were created before the
snapshot time and are not visited by the trace must be garbage because they were unreachable from
the roots at snapshot time.

There are two basic ways of obtaining a safe view: old view and new view. The snapshot time
of the old view iswhen the trace starts. An old-view trace scansan object at most once—the state of
the abject when the trace started—and it need not scan new objects created during the trace because
they are created marked. Such atrace is aso known as “snapshot at the beginning” [WLM92].
A new-view trace sees the most recent view of the heap. It must scan new and modified objects,
possibly multiple times, such that when the last object is scanned, no further modifications are
pending. Such tracing is also known as “incremental update” [WLM92].

An old-view trace is more conservative because garbage generated during the current trace is
not collected until the next trace. While this might be too conservative in a server-wide trace, it is
acceptable for partition tracing because a partition trace is short and because the garbage generated
inapartition whileit isbeing traced isasmall fraction of the garbage generated in the whole system.
Further, the old-view is simpler since it does not need to pursue modifications like the new-view
trace does. Therefore, we use old-view tracing.

3.4.2 SafeTracingin aTransactional System

Finding a safe view in a transactional system is difficult because modified objects might not
be applied and installed in the order the modifying transactions are serialized. As described in
Section 2.5, modified objects are processed as follows:

—apply—| modified buffer | —install—| disk page

An example of how applying or installing modifications out of order may result in erroneous
collection is illustrated in Figure 3.4 Here, a persistent root a points to object b. Transaction 7,
creates a reference from another persistent root ¢ to b, and then 7» removes the reference from a to
b. If modifications of , are applied or installed before those of 71, b might be collected. Note that
this problem might arise in both optimistic and lock-based systems.

We find a safe view of the partition to trace, P, as follows. First, we load the pages of P in
the memory; this is possible without flushing the server cache since a partition is a small fraction

27

REEVERY

b b b

12 installed before 11 ai ic
[
b
Figure 3.4: Problem with applying or installing modifications out of order.

of main memory. Then, to take a snapshot, the collector halts applying transactions and does the
following work:

e Record the sequence number, L, of the last log record so far.
e Inter-scan all objectsin prepare recordsup to L.
This handles the case where ¢ isin another partition and the modification to ¢ is not applied.
e Inter-scan all objectsin the modified object buffer.
This handlesthe case where ¢ isin another partition and the modification to ¢ is not installed.
e Scan P’'sobjectsin preparerecordsup to L.
This handlesthe case where c isin P and modification to ¢ is not applied.
e Instal P’s objectsin the modified object buffer into pages.
This handles the case where c isin P and the modification to ¢ is not installed.
e Haltinstallationsto pagesof P until the end of thetrace, so that the trace will seethe snapshot
view of the partition.

After thiswork, the server may resume applying transactions, but installationsto P are halted until
the end of the trace. In order to reduce the time for which applying transactions is halted, we
preprocess the log as much as possible beforehand and then finish the work atomically by halting
applying transactions briefly. The preprocessing involves inter-scanning objects in prepare records
and the buffer. (Of course, objects in the log that were inter-scanned before a previous trace need
not beinter-scanned again.) The preprocessing also scans P’sobjectsin prepare recordsand installs
P’s objects from the buffer into the in-memory pages. The objects in the log are indexed by the
pagethey arein, so it is efficient to find objects belonging to P.

After taking a snapshot of the partition, the collector initializes the root set for tracing P. This
set consists of the tranglists in the inset of P and any deltalist to P. (Thisis agood opportunity to
merge deltaliststo P into thetranglists.) Inter-scanning the prepare records and the modified buffer
ensure that all inter-partition referencesto P created before the snapshot are found.

3.4.3 Marking

Marking may be done using any graph traversal algorithm. It uses a scan-set to store referencesto
objects that need to be scanned; the scan-set may be a queue or a stack to implement breadth-first
or depth-first traversal. It also uses a markmap containing a mark bit per potential object namein
the pages of the partition. Initially, only the roots are marked and entered in the scan-set. When
scanning an object, if the collector findsan intra-partition referenced, it checkswhether b is marked;
if not, it marks b and entersit in the scan-set. If the collector finds an inter-partition reference b, it
adds b to a new version of the appropriate translist in memory. The trace runs until the scan-set is
empty. We give the marking algorithm below as a base line for modificationsin later chapters.

28

while (scanset # empty) Scan(scanset.remove())

proc Scan(object b)
for each referencecinb
ifce P
if not c.mark
c.mark ;= true
scanset.add(c)
dse(ce @)
add c to the new trangdlist from P to Q
endfor
endproc

Objectsare scanned at most once, except objectsin prepare recordsthat are scanned when taking
the snapshot. If the trace reaches such an aobject later, the installed version of the object must be
scanned again because prepared transactions may abort. Therefore, when objectsin prepare records
are scanned, they are not marked.

While P isbeing traced, clients may commit modificationsto objectsin P or create new objects
in P. These modifications and creations are applied to the modified object buffer, but they are not
installed into the pages of P, so the trace sees the snapshot view of the partition. If a client fetches
a page of P in the meanwhile, the server sends an up-to-date copy of the page by installing any
modifications from the buffer into the copy sent. Thus, commits and fetchesto P are not blocked
by the trace.

344 Sweeping

After marking is over, the collector sweeps the pages in the partition one at atime. All unmarked
objectsinthe pageare knownto begarbage. If thereisno such object, nowork isneeded. Otherwise,
the collector slides all marked objectsto oneend of the page. It also updatesthe page’s offset tableto
point to the new locations of the objects. Thisisillustrated in Figure 3.5. Sliding objects within the
page retains the names by which they are referenced because they retain their indexesin the offset
table. Object indexes of unmarked objects are flagged as free, so these indexes may be allocated to
new objects. When the collector is done sweeping a page, it resumes installations of modified and
new objects into the page. After such modifications have been installed, the page is flushed to the
disk.

— offset——] - offset—fre]
— table —— - table — =

f
ree » free

live] Object3
garbage | object 2 object 3
livel object 1 object 1

Figure 3.5: Compaction by dliding live objects within their page.

If the collector compacted storage by moving objects such that their names changed, it would be
necessary to update references to these objects—including those that are stored in other partitions

29

and in the clients. These references could be updated by recording locations containing inter-
partition references, asin some generational collectors. However, such mechanismsadd substantial
cost and complexity in a disk-based heap. Further, reclustering of objects across pages should not
be bound to the traversals of the collector. Such reclustering should be open to independent policies
and application hints.

After sweeping the pages, the collector updatesthe trandlistsin the outset of P. Theold versions
of these tranglists are replaced with their new versions that were generated while tracing P. Note
that the old versions need not be fetched in from disk. If thereis no new version of atrandlist, the
trangdlist is removed from the containing inset and outset. Updated values of trandlists, insets and
outsets are logged as regular abjects. Further, the collector deletes the deltalists from P, since they
are accounted for in the the new versions of the tranglists.

3.4.5 Disk Accesses
The disk accessesinvolved in tracing a partition P are summarized below:

1. Fetchinset of P and trandlistsin theinset of P for the roots.

2. Fetch pagesof P.

3. Flush pages of P that were modified by the collector.

4. Fetch outset of P.

5. Log updatesto thetranglistsin the outset of P. If atrandist is deleted, update the containing
inset and outset.

If the server crashes before the collector logs new versions of the trangdlists from P, the new
versions are lost. This is acceptable because the old versions of the tranglists are retained and the
corresponding deltalists are regenerated from the stablelog; these trandlistsand the deltalists satisfy
the inter-partition invariant upon recovery from acrash. Similarly, if the server crashesbefore pages
swept by the collector are flushed, the old versions of the pages are retained. Thus, a crash might
only waste the work done during atrace. The wasted work is small because atrace is limited to a
partition.

3.5 Performance

This section provides some details of the implementation and then presents some experiments to
evaluate our techniquefor maintaining insets. The performance of maintaining insetsis particularly
important becauseit isasteady-state activity that must be carried out as objects are modified—unlike
tracing partitions, which can be scheduled occasionally.

3.5.1 Implementation Details

The technigques described in this chapter have been implemented in Thor, except those for crash
recovery. Work related to garbage collection is performed by a collector thread, which is run at
low priority to avoid delaying client requests. Besides tracing partitions, the collector inter-scans
modified objects in the buffer every so often.

Insets, outsets, and translists are implemented as linked lists of fixed-sized block objects. A
trangdlist block stores a compact array of references in no particular order. An inset (outset) block
stores references to the contained tranglists paired with the source (target) partition ids. Blocks
alows these lists to grow or shrink without copying; we use relatively small blocks (64 bytes) to
reduce fragmentation. When updating a list, we log only the modified and new blocks. These

30

blocks are logged using transactions, except that we bypass the concurrency control mechanism
since only the collector accesses them. One problem with using blocks is that the blocks of a list
may be mixed with those of other lists and should be consolidated periodicaly.

A deltalist isimplemented as a hash table. To merge adeltalist into atrandlist efficiently, we
iterate through the tranglist: for every reference z in the trandlist, we remove = from the ddltalist,
if present. At the end, we append remaining references in the delta list into the translist. We have
not yet implemented crash recovery and the actions needed on truncating the stable log described
in Section 3.3.2. In our experiments, however, we accounted for the expected log overhead from
these actions; they were found to be negligible.

3.5.2 Workload

Amsaleg et al. pointed out thelack of astandard benchmark for database garbage collectors[AFFS95);
such a benchmark remains absent today. Therefore, we designed a micro-benchmark specifically
for evaluating the overhead of maintaining insets.

The benchmark database consists of a homogenous collection of small objects, each of which
has a single reference and some datafields. Thisissimilar to the benchmark suggested by Amsaleg
et al., except that the objects are not linked into alist asin their case. Instead, the benchmark allows
us to control the distribution of reference modifications systematically: both the spatial locality of
references, i.e., where they point, and the temporal locality, i.e., which references are modified in
time order.

Theworkload consists of selecting acluster of objects and initializing their references; a cluster
comprises a fixed number of contiguous objects in the database. Clusters are selected from the
database randomly until the database is fully initialized. Random selection of clusters simulates
the effect of concurrent applications creating or modifying groups of clustered objects. The cluster
size is ameasure of temporal locality in creating references. Bigger clusters mean that successive
reference creations are more likely to happen in the same partition.

Spatial locality is determined by how the target object of a reference is chosen. Objects are
numbered sequentially, and object n refers to a random object n + i using a chosen probability
distribution for ¢. (Object numberswrap around when they overflow or underflow the bounds of the
database.) The databaseis partitioned linearly; each partition contains p objects.

We used the following distribution of references. With some probability s, a reference points
within the containing page. With probability 1 — s, a reference points to an object that is 7 apart
according to the exponential distribution, which isillustrated in Figure 3.6:

lil

prob(i) = d,—00 <1< 00

ﬁe

We chose the exponential distribution because it is simple to analyze and involves only one
variable, d. We call d the deviation. While s is the magjor factor governing the number of inter-
partition references, d governstheir spread: asmall deviation keepsthem to nearby partitions, while
alarge deviation spreads them further. All experiments reported here used a deviation equal to the
number of objects in a partition, which resulted in each partition containing references to its 16
neighbors on the average. Moreover, given this deviation, a fraction 1/e of references under the
exponential distribution fall in the same partition. Thus, the overall cross fraction of references f
that cross partitionsis (1 — s)(1 — 1/e). Figure 3.7 summarizes the parameters employed for the
workload.

In our database of 256 Mbyte, a cross fraction of 10% leads to about 4 Mbyte of tranglists,
insets, and outsets. The lists represent 1.5% overhead with respect to the database size, which is a

31

probability of reference

(Ij od distance from object, i

Figure 3.6: Probability distribution for references to nearby objects.

Parameter Value(s) [Default]
Object size 30 bytes
Page size 32 Kbyte, 1 K objects

Partition size 1 Mbyte, 32 K objects
Database size 256 Mbyte, 8 M objects

Cluster size 328192 [1024] objects
Crossfraction f 0-15% [7.5%]
Deviation d 32 K objects

Figure 3.7: Workload parameters.

small overhead on disk. However, for realistic database sizes, the amount of thisinformation would
be significant compared to primary memory.

3.5.3 Experimental Configuration

We designed experiments to compare the rel ative performance of our schemewith and without delta
lists for arange of workload parameters. We refer to the scheme with deltalists as DELTA, and that
without deltalists as NODELTA.

The experiments ran on a DEC Alpha 3000/400, 133 MHz, workstation running DEC/OSF1.
The database disk has a bandwidth of 3.3 Mbyte/s and an average accesslatency of 15 ms. Thelog
is not stored on disk; however, we model it as a separate disk with a bandwidth of 5 Mbyte/s and
average rotational latency of 5 ms; weignore its seek time because the log is written sequentially.

To compute the correct overhead of maintaining insets, care is needed so that the collector’'s
work is not hidden in idle periods such as disk accesses due to application fetches and commits.
We ensured this by avoiding an external application and generating work for the collector within
the server.

The collector is given afixed amount of main memory to storelists. It isalso given spacein the
modified buffer for storing modified lists. In our experiments, we alocated 1 Mbyte each for the
list memory and the modified object buffer for storing lists.

In NODELTA, the collector uses the list memory to cache tranglists, insets and outsets. It also
uses asmall deltalist (1 Kbyte) for efficient processing when adding referencesto tranglists.

In DELTA, the collector uses the allocated space to store delta lists and to cache trandlists. We
determined how to best divide this space between the two experimentally. Figure 3.8 shows the
variation in collector overhead as delta lists are alocated a bigger fraction of available memory.
(Here, the cross fraction was fixed at 7.5%.) The overhead is the lowest when three quarters of the

32

spaceis alocated to the delta lists, so we used this division in our experiments.

1000 4

100 +

over head (seconds)

10

Us 28 a8 48 o8 6B 78 1
Fraction of space allocated to delta lists

Figure 3.8: Effect of space allocated to deltalists. (Note log scale.)

3.5.4 Performance Results

This section presents the results of running the benchmark. We show how the collector overhead
varies with the cross fraction, the cluster size, and the amount of list memory available. For each of
these parameters, we compare the performance of DELTA and NODELTA.

Fraction of References Crossing Partitions

Figure 3.9 shows the results of running the benchmark in DELTA and NODELTA as the fraction of
references crossing partitions is increased. The processor overhead comprises scanning overhead,
which is a constant cost due to scanning objects, and list processing, which is mostly due to
manipulating various listsin memory. The disk reads are due to fetching pages containing tranglist
and inset/outset blocks, and the disk writes are due to installing modified blocks on the disk. The
log forces are due to committing transactions containing modified blocks; the log overhead is too
small to be visiblein the figure. Most of the overhead is due to processing and disk reads.

3000 -

;

@ @
© e}
g g 2000
~— 200 - ~
e} °
§ - I(_)g forc_% g
a>s o= disk writes § 1000 -
S 10 - 2 @ disk reads 8
Bl list processing
‘ ‘ ‘ ‘ scanning
0 | 1 1 1 1 1 0— I
0 25 5 75 10 15 0 25 5 75
per centage of inter-partition references per centage of inter-partition references
Delta NoDelta

Figure 3.9: Breakdown of collector overhead with increasing inter-partition references.
Note the different scalesin the two graphs.

33

Both the processor and the disk overhead of DELTA is much lower than that of NODELTA. The
processor overhead of DELTA islower because deltalists provide an efficient mechanism for adding
a set of references to trandists. However, we discount this advantage because other mechanisms
could be used in NODELTA to improve processing time, such as B-trees. Figure 3.10 segregatesthe
disk read overhead and compares this overhead in DELTA and NODELTA. When only 2.5% of the
references cross partitions, the translists occupy about 1 Mbyte, which fitsin the memory allocated
to the collector. Therefore, both DELTA and NODELTA have negligible disk overheads. However,
when the fraction of inter-partition references is alittle higher, such that the trandlists do not fit in
the allocated memory, NODELTA begins to thrash on the disk. At 7.5% cross fraction, when the
tranglists occupy about 3 Mbyte, the disk read overhead for NODELTA is higher than that of DELTA
by afactor of more than 100.

n

(=]

8
1

1500 — !
! --+--NoDelta
. —=— Delta

»-»

Q

8
1

disk read overhead (seconds)
g

0

* * T T 1
0 25 5 75 10 15
per centage of inter-partition references

Figure 3.10: Effect of spatial locality on disk reads.

To put the collector’s disk overhead in perspective of the remainder of the system, consider the
following. Installing the database objects modified by the workload takes less than 400 seconds of
disk time. Thisisthe basic disk overhead in the absence of the collector. Thus, the collector’s disk
overhead in NODELTA can be significant compared to the basic overhead, while that of DELTA is
much less.

Cluster Size

Figure 3.11 showsthe overheadsfor DELTA and NODELTA asthe cluster size varies from 32 objects
to 8K objects. The cluster size controls the temporal locality in creating references. Smaller
clusters mean that successive reference creations are more likely to happen in different partitions.
Therefore, small clusters cause NODELTA to fetch and evict translists more frequently, increasing
its disk overhead, while DELTA retains good performance. In the results shown, the fraction of
inter-partition references was fixed at 7.5%.

In fact, DELTA has lower overhead for a cluster size of 32 objects than for 1K objects. Thisis
because alow cluster size results in alarge number of small deltalists. Since we merge delta lists
to the same partition at the same time, a lower cluster size provides greater opportunity to create
trangdlists to the same partition close together. This resultsin fewer disk reads on later merges. For
very small cluster sizes, this advantage seems to outweigh the disadvantage from poor temporal
locality. The resultsindicate that good placement of tranglists isimportant to performance.

p

(=]

8
1

H
8
1
.

1

Tl --+--NoDelta
“~~., —=Ddta

disk read overhead (seconds)

1 T T T]

cluster size (K objects)

Figure 3.11: Effect of temporal locality on disk reads. (Note log scale).

Memory Allocated to the Collector

Figure 3.12 shows how the performance varieswith the amount of memory allocated to the collector.
The fraction of inter-partition references was fixed at 7.5%. As more memory is alocated to hold
lists, the difference in the performance of DELTA and NODELTA is reduced. When the collector is
given enough space to store al translistsin memory (3 Mbyte), NODELTA haslower overhead than
DELTA by a small margin. Thisis because DELTA allocates some of the space for delta lists and
therefore has a smaller tranglist cache. However, when the collector is given enough space, the
disk overhead of maintaining trandlistsis negligible (about 1 second for both DELTA and NODELTA)
compared to the disk overhead of installing the modified database objects (400 seconds). Therefore,
asmall differencein the disk overhead of maintaining trangdlists isirrelevant.

o
’_g 10004 -
S S
5
2 100 o
fé * --<--NoDelta
o \ —=— Délta
3
e}
8 104
B
©

1 T T T T v
1 15 2 25 3

List space (Mbyte)

Figure 3.12: Effect of list memory on disk reads. (Notelog scale.)

3.6 Summary

A server'sdisk spaceisdivided into partitions that are traced independently. A partition consists of
a set of pages, possibly non-adjacent, that fit in a small fraction of main memory. Partition tracing
avoids thrashing the disk and provides timely garbage collection.

When tracing a partition, references from other partitions are treated as roots. Referencesfrom
a partition P to @ are recorded in a translist from P to Q. The inset of a partition records all
trangliststo it and its outset recordsall trandistsfromit. The outset provides an efficient mechanism

35

to remove unnecessary inter-partition references in the insets of target partitions. Sharing trandlists
between insets and outsets saves space and avoids the need to maintain invariants between them.

Trandlists are stored on disk for recoverability and to save memory space. New inter-partition
references are found by scanning the log of modified objects lazily. They are stored in in-memory
delta lists to avoid fetching translists. When delta lists grow too big or when modifications are
removed from thelog, some deltalists are merged into the translists. Theresult isthat disk accesses
are deferred and batched.

The performance advantage of these techniqueswas eval uated using aworkload with controlled
gpatial and temporal locality of reference modifications. The study shows that inter-partition
information may useasignificant amount of space; if lessspaceisavailableto cachetheinformation,
the disk overhead for updating it can be significant compared to the disk time for installing database
objects. Deltalists reduce this overhead by afactor of 100.

