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Bounded-Error Interactive Ray Tracing

KAVITA BALA JULIE DORSEY SETH TELLER
MIT Graphics Group*

Abstract

Ray tracing, which computes radiance, istraditionally regarded as an off-line rendering algorithm that istoo slow
for interactive use. In this paper, we present an interactive system that uses 4D interpolants to approximate radiance,
while providing guaranteed error bounds. Our system exploits the object-space, ray-space, image-space and temporal
coherence in radiance to accelerate ray tracing.

Our system explicitly decouples the two operations of the ray tracer — shading computation and visibility de-
termination at each pixel, which we call pixel assignment. Rendering is accelerated by approximating the shading
computation while guaranteeing correct pixel assignment. Without any pre-processing, the system lazily collects 4D
radiance samples, which are quadrilinearly interpolated to approximate radiance. An error predicate conservatively
guarantees that the relative error introduced by interpolation is bound by a user-specified e. The user can change this
parameter to trade off performance for quality. The predicate guarantees the error bound by detecting discontinuities
and non-linearities in radiance. If error cannot be guaranteed for an interpolant, the system adaptively refines the in-
terpolant.

Pixel assignment is accelerated using a novel algorithm that reprojects 4D interpolants to new viewpoints as the
user’sviewpoint changes. Using reprojection, afast scan-line algorithm achieves high performance without sacrificing
image quality. Thislazy interpolant system with reprojection speeds up ray tracers substantially for smoothly varying
viewpoints. In this paper, we present the design, implementation and resultsfor our system. We expect our techniques
to be useful for interactively rendering general scenes as well as for batch off-line rendering processes.
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1 Introduction

One primary goal of computer graphics has been the generation of fast, accurate, high quality imagery. Global illumi-
nation algorithms generate high quality images by evaluating radiance, a five-dimensional function. To achieve rea-
sonable performance, illumination systems trade freedom of viewer motion for both scene complexity and accuracy in
different ways. On one end of the spectrum, ray tracers[39] compute high quality view-dependent images, while com-
promising on interactivity. Ray tracers typically support specular and diffuse reflectance functions, and generalized
primitives, but at the expense of viewing the output image from afixed viewpoint. At the other end of the spectrum,
radiosity algorithmg[16] trade scene complexity for interactivity. Radiosity algorithms support interactive viewing,
but typically render only diffuse, polygonal environments and require a pre-processing phase. Other hybrid systems
[9, 32, 33, 35, 38] havetried to bridge the gap between these two extremes. However, the view-dependent component
of radiance has been extremely expensive to compute, and ray tracing image quality is traditionally associated with
off-line rendering algorithms that are too slow for interactive use.

In this paper, we present an interactive system that usesinterpolantsto accel erate classical Whitted ray tracing [39].
The goal of our system is to provide an interactive ray tracing environment in which the user moves around freely as
the system renders ray-trace quality images. To achieve this goal, we decouple and independently accelerate the two
operations of aray tracer: the visibility computation that assigns the closest visible object to each pixel (we call this
pixel assignment), and the radiance computation for that intersection point. A standard ray tracer uses intersection
computations for both these operations, which dominate performance [13].

In designing and building an interactive ray-tracing environment we have made several contributions:

¢ Radiance approximation using 4D interpolants. Our system builds interpolants lazily to approximate the radi-
ance computed by a Whitted ray tracer. Aninterpolant is a set of samples used to approximate radiance, and is
storedin4D treescalled linetrees. Astheviewpoint changes, radianceis approximated by quadrilinearlyinterpo-
|ating the per-surfaceinterpolants. I nterpolants are subdivided adaptively, thereby permitting greater interpolant
reuse where radiance varies smoothly, and sampling at a higher frequency where radiance changes rapidly.

e Guaranteed error bounds. For every pixel, we guaranteethat therelative error between the interpol ated radiance
and Whitted radiance is bounded by a user-specified error e. Interpolation error arises from both discontinuities
and non-linearitiesin the radiance function. The error predicate preventsinterpolation over discontinuities and
non-linear variationsin radiance. If the predicateis false, more detailed interpolants are built. The user can use
€ to trade of f performance for quality.

e Accuratepixel assignment using linetreereprojection: Pixel assignment isaccel erated using anovel conservative
algorithm for reprojection of 4D linetree cells. This algorithm exploits the temporal frame-to-frame coherence
in the user’s viewpoint, while guaranteeing accurate pixel assignment. A fast scan-line algorithm uses the repro-
jected linetrees to accel erate rendering.

Our techniques can be integrated with several other approaches to produce faster and better rendering systems:
Interpolants could be built in an off-line rendering phase and re-used in an on-line phase to accel erate walkthroughs.
They can also be used to accelerate generation of light fields [24] or Lumigraphs [17]. The error predicate, which
identifies regions of high radiance variation, could be used to guide intelligent super-sampling.

Therest of the paper is organized as follows: In Section 2 related work is presented, with a discussion of how our
systemisdifferent. In Section 3, an overview of the system is presented. In Section 4, the interpolant building and stor-
ing mechanismsare described in greater detail. We derive analytical expressionsfor error bounds, and present the error
predicatein Section 5. In Section 6 we present the reprojection algorithm, and discuss how it isused. In Section 7, we
discuss the system implementation and other optimizations to improve performance, and present performance results
in Section 8. Finaly, we present future work and concludein Section 9.

