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Abstract

A multithreaded program with a bug may behave nondeterministically, and this nondeter-

minism typically makes the bug hard to localize. This thesis presents a debugging tool, the

Nondeterminator-2, which automatically �nds certain nondeterminacy bugs in programs

coded in the Cilk multithreaded language. Speci�cally, the Nondeterminator-2 �nds \dag

races," which occur when two logically parallel threads access the same memory location

while holding no locks in common, and at least one of the accesses writes the location.

The Nondeterminator-2 contains two dynamic algorithms, All-Sets and Brelly,

which check for dag races in the computation generated by the serial execution of a Cilk

program on a given input. For a program that runs serially in time T , accesses V shared

memory locations, uses a total of n locks, and holds at most k � n locks simultaneously,

All-Sets runs in O(nkT �(V; V )) time and O(nkV ) space, where � is Tarjan's functional

inverse of Ackermann's function. The faster Brelly algorithm runs in O(kT �(V; V )) time

using O(kV ) space and can be used to detect races in programs intended to obey the

\umbrella" locking discipline, a programming methodology that precludes races.

In order to explain the guarantees provided by the Nondeterminator-2, we provide a

framework for de�ning nondeterminism and de�ne several \levels" of nondeterministic pro-

gram behavior. Although precise detection of nondeterminism is in general computationally

infeasible, we show that an \abelian" Cilk program, one whose critical sections commute,

produces a determinate �nal state if it is deadlock free and if it can generate a dag-race free

computation. Thus, the Nondeterminator-2's two algorithms can verify the determinacy of

a deadlock-free abelian program running on a given input.

Finally, we describe our experiences using the Nondeterminator-2 on a real-world ra-

diosity program, which is a graphics application for modeling light in di�use environments.

With the help of the Nondeterminator-2, we were able to speed up the entire radiosity

application 5.97 times on 8 processors while changing less than 5 percent of the code. The

Nondeterminator-2 allowed us to certify that the application had no race bugs with a high

degree of con�dence.

Thesis Supervisor: Charles E. Leiserson

Title: Professor of Computer Science and Engineering



Acknowledgments

Portions of this thesis represent joint work with Guang-Ien Cheng, Mingdong Feng,

Charles Leiserson, and Keith Randall, and I am indebted to all of them for their help.

Among many other things, Ien provided remarkable insight into the workings of the

SP-bags algorithm. Without complaint, Keith spent many a late night with me

working on proofs as we encountered more and more di�culties in them. Mingdong

inspired my original interest in the design and implementation of the Nondetermi-

nator. Finally, I would like to thank Charles not only for his contribution to this

research, but also for his never-ending patience, encouragement, and advice.

I would also like to thank the other members of the Cilk group for their con-

tributions, and especially Matteo Frigo for many helpful suggestions. It has been a

privilege to work with such a talented group of people.

The research in this thesis was supported in part by the Defense Advanced Re-

search Projects Agency (DARPA) under Grants N00014-94-1-0985 and F30602-97-1-

0270. Also, I would like to thank Sun Microsystems for the use of the Xolas Ultra-

SPARC SMP cluster.

It would be remiss of me not to thank Tom Pinckney and Scott Paxton, who

convinced me (by example) to start and �nish my thesis on time. Thanks to Chris

McKinney for living in a di�erent time zone, which gave me someone to talk to at 3:00

a.m. Also, thanks to Adam Harter for thoughtfully occupying my TV so it couldn't

distract me.

And, of course, thanks to my parents, without whose support and encouragement

I doubtlessly would be sleeping on the casino 
oor in Reno instead of debugging

parallel programs.

3





Contents

1 Introduction 9

I Race-Detection Algorithms 21

2 The All-Sets Algorithm 23

3 The Brelly Algorithm 33

4 Related Work 43

II Theory of Nondeterminism 49

5 Nondeterminism 51

6 Complexity of Race Detection 59

7 The Dag Execution Model 65

8 Abelian Programs 73

III Using the Nondeterminator-2 83

9 Implementation Issues 85

10 Parallel Radiosity 93

11 Conclusion 105

A Deadlock in the Computation 109

Bibliography 119

5





List of Figures

1-1 A nondeterministic Cilk program . . . . . . . . . . . . . . . . . . . . 10

1-2 Interleaving parallel machine instructions . . . . . . . . . . . . . . . . 10

1-3 A Cilk program with locks . . . . . . . . . . . . . . . . . . . . . . . . 11

1-4 A Cilk program with locks and a data race . . . . . . . . . . . . . . . 12

1-5 A Cilk computation dag . . . . . . . . . . . . . . . . . . . . . . . . . 13

1-6 Comparison of race detection algorithms . . . . . . . . . . . . . . . . 18

1-7 A maze scene rendered with radiosity . . . . . . . . . . . . . . . . . . 19

2-1 A Cilk procedure that computes the nth Fibonacci number . . . . . . 25

2-2 A series-parallel parse tree . . . . . . . . . . . . . . . . . . . . . . . . 26

2-3 The SP-bags algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 27

2-4 The All-Sets algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 29

3-1 Umbrellas in a series-parallel parse tree . . . . . . . . . . . . . . . . . 34

3-2 The Brelly algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3-3 Execution of the Brelly algorithm . . . . . . . . . . . . . . . . . . . 37

4-1 Comparison of race detection algorithms (detailed) . . . . . . . . . . 44

5-1 The hierarchy of determinacy classes . . . . . . . . . . . . . . . . . . 56

6-1 A programming proof of the undecidability of race detection . . . . . 60

6-2 Synchronizing and nonsynchronizing critical sections . . . . . . . . . 62

7-1 The forced program counter anomaly . . . . . . . . . . . . . . . . . . 67

7-2 The forced memory location anomaly . . . . . . . . . . . . . . . . . . 68

7-3 Further e�ects of the forced program counter anomaly . . . . . . . . . 69

7-4 A data race in code not executed in the serial depth-�rst execution . 71

8-1 An abelian program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9-1 Timings of the Nondeterminator-2 . . . . . . . . . . . . . . . . . . . . 91

7



10-1 Speedup of the radiosity application . . . . . . . . . . . . . . . . . . . 94

10-2 Iterations of the radiosity application . . . . . . . . . . . . . . . . . . 98

10-3 Adding vertices to the surface's vertex list . . . . . . . . . . . . . . . 101

10-4 Running times of the components of the radiosity application . . . . . 103

10-5 Speedup of the components of the radiosity application . . . . . . . . 104

A-1 The pre�x commutativity requirement . . . . . . . . . . . . . . . . . 111

8



Chapter 1

Introduction

When parallel programs have bugs, they can be nondeterministic, meaning that dif-

ferent executions produce di�erent behaviors. In this thesis, we present a debugging

tool, the Nondeterminator-2, which automatically �nds nondeterminacy bugs in par-

allel programs. We give a theoretical model of nondeterminism that precisely explains

the guarantees provided by the Nondeterminator-2. We further demonstrate the ef-

fectiveness of this debugging tool by showing how it was used to parallelize a complex,

real-world application.

Nondeterminism

Because of the vagaries of timings of multiple processors, parallel programs can be

nondeterministic. Nondeterminism poses a serious challenge for debugging, because

reproducing the situation that caused a particular bug can be di�cult. Also, verifying

that a program works correctly in one scheduling does not preclude the possibility of

bugs in future executions.

In this thesis, we develop techniques for debugging parallel programs coded in

the Cilk language. The Cilk [3, 4, 7, 16, 23] project is designed to make it easy for

programmers to write e�cient parallel programs. Parallel computing has long been

an area of research, but it has yet to reach the \mainstream" world of professional

programmers, even though parallel machines are becoming more available. Tradi-
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int x; cilk void foo1()

{

cilk int main() x += 2;

{ }

x = 2;

spawn foo1(); cilk void foo2()

spawn foo2(); {

printf("%d", x); x *= 3;

return 0; }

}

Figure 1-1: A nondeterministic Cilk program. The spawn statement in a Cilk program

creates a parallel subprocedure, and the sync statement provides control synchronization

to ensure that all spawned subprocedures have completed.

Time

?

Processor 1 Processor 2

tmp1  x

tmp2  x

tmp1  tmp1 + 2

tmp2  tmp2 � 3

x tmp1
x tmp2

Temporary values

tmp1 tmp2

{ {

2 {

2 2

4 2

4 6

4 6

4 6

Figure 1-2: An example of the machine instructions comprising updates to a shared

variable x being interleaved. The �nal value of x in this particular execution is 6.

tional techniques for parallelization typically require programmers to have intimate

knowledge of the workings of their parallel architectures. Cilk alleviates this problem

by allowing programmers to code in the Cilk language, which is a simple extension to

the programming language C [24]. The Cilk runtime system then automatically and

e�ciently runs this code on multiprocessor machines.

Cilk programs can still have nondeterminacy bugs, however. Figure 1-1 shows a

Cilk program that behaves nondeterministically. The procedures foo1 and foo2 run

in parallel, resulting in parallel access to the shared variable x. The value of x printed

by main is 12 if foo1 happens to run before foo2, but it is 8 if foo2 happens to run

before foo1. Additionally, main might also print 4 or 6 for x, because the statements

in foo1 and foo2 are composed of multiple machine instructions that may interleave,

possibly resulting in a lost update to x.
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int x; cilk void foo1()

Cilk_lockvar A; {

Cilk_lock(A);

cilk int main() x += 2;

{ Cilk_unlock(A);

x = 2; }

Cilk_lock_init(A);

spawn foo1(); cilk void foo2()

spawn foo2(); {

printf("%d", x); Cilk_lock(A);

return 0; x *= 3;

} Cilk_unlock(A);

}

Figure 1-3: A Cilk program that incorporates user-level locking to produce atomic crit-

ical sections. Locks are declared as Cilk lockvar variables, and must be initialized by

Cilk lock init() statements. The function Cilk lock() acquires a speci�ed lock, and

Cilk unlock() releases a lock.

Figure 1-2 shows an example of this interleaving occurring. Processor 1 performs

the x += 2 operation at the \same time" as processor 2 performs the x *= 3 opera-

tion. The individual machine instructions that comprise these operations interleave,

producing the value 6 as the �nal value of x.