A partition is traced using a mark-and-sweep scheme. The trace runs concurrently with trans-
actions by taking a snapshot of the partition at the beginning. Such a trace does not collect the
garbage generated during the trace, but this is acceptable in partitioned collection because a trace
is short. Taking a snapshot is difficult because modifications might not be applied or installed in
serialization order. The collector takes a safe snapshot by inter-scanning objects in prepare records
and the modified object buffer. It halts installations to the partition until the trace is over, but this
does not block fetches and commits to the partition. After the trace, the collector replaces the
trangdlists in the outset of the partition with their new, trimmer, versions. Also, pages in the traced
partition are compacted by sliding live objects within their pages. The use of sotted pages avoids
the need to update references to objects that are moved.

36

Chapter 4

|nter-Partition Garbage Cycles

Treating inter-partition references as roots when tracing partitions fails to collect inter-partition
garbage cycles. This chapter presents a new site-level marking scheme for collecting such garbage:
the scheme propagates marks from site-level roots to reachable objects within the site, and collects
unmarked objects. Werefer to the schemeas site-marking to distinguish it from the marking scheme
for tracing each partition, which we refer to as partition-marking. Site-marking collects garbage
cycleswithin asite but not between sites. Inter-site cycles are discussed in Chapter 6.

Theroots for site-marking are the site€’s inset: the persistent roots in the site and the references
coming in from other sites. The propagation of site-marks is piggybacked on partition-marking
so that it has little disk overhead. When a partition P is traced, it propagates site-marks within
P as much as possible, but it may generate more site-marks in other partitions that need to be
propagated. Site-marking terminates when site-marks are known to have propagated fully in all
partitions. A complete phase of site-marking may involve many partition traces, possibly multiple
traces of each partition. After site-marking is complete, objects not site-marked are collected. This
collects inter-partition garbage cycles because they are not reachable from the site-level roots.

Similar marking schemes have been proposed earlier in the context of distributed garbage
collection to collect cyclic garbage. However, previous schemes either propagate marks separately
from partition-marks [JJ92], or delay the collection of non-cyclic garbage [Hug85], or are not
guaranteed to terminate correctly in the presence of concurrent mutations [LQP92]. Our scheme
for site-marking has the following desirable properties:

e Site-marking is piggybacked on partition-marking so that it has little overhead.

e Site-marking does not delay the collection of non-cyclic garbage. In particular, it does not
retain an object that would otherwise be collected by partition-marking.

e Site-marking is safe and it completes despite concurrent modifications.

Additionally, we organize the information required for site-marking to use the disk efficiently.

4.1 Data Structuresand Invariants

Each partition has a site-markmap, which contains a site-mark per object. We say that an object
is site-marked if it is marked in the site-markmap, and a reference is site-marked if the referenced
object is site-marked. The site-markmap is implemented as a set of bitmaps, one per page in the
partition; each bitmap contains a bit per potential object name in the page. In Thor, a 32 Kbyte
page provides a name space for 2K objects; thus each bitmap is 2K bits, which represents a 0.8%
overhead. Nevertheless, the aggregate size of the site-markmapsiis large, e.g., 80 Mbytes for a 10
Gbyte database. Therefore, we store site-markmaps on disk.

37

To determine when site-marking hasfinished, we associate aflag with each partition, whichindi-
cateswhether site-marks have been propagated within the partition asmuch aspossible. Specifically,
the following site-marking invariant holds:

If partition P is flagged, all objects referenced from site-marked objectsin P are also
Site-marked.

The invariant is true of both inter- and intra-partition references contained in site-marked objects.
Tracing a partition flagsit, but might unflag other partitions. A marking phase terminates when all
partitions are flagged. We give the precise conditions for termination in Section 4.5. We use the
following rules to guarantee termination in the presence of concurrent modifications:

Rule 1. Once an object is site-marked, it is not unmarked until the end of the phase.
Rule 2. New objects are created site-marked.
Rule 3. Whenever apartition is unflagged, at least one of its unmarked objectsis site-marked.

(In this chapter, “unmarked” means “not site-marked.”) A site-mark bit is required for each object
expressly to guarantee termination by enforcing the rules above. Otherwise, site-mark bits for just
the inter-partition references would suffice, asin [Hug85, LQP92].

4.2 StartingaPhase

When a phase starts, only references in the site's inset are site-marked. The partitions containing
these references are unflagged and the rest are flagged. (This satisfies the site-marking invariant.)
These actions are performed incrementally as follows.

A site-level phase counter is incremented with each phase. In addition, alocal phase counter
for each partition tells the phase during which the partition was last traced. Before a partition is
traced, if its local counter is one less than the site-level counter, this must be its first trace in the
current phase. In this case, objects that were not site-marked in the previous phase are known to be
garbage and are deleted. (If the partition’s local counter is even smaller, it was not visited during
the previous phase at all; so the whole partition must be garbage and can be deleted.) Then, the
siteemarks of al remaining objects in the partition are cleared, while those of non-existing objects
are set in preparation for their possible creation in the future (Rule 2).

4.3 Processing Modifications

As applications commit new references, the site-marking invariant is preserved lazily by processing
modified objects in the log; this processing is merged with inter-scanning modified objects as
described in Section 3.3. A reference b contained in a modified object a (a—b) is processed as
follows. Suppose a is in partition P and b is in partition @, where P and Q may be the same
partition. If P is unflagged, we ignore the reference since it cannot break the invariant. If P is
flagged and if a is site-marked, we have the following options to preserve the invariant:

1. Unmark a, but thiswould violate Rule 1.
2. Unflag P, but thiswould violate Rule 3.
3. Mark b.

Thus, the only viable option isto mark . However, there are two problems. First, checking if a is
site-marked requires fetching the site-markmap of P. We avoid fetching this site-markmap by site-
marking b regardless of whether a issite-marked. The second problem isfetching the site-markmap

38

of @ to updatethe site-mark of 6. We avoid fetching this site-markmap by adding b to an in-memory
delta markmap, which stores updates to the site-markmap. A delta markmap defers and batches
disk accessesfor the site-markmap like a delta list does for the translist (see Section 3.3). We say
that an object or areferenceis delta-marked if it is marked in the delta markmap. Delta markmaps
support the following site-marking invariant:

If partition P is flagged, all objects referenced from site-marked objectsin P are either
site-marked or delta-marked.

Thisinvariant also avoids the need to site-mark the objects referenced in b transitively. If b isonly
delta-marked and not site-marked, referencesin b need not be site-marked.

A delta markmap is merged into the corresponding site-markmap eventually. This happens
when either the aggregate size of delta markmaps grows above a certain limit, or when the log is
truncated, as with deltalistsin Section 3.3. Before merging, the local phase counter of the partition
ischecked. If the counter is one less than the site phase counter, the site-markmap must be from the
previous phase; therefore, the stepsindicated in Section 4.2 are taken to delete garbage objects and
reinitialize the site-markmap.

If merging the delta markmap into the site-markmap causes a previously unmarked object to be
site-marked, we unflag its partition to preserve the site-marking invariant. Note that unflagging the
partition in this manner satisfies Rule 3.

4.4 Propagating Site-Marks

Site-marking is piggybacked on partition-marking. Beforetracing apartition P, the delta markmap
for P, if any, is merged into its site-markmap. The roots for tracing P are the same as that for
partition-marking, as described in Section 3.4. When the trace reaches a site-marked object b, all
objectsin P reachable from b are site-marked. Consider an object ¢ reachable from b. If ¢ has not
been visited by the trace before, it is both site-marked and partition-marked. If ¢ has aready been
partition-marked but is not site-marked, it must be site-marked and re-scanned in order to propagate
site-marks further. If ¢ is outside partition P, it is merely delta marked. After P istraced, it is
flagged sincereferencesin all site-marked objectsin it are known to be site-marked or delta-marked.

We give the algorithm for propagating partition-marks and site-marks below; differences from
the basic marking algorithm given in Section 3.4 are marked in slanted text.

while (scanset # empty) Scan(scanset.remove())
proc Scan(object b)
for each referencecind
ifce P
if not c.partitionmark
c.partitionmark := true
c.sitemark := c.sitemark or b.Sitemark
enter ¢ in scanset
éseif b.sitemark and not c.sitemark // need to rescan c
c.Sitemark := true
enter ¢ in scanset
ese(ce Q)
add c to the new trandlist from P to Q)
if b.sitemark add ¢ to the delta markmap of @
endfor
endproc

39

a a a a a

c(f b‘c? b‘c? b‘c%b‘c%b‘

eO d O d e© d e© d e® d
scan a scan c scan b scan c scand, e, ...

LEGEND

O unmarked
O partition-marked
® site-marked

Figure 4.1: Propagation of partition-marks and site-marks during atrace.

Figure 4.1 illustrates the propagation of partition- and site-marksin a partition trace.

Note that site-marking does not retain any object that would otherwise be collected by partition-
marking. Thisis true because site-marking does not cause any object to be partition-marked that
would otherwise not be. Objects that are not partition-marked at the end of the trace are collected
even if they are site-marked.

Site-marking may rescan some objects such as ¢ in Figure 4.1. Fortunately, even in the worst
case, each aobject will be rescanned at most once over an entire phase of site-marking. Thisistrue
because an object is rescanned only if it was not previously site-marked, and rescanning causes it
to be site-marked. In practice, retracing would be even less frequent since some objects reachable
from asite-marked object, suchasd in Figure 4.1, are site-marked thefirst timethey arevisited. The
number of retracings is reduced further by maintaining a separate scan-set for site-marked objects
and selecting objects in this scan-set preferentially over the existing scan-set. While site-marking
may increase the processor overhead of a trace by rescanning some objects, it does not increase
the disk overhead of the trace: the partition’s pages are fetched into memory for partition-marking
anyway.

Some previous proposal s piggybacked site-marking on partition-marking by dividing the trace
into two parts [LQP92]. The first traced from site-marked roots and site-marked al objects it
reached. The second traced from unmarked roots without site-marking any object. This two-part
scheme does not rescan any object. However, it does not propagate site-marks from objectsthat are
reachable only from unmarked roots, such as b in Figure 4.1. Therefore, the site-marking invariant
would not hold after thetrace. A possible action to preservethe invariant isto removethe site-mark
of b, but that violates Rule 1 needed for termination. Ancther option is to include all site-marked
objects as roots. However, this approach would retain all site-marked objects until the end of the
site-marking phase—even when these objects would have been collected by partition-marking.

For concreteness, we present an example showing that a two-part tracing scheme without
rescanning would fail to terminate safely. The exampleisillustrated in Figure 4.2. Here, a and d are
persistent roots, and an inter-partition cycle is connected to one of them. Consider a pathological
client that hides the cycle from the collector as follows. Before the collector traces partition P,
the client creates the reference d—e and removes the reference a— b; before the collector traces @,
the client creates the reference a—b and removes the reference d—e. When tracing P, o and b are
site-marked (b is site-marked because areferenceto it is created from a), but b is not reachable from
any site-marked root; therefore, the site-mark from & is not propagated any further. Similarly, when

40

Q istraced, the site-mark from e is not propagated any further. Thus, c and f are never site-marked.

partition P partition Q partition P partition Q
c c
persistent S—db ee 9«— p.r.é pr. 438 b e g- p.r.
root f f
Collector traces Q. Collector traces P.

Figure 4.2: Example where a 2-part tracing scheme without rescanning fails.

45 Termination

Site-marking is complete when the following conditions hold:

1. All partitions are flagged.
2. All delta markmaps have been merged.
3. All referencesin the site’sinset are site-marked.

Since modifications committed by clients may change the validity of these conditions, a phaseis
complete only when the conditions hold in a safe view of the site. A view is safeif it reflects the
creation of al references up to some point in time, and does not reflect the deletion of any reference
after that time. The following conditions provide such aview:

¢ All modified objectsin the log have been processed up to a certain log record, L.
So al references created until then are seen.

e Objects scanned during previous partition traces were installed from log records before L.
So areference deletion after L is not seen.

e No reference was removed from the site'sinset after L was logged.
So an inter-site reference deletion after L is not seen.

Such aview is available when a snapshot is taken before tracing a partition (see Section 3.4). The
following policy isused to test for termination in the snapshot state. If al partitions are flagged, we
merge all delta markmaps. Then we check referencesin the site’sinset: if any is not site-marked,
we site-mark it and unflag its partition. If al partitions are still flagged, marking is complete.
Otherwise, we wait until al partitions are flagged again and repeat the procedure.

Safety

Here we show that, at the end of a site-marking phase, al live objects at the site are site-marked.
Processing al modifications in the log up to the snapshot ensures that the site-marking invariant
holdsinthe snapshot. Merging all deltamarkmapsensuresthat thereisno object that is delta-marked
but not site-marked. Therefore, by the invariant, given that al partitions are flagged, all objects that
arereachablefrom asite-marked object must also be site-marked. Further, all referencesinthesite’'s
inset are known to be site-marked. Therefore, all references reachable from them are site-marked.

41

Liveness

Site-marking is sure to terminate because a partition can be unflagged only afinite number of times
during a phase. Every time a partition is unflagged, at least one of its unmarked objects is site-
marked (Rule 3). Further, such an object must have been created before the current phase because
objects created during the current phase are always marked (Rule 2). Finally, once an object is
site-marked, it is not unmarked before the phase ends(Rule 1). Therefore, the number of times a
partition can be unflagged is at most the number of objects in the partition that were created before
this phase; there is only afinite number of such objects. Therefore termination is guaranteed even
if applications are continually modifying objects or creating new ones.

Termination does require that an unflagged partition is traced and thereby flagged eventually.
The relative frequency of tracing various partitions can still be governed largely by an independent
policy. The following technique is used to ensure that unflagged partitions are traced eventually.
When a partition is unflagged, it is inserted in a queue of partitions to be traced. When selecting
a partition to trace, with probability p, the partition is selected from the queue. With probability
1 — p, the partition is selected using the independent policy. The value of p may be controlled to
balance the need for finishing site-marking (large p) and the need for using the independent policy
(small p).

Although site-marking is guaranteed to terminate, the number of traces it might take in the
worst caseis pessimistically large—equal to the number of objectsin the site at the beginning of the
phase. The worst case happens when each partition trace site-marks only one object. In practice,
a partition trace will propagate site-marks to many unmarked objects, so the expected length of
a site-marking phase is likely to be much shorter. However, estimating the length of a phase in
the presence of concurrent mutations is difficult. It is simpler to estimate this length by assuming
that applications are quiescent, that is, not modifying objects. In this case, a partition is unflagged
only as aresult of tracing another partition. Suppose that there are n partitions and the maximum
inter-partition distance of any object from an inset reference is I. The inter-partition distance of
an object is the smallest number of inter-partition references in any path from an inset reference
to the object. Another ssmplifying assumption is that partitions are selected for tracing uniformly,
for example, in round-robin order. Then, marks will propagate fully in [rounds, or n x [partition
traces. Note that thisisthe worst case bound given the round-robin order. (If unflagged partitions
aretraced preferentially over flagged partitions, fewer traces are needed.) With athousand partitions
and a maximum distance of ten, a site-marking phase would take ten thousand partition traces.

4.6 Crash Recovery

Since site-markmaps are maintained on disk to save main memory, it takes little more to make
them recoverable after crashes. This allows a server to resume site-marking after a crash, which is
desirable because site-marking takes relatively long to finish. The site-markmaps, flags, and phase
counters of partitions are maintained as persistent objects. The site-wide phase counter is updated
stably when a phase terminates. Similarly, the phase counters of partitions are updated stably when
they are incremented.

A siteemarkmap is updated when a delta markmap is merged into it. A delta markmap must be
merged into the site-markmap before any modified object that contributed to it istruncated from the
log. The deltamarkmapsthat must be merged are identified just like deltalists that must be merged,
as described in Section 3.3. Further, after a partition P is traced, the delta markmaps updated
during the trace are merged into their corresponding site-markmaps before P isflagged stably. This
ensures that the site-marking invariant will hold for partition P upon recovery from a crash.

42

4.7 Related Work

Collection of inter-partition garbage cycles is related to collection of inter-site garbage cyclesin
distributed systems. We describe distributed schemes in Chapter 6. Here, we describe schemes
used in single-site, partitioned systems.

Generational collectorscollect inter-partition garbage cycles[Ung84]. They order the partitions,
say Py, ..., P, (often by age such that P; isthe newest partition and P, the oldest). A partition P;
isawaystraced along with partitions P, . .., P;_1. Thus, ainter-partition garbage cycle that spans
partitions P;1, . . ., Py, is collected when the partition numbered Maxz (i1, . . . ,im) istraced.

System PMOS collectsinter-partition garbage cycles by grouping partitionsinto trains [HM 92,
MMH96]. Trains are ordered by age. When a partition is traced, objects that are reachable from a
site-level root or a newer train are copied to newer trains, while other objects are copied to a new
partition within the same train. Eventually, the partitions in the oldest train contain only cyclic
garbage and can be discarded. As objects are copied between partitions, referencesto them in other
partitions need to be fixed. Even if site-wide logical names were used to avoid name changes,
inter-partition information would need to be updated continually as objects are copied. Further, the
scheme must copy objects is one partition to multiple partitions in different trains based on where
they are referenced from.

4.8 Summary

Inter-partition garbage cycles are collected by a site-level marking scheme whose roots are the
persistent roots and references from other sites. Propagation of site-marks is piggybacked on
partition traces. Tracing a partition propagates site-marks within the partition as much as possible,
but it may generate more site-marks in other partitions that need to be propagated. A partition is
flagged when the site-marks of its objects are fully propagated.

Propagating site-marks does not retain any object that would be collected otherwise; therefore,
it does not delay the collection of non-cyclic garbage. Site-marking is complete when site-marks
are fully propagated in all partitions. We ensure that site-marking completes despite concurrent
modifications by not unmarking a site-marked object and by site-marking at least one object in a
partition that is unflagged. Site-marking may require many partition traces to complete, but that is
acceptable provided most garbageis collected by individual partition traces.

Site-marks of objects are stored in markmaps on disk to save main memory. Disk accesses for
updating markmaps upon modifications are deferred and batched using in-memory deltamarkmaps.
Delta markmaps are recoverable from the log, so site-marking can be resumed after a crash.

43

Chapter 5

|nter-Site References

A server traces its objects independently of other sites. For such a trace to be safe, the server
must treat references from clients and other servers as roots. This chapter describes safe, efficient,
and fault-tolerant management of inter-site references. It presents new techniques to account for
client-caching, multi-server transactions, and client crashes. Clients might cache a large number
of references to objects at servers, so conventional techniques for recording them would have a
large space and time overhead. Further, multi-server transactions committed by clients may createa
referencefrom oneserver to another without direct communication between the two, so conventiona
techniques designed for RPC-based systems would not work safely. Finally, clients may appear to
have crashed when they are alive; conventional techniques would fail to prevent such clients from
introducing dangling references in server objects. This chapter provides the solution to these and
related problems:

Section 5.1 describes the basic technique used to record inter-site references.
Section 5.2 describes how references held in client caches are recorded efficiently.
Section 5.3 describes how references between servers are recorded.

Section 5.4 describes how server and client crashes are handled.

5.1 Basic Scheme

Inter-site referencesarerecorded much like inter-partition references. Theinset of asite’l’ comprises
the persistent roots in T' and references from other sites. The inset is the union of trangdlists from
other sitesto T'. Thetrandlist from site S to T contains the references from S to T'; we call S the
sourceand T thetarget of thetrandlist. For simplicity, persistent roots are treated as referencesfrom
afictitious source site.

A site treats another site as a single partition. This is desirable because identifying the exact
partition of areferenceto another server would require the partition map of that server. (A reference
identifies only the server and the page it resides in, but not the partition.) Further, a server should
be able to changeits partitions dynamically without affecting other sites.

Updating a tranglist stored at the target site 7' requires messages from the source site S. To
determine when to send these messages, S keeps a local copy of the tranglist from S to T'. The
copy of thetrandlist at S is called the outlist of S to T, whilethat at 7' is called theinlist of T from
S. The outlist at the source site helps avoid unnecessary messages, and the inlist at the target site
provideslocal accessto theroots. Thisorganizationisillustrated in Figure 5.1.

When a reference to an object b in T is stored into an object in S, S checks whether b is in
its outlist to 7" and, if not, sends an add message to T'. When T' receives this message, it adds b

44

siteS siteT siteR

T from # fromT from S fromR fromS fromT
inlists 3 f b g c C
e h
B ——
. a -1 b _—
persistent—{-~e—o—»e— o o ~o SagC
root
de e h
fe g
. toT toR toT toR toT
outlists 2 c f ﬁ 9

Figure 5.1: Recording inter-site references.

to itsinlist from S. The add message must reach 7" in time such that a trace at 7' does not miss
the reference. This marks a difference between recording inter-partition references within a site
and inter-site references. Although partitions in a site are traced independently, they are traced by
a single collector thread, and the collector traces a partition only after it has finished processing
sufficient modified objects. Therefore, it issafefor the collector to processinter-partition references
in modified objectslazily. Onthe other hand, different sites conduct local traces asynchronously, so
inter-site references in modified objects must be processed eagerly. Nonetheless, there are various
protocols for deferring or avoiding add messages without compromising safety and for tolerating
lost messages [SDP92, BENT93, ML94]. Sections 5.2 and 5.3 describe new protocols to add
client-to-server and server-to-server references.