2 Redated Work

Several researchers have focused on the problem of improving the performance of global illumination algorithms[13,
33]. For ray tracing, several effective techniques have been developed: adaptive 3D spatial hierarchies [15], beam-
tracing for polyhedral scenes[22], cone-tracing[3], and ray classification[4]. Lack of space preventsusfrom referring
to all thework that has been donein thisfield, but a good summary of these algorithms can be found in [13, 14].



2.1 Acceleration of radiance computation

Systemsthat accel erate rendering by approximating radiance can be categorized on the basis of the shading model sthey
use, the correctness guaranteesprovided for computed radiance, and their use of pre-processing. Some of these systems
also implicitly approximate pixel assignment by polygonalizing models, or by using imagesinstead of geometry.

Teller et a. present an algorithm to speed up shading of a Whitted ray tracer (without texturing) by building 4D
interpolants that are reused to satisfy radiance queries [34]. While their algorithm identifies radiance discontinuities,
it does not correctly deal with radiance non-linearities, nor doesit accelerate pixel assignment. Radiance [38] uses ray
tracing and computes diffuseinter-reflection lazily, producing very high quality images by sparsely and non-uniformly
sampling the slowly-varying diffuse-interreflections[38]. Radiance also includes an accuracy threshold to guide sam-
pling; gradient information is used to guide sampling density [36]. A recent multi-pass rendering system [11] uses
multiple passes of the standard graphics hardware to obtain images of higher quality than that ordinarily available us-
ing graphicshardware. The drawback of thissystemisthat it approximatespixel assignment by resorting to discretizing
the scene into polygons, and has no correctness guarantees.

Image-based rendering (IBR) systems, such asthe light field [24] and the Lumigraph [17], have similaritiesto our
system in that they build 4D radiance information that is quadrilinearly interpolated to approximate radiance. How-
ever, IBR systems typically have a data acquisition pre-processing phase, and are not intended for interactive ren-
dering. Light fields and Lumigraphs are uniformly subdivided 4D arrays with fixed resolution determined in the pre-
processing phase. This fixed sampling rate does not guarantee that enough samples are collected in regions that have
high-frequency radiance changes. Additionally, these systems do not compute any bounds on error introduced by ap-
proximating radiance or pixel assignment, and they constrain the viewer to lie outside the convex hull of the scene.

Nimeroff et al. use | BR techniquesto warp pre-renderedimagesin animated environmentswith moving viewpoints
[27], but do not guarantee error.

2.2 Algorithmsthat approximate pixel assignment

Algorithms that exploit temporal coherence to approximate pixel assignment can be categorized by the assumptions
they make about the scene, and the correctness guarantees they provide. Chapman et al. [7, 8] restrict the model to be
polygonal, and use the trgjectory of the viewpoint through the scene to compute continuousintersection information of
rayswith the polygons. Badt [5], Adelson and Hodges[1], and Mark et al.[26] reuse pixels from the previousframeto
render pixelsin the current frame. Adelson and Hodges apply a 3D warp to pixelsfrom referenceimagesto the current
image. Each pixel receives the radiance that would be computed at some reprojected point guaranteed to lie inside the
pixel (though not necessarily at the center). Thisalgorithm speeds up thefirst level raysfrom the eye to the screen but
does not accelerate shading computation. Mark et al. [26] also apply a3D warp to pixels, but they treat their reference
image as a mesh and warp the mesh trianglesto the current image. Their system does not currently deal with occlusion
due to multiple objects, and depends on the eye lying on alinear path between the two referenceimages. Additionaly,
al of the above algorithms suffer from aliasing effects that arise from the fact that the pixels are not warped to pixel
centersin the current frame, i.e. they do not accurately determine pixel assignment.

2.3 Discussion

We differ from previousrendering systemsin several respects. we do no pre-processing; instead, interpolants are built
lazily and adaptively. Using conservative analytical error bounds, we bound interpolation error, and allow speed and
quality to be traded off during rendering. We guarantee correct pixel assignment while exploiting temporal coherence
by reprojecting 4D linetree cells. There are no pixe aliasing artifacts because radiance is sampled at the center of each
pixel.

3 System Overview

In this section, we present an overview of our interactive rendering system. Figure 1 shows a system block diagram.
Our ray tracer implements a classical Whitted ray tracing model with texturing [39]. For each object surface, thereis
an associated collection of interpolants representing the radiance from that surface. Theseinterpolantsare storedin 4D
linetrees, which allow an efficient lookup of an interpolant for any particular ray. When the system detects a change
in the user’s viewpoint, it starts rendering a new frame. If possible, linetrees from the previous frame are reprojected.



The system tries to accelerate rendering every pixel by using the reprojected linetrees, or by looking up linetrees for
interpolants. If both of these fail, it falls back to rendering the pixel using the base ray tracer.

Detect change in
_same user’s viewpoint
viewpoint \J |

Refine Reproject linetrees
error from previous frame

For every pixel p
in image

Check for
reprojected
linetrees

Yes / \No

Interpolate Intersect eye ray
span with scene

Visibility

Shading Check for interpolant in

intersected object’s linetree

Yes No
Interpolate Collect samples to
pixel build interpolant

Error predicate

valid interpolant

| Interpolate pixel | |Base raytracer|

Figure 1: System Overview

For every pixel in the viewport, the system checks if there is alinetree available in the reprojection buffer. If so,
radianceisinterpolated for all consecutive pixelsin the scanline with the same linetree, using screen-space interpola-
tion. Thisisthefast path indicated by bold linesin Figure 1. This path is about 45 times faster than the base ray tracer
(Refer to Section 8 for details).

