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Abstract

Extracting 3-dimensional structure from real-world imagery and rendering it from unrestricted

viewpoints is an important problem in computer vision, and increasingly, computer graphics. Despite

many years of research, a system that automatically recovers realistic 3-D models from images

remains elusive; most practical systems require signi�cant human input. However, unlike automatic

algorithms, human-assisted systems are not scalable, both in terms of the number of images and the

complexity of the model being reconstructed.

This paper describes an automatic 3-D model extraction algorithm based on the following ideas:

� Each image in our input dataset is annotated with accurate estimates of camera position and

orientation (pose), to become a fundamentally more powerful datum, a pose image. Pose

information is used in our algorithm to constrain the reconstruction process, and to focus on

processing only a portion of the dataset that is relevant to a given 3-D region.

� We exploit geometric structure inherent in typical urban environments. In particular, we focus

on vertical facades, as they are common in urban scenes. The vertical facade extraction algo-

rithm detects likely facade azimuths using image-space information of horizontal line segments,

and locates them using a space-sweep algorithm.

� We exploit the availability of a large set of observations of each facade to design a simple

texture estimation algorithm that is statistically robust with respect to illumination changes

and occlusion.

We present results of the algorithm for a large pose image dataset (consisting of about four

thousand images taken from eighty-one positions) of an urban o�ce complex. Our algorithm was

successful in recovering all signi�cant vertical facades in the complex, as well as several neighboring

facades.

1 Introduction

Three-dimensional modeling of existing urban architecture has numerous applications, including vir-

tual environments [8, 13], urban planning, military simulation, etc. It is clearly attractive to employ

photographs in the modeling process: the accuracy of the 3-D model is enhanced, and the resulting

environments appear visually realistic.

�Funding for this research was provided in part by the Advanced Research Project Agency under contract DABT63-
95-C-0009, and in part by Intel Corporation.
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One approach to perform such modeling is to recover 3-D information from photographs automat-

ically. This has been the focus of computer vision research for several years. The research has led to

signi�cant progress in designing algorithms that analyze a few images and recover 3-D structure from

them. However, a drawback of many vision algorithms is their inability to scale to large sets of images,

thereby limiting their applicability to large-scale 3-D modeling. Though some recent research attempts

to address this drawback (see Section 1.2), a practical algorithm for automatically reconstructing a

\computer graphics" 3-D model remains elusive.

An alternate approach has been to design semi-automatic modeling systems and allow a human to aid

the reconstruction process (e.g., the user marks and corresponds image features). Though such systems

can yield high quality results [8], they require the user to process each image in the input dataset, and

thus do not scale for large sets of images or structures.

In this paper, we present a novel algorithm that automatically recovers 3-D information by analyzing

a large set of images. The algorithm is based on three ideas:

� Each image is annotated with its pose { the (six degrees of freedom) position and orientation of the

camera in a global coordinate system. Camera pose information is used in our algorithm in several

ways. First, pose information provides useful geometric constraints that aid the reconstruction

process. Second, pose information enables our algorithm to focus on processing only the (poten-

tially small) portion of the data that is relevant for reconstructing a given 3-D region of interest.

The algorithm thus scales with the number of images and reconstructed model size.

� We focus on extracting vertical facades, as they are common in urban scenes. As we demon-

strate, this assumption leads to an extraction algorithm based on a \detect-and-verify" paradigm:

existence of horizontal line segments on vertical facades is used to detect likely facade azimuths

(i.e., angles made by facades with the X axis), and these azimuths are veri�ed (and located) by a

space-sweep algorithm.

� We exploit a large set of observations of a facade to design a simple and robust technique that

synthesizes a single texture from its observed color values in various images.

The output of our algorithm, texture-mapped polygons, can directly be used to generate synthetic images

of the virtual environment from novel viewpoints.

1.1 Dataset Acquisition

Our dataset consists of photographs acquired by a calibrated Kodak DCS 420 digital camera mounted

with �xed optical center on an indexed pan-tilt head, itself attached to a tripod base. The tripod was

manually positioned at eighty-one locations (nodes) among the buildings of an o�ce complex. Typical

inter-node distance was about 10 meters. At each node, the camera was rotated through a predeter-

mined \tiling" of 50-70 orientations, yielding a roughly hemispherical �eld of view. Apart from avoiding

inclement weather and darkness, no other restriction (e.g., selection of di�use lighting conditions) was

made on the days/times during which the dataset was acquired.