When S doesalocal trace, it removesthe referencesin itsoutlists that were not traced, and sends
remove messages for them to their target sites. When a site receives such a message, it removes
theindicated referencesfromitsinlist from S. Lost remove messages are tolerated by occasionally
sending the entire outlist to the target site in an update message. When the target site receivesthe
update message, it replaces itsinlist with the outlist received. The message protocol maintains the
following inter-site invariant:

Referencesfrom S to T C outlist of Sto T Cinlist of T from S
Thisinvariant is needed for the following purposes:

e Referencesfrom StoT Cinlist of T from S:

So that local traces at T are safe.
e Outlist of StoT Cinlist of T from S:

So that S need not send an add message for areferencein its outlist.
e Referencesfrom S toT' C outlist of Sto T

So that S may send its outlist to update theinlist at 7.

In the example in Figure 5.1, when S does its next local trace, it collects d, removes e from its
outlist, and sends a remove messageto T'. T removes e from its inlist from S and collects e the
next time it does a local trace. Thus, garbage objects that are not reachable from other sites are
collected locally. (Since objects are clustered such that inter-site references are rare compared to
local references, the bulk of the garbageislocal.) Further, the collection of an inter-site chain of
garbage objects involves only the sites containing the chain. We have formalized this feature as the
locality property:

Collecting a garbage object involves only the sites from which it is reachable.

45

This property minimizes inter-site dependence: if a garbage object is reachable from some object
at asite S, S must play arolein collecting the object anyway. The locality property resultsin fault
tolerant and timely garbage collection. Local tracing does not, however, collect inter-site garbage
cycles such as objects g and h; collection of such garbageis discussed in Chapter 6.

511 Inter-Site Reference Listing vs. Reference Counting

Some distributed systems use alternative forms of storing the inset, although most of them store
outlists as described above. In systems using inter-site reference counting, the target site records
a count of the source sites that hold a reference to a given local object—without recording the
identities of the individual source sites [Bev87, Pig91]. When the count of a reference reduces
to zero, it is removed from the inset. On the other hand, our scheme effectively records the
identities of the source sites for each reference in the inset, a technique known as reference listing
[Mah93a, BENT93]. Referencelisting keeps more information than reference counting, but we use
it for the following reasons:

1. Referencelisting tolerates permanent sitefailures. If aclient or aserver X fails permanently,
other serversneed simply removetheir inlistsfrom X . With reference counting, other servers
cannot figure out which counts to decrement without resorting to a global mechanism.

2. Reference listing tolerates message loss, which might happen when a site crashes (see Sec-
tion 2.6). Thisis because add and remove messages are idempotent and can be safely sent
again. Further, occasional update messages compensate for lost remove messages and con-
servatively sent add messages. On the other hand, increment and decrement messages for
reference counting are not idempotent. Add/remove messages do require ordered delivery
between a pair of sites, as do increment/decrement messages.

3. The space used by referencelisting islessthan twice of that used by reference counting. This
is because sites must maintain outlists even with reference counting in order to detect when
to send increment or decrement messages. Since inlists reflect outlists, the space used by
reference inlists is roughly the same as that of outlists.

5.2 Client-to-Server References

A server must include references from client sitesin its root set. Thisis because a persistent object
might become unreachable from persistent roots while it is still reachable from handles at clients.
For example, in Figure 5.2, the client has cached persistent objectsa and b. It removesthe reference
from a to b and stores it into the volatile object d. When it commits the transaction, b becomes
unreachable from persistent roots. |If the server does a garbage collection at this point without
considering incoming references from the client, it would collect b and ¢. Thisisin error because
the client might try to access c and find it deleted, or it might make b reachable from a again. Inthe
latter case, the client could send a copy of b to the server, but it would not be able to send ¢, which
islost for good.

A client may fetch a large amount of data from a server, potentially containing millions of
references. Recording all such referencesin atranslist will use alot of space and time, and delay
fetch requests [ML94]. Another problem with treating all references held by clients as rootsis that
it might prevent the collection of garbage objects: If the pages cached by a client happen to contain
abunch of garbage objects, the server will not collect that garbage. If one or other client cachesthe
garbage in this manner all the time, the server will never collect it.

46

client client client

handle __,cd,] d — d
a a a LEGEND
B B o volatile
® persistent
persistent oo oo —1 o oo
root a b c a b c¢ a b c
server server server
(i) before modification (i) after modification (i) after commit

Figure 5.2: Need for including client referencesin the root set.

5.21 TheEssential Trandlist

It is not essential to treat all client-held references asroots. If aclient can reach a reference ¢ only
by reading alocal copy of another persistent object b, the server need not include c in its root set
because c is protected from collection by the reference from b. In effect, the server needsto account
for only handles and the references stored in the volatile heap at the client. More specifically, the
server need record only the following:

The essential tranglist from a client to a server is the set of references to the server’s
objects that were reachable from the client’s handles via zero or more volatile objects
when the current transaction started at the client.

In Figure 5.2, before the client commits the transaction, the essential trandlist includes only a, and
after the commit, it includes a and b. We reason below that the essential trandlist is the necessary
and sufficient set that a server must include as roots.

A server must include the references in the essential tranglist from a client as roots—except
referencesthat are persistent roots. Consider any reference b in the essential tranglist from a client
X. If bisnot apersistent root, another client Y could commit atransaction that makes b unreachable
from persistent roots. If the server does not include b in its root set, it would collect b. However,
client X can access the reference to b without reading any persistent object, since this referenceis
reachable from a handle via only volatile objects. It can therefore commit a transaction that copies
this reference into another persistent object, and the transaction will commit because it does not
conflict with the transaction by client Y. However, committing the transaction would result in a
dangling referenceto b.

Now we show that it is sufficient to include the references in the essential trandlist as roots. If
client X uses any other persistent reference ¢, it must have found ¢ by reading a path of persistent
objects, bp—. . . —b, —¢, al during the current transaction, such that b is in the essentia trandlist.
There are two possibilities regarding the collection of ¢ at the server. First, the copies of b, ...,
b, read by X remain un-modified at the server until the transaction at X commits. In this case, c
is protected from collection because by is treated as a root and there is a path from bg to ¢. This
condition is always true in systems using lock-based concurrency control since bg, ..., b,, are
read-locked by client X.

The second possibility arises due to the optimistic concurrency control used in Thor. Another
client Y might have committed a transaction that deleted the path bo—. .. —b,—c by modifying

47

some object b; (0 < ¢ < n). The server might then collect ¢ although client X may reach c.
However, in this case, the transaction at client X will abort later—even if there were no garbage
collection—becauseit read an old copy of b;. In particular, if client X stored c in another object or
created a handleto it, these effects will be undone when the transaction aborts. Further, if client X
attempts to fetch object ¢ from the server before committing the transaction, the server will raise a
“not found” exception. (Assume for the moment that the name ¢ has not been reassigned to a new
object.) The exception indicates that the transaction is going to abort later, so the client aborts the
transaction immediately. This has the benevolent effect of expediting impending aborts.

5.2.2 Name Reuse Problems

The second possibility discussed above raises additional problemsif the names of collected objects
may be reassigned to new objects. These problems arise because of incarnation mismatch between
a reference and the copy of an object cached at a client. There are two such problems:. the client
has an old reference and a new copy of an object, or the client has a new reference and an old copy.
Even though a transaction using mismatched incarnations will abort later, the danger is that the
client might suffer a runtime type error because of the mismatch, which might result in unspecified
behavior. One solution is to type-check an object when it is fetched into the client cache or when
a reference is unswizzled [M0s92], and to abort the transaction on a mismatch. Since fetch-time
type-checking is expensive in a system with subtyping, we provide alternative solutions to the two
mismatch problems based on invalidation messages.

Old Reference and New Copy

The old-reference-new-copy problem might occur when a client X has reached a reference ¢ by
traversing bp—-. . . —b,—¢, and another client Y disconnects c from persistent roots by modifying
an object b; in the path. The server may then collect ¢ and reassign its name to a new object. Now
client X might fetch the new incarnation of ¢ while the reference b, —c expectsthe old incarnation.
If b; and c belong to the same server, invalidation messages prevent the problem as follows. When
b; is modified by client Y, the server buffers an invalidation message for client X. Since messages
from the server are delivered to the client in the order they were sent, client X will receive the
invalidation for b; before the response to the fetch request for object c. It will therefore abort the
transaction before invoking any operation on the new copy of ¢. Theinvalidation message will aso
cause b; to be evicted, so future transactions at client X will not access ¢ along the old path.

However, if b; and c residein different servers, say S and 7', then the invalidation from .S' might
not reach the client before the client fetches ¢ from T'. Thisisillustrated in Figure 5.3

We present a conservative solution based on the fact that S must send a remove message to
T before T' may collect c¢. Until then, ¢ is protected from collection by the inlist of 7' from S.
Therefore, we employ aremove barrier:

A server waits before sending a remove message until all invalidations sent for previ-
ously committed transactions have been acknowledged.

This barrier isimplemented as follows. S assigns an increasing commit id to each transaction that
commitsat S. When S obtainsasnapshot for alocal partition trace, it recordsthe highest commit id
sofar. After thetrace, S doesnot remove unreachablereferencesinitsoutlistsimmediately; instead,
it stamps them with the recorded commit id. S removes such a reference only after it has received
acknowledgementsfor al invalidations with commit ids less than or equal to the associated stamp.
Clients that do not acknowledge an invalidation for a long time may be shut down as described in
Section 5.4.

48

client X client X client X client X

— — — — 00 0
handle a b \ a b \ a b \ a b c2

persistent oo -0 —f~o—o - ~o—o - —lee—+o || @<—
root a b c a b a b c2 a b|| c2

server S T server S T server S T server S T

(i) initial state (i) cis disconnected (iii) cisreassigned (iv) client fetchesnew ¢

and collected

Figure 5.3: Problem of old reference and new copy in client cache.

New Reference and Old Copy

The new-reference-old-copy problem isillustrated in Figure 5.4. Here, client X has cached the old
copy of c. Meanwhile, a modification to b by another client Y results in the collection of c. A
further modification creates a new object with the same name, ¢, and stores a reference to it into
object d. Now, client X fetches object d. The response to the fetch is preceded by an invalidation
message for b. The invalidation causes X to evict b but does not abort the transaction because X
did not read b. Further, X findsthat d pointsto ¢ and uses the cached copy of c.

client X client X client X client X

d?ﬁ

oo oo o0 90

handle a b c a b c a b c a'b c
persistent *—~o o ¥ ~e ~e
root a b c a b ¢ a b a b
server server server server

(i) initial state (i) cisdisconnected (iii) c isreassigned (iv) client fetches d
and collected receivesinvalidation for b

Figure 5.4 Problem of new reference and old copy in client cache.

Thisproblem is solved by treating the deletion of an object c asamodificationto c. Specifically,
the server enters ¢ in the invalid set of the clients that might have cached ¢ and sends invalidation
messagesto them in the background. If ¢ and d are on the same server then client X will receive an
invalidation for ¢ before it fetches the new copy of d. Client X will then evict the old copy of c.

However, if cison server S and d on T', then the client might not receive the invalidation for ¢
from S beforeit fetchesd from 7. A conservative solution here isto employ aname-reuse barrier:

A server waits before reusing the name of a garbage object until all invalidations sent
for that object have been acknowledged.

49

Aborts Dueto Garbage Collection

Treating deletion as modification might cause extra aborts, though this is extremely unlikely.
Suppose apersistent root a at server S refersto object b at server T'. Client X commits atransaction
71 that hasread a and b. Suppose, 71 is coordinated by another server U, asillustrated in Figure 5.5.
Soon after server S prepares T, another client Y commits atransaction r, that removesthereference
from a to b. Now, S might send a remove message for b to 7', which might reach T' before the
prepare message for ;. Note that the remove barrier might not apply here because client X might
have evicted a (see Section 2.3). On receiving the remove message for b, T would collect b and add
b to the invalid set for client X. Therefore, when the prepare message for 1 reaches 7', 7' would
abort 4.

: . » :
8 o
.
\ <3~@ \Q@
)
S -T- .S remove ’-T-
() Transaction t1 at X (b) Transactiont2 at Y (c) Remove message from Sto T reaches

hasread aand b removes the referenceto b T before prepare message for t1

Figure 5.5: Possibility of abort due to garbage collection.

This scenario is extremely unlikely because it involves 1 and 7, to commit in close proximity
and requires the prepare message to be delayed by along period. Further, 71 would have aborted
anyway if m reached S before r1; applications cannot distinguish between such aborts and those
due to garbage collection.

5.2.3 Maintaining the Essential Tranglist

A client maintains an essential outlist for aserver by adding referencesto it at commit and removing
references from it when the volatile heap is garbage collected.

Adding References

When the client receives a commit request from the application, it computes the set of references
that should be added to its essentia outlists, called the add set:

1. Persistent objects that were assigned handles during the transaction.
2. Referencesto persistent objects that were stored in volatile objects during the transaction.

Here, persistent objects include the objects that become persistent as aresult of the transaction. To
compute the second part of this set, the client scans the volatile objects modified by the transaction.
The client need not scan volatile objects that become persistent due to the transaction.

The client removes the references in the add set that are already in its outlists and sends the
remaining ones in the commit request; this effectively piggybacks add messages on the commit
message. First, consider a single-server transaction. If the transaction is validated and committed,

50

the server addsthe referencesto itsinlist from that client. When the client finds that the transaction
has committed, it adds the referencesto its outlist, thus preserving the inter-site invariant.

The add protocol for a multi-server transaction is tricky because participants prepare the trans-
action at different times. Safe addition of referencesinto inlists from clientsis closely related to the
addition of referencesinto inlists from servers. A genera solution that achieves both is discussed
in Section 5.3.

Note that when clients fetch objects, no extra work is needed for garbage collection. Thisis
desirable because fetching objects is expected to be the most common operation between clients
and servers.

Removing References

The client trims its outlists when the volatile heap is garbage collected. The roots for tracing the
volatile heap consist of the handles given to the application. When this trace reaches areference to
a persistent object, the reference is put in a new version of the appropriate outlist. After the trace,
the client replaces the outlists with their new versions. Then it sends remove messages containing
the references dropped from its outlists.

Tracing the Volatile Heap

A trace of the volatile heap may run concurrently with other operations at the client. The trace
obtains a safe view of the heap using the old-view approach described in Section 3.4.1: the trace
scans an object at most once—the old state of the object, and it need not scan new objects because
they are created marked. It is particularly convenient to run atrace that sees the volatile heap as it
existed when the current transaction started. The roots for this trace are the handles that existed at
the start of the transaction. When the trace reaches amaodified volatile object, it scansthe base copy
of the object maintained for transactional rollback. Besides providing a consistent view, scanning
base copies ensures that there are no dangling references even if the current transaction aborts.

At the end of the trace, all untraced volatile objects that were created before the current
transaction are collected, and old outlists are replaced with new ones. Note that new outlists
preserve the inter-site invariant: They include all persistent references in the committed copies of
live volatile objects. Further, since the trace does not scan new copies of objects modified by the
transaction, anew outlist is a subset of the old version. Therefore, the new outlist is a subset of the
corresponding inlist.

If atransaction commits while the volatile trace is in progress, the following steps are taken
after the commit is confirmed:

1. All objects created during the transaction are marked scanned. Thisensuresthat these objects
will not be collected when the trace ends.

2. The add set for the transaction is added to the new oultlists under preparation. Thisis needed
for the inter-site invariant.

3. The base copy of each object modified during the transaction is scanned (unless the object is
aready scanned), because base copies are deleted after the transaction.

5.3 Server-to-Server References

A server records references from another server S initsinlist from S. Here we describe how inter-
server references are added to or removed from inlists without sending extra foreground messages.
We also describe how inter-site inlists and outlists interact with partition tracing within a server.

51

5.3.1 Adding References

When a client copies references between objects and commits the transaction, it may create new
inter-server references. Figure 5.6 illustrates the most generic scenario: areference from object a
at the source server S to an object b at the target server T' is copied into an object ¢ at the recipient
server R. At some point, R will send an add messageto 7', and 7" will add b initsinlist from R.
Until this happens, b must be protected from collection through other means. This section presents
an add protocol that is safe and does not add foreground messages to commit processing.

client X client X
handle ——o—@ —
andle a b a ; b
handle ——®. — c
persistent _| g ° ol o) o
root a b c | Ph a b c| Ph
S T R S T R
(i) initial state (il) X modifies ¢ and commits

Figure 5.6: Creation of a new inter-server reference.

Theadd protocol must be robust against participants preparing the transaction at different times.
For example, suppose that transaction ; at client X copies the reference a—b into ¢ as described
above. Soon after server S prepares 11, another client commits a transaction r» that removes the
reference from a to b. Now, S might complete alocal trace and send aremove messageto 7'. If T'
receives the remove message from S before it receives the add message from R, it might delete b,
causing c to contain a dangling reference. A similar situation might arise if S and T' are the same
server: thelocal trace at S might delete b before receiving the add message. In general, 7" might
not even be a participant in the commit since client X does not need to read b in order to copy a
referenceto b.

Another desirable property for the add protocol is that the add message to server T' should not
delay the commit of m;. It is desirable not to add T' as a participant since T' might be a far-away
server requiring long message delays, or 7" might be temporarily slow or unavailable. Below we
present an add protocol that is safe and does not include extra participants or extra foreground

messages.

Overview of the Add Protocol

The key insight behind the add protocol is the following. If aclient X commits a new inter-server
referenceto b, at least one site involved in the commit must be already protecting b from collection.
This site, called the guardian of b, can be made to extend the protection until the target T' is known
to have received the add message. The guardian may be the client itself or some participant server
depending on the following cases.

1. Client X read reference b from a handle or a volatile object, so b must be in the essential
outlist of the client. Here, X isthe guardian of b.

52

2. Client X read reference b from a persistent object a at some server S, so either S contains
objectb (S =T) or b must beintheoutlist of S. Here, S must beaparticipant in thetransaction
and it isthe guardian of b.

The add protocol has two parts. The first is conducted during the commit protocol. It informs the
guardian, G, to continue protecting b. The guardian stores b in its guardlist. A remote reference
stored in aguardlist is effectively in the outlist, while alocal referencein aguardlist is effectively in
theinlist. On the other hand, the recipient R stores the reference b and the identity of the guardian
G initsguardianlist.

The second part of the add protocol is conducted lazily. R sendsan add messageto 7', and then
the guardian is informed to remove b from the guardlist. The add protocol weakens the inter-site
invariant asfollows:

Referencesfrom R toT" C outlist of Rto T, and

(b € outlist of RtoT) = (b € inlist of T from R) or
(b € guardlist at G and b € outlist of G to T') or
(b € guardlist at T')

The Commit Part of the Add Protocol

The add protocol is similar to “indirect protection” [Pig91, SDP92]. The problem in implementing
it in a client-caching system is that the client does not always know who the guardian is. If the
client is not a guardian itself, any participant could be a guardian. Therefore, it must broadcast a
request to guard b to all participants. Such a protocol is given below.

1. Before sending the commit request, the client scans each modified object for inter-site ref-
erences. If the base copy of the object is available, it considers only those references not
present in the base copy. For such areference b in an object at R, the client checksif b is
in the client’s outlist. If so, it piggybacks a message guarded[b, R] on the commit request.
Otherwise, it piggybacks the message guard[b, R].

2. When the coordinator receives guard[b, R] with the commit request, it propagates guard[b,
R] with the prepare messageto each participant. If it receives guarded[b, R], it sendsguard[b,
R] only to R.

3. When a participant P receives guard[b, R] with a prepare message, it works as follows:

(@ If P=R,andbisadready initsoutlist, it responds outlisted[b, R] with its vote.

(b) If P=T,itenters[b, R] initsguardlist and responds guarded[b, R].

(c) Otherwise, if b is in the outlist of P, it enters [b, R] in its guardlist and responds
guarded[b, R].