This behavior is likely to be a bug, but it may be the programmer's intention. It is

also possible that the programmer intended 8 or 12 to be legal �nal values for x, but

not 4 or 6. This behavior could be legitimately achieved through the use of mutual-

exclusion locks. A lock is a language construct, typically implemented as a location

in shared memory, that can be acquired and released but that is guaranteed to be

acquired by at most one thread at once. In other words, locks allow the programmer

to force certain sections of the code, called critical sections, to be \atomic" with

respect to each other. Two operations are atomic if the instructions that comprise

them cannot be interleaved. Figure 1-3 shows the program in Figure 1-1 with locks

added. In this version, the value of x printed by main may be either 8 or 12, but

cannot be 4 or 6.

The program in Figure 1-3 is nondeterministic, but it is somehow \less nonde-

terministic" than the program in Figure 1-1. Indeed, while Figure 1-3 uses locks

to \control" nondeterminism, the locks themselves are inherently nondeterministic,
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int x; cilk void foo1()

Cilk_lockvar A; {

Cilk_lockvar B; Cilk_lock(A);

x += 2;

cilk int main() Cilk_unlock(A);

{ }

x = 2;

Cilk_lock_init(A); cilk void foo2()

Cilk_lock_init(B); {

spawn foo1(); Cilk_lock(B);

spawn foo2(); x *= 3;

printf("%d", x); Cilk_unlock(B);

return 0; }

}

Figure 1-4: A Cilk program that uses locks but that still contains a data race. The

distinct locks A and B do not prevent the updates to x from interleaving.

because the semantics of locks is that any of the threads trying to acquire a lock

may in fact be the one to get it. In fact, it is arguable that any Cilk program is

nondeterministic, because memory updates happen in di�erent orders depending on

scheduling.

Rather than attempt to discuss these issues with such ambiguity, we present a

formal model for de�ning nondeterminism. Under this model, we can precisely de�ne

multiple kinds of nondeterminism. In particular, we de�ne the concept of a data

race: intuitively, a situation where parallel threads could update (or update and

access) a memory location \simultaneously." Figure 1-1 contains a data race, whereas

Figure 1-3 does not. It should be noted, however, that the mere presence of locks does

not preclude data races. It still necessary to use the right locks in the right places.

Figure 1-4 shows an example where locks have been used (presumably) incorrectly.

The two distinct locks A and B do not have any e�ect on each other, so the updates

to x once again may interleave in a data race.

Data races may not exactly represent the form of nondeterminism that program-

mers care about. Data races are likely to be bugs, however, and they are interesting

because they are a form of nondeterminism that we can hope to detect automatically.

By automatically detecting data races, we can provide debugging information to the

12



x=2 Cilk_lock_init(A)

Cilk_unlock(B)

Cilk_lock(A)

Cilk_lock(B)

Cilk_unlock(A)x+=2

x*=3

printf("%d" , x)
Cilk_lock_init(B)

Figure 1-5: The computation dag for the program in Figure 1-3. A dag race exists

between the two highlighted nodes.

programmer that is of great use when trying to track down nondeterminacy bugs.

Unfortunately, even detection of data races is computationally too di�cult to be

done in a practical debugging tool. Instead, the Nondeterminator-2 detects \dag

races." Roughly, a dag race race is like a data race, but the question of whether

two memory accesses could occur simultaneously is approximated. We say that an

execution of a Cilk program generates a computation , which is a directed acyclic

graph (dag) where the nodes represent the instructions of the program and the edges

represent the parallel control constructs. The dag for Figure 1-4 is shown in Figure 1-

5.1 The dag is an approximation of other possible executions of the same program on

the same input; that is, we consider the possible executions of the program on that

input to be the topological sorts of the dag in which each lock is held at most once at

any given time. A dag race, then, occurs when two instructions that are unrelated

in the dag both access the same memory location, at least one of the accesses is a

write, and no common lock is held across both of the accesses. Figure 1-5 has a dag

race between the two highlighted nodes.

As we shall see, the dag races that the Nondeterminator-2 detects are not the

1This picture of the dag is a simpli�cation; a formal method for construction of the dag is given

in Chapter 7.
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same thing as data races. Nonetheless, experience shows that dag races are a good

enough approximation to be useful to report as debugging information to the program-

mer. Furthermore, we show that for some set of programs, the dag races precisely

correspond to data races. One such set of programs is the \abelian" programs in

which all critical sections protected by the same lock \commute": intuitively, the

critical sections produce the same e�ect regardless of scheduling. We show that if

a (deadlock-free) abelian program generates a computation with no dag races, then

the program is determinate: all schedulings produce the same �nal result. The

consequence, therefore, is that for an abelian program, the Nondeterminator-2 can

verify the determinacy of the program on a given input.

The Nondeterminator-2 cannot provide such a guarantee for nonabelian programs.

Even for such programs, however, we expect that reporting dag races to the user

provides a useful debugging heuristic. Indeed, this approach has been implicitly

taken by all previous dynamic race-detection tools.

Race-detection algorithms

In previous work, some e�orts have been made to detect data races statically (at

compile-time) [31, 42]. Static debuggers have the advantage that they sometimes can

draw conclusions about the program for all inputs. Since understanding any nontrivial

semantics of the program is generally undecidable, however, most race detectors are

dynamic tools in which potential races are detected at runtime by executing the pro-

gram on a given input. Some dynamic race detectors perform a post-mortem analysis

based on program execution traces [12, 21, 29, 32], while others perform an \on-

the-
y" analysis during program execution. On-the-
y debuggers directly instrument

memory accesses via the compiler [10, 11, 14, 15, 28, 36], by binary rewriting [39], or

by augmenting the machine's cache coherence protocol [30, 37].

In this thesis, we present two race detection algorithms which are based on the

Nondeterminator [14], a tool that �nds dag races in Cilk programs that do not use

locks. The Nondeterminator executes a Cilk program serially on a given input, main-

taining an e�cient \SP-bags" data structure to keep track of the logical series/parallel

14



relationships between threads. For a Cilk program that runs serially in time T and ac-

cesses V shared-memory locations, the Nondeterminator runs in O(T �(V; V )) time

and O(V ) space, where � is Tarjan's functional inverse of Ackermann's function,

which for all practical purposes is at most 4.

The Nondeterminator-2, the tool presented here, �nds dag races in Cilk programs

that use locks. This race detector contains two algorithms, both of which use the same

e�cient SP-bags data structure from the original Nondeterminator. The �rst of these

algorithms, All-Sets, is an on-the-
y algorithm that, like most other race-detection

algorithms, assumes that no locks are held across parallel control statements, such

as spawn and sync. The second algorithm, Brelly, is a faster on-the-
y algorithm,

but in addition to reporting dag races as bugs, it also reports as bugs some complex

locking protocols that are probably undesirable but that may be race free.

The All-Sets algorithm executes a Cilk program serially on a given input and

either detects a dag race in the computation or guarantees that none exist. For a

Cilk program that runs serially in time T , accesses V shared-memory locations, uses

a total of n locks, and holds at most k � n locks simultaneously, All-Sets runs

in O(nkT �(V; V )) time and O(nkV ) space. Tighter, more complicated bounds on

All-Sets are given in Chapter 2.

In previous work, Dinning and Schonberg's \Lock Covers" algorithm [11] also

detects all dag races in a computation. The All-Sets algorithm improves the Lock

Covers algorithm by generalizing the data structures and techniques from the original

Nondeterminator to produce better time and space bounds. Perkovic and Keleher [37]

o�er an on-the-
y race-detection algorithm that \piggybacks" on a cache-coherence

protocol for lazy release consistency. Their approach is fast (about twice the serial

work, and the tool runs in parallel), but it only catches races that actually occur

during a parallel execution, not those that are logically present in the computation.

Although the asymptotic performance bounds of All-Sets are the best to date,

they are a factor of nk larger in the worst case than those for the original Nonde-

terminator. The Brelly algorithm is asymptotically faster than All-Sets, and its

performance bounds are only a factor of k larger than those for the original Nondeter-

15



minator. For a Cilk program that runs serially in time T , accesses V shared-memory

locations, and holds at most k locks simultaneously, the serial Brelly algorithm

runs in O(kT �(V; V )) time and O(kV ) space. Since most programs do not hold

many locks simultaneously, this algorithm runs in nearly linear time and space. The

improved performance bounds come at a cost, however. Rather than detecting dag

races directly, Brelly only detects violations of a \locking discipline" that precludes

dag races.

A locking discipline is a programming methodology that dictates a restriction

on the use of locks. For example, many programs adopt the discipline of acquiring

locks in a �xed order so as to avoid deadlock [22]. Similarly, the \umbrella" locking

discipline precludes dag races by requiring that each location be protected by the

same lock within every parallel subcomputation of the computation. Threads that

are in series may use di�erent locks for the same location (or possibly even none, if

no parallel accesses occur), but if two threads in series are both in parallel with a

third and all access the same location, then all three threads must agree on a single

lock for that location. If a program obeys the umbrella discipline, a dag race cannot

occur, because parallel accesses are always protected by the same lock. The Brelly

algorithm detects violations of the umbrella locking discipline.

Savage et al. [39] originally suggested that e�cient debugging tools can be devel-

oped by requiring programs to obey a locking discipline. Their Eraser tool enforces a

simple discipline in which any shared variable is protected by a single lock throughout

the course of the program execution. Whenever a thread accesses a shared variable, it

must acquire the designated lock. This discipline precludes dag races from occurring,

and Eraser �nds violations of the discipline in O(kT ) time and O(kV ) space. (These

bounds are for the serial work; Eraser actually runs in parallel.) Eraser only works

in a parallel environment containing several linear threads, however, with no nested

parallelism or thread joining as is permitted in Cilk. In addition, since Eraser does

not recognize the series/parallel relationship of threads, it does not properly under-

stand at what times a variable is actually shared. Speci�cally, it heuristically guesses

when the \initialization phase" of a variable ends and the \sharing phase" begins,

16



and thus it may miss some dag races.