If no reprojected linetree is available, pixel assignment is determined by the slower path of intersecting the eye
ray with objectsin the scene. Once the object visible at a pixel is determined, a check determines the availability of
avalid interpolant for that pixel. If an interpolant is available, the radiance for the pixel is computed by quadrilinear
interpolation. Otherwise, an attempt is madeto build an interpolant by collecting radiance sasmplesfor that leaf linetree
cell. Anerror predicate checksthe validity of the new interpolant. If the interpolant is valid, the pixel’s radiance can
be computed from the new interpolant. If it is not valid, the linetree cell is subdivided, and the ray tracer falls back to
shading the pixel using the baseray tracer. |n the case where an interpolant can be used to shade the pixel theray tracer
is accelerated since no shading operation needsto be invoked for the pixel.

Theuser’sviewpointistracked, and whenit isstationary, error isrefined to produceimages of higher quality match-
ing the user-specified error bound. When the user’sviewpoint changes, the system rendersthe scene at the highest speed
possible, while guaranteeing that radiance discontinuities are not interpolated over.

4 Radiance Interpolants

In this section, we briefly summarize the mechanisms to build and use interpolants (Refer to [34] for more details).
First, we present a parameterization of rays that captures all the rays that intersect some volume of 3D space, then the
linetree data structure and the interpolant building mechanism are presented.



4.1 Ray parameterization

Every ray intersecting an object o, can be parameterized by the ray’s four intercepts (a, b, ¢, d) with two parallel faces
surrounding o [34, 24, 17], as shown in Figure 2. To cover the entire space of raysthat could intersect o, Six pairs of
parallel faces (called facepairs) surrounding the object are considered. Each facepair is built by expanding the cor-
responding faces of the object’s bounding box appropriately. The dominant direction (and sign) of the ray determine
which of the 6 facepairsto consider for looking up interpolants.

Figure 2: Ray parameterization

4.2 Linetrees

A linetreeis a4D tree that represents all the rays that pass through the 3D volume defined by the linetree’s front face
and back face. Each leaf cell in alinetree correspondsto a4D hypercubein the 4D space of rays. The sixteen vertices
of the4D hypercube correspond to the sixteen extremal rays spanning the linetree leaf in 3D. These raysare the sixteen
rays from the four corners of the leaf’s front face to each of the four corners of its back face (Figure 3 shows eight of
these sixteen rays). The 4D hypercube captures a region of ray space for which interpolants are built. Every ray that
intersects the front and back face of the linetree in 3D, lies inside the corresponding hypercube in 4D. Given the 4D
intercepts of aray, (a, b, ¢, d), the linetree leaf cell that contains that ray can be found by walking down the tree and
performing four interval tests, onefor each of the ray coordinates.

<az,b1> <c1,d1> <azb1> <c1.d1>
d
bl 4 b
c a d c
<ap,bo> <co.do> <ap,bo> <cp.do>
Figure 3: Linetree Cell Figure 4: Linetree subdivision

4.3 Building and using inter polants

When an eye ray intersects an object, its four intercepts (a, b, ¢, d ) are computed, and the linetree leaf cell containing
the interceptsisfound. If the leaf does not contain a valid interpolant, the system tries to build an interpolant for that
leaf cell. Radiance is computed along the sixteen extremal rays from the leaf’s front face to its back face. Additional
information about the ray trees along each of the sixteen pathsis maintained, asin [34, 13]. Using the ray trees, and
the computed radiance values, the error predicate determines if the samples collected represent avalid interpolant. If
so, the radiance for that pixel is quadrilinearly interpolated from the interpolant.

If the interpolant is not valid, the front and back face of the linetree cell are subdivided, creating sixteen children
of the linetree cell (Four of the sixteen children are shown in Figure 4). Interpolants are lazily built for the child that



containsthe eye ray. Thus, linetrees are adaptively subdivided only when necessary. Building interpolants adaptively
aleviatesthe memory problem of representing 4D radiance, by using memory only where necessary. More samplesare
collected in regions of detail, accurately representing radiance. Fewer samples are collected in less detailed regions,
saving computation and storage costs.

Plate 1 and our demo demonstrate the linetree data structure and interpolant building mechanism. In Plate 1, Fig-
ure 1 is a snapshot of the interpolant building process, and the right hand images in Figure 2 are snapshots of all the
linetrees built lazily for the spherein the first and second rendering frames respectively.

5 Error Predicate

Rendering systems trade accuracy against speed by using error estimates to determine where computation and memory
resources should be expended. Radiosity systems have devel oped explicit error bounds[20, 25] to make thistrade-off.
Ray tracing computationstypically use super-sampling and stochastic techniques[28, 10] to estimate and decrease the
error in computed radiance. In this paper, we present analytical error bounds for interpolation error.

Given sixteen radiancevaluesand ray treesfor theextremal raysof alinetreeleaf cell, the error predicate guarantees
that the interpolants produce interpolated radiance values within e of Whitted radiance for every ray that lies in that
linetree leaf cell. Incorrect interpolation arisesin two possible ways:

¢ Interpolation over a discontinuity in the radiance function (due to changes in scene geometry, shadows, or oc-
cluding objects)

e Quadrilinear interpolation in regions with higher order radiance terms (due to diffuse or specular peaks)

In this section, we discuss results from [34], and then focus on our new contributions, presenting a compl ete solution
for the error predicate.

Scene Geometry Occlusions Shadows

Figure 5: Radiance discontinuities— interpolation for the black ray would be erroneous.