4. Thecoordinator collectsthe set of sites (participantsor the client) that sent aguarded message,
called the potential guardians. If the coordinator receivesoutlisted or if the transaction aborts,
it sends unguard[b, R] with the phase-2 message to all potential guardians. Otherwise, it
selects aguardian G, sends unguard[b, R] to all potential guardians other than G, and sends
guardian[b, G] to R.

5. When a participant receives unguard[b, R] in a phase-2 message, it removes the entry from
its guardlist. When R receives guardian[b, G], it enters[b, G] inits guardianlist and enters b
inits outlist; these steps preserve the inter-site invariant.

The reason why a site might need to store alocal referencein its guardlist instead of itsinlist is described later.

53

Note that the guardian the client read the reference from may be different from the one selected
by the coordinator. We refer to the former as the previous guardian; in the example above, S is
the previous guardian. The add protocol transfers protection of the reference from the previous
guardian to the selected guardian without any gap in between. The previous guardian either protects
the reference until it prepares the transaction or it must abort the transaction. Further, since the
previous guardian must be a potential guardian, its guardlist protects the reference until phase 2
of the commit protocol. By then, the selected guardian would have protected the reference in its
guardlist.

Note that if the target T is a participant, it will surely be a potential guardian. Nonetheless,
the coordinator must send guard messages to other participants during phase 1. Thisis because T
might not be the previous guardian, and the previous guardian must protect the reference until 7" has
added it to its guardlist. Further, when T' receives guard[b, R], it adds b to its guardlist instead of
itsinlist. If T"added b to itsinlist at thistime, the entry could be deleted by an old remove message
that was sent by R before R received the prepare message for the transaction. A safe rule is that
referencesin 7”sinlist from R are added and removed only upon receiving messages from R.

The extended commit protocol does not send extra foreground messages and it does not require
contacting servers that are not participants. It does need to send phase-2 messages to potential
guardians other than the selected guardian. In the basic commit protocol, phase-2 messages need
not be sent to participants where no object was modified. Therefore, the add protocol sends extra
phase-2 messagesto potential guardiansthat were not selected and where no objects were modified.
These messages can be buffered and piggybacked on other messages.

TheLazy Part of the Add Protocol

Servers exchange messages in the background to remove entries from guardlist and guardianlist as
follows:

1. Server R readsan entry, [b, G], from its guardianlist and sends add[b, GG] to the target 7.
2. T addsb initsinlist from R and sends unguard[b, R] to guardian G.

3. G removes|[b, R] from its guardlist and sends unguarded[b, G] to R.

4. Rremoves[b, G] from its guardianlist.

It is possible for multiple transactions that commit at R in quick succession to guard the same
reference b at other servers. Thisis because R does not enter b in its outlist until such atransaction
commits. Therefore, entries in guardlist and guardianlist and the messages sent to remove them
must be distinguished by theid of the transaction that created them.

A desirable property of the protocol described above is that the add message is sent directly
from the recipient to the target. Direct add messages ensure that both add and remove messages
for updating a given inlist are sent on the same channel (see Section 2.6 for message delivery).
Therefore, add and remove messages pertinent to an inlist are received in the order they were sent.

Special Cases

The add protocol described so far accounted for the most generic case. Various optimizations are
possible under specific cases.

Target T € Participants. Thelazy part of the add protocol saves one message when T is chosen
astheguardian. Therefore, if T isapotential guardian, the coordinator selectsit over other potential
guardians.

Coordinator U = Recipient R. Inthis case, the coordinator first checkswhether b isinits outlist.
If so, it does not send guard messages to other participants. If b is not in its outlist and T is a
participant, the coordinator can piggyback an add message on the prepare message to 7. In this
case, T entersb initsinlistinstead of itsguardlist, and R doesnot enter [b, T'] initsguardianlist. The
coordinator still needsto send guard messagesto other participants, however, so that b is protected
until T" receives the add message.

Coordinator U = Target 7. In this case, the coordinator selects itself as the guardian and need
not send guard messages to other participants. This is safe because T is effectively the first to
receive the prepare message and therefore need not depend on other potential guardians to protect
b. Further, the recipient R may piggyback an add message on its vote to the coordinator and bypass
entering [b, T'] inits guardianlist.

Recipient R = Client X. The case when the client needs to add a reference b to its essential
outlist is handled just like when a new inter-site reference is created with the client as the recipient.
Thus, the client sends guard[b, X] with the commit message; the coordinator selectsaguardian and
informs the client. An important optimization is possibleif 7" is the only participant in the commit,
or if T isthe coordinator of the commit. In this case, the client can piggyback an add messageto T
on the commit request.

5.3.2 StoringInlistsand Outlists

Here we describe how inlists and outlists are organized to support partitioned collection within a
server. As mentioned, a site treats another site as a single partition. However, within a site, inlists
and outlists must be shared between various partitions such that it is efficient to use inlists as roots
and update outlists.

The outlist of server S to T' holds references to T' from various partitions of S. It is therefore
implemented as a collection of partition-level tranglists: each from some partition in .S to 7". For
example, in Figure 5.7, the outlist of S to T' contains pointers to the trandlists from S.P to T' and
S.Q to T. Note that these trandlists are also referenced from the outsets of the source partitions,
S.P and S.Q.

Similarly, the inlist of 7' from S holds references from S to various partitions of T'. It is also
implemented as a collection of partition-level trangdlists: each from S to some partition in 7. In the
example, the inlist of T' from S contains the tranglist from S to T.M and the trandist from S to
T.N. Thesetrandlists are also referenced in the insets of the target partitions, 7.M and T.N..

Asdescribedin Section 3.3, references are added to translists between partitions on the same site
asmodified objects are inter-scanned lazily. Thisisnot the casefor tranglists between different sites
because the add protocol must be used to ensure the inter-site invariant. (Therefore, inter-scanning
ignoresinter-site references.) Aninter-site reference from S to 7" is added to the outlist of .S when
the transaction creating it commits. The reference is added to the inlist of 7' when T receives an
add message from S. Below, we describe how the partition-level translists composing the outlist of
S and theinlist of T" are updated.

Trandliststo Other Sites

For efficient determination of when to send an add or remove message, references in the various
tranglists to other servers are consolidated in a redundant table indexed by the outgoing reference.
Each entry in the table, called an outref, contains the list of source partitions that contain the given
reference. The sourcelist may also contain entries dueto the guardlist, if any (see Section 5.3). The
structure of the outrefs at .S isillustrated below.

55

siteS siteT

partition P partition Q partitionM partition N
persistent ®] ®C
root a "D

d ||+ .
inset |_I_| |_I_| inset
trans | $>P P->Q M->N
list [a d c
outset J out:
P->T Q->T S>M S>N
b b b e
e \SIZ/
outlistof Sto T inlist of T from S

Figure 5.7: References between partitions at different servers.

ref. | sourcelist
b source: P, Q; guardlist: X
e source: @

Whenever a reference to another server is added to a trandlist (delta list) or the guardlist, the
changeisreflected in the corresponding outref. When a transaction stores areference b to server 7'
into an object in partition P of server S, S doesthe following:

If S has an outref for b when preparing the transaction
If the source list of b does not contain P
Add P to the sourcelist of b and add b to the deltalist from P to T'.
If the collector istracing P,
add b to the new version of the trandist from P to T'.
Send an outlisted message to the coordinator.
Otherwise, wait until the transaction commits and then
Add an outref for b.
Add P to the sourcelist of b and add b to the deltalist from P to T'.

Whenever a reference to another server is removed from a trandlist (after the source partition
is traced) or the guardlist (after receiving an unguard message), the change is reflected in the
corresponding outref. When the source list of an outref becomes empty, the outref is removed and
aremove message for the reference is buffered. In Figure 5.7, when partition P is traced, it would
remove d from the trandlist from P to @; when partition @ is traced next, it would remove b and e
from the trandlist from @ to server T'. Thus, @ would be removed from the source list of outrefsb
and e. Since, the sourcelist of outref e is now empty, aremove messageis sent for e.

Trandistsfrom Other Sites

When server T receives a remove or add message from S, it makes the change in the appropriate
trandlist initsinlist from S. Unlike updates to other tranglists, updates to tranglists from other sites
are not buffered in deltalists because these updates are not recoverable from the local 1og.

56

5.4 SiteCrashes

Here we discuss how server and client crashes are handled. We also discuss how network partitions
between servers and clients are handled, since they are often indistinguishable from crashes.

541 Server Crash

When a server recoversfrom acrash, it must retrieve itsinlists before doing alocal trace. Further, it
must retrieve its outlists so that it can determine when to send add and remove messages. Therefore,
the server stores the tranglists composing its inlists and outlists as persistent objects—Ilike tranglists
between its partitions. Theinlist and outlist objects containing pointers to these tranglists are also
stored persistently. The server updatesthese objectsin response to add and remove messages, which
are processed in the background.

Further, the server stores guardlists and guardianlists as persistent objects. Updates to the
guardlist are logged when preparing the transaction, and updates to the guardianlist are logged
when committing the transaction.

542 Client Crash

Clients may terminate normally or they may crash and never recover. A server must be able to
discard its inlists from clients that appear to have failed. Otherwise, it would lose the storage used
by theinlists; worse, it would be unable to collect objectsthat were reachable from the failed clients.

However, there are two problems with discarding information for such clients. First, the client
might be a guardian for some reference b stored in another server R. Therefore, removing the inlist
from the client might lead to collecting b while R holdsareferenceto b. Second, aclient that appears
to have failed may not have crashed; instead it might just be unable to communicate with the server
because of a network partition. Since it isimpossible to distinguish a client crash from a network
partition, it is unavoidable that objects reachable from such a client might be collected. However,
servers must guard against the possibility that such a client might later commit a transaction that
stores dangling references into objects at the servers. This problem arises because a client might
not know that some server has assumed it to have failed, so the client might continue working. In
particular, the client might commit transactions at other servers.

For example, consider aclient that has a handleto object b at server T'. Supposethat T' suspects
the client hasfailed, removestheinlist from the client, and collects 5. Now, the client might store a
referenceto b in object ¢ at R and commit the transaction, which creates a dangling reference. Note
that dangling references might be created even if add messageswere sent synchronously as part of
the commit protocol. A dangling reference is not detectable at commit time because it might point
to anewer incarnation of the object.

We present a safe protocol that avoids both of the above problems. The basic ideaisthat before
any server discards information about a client, it must inform other servers to ban the client, i.e.,
not service fetch and commit requests from it.

The Ban Protocol

When the client first starts up, it sends a message to some preferred server that will act asareliable
proxy for the client. The proxy will always know whether the client has been banned; it stores the
id of the client in a stable clientlist.

When a server S receives a regquest from a client (or on behalf of the client, asin a distributed
commit), the server checks whether it has a license to serve the client. If nat, it sends a request

57

to the client’s proxy. The identity of the proxy is included in the all client requests. Thisis the
only instance when a foreground message is necessary for the purpose of garbage collection; such
messages are acceptable because they are sent infrequently. When the proxy receives a request
for alicensg, it checks whether the client is in its clientlist. If not, it denies the license and, in
turn, S signalsthe client to stop. Otherwise, the proxy enters S in a stable list of licensees for the
client. S may give up itslicense and inform the proxy provided it does not have inlist, guardlist, or
guardianlist entries for the client. However, S may cache the license longer to avoid requesting a
license frequently.

A server might suspect a client to have failed if the client has not communicated with it for a
long time and does not respond to repeated query messages. The server sends arequest to the proxy
to ban the client. (Also, when a client terminates normally, it sends such a message to its proxy.)
The proxy conducts a two-phase ban protocol (illustrated in Figure 5.8):

1. The proxy sends a ban messageto al licensees.
2. When a server S receives a ban message, it decides not to service any further request from
the client. Further, if S hasan entry in its guardianlist where the client is the guardian:

(8 S sendsan add messagesto the target server.
(b) Whenthetarget server acknowledgesthe add message, S removesthe guardianlist entry.

Then S sends an acknowledgement to the proxy.

3. When the proxy has received acks from all licensees, it enters the second phase and sends
discard messagesto them.

4. Upon receiving this message, a server discards all information about the client. Also, the
proxy removes the client from the clientlist.

proxy licensee target
lban [2a. add
CT2ack 2b. ack
3. discard

Figure 5.8: The 2-phase ban protocol.

The 2-phase ban protocol provides the following guarantee:

No object that is guarded by the client or that may be used by the client in a committed
transaction is collected until all servers have banned the client and all servers have
removed dependencies on the client for guarding their references.

After the ban, even if the client approaches a server it never communicated with before, the server
will not service the client becausethe server will fail to get alicense from the proxy. Therefore, any
dangling references held by the client are harmless.

55 Summary

A server records incoming references from clients and other serversin inlists, which are treated as
roots when tracing locally. Since clients may cache alarge amount of data, recording all references
from clientswould be alarge overhead and might even prevent the collection of garbage. Therefore,
aserver recordsonly the essential inlist for aclient, which consist of referencesreachablefrom client

58

handles through zero or more volatile objects. It is necessary and sufficient to treat the essential
inlist as roots in local tracing. The client adds references to the essential inlist upon commit and
removes references after it traces the volatile heap; no extra work is needed at a server when a
client fetches objects. Optimistic concurrency control and the reuse of object names introduce
incarnation-mismatch problems. These problems are solved by requiring the server to wait for
acknowledgements for invalidation messages before reusing names and before sending remove
messages.

Inter-server referencesmay be created when aclient commitsatransaction. The server receiving
the reference sends an add message to the target of the reference. The add message is sent in the
background such that it does not delay the commit; if the target server is not a participant, it is not
involved in the commit protocol. Thus, no extra messages are sent in the foreground, and no extra
participants are added to the commit protocol. A new inter-site reference is guarded by a guardian
siteuntil the target is known to have received the add message from the recipient. The guardian may
be the client performing the transaction or a participant. Since the guardian might not be known,
the coordinator broadcasts a guard request to al participants.

A server stores information such as inlists on stable storage so that the information can be
recovered after a crash. When a client crashes or appears to have crashed, the server discards its
inlist from the client. Their are two problems in discarding the inlist: First, the client might be
guarding areference for another server. Second, the client might actually be live and might commit
dangling referencesinto objects at other servers. These problems are avoided by executing a two-
phase protocol. The first phase bans service to the client at all servers and removes dependencies
on the client for guarding references. Only after this is complete, are the inlists from the client
removed. Thus, clients that are live but banned are harmless.

59

Chapter 6

Inter-Site Garbage Cycles

This chapter describes fault-tolerant and scalable techniquesfor collecting inter-site garbage cycles.
Treating inter-site references as roots for site-marking retains inter-site garbage cycles and objects
reachable from them. Inter-site cycles are relatively uncommon, but they do occur in practice. For
example, hypertext documents often form complex cycles spread over many sites.

In Thor, volatile objects at a client cannot be part of inter-site garbage cycles because servers
or other clients cannot store references to them. Therefore, inter-site garbage cycles consist only
of persistent objects stored at the servers. Thus, a global marking scheme spanning all servers
could collect inter-site garbage cycles. The roots for global marking would be persistent roots
and references in the inlists from clients; we refer to these roots as the global roots. However,
while marking within a site is acceptable, global marking is a problem because sites may crash
independently, become disconnected, or become overloaded and unresponsive. Since complete
propagation of global marks involves al sites, global marking might never finish in a system with
thousands of sites. Until global marking finishes, no site can collect any inter-site garbage cycle.
Therefore, we do not use global marking.

Minimizing inter-site dependence requires the locality property:

Collecting a garbage cycle should involve only the sites containing it.

Locality has proven surprisingly difficult to preserve in collecting inter-site cycles; most previous
schemes do not preserve locality. For example, some conduct periodic global marking in addition
to site-marking [Ali85, JJ92]. The drawbacks of global marking can be aleviated by marking
within groups of selected sites [LQP92, MKI195, RJ96], but inter-group cycles might never be
collected. Few schemes for collecting inter-site cycles have the locality property. A prominent
technique is to migrate an inter-site garbage cycle to a single site, where it is collected by site-
marking [Bis77, SGP90]. However, previous schemes based on migration are prone to migrating
live objects besides garbage cycles, which is undesirable because migration is expensive.

We present a practical scheme with locality to collect inter-site cycles. It has two parts. The
first identifies objects that are highly likely to be cyclic garbage—the suspects. This part may use
an unsafe technique that might suspect live objects, although a performance requirement isthat few
suspects be live. We find suspects by estimating distances of objects from persistent roots in terms
of inter-site references. This technique preserves locality, has very little overhead, and guarantees
that all inter-site garbage cycles are eventually detected.

The second part checks if the suspects are in fact garbage. This part may use techniques that
would be too costly if applied to all objects but are acceptable if applied only to suspects. We
present two alternativesfor checking suspects. The first migrates the suspects such that an inter-site
cycle converges on a single site. Unlike previous migration-based proposals, it avoids migration

60

as much as possible. However, some systems do not support migration. The second technique
traces back from the suspects to check if they are reachable from any global root. Unlike forward
global marking, this approach preserves|ocality and scalability. Back tracing was proposed earlier
by Fuchs [Fuc95]. However, that proposal assumed that inverse information was available to trace
referencesbackwards, and it ignored problems due to concurrent mutationsand forward local traces.

The organization of thefull schemeisillustratedin Figure6.1. Section 6.1 describesthedistance
heuristic for finding suspects. Section 6.2 describes checking suspects by limited migration, and
Section 6.3 describes checking suspects by back tracing. Section 6.4 describes previous proposals
for collecting distributed garbage cycles.

Part |. Find suspects Distance heuristic

Part 1. Check suspects | Migrate or Back trace

Figure 6.1: Two-part schemefor collecting inter-site garbage cycles.

6.1 DistanceHeuristic

Theinsight behind the distance heuristic isthat the set of objects reachablefrom global rootsthrough
a bounded number of inter-site references gets closer to the set of al live objects as the bound is
increased. Therefore, objects not in thefirst set may be suspected to be garbage. The distance of an
object is defined as follows:

The distance of an object is the minimum number of inter-site references in any path
from aglobal root to that object. The distance of an object unreachable from the global
rootsisinfinity.

Figure 6.2 illustrates the notion of distance. Object a is aglobal root; therefore, the distance of
a and objectslocally reachablefrom it iszero. (An object is locally reachablefrom another if there
isapath of local references from the first to the second.) Object ¢ is reachable from a through two
paths: one with two inter-site references and another with one; therefore, its distanceis one.

siteS site T siteR

)

. ¢
persistent 1

root

cé®

o oe
o 8w O‘K

o oo

o e

1

o —e

Figure 6.2: Distances of object.

Suspects are found by estimating distances. The estimated distances of objects tend towards
their real values: those of live abjects converge to finite values, while those of uncollected cyclic
garbage keep increasing with time.

61

6.1.1 Estimating Distances

Object distances are estimated efficiently as follows. Rather than associating a distance field with
each object, a distance field is associated with each entry in inlists and outlists. The distance of
global roots (referencesininlistsfrom clientsand persistent roots) is zero. Distancesare propagated
from inlist entries to outlist entries during local tracing, and from outlist entries to inlist entries on
target sites through update messages. Update messages are sent in the background; in particular,
they may be piggybacked on remove messages carrying changesin the outlists.

For efficiency, references in the various inlists are consolidated into a redundant table indexed
by references. Each entry in the table, called an inref, recordsthe list of source sites containing the
reference. Each source site in the list is associated with a distance; the distance of the inref as a
whole is the minimum such distance. For example, in Figure 6.3, site R has an inref for ¢, with a
distance one from S and two from T'; its distance is one. The inrefs table is similar to the outrefs
table introduced in Section 5.3.2, which stores a consolidated view of the various outlists at a site.
The source list of an outref records the partitions that contain the outgoing reference, but we omit
these source listsin the figuresfor clarity.

site S siteT siteR
. a#0 b:S1 cS1,T2
inrefs eT3 dR2
/h\ c
persistent e o] 9 oo
root
T e T d
b1l c2 d2
outrefs ol o3

Figure 6.3: Distances associated with inrefs and outrefs

Local tracing is responsible for setting the distance of each outref to one plus the minimum
distance of any inref it is locally reachable from. First we describe how distances would be
propagated if asite were traced asaunit. In order to propagate distances correctly, inrefs are traced
in the order of increasing distances, and the trace from one inref is completed before tracing from
the next. When the trace reaches an outref for the first time, the distance of the outref is set to one
plus that of the inref being traced from. For example, in Figure 6.3, site S will trace from inref a
beforeit tracesfrominref e. Therefore, it setsthe distance of outref b to one plusthat of a. Changes
in the distances of outrefs are propagated to the target sites in update messages. When atarget site
receives such a message, it reflects the changesin its inrefs.