In comparison, our Brelly algorithm performs nearly as e�ciently, is guaran-

teed to �nd all violations, and importantly, supports a more 
exible discipline. In

particular, the umbrella discipline allows separate program modules to be composed

in series without agreement on a global lock for each location. For example, an appli-

cation may have three phases|an initialization phase, a work phase, and a clean-up

phase|which can be developed independently without agreeing globally on the locks

used to protect locations. If a fourth module runs in parallel with all of these phases

and accesses the same memory locations, however, the umbrella discipline does re-

quire that all phases agree on the lock for each shared location. Thus, although the

umbrella discipline is more 
exible than Eraser's discipline, it is more restrictive than

what a general dag-race detection algorithm, such as All-Sets, permits.

Figure 1-6 compares the asymptotic performance of All-Sets and Brelly with

other race detection algorithms in the literature. A more in-depth discussion of this

comparison is given in Chapter 4.

Using the Nondeterminator-2

In addition to presenting the All-Sets and Brelly algorithms themselves, we dis-

cuss practical issues surrounding their use. Speci�cally, we explain how they can be

used when memory is allocated and freed dynamically. We describe techniques for

annotating code in order to make dag race reports more useful for practical debugging

purposes. Additionally, we present timings of the algorithms on a few example Cilk

programs.

Finally, we present an in-depth case study of our experiences parallelizing a large

radiosity application. Radiosity is a graphics algorithm for modeling light in di�use

environments. Figure 1-7 shows a scene in which radiosity was used to model the

re
ections of light o� of the walls of a maze. The majority of the calculation time

for radiosity is spent calculating certain properties of the scene geometry. These

calculations can be parallelized, and Cilk is ideally suited for this parallelization,

because its load-balancing scheduler is provably good, and so can obtain speedup

17



Handles

Algorithm Handles series- Detects Time per Total

locks parallel memory access space

programs

English-Hebrew NO YES Dag races O(pt) O(V t+min(bp; V tp))

labeling [36]

Task NO YES Dag races O(t) O(t2 + V t)

Recycling [10]

O�set-span NO YES Dag races O(p) O(V +min(bp; V p))

Labeling [28]

SP-bags [14] NO YES Dag races O(�(V; V )) O(V )

Lock YES YES Dag races O(tnk) O(t2 + tnkV )

Covers [11]

Eraser

Eraser [39] YES NO discipline O(k) O(kV )

violations

All-Sets YES YES Dag races O(nk �(V; V ))) O(nkV )

Umbrella

Brelly YES YES discipline O(k �(V; V )) O(kV )

violations

p = maximum depth of nested parallelism

t = maximum number of logically concurrent threads

V = number of shared memory locations used

b = total number of threads in the computation

k = maximum number of locks held simultaneously

Figure 1-6: Comparison of race detection algorithms. Tighter, more complicated bounds

are given for All-Sets (and Lock Covers) in Figure 4-1.

even for such irregular calculations.

Parallelization speedup, however, is not particularly impressive if the same result

could be achieved by optimizing the serial execution. Therefore, it is usually not

desirable to rewrite applications for parallel execution, because the optimizations in

the serial code might be lost. So instead of implementing our own radiosity code,

we downloaded a large radiosity application developed at the Computer Graphics

Research Group of the Katholieke Universiteit Leuven, in Belgium [2]. Since the

code is written in C, and Cilk is a simple extension of C, running the code as a Cilk

program is e�ortless.
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Figure 1-7: A maze scene rendered after 100 iterations of the radiosity algorithm.

The di�culty, however, is that the program is large, consisting of 75 source �les

and 23,000 lines of code. The code was not written with parallelization in mind, so

there are portions where memory is shared \unnecessarily." That is, operations that

in principle could be independent actually write to the same memory locations. These

con
icts need to be resolved if those operations are to be run in parallel. Searching

through the code for such problems would be very tedious. The Nondeterminator-2,

however, provides a much faster approach. We just run in parallel those operations

that are \in principle" independent, and use the Nondeterminator-2 to �nd the places

in the code where this parallelization failed. In this way, we are directly pointed to

the problem areas of the code and have no need to examine pieces of the code that

don't demonstrate any races. Our resulting Cilk radiosity code achieves a 5.97 times

speedup on 8 processors.

Organization of this thesis

This thesis is organized into three major parts.

Part I discusses the race-detection algorithms. Chapter 2 presents the All-Sets

algorithm for detecting dag races in a Cilk computation, and Chapter 3 presents

the Brelly algorithm for detecting umbrella discipline violations. Chapter 4 then

gives a comparison of the asymptotic performance of these algorithms with other
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race-detection algorithms in the literature.

Part II presents our theory of nondeterminism. Chapter 5 presents a framework

for de�ning nondeterminism, and data races in particular. Chapter 6 shows that

precise detection of data races is computationally infeasible. Chapter 7 explains why

the dag races that are detected by the Nondeterminator-2 are not the same thing as

data races. Chapter 8, however, de�nes the notion of abelian programs, and shows

that there is a provable correspondence between dag races and data races for abelian

programs. Furthermore, that chapter shows that the Nondeterminator-2 can verify

the determinacy of deadlock-free abelian programs. A complicated proof of one lemma

needed for this result is left to Appendix A.

Finally, in Part III, we discuss some practical considerations surrounding the use

of the Nondeterminator-2. Chapter 9 discusses how to detect races in the pres-

ence of dynamic memory allocation and how to reduce the number of \false race

reports" that the Nondeterminator-2 produces. Timings of our implementation of

the Nondeterminator-2 are also given in that chapter. Some of the ideas described

in Chapter 9 were inspired by our experiences parallelizing the radiosity application;

these experiences are described in Chapter 10. Chapter 11 o�ers some concluding

remarks.

Some of the results in this thesis appear in [6] and represent joint work with

Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, and Keith Randall.
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Part I

Race-Detection Algorithms

21





Chapter 2

The All-Sets Algorithm

In this chapter, we present the All-Sets algorithm, which detects dag races in Cilk

computations.1 We �rst give some background on Cilk and explain the series-parallel

structure of its computations. Next we review the SP-bags algorithm[14] used by the

original Nondeterminator. We then we present the All-Sets algorithm itself, show

that it is correct, and analyze its performance. Speci�cally, we that for a program that

runs serially in time T , accesses V shared memory locations, uses a total of n locks,

and holds at most k� n locks simultaneously, All-Sets run in O(nkT �(V; V )) time

and O(nkV ) space, where � is Tarjan's functional inverse of Ackermann's function.

Furthermore, All-Sets guarantees to �nd a dag race in the generated computation

if and only if such a race exists.

Cilk

Cilk is an algorithmic multithreaded language. The idea behind Cilk is to allow

programmers to easily express the parallelism of their programs, and to have the

runtime system take care of the details of running the program on many processors.

Cilk's scheduler uses a work-stealing algorithm to achieve provably good performance.

While this feature is not the main focus of this paper, it surfaces again as motivation

for the radiosity example.

1Some of the results in this chapter appear in [6].
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In order to make it as easy as possible for programmers to express parallelism,

Cilk was designed as a simple extension to C. A Cilk program is a C program with

a few keywords added. Furthermore, a Cilk program running on one processor has

the same semantics as the C program that is left when those keywords are removed.

Cilk does not require programmers to know a priori on how many processors their

programs will run.

The Cilk keyword spawn, when immediately preceding a function call, declares

that the function may be run in parallel. In other words, the parent function that

spawned the child is allowed to continue executing at the same time as the child

function executes. The parent may later issue a sync instruction, which means that

the parent must wait until all the children it has spawned complete before continuing.2

Any procedure that spawns other procedures or that itself is spawned must be declared

with the type quali�er cilk.

Figure 2-1 gives an example Cilk procedure that computes the nth Fibonacci num-

ber. The two recursive cases of the Fibonacci calculation are spawned o� in parallel.

The code then syncs, which forces it to wait for the two spawned subcomputations

to complete. Once they have done so, their results are available to be accumulated

and returned.

Additionally, Cilk provides the user with mutual-exclusion locks. A lock is es-

sentially a location in shared memory that can be \acquired" or \released." It is

guaranteed, however, that at most one thread can acquire a given lock at once. The

command Cilk lock() acquires a speci�ed lock, and Cilk unlock() releases a spec-

i�ed lock. If the lock is already acquired then Cilk lock() \spins," meaning that it

waits until the lock is released, and then attempts to acquire it again. We assume in

this thesis, as does the race-detection literature, that parallel control constructs are

disallowed while locks are held.3

2The semantics of spawn and sync are similar to that of fork/join, but spawn and sync are

lightweight operations.
3The Nondeterminator-2 can still be used with programs for which this assumption does not

hold, but the race detector prints a warning, and some races may be missed. We are developing

extensions of the Nondeterminator-2's detection algorithms that work properly for programs that

hold locks across parallel control constructs. See [5] for more discussion.
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cilk int fib(int n)

f

int x;

int y;

if (n < 2)

return n;

x = spawn fib(n-1);

y = spawn fib(n-1);

sync;

return (x+y);

g

Figure 2-1: A Cilk procedure that computes the nth Fibonacci number.

The computation of a Cilk program on a given input can be viewed as a directed

acyclic graph, or dag , in which vertices are instructions and edges denote ordering

constraints imposed by control statements. A Cilk spawn statement generates a vertex

with out-degree 2, and a Cilk sync statement generates a vertex whose in-degree is 1

plus the number of subprocedures syncing at that point.

We de�ne a thread to be a maximal sequence of vertices that does not contain

any parallel control constructs. If there is a path in the dag from thread e1 to thread

e2, then we say that the threads are logically in series, which we denote by e1 � e2.

If there is no path in the dag between e1 and e2, then they are logically in parallel ,

e1 k e2. Only the series relation � is transitive. A dag race exists on a Cilk

computation if two threads e1 k e2 access the same memory location while holding

no locks in common, and at least one of the threads writes the location.

The computation dag generated by a Cilk program can itself be represented as

a binary series-parallel parse tree, as illustrated in Figure 2-2. In the parse

tree of a Cilk computation, leaf nodes represent threads. Each internal node is ei-

ther an S-node if the computation represented by its left subtree logically precedes

the computation represented by its right subtree, or a P-node if its two subtrees'

computations are logically in parallel.