5.1 Radiancediscontinuities

Aninterpolantisinvalid if it interpol atesradiance over aradiance discontinuity. Radiance discontinuities arise because
the sceneis composed of multiplegeometrical objectsthat occludeeach other and cast shadowson each other. Figures5,
and 6 show invalid interpolation due to radiance discontinuitiesin 2D. Gray rays are the four extremal interpolant rays
for the 2D linetree, and the black ray correspondsto some arbitrary ray that lies in the convex hull of the extremal
rays. In Figure 5, interpolation would be incorrect because an internal ray (black) does not necessarily hit the same
objects hit by the extremal rays. In Figure 5 on the |eft and middle, the extremal (gray) raysall hit the same object but
interpolation would be incorrect because an internal ray could hit an occluding object; while on theright, interpolation
would not capture the shadow cast on the rectangle by the sphere. In Figure 6, discontinuities that arise due to total
internal reflection (TIR) are shown. On theleft, theinterpolant raysliein the TIR cone but theinternal ray doesnot; on
theright the interpolant rayslie outside the TIR conewhilethe internal ray liesin the cone. In both cases, interpolation
would be incorrect (indicated by the cross).
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Total Internal Reflection

Figure 6: Erroneousinterpolation due to total internal reflection.

Ray trees

Ray trees[31, 34] keep track of all objects, lights and occludersthat contribute to the radiance of a particular ray, both
directly and indirectly through reflections and refractions. Theroot of aray tree storesthe object intersected by the eye
ray (and its face, if appropriate), and the lights and occluders visible at the point of intersection. The children of the
root storethe ray trees associated with the corresponding refl ected and refracted rays. Two ray trees areisomor phic and
said to have the same topology, if there exists a one-to-one correspondence between their nodes. A crucial observation
isthat, radiance changes discontinuously only when the topology of the associated ray trees changes.

Detecting discontinuities

To guaranteethat interpolants do not erroneoudly interpolate over aradiance discontinuity, all raysinthe 4D hypercube
represented by the linetree cell should have the same ray tree topology. The error predicate conservatively determines
validity for each possible discontinuity in the following way:

Geometry changesand Shadows: If theray treesof the sixteen extremal raysare not isomorphic, theinterpolant
isnot valid.

Occluders: Occluders are detected using a variant of shaft-culling [19, 34].

Total Internal Reflections If aray tree includes an edge representing rays traveling from a dense to sparse
medium the error predicate reportsthat the interpolant isinvalid.

5.2 Radiance non-linearity

Quadrilinear interpolation approximates radiance well in most regions of ray space except where there are significant
second-order radiance terms, which are created by specular highlights and diffuse peaks. In this section, we conserva-
tively bound the deviation between radiance computed by a Whitted ray tracer and interpolated radiancefor all therays
represented by alinetree. We derive analytical expressionsfor the diffuse and specular componentsof radiancein terms
of thelinetree parameters (a, b, ¢, d), and the object’s surface parameters. The constant and linear terms of radiance are
approximated well by quadrilinear interpolation, therefore, these terms are not considered in the error computation. In-
stead, we focus on the contribution of the quadratic term (cubic and higher terms are dominated by the quadratic term
[30]).

Thetotal error bound for alinetree cell is computed by recursively bounding the error at each node of the ray tree
and aggregating these node errors, appropriately weighted by the node’s weight. Error at each ray tree node can arise
from the approximation of both diffuse and specular radiance. Given an incident ray that intersects an object at a point
Pan, the diffuse radiance for that ray is D = N - L, and the specular radianceis S = (N - =LE)", where, N is
the normal to the surface at p,.,, and L is the vector to the light source at 7,,,. For an infinite light source, the light
vector L is independent of p,,, and isgivenas L = (ly,12,13), wherel? + 13 + 13 = 1. For alocal light source,

L= % where (Ly, L., Ls) isthe position of the light source.



Our error analysis handles error that arises both from non-linearity in the shading model, and from curvaturein ob-
jects. First, wederiveerror for the case of arotated and scaled paraboloid, since aparaboloidisarepresentative quadric
surface. Using these analytical error bounds for paraboloids and simple transformations to match specific sections of
convex objectsto the paraboloid, radiance error bounds are derived for the variousray tracing primitives.

5.2.1 Analytical error for a paraboloid

Without loss of generality, we consider ascaled, rotated paraboloid to represent the sections of objectsinside alinetree
cell centered around the origin, and perpendicular to the z axis (Refer to Figure 7). All points on the paraboloid satisfy
the constraint equation 2’ + x'2 + y'2 = 0 in the paraboloid’s coordinate system (z',y', 2').

S

Figure 7: A rotated and scaled paraboloid at origin of linetree cell.

The transformation between the paraboloid’s object-space axes, and the linetree's world-space axes is given by a
matrix M:
(z',y',2") = M(z,y, 2)

where M = pS. M combinesan arbitrary rotation matrix p, and ascaling matrix S. S scalesby s, onthe z’ axis,
s, onthey’ axis, and 1 onthe 2’ axis, without loss of generality [21]. This scaling and rotation allow the paraboloid to
approximate any convex surface near the intersection point. s, and s, are equal to half the reciprocal curvature of the
represented surfacealong the z’ and y’ axesrespectively. For aplane, s, = s, = 0, whilefor asphere, s, = s, = ﬁ.