To provide camera pose for each node, initial position estimates were obtained with surveying instru-

ments. Initial orientation estimates for each node were obtained by manual pointing of the pan-tilt head

at some other node (marked by a second tripod and an orange ball). However, physical instrumentation

alone does not produce pose estimates su�ciently accurate for direct incorporation into our reconstruc-

tion algorithm. To ameliorate this problem, initial pose data supplied by the instrumentation was re�ned

using two optimization techniques. First, a spherical mosaicing technique accurately computed relative

rotations between images in a single node using a quaternion-based correlation maximization algorithm,
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generating a single spherical mosaic for each node. Second, a global optimization algorithm based on

a few semi-automatically generated correspondences between these spherical mosaics registered them in

a global coordinate system, producing pose mosaics. Both these techniques are described in a separate

paper [6].

1.2 Comparison with Related Work

Interactive modeling systems allow a user to identify geometric features in photographs and establish

correspondences between them. The constraints generated by this process are then used to solve for 3-D

structure. The more successful systems [1, 8] exploit geometric structure inherent in the environment,

such as blocks in [8] or parallel and perpendicular lines [1]. While such systems can generate high

quality results, the user must process each input image, e.g., by identifying edges (for correspondence)

and occluded pixels (for texture computation). This makes them impractical for use on large datasets,

such as ours. Such systems are also di�cult to assess algorithmically, as a \human-in-the-loop" is

performing non-algorithmic tasks.

Mosaicing [21, 22] seamlessly stitches together multiple images taken from the same viewpoint. As

in QuickTime VR [4], such mosaics can be used for walkthroughs of virtual environments. However,

as mosaics themselves do not contain 3-D information (i.e., depth), the range of viewpoints is severely

limited. In our work, we use mosaics to organize a large dataset to signi�cant engineering advantage,

but recover facade geometry and texture, providing the user greater navigational 
exibility.

Stereo vision [9] is the classic computer vision approach to recovering 3-D information from a few

(usually two or three) pose-annotated images. This technique matches corresponding features (e.g.,

points or edges) across images, and locates 3-D features by triangulation. A drawback of this technique

is the inherent trade-o� between the inter-camera distance (baseline) and ease of matching: larger

baselines allow more stable triangulation, and thus higher quality 3-D models, but matching across

images from widely separated cameras is an extremely hard problem. Multi-baseline stereo (e.g., [14])

attempts to address this drawback by using several images simultaneously. However, in order to perform

automatic matching, such algorithms require images to be taken from closely-spaced cameras under stable

illumination conditions. Such conditions would be di�cult, if not impossible, to achieve in extended

outdoor environments.

Space-sweep techniques have been used recently [5, 20] to perform matching and reconstruction from

an arbitrary number of images. Unlike traditional image-space algorithms that rely on correspondence

between image features, these world-space algorithms traverse the entire 3-D region of interest and

identify likely locations of 3-D features. In [5], a counting metric based on edge pixels is used to recover

3-D information from a few (seven) aerial images. In [20], a correlation-based metric using pixel colors

is used to identify likely locations (and colors) of 3-D voxels, which can then be used to generate

photo-realistic renderings. In this paper, we employ a related space-sweep technique, but our algorithm

handles an arbitrary number of general camera positions, works in outdoor scenes with widely varying

illumination (unlike [20]), and generates a 3-D model suited for graphics rendering (unlike [5]).

Image-based rendering systems [11, 17, 16] use multiple images to produce the image from a novel

viewpoint using either interpolation or disparity (depth), or a combination of both. By using images

directly, such systems generate visually realistic results, while partially avoiding the di�cult task of 3-D

reconstruction. However, current image-based rendering systems do not provide as much 
exibility as

a 3-D representation (such as the facades output by our algorithm), both in terms of navigation and

editing. This is a drawback in many applications, such as when a user experiments with geometry and/or

lighting conditions or applies simulation techniques like collision detection.

3



1.3 Overview
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Figure 1: Overview of the Vertical Facade Extraction Algorithm.

Figure 1 shows a high-level overview of our algorithm. The algorithm executes in communication with a

pose image database, which stores raw data (e.g., pose and images) as well as derived data (e.g., detected

edges).