A parse tree allows the series/parallel relation between two threads e1 and e2
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int x; cilk void foo3() {

Cilk_lockvar A, B; Cilk_lock(B);

x++;

cilk void foo1() { Cilk_unlock(B);

Cilk_lock(A); }

Cilk_lock(B);

x += 5; cilk int main() {

Cilk_unlock(B); Cilk_lock_init(A);

Cilk_unlock(A); Cilk_lock_init(B);

} x = 0;

spawn foo1();

cilk void foo2() { spawn foo2();

Cilk_lock(A); spawn foo3();

x -= 3; sync;

Cilk_unlock(A); printf("%d", x);

} }

S

P

{A,B}

S

P
x=0
{}

printf("%d",x)
{}

x+=5
{A}
x-=3

{B}
x++

Figure 2-2: A Cilk program and the associated series-parallel parse tree, abbreviated to

show only the accesses to shared location x. Each leaf is labeled with a code fragment that

accesses x, with the set of locks held at that access shown above the code fragment.

to be determined by examining their least common ancestor, which we denote by

lca(e1; e2). If lca(e1; e2) is a P-node, the two threads are logically in parallel (e1 k

e2). If lca(e1; e2) is an S-node, the two threads are logically in series: e1 � e2,

assuming that e1 precedes e2 in a left-to-right depth-�rst tree walk of the parse tree.

The original Nondeterminator

The original Nondeterminator uses the e�cient SP-bags algorithm to detect dag

races in Cilk programs that do not use locks. The SP-bags algorithm executes a Cilk

program on a given input in serial, depth-�rst order. This execution order mirrors

that of normal C programs: every subcomputation that is spawned executes com-

pletely before the procedure that spawned it continues. Every spawned procedure4

is given a unique ID at runtime. These IDs are kept in the fast disjoint-set data

structure [8, Chapter 22] analyzed by Tarjan [43]. The data structure maintains a

dynamic collection � of disjoint sets and provides three elementary operations:

Make-Set(x): � � [ ffxgg.

4Technically, by \procedure" we mean \procedure instance," that is, the runtime state of the

procedure.
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spawn procedure F :

SF  Make-Set(F )

PF  fg

sync in a procedure F :

SF  Union(SF ; PF )

PF  fg

return from procedure F 0 to F :

PF  Union(PF ; SF 0)

Figure 2-3: The SP-bags algorithm for updating S-bags and P-bags, which are repre-

sented as disjoint sets.

Union(X; Y ): � �� fX; Y g [ fX [ Y g. The sets X and Y are destroyed.

Find-Set(x): Returns the set X 2 � such that x 2 X.

Tarjan shows that any m of these operations on n sets take a total of O(m�(m;n))

time.

During the execution of the SP-bags algorithm, two \bags" of procedure ID's are

maintained for every Cilk procedure on the call stack. These bags have the following

contents:

� The S-bag SF of a procedure F contains the ID's of those descendants of F 's

completed children that logically \precede" the currently executing thread, as

well as the ID for F itself.

� The P-bag PF of a procedure F contains the ID's of those descendants of

F 's completed children that operate logically \in parallel" with the currently

executing thread.

The S-bags and P-bags are represented as sets using the disjoint-set data struc-

ture. At each parallel control construct of the program, the contents of the bags are

updated as described in Figure 2-3. To determine the logical relationship of the cur-

rently executing thread with any already executed thread only requires a Find-Set

operation, which runs in amortized �(V; V ) time. If the set found is an S-bag, the
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threads are in series, whereas if a P-bag is found, the threads are in parallel.

In addition, SP-bags maintains a shadow space that has an entry correspond-

ing to each location of shared memory. For a location l of shared memory, the cor-

responding shadow space entry keeps information about previous accesses to l. This

information is used to �nd previous threads that have accessed the same location as

the current thread.

The All-Sets algorithm

The All-Sets algorithm is an extension of the SP-bags algorithm that detects dag

races in Cilk programs that use locks. The All-Sets algorithm also uses S-bags

and P-bags to determine the series/parallel relationship between threads. Its shadow

space lockers is more complex than the shadow space of SP-bags, however, because

it keeps track of which locks were held by previous accesses to the various locations.

The lock set of an access is the set of locks held by the thread when the access

occurs. The lock set of several accesses is the intersection of their respective lock

sets. If the lock set of two parallel accesses to the same location is empty, and at least

one of the accesses is a write, then a dag race exists. To simplify the description

and analysis of the race detection algorithm, we shall use a small trick to avoid the

extra condition for a race that \at least one of the accesses is a write." The idea

is to introduce a fake lock for read accesses called the r-lock, which is implicitly

acquired immediately before a read and released immediately afterwards. The fake

lock behaves from the race detector's point of view just like a normal lock, but during

an actual computation, it is never actually acquired and released (since it does not

actually exist). The use of r-lock simpli�es the description and analysis of All-

Sets, because it allows us to state the condition for a dag race more succinctly: if

the lock set of two parallel accesses to the same location is empty, then a dag race

exists. By this condition, a dag race (correctly) does not exist for two read accesses,

since their lock set contains the r-lock.

The entry lockers[l ] in All-Sets' shadow space stores a list of lockers: threads

that access location l, each paired with the lock set that was held during the access.
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lock(A)

Add A to H

unlock(A)

Remove A from H

access(l) in thread e with lock set H

1 for each he0; H 0i 2 lockers[l ]

2 do if e0 k e and H 0 \H = fg
3 then declare a dag race

4 redundant  false

5 for each he0; H 0i 2 lockers[l ]

6 do if e0 � e and H 0 � H

7 then lockers[l ] lockers[l ]� fhe 0;H 0ig
8 if e0 k e and H 0 � H

9 then redundant  true

10 if redundant = false

11 then lockers[l ] lockers[l ] [ fhe;H ig

Figure 2-4: The All-Sets algorithm. The operations for the spawn, sync, and return

actions are unchanged from the SP-bags algorithm.

If he;Hi 2 lockers[l ], then thread e accesses location l while holding the lock set H.

location l is accessed by thread e while it holds the lock set H.

As an example of what the shadow space lockers may contain, consider a thread

e that performs the following:

Cilk lock(A); Cilk lock(B);

read(l)

Cilk unlock(B); Cilk unlock(A);

Cilk lock(B); Cilk lock(C);

write(l)

Cilk unlock(C); Cilk unlock(B);

For this example, the list lockers[l ] contains two lockers|he; fA; B;r-lockgi and

he; fB; Cgi.

The All-Sets algorithm is shown in Figure 2-4. Intuitively, this algorithm

records all lockers, but it is careful to prune redundant lockers, keeping at most
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one locker per distinct lock set. Locks are added and removed from the global lock

set H at Cilk lock and Cilk unlock statements. Lines 1{3 check to see if a dag

race has occurred and report any violations. Lines 5{11 then add the current locker

to the lockers shadow space and prune redundant lockers.

Correctness of All-Sets

Before proving the correctness of All-Sets, we restate two lemmas from [14].

Lemma 1 Suppose that three threads e1, e2, and e3 execute in order in a serial,

depth-�rst execution of a Cilk program, and suppose that e1 � e2 and e1 k e3. Then,

we have e2 k e3.

Lemma 2 (Pseudotransitivity of k) Suppose that three threads e1, e2, and e3 ex-

ecute in order in a serial, depth-�rst execution of a Cilk program, and suppose that

e1 k e2 and e2 k e3. Then, we have e1 k e3.

We now prove that the All-Sets algorithm is correct.

Theorem 3 The All-Sets algorithm detects a dag race in a computation of a Cilk

program running on a given input if and only if a dag race exists in the computation.

Proof: ()) To prove that any race reported by the All-Sets algorithm really exists

in the computation, observe that every locker added to lockers[l ] in line 11 consists

of a thread and the lock set held by that thread when it accesses l. The algorithm

declares a race when it detects in line 2 that the lock set of two parallel accesses (by

the current thread e and one from lockers[l ]) is empty, which is exactly the condition

required for a dag race.

(() Assuming a dag race exists in a computation, we shall show that a dag race

is reported. If a dag race exists, then we can choose two threads e1 and e2 such that

e1 is the last thread before e2 in the serial execution that has a dag race with e2. If

we let H1 and H2 be the lock sets held by e1 and e2, respectively, then we have e1 k e2

and H1 \H2 = fg.
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We �rst show that immediately after e1 executes, lockers[l ] contains some thread

e3 that races with e2. If he1; H1i is added to lockers[l ] in line 11, then e1 is such

an e3. Otherwise, the redundant 
ag must have been set in line 9, so there must exist

a locker he3; H3i 2 lockers[l ] with e3 k e1 and H3 � H1. Thus, by pseudotransitivity

(Lemma 2), we have e3 k e2. Moreover, since H3 � H1 and H1 \ H2 = fg, we have

H3 \H2 = fg, and therefore e3, which belongs to lockers[l ], races with e2.

To complete the proof, we now show that the locker he3; H3i is not removed from

lockers[l ] between the times that e1 and e2 are executed. Suppose to the contrary that

he4; H4i is a locker that causes he3; H3i to be removed from lockers[l ] in line 7. Then,

we must have e3 � e4 and H3 � H4, and by Lemma 1, we have e4 k e2. Moreover,

since H3 � H4 and H3 \H2 = fg, we have H4 \H2 = fg, contradicting the choice of

e1 as the last thread before e2 to race with e2.

Therefore, thread e3, which races with e2, still belongs to lockers[l ] when e2 exe-

cutes, and so lines 1{3 report a race.

Analysis of All-Sets

In Chapter 1, we claimed that for a Cilk program that executes in time T on one

processor, references V shared memory locations, uses a total of n locks, and holds

at most k� n locks simultaneously, the All-Sets algorithm can check this compu-

tation for dag races in O(nkT �(V; V )) time and using O(nkV ) space. These bounds,

which are correct but weak, are improved by the next theorem.