Since the front and back faces of the linetree cell areat » = H and z = — H respectively, aray parameterized
by (a, b, c,d) representsaray in 3D space from (a, b, H) to (¢,d, —H). Therefore, the unnormalized incident ray is
I=(¢—a,d—b,—2H). Sincethelinetree cell is guaranteed to be free of discontinuities (Refer to Section 5.1), every
ray intersects the paraboloid at some point .., where p,,, satisfies z' + z'2 4+ y'2 = 0. Using the constraint that p,,,
lies on both the incident ray and the paraboloid we can solve for g, intermsof (a, b, ¢, d). The constraint equation is
aquadraticin z [22], which can be solved to second order. For asufficiently small linetree cell, theintersection point is
closeto the origin, and can be approximated as a perturbation to the intersection of the ray with the tangent plane at the
origin: z = — % (1+ g—g), where A, B, C arethe coefficients of the quadratic. Thisapproximated z isused to compute
the point of intersection and the normal, which are then used to estimate error in diffuse and specular radiance.

We use the notation §2 R to represent the quadratic termsin radiance R. These terms can be used to bound interpo-
lation error. We only consider thetermsin a2, b2, ¢2, d2, since quadrilinear i nterpolation can approximate cross-terms
such as ab. Using this notation, we have the diffuse radiance error for an infinite light source:

€di = 52R
62N S 1
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NISTREREETNSIL

3
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For aplane, s, = s, = 0; therefore, €4; is 0, which is what we would expect since the diffuse radiance for aplane
with an infinite light source is a constant.
Using asimilar technique, the error for diffuse radiance with alocal light sourceis:

ew = 6N-L+N-6°L
a® + c? < 5 P35 5Pl 28zP22> v + & <52 P3| 2P 25yp11>
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where e;; is the diffuse error term with light L = (3, 1, 1757). Note that the || L|| term in the denominator
implies that the error term for distant lightsis essentially the same as the diffuse error for infinite light sources, which
is exactly what we would expect intuitively.

In the interest of brevity, we do not present the error terms for specular radiance; however, the solution technique
isof interest. The error for specular radiance is more complicated because (N - %) israised to the exponent n, the
shininess of the object. Using a Taylor expansion of specular radiance, the quadratic error term for specular radiance
is:

LK N n(n —1) K,
Ko 2 K,

where, Ko, K1, K> are the terms of the expression (N - =LtL) that are constant, linear and quadraticin a, b, ¢, d
respectively. For an infinite light source Ko = L' - (ps1, p32, p33), Where L' = (1,1, 1 +1.).

5.2.2 Evaluatingtheerror estimate

The analytical expressionsderived in Section 5.2.1 can be used to bound the error for interpolants. For alinetree cell
spanning (ao, bo, co, do) to (ai,by,c1,dy), this error bound is evaluated conservatively. For example, (¢ — a?) is
evaluated as (c? — a3), and (c¢* + a?) isevauated as ¢? + a?. In addition, incorrect cancellation is avoided by adding
absolute values of error componentsto compute error. The computed error value is compared against a user-specified
error ¢; the error predicate signalsthe interpolant asvalid only if the analytical error islessthane. The analytical error
bounds show that subdividing linetree cells decreases error by roughly afactor of 4 per subdivision.

Plate 1-Figure 2 demonstrates the error refinement processfor e = (40, 0.5). On theleft, the progressively refined
rendered images are shown; on the right are the linetrees corresponding to the images. When € is high, visible arti-
facts can be seen around the specular highlight. The system automatically detects that refinement is necessary around
the specular highlight and refines interpol ants that exceed the user-specified error bound. As € is decreased the image
quality isimproved, and the linetrees get increasingly subdivided. At arelative error of 0.5, the region of the specular
highlight is no longer interpolated, as shown by the hole in the linetree cells.

An interesting observation is that the analytical error expressions can be used to determine which axes to split the
linetree on: the a and ¢ axes, or the b and d axes. Error-driven subdivision increases the effectiveness of interpolants
at approximating linear components of radiance. We discuss error-driven subdivision in Section 8.6.

5.2.3 Matching the paraboloid to ray tracing primitives

Given an object, and a potential interpolant for alinetree cell, we would like to map that object and linetree cell to the
scaled and rotated paraboloid in Section 5.2.1. Matching the scaling and rotation of the paraboloid with each of the
primitives of the ray tracers— spheres, cones, cubes, cylinders— is straightforward; the normal and curvature of each
primitive are matched with that of the paraboloid, yielding s, s, and p. The same process can be carried out easily
for more complex surfaces. Once a mapping is established, we can use the error terms in Section 5.2.1 to bound the
error for the interpolant.

6 Exploiting Coherence

Lazy interpolants eliminate a significant fraction of the shading computations, and their associated intersections; how-
ever, they do not reduce the number of intersections computed for pixel assignment. With lazy interpolants, the fol-
lowing three operations become dominant costs:



e pixel assignment

o for pixelsthat can be interpolated, computing the 4D intercepts for the ray and evaluating quadrilinear interpo-
lation

o for pixelsthat cannot be interpolated (because valid interpolants are unavailable), eval uating radiance using the
baseray tracer

In this section, we present the techni ques we use to accel erate pixel assignment and interpolation by further exploiting
temporal and image-space coherence.

6.1 Temporal coherence

For scenes with any complexity, pixel assignment is expensive. However, it is possible to accelerate pixel assignment
by exploiting temporal coherencein the user’s viewpoint. In this section, we present our reprojection algorithm, which
acceleratespixel assignment while guaranteeing correctness. Theintuition behind thisalgorithmisthat for small move-
ments of the viewpoint, the visibility of alarge number of pixelsin the frameis similar to that in the previous frame.