First, the algorithm divides the 3-D region of interest into a 2-D XY grid based on a user-supplied grid

size G. Grid-based subdivision enables restriction of subsequent processing to nodes that are relevant

to the grid cell (e.g., within some world-space distance D). This subdivision also decouples di�erent

parts of the scene, making the reconstruction process more robust. For each grid cell, the algorithm

computes tiles { pieces of vertical facade { in a two step process. Likely tile azimuths are detected based

on a histogramming technique (Section 2). These are veri�ed and located using a space-sweep technique

(Section 3), populating the grid cell with only those 3-D tiles that are supported by su�cient image

evidence.

Second, the tile geometry recovered is linked to form complete facades; and many spurious facades in

the model are removed by a facade commitment process (Section 4). Textures for the generated vertical

facade geometry are computed from various observations (Section 5).

We report results of the algorithm on our dataset in Section 6 and conclude in Section 7.

2 Azimuth Detection

This section describes a basic technique used in our algorithm to identify likely azimuths of tiles, using

horizontal line segments. Such line segments arise often in urban environments, e.g., from windows and
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facade boundaries. We �rst describe a simple technique to uniquely determine the azimuth of a tile using

image-space edge information (Section 2.1). This technique is then applied to many presumed horizontal

edges, and likely azimuths are identi�ed by a histogramming technique (Section 2.2).

2.1 Estimating Azimuth from a Horizontal Line Segment
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Figure 2: Deducing tile azimuth from a horizontal line segment.

The basic idea is our azimuth estimation technique is that, when pose information (speci�cally, orien-

tation) is known, the direction of a horizontal edge is completely determined by the 2-D line equation

of its projection. Figure 2 illustrates this idea. Let a 3-D horizontal line segment E on a tile project to

a 2-D edge E0 in some pose image. In the �gure, the vertical plane through E makes an angle � with

the X axis, i.e., its azimuth is �. The normal N to this plane is [sin �;� cos �; 0]T . Let P = [px; py; pz]
T

be the normal to the plane spanned by E0 and the camera. P (in global coordinates) is determined

by the orientation of the camera (a 3 � 3 rotation matrix R) and the 2-D image-space line equation

ax0 + by0 + c = 0 of E0 (where a2 + b2 + c2 = 1):

P = R�1

2
4 a

b

c

3
5

Then, the direction of E is given by:

P�N = [pz cos �;�pz sin �; (�px cos � � py sin �)]

As E is horizontal, the z component vanishes. This yields two solutions for the orientation (when either

px 6= 0 or py 6= 0):

� =

(
tan�1 �px

py
or

tan�1 �px

py
+ �

(1)

Of these, the correct azimuth is the one that faces the viewing direction. If px = 0 and py = 0, the camera

has observed a horizontal line segment at the same height, and no information can be determined. As

most of the nodes in our dataset are taken from positions near ground level, this case arises very rarely.

Figure 9 (color plate) shows the results of applying this technique to two nodes. In this �gure, vertical

edges were �rst identi�ed by thresholding (pz < 0:01). For the rest, an azimuth � is estimated using

Equation 1. Note that horizontal edges from the same facade are assigned the same azimuth, even across

nodes. This property is not true of azimuths computed from non-horizontal edges (e.g., tree edges); thus

they tend to be uncorrelated both within a node and across di�erent nodes.
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Unlike computer vision techniques that recover 3-D orientation information from aggregate properties

of a set of edges (e.g., moments in shape from texture [23] and common intersection points in vanishing

point estimation [2]), this technique recovers 3-D orientation from a single (presumed horizontal) edge.

A technique similar to ours has been used in photogrammetry to generate buildings from monocular (i.e.,

single) aerial images [7]; the novelty of our approach is the use multiple nodes to discount non-correlated

azimuths, and robust azimuth veri�cation, which is described in the next section.

2.2 Histogramming Azimuths

Our technique to identify likely azimuths is based on the following idea: 2-D edges arising from truly

(i.e., world-space) horizontal line segments will be assigned identical azimuths in di�erent nodes, whereas

azimuths of non-horizontal edges will vary with node position. Thus histogramming reinforces true

azimuths; the rest tend to be unsupported, as they are uncorrelated across nodes.

This idea is used in the following algorithm, which reports a set of likely tile azimuths in a grid cell

C, from edges in C's relevant nodes 1 : : : k:

Azimuths A = �.

for node i 2 1 : : : k do

Let C project to image-space region C 0 in node i.