Theorem 4 Consider a Cilk program that executes in time T on one processor, ref-

erences V shared memory locations, uses a total of n locks, and holds at most k locks

simultaneously. The All-Sets algorithm checks this computation for dag races in

O(TL(k+�(V; V ))) time and O(kLV ) space, where L is the maximum of the number

of distinct lock sets used to access any particular location.

Proof: First, observe that no two lockers in lockers have the same lock set, because

the logic in lines 5{11 ensure that if H = H 0, then locker he;Hi either replaces he0; H 0i
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(line 7) or is considered redundant (line 9). Thus, there are at most L lockers in the

list lockers[l ]. Each lock set takes at most O(k) space, so the space needed for lockers

is O(kLV ). The length of the list lockers[l ] determines the number of series/parallel

relations that are tested. In the worst case, we need to perform 2L such tests (lines 2

and 6) and 2L set operations (lines 2, 6, and 8) per access. Each series/parallel test

takes amortized O(�(V; V )) time, and each set operation takes O(k) time. Therefore,

the All-Sets algorithm runs in O(TL(k + �(V; V ))) time.

The looser bounds claimed in Chapter 1 of O(nkT �(V; V )) time and O(nkV ) space

for k � n follow because L �
Pk

i=0

�
n

i

�
= O(nk=k!). As we shall see in Chapter 9,

however, we rarely see the worst-case behavior given by the bounds in Theorem 4.
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Chapter 3

The Brelly Algorithm

In this section, we formally de�ne the \umbrella locking discipline" and present the

Brelly algorithm for detecting violations of this discipline.1 We prove that the

Brelly algorithm is correct and analyze its performance, which we show to be asymp-

totically better than that of All-Sets. Speci�cally, we show that for a program that

runs serially in time T , accesses V shared memory locations, uses a total of n locks,

and holds at most k � n locks simultaneously, Brelly runs in O(kT �(V; V )) time

using O(kV ) space, where � is Tarjan's functional inverse of Ackermann's function.

We further prove thatBrelly guarantees to �nd a violation of the umbrella discipline

in the computation if and only if a violation exists.

The umbrella discipline

The umbrella discipline can be de�ned precisely in terms of the parse tree of a given

Cilk computation. An umbrella of accesses to a location l is a subtree rooted at a

P-node containing accesses to l in both its left and right subtrees, as is illustrated in

Figure 3-1. An umbrella of accesses to l is protected if its accesses have a nonempty

lock set and unprotected otherwise. A program obeys the umbrella locking dis-

cipline if it contains no unprotected umbrellas. In other words, within each umbrella

of accesses to a location l, all threads must agree on at least one lock to protect their

1Some of the results in this chapter appear in [6].

33



P

P P

S

P

S

P

Figure 3-1: Three umbrellas of accesses to a location l. In this parse tree, each shaded

leaf represents a thread that accesses l. Each umbrella of accesses to l is enclosed by a

dashed line.

accesses to l.

The next theorem shows that adherence to the umbrella discipline precludes dag

races from occurring.

Theorem 5 A Cilk computation with a dag race violates the umbrella discipline.

Proof: Any two threads involved in a dag race must have a P-node as their least

common ancestor in the parse tree, because they operate in parallel. This P-node

roots an unprotected umbrella, since both threads access the same location and the

lock sets of the two threads are disjoint.

The umbrella discipline can also be violated by unusual, but dag-race free, locking

protocols. For instance, suppose that a location is protected by three locks and that

every thread always acquires two of the three locks before accessing the location.

No single lock protects the location, but every pair of such accesses is mutually

exclusive. The All-Sets algorithm properly certi�es this bizarre example as race-

free, whereas Brelly detects a discipline violation. In return for disallowing these

unusual locking protocols (which in any event are of dubious value), Brelly checks

programs asymptotically faster than All-Sets.

The Brelly algorithm

Like All-Sets, the Brelly algorithm extends the SP-bags algorithm used in the

original Nondeterminator and uses the r-lock fake lock for read accesses (see Chap-

ter 2). Figure 3-2 gives pseudocode for Brelly. Like the SP-bags algorithm,
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lock(A)

Add A to H

unlock(A)

Remove A from H

access(l) in thread e with lock set H

1 if accessor [l ] � e

2 then � serial access

locks[l ] H , leaving nonlocker [h] with its old

nonlocker if it was already in locks[l ] but

setting nonlocker [h] accessor [l ] otherwise

3 for each lock h 2 locks[l ]

4 do alive[h] true

5 accessor [l ] e

6 else � parallel access

7 for each lock h 2 locks[l ]� H

8 do if alive[h] = true

9 then alive[h] false

10 nonlocker [h] e

11 for each lock h 2 locks[l ] \ H
12 do if alive[h] = true and nonlocker [h] k e
13 then alive[h] false

14 if no locks in locks[l ] are alive (or locks[l ] = fg)
15 then report violation on l involving

e and accessor [l ]

16 for each lock h 2 H \ locks[l ]
17 do report access to l without h

by nonlocker [h]

Figure 3-2: The Brelly algorithm. While executing a Cilk program in serial depth-�rst

order, at each access to a shared-memory location l, the code for access(l) is executed.

Locks are added and removed from the lock set H at Cilk lock and Cilk unlock state-

ments. To determine whether the currently executing thread is in series or parallel with

previously executed threads, Brelly uses the SP-bags data structure.
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Brelly executes the program on a given input in serial depth-�rst order, maintain-

ing the SP-bags data structure so that the series/parallel relationship between the

currently executing thread and any previously executed thread can be determined

quickly. Like the All-Sets algorithm, Brelly also maintains a set H of currently

held locks. In addition, Brelly maintains two shadow spaces of shared memory:

accessor , which stores for each location the thread that performed the last \serial

access" to that location; and locks, which stores the lock set of that access. Each

entry in the accessor space is initialized to the initial thread (which logically precedes

all threads in the computation), and each entry in the locks space is initialized to the

empty set.

Unlike the All-Sets algorithm, Brelly keeps only a single lock set, rather than

a list of lock sets, for each shared-memory location. For a location l, each lock in

locks[l ] potentially belongs to the lock set of the largest umbrella of accesses to l

that includes the current thread. The Brelly algorithm tags each lock h 2 locks[l ]

with two pieces of information: a thread nonlocker [h] and a 
ag alive[h]. The thread

nonlocker [h] is a thread that accesses l without holding h. The 
ag alive[h] indicates

whether h should still be considered to potentially belong to the lock set of the

umbrella. To allow reports of violations to be more precise, the algorithm \kills" a

lock h by setting alive[h] false when it determines that h does not belong to the

lock set of the umbrella, rather than simply removing it from locks[l ].

Whenever Brelly encounters an access by a thread e to a location l, it checks

for a violation with previous accesses to l, updating the shadow spaces appropriately

for future reference. If accessor [l ] � e, we say the access is a serial access, and the

algorithm performs lines 2{5, setting locks[l ]  H and accessor [l ]  e, as well as

updating nonlocker [h] and alive[h] appropriately for each h 2 H. If accessor [l ] k e,

we say the access is a parallel access, and the algorithm performs lines 6{17, killing

the locks in locks[l ] that do not belong to the current lock set H (lines 7{10) or whose

nonlockers are in parallel with the current thread (lines 11{13). If Brelly �nds in

line 14 that there are no locks left alive in locks[l ] after a parallel access, it has found

an unprotected umbrella, and it then reports a discipline violation in lines 15{17.
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S

P

{A,B} S

{A} {A,B}

P

S

{} P

{A,B} {B}
e1

e2 e3 e5 e6

e4

{B}
e7

thread accessor [l ] locks [l ] access type

initial e0 f g

e1 e1 fa(e0);b(e0)g serial

e2 e1 fa(e0);b(e2)g parallel

e3 e1 fa(e0);b(e2)g parallel

e4 e4 f g serial

e5 e5 fa(e4);b(e4)g serial

e6 e5 fa(e6);b(e4)g parallel

e7 e5 fa(e6);b(e4)g parallel

Figure 3-3: A sample execution of the Brelly algorithm. We restrict our attention to

the algorithm's operation on a single location l. In the parse tree, each leaf represents an

access to l and is labeled with the thread that performs the access (e.g., e1) and the lock

set of that access (e.g., fa;bg). Umbrellas are enclosed by dashed lines. The table displays

the values of accessor [l ] and locks [l ] after each thread's access. The nonlocker for each lock

is given in parentheses after the lock, and killed locks are underlined. The \access type"

column indicates whether the access is a parallel or serial access. A discipline violation is

reported after the execution of e7, because e7 is a parallel access and no locks are left alive

in locks [l ].

When reporting a violation, Brelly speci�es the location l, the current thread

e, and the thread accessor [l ]. It may be that e and accessor [l ] hold locks in com-

mon, in which case the algorithm uses the nonlocker information in lines 16{17 to

report threads that accessed l without each of these locks. Thus, every violation

message printed by the algorithm always describes enough information to show that

the umbrella in question is in fact unprotected.

Figure 3-3 illustrates how Brelly works. The umbrella containing threads e1,

e2, and e3 is protected by lock a but not by lock b, which is re
ected in locks[l ] after

thread e3 executes. The umbrella containing e5 and e6 is protected by b but not by a,

which is re
ected in locks[l ] after thread e6 executes. During the execution of thread

e6, a is killed and nonlocker [a] is set to e6, according to the logic in lines 7{10. When
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e7 executes, b remains as the only lock alive in locks[l ] and nonlocker [b] is e4 (due to

line 2 during e5's execution). Since e4 k e7, lines 11{13 kill b, leaving no locks alive

in locks[l ], properly re
ecting the fact that no lock protects the umbrella containing

threads e4 through e7. Consequently, the test in line 14 causes Brelly to declare a

violation at this point.

Correctness of Brelly

The following two lemma will be helpful in proving the correctness of Brelly.

Lemma 6 Suppose a thread e performs a serial access to location l during an execu-

tion of Brelly. Then all previously executed accesses to l logically precede e in the

computation.