Our agorithm reprojects linetrees from a previous frame to the new viewpoint; for most pixels this quickly deter-
minesthe linetreethat coversthe pixel. Our algorithmis conservative: it never incorrectly assignsalinetreeto apixel.
To guarantee correct pixel assignment, linetree faces are shaft-culled [19] with respect to the current viewpoint. Repro-
jection accelerates pixel assignment by replacing multiple intersect operationsfor pixels by a single shaft cull against
the corresponding linetree. Figure 8 shows how reprojection works when the viewpoint moves from eyein frame 0 to
eye' inframe1; linetree cells L1 and L 2 are reprojected to the new image plane.

An additional benefit of the reprojection algorithm isthat in assigning alinetree to a pixel, it replaces all intersect
and shading computationsfor that pixel by an interpolation.

Figure8: Linetreecells L; and L can be reprojected Figure 9: Sphere occluding visibility to the reprojec-
when the eye moves from eyeto ey€ tion of Ly

Reprojection is based on the observation that if a linetree cell has a valid interpolant, it is guaranteed that there
are no discontinuities, such as occluders, in the volume of space between its faces. This invariant helps ensure that
reprojection determines correct pixel assignment. Note that in most systems pixel assignment is complicated by non-
planar silhouettes. They are not a problem in our algorithm because the linetree cells do not contain discontinuities.

We will now discuss two important issues for the reprojection algorithm: how to efficiently reproject 4D linetrees
in 3D space, and how to guarantee correct pixel assignment.

6.1.1 Reprojecting4D linetreesin 3D

Each linetree cell correspondsto a4D hypercubein ray space; however, in 3D, alinetree cell can be represented by its
front and back faces. Therefore, to reproject alinetree cell, we reproject the front and back faces of the linetree cell in
3D. A pixel is covered by alinetree cell iff both its front and back faces cover the pixel, and no other linetree cell is
projected onto that pixel. If two linetree cells reproject onto the same pixel, it indicates a potential changein visibility
that invalidates the use of the reprojected linetrees for that pixel.
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A fast way toidentify the 4D linetreesthat contributeto apixel isto usethe polygon-drawinghardwareavailableina
standard graphicsworkstation. Thefront and back facesof linetree cellsfromthe previousframe can be projected to the
screen from the new viewpoint as quadrilaterals. In addition, alpha-blending hardware can be used both to efficiently
determine which linetree covers a pixel, and to detect conflicts between reprojected linetrees.

Bo

Fo

Figure 10: Linetree overlap

Figure 10 shows a subtle problem that arises from the fact that linetrees are 4D entities. Faces Fy and B, define
alinetree cell Ly, and faces F; and B; define another linetree cell L. Lg lies one level higher within the linetree
than L, does. If the linetrees are naively reprojected, F; will overlap with Fp, indicating a conflict. The overlap is
not really a problem because when the front faces overlap, it is the back face that uniquely determines which linetree
cell contributesto that pixel. In the figure, the two gray regions correspond to the screen-space projections of the two
linetree cells. Notethat the regions do not overlap, indicating that thereisno conflict. Sincethisoverlap problemarises
for a significant number of pixels, we have devised an efficient algorithm to solve the problem. The algorithm walks
up thelinetree and clipsfacesto avoid spurious overlap between linetree cells at different depths. Thisalgorithm takes
O(log d) time per linetree cell, where d isthe cell depth.

6.1.2 Occlusion

Reprojection aloneisnot enough to guaranteecorrect visibility. InFigure9, an object that wasnot visiblein the previous
frame (the small sphere) occludes objectsin the current frame.

We conservatively determine visibility by not reprojecting linetrees when they might be occluded. This condition
is detected by shaft-culling [19] each reprojected linetree cell against the current viewpoint. Only one shaft-cull is
required per linetree cell, which for reasonably-sized linetree cells is faster than intersecting a ray for each covered
pixel.

If only onelinetreeis reprojected to a pixel, the shaft-cull tests guaranteethat that linetreeis the correct assignment
for the pixel. Thus, no visibility computation or shading operation needs to be done for that pixel, since the linetree
cell can be used for interpolation directly.

6.2 I mage-space coherence

Using the reprojected linetrees, asimple scan-line algorithm further accel eratesthe ray tracer. Information about which
reprojected linetree is associated with a pixel is stored in areprojection buffer, which is checked when rendering the
pixel. If areprojected linetreeis available, a span isidentified for all subsequent pixels on that scanline that have the
samelinetreein their reprojection buffer. Theradiancefor each pixel in the spanisinterpolated in screen space between
the endpointsof the span. Using screen-spaceinterpolation eliminatesalmost al of the cost of ray-tracing the span. No
intersection or shading computations are performed, and interpolation can be performed incrementally aong the span
in atight loop.

The current perspective projection matrix can be folded into the error bound computation (See Section 5), yielding
adifferent screen-space error guarantee, but for linetreesthat are not close to the viewpoint, the additional error isneg-
ligible and can be ignored. In practice we have not been able to observe any artifacts from screen-space interpol ation.

Several researchers have accelerated ray tracing by exploiting image coherence[3, 2, 23]. Thetraditional problem
with screen-space interpolation is that it is difficult to predict the accuracy of interpolation. Our error predicate solves
this problem of interpolation accuracy, allowing usto exploit image coherence while producing correct results.