Compute tile azimuths of each non-vertical edge in C 0 using Equation 1.

Histogram azimuths (weighted by edge length) into buckets1.

Identify the most populated bucket and add its representative azimuth (e.g., median) to A.

endfor

Histogram A and report each bucket that contains at least three nodes.

Informally, the algorithm picks a dominant azimuth from each node, then reports azimuths that are

supported by several nodes. These azimuths are then veri�ed by the space-sweep algorithm described

in the next section.

3 The Space-Sweep Algorithm

The space-sweep algorithm to locate and verify tiles is based on an incidence counting idea, related to

that proposed by Collins [5]. If any sparse set of features in several nodes is projected into 3-D, regions

with high incidence of such projections correspond to likely locations of 3-D features, for the following

reasons. If a 3-D feature is present in multiple nodes, then projections through the corresponding 2-D

features pass near it, increasing its incidence count. Conversely, as the set of features are sparse, it is

rare that unrelated projections pass through the same 3-D region by chance.

Given an azimuth �, the sparse features in our algorithm are edges that are likely to lie on tiles with

azimuth �. Note that it is straightforward to identify such edges in each node; they are edges whose

computed azimuth is �. For example, in Figure 9, red edges are used for tiles with azimuth=��

2
(i.e.,

normal = [�1; 0; 0]T ).

Using such edges, Figure 3 shows the application of incidence counting to tile location. Part (a)

shows three planes with common normal N and di�erent o�sets, with projected (and blurred) edges

E1 and E2 from two nodes. Note that correlation between horizontal line segments is greatest at the

position of the plane which corresponds to the tile location.

1We use overlapping � buckets of size 3 degrees.
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Figure 3: This �gures shows three di�erent positions A, B, and C of a vertical plane. Part (a) shows a

schematic with two nodes. Part (b) shows close-ups of the planes with line segments from a facade in

our dataset. Correlation between di�erent line segments is indicated by brightness.

Figure 3-(b) shows close-ups of three similar planes, but with several line segments from a real

facade. In the �gure, segments on the plane are blended together, so that regions with high incidence

(and therefore high correlation) appear brighter. Note that the image of the plane appears brightest

and sharpest at position B, i.e., if the plane is at the facade's location. Our technique to locate tiles is

based on this idea. In our implementation, we use a correlation function de�ned in Section 3.1, and a

space-sweep algorithm described in Section 3.2 that locates tiles using the maxima of this function.

3.1 Correlation Function

Given a plane and its associated horizontal line segments, the correlation function computes a measure

of the extent of overlap between di�erent line segments on the plane. Each line segment L is blurred

into a rectangle of half-width �L to alleviate small errors in camera pose and smooth the peaks of the

correlation function2.

U

L1
L2

L3V

du
dv

(u,v)

U

V

(u,v)

E1

E2

E3

d1

Sweep Plane

Node 1
Node 2

Node 3

Figure 4: Parameters in the correlation function. The �gure on the left shows edges E1, E2, and E3

from three nodes projected onto a plane. The �gure on the right is a blowup of a small section of the

plane. It depicts overlap of the rectangles L1, L2, and L3 corresponding to the edges.

2We use �l = 0:01d, where d is the perpendicular distance between the node generating l and the vertical plane.
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O =

Z Z kX
i=1

wi(u; v)

kX
i=1

1

d2
i

dudv (2)

Consider the function de�ned in Equation 2 (see also Figure 4). In this equation, u and v range over

the plane. The point (u; v) is inside rectangles L1 : : : Lk arising from nodes 1 : : : k; the perpendicular

distance from the plane to node i is given by di; and wi(u; v) is the weight contributed by Li to plane

element (u; v). In our implementation, we use a triangular �lter for wi(u; v), as it is both e�cient to

evaluate and possesses a well-de�ned peak (Figure 5):

wi(u; v) = max(1�
jv � Lvj

�L
; 0)

V LvσL

v

1.0

Figure 5: Triangular �lter for edge overlap computation.

This correlation function has several properties that make it useful for locating vertical tiles. First,

the function favors overlap between line segments arising from di�erent nodes: \cross-terms" wi=d
2
j
such

that i 6= j arise when Li overlaps with Lj , and contribute to O. An example is shown in Figure 6, in

which Equation 2 was evaluated for di�erent plane o�sets using the line segments shown in Figure 3-(b).