Estimating Distances Through Partition Traces

Since a server traces its partitions independently, each partition trace must propagate distances. A
distancefield is stored with each reference in trandlists. The referencesin the inset of a partition P
are traced in the order of increasing distances, and the trace from one inset reference is completed
(within P) before tracing from the next. The distance of a reference o in the outset of P is set to
that of the inset reference being traced if o is alocal inter-partition reference, and to one plus that

62

if o is an inter-site reference.! Finally, the source list of an outref records the distance from each
source partition; the distance of the outref as awhole is the minimum such distance.

Since distances of references in delta lists are not known, they are conservatively assumed to
be zero. Thisis suitable because such a reference must be live—at least until the modification that
caused it to be entered in the delta list. Tracing the source partition later computes the appropriate
distances of these references.

If there is a path of references from an inref ¢ to an outref o through partitions P;. .. P,
changesin the distance of i are propagated to o when the sequence of partitions traced, T, includes
Py... P, asasubsequence. Supposethere are n total partitions and they are traced in round-robin
order. Then, propagating the change might take 1 round in the best case (when a round traces the
partitions in the desired order, P;. .. P,,), and m roundsin the worst case (when each round traces
the partitionsin the opposite order, P,,. .. P1). Propagation of distance changes can be accelerated
by increasing the trace-priority of any partition that has unpropagated distance changesin itsinset.
This approach is similar to the reduced-inset heuristic described in Section 3.2.

Overheadsand Constraints

The space overhead of distance propagation is a distance field per trandlist entry, and a distance
field per sourcein inrefs and outrefs. A distance field requires only afew bits. a one-bytefield can
account for chains with 255 inter-site references. The message overhead consists of information
about changesin distances piggybacked on remove messages. The processing overheadisnegligible
because distance propagation within a site is piggybacked on local tracing. Distance propagation
does constrain the order in which theroots must be traced in each partition, and it requires compl eting
the trace from one root before the next root is traced. However, this does not constrain the trace to
use a depth-first traversal since objects reachable from one root can be traced in any order before
the next root is traced.

Distance propagation also relies on the use of source-listing of inter-site references rather than
reference counting (Section 5.1). The source list of an inref stores a distance for each source site
separately. Thus, in the example shownin Figure 6.3, if T' discardsthe referenceto ¢, R can update
the distance of inref ¢ to the new minimum, two. With reference counts, it would not be possible
for R to find the new distance.

6.1.2 Deviation in Distance Estimates

When a new inter-site reference is created and the target site receives an add message, the distance
associated with the referenceis conservatively set to onefor want of better information. Later, local
tracing at the source site computes the appropriate distance of the reference. The change is then
propagated to thetarget site. Similarly, distancesof al referencesin the guardlist are conservatively
assumed to be one. Thisis suitable because these references were live when they were stored and
because they are stored in the guardlist only temporarily.

Estimated distances may aso be higher than real distances temporarily. In the example in
Figure 6.4, creation of alocal reference in T" reduces the real distance of e to two. However, the
estimated distance of e is not updated until local tracing at T' finds the shorter path and T' sends an
update messageto S.

Thus, changes in estimated distances may lag behind changes in real distances. Temporary
deviations in estimated distances are acceptable since distances are used merely as a heuristic for

1A more general distance heuristic could account for both inter-partition and inter-site references by assigning a
non-zero weight to each inter-partition reference and a higher weight to each inter-site reference.

63

site S siteT siteR

; a#0 b:S1 cS1,T2
inrefs o T3 d:R2
T T c
persistent g oo —E R 1
2.2 1.1 2
outrefs b1l c2 d2
cl e3

Figure 6.4: Distances drop on creation of references (dotted arrow).

suspecting cyclic garbage. A negativedeviationin the distance of alive object is benevolent because
the object will not be suspected. A high positive deviation from the real distance might cause the
object to be suspected, but that is acceptable provided such occurrences are not common.

In the rest of this chapter, we will use “distance” to mean “estimated distance.”

6.1.3 Distanceof Cyclic Garbage

Distances of cyclic garbageincrease without bound asthey are propagated through local tracing and
update messages. Intuitively, this happens because a garbage cycle acts as a positive feedback loop:
each local trace increments the distances when propagating them from inrefs to outrefs. When a
cycleis connected from a global root, the path from the global root holds down the distances; when
the cycle is disconnected, there is no such constraint. Below, we quantify the rate of increase of
distances of cyclic garbage.

The delay in propagation of distance from an inref to an outref and then to the target inref
depends on factors such as the frequency of tracing at the site and the number of partitions in the
path from the inref to the outref. For simplicity of analysis, assume that this delay for inrefs and
outrefsin the cycle of interest is bounded by a certain period of time, called a step.

First consider the simple cycle in Figure 6.5. As long as the cycle is connected from a, the
distanceof cis 1, dis2, and e is 3. Within a step after the cycle is disconnected, S recomputesthe
distance of outref ¢ as 4 and propagatesit to R. In the next step, R sets the distance of d to 5; then
T sets the distance of e to 6; so on. The progress of distances is plotted in the figure; the zero on
the horizontal axis marks the time when the cycle is disconnected.

siteS siteT siteR
. a#o dR2 ¢s1
inrefs e T3 g 3 j
a. c °1 |
p.r. -~ - Y wr
& v+
B _le
. oo ° obdo
e d “Te
outrefs €L 4 e3 a2 R SN S S
\

disconnection time (steps)

Figure 6.5: Distances of a disconnected cycle (dotted cross).

In fact, the following theorem holds for arbitrary graphs of garbage objects, including multiple
cycles connected to form a compound cycle.

Garbage Distance Theorem
J steps after an object became garbage, the estimated distance of the object will be at least J if
the object is not collected by then.

Proof (by induction)

Consider an object ¢ that became garbage at some point in time. At that time, the set of objects
that c is till reachable from, G, must be garbage aswell. Further, since the mutator does not create
new referencesto garbage objects, this set cannot grow with time.

The theorem holds trivially when J is zero. Suppose the theorem holdswhen J is K. Thus, K
steps after ¢ became garbage, the distance of any inref for an object in G must be at least K. Now
consider any outref to an object in G. This outref can be reachable only from inrefs for objectsin
G (by the definition of G). Therefore, within the next step, either the outref will be collected or the
distance of the outref will be set to at least K + 1. Since the distances of outrefs are reflected in the
corresponding inrefs, the distance of any inref for an object in G will be at least K + 1.
|

The propagation of distancesin the simple example in Figure 6.5 illustrates the theorem. Note
that the theorem is not limited to inter-site cyclic garbage. However, garbage other than inter-site
cycles will be collected; therefore, it is only the inter-site garbage cycles (and objects reachable
from them) whose distances keep increasing with time.

6.1.4 The Threshold Distance

Since estimated distances of live objects converge on their actual distances, while those of garbage
cycleskeep increasing, objectswith distances above a suspicion threshold are suspected to be cyclic
garbage. Inrefs with distances less than or equal to the threshold —and objects and outrefs traced
from them—are said to be clean. The remaining are said to be suspected.

Setting the threshold involves a tradeoff. The higher the threshold, the fewer the live objects
suspected, but the longer the time to identify suspects. Thus, the accuracy of suspicion can be
controlled by setting the threshold appropriately. Fortunately, the penalty on setting the threshold a
little high or alittle low isnot severe. In particular, neither safety nor completenessis compromised.
If live objects are suspected, the scheme that checks suspectswill ensurethat they are not collected.
On the other hand, cyclic garbageis sure to be detected eventually; the Garbage Distance Theorem
ensures that the distances of all cyclic garbage will cross the threshold, regardless of how high the
threshold is.

The choice of the threshold in a system depends on two factors:

e Therate of generation of inter-site cyclic garbage: The higher this rate, the higher the need
to collect the garbage quickly, so the lower the threshold ought to be.

e Thedistribution of distances of the objects: If there are many live objectswith large distances,
the threshold should be high enough to avoid suspecting many live objects.

The threshold can be adapted dynamically by receiving feedback from the scheme that checks
whether suspects are in fact garbage. For example, if too many suspects are found to be live, the
threshold should be decreased. The design of such a mechanism requires further work.

65

6.1.5 Summary of Distance Heuristic

Distance propagation preservesthe locality property and fault tolerance of local tracing. Identifying
a suspect involves only the sites it is reachable from. No global mechanism is required. Thus, if
asite S is down, disconnected, or otherwise slow in tracing and sending update messages, it will
only delay the identification of the garbage reachable from S. Further, it will not cause more live
objects to be suspected.

The distance heuristic identifies all inter-site cyclic garbage, since their distanceswill crossany
threshold eventually. Its accuracy in suspecting only inter-site cyclic garbage can be controlled
by setting the threshold suitably. Distance propagation is piggybacked on local tracing with little
overhead. Its message overhead consists of distance information in update messages and its space
overhead consists of distance fields in tranglist entries.

6.2 Migration

The basic idea behind migration is to converge objects on a potential garbage cycle on one site. If
the objects are in fact garbage, they will be collected by local tracing; otherwise, they will survive,
although displaced from their original sites.

We assume an underlying mechanism for migrating objects that is robust against concurrent
mutations and that updates references to migrated objects [DLMM94, Ady94]. In Thor, amigrated
object leaves a surrogate object at the old location that contains a forwarding reference to the new
location of the object. Old referencesto a surrogate are updated in the background. Aswith normal
objects, asurrogateis collected when it is not reachable from applications.

Migration has been proposed earlier to collect distributed cycles [Bis77, SGP90]. However,
previous proposal s used weak heuristicsto decide which objectsto migrate. A popular heuristic was
to move to all objects not locally reachable from a global root. For example, in the state shown in
Figure 6.6, such a heuristic would move the live objects such asb and ¢ to site S. Another heuristic
isto migrate such objects only if they have not been accessed for some period. In a persistent store,
however, live objects may not be accessed for long periods.

siteS siteT siteU
a
p.r.——=e—e —E -0 —g -0
§ o
T f
d
p.r. 2 ® 9 ° g ®
-5
go~o-of

Figure 6.6: Desired migration of an inter-site cycleto asingle site.

Migration of live objectswastes processor and network resources, and it might spoil load balance
and object placement. For example, a database might be partitioned between two sites such that
objects are positioned close to their frequent users. Yet the database may have asingle logical root,
say, on the first site. Objects on the second site are locally unreachable from a global root, but

66

they should not be moved. In general, object placement should not be bound to garbage collection;
instead, it should admit an independent policy such as hints from applications.

The distance heuristic provides atechnique for limiting migration of live objectsto an arbitrary
level. In fact, the previous heuristic is a degenerate case of distance heuristic when the threshold is
zero. Only objects traced from suspected inrefs are migrated. Specifically, all objects traced from
a suspected inref are migrated as a batch. Note that the set of objects traced from an inref may be
smaller than the set of objects locally reachablefrom it. For example, in siteT" in Figure 6.7, inref
b istrace beforeinref e; therefore, object b, istraced from b and e, istraced frome. If the suspicion
threshold distanceis 10, e, will be batched for migration with e, while b, will not be migrated. This
is desirable because b, islikely to belive.

site T

b:S1
e S20

inrefs

b b2

oo
e e

Figure 6.7: Objects traced from a suspected inref are batched for migration.

6.21 Whereto Migrate

Some previous schemes migrate objects to a fixed dump site [GF93], but this can be a performance
or fault-tolerance bottleneck in a large system. Other schemes migrate objects to sites that refer to
them. To ensure that objectsin a cycle converge on the same site instead of following each other in
circles, sites are totally ordered and migration is allowed in one direction only, say, from higher-id
sitesto lower-id sites[SGP90]. We refer to this rule as the one-way rule.

The one-way rule ensures convergence, but objects on a multi-site cycle might be migrated
multiple times before they converge on asite. For example, in Figure 6.6, object f and othersin its
batch might be migrated first to site 7" and then to site S. In general, for a simple cycle that spans
C sites, O(C?) object migrations might be performed: the object closest to the final destination site
is migrated once, while the object farthest from it might be migrated up to C — 1 times.

Since migration is an expensive operation, we limit the number of migrations by migrating
objects directly to the final destination as much as possible. The destination of a suspected object
is defined as the lowest-id of any site from where it is reachable.

Destinations of suspected objects are estimated just like distances. Suspected inrefs and outrefs
have destination fields, and local tracing propagates destinations from suspected inrefs to outrefs.
In order to propagate destinations of suspected inrefs correctly, inrefs with distances above the
suspicion threshold are traced in the order of increasing destination. It is acceptable to not trace
them in distance order because they are already suspected to be cyclic garbage. If suspected inrefs
weretraced in distance order, the lowest site-id might not propagate fully in acompound cycle. (For
instance, if an outref o is reachable from two suspected inrefs 7, and i», such that i, had a lower
distance and i, had alower destination, o would be traced from ¢4, blocking destination information
from i».) When the trace reaches a suspected outref for the first time, the destination of the outref is
set to the minimum of thelocal site-id and the destination of theinref being traced. Finally, changes
in the destination of outrefs are propagated to target sitesin update messages.

67

Migration is not necessary for objects that are reachable from an inter-site garbage cycle but
are not part of the cycle. If these objects did not migrate, they would still be collected, though after
the cycle has been collected. The scheme presented here does not prevent the migration of such
objects, but it does avoid migrating them multiple times. It may migrate them to different sites,
however. For instance, consider Figure 6.8, where the site with the lowest id in the cycleis S, while
a garbage chain passesthrough site R with an even lower id. In this case, object b will be migrated
to S, while object d will be migrated to R.

site S site T siteR
AHD !
d ® g= o

T |

Figure 6.8: A chain reachable from a cycle may migrate to a different site.

Unlike some leader election algorithms[L el 77], estimating the destination does not incorporate
termination detection, so sites must guess when destination propagation has compl eted; we discuss
how to make this guess in the next section. The advantage of our scheme is that it is ssmple and
effective even in compound cycles.

6.2.2 WhentoMigrate: the Second Threshold

A sitemigratesabatch of suspected objectsonly after itislikely to havereceivedthefinal destination
for the batch. Thisis achieved by waiting until the distance of a suspected inref crossesamigration
threshold that is higher than the suspicion threshold.

Setting the migration threshold, ¢,,,, involvesatradeoff similar to that for the suspicion threshold,
t,. It should be high enough that by the time the distance of an inref increasesto ., its destination
field is likely to be set correctly. But it should be low so that cyclic garbage is migrated quickly.
The penalty on setting the threshold alittle low or high is not severe because the destination is used
only as a heuristic. If the destination is not set correctly when objects are migrated, the objects
might be migrated again, but the one-way rule still ensures eventual convergence. Further, even
if the destination is not set correctly, the objects are likely to be migrated fewer times than if the
heuristic were not used at all.

Below weprovidean estimatefor ¢,,, based on asimple garbage cyclewith C'inter-sitereferences.
The distance of any inref in such acycle jumpsup by C after every C' steps, as shown in Figure 6.5.
Consider theinref i on the lowest-id site in the cycle. At some point, the distance of 7 will crossi,.
At that time, the distances of other inrefs on the cycle must be lessthan ¢; + C. After the distance
of 7 crosses ¢, the site-id of ¢ will be propagated around the cycle as the destination. In particular,
when the distance of any other inref crossest + C, it will have received the destination information
from i. Thus, asuitable valuefor t,, ists + C, where C' is a conservatively estimated (large) cycle
length in the system. Possible future work in this areais to adapt ¢,, dynamically.

68

6.2.3 Summary of Migration

Migration is a safe technique for checking suspects because suspects are collected only if local
tracing finds them unreachable. Further, migration is robust against concurrent modifications;
therefore, the complexity of handling modifications is limited to the migration module. Migration
preservesthelocality property: the collection of acycleinvolvesonly the sites containing the cycle.
Migration collects all inter-site cycles except those that are too big to fit in asingle site.

Migration has potentially high processor and network overhead. The heuristics presented
here help to limit migration: the distance heuristic limits the number of objects migrated and the
destination heuristic limits thetimesthey are migrated. However, migration of large garbage objects
can still be expensive. Another drawback of migration is that it might conflict with autonomy or
security concerns. Some systems cannot migrate objects across heterogeneous architectures, and
some do not support migration because of the complexity of updating referencesto migrated objects.
Finally, the one-way rule makes migration unfavorable to sites with lower ids.

6.3 Back Tracing

The key insight behind back tracing is that whether an object is reachable from a global root is
equivalent to whether aglobal root is reachable from the object if all references are reversed. Thus,
the idea is to trace backwards from a suspect: if the trace encounters a global root, the suspect is
live, otherwiseit is garbage.

The virtue of back tracing is that it has the locality property. For example, a back trace started
in atwo-site cycle will involve only those two sites. Thisisin contrast to aforward trace from the
global roots, which is a global task. Indeed, a forward global trace would identify all garbage in
the system, while a back trace checks only whether aparticular object islive. Thus, back tracing is
not suitable as the primary means of collecting garbage. Most garbage is expected to be collected
by forward local tracing (partition tracing). Back tracing is a complementary technique to detect
uncollected garbage, and is used for objects suspected to be on inter-site garbage cycles. We present
practical techniques for conducting back tracing.

6.3.1 TheBasc Scheme

This section describes the basic scheme for back tracing; Section 6.3.2 describes the computation
of information required for back tracing, and Section 6.3.3 describes solutions to problems due to
concurrent mutations and forward traces. Section 6.3.4 describes the consequences of partitioned
local tracing for back tracing.

Back Steps

Tracing back over individual referenceswould be prohibitively expensive—bothin thetime required
to conduct it and in the spaceto storetherequiredinformation. Therefore, aback traceleaps between
outrefs and inrefs. For brevity, we refer to inrefs and outrefs collectively as iorefs. A back trace
takes two kinds of steps between iorefs:

Remote steps that go from an inref to the corresponding outrefs on the source sites.
Local steps that go from an outref to theinrefsit is locally reachable from.

The information needed to take remote steps from an inref is already present in its source list,
but extra information is required to take local steps. We define the inreach of a reference as the

69

set of inrefs from which it is locally reachable. For example, in Figure 6.9, the inreach of outref
cinsite T is {a,b}. We compute and store the inreaches of outrefs so that back traces may use
them when required. Section 6.3.2 describes techniques for computing inreaches efficiently during
forward local traces.

siteS siteT siteR
; cT as dT
inrefs bR
a b
P d
ac cab b: d
outrefs b

Figure 6.9: Inreaches of suspected outrefs.

A back trace consists of taking local and remote steps alternately. For example, a back trace at
outref ¢ in T" will take local stepsto inrefs a and b. From there, it will take remote steps to outrefs
a and b and so on.

In general, a back trace may be started from any suspected ioref. However, a back trace started
from an inref a will not find paths to object a from other inrefs on the same site. For example, in
Figure 6.9, a back trace started from inref a will miss the path from inref b to object a. On the
other hand, a back trace started from an outref ¢ that is locally reachable from a will find all paths
to a because the set of inrefsthat c islocally reachable from must include all inrefsthat o islocally
reachable from. Thus, if a back trace started from an outref does not encounter a global root, all
inrefs visited by the trace must be garbage objects. Therefore, we start a back trace from an outref
rather than an inref.

How Far Back to Go

A practical requirement on a back trace is to limit its spread to suspected iorefs. Thus, rather than
going al the way back in the search for a global root, a back trace returns “Live” as soon as it
reaches a clean ioref. This rule limits the cost of back tracing to the suspected parts of the object
graph in two ways:

e A back trace from alive suspect does not spread to the clean parts of the object graph.
¢ We need to compute inreaches for suspected outrefs only.

The rule has the disadvantage that back tracing will fail to identify a garbage cycle until all objects
on it are suspected. Thisis not a serious problem, however, because the distance heuristic ensures
that all cyclic garbage objects are eventually suspected. The next section describes a suitable time
to start a back trace.

When to Start

A site starts a back trace from a suspected ioref based on its distance. There is atradeoff here. A
back trace started soon after an ioref crosses the suspicion threshold, ¢, might run into a garbage
ioref that is clean because its distance has not yet crossed ¢, and return Live unnecessarily. On the
other hand, a back trace started too late delays collection of inter-site garbage cycles.

70

Here, we estimate a suitable back threshold ¢, to trigger a back trace. (Thisthreshold issimilar
to the one for migrating suspected objects.) Ideally, by the time the distance of any ioref on acycle
is above tp, those of other iorefs on the cycle should be above ¢;. If the distance of anioref y ist
and the distance from z to y is C, then the distance of = should be at least t, — C. Therefore, an
appropriate valuefor t, ists + C, where C' is a conservatively estimated (large) cycle length.