11



7 Other Optimizations

In this section we present some of the other important performance optimizations and features of our system.

Linetree depth

In our adaptive algorithm, interpolants are built only if the benefits of interpolating radiance outweigh the costs of
building interpolants. We achieve this with a simple cost model that is evaluated when deciding whether to subdivide
alinetree cell. Linetrees are subdivided on the basis of number of screen pixelsthat they are estimated to cover. Thus,
when the observer zoomsin closer to an object, interpolantsfor that object arebuilt to agreater resolution; if an observer
isfar away from an object, the interpolants are coarse, saving memory.

Thiscost model a so ensuresthat the cost of buildinginterpolantsisamortized over several pixels. Thisisimportant
for performance, because building interpolantsis much more expensive than ray tracing asingle pixel.

Uniqueinter polant rays

The cost of building interpolants can be decreased by noticing that the 4D linetree structure uniformly subdivides 4D
space. The 4D hypercubesrepresented by siblingsin the linetree share common verticesin 4D, corresponding to com-
mon raysin 3D. For example, two sibling linetrees that both have the same front face but different back faces share
eight of the sixteen extremal rays. Therefore, when building interpolants, we use a hash table indexed by the ray’s
parameters to guarantee that each ray is only shot once.

Uniqueray trees

Storing interpolants and their associate ray trees could result in substantial memory usage. However, all successful
interpolants and a large number of failed interpolants are associated with similar ray trees. Therefore, hash tables can
be used to avoid storing duplicateray trees. Asaresult, virtually all the memory allocated by the system isused to store
interpolants.

A compression technique similar to that presented by Levoy and Hanrahan [24] might be useful to compress inter-
polants. However, we do not expect to achi evethe same compression rates, because our adaptive subdivision effectively
compresses regions of ray space aready.

Recur sive shaft culls

The reprojection agorithm shaft-cullslinetrees from the previous frame. However, for large linetrees these shaft-culls
often fail but are only partly blocked by an occluding object. To ameliorate this problem, we recursively subdivide and
shaft-cull linetree faces, using a cost model similar to that used for subdividing linetrees themselves. The portions of
the faces that are not blocked are then reprojected.

Textures

Our system supports textured objects by separating the texture coordinate computation from texture lookup. Texture
coordinates are quadrilinearly interpolated along with radiance. However, since we do not recursively interpolate radi-
ance, this solution does not interpol ate reflections of textured objectsin textures. Theseregionsfail and areray traced.

8 Performance Results

This section evaluates the performance of our system, both in terms of speed and memory usage. To evaluate the speed
of the system, we use a simple cost model based on Figure 1.

8.1 Baseray tracer

For performance, we compare our system to aray tracer that implements classical Whitted ray tracing with textures
[39]. Thisray tracer isin fact the sameray tracer that our system uses for non-interpolated pixels. Both our system and
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the base ray tracer support the same Whitted shading model, augmented with textures. They support convex primitives
such as cubes, spheres, cylinders, cones, disks and polygons.

To make the comparison between the ray tracers fair, optimizationswere applied to both the base ray tracer and to
our interactive ray tracer when possible. There were a number of such optimizations. To speed up intersect computa-
tions, the base ray tracer uses kd-trees for spatial subdivision of the scene [13]. Marching rays through the kd-treeis
accelerated by associating a quadtree with each face of the kd-tree cell. The quadtrees also cache the path taken by the
last ray landing in that quadtree, and this cache has a 85% hit rate. Therefore, marching aray through the kd-tree struc-
tureisvery fast. Also, shadow caches associated with objects accel erate shadow computations for shadowed objects.
Extensions such as the adaptive shadow testing [37], and Light Buffers[18] would improve performance but have not
been implemented yet in our ray tracer.

8.2 Tedt scene

Thedatareported bel ow was obtained for the art-room scene shown in Plate 2. Rendered images from the scene appear
on the left, and on the right error-coded images show the regions of interpolation success and failure.

The scene has about 80 primitives: cylinders, cubes, cones and spheres, and three local light sources. All timing
results are reported for frames rendered at 800x600 resolution; i.e. each frame has 48k pixels. The user’s viewpoint
changes from frame to frame in arbitrary directions. The rate of translation and rotation of the room are set such that
the user can cross the entire length of the room in 400 frames, and can rotate in place by 360deg in 150 frames.

In the error-coded images, successis indicated by a gray-blue color; other colors indicate various reasons why in-
terpolation was not permitted. Bright green regions correspond to subdivision due to radiance discontinuities: for ex-
ample, shadows or occluders. The yellow regions correspond to subdivision because the interpolant rays did not hit
the object. Red regions correspond to blocker objects, which occur when interpolating reflected radiance. Magenta
regions show where the error predicate detected non-linear radiance.

Reproject linetrees
from previous frame

Reprojection
data?

Yes No

Build span Intersect ray
Interpolate span

Check interpolant
If unavailable,
build interpolant
Check predicate

Yes No
pixel

Figure 11: Cost Model

8.3 Cost mod€

Asshown in Figure 1, there are three paths by which a pixel is assigned radiance:
1. Fast path: reprojected datais available, and is used with the span-filling algorithm.

2. Interpolatepath: no reprojected dataisavailable, but avalid interpolant exists. A singleintersectionisperformed
to find the appropriate linetree cell, and radiance is computed by quadrilinear interpolation if the interpolant is
valid. If theinterpolant isinvalid, the cell is subdivided.