Note that, due to the combined e�ect of many line segments, the function has a well-de�ned peak at the

facade's location.
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Figure 6: Correlation function values.
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Second, there is no built-in bias toward planes of larger area; instead, the function downweights the

area of each plane-element (u; v) by the squared-distance from the source node. This is advantageous,

as such a bias would favor tiles farther away from the nodes. In e�ect, the function measures correlation

in each node's image-space, and aggregates correlation to yield the total value.

Third, the correlation function can be evaluated e�ciently by exploiting the rectangular geomet-

ric structure inherent in Equation 2. The evaluation technique is a straightforward modi�cation of

a segment-tree based plane-sweep algorithm that computes the total area of m rectangles in optimal

O(m logm) time [18].

3.2 Maxima Location and Tile Generation

Given a grid cell C, the azimuth � of a tile, and a set of nodes 1 : : : k, the space-sweep algorithm locates

tiles as follows:

/* Project edges from each node onto canonical planes */

for node i 2 1 : : : k do

Let C project to image-space region C 0 in node i.

Let Pi be a plane with azimuth � and distance 1 from node i.

Project each edge in C 0 with azimuth � onto plane Pi.

endfor

/* Sweep plane through C locating and generating tiles */

for o�set d in C (with step size S) do

Let plane P = (�; d).

Reproject all edges in P1 : : :Pk to P.

/* Identify high-incidence regions and tiles corresponding to local maxima */

if O(d) > O(d+ S) and O(d) > O(d � S) then

Identify regions with incidence > K in P and corresponding node edges.

Extrude high-incidence regions vertically to a ground plane, producing tile rectangles.

endif

endfor

In the �rst phase, the algorithm identi�es edges in each node that are likely to lie on the tile by comparing

their azimuths with �. For e�ciency, such edges are projected to a canonical plane Pi (with azimuth �)

corresponding to node i. This intermediate projection permits a simple transformation { a scaling plus

a 2-D translation { to be used to construct horizontal line segments on any other plane P with the same

azimuth.

Next, the algorithm discretizes, using step size S, the set of all possible plane o�sets corresponding

to grid cell C. At each plane o�set, it computes horizontal line segment positions and evaluates the

correlation function. For each local maximum of the correlation function, it identi�es regions on the

plane that correspond to a tile by thresholding on incidence K, i.e., regions on the plane (if any) that

overlap more than K rectangles (weighted using the triangular �lter). In addition, it also identi�es node

edges that support (i.e., give rise to) the tile, by thresholding on the extent of overlap3 with identi�ed 3-D

regions on the tile. Finally, the 3-D region information generated is converted to rectangles by extruding

them onto a ground plane, and combining overlapping rectangles to produce tiles. The ground plane is

estimated by using the z values of camera node positions.

3We use a threshold of 0:8l for an edge with length l, i.e., if more than 80% of the edge overlaps with high incidence
regions identi�ed on the tile.
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The complexity of this algorithm for a single grid cell is O(G
S
ke(log k + log e)), where G is the grid

size, S is the step size, k is the number of nodes, and e is number of edges of a node that lie in the

cell's projection. Thus, if the number of nodes (and edges) relevant to a grid cell is bounded by some

constant, the complexity of the algorithm scales linearly with the XY area of the 3-D region of interest.

4 Geometry Link and Commit

The space-sweep algorithm of the previous section populates a set of grid cells with tiles likely to exist in

the 3-D world. In this section, we describe two techniques to enhance the quality of the generated 3-D

model. We �rst describe a technique to link tiles from di�erent grid cells to form complete facades. Then,

in Section 4.1, we use a priority ordering-based heuristic to eliminate many spurious facades reported

by the space-sweep algorithm.

The algorithm to form facades from tiles is straightforward: it �rst links tiles with similar azimuths

and o�sets across neighboring grid cells, then performs a depth-�rst-search to identify connected compo-

nents of tiles. Connected tiles are then merged into a single facade, and the azimuth and location of the

combined facade are recomputed, for greater accuracy, using the algorithms of Section 2 and Section 3.

4.1 Facade Commitment

In this section, we describe a technique to eliminate spurious facades present in the recovered 3-D model.

Our technique is based on the idea of facade commitment, which enforces the following constraint: a

facade commited to the model precludes edges that gave rise to it from supporting other facades. Such

enforcement can result in the removal of other facades, if the number of observations supporting them

falls below the incidence threshold K of Section 3.