If aback traceis started in a garbage cycle too soon, the trace might return Live unnecessarily,
but a future trace would confirm the garbage. To determine when to start another back trace, each
suspected ioref has a back-threshold field initially set to ¢,. When aback trace visitsanioref z, the
back threshold of z isincremented by, say, C'. Thus, the next back trace from z, if any, istriggered
only when its distance crosses the increased threshold. This has the following desirable properties:

1. Livesuspectsstop generating back traces oncetheir back thresholds are abovetheir distances.
2. Garbage objects generate periodic back traces until they are collected.

Back Tracing Algorithm

Back tracing can be formulated as two mutually recursive procedures. BackStepRemote, which
takes remote steps, and BackStepL ocal, which takes local steps. Both are similar to a standard
graph search algorithm.

BackStepRemote (site S, reference i)
if 2 isnot in Inrefsreturn Garbage
if Inrefq[7] isclean return Live
if Inrefg[3] isvisited by this trace return Garbage
mark Inrefg[i] visited by thistrace
for each site T" in Inrefg[{].Sources do
if BackStepLocal (T, i) isLivereturn Live
return Garbage
end
BackStepLocal (site S, reference o)
if o isnot in Outrefs return Garbage
if Outrefg[o] is clean return Live
if Outrefq[o] isvisited by this trace return Garbage
mark Outrefg[o] visited by thistrace
for each reference s in Outrefgo].Inreach do
if BackStepRemote(S, 7) isLivereturn Live
return Garbage
end

If the reference being traced is not found among the recorded iorefs, its ioref must have been
deleted by the garbage collector, so the call returns Garbage. To avoid revisiting iorefs and to avoid
looping, an ioref remembers that a trace has visited it until the trace completes; if the trace makes
another call on the ioref, the cal returns Garbage immediately. Note that the calls within both
for-loops can be made in parallel. For example, in Figure 6.10, acall at inref ¢ in R will fork off
two branchesto S and T". One branch will visit inref a first and go further back, while the other
will return Garbage.

An activation frameis created for each call. A frame containsthe identity of the frameto return
to (including the caller site), theioref it isactive on, acount of pending inner calls to BackStep, and
aresult value to return when the count becomes zero. Thus, a call returns only when all inner calls
have returned. We say that atrace is active at anioref if it has acall pending there. We say that a
trace hasvisited an ioref if theioref ismarked visited by the trace—even though the trace may have
returned from there.

71

site S siteT siteR

inrefs [a .. | [bS | [cST]
A
longpath | & A | b [N d
fromroot | "* "* T o
b:a cb d:c
outrefs ca

Figure 6.10: A back trace may branch.

Collecting Garbage

If the outer-most call to BackStep returns Garbage, all inrefs visited by the trace are garbage.
However, when an intermediate call returns Garbage, it cannot be inferred that the corresponding
ioref is garbage, because that call would not have visited iorefs that have already been visited by
other branchesin the sametrace. For example, in Figure 6.9, the call at inref b may return Garbage
becauseinref a has been visited, although b is not garbage. Therefore, no inref is removed until the
outer-most call returns.

When the outer-most call returns, the site that initiated the back trace reports the outcometo all
sitesreached during thetrace, called the participants. For theinitiator to know the set of participants,
each participant appendsitsid to the response of acall. If the outcomeis Garbage, each participant
flags the inrefs visited by the trace as garbage. If the outcome is Live, each participant clears the
visited marks for that trace. Note that the outcome is likely to be Garbage since the suspected
objects are highly likely to be garbage.

Aninref flagged as garbageis not used asaroot in the local trace. Such aninref isnot removed
immediately in order to maintain the inter-site invariant between outrefs and inrefs. Flagging the
visited inrefs causes the cycle to be deleted the next time the containing sites do alocal trace. The
flagged inrefs are then removed through regular update messages.

M essage Complexity

Back tracing involves two messages for each inter-site reference it traverses—one for the call and
another for its response. Also, reporting the outcome involves amessage to each participant. Thus,
if acycle resides on C' sites and has F inter-site references, 2E + C' messages are sent. These
messages are small and can be piggybacked on other messages.

L oss of messages can be handled by using timeoutsasfollows. A siteS waiting for the response
toacall tositeT may send aquery messagetoT'. If thecall isstill pending at T when T receivesthe
guery message, it returns a wait message. If T has no information about the call, it conservatively
returns Live. If S does not receive a response to repeated query messages, it times out and assumes
that the call returned Live. Similarly, a site waiting for the final outcome may time out on the site
that initiated the trace after repeated query messages, and assumethat the outcomeisLive. The use
of wait messages makes the timeout mechanism independent of the size of the cycle; in particular,
bigger cyclesare not more susceptibleto timeouts. Instead, timeouts depend on the communication
channels between pairs of sites.

72

Multiple Back Traces

Several back traces may be triggered concurrently at a site or at different sites. In fact, multiple
traces might be active at an ioref or at iorefsin the same cycle. Traces are distinguished by aunique
id assigned by the starting site. Thus, the visited field of anioref stores a set of traceids.

Multiple back traces at iorefsin the same cycle are wasteful. However, such tracesare not likely
for the following reason. The distances of various iorefs in a cycle are likely to be different such
that one of them will cross the threshold ¢ first. Even if several iorefs have the same distance,
there will be differences in the real time at which they cross ¢; due to randomness in when local
traces happen. The time between successive local traces at a site is long—on the order of minutes
or more—compared to the small amount of processing and communication involved in a back
trace—on the order of milliseconds at each site (or tenths of a second if messages are deferred and
piggybacked). Therefore, the first back trace started in acycleislikely to visit many other iorefsin
the cycle before they cross ¢y,

There is no problem if one trace confirms garbage and results in the deletion of an ioref when
another trace hasvisited it. The second trace can ignore the deletion, eveniif it is active at the ioref,
because activation frames provide the necessary return information.

6.3.2 Computing Back Information

Back information comprises the source sites of inrefs (for remote steps) and the inreaches of outrefs
(for local steps). The source sites are maintained by the add protocol described in Section 5.3. This
section describes the computation of the inreaches of suspected outrefs. Inreaches are computed
during forward local tracing at a site and are stored such that they are ready for use by back traces
when needed. This section assumes that a site is traced as a unit; Section 6.3.4 describes the
implications of partitioned local tracing.

Inreaches of outrefs are computed by first computing their inverse, namely, the outreaches of
suspected inrefs. The outreach of areferenceis the set of suspected outrefs locally reachable from
it. Outreaches of inrefs and inreaches of outrefs are merely two different representations of the
reachability information between inrefs and outrefs.

It is desirable to compute outreaches during the forward local trace from suspected inrefs.
However, a trace does not provide full reachability from inrefs to outrefs. This happens because a
trace scans a reachabl e object only once (or sometimes twice for site-marking), which is crucial for
linear performance. For example, in Figure 6.11, if a is traced before b, then the trace from a will
visit z first. Therefore, the trace from b will stop at z and will not discover the outref ¢. Below we
describetwo techniques: thefirst is straightforward but may retrace objects, while the second traces
each object only once.

Independent Tracing from Inrefs

The straightforward technique is to trace from each suspected inref ignoring the traces from other
suspected inrefs. Conceptually, each trace from a suspected inref uses a different color to mark
visited objects. Thus, objects visited by such atrace may be revisited by another trace. However,
objectstraced from clean inrefs are never revisited. They may be considered marked with a special
color, black, that is never revisited. As mentioned before, clean inrefs are traced before suspected
inrefs.

Separate tracing from each suspected inref reachesthe complete set of suspected outrefslocally
reachable from it. The problem with this technique is that objects may be traced multiple times.

73

inrefs g: %
a z b
C d
X y
cab
outrefs b

Figure 6.11: Tracing does not compute reachability.

If there are n; suspected inrefs, n suspected objects, and e references in the suspected objects, the
complexity of this schemeis O(n; x (n + e)) instead of the usual O(n + e).

Bottom-up Computation

Outreaches of suspected inrefs may be found by computing the outreaches of suspected objects
bottom up during the forward trace. The outreaches are remembered in an outreach table, which
maps a suspected object to its outreach. Oncethe outreach of asuspect z iscomputed, it isavailable
when tracing from various inrefs without having to retrace z. The following is a first cut at the
solution, using a depth-first traversal of suspected objects:

ScanSuspected(reference z)
Outreach[z] := null
for each reference z in z do
if z isclean continue loop
if z isremote add z to Outreach[z] and continueloop
if z isnot marked

mark z
ScanSuspected(z)
Outreach[z] := Outreach[z] U Outreach[z]
endfor

end

The above solution does not work becauseit does not account for backward edges in the depth-
first tree correctly. For example, in Figure 6.11, if inref a istraced first, the outreach of z would be
set to null erroneously instead of {c} because, when z is scanned, the outreach of a isnull. Since
the outreach of inref b usesthat of z, it would missc aswell. In general, abackward edge introduces
astrongly connected component, and the outreaches of objectsin a strongly connected component
should al be equal.

Fortunately, strongly connected components can be computed efficiently during a depth first
traversal with linear performance[Tar72]. For each object, the algorithm findsthefirst object visited
in its component, called its leader. The algorithm uses a counter to mark objects in the order they
are visited. It also uses an auxiliary stack to find the objects in a component. The following code
combines tracing, finding strongly connected components, and computing outreaches in a single
depth first trace. The algorithm sets the outreach of each object to that of its leader.

74

ScanSuspected(reference z)
push z on Stack
Outreach[z] := null
Leader[z] := Mark[z]
for each reference z in z do
if z is clean continue loop
if z isremote add z to Outreach[z] and continue |oop
if z is not marked
Mark[z] := Counter
Counter := Counter+1
ScanSuspected(z)
Outreach[z] := Outreach[z] U Outreach[z]
Leader[z] := min(Leader[z], Leader[2])
endfor
if Leader[z] = Mark[z] % z is aleader
repeat
z := pop from Stack % z is in the component of z
Outreach[z] := Outreach[z]
Leader[z] :=infinity % so that later objects ignore z
until z =z
end

This algorithm traces each object only once. In fact, it uses O(n + e) time and O(n) space
except for the union of outreaches. In the worst case, if there are n,, suspected outrefs, the union
of outreaches may take O(n, x (n + e)) time and O(n, x n) space. Below we describe efficient
methods for storing outreaches and for implementing the union operation; these methods provide
near-linear performance in the expected case.

First, suspected objectsthat have the same outreach share storage for the outreach. The outreach
table maps a suspect to an outreach id and the outreach itself is stored separately in a canonical
form. If objects are well clustered, there will be many fewer distinct outreaches than suspected
objects. Thisis because there are expected to be many fewer outrefs than objects; further, objects
arranged in achain or a strongly connected component have the same outreach.

Second, the results of uniting outreaches are memoized. A hash table maps pairs of outreach
ids to the outreach id for their union. Thus, redoing memoized unions takes constant time. Only if
apair is not found in the table, is the union of the two outreaches computed. Another table maps
existing outreaches (in canonical form) to their ids. If the computed outreach is found there, we use
theexisting id.

The various data structures used while tracing from suspected inrefs are del eted after the trace.
Only the outreaches of the suspected inrefs are retained. As mentioned, these outreaches are
equivalent to keeping the inreaches of the suspected outrefs, since one may be computed from
the other. The space occupied by inreaches or outreaches is O(n; x n,), where n; and n, are
the number of suspected inrefs and suspected outrefs. The space overhead is less than other non-
migration-based schemes with locality [Sch89, LC97]. These other schemes require complete
local-reachability information between inrefs and outrefs—not just suspected ones, and they store
additional path information for each inref.

6.3.3 Concurrency

Thedescription so far assumed that back traces used the information computed during previouslocal
traces and there were no intervening modifications. In practice, clients may modify the object graph

75

such that the computed back information isno longer accurate. Further, modifications, forward local
tracing, and back tracing may execute concurrently. This section presents techniques to preserve
safety and completenessin the presence of concurrency. We divide the problem into several parts
for simplicity:

1. Keeping back information up to date assuming that forward local traces and and back traces
execute atomically, that is, happen instantaneously without overlap.

2. Accounting for anon-atomic forward local trace: While the forward trace is computing back
information, a client may change the object graph, or a back trace may visit the site.

3. Accounting for a non-atomic back trace: Even if back information is kept up to date at
each site, a back trace might see an inconsistent distributed view. This is because a back
trace reaches different sites at different times, and because the participants of a multi-server
transaction may prepareit at different times.

We address each of these parts below.

6.3.3.1 Updating Back Information

Back information may change due to reference creation and deletion. We ignore deletions since
doing so does not violate safety; also, ignoring deletions does not violate completeness because
deletions are reflected in the back information computed during the next local trace. On the other
hand, reference creations must be handled such that a back trace does not miss a new path to a
suspect. For example, Figure 6.12 shows the creation of areference to z followed by the deletion
of areferencein the old path to z. If site T' does not update its back information to reflect the new
reference, but site U does alocal trace to reflect the deletion, a subsequent back trace from g might
return Garbage.

siteS siteT siteR siteU
a root b: S cT dR
aT f:R el
a by C o d
@ %L @+—0= @ @+—0= i
g zZ X f e
b: clean c: clean d: clean ed
g.f f:e

Figure 6.12: Reference modifications (dotted lines).

Reference creations are handled as follows. In general, creating a reference involves copying
some reference z contained in some object z into some object .2 Suppose z, y, and z arein sites
X, Y, and Z respectively, someor al of which may bethe same. If X isthesameasY’, we say that
the reference copy is local; otherwise, we say it is remote. We discuss these situations separately
below.

2The creation of a reference to a new object z may be modeled as copying a reference to z from a special persistent
root at the site.

76

L ocal Reference Copy

A local reference copy is tricky to account for because it may change the reachability from inrefs
to outrefs athough none of the objects involved might be associated with inrefs or outrefs. In
Figure 6.12, creating a reference to z makes outref g reachable from inref 4. The insight behind
the solution isthat in order to create a reference to a suspect z, the client must have read a path of
references from some global root to z; this path must include some suspected inref on X. In the
example shown, the client must haveread f. Therefore, the following suspect barrier is used:

If atransaction has read an object for which there is a suspected inref, the inref and its
outreach is flagged clean.

lorefs so cleaned remain clean until the site does the next local trace. (Also, these iorefs are not
removed until then.) If a back trace visits such an ioref before the next local trace, it will return
Live. The back information computed in the next local trace will reflect the paths created due to the
new reference. Thus, if aback trace visits the site after its next local trace, it will find these paths.

The suspect barrier isimplemented by examining the set of objects accessed by atransaction at
prepare time. (For a description of the suspect barrier in an RPC-based system, where references
are transferred between sites by direct messages, see[ML97a].) Since suspected objects are highly
likely to be garbage, the suspect barrier is rarely invoked.

The suspect barrier maintains the local safety invariant:

For any suspected outref o, o.inreach includesall inrefs o is locally reachable from.

We show below that the suspect barrier preservesthe local safety invariant. We use an auxiliary
invariant: For any suspected outref o, o.inreach does not include any clean inref. This invariant
holds right after a local trace, and the suspect barrier preserves it because whenever it cleans any
inref 7, it cleans all outrefsin i.outreach. (Inreaches and outreaches are consistent since they are
different views of the sameinformation.)

Proof of Local Safety Suppose a reference from z to z is copied into y. This affects only the
outrefs reachable from z: any such outref o may now be reachable from more inrefs than listed in
o.inreach. Thisisillustrated in Figure 6.13. (If z is an outref itself, then o isidentical to z.) We
show that all outrefs such as o must be clean after the mutation.

siteX =siteY
. X z
i 7»0’\40—7(\4&» 0
o.inreach={i}
j B A
y

Figure 6.13: Local copy.

Suppose object = was reachable from some inref before the modification. Since z pointed to
z, outref o was reachable from inref 7 aswell. Therefore, if thelocal safety invariant held beforethe
modification, either o was clean or o.inreach included 7. Suppose o.inreach included i. If z was
reachable from a clean inref ¢, the auxiliary invariant implies that o must be clean. Otherwise, the
suspect barrier must have been applied to some suspected inref ; that = was reachable from. The
barrier would have cleaned all outrefsin i.outreach, which includes o since o.inreach includes:.
In either case, o must be clean after the modification.
O

77

It is important not to clean inrefs and outrefs unnecessarily in order that cyclic garbage is
collected eventually. We ensure the following invariant for completeness:

Aninref is clean only if its estimated distanceis less than the suspicion threshold or if
it waslive at the last local trace.

An outref is clean only if it is reachable from a clean inref or if it was live at the last
local trace at the site.

Proof of Completeness Theinvariant isvalid right after alocal trace. Thereafter, we clean inrefs
and outrefs only due to the suspect barrier. Suppose applying the barrier cleansinref ¢ and outref o
in the outreach of . Then ¢ must be live when the barrier was applied. Since o was reachable from
1 when the last local trace was performed, o must be live at that time as well.

|

Remote Reference Copy

If areferenceto z is copied from z at site X into y at another siteY (X # Y), we handleit in one
of the following ways. First, consider the case when abject z isinsiteY (Z = Y), asshown in
Figure 6.14. Since X hasareferenceto z, Y must haveaninref for z. Y preservesthe local safety
invariant by cleaning z and z.outreach. Thus the suspect barrier is extended as follows: If an
object modified by atransaction contains a reference to some object for which there is a suspected
inref, the inref and its outreach is cleaned.

site X steY =Z
. X z
I -6 _® ¢ _—1~0
o.inreach = {z}
j e\ e
y

Figure 6.14: First case of aremote copy.

Now consider the case when object z isnot in siteY', asshown in Figure 6.15. Inthiscase, if Y
has aclean outref for z, no changeis necessary. If Y has a suspected outref for z, Y preserveslocal
safety by cleaning the outref for z. Thus the suspect barrier is extended as follows: If an object
modified by a transaction has a reference to some object for which there is a suspected outref, the
outref is cleaned.

site X siteZ
: X z
I+ _e ¢\ -0
R o.inreach = {7}
j e
y
siteY

Figure 6.15: Second case of a remote copy.

78

Finally, if Y hasno outref for z, Y creates a clean outref for z and sends an add messageto Z,
as described in the add protocol in Section 5.3. Thisisonly casethat resultsin the creation of anew
inter-site reference. Here, a potential problem is that back information is not up to date until the
add message adds Y’ to the source list of z. However, until this happens, some site must contain z
initsguardlist. Therefore, iorefswith guardlist entries are treated as clean. If aback trace visits an
inref z before the add message reaches there, it will return Live from the clean outref. If the back
trace happens later, it will find al sites containing z. Thus, the following remote safety invariant is
maintained:

For any suspected inref 7, either
i.sources includes all sites containing i, or
i.sources includes at least one site with a clean outref for 4.

Thesite Y to which the reference z istransferred might be a client that has stored z in ahandle
or avolatile object. The remote safety invariant appliesto this case. Further, when the add message
from the client arrives, the client is added to the source list of the inref, making the inref a global
root and therefore keeping the inref clean.

6.3.3.2 Non-Atomic Forward Local Tracing

Modifications may change the object graph while the local trace is computing back information.
The computed information must account for these modifications safely. Further, a back trace may
visit asitewhile it is computing back information.

During alocal trace, we keep two versions of the back information: the old version retains the
information from the previous local trace while the new version is being prepared by the current
trace. Back traces that visit a site during a local trace use the old version. When the local trace
completes, the new version replaces the old atomically.

The new version of back information must be fixed to account for modifications made during
the local trace. The old-view approach for local tracing provides a consistent, albeit old, snapshot
of the object graph (Section 3.4). The back information computed by such a trace can be fixed by
cleaning the iorefs that were cleaned in the old version during the local trace. We also clean the
outreach of any inref so cleaned, should the outreach contain additional outrefs not present in the
old version. Thismaintains the local safety invariant.

If the new-view approach were used for local tracing, another mechanism would be necessary to
fix the computed back information. Specifically, if a new referenceis created to a suspected object
z during the trace, the outreach of z computed by the trace must be cleaned.

6.3.3.3 Non-Atomic Back Tracing

So far we assumed that a back trace happens instantaneously such that it sees consistent back
information at various sites. In practice, a back trace may overlap with modifications, making it
unsafe even if back information is kept up to date at each site. For example, in Figure 6.16, a back
trace from g may visit site 7' before the new reference fromy to z is created, so that it does not see
the updated back information at 7'. Yet the trace may visit U after the indicated reference is deleted
and after U has done alocal trace to reflect that in the back information.