Proof: By transitivity of the � relation, all serial accesses to l that execute before

e logically precede e. We must also show the same for all parallel accesses to l that

are executed before e. Now, consider a thread e0 that performs a parallel access to l

before e executes, and let e00 k e0 be the thread stored in accessor [l ] when e0 executes

its parallel access. Since e00 is a serial access to l that executes before e, we have

e00 � e. Consequently, we must have e0 � e, because otherwise, by pseudotransitivity

(Lemma 2) we would have e00 k e, a contradiction.

Lemma 7 The Brelly algorithm maintains the invariant that for any location l

and lock h 2 locks[l ], the thread nonlocker [h] is either the initial thread or a thread

that accessed l without holding h.

Proof: There are two cases in which nonlocker [h] is updated. The �rst is in the

assignment nonlocker [h]  e in line 10. This update only occurs when the current

thread e does not hold lock h (line 7). The second case is when a lock's nonlocker [h]

is set to accessor [l] in line 2. If this update occurs during the �rst access to l in the

program, then accessor [l] is the initial thread. Otherwise, locks[l] is the set of locks

38



held during an access to l in accessor [l], since locks[l] and accessor [l] are updated

together to the current lock set H and current thread e, respectively, during a serial

access (lines 2{5), and neither is updated anywhere else. Thus, if h 62 locks[l], which

is the case if nonlocker [h] is being set to accessor [l] in line 2, then accessor [l] did not

hold lock h during its access to l.

Theorem 8 The Brelly algorithm detects a violation of the umbrella discipline in

a computation of a Cilk program running on a given input if and only if a violation

exists.

Proof: We �rst show that Brelly only detects actual violations of the discipline,

and then we argue that no violations are missed. In this proof, we denote by locks�[l ]

the set of locks in locks[l ] that have true alive 
ags.

()) Suppose that Brelly detects a violation caused by a thread e, and let

e0 = accessor [l ] when e executes. Since we have e0 k e, it follows that p = lca(e0; e)

roots an umbrella of accesses to l, because p is a P-node and it has an access to l

in both subtrees. We shall argue that the lock set U of the umbrella rooted at p is

empty. Since Brelly only reports violations when locks�[l ] = fg, it su�ces to show

that U � locks�[l ] at all times after e0 executes.

Since e0 is a serial access, lines 2{5 cause locks�[l ] to be the lock set of e0. At

this point, we know that U � locks�[l ], because U can only contain locks held by

every access in p's subtree. Suppose that a lock h is killed (and thus removed from

locks�[l ]), either in line 9 or line 13, when some thread e0 executes a parallel access

between the times that e0 and e execute. We shall show that in both cases h 62 U ,

and so U � locks�[l ] is maintained.

In the �rst case, if thread e0 kills h in line 9, it does not hold h, and thus h 62 U .

In the second case, we shall show that w, the thread stored in nonlocker [h] when

h is killed, is a descendant of p, which implies that h 62 U , because by Lemma 7,

w accesses l without the lock h. Assume for the purpose of contradiction that w is

not a descendant of p. Then, we have lca(w; e0) = lca(w; e0), which implies that

w k e0, because w k e0. Now, consider whether nonlocker [h] was set to w in line 10
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or in line 2 (not counting when nonlocker [h] is left with its old value in line 2). If

line 10 sets nonlocker [h]  w , then w must execute before e0, since otherwise, w

would be a parallel access, and lock h would have been killed in line 9 by w before

e0 executes. By Lemma 6, we therefore have the contradiction that w � e0. If line 2

sets nonlocker [h]  w , then w performs a serial access, which must be prior to the

most recent serial access by e0. By Lemma 6, we once again obtain the contradiction

that w � e0.

(() We now show that if a violation of the umbrella discipline exists, then Brelly

detects a violation. If a violation exists, then there must be an unprotected umbrella

of accesses to a location l. Of these unprotected umbrellas, let T be a maximal one

in the sense that T is not a subtree of another umbrella of accesses to l, and let p be

the P-node that roots T . The proof focuses on the values of accessor [l ] and locks[l ]

just after p's left subtree executes.

We �rst show that at this point, accessor [l ] is a left-descendant of p. Assume

for the purpose of contradiction that accessor [l ] is not a left-descendant of p (and is

therefore not a descendant of p at all), and let p0 = lca(accessor [l ]; p). We know

that p0 must be a P-node, since otherwise accessor [l ] would have been overwritten in

line 5 by the �rst access in p's left subtree. But then p0 roots an umbrella that is a

proper superset of T , contradicting the maximality of T .

Since accessor [l ] belongs to p's left subtree, no access in p's right subtree overwrites

locks[l ], as they are all logically in parallel with accessor [l ]. Therefore, the accesses

in p's right subtree may only kill locks in locks[l ]. It su�ces to show that by the time

all accesses in p's right subtree execute, all locks in locks[l ] (if any) have been killed,

thus causing a race to be declared. Let h be some lock in locks�[l ] just after the left

subtree of p completes.

Since T is unprotected, an access to l unprotected by h must exist in at least one

of p's two subtrees. If some access to l is not protected by h in p's right subtree,

then h is killed in line 9. Otherwise, let eleft be the most-recently executed thread

in p's left subtree that performs an access to l not protected by h. Let e0 be the

thread in accessor [l ] just after eleft executes, and let eright be the �rst access to l in
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the right subtree of p. We now show that in each of the following cases, we have

nonlocker [h] k eright when eright executes, and thus h is killed in line 13.

Case 1: Thread eleft is a serial access. Just after eleft executes, we have h 62 locks[l ]

(by the choice of eleft) and accessor [l ] = eleft . Therefore, when h is later placed in

locks[l ] in line 2, nonlocker [h] is set to eleft . Thus, we have nonlocker [h] = eleft k eright .

Case 2: Thread eleft is a parallel access and h 2 locks[l ] just before eleft executes.

Just after e0 executes, we have h 2 locks[l ] and alive[h] = true, since h 2 locks[l ]

when eleft executes and all accesses to l between e0 and eleft are parallel and do not

place locks into locks[l ]. By pseudotransitivity (Lemma 2), e0 k eleft and eleft k eright

implies e0 k eright . Note that e0 must be a descendant of p, since if it were not, T would

be not be a maximal umbrella of accesses to l. Let e00 be the most recently executed

thread before or equal to eleft that kills h. In doing so, e00 sets nonlocker [h]  e 00 in

line 10. Now, since both e0 and eleft belong to p's left subtree and e00 follows e0 in the

execution order and comes before or is equal to eleft , it must be that e
00 also belongs

to p's left subtree. Consequently, we have nonlocker [h] = e 00 k eright .

Case 3: Thread eleft is a parallel access and h 62 locks[l ] just before eleft exe-

cutes. When h is later added to locks[l ], its nonlocker [h] is set to e0. As above, by

pseudotransitivity, e0 k eleft and eleft k eright implies nonlocker [h] = e 0 k eright .

In each of these cases, nonlocker [h] k eright still holds when eright executes, since

eleft , by assumption, is the most recent thread to access l without h in p's left subtree.

Thus, h is killed in line 13 when eright executes.

Analysis of Brelly

Theorem 9 On a Cilk program that executes serially in time T , uses V shared-

memory locations, and holds at most k locks simultaneously, the Brelly algorithm

runs in O(kT �(V; V )) time and O(kV ) space.

Proof: The total space is dominated by the locks shadow space. For any location l,

the Brelly algorithm stores at most k locks in locks[l ] at any time, since locks are

placed in locks[l ] only in line 2 and jHj � k. Hence, the total space is O(kV ).
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Each loop in Figure 3-2 takes O(k) time if lock sets are kept in sorted order,

excluding the checking of nonlocker [h] k e in line 12, which dominates the asymptotic

running time of the algorithm. The total number of times nonlocker [h] k e is checked

over the course of the program is at most kT , requiring O(kT �(V; V )) time.
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Chapter 4

Related Work

In this chapter, we compare the All-Sets and Brelly algorithms to previous race

detection algorithms in the literature. Although they may not have made it explicit,

these past algorithms also detect dag races, and not data races. (Further discussion

of the di�erence between the two kinds of races is given in Chapters 5 and 7.) We

focus on dynamic, on-the-
y debugging tools. On-the-
y tools detect races as the

program executes and are generally more e�cient than postmortem tools, which run

detection algorithms on program execution traces.

Figure 4-1 summarizes the comparison of All-Sets and Brelly with previous

work. (This �gure is the �gure from Chapter 1 with tighter bounds for All-Sets

and Dinning and Schonberg's Lock Covers.) The All-Sets algorithm is the fastest

algorithm that precisely detects dag races in programs that use locks. The Brelly

algorithm is the fastest algorithm that detects locking discipline violations in fully

series-parallel programs.

The original work in this area was the English-Hebrew labeling method proposed

by Nudler and Rudolph [36]. Their model assumes nested parallelism similar to Cilk's

spawn/sync, but does not address programs that use locks.1 In order to determine the

logical relation between threads, each thread is given an English label and a Hebrew

label. The ith child of a thread is labeled with i appended to its parents' label, where

1Nudler and Rudolph do discuss handling explicit synchronization operations between parallel

threads, but we do not discuss that portion of the algorithm here.
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Handles

Algorithm Handles series- Detects Time per Total

locks parallel memory access space

dags

English-Hebrew NO YES Dag races O(pt) O(V t+min(bp; V tp))

labeling [36]

Task NO YES Dag races O(t) O(t2 + V t)

Recycling [10]

O�set-span NO YES Dag races O(p) O(V +min(bp; V p))

Labeling [28]

SP-bags [14] NO YES Dag races O(�(V; V )) O(V )

Lock YES YES Dag races O(tk2L) O(t2 + tkLV )

Covers [11]

Eraser

Eraser [39] YES NO discipline O(k) O(kV )

violations

All-Sets YES YES Dag races O(L(k + �(V; V ))) O(kLV )

Umbrella

Brelly YES YES discipline O(k �(V; V )) O(kV )

violations

p = maximum depth of nested parallelism

t = maximum number of logically concurrent threads

V = number of shared memory locations used

b = total number of threads in the computation

k = maximum number of locks held simultaneously

L = maximum number of distinct lock sets used to access a location

Figure 4-1: Comparison of dag-race detection algorithms. This �gure gives tighter bounds

for All-Sets and Lock Covers than those given in Figure 1-6.

i is counted left to right for the English label and right to left for the Hebrew label.