N

 False Facade

A

B
C

D

Figure 7: This �gure shows one way in which a spurious facade can result by the interaction between

unrelated facades of the same azimuth.

Figure 7 shows (in 2-D) an example of how a spurious facade might arise. As the three real facades B,

C, and D have the same normal N, there is su�cient evidence to report (and verify) even the spurious

facade A located in the shaded grid cell. Such spurious facades can arise even from a single facade, due

to the interaction between repeated texture on the facade.

Our spurious facade elimination technique consists of the following steps. First, the algorithm orders

all facades using some criterion that favors real facades over spurious ones. Facades are then committed

to the model in this order. Edges giving rise to facades earlier in the ordering are removed from later

ones. For example, in Figure 7, if the ordering favors either B, C, or D over A, it would preclude at

least one of A's observations from supporting it, resulting in A's removal.
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We considered two possible facade orderings:

1. Order facades according to occlusion, similar to [20]. That is, if A and B are two facades such

that A < B in the ordering, only A can occlude B from any node, not vice-versa. Such an

ordering exists for facades with the same normal { in Figure 7, it is simply the ordering opposite

N. Unfortunately, as this ordering favors locations closer to the nodes, it tends to select spurious

facades. For example, in Figure 7, facade A would be selected, possibly suppressing the real

facades.

2. Order facades according to higher reported observations (measured by total length of horizontal

segments on the facade). This ordering heuristic favors facades that are larger in area and/or have

more line segments. In Figure 7, each of the facades B;C;D is larger than A, resulting in A's

removal after facade commitment.

In practice, we have observed that the �rst ordering tends to break up facades into several pieces before

their actual location, whereas the second, by favoring larger facades, tends to retain real facades. Our

results in Section 6 are computed using the second ordering.

5 Texture Estimation

Thus far, we have described an algorithm that recovers vertical facade geometry from pose imagery. In

order to enhance realism of the generated geometry, we now describe an algorithm to synthesize a single

(di�use RGB) texture for a facade given its various observations. Note that the set of nodes that observe

the facade are known, having been reported by facade extraction algorithm.

Texel

 Building
Tree

Node 1

Node 2 Node 3 Node 4
Node 5

N

Figure 8: This �gure illustrates the problem of texture estimation from various node observations.

Figure 8 illustrates the process of estimating a texture for a facade from its observations. Note that

each observation can report very di�erent colors for a texel on the facade, due to occlusion, obliqueness,

illumination variation, etc. Figure 10 (color plate) shows such e�ects in several nodes of our dataset

which were used to identify a facade in our o�ce complex. The relevant pixels from the nodes are

shown recti�ed, i.e., projected (and clipped) onto the facade. Note the signi�cant variations in pixel

color due to changes in illumination and the e�ects of shadows and re
ections. In addition, parts of

the facade are occluded by various objects (e.g., trees) in most nodes, making it di�cult to determine

(and use) a single \best" node, or even interpolate between various nodes based on viewing direction

[8]. Instead, it is necessary to combine the information present in all relevant nodes to compute a single

facade texture. This is a formidable task due to the sheer size of pixel data that has to be processed,

even for a human-assisted modeling system.

One possible automatic approach would be to �t the the various observations onto a standard re-


ectance model and recover coe�cients of the model. An example of this technique is [19], where the
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authors estimate specular and di�use coe�cients of a small object from many images. However, such al-

gorithms tend to be less e�ective when there is signi�cant occlusion and illumination variation. Instead,

we employ a technique based on median statistics, making it robust with respect to such variations.

5.1 The Median Texture

Our technique divides the facade into a (area dependent) number of texels, and computes a single di�use

value for each texel from values of all its observations. The method consists of two steps: �rst, it converts

RGB color values into an appropriate color space; second, it picks the \best" color value for the texel,

and converts the result back to RGB.

As raw RGB color of the same texel can vary signi�cantly in each node, we use a color space where at

least some of the components are stable under di�erent lighting conditions. In our implementation, we

use the CIE xyY color representation [10], which decouples chromaticity x; y from luminance Y . Under

illumination by (predominantly) white sunlight, the luminance Y of a texel can vary signi�cantly, but

its chromaticity remains reasonably stable.