3. Slow path: no valid interpolant is available, so rendering is done by the base ray tracer.
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Intheinteractiveray tracer, every frameincludesthe basic cost of reprojection, in addition to the cost of rendering
pixels using one of the three paths.

8.4 Performanceresults

| Path | Cost for path |
Fast path 0.022
Interpolate and build interpolants | 0.84 — 1.33
Base ray tracer 1.00

Table 1: Relative costs normalized with respect to the base ray tracer.

In Table 1 therelative costs of each of thethree pathsis shown, wherethe cost of the baseray tracer is assumed to be
1. Thedatafor thistable was obtained by averaging the results obtained from our system over a 30-framewalkthrough
of the art-room scene. The timing results were obtained on a single-processor 194 MHz Reality Engine 2, with 512
MB of main memory. The costs in the table do not reflect the time required to shaft-cull and reproject linetrees, which
adds a roughly constant overhead to each frame of about 2 seconds.

The fast path is approximately 45 times faster than the base ray tracer. However, the interpolate building path is
somewhat slow because we pay a penalty for doing no pre-processing. In an off-line rendering application of this sys-
tem, this penalty would not be significant. On the average, the fast path accounts for 65-75% of the pixels, and the
build interpolant and base ray tracing paths each account for about 15% of the pixels.

30 + @ reprojection

D span fills

N
o
1
T

sjaxid #

Time (sec)

=+ 600k

=

o
1
T

=+ 400k

Base Ray (time) (#pixels)

Tracer Interpolant Ray Tracer
(time)

Figure 12: Average performance and pixel breakdown

In Figure 12, we compare the average performance of theinteractiveray tracer with that of the baseray tracer. The
graph showsthree bars. Thebar on the left showsthe time required by the base ray tracer, which for the art-room scene
isanearly constant 28.4 seconds per frame. The middlebar showsthetimerequired by theinteractiveray tracer, broken
down by rendering path. Notice how little timeis spent on span fills. The interpolation path (2) is a significant part of
the time because it builds new interpolants on the fly. If the user stays in the same position or moves slowly, fewer
interpolants are built and rendering is faster (lessthan 8 seconds per frame). However, we selected a movement speed
that was consistent with generating a walkthrough animation.

The bar on the right shows the number of pixels rendered by each path. Note that most of the pixels were rendered
quickly by the fast path. Including the reprojection costs, the fast path renders 75% of the pixelsin 25% of the time.
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Therest of thetime is spent in building interpolants and ray tracing pixels that failed. Overall, the system is 250% to
300% faster than the base ray tracer during the walkthrough sequence.

The time required by the interactive ray tracer depends on the complexity of the image shown and the amount of
change in the user’s viewpoint. Moving forward, for example, reuses interpolants very effectively, whereas moving
backward introducesnew non-reprojected pixel son the periphery of theimage, for which paths 2 or 3 must befollowed.
The art-room walkthrough included movementsin various directions.

8.5 Memory Usage

During the 30-frame walkthrough, the system allocated about 50 megabytes of memory to contain linetree cells. The
first frame of the walkthrough allocates about 40% of this total memory; each subsequent frame then allocates 900k
bytes more on average, though there is considerabl e fluctuation; more memory is allocated for linetrees as new objects
moveinto view. We have not tried serioudy to reduce memory usage, though there are some optimizationsfor memory
usage. For example, because of the 16-way branching factor of linetrees, amost al the memory is taken up by leaves
of the tree. For this reason, we allocate memory for leaves lazily.

8.6 Discussion

We have presented a system that uses radiance interpolation and reprojection to accelerate rendering. As Figure 12
indicates, rendering time is dominated by the cost of ray tracing failure regions, and the cost of building interpolants.

It is clear that further significant improvements can only come by increasing reprojection and interpolant success
rates. The analytical error expressions derived in Section 5 suggest that uniformly subdividing a linetree cell into its
16 children is overly agressive. A better approach would be to use the error predicate to determine the appropriate
axesto split. We have implemented a 4-way split algorithm that splits each linetree cell into 4 children and uses the
error predicate to guide subdivision. For the same scene and using the same number of raysto build interpolants, the
4-way split achieves an interpolation success rate of 91%. This nearly halves the interpolation failure rate. However,
4-way splitting complicates the reprojection algorithm. We are currently implementing reprojection with 4-way splits
and expect performanceto improve substantially.

Another way to further improve performanceis to decrease the cost of building interpolants. This can be done by
using an off-line preprocessing phase, or predictively building interpolants while the user isidle.

9 Conclusions and Future Work

In this paper, we have presented a system for interactive ray tracing. Our system explicitly decouples shading compu-
tationsand pixel assignment, and accel erates both independently. We use 4D interpolantsto approximate radiance, and
afast conservative reprojection algorithm to accurately determine pixel assignment. An error predicate detects radi-
ance discontinuities and computes analytic error boundsto guarantee that interpol ation does not approximate radiance
erroneously. The system interactively rendersray traced images and refines error.

There are many opportunitiesfor extending and applying thiswork. Our system samples the view-dependent base
ray tracing component of radiance, while systems such as Radiance[38] sampleview-independent diffuseinter-reflection.
It would beinteresting to extend our system to support amorecompl ete shading model, including diffuseinter-reflection
and generalized BRDFs.

One advantage of the linetree representation for radiance is that it explicitly keeps track of the ray trees used to
generate the radiance function. These ray trees are very similar to those used for interactive scene manipulation [31,
6]. Integrating such systems would allow dynamic editing of the model being viewed while also allowing dynamic
viewing.
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