If each label of e1 is less than the corresponding label of e2, then e1 � e2.

The length of the labels is O(p), where p is the maximum depth of nested paral-

lelism. In addition to keeping the labels, the algorithm must keep an \access history"

for each memory location. An access history is a list containing information on

which threads have accessed the location. (The access histories are essentially de-

signed to keep the same information that the Nondeterminator-2 keeps in its shadow

spaces.) In this case, the access history is a list of pointers to labels. The access
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history for each location may grow as large as the maximum number of logically con-

current threads t. The reason for this potentially large growth is that all concurrent

threads that read the location must be noted in the access history. The parallel rela-

tion k is not transitive. So if two threads e1 k e2 both read a memory location, they

must both be noted in the access history, because a write to that location by another

thread e3 must be checked with both e1 and e2 for dag races.

If the program uses a total of V shared memory locations, then the algorithm keeps

O(V t) pointers in access histories. With reference counting garbage collection, the

storage for the labels can be bounded by O(V tp). This storage can also be bounded

by O(bp), where b is the total number of threads in the execution. Thus, the total

amount of space used by the English-Hebrew labeling scheme is O(V t+min(bp; V tp)).

At each memory access, the algorithm does O(t) comparisons of size O(p) labels, for

a time of O(pt). Essentially, then, the algorithm slows down ordinary execution by a

factor of O(pt).2

The task recycling algorithm, due to Dinning and Schonberg [10], records more

information in order to reduce the time to check if two threads are concurrent. Like

English-Hebrew labeling, the algorithm does not address programs with locks. The

algorithm uses at most t task identi�ers, which it assigns to all the threads. To

distinguish between multiple threads with the same task id, each thread is a given

a unique version number for its task. In addition, each currently executing thread e

maintains a parent vector of size t. The ith entry in this vector denotes the largest

version number for task i that serially precedes e. Thus, determining the logical

relationship between threads requires only a constant time operation|a vector lookup

and version number comparison.

The task recycling algorithm, however, must still keep the O(t) size access history

for each memory location. Thus, at each access, the algorithm performs O(t) opera-

tions, each taking O(1) time, for a program slowdown of O(t). Up to t threads may

2To be fully precise, we should also mention the O(p) time to create and join threads. This

term can be ignored when compared with the O(pt) operation at each memory access, and anyway

memory accesses occur much more frequently than thread creation/termination in most programs.
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require size t parent vectors, so the parents vectors require O(t2) space. The storage

for parent vectors together with the space for access histories yields O(t2 + V t) total

space.

Mellor-Crummey's o�set-span labeling approach [28] reduces the size of access

histories by keeping ids only for \lowest leftmost" and \lowest rightmost" readers. In

this way, all dag races can be found, because a write that races with any read also

races with one of the reads in the access history. The space for the access histories is

therefore reduced to O(V ). To determine concurrency, each thread is assigned a label

which consists of a sequence of o�set-span pairs. The ith child thread is labeled by

appending the pair [i; s] to its parent's label, where s is the total number of children

being created, the span , and i is called the o�set . The mechanism for thread joining

is complicated, but the idea is that one of the pairs [o; s] is replaced with [o + s; s].

We can check if thread e1 precedes e2 by checking if the threads' labels contain pairs

[o1; s] and [o2; s], respectively, such that o1 mod s = o2 mod s.

The maximum size of labels is once again O(p), so the space for the labels is

bounded by O(V p) (assuming garbage collection). This space is also bounded by

(bp), so the total space of the algorithm is O(V +min(bp; V p)). Assuming that mod

is a constant time operation, the time to check each memory access is just O(p), the

time to compare two labels.

The SP-bags algorithm [14], as we have seen, uses a variation on Tarjan's least

common ancestor algorithm to �nd the logical relationships between threads. This

algorithm runs in �(V; V ) amortized time per memory access, and its disjoint set

structure requires O(V ) space when reference counting garbage collection is used.

One key idea of SP-bags is that by running the program in a known serial order, the

size of the access history can be reduced, because the relation k is pseudotransitive

(Lemma 2). SP-bags thus keeps only one reader per access history and so requires

only O(V ) total space.

So far all of the algorithms we have discussed do not properly handle programs

with locks. That is, they report as dag races parallel updates, even if those updates

hold a lock in common. Dinning and Schonberg give a way to extend their previous
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work to correctly identify dag races in programs with locks [11]. The idea is to keep,

for every thread id in an access history, the set of locks that were held at the time

of that access. Accesses that use distinct locksets must all be recorded in the access

history. Dinning and Schonberg's Lock Covers algorithm maintains access histories

of size O(tkL), where k is the maximum number of locks held simultaneously, and

L is the maximum of the number of distinct lock sets used to access any particular

location.

Dinning and Schonberg do not specify how this algorithm should determine con-

currency. If we assume they use their earlier task recycling algorithm, then concur-

rency can be determined in O(1) time and O(t2) space. In order to detect dag races,

the algorithm must also intersect sets of locks; such an intersection requires O(k)

time (assuming the sets are sorted in some way). The algorithm therefore requires

O(tk2L) time per memory access and O(t2 + tkLV ) total space.

The All-Sets algorithm, then, can be seen as a variation of Lock Covers that

achieves better asymptotic performance by using the same ideas as the original

Nondeterminator|the disjoint set structure and the pseudotransitivity of k. As we

have seen, the algorithm uses O(kLV ) space and O(L(k + �(V; V ))) amortized time

per memory access.

Savage et al. [39] originally proposed the idea of using a locking discipline for

race-detection purposes. Their discipline requires that every access to a variable that

is shared be protected a single lock. Their model does not allow for nested parallelism

or barriers. Rather, they simply assume that all accesses are in parallel with each

other.3 At each access, the set of locks that is allowed to protect the location being

accessed is intersected with the currently held set of locks. This operation takes O(k)

time and requires the access history to hold a lockset of size O(k). So Eraser takes

O(k) time per memory access, and requires a total of (kV ) space.

The Brelly algorithm can therefore be seen as an application of the idea of

3Actually, Eraser allows for an initial serial \initialization phase" in which a variable may be

written without being protected by a lock. This phase is assumed to end as soon as an access in

a di�erent thread occurs. This access itself may constitute a race, but Eraser does not report this

possibility.
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locking disciplines to a general series-parallel environment. Its O(k �(V; V )) amortized

time per memory access and O(kV ) space usage are almost equivalent to Eraser's

asymptotic bounds.

Others have proposed detecting races by \piggybacking" on the machine's cache

coherence protocol [30, 37]. In principle, such piggybacking is only useful in detecting

data races that actually occur in an execution. That is, the cache coherence protocol

can detect when threads that actually run in parallel access the same location. To

detect races based on logical relationships, these approaches must do extra work

similar to the other algorithms we have seen.

Comparing times per memory access is slightly unfair, because SP-bags, All-

Sets, and Brelly all run in series, whereas the other algorithms run in parallel. The

other algorithms, however, need to add extra locking in order to synchronize between

updates to the access histories. This synchronization adds extra work to the program

and may reduce its parallelism as well. Additionally, running the debugger in parallel

means that if the input program is nondeterministic, then the debugger itself will

be nondeterministic. This behavior is probably not desirable when debugging, as

programmers may need to run the debugger several times if they plan on �xing race

bugs one-by-one.
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Part II

Theory of Nondeterminism
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Chapter 5

Nondeterminism

In this chapter, we give a model for de�ning nondeterminism and use that model to

de�ne a hierarchy of forms of nondeterminism. The model allows programmers to

de�ne the speci�c form of nondeterminism that they care about for any particular

program. The model is used in Chapters 7 and 8 to precisely explain the guarantees

of determinacy that the Nondeterminator-2 provides.

A model for Cilk execution

In order to describe nondeterministic program executions, we �rst give a formal mul-

tithreaded machine model that describes the actual execution of a Cilk program.

In particular, we explain how a program execution can be viewed as a sequence of

\instruction instantiations."

We can view the abstract execution machine for a multithreaded language as a

(sequentially consistent [26]) shared memory together with a collection of inter-

preters. (See [4, 9, 20] for examples of multithreaded implementations similar to

this model.) Each interpreter contains private state which only it can modify. Part

of its private state is a program counter , which points to an instruction within the

code for the program. (We assume that the code is read-only, and so where it resides

is immaterial.) The state of the multithreaded machine can be viewed as a private

state vector , consisting of the private interpreter states, together with a shared
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state vector , consisting of the shared memory. Both state vectors may grow and

shrink during execution, since new interpreters are created and destroyed, and shared

memory can be allocated and freed.

Although a multithreaded execution may proceed in parallel, we consider a seri-

alization of the execution in which only one interpreter executes at a time, but the

instructions of the di�erent interpreters may be interleaved.1 The initial state of the

machine consists of a single interpreter whose program counter points to the �rst

instruction of the program. At each step, a nondeterministic choice among the cur-

rent nonblocked interpreters is made, and the instruction pointed to by its program

counter is executed.

When an instruction is executed by an interpreter, it maps the current state of

the multithreaded machine to a new state.2 There are eight types of instructions3:

alu: Modi�es only the state of the interpreter that executes it.

read: Loads a value from shared memory into the local interpreter state.

write: Stores a value into shared memory from the local interpreter state.

lock: Acquires a speci�ed lock (special location in shared memory). Cannot be

executed unless no other interpreter holds the lock.

unlock: Releases a speci�ed lock.

spawn: Creates a new interpreter with a speci�ed program counter and local state.

The new interpreter is a child of the original interpreter.

sync: No-op. Cannot be executed unless the interpreter has no children.

return: Syncs, then destroys the interpreter.