We use the following clean rule to ensure a safe view:

If anioref is cleaned while a back trace is active there, the return value of the traceis
settoLive.

79

steS siteT steR siteU

a root b: S cT dR
gT,R f:R eS
a b vy c d
@ O—T,‘—>C —0—@
o L e
b: clean c: clean d: clean ed
g f fre
g.e

Figure 6.16: A non-atomic back trace may see an inconsistent view.

The clean rule ensures that if there is any overlap in the periods when an ioref is clean and
when atrace is active there, the trace will return Live. For a proof of safety of the clean rulein an
RPC-based system, see [ML978]. Below we discuss safety in atransactional system.

An additional problem arisesin transactional systems because servers may prepare atransaction
at different times. The problem isillustrated in the context of Figure 6.16. Here, atransaction, 71,
creates the reference from y to z and alater transaction, >, removesthe old path to z by deleting a
referencein U. Thefollowing scenario showsthat it is possible for aback trace to miss both the old
and the new pathsto z. Since m; read the old path to z, both R and T' are among the participants of
71. If R prepares m; before T', a back trace from g may miss the modification made by 71, yet see
the modification made by 7, asfollows:

1. R receives the prepare message for ;. It applies the suspect barrier and cleans inref e and
e.outreach. However, an immediate local trace at R revertsthem to their suspected status.

2. The back trace from inref g forks two parallel branches: branch 1 to site T" and branch 2 to
site R. Branch 2 visitsinref e first, so when branch 1 reachesinref e, it returns Garbage.

3. T receives the prepare message for m. It applies the suspect barrier and cleansinref f and
outref z. However, branch 1 has already returned from site T'.

4. Site U prepares and commits 7». It then doesalocal trace that removes outref e.

5. Branch 2 of the back trace reaches site U, finds no outref for e, and returns Garbage.

The solution to this problem is to extend the suspect barrier such that iorefs cleaned due to a
transaction are not reverted or removed until the transaction is known to have committed or aborted.
Therefore, iorefs cleaned due to the suspect barrier are recorded in a cleanlist along with the id of
the transaction which invoked the suspect barrier. An entry isremoved from the cleanlist only after
the transaction is known to have committed or aborted; the corresponding ioref remains clean until
the site conducts alocal trace after the entry is removed. The extended suspect barrier weakensthe
completenessinvariant given in Section 6.3.3.1, but it does not compromise completeness assuming
transactions are eventually known to be committed or aborted. Finding out that the transaction
committed or aborted requires that the site be sent a phase-2 message about the transaction even if
it were aread-only participant in the transaction (such as R in 71). However, such occurrences are
limited to the cases when the suspect barrier is invoked, which happensinfrequently.

Below we prove that the extended suspect barrier and the clean rule provide a safe view of a
local copy to anon-atomic back trace. The case of aremote copy is discussed later.

80

Proof of Safety for Local Copy and Non-Atomic Back Traces

Suppose a transaction copies a reference to a suspected abject z into object y. To do this, the
transaction must have read a chain of objects such as that shown in Figure 6.17. Here, the chain
passes through sites So, S1, ..., Sk 1,5k, ..., 5. Inthis chain, ix and o are the inref and the
outref on site S, (outref o, _1 correspondsto the inref i;). The chain shown in the figureisonly a
suffix of the chain from aglobal root such that iorefs ig and o are clean while the rest are suspected.

site So site S1 site Sk-1 site Sk site Sn

io———O’\,«o % M—El--i-K'l—m %1l 0’\«0——»---.”-——0”\,0—*”\«0——» n

Figure 6.17: Non-atomic back trace and alocal copy.

The new referenceto z may affect back tracesthat visit an outref o,, reachablefrom z. Consider
the following cases:

o If the back trace visits o,, after 7 has committed and S;, has done alocal trace, it will find the
new path created by the modification.

e If the back trace visits o,, after S,, has prepared = but before ~ has committed and S,, has
donealocal trace, o, will be clean due to the extended suspect barrier. So the back trace will
return Live.

e |f the back visits o,, before S, prepares , by induction on Lemma 1 below, it will return Live
or visit og before Sy prepares . Since og is clean, the back trace will return Live. O

Lemma 1l If aback trace visits o, before Sy prepares r, it will return Live or visit o_, before
Sy _1 preparesT.

Proof of Lemma 1
If the back trace visits oy, before Sy, prepares 7, there are the following possibilities:

1. Theback traceis still active at o, when Sy, prepares 7. The clean rule will cause the trace to
return Live.

2. The back trace visits all inrefs in the inreach of o before Sj prepares 7. Further, i, must
be among these inrefs because the path from i, to o5 could not have been deleted if S, isto
validate 7 later.

If the back trace visits iy, before Sy, prepares 7, there are the following possibilities:

1. Theback trace is till active at i, when Sy, prepares . The clean rule will cause the trace to
return Live.

2. The back trace visits al outrefs on the source sites of i, before Sy, prepares 7. Since Sk 1
could not have committed 7 before S, prepares 7, there are two possibilities:

(8 Sk_1 has not prepared 7. In this case S;_1 must contain the outref o,_1 because the
reference could not have been deleted if S, 1 isto validate 7 later. Therefore, from
the remote safety invariant, the back trace would either visit oj_1 or return Live from a
clean outref on some other site.

(b) Sk_1 has prepared = but not committed it. In this case S,_1 must have a clean outref
for o1 because of the extended suspected rule, so the back trace will return Live. O

81

Safety for Remote Copy and Non-Atomic Back Traces

The case for a remote reference copy is shown in Figure 6.18. Here, atransaction 7 copies a
reference to z at site Z into object y at site Y. If a back trace visits o,, before S,, commits + and
conducts a local trace, it would return Live as in the case of a local copy. However, if the back
trace visits o,, later, it might return erroneously. The error might occur because of an ill-informed
selection of the guardian site during the add protocol (see Section 5.3). Suppose that prior to T,
sites S, and G contained outrefs for z. Further, suppose G is aparticipant in — and the coordinator
of T selects G asthe guardian for reference z stored in Y. Now, aback trace from 4,, 1 will branch
tosites S, and GG. Thebranch to G might reach there before G prepares and return Garbage. The
branch to S,, might visit o,, after S,, has committed and return Garbage too (because the old path
to z might be deleted).

site Sn-1 site Sn siteZ
I&%‘ On-l in _‘(\IK On in+1 —%\,’—+
- It Za
| e
y
siteG siteY

Figure 6.18: Non-atomic back trace and a remote copy.

The solution is to extend the clean rule asfollows: If anioref is cleaned while a back trace has
visited it (but is not active there anymore), the ioref and the id of the back trace are recorded in a
guard-cleanlist. The entry is removed from the guard-cleanlist when the final outcome of the back
trace is known. In the above example, when G adds z to its guardlist, it will clean outref z and add
it to its guard-cleanlist since a back trace has visited outref z. (Even if outref z were cleaned due
to some other reason, it would be added to the guard-cleanlist.) Further, when a site adds an outref
toits guardlit, it checks whether the referenceisin its guard-cleanlist. If so, it must send aclean
message to the target site to clean the corresponding inref and receive an acknowledgement before
responding to the coordinator. The clean messageto the target is sent in the foreground, but that is
acceptable since such cases are highly unlikely. In the above example, G will send a clean message
to Z; when Z receives this message it cleansinref z. If the back trace is still active at inref z, the
trace will return Live. Otherwise, the back trace must have visited o,, while 7 is not committed, so
then it also will return Live.

6.3.4 Back Tracing Through Partitions

The description so far assumed that forward local traces compute back information at the site level.
However, since a server traces its partitions independently, each partition trace must compute back
information for the suspected objects in the partition. In particular, for each suspected reference o
in the outset of the partition, the trace must compute the referencesin the inset of the partition from
which o is reachable through intra-partition references.

There are two possibilities for using partition-level back information. The first is a straightfor-
ward adaptation of using site-level back information: a back trace would step from one partition
to another rather than between sites. The second possibility is to consolidate partition-level infor-
mation into site-level information, so a back trace would go from one site to another directly as

82

assumed in previous sections. However, this possibility requires recomputing the site-level infor-
mation whenever the partition-level information changes. We have not explored the implications of
these possibilities. They must be studied further to adopt back tracing in a partitioned system.
Since back information must be maintained at partition level, back tracing could be used to
collect inter-partition cycles within a site. Collecting inter-partition cycles this way requires that
such cycles are identified by the suspect-finding heuristic. The distance heuristic can be changed
to identify inter-partition cycles by associating a positive weight with each inter-partition reference.
However, this approach would result in many more suspected objects, since there is likely to be
much more inter-partition cyclic garbage than inter-site cyclic garbage. Similarly, the time and
space overhead of computing and maintaining back information and running back traces would
increase substantially. Therefore, we chose to limit the use of distance heuristic and back tracing
for collecting inter-site cycles. This choice was also encouraged by the fact that site-marking is an
acceptable solution for collecting cycles within a site since there is no need to tolerate independent
failures. In general, site-marking could be extended to a cluster of tightly-coupled computers and
locality-preserving techniques could be used to collect garbage between clusters.

6.3.5 Summary of Back Tracing and Comparison with Migration

Unlike forward tracing from the global roots, back tracing from a suspected object has locality
because the trace visits only the sites the suspect is reachable from. A back trace is started from
an outref when its distance increases above a threshold. The thresholds are updated such that live
suspects stop generating back traces eventually, while garbage suspects keep generating back traces
until they are collected. Thus, back tracing is collects al inter-site garbage cycles.

The message overhead of back tracing is less than that of any other scheme for collecting inter-
site garbage cycles that has locality. If a cycle resides on C sites and has E inter-site references,
2F + C messages are sent; further, these messages are only a few words. The message overhead
is much less than that of migration, which must transmit batches of suspected objects and update
referencesto migrated objects. The processing overhead of back tracing islow because back tracing
leaps between inrefs and outrefs rather than trace individual references. Further, the computation
of back information is folded into the forward local trace without rescanning objects. The back
information comprises inreaches of outrefs, which takes O(n; x n,) space, where n; and n, are
the number of suspected inrefs and suspected outrefs. The space overhead is more than migration,
which consists of destination information in suspected inrefs and outrefs (O(n; + n,)), and storage
of surrogates for migrated objects. However, the space overhead of back tracing is less than other
schemes with locality [Sch89, LC97]. These other schemes require complete local-reachability
information between inrefs and outrefs—not just suspected ones, and they store additional path
information for each inref.

Back traces are conducted concurrently with modifications and forward local traces. We use
two barriers to keep back information conservatively safe, yet we ensure that the barriers do not
prohibit the collection of garbage cycles. These barriers are applied when a transaction reads an
object with a suspected inref or stores areference to such an object. Keeping the back information
up to date at each site is not sufficient because a back trace may see an inconsistent distributed view,
but we ensure that back traces sees a safe distributed view.

Computation of back information and handling concurrent modifications make back tracing
more complex than migration. The complexity of migration is hidden in the implementation of the
underlying layer that migrates objects and updates references to migrated objects. However, back
tracing islikely to be more suitable for most systems becauseits network overhead is much lessand
it isnot limited by autonomy concerns against migrating objects.

83

6.4 Related Work

Previous schemesfor collecting inter-site garbage cycles may be categorized as follows.

Global Tracing

A complementary global trace is conducted periodically to collect cyclic garbage, while other
garbage is collected more quickly by local tracing [Ali85, JJ92]. Termination of the global traceis
detected using the model for diffusive computation [Aug87, DS89]. The drawback of global tracing
isthat it may not complete in a system with alarge number of faulty sites.

Hughes's algorithm propagates timestamps from inrefs to outrefs and collects objects times-
tamped bel ow a certain global threshold [Hug85]. The persistent roots always have the current time,
and a global algorithm is used to compute the threshold. The advantage of using timestamps over
mark bits is that, in effect, multiple marking phases can proceed concurrently. However, a single
site can hold down the global threshold, prohibiting garbage collection in the entire system.

Central Service

Beckerle and Ekanadham proposed that each site send inref-outref reachability information to
a fixed site, which uses the information to detect inter-site garbage cycles [BE86]. However, the
fixed site becomes a performance and fault tol erance bottleneck.

Ladin and Liskov proposed alogically central but physically replicated service that tracksinter-
site references and uses Hughes's algorithm to collect cycles [LL92]. The central service avoids
the need for a distributed algorithm to compute the global threshold. However, cycle collection still
depends on timely correspondence between the service and all sites in the system.

Subgraph Tracing

The drawbacks of global tracing can be alleviated by first delineating a subgraph of al objects
reachablefrom an object suspected to be cyclic garbage. Another distributed trace isthen conducted
within this subgraph; this trace treats all objects referenced from outside the subgraph as roots. All
subgraph objects not visited by this trace are collected. Note that a garbage cycle might point to
live objects, and the associated subgraph would include all such objects. Thus, the scheme does not
possess the locality property.

Linset al. proposed such aschemeas“cyclic reference counting” in asystem that used reference
counting for local collection instead of local tracing [LJ93]. This scheme requires two distributed
traces over objects in a subgraph. Jones and Lins improved the scheme such that multiple sites
could conduct traces in parallel, but it required global synchronization between sites [JL92].

Group Tracing

Another method to alleviate the drawbacks of global tracing is to trace within a group of
selected sites, thus collecting garbage cycles within the group. A group trace treats all references
from outside the group as roots.

The problem with group tracing is configuring groups in order to collect all inter-site cycles.
Lang et al.. proposed using atree-like hierarchy of embedded groups [LQP92]. This ensures that
each cycle is covered by some group, but the smallest group covering, say, a two-site cycle may
contain many more sites. Further, the policy for forming and disbanding groups dynamically is
unclear.

Maeda et al. proposed forming groups using subgraph tracing [MKI1795]. A group consists of
sites reached transitively from some objects suspected to be cyclic garbage. This work was done
in the context of local tracing and inter-site weighted reference counting. Rodrigues and Jones
proposed an improved schemein the context of inter-site referencelisting [RJ96]. One drawback of
this approach is that multiple sites on the same cycle may initiate separate groups simultaneously,

84

which would fail to collect the cycle. Conversely, a group may include more sites than necessary
because a garbage cycle may point to chains of garbage or live objects. Another problem is that
group-wide tracing might never collect all cycles. Since a group-wide trace is a relatively long
operation involving multiple loca traces, it is not feasible to reconfigure groupsto cover all garbage
cyclesin a system with many sites.

Schemeswith L ocality

Few schemes for collecting cyclic garbage have the locality property. The oldest among these
is migrating a suspected distributed garbage cycle to a single site [Bis77]. Since migration is
expensive, it is crucial to use a good heuristic for finding suspects;, we proposed the distance
heuristic in this context earlier [ML95]. However, some systems do not support migration due to
security or autonomy constraints or due to heterogeneous architecture. Those that do must patch
references to migrated objects. Shapiro et al.. suggested virtual migration [SGP90]. Here, an
object changesitslogical space without migrating physically. However, alogical space may span a
number of sites, so alocal trace must involve inter-site tracing messages.

Schelvis proposed forwarding local-reachability information along outgoing inter-site refer-
ences [Sch89]. Objects are identified by unique timestamps to detect concurrent mutator activity.
This algorithm is intricate and difficult to understand; however, some of its problems are apparent.
The agorithm requires full reachability information between all inrefs and outrefs (not just sus-
pected ones). Aninref i records aset of pathsinstead of source sites; each path indicates a sequence
of inrefs leading to i. Collecting acycle located on IV sites might take O(IV3) messages. Recently,
Louboutin presented an improved schemethat sendsonly O(N') messages[LC97]. However, it too
requires full inref-outref reachability information, and its space overhead is even larger: each inref
1 stores a set of vector timestamps; each vector correspondsto a path i is reachable from.

Back tracing was proposed earlier by Fuchs [Fuc95]. However, this proposal assumed that
inverseinformationwasavailablefor references, and itignored problemsdueto concurrent mutations
and forward local traces. A discussion on back tracing, conducted independently of our work, is
found in the archives of the mailing list gclist@iecc.com at ftp://iecc.com/pub/gclist/gclist-0596.

6.5 Summary

This chapter presented the first practical scheme that preserves the locality property in collecting
inter-site garbage cycles. Thus, the scheme is suitable for use in a system with many sites. Such
a scheme became possible by using a combination of two parts—either of which are incorrect or
impractical to use by itself.

The first part identifies suspected cyclic garbage, but it is not safe in that it might suspect
live objects. Nonetheless, it can be made arbitrarily accurate in suspecting only cyclic garbage
by trading quickness with accuracy. This part is based on estimating the minimum number of
inter-site references from global roots to objects. It has very low overhead since it is piggybacked
on underlying partition traces.

The second part checksif the suspectsare in fact garbage. It is responsible for restoring safety.
Sinceit needsto check only the suspectsidentified by thefirst part, it can use techniquesthat would
be too costly if applied to al objects but are acceptable if applied only to suspects. We presented
two such technigues: one based on migrating a suspected cycle to a single site, and the other based
on tracing backwards from suspects in search of global roots. The first is simpler, but the second
has lower overheads and applies to systemsthat do not migrate objects.

85

Chapter 7

Conclusions

Thisthesis has presented acomprehensive design for garbage collectionin alarge, distributed object
store. Below we give a summary of the overall design and discuss its significance. We also give
guidelinesfor how the design may be evaluated and we indicate some directionsfor future research.
Although the design is presented as a whole, most of the techniques underlying it are applicable

separately.

7.1 TheOverall Design

Thethesis applies to alarge object store that provides reliable access to shared and persistent data.
Such an object store might span thousands of sites, and each site might store billions of objects
on disk. The thesis provides scalable techniques for complete, timely, efficient, and fault tolerant
garbage collection in such a system. Scalability is achieved by partitioning garbage collection at
two levels:

1. Each site traces its objects independently of the others. This provides the locality property:
the collection of achain of garbage objects involves only the sites on which it resides.

2. The disk space at each site is divided into partitions that are traced one at a time in main
memory. Thisavoids disk thrashing.

Totraceasiteindependently of other sites, and apartition independently of other partitions, incoming
references from other sites and other partitions are treated as roots. Thisintroduces two problems:

Efficiency Maintaining up-to-date information about inter-site and inter-partition references can
delay applications and increase utilization of memory, disk, and network.

Completeness Treating inter-site and inter-partition references as roots fails to collect cycles of
garbage objects spanning multiple sites or multiple partitions.

Solutionsto these problems have been proposed earlier in single-site or distributed systems, but they
do not scale to many partitions or many sites. For example, they are not efficient in managing large
numbers of inter-partition references, and they do not preserve the locality property in collecting
inter-site garbage cycles. This thesis provides scalable and fault tolerant techniques for solving
these problems.

7.1.1 Recording Inter-partition and I nter-site References

Information about both inter-partition and inter-site referencesis maintained persistently. However,
we use different techniques to record the two kinds of references to match efficiency and fault-

86

tolerance requirements.

The main issue in recording inter-partition referencesis to keep the disk usage low. Two new
techniques are used to manage a potentially large number of such references. First, these references
are recorded in trandlists based on their source and target partitions. Trandlists are shared so that
dropping unnecessary referencesfrom the outset of a source partition removesthem from the insets
of the target partitions. Second, new inter-partition references are found by scanning the log of
modified objects lazily, and these references are recorded in in-memory delta lists. Delta lists
defer and batch disk accesses to update trandlists. Our experiments show that delta lists result in
substantial reduction in disk-time usage when not enough memory is availableto cacheall tranglists
in use, and that they result in negligible degradation when enough memory is available.

The main issue in recording inter-site references is to avoid extra messages—especially fore-
ground messages that might delay applications. Copies of an inter-site trandlist are maintained on
both the source and the target sites: The outlist at the source site avoids unnecessary add and remove
messages, and the inlist at the target site provides local accessto the roots. One site treats another
asasingle partition so that each may configureits disk partitions without affecting others.

Inter-site references in a system that caches objects at client sites include both inter-server
references and client-to-server references. New inter-server references are processed when transac-
tions commit. They cannot be processed lazily like inter-partition references because different sites
conduct traces asynchronously, while different partitions at a site are traced synchronously. The
add protocol for new inter-server references piggybacks some messages on the commit protocol and
sends othersin the background. Thusit does not increase the commit latency with extraforeground
messages. While inter-server references are expected to be relatively infrequent due to clustering
of objects, a client might cache millions of references to server objects. Therefore, we use a new
techniqueto record only a minimal subset of referencesin the client cache. Thistechnigue exploits
the cache coherence protocol.