We use the median to compute a single x and y value for each texel from observed x and y values in

various nodes. The median possesses useful robustness properties, i.e., it is less sensitive to outliers than

is simple averaging [12]. This is important in our application as outliers are fairly common, typically

arising from occlusion by foliage or other structures. Fortunately, such outliers do not appear at the

same texel on di�erent recti�ed nodes (i.e., they exhibit parallax [15]), allowing the median to generate

a good estimate of the texel's chromaticity.

We also use the median to select a single luminance value for the texel. Even though luminance values

vary signi�cantly, we have observed that the median luminance reasonably re
ects the luminance of the

texel under \average" lighting conditions. In any event, the di�erences in illumination are normalized

away, so that the generated texture can be subjected to di�erent lighting conditions.

Weighted Observations

Note that the observation quality of a texel varies across di�erent nodes. For example, nodes that view

a texel obliquely or from a distance generally yield poor observations. Thus we use the weighted median

in our algorithm. The median vm of values v1 < v2 : : : < vk weighted by w1 : : : wk is given by the index

m, where:

m = maxfj such that

jX
i=1

wi <

P
k

i=1
wi

2
g

For the weights wi, we use the dot product N � V, where N is the facade's normal, and V is the

vector direction from the texel center to the node. This downweights nodes that view the texel obliquely.

We have observed that incorporating a distance term (e.g., weighting by the texel's solid angle), tends

to pick the node that is closest to the texel, losing much of the robustness of the median. In any case,

nodes that are far from the texel do not contribute observations, as they are excluded by the geometry

extraction algorithm.

Figure 11-(a) (color plate) shows the results of the median texture algorithm using these weights.

Note the automatic removal of most occlusion from the the texture; the luminance pattern on the texture

is also reasonably approximated. Compared to Figure 10, the median texture has less occlusion, fewer

changes in luminance across the texture (e.g., due to shadows), and fewer view-dependent e�ects (e.g.,

re
ection). The texture is slightly blurred due to small errors in camera pose; the next section describes

a technique to ameliorate this problem.
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5.2 Texture Sharpening

Our iterative technique for \sharpening" the median texture consists of two steps. The �rst step rewarps

each recti�ed node to achieve a higher correlation with the median texture. The second step recomputes

the median using the new values. These steps are repeated until the median values converge.

Our rewarping technique is a correlation-optimization based on luminance values, identical to mo-

saicing optimization [21, 22]. Brie
y, the optimization uses a 8-parameter, 2-D projective transformation

described by a 3� 3 matrix M:

u = M00x+M01y+M02

M20x+M21y+1
v = M10x+M11y+M12

M20x+M21y+1

In our algorithm, u; v are texture coordinates, and x; y coordinatize the recti�ed node. Starting from an

identity matrix, our algorithm computesMi for each node i by minimizing the sum-of-squared di�erences

of luminances: X
xi;yi

[Y 0(u; v)� Yi(xi; yi)]
2

To compensate for illumination variation between a recti�ed node and the median texture, we normalize

the luminance values by equalizing the average and standard deviation for each 64 � 64 patch on the

recti�ed node with the corresponding patch on the median texture.

Figure 11-(b) (color plate) shows the results of this process. Note the signi�cant improvement in the

quality of the texture. Even though the color of each texel is computed independently, straight lines on

the facade are clearly demarcated. Despite this optimization, it is possible for some blurring to persist

in the texture. This is caused by parts of the facade extruding out of its plane. One possible solution

would be to construct disparity maps to capture such extrusions, as in [8].

6 Results

We have implemented the algorithm (and associated visualization) described in this paper in about 5000

lines of C++ code. In addition to extracting all signi�cant vertical facades in the o�ce complex (the

primary focus of the dataset), the algorithm surprised us by automatically extracting several neighboring

facades. Details on the extraction process and algorithm execution times are provided below.

Nodes 81

Images � 4000

Resolution 762� 506 pixels

Table 1: Input characteristics.

Table 1 lists the characteristics of the input dataset. The facade extraction algorithm considered edges

detected on six faces of a cubical environment map representing a node. Each face of the environment

map was generated at 1024�1024 resolution by resampling the input images. Edge pixels were detected

using the Canny edge detector [3] and converted to line segments by linking pixels with similar gradient

orientation. Approximately 1000 edges were computed for each cube face (ignoring edges less than 10

pixels in length).