Garbage collection tolerates server and client crashes. Servers store tranglists on disk so that
inter-partition and inter-site information is recovered quickly after crashes. A client might crash
unrecoverably or might appear to have crashed due to communication problems. Therefore, the
system uses the ban protocol that allows serversto discard information about such clients safely.

7.1.2 Collecting Inter-partition and Inter-site Garbage Cycles

We also use different techniques to collect inter-partition and inter-site garbage cycles to match
fault-tolerance and efficiency requirements. In particular, acomplementary marking schemeis used
to collect garbage cycles within a site, but a global marking scheme to collect cycles between sites
would not be fault tolerant.

Inter-partition garbage cycles on the same site are collected using a site-wide marking scheme.
These marks are propagated incrementally through partition traces such that it adds little overhead.
Thisisthefirst such scheme that does not delay the collection of non-cyclic garbage and terminates
correctly inthe presenceof modification. A phaseof site-wide marking might involvemany partition
traces, but that is acceptable provided inter-partition cyclic garbage is generated slowly compared
to other garbage.

Inter-site garbage cycles are collected using a scheme that preserveslocality so that collecting a
cycleinvolves only the sitesit resideson. A two-part method is used to enable such a scheme. The
first finds objects that are highly likely to be cyclic garbage but might be live. This part uses anew
technique—the distance heuristic—to find suspects with an arbitrarily high accuracy. The distance
heuristic has very little overhead since it is folded into local tracing. The second part checks if
the suspects are in fact garbage. This part may either migrate suspected cycles to single sites or

87

check if they are live by tracing back from them in search of roots. Back tracing is likely to be
more suitable than migration in most systems because its network overhead is much less and it is
not limited by autonomy concerns against migrating objects. We provide practical techniques to
compute the information required for back tracing and to handle concurrent modifications.

7.2 Guiddlinesfor Performance Evaluation

This thesis does not provide a comprehensive performance evaluation of the proposed design. In
this section, we provide guidelines for such an evaluation in future. The evaluation has two goals:
evaluate the effect of garbage collection as a whole, and evaluate the effects of the techniques
proposed in thisthesis.

The net gain from garbage collection is that applications speed up dueto two factors:

1. Higher spatia density of useful (live) objects, resulting in better utilization of memory caches
and of disk and network bandwidth.

2. Reduction of time spent waiting for free space to allocate hew objects. In some systems, an
application fails if no free spaceis available; thisis equivalent to an infinite wait.

Evaluating the net gain as a single number would require along-term study of the system and would
depend on many different characteristics of the workload. While such a study is useful, a more
insightful study isto evaluate the various costs and benefits that compose the net gain under various
workload and system parameters.

721 Metrics

The costs can be divided into background costs, which delay applicationsthrough increased utiliza-
tion of resources, and foreground costs, which stall applications directly. The following metrics are
useful in measuring the costs of our garbage collector:

Background Costs

e Disk-time usage for fetching pages of partitions and flushing compacted pages.
This depends on the frequency of partition traces, the size of partitions, and the occurrence
of pages with no garbage.

e Disk-time usage for accessing and updating inter-partition information.
This depends on the frequency of creation and removal of inter-partition references. (In
Section 3.5, we measured the usage for adding references, but not for removing references
from tranglists.)

e Memory usage for tracing partitions and storing partition information.
Thisis mostly controlled by the size of partitions.

e Processor usage in tracing partitions and processing the log.
Thisdependsonthefrequency of partition traces, thesize of partitions, thedensity of contained
objects and references, and the frequency of modifications.

e Network usage for add, remove, guard, distance-update, and other messages.

Foreground Costs

e Averagetime for which the collector halts applying transactions before tracing a partition (as
described in Section 3.4).

88

e Averagetimefor aserverto obtain alicensefrom aclient’s proxy whenthe client first contacts
the server (as described in Section 5.4).

The benefits can be evaluated by measuring the average rate at which spaceis reclaimed. The
gpace reclaimed can be categorized as either reclaimed by partition traces or by site-marking. Itis
difficult to compute the space reclaimed by collecting inter-site garbage cycles, since this part does
not reclaim objects itself and relies on partition traces to delete objects. However, an estimate of
the space reclaimed in this way can be found by adding up the space of all suspected objects, since
such objects are highly likely to be cyclic garbage. Thus, the rate at which inter-site cyclic garbage
isreclaimed can be estimated as the rate of deletion of suspected objects.

7.2.2 Workload Parameters

Ideally, the performance should be evaluated for alarge number of representative real applications.
Nonetheless, evaluation for synthetic workloads is insightful because these workloads can provide
independent control over different parameters. Some parameters of interest in our garbage collector
arethefollowing:

e Spatial distribution of references:

— Inter-server references and cycles.

— Inter-partition references and cycles.

— Client handles.

— Referencesto persistent objectsin volatile objects at clients.

e Temporal distribution of modifications:

— Creation of new objects.

— Creation of new inter-partition and inter-site references.
— Generation of local garbage.

— Generation of inter-partition garbage chains and cycles.
— Generation of inter-server garbage chains and cycles.

e Number of clients and the average number of servers each client uses.

7.2.3 System Parameters

Finally, the performance of the garbage collector depends on various internal system parameters:

Scheduling priority of the collector thread relative to other service threads.

The amount of memory space allocated to the collector.

Average size of partitions.

Rate at which partitions are traced.

Policy for selecting partitions.

Rate at which partitions are reconfigured to match reference distribution.

The setting of distance threshold for suspecting inter-site garbage cycles.

The setting of threshold to initiate migration or back tracing for checking suspects.

7.3 Directionsfor Future Work
This thesis does not cover all issuesin partitioned garbage collection and it covers some of them

only partially. Below we list some areasthat require further work. We also discussthe applicability
of some techniques used in this thesis to fields outside of garbage collection.

89

Partition Configuration

Partitions must be configured such that there are few inter-partition references. This is important
for timely garbage collection as well as reducing the amount of inter-partition information. Con-
figuring partitions involves grouping the disk pages into disjoint sets such that each set can fit in
a small fraction of the main memory. Finding the configuration with the least number of inter-
partition references is likely to require work that is exponential in the number of pages; therefore,
effective heuristics are needed instead. |deally, the garbage collector should reconfigure partitions
dynamically to adapt to the current inter-page references. Previous research on clustering objects
dynamically is relevant to this work.

Partition Selection for Tracing

Garbage collection can be more efficient by carefully selecting partitionsfor tracing. It isimportant
to use heurigtics to find partitions that contain a lot of garbage or whose trace will lead to the
collection of alot of garbage in other partitions. In Section 3.2, we suggested the reduced-inset
heuristic for selecting partitions. Cook et al. have suggested some other heuristics for selecting
partitions [CWZ94]. However, more work is needed to devise sophisticated heuristics for prompt
collection of both partition-local and inter-partition garbage.

Delta Lists

We used delta lists to defer and batch additions to translists. This technique can be generalized
for efficient implementation of sets that are augmented more frequently than they are searched or
enumerated. Elements added to such a set can be logged and stored in an in-memory delta list
without fetching the set from the disk. Previous research on type-specific concurrency control is
relevant to this work.

Client Crashes

We presented the ban protocol to handle client crashesthat areindistingui shablefrom communication
problems. This protocol uses a proxy server per client that must be contacted whenever the client
approaches a new server. This approach is not suitable if clients browse over many different
servers; alight-weight protocol is desirable in that case. We have studied one such protocol based
on leases [Mah93b]. Here, a client must periodically renew leases with servers that have stored
information for it.

A ban protocol may be applied to fields outside of garbage collection where it is necessary for
all serversto ban a client before discarding state about the client, e.g., in on-line financial services.
However, the ban protocol does not tolerate malicious clients; more work is required to tolerate
such clients.

Dynamic Tuning of Thresholds

The heuristics for collecting inter-site garbage cycles involve thresholds for suspecting garbage
and initiating migration or back tracing. While the scheme does not depend on these thresholds
for safety or completeness, the thresholds determine how quickly garbage cycles are collected and
how much work is wasted due to poor guesses. |deally, these threshol ds should be set dynamically
to achieve the desirable mix. Further, the thresholds should be customized to sub-parts of the
system—possibleto individual inrefs and outrefs.

90

Back Tracing Through Partitions

A back trace in a partitioned server may proceed by stepping from one partition to another using
partition-level information. Animportant optimization would be to consolidate partition-level back
informationinto site-level information such that aback trace may advanceat thesite-level. However,
further techniques are needed maintain such information and to enforce the various safety barriers.

Distance Heuristic

The distance heuristic finds objects that are likely to be cyclic garbage with an arbitrarily high
accuracy. The estimated distances of garbage cycles keep increasing without bounds because such
cyclesact as positive-feedback |oops without any path from aglobal root to hold down the increase.
We expect that a similar heuristic can be used in other problems based on cyclic references in
distributed systems, such as distributed deadlocks.

91

Bibliography

[ABC*83]

[Ady94]

[AFFS95]

[AGFO5]

[AGLMO5]

[Alig5]

[Aug87]

[Bak78]

[Bako3]

[BES6]

[BEN+93]

[Bev87]

M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and R. Morrison. An
approach to persistent programming. Computer Journal, 26(4):360-365, 1983.

A. Adya. Transaction management for mobile objects using optimistic concurrency
control. Master’s thesis, Massachusetts | nstitute of Technology, 1994.

L. Amsaleg, P. Ferreira, M. Franklin, and M. Shapiro. Evaluating garbage collection for
large persistent stores. In Addendumto Proc. OOPSLA Workshop on Object Database
Behavior. ACM Press, 1995.

L. Amsaleg, O. Gruber, and M. Franklin. Efficient incremental garbage collection for
workstation—server database systems. In Proc. 21st VLDB. ACM Press, 1995.

A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient optimistic concurrency
control using loosely synchronized clocks. In Proc. SGMOD, pages 23-34. ACM
Press, 1995.

K. A. M. Ali. Garbage collection schemes for distributed storage systems. In Proc.
Workshop on Implementation of Functional Languages, pages 422-428, 1985.

L. Augusteijn. Garbage collection in a distributed environment. In J. W. de Bakker,
L. Nijman, and P. C. Treleaven, editors, PARLE’ 87 Parallel Architectures and Lan-
guages Europe, volume 258/259 of Lecture Notesin Computer Science, pages 75-93.
Springer-Verlag, 1987.

H. G. Baker. List processing in real-time on aserial computer. CACM, 21(4):280-94,
1978.

H. G. Baker. ‘Infant mortality’ and generational garbage collection. ACM S GPLAN
Notices, 28(4), 1993.

M. J. Beckerle and K. Ekanadham. Distributed garbage collection with no global
synchronisation. Research Report RC 11667 (#52377), IBM, 1986.

A. Birrell, D. Evers, G. Nelson, S. Owicki, and E. Wobber. Distributed garbage
collection for network objects. Technical Report 116, Digital Systems Research Center,
1993.

D. |. Bevan. Distributed garbage collection using reference counting. In PARLE,
volume 259 of Lecture Notes in Computer Science, pages 176-187. Springer-Verlag,
1987.

92

[Bis77]

[BN84]

[CDNO3]

[CFZ94]

[CKWZ96]

[CWZ94]

[DLMM94]

[DS89]

[EH84]

[FS96]

[Fuc9s]

[GF93]

[Ghe9s]

[Gra78]

[HM92]

[Hug85]

P. B. Bishop. Computer systemswith avery large address space and garbage collection.
Technical Report MIT/LCSTR-178, MIT, 1977.

A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transac-
tions on Computer Systems, 2(1), 1984.

M. J. Carey, D. J. DeWitt, and J. F. Naughton. The OO7 benchmark. In Proc. SGMOD,
pages 12-21. ACM Press, 1993.

M. Carey, M. Franklin, and M. Zaharioudakis. Fine-graned sharing in a page server
OODBMS. In Proc. SGMOD, Minneapolis, MN, 1994. ACM Press.

J. E. Cook, A. W. Klauser, A. L. Wolf, and B. G. Zorn. Semi-automatic, self-adaptive
control of garbage collection ratesin object databases. In Proc. SGMOD. ACM Press,
1996.

J. E. Cook, A. L. Wolf, and B. G. Zorn. Partition selection policiesin object databases
garbage collection. In Proc. SGMOD. ACM Press, 1994,

M. Day, B. Liskov, U. Maheshwari, and A. Myers. References to remote mobile
objectsin Thor. Letters on Programming Languages and Systems, 2(1-4):115-126,
1994.

E. W. Dijkstraand C. S. Scholten. Termination detection for diffusing computations.
Information Processing Letters, 11, 1989.

W. Effelsberg and T. Haerder. Principles of database buffer management. ACM
Transaction on Database Systems, 9(4):560-595, 1984.

P. Ferreiraand M. Shapiro. Larchant: Persistence by reachability in distributed shared
memory through garbage collection. In Proc. 16th ICDCS, 1996.

M. Fuchs. Garbage collection on an open network. In H. Baker, editor, Proc. WMM,
Lecture Notesin Computer Science. Springer-Verlag, 1995.

A. Guptaand W. K. Fuchs. Garbage collection in adistributed object-oriented system.
|EEE Transactions on Knowledge and Data Engineering, 5(2), 1993.

S. Ghemawat. The modified object buffer: A storage management technique for
object-oriented databases. Technical Report MIT/LCS/TR-666, MIT Laboratory for
Computer Science, 1995.

J. N. Gray. Notes on database operating systems. In R. Bayer, R. Graham, and
G. Seegmuller, editors, Operating Systems. An Advanced Course, humber 60 in
Lecture Notes in Computer Science, pages 393—481. Springer-Verlag, 1978.

R. L. Hudson and J. E. B. Moss. Incremental garbage collection for mature objects.
In Proc. IWMM, volume 637 of Lecture Notesin Computer Science. Springer-Verlag,
1992.

R. J. M. Hughes. A distributed garbage collection algorithm. In Proc. 1985 FPCA,
volume 201 of Lecture Notes in Computer Science, pages 256—272. Springer-Verlag,
1985.

93

[3392]

[JL92]

[KWO3]

[LAC+96]

[LC97]

[Lel77]

[LGG*91]

[LJO3]

[LL92]

[LQP92Z]

[LSW91]

[Maho3a]

[Mah93b]

[Maho7]

[MKI+95]

[ML94]

N.-C. Juul and E. Jul. Comprehensive and robust garbage collection in a distributed
system. In Proc. IWMM, volume 637 of Lecture Notesin Computer Science. Springer-
Verlag, 1992.

R. E. Jonesand R. D. Lins. Cyclic weighted reference counting without delay. Tech-
nical Report 28-92, Computing Laboratory, The University of Kent at Canterbury,
1992.

E. K. Kolodner and W. E. Weihl. Atomic incremental garbage collection and recovery
for large stable heap. In Proc. 1993 SGMOD, pages 177-186, 1993.

B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Maheshwari,
A. Myers, and L. Shrira. Safe and efficient sharing of persistent objectsin Thor. In
Proc. SGMOD, pages 318-329. ACM Press, 1996.

S. Louboutinand V. Cahill. Comprehensive distributed garbage collection by tracking
the causal dependencies of relevant mutator events. In Proc. ICDCS. |EEE Press,
1997.

G. LeLann. Distributed systems, towards aformal approach. In IFIP Congress, pages
155-160, 1977.

B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams. Replication
in the Harp file system. In Proc. SOSP, pages 226-238. ACM Press, 1991.

R.D.LinsandR. E. Jones. Cyclic weighted reference counting. In K. Boyanov, editor,
Proc. Workshop on Parallel and Distributed Processing. North Holland, 1993.

R. Ladin and B. Liskov. Garbage collection of a distributed heap. In Proc. ICDCS.
|EEE Press, 1992.

B. Lang, C. Queinniec, and J. Piquer. Garbage collecting the world. In Proc. POPL
'92, pages 39-50. ACM Press, 1992.

B. Liskov, L. Shrira, and J. Wroclawski. Efficient at-most-once messages based on
synchronized clocks. ACM Transactions on Computer Systems, 9(2):125-142, 1991.

U. Maheshwari. Distributed garbage collection in a client—server persistent object
system. InE. Moss, P. R. Wilson, and B. Zorn, editors, OOPSLA/ECOOP ' 93 Workshop
on Garbage Collection in Object-Oriented Systems, 1993.

U. Maheshwari. Distributed garbage collection in a client—server, transactional, per-
sistent object system. Technical Report MIT/LCS/TR-574, MIT Press, 1993.

U. Maheshwari. Hula: An efficient protocol for reliable delivery of messages. Tech-
nical Report Technical Report MIT/LCSTR-720, MIT Laboratory for Computer Sci-
ence, 1997.

M. Maeda, H. Konaka, Y. Ishikawa, T. T. iyo, A. Hori, and J. Nolte. On-the-fly global
garbage collection based on partly mark-sweep. In H. Baker, editor, Proc. IWMM,
L ecture Notesin Computer Science. Springer-Verlag, 1995.

U. Maheshwari and B. Liskov. Fault-tolerant distributed garbage collection in aclient-
server abject-oriented database. In Proc. PDIS. |EEE Press, 1994.

94

[ML95]

[ML96]

[ML974d]

[ML97b]

[MMHO96]

[M0s92]

[ONGO3]

[Pig91]

[Pos81]

[RJ96]

[Schsg]

[SDP92]

[SGP90]

[Sob8g]

[Tar72]

[Ung84]

[WLM92]

U. Maheshwari and B. Liskov. Coallecting cyclic distributed garbage by controlled
migration. In Proc. PODC, pages 57—63, 1995.

U. Maheshwari and B. Liskov. Partitioned garbage collection of alarge object store.
Technical Report MIT/LCS/TR-699, MIT LCS, 1996.

U. Maheshwari and B. Liskov. Collecting distributed garbage cycles by back tracing.
In Proc. PODC, 1997.

U. Maheshwari and B. Liskov. Partitioned garbage collection in a large object store.
In Proc. SGMOD. ACM Press, 1997.

J. E. B.Moss, D. S. Munro, and R. L. Hudson. Pmos. A complete and coarse-grained
incremental garbage collector for persistent object stores. In Proc. 7th Workshop on
Persistent Object Systems, 1996.

J. E. B. Moss. Working with persistent objects: To swizzle or not to swizzle. |EEE
Transactions on Software Engineering, 18(3), 1992.

J.W.O'Toole, S. M. Nettles, and D. Gifford. Concurrent compacting garbage collection
of a persistent heap. In Proc. 14th SOSP, pages 161-174, 1993.

J. M. Piquer. Indirect reference counting: A distributed garbage collection algorithm.
In Aarts et a., editors, PARLE'91 Parallel Architectures and Languages Europe,
volume 505 of Lecture Notesin Computer Science. Springer-Verlag, 1991.

J. Postel. DoD standard transmition control protocol. DARPA-Internet RFC-793,
1981.

H. Rodriguesand R. Jones. A cyclic distributed garbage collector for network objects.
In Proc. 10th Workshop on Distributed Algorithms, 1996.

M. Schelvis. Incremental distribution of timestamp packets — a new approach to
distributed garbage collection. ACM S GPLAN Notices, 24(10):37-48, 1989.

M. Shapiro, P. Dickman, and D. Plainfossé. Robust, distributed references and acyclic
garbage collection. In Proc. PODC, 1992.

M. Shapiro, O. Gruber, and D. Plainfosse. A garbage detection protocol for a
realistic distributed object-support system. Rapports de Recherche 1320, INRIA-
Rocquencourt, 1990.

P. Sobalvarro. A lifetime-based garbage collector for Lisp systems on general-purpose
computers. Technical Report AITR-1417, MIT, Al Lab, 1988.

R. Tarjan. Depth first search and linear graph algorithms. S AM Journal of Computing,
1(2), 1972.

D. M. Ungar. Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. ACM SIGPLAN Notices, 19(5):157-167, 1984.

P. R. Wilson, M. S. Lam, and T. G. Moher. Caching considerations for generational
garbage collection. In Conference Record of the 1992 ACM Symposium on Lisp and
Functional Programming, pages 32—42. ACM Press, 1992.

95

[YNY94] V. Yong, J Naughton, and J. Yu. Storage reclamation and reorganization in client—
server persistent object stores. In Proc. Data Engineering, pages 120-133. | EEE Press,
1994.

96