Some of the important parameters supplied to the algorithm are listed in Table 2. The grid size G

should be approximately equal to the size of the smallest facade, to avoid interaction between di�erent

facades during tile reconstruction. We use a grid size of 10 meters for this dataset. The minimum

weighted incidence value of 3:0 usually implies that a facade must be observed by at least �ve or six

nodes to be successfully extracted.
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Area of 3-D region of interest � 500m� 500m

Grid Size G � 10m

Far Distance D � 100m

Step Size S � 0:1m

Minimum Weighted Incidence K 3:0

Table 2: Parameters supplied to the extraction algorithm. All lengths are given in meters.

The facade extraction algorithm took about seven hours on an SGI O2 workstation with one R10000

processor, most of which was spent in the space-sweep algorithm. The space-sweep algorithm recovered

approximately 2000 tiles. The model consists of about 140 facades after tile linking and facade commit-

ment (Figure 12-(a)). After removing facades with area less than 100m2, the model consists of about

40 facades (Figure 12-(b)). The horizontal lines used to generate this model are shown in Figure 12-(c).

Figure 13 shows the extracted facade geometry in wireframe, co-located with the input data (shown as

texture-mapped spheres).

The recovered facade geometry was further processed using the following steps:

� Adjacent facades (those with end-points in the same grid cell) with di�erent orientations were

linked, modifying facade boundaries to the edge formed by intersecting adjacent facades. Also, a

\roof" was added to each connected set of facades after equalizing facade heights to the maximum

height in the set.

� A 2-D Delaunay triangulation of the camera XY positions was computed, and an approximation

to the ground terrain was constructed using ground heights obtained from camera poses.

Textures were computed to 0:1m resolution, with the largest texture containing 1024�512 pixels. Texture
computation took about ten hours. Textures for non-vertical geometry (i.e., roof and ground polygons)

were extracted from a single aerial pose image of the complex.

Figure 14 shows one frame of a real-time virtual 
ythrough of the �nal reconstructed model on an

SGI O2 workstation.

7 Conclusion

This paper described an algorithm that extracts urban vertical by detecting likely vertical facade orien-

tations from horizontal edges, and locating these using space-sweep. In addition, we described a simple

and robust technique for computing a texture-map for each recovered facade. We presented results on

a large pose image dataset consisting of over four thousand images. To our knowledge, ours is the �rst

system to automatically analyze such a large set of images, and produce a realistic 3-D model suitable

for computer graphics rendering.

Our algorithm has other desirable properties for automatic model extraction. It uses all information

from relevant images, yet scales to an arbitrary number of images and model size. It exploits geometric

constraints inherent in the 3-D environement. Finally, it is robust with respect to occlusion and changes

in illumination. We believe that these properties will be crucial for future systems that perform practical,

large-scale reconstruction.

Several improvements are possible for the generated model. Our algorithm typically overestimates

the extent of vertical facades (e.g., by extruding to the ground or choosing the maximum possible height
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for the facade). This could be corrected by clipping the model to the edges of computed textures. Also,

textures could be augmented with disparity maps to model small extrusions, as in [8].

Other areas for future work include designing pose imagery-based extraction algorithms to recover

more general geometry (e.g., arbitrarily oriented facades and non-facade structures), and recovering more

general re
ectance properties (e.g., specular coe�cients, BRDFS) of the model.
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Figure 9: This �gure shows two nodes (four faces of a cubical environment map) along with their (long)

edges. Vertical edges are colored blue, and other edges are colored with (absolute values of) the tile

normal derived from their azimuth (e.g., red is [1; 0; 0]T , green is [0; 1; 0]T , etc.).

Figure 10: This �gure shows (the relevant portions of) �ve nodes recti�ed to a facade. Note the signi�cant

di�erences in illumination, and the e�ects of shadows, re
ections, and occlusion.
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(a) (b)

Figure 11: Part (a) shows the median texture. Part (b) shows the median texture after sharpening.

Note the removal of occlusion, shadows, luminance variations, etc. from the texture.

(a) (b) (c)

Figure 12: Part (a) shows the recovered vertical facades. Part (b) shows the model after removal of

small facades, and Part (c) shows the horizontal lines that generate this model.

Figure 13: The extracted vertical facades (in wireframe) co-located with input pose mosaics (drawn as

spheres).
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Figure 14: An aerial view of the �nal model.
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