1The fact that any parallel execution can be simulated in this fashion is a consequence of our choice

of sequential consistency as the memory model. The model also assumes that single instructions are

guaranteed to be atomic by the hardware, which is the case in most modern machine architectures.
2An instruction can formally be said to be a state to state mapping. This de�nition means that

an instruction itself is always deterministic; we do not discuss random number generators or other

forms of \serial nondeterminism."
3Two additional instructions, malloc and free, are discussed in Chapter 9.
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In addition to performing one of these actions, executing an instruction typically

causes an interpreter to modify its program counter to point to the next instruction

in the program. Only an alu instruction is allowed to modify the program counter

to become anything other than the next instruction speci�ed by the program.4 An

interpreter whose next instruction cannot be executed is said to be blocked . If all

interpreters are blocked, the machine is deadlocked , and the execution is said to be

a deadlock execution .

Additionally, during the execution of a program, we can assign a unique inter-

preter name to each interpreter, in the following manner. The �rst interpreter

is named by some �xed string, say \Interpreter." At each spawn, an interpreter

names the newly created child interpreter by appending the number of children it

has spawned to its own name. For example, the interpreter that is the third child

spawned from the fourth child of the initial interpreter is named \Interpreter43."

When an instruction executes in a run of a program, it has a dynamic e�ect on

the state of the machine. To formalize the e�ect of an instruction execution, we

de�ne an instantiation of an instruction to be a 3-tuple consisting of an instruction

I, the shared memory location l on which I operates (if any), and the name of the

interpreter that executes I. (Technically, this 3-tuple should probably be called a

partial instantiation, as it does not specify all the values involved in the execution of

I, but we refer to it as an instantiation for convenience.) By examining the eight types

of machine instructions, we can see that when an interpreter executes an instruction,

the instantiation of that instruction is entirely determined by the private state of the

interpreter.

We therefore think of an execution of a program to be the sequence of instan-

tiations resulting from running the machine model on the program. This view of

executions is precisely the reason we have de�ned the concept of an instantiation:

to make it explicit which memory locations are touched by the instructions of an

execution. This formulation makes it easier to de�ne nondeterminism.

4In other words, the program may not branch on a value in shared memory. It must �rst read

that value into private memory, and then issue a branching alu instruction.
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A model of nondeterminism

This section provides a framework for de�ning forms of nondeterminism, and de�nes

a few common nondeterminacy classes. In particular, we give a formal de�nition of

what it means for a program to have a data race.

From the English de�nition of the word, a program might be called \nondeter-

ministic" if it produces di�ering behaviors on di�erent executions. Many forms of

nondeterminism are possible, however. Nondeterminism may be intended by the pro-

gram, or it may be an accidental artifact of parallel execution. A program might

behave nondeterministically \in the middle" of execution but produce a deterministic

answer.

Rather than using the term \nondeterministic" ambiguously, it is desirable to dis-

tinguish between its many forms. Emrath and Padua [13] call a program determi-

nate if it \always leads to the same results," or nondeterminate otherwise. They

further divide these categories into subcategories. They call a program internally

determinate if the sequence of instructions each thread executes, along with the val-

ues of the variables used by each instruction, is determinate. If a program's output is

determinate, but the program is not internally determinate, Emrath and Padua say

it is externally determinate. A nondeterminate program is called associatively

nondeterminate if the nondeterminate output is due only to lack of associativity

of 
oating-point operations, or completely nondeterminate otherwise.

Netzer and Miller [35] use a formal model of program behavior based on Lamport's

theory of concurrent systems [27] to de�ne nondeterminism. They are speci�cally

concerned with de�ning race conditions. They de�ne a general race to occur in

a program when two con
icting memory accesses are not forced to occur in a �xed

order. The idea is that a general race is a bug in a program that is intended to be

deterministic. A data race, on the other hand, is a bug in a program that's intended

to be nondeterministic, and represents only nonatomic execution of critical sections.

Netzer and Miller further distinguish both general and data races as being either

\feasible" or \apparent." A feasible race is one which could occur in an actual
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execution of the program. An apparent race is a race that appears when only the

explicit synchronization of the program is considered. Netzer and Miller say that

apparent races are approximations to feasible races, and that most race detection

algorithms implicitly detect apparent races.

We present our own formal model for de�ning types of nondeterminism. Our goal

is twofold. First, we would like to be able to de�ne a framework in which any form

of nondeterminism can be de�ned. Rather than de�ning the particular forms that

we think are important, our formalization makes it possible to de�ne an unlimited

number of types of nondeterminism.

Secondly, our formalism allows us to explain precisely what our proposed race

detection algorithms do. We discuss program executions at the instruction level, so

that the model is easy to understand. An instruction has a precisely de�ned meaning,

and so may be easier to reason about than a model based on \events."

We observe that it does not really make sense to speak of a single execution

as being nondeterministic, because nondeterminism implies that multiple executions

produce varying results. Therefore, we de�ne a set of executions as being deterministic

or nondeterministic. Initially, the set of executions we consider are the executions that

the program can generate according to the machine model. Later in this thesis, we

consider other sets of executions as well.

To de�ne a form of nondeterminism, we de�ne an equivalence relation � on exe-

cutions. Thus, a set of executions X is nondeterministic under � if there exists

executions X1; X2 2 X such that X1 6� X2. Similarly, X is deterministic under

� if X1 � X2 for all X1; X2 2 X .

Using this approach, we can de�ne many forms of nondeterminism. We discuss

several common possibilities here. Rather than explicitly saying \deterministic under

equivalence relation �," we often call such programs \� deterministic."

As Emrath and Padua point out, a program may be deterministic on one input

but nondeterministic on another. Since we have chosen to de�ne forms of determinacy

on sets of executions, we are implicitly discussing the determinacy of a program for

a given input.
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Serial determinacy

Location determinacy

Read-permute determinacy

Final-state determinacy

Data race freedom

Figure 5-1: The hierarchy of determinacy classes. Each oval in the diagram represents

the set of programs that satisfy a particular de�nition of determinacy.

A hierarchy of determinism

Figure 5-1 shows the hierarchy of determinism (or nondeterminism) that we de�ne.

This chapter does not formally show the relationships between the di�erent types

of nondeterminism, but each relationship can either be inferred directly from the

de�nition or is shown later in this thesis.

An execution is serial equivalent only to itself. Therefore, a program is serial

deterministic if it generates only one execution, namely, if it is a serial program.

Recall that an execution X is de�ned to be a sequence of instantiations, where an

instantiation x is a triple h I; l; � i consisting of instruction I, memory location l,

and interpreter �. For such an instantiation, we de�ne the selectors I, L, and N such

that I(x) = I, L(x) = l, and N (x) = �. Let us de�ne the location subsequence
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Xjl of location l on execution X to be the subsequence formed by taking all xi 2 X

such that L(xi) = l.5 We also will use � to denote a permutation on a set of integers.

Two executions X = x1x2 : : : xm and Y = y1y2 : : : yn are location equivalent if

the following two conditions hold:

1. There exists a permutation � such that xi = y�(i) for all i 2 1; 2; : : : ; n

(and hence n = m).

2. For all memory locations l, we have Xjl = Y jl.

In other words, a location deterministic program is allowed to have operations

on di�erent memory locations interleaved, but the operations on each individual mem-

ory location must be serialized in a �xed order.

We can weaken this de�nition of determinacy by allowing reads to be permuted.

Two executions X = x1x2 : : : xm and Y = y1y2 : : : yn are read permute equiva-

lent if both of the following conditions are true:

1. There exists a permutation � such that xi = y�(i) for all i 2 1; 2; : : : ; n

(and hence n = m).

2. For all memory locations l, there exists a permutation �l such that the

following two conditions hold:

(a) xi 2 Xjl if and only if y�l(i) 2 Y jl.

(b) If I(xi) or I(xj) is not a read instruction for any xi; xj 2 Xjl,

then i < j ) �l(i) < �l(j).

A read permute deterministic program, therefore, is allowed to have reads

of the same memory location permuted around each other, but not around writes to

that location. Read-permute determinism is what is typically meant by just the word

\deterministic."

Two executions are �nal state equivalent if both leave the machine in the same

5Given a sequence X = x1x2 : : : xm, another sequence Z = z1z2 : : : zk is a subsequence of X if

there exists a strictly increasing sequence i1i2 : : : ik of indices of X such that for all j = 1; 2; : : : k,

we have xij = zj .
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exact state after completion. Programs that are �nal state deterministic are also

called determinate.

Many more forms of determinacy exist that one might like to de�ne. It might

be useful to have a concept of \observable determinacy," meaning that only the

externally observable state of the machine is determinate. Another possible form of

determinacy is to allow writes to be permuted when they are part of commutative

critical sections.6 This particular form of determinacy resurfaces in Chapter 8. For

now, we use our framework to de�ne race conditions formally. Race conditions are of

particular interest because they can be viewed as a \local" form of nondeterminism.

Such local properties are usually easier to detect than large properties of the entire

program.

A data race exists between two executions X = x1x2 : : : xm and Y = y1y2 : : : yn

if there exists an integer i in the range 1 � i < min(m;n) such that the following four

conditions hold:

1. x1x2 : : : xi�1 = y1y2 : : : yi�1,

2. L(xi) = L(xi+1),

3. xi = yi+1 and xi+1 = yi,

4. I(xi) or I(xi+1) is a write instruction.

A program (with input) has a data race if any two of its executions have a data

race between them. In other words, the program exhibits a data race when it can run

a �xed sequence of instructions up to the point of the race, and then execute in either

order two con
icting instructions. This de�nition captures the idea of \simultaneous"

con
icting instructions, in light of the fact that the instructions themselves are atomic.

6Determinacy that allows permutation of commuting critical sections is not the same as �nal-state

determinacy, for programs with noncommuting critical sections may still be �nal-state deterministic.
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Chapter 6

Complexity of Race Detection

Ideally, we would have an algorithm to detect nondeterminacy for each form of non-

determinacy de�ned in Chapter 5, and programmers would use whatever algorithm

best suited their own programs. In most cases, however, precise detection of nonde-

terminacy is extremely di�cult, if not impossible. Precise detection of data races,

like all nontrivial properties of programs, is undecidable. Furthermore, in this chap-

ter we show that even in simpli�ed models, detecting data races is computationally

intractable. We argue that the Nondeterminator-2's detection of dag races is a com-

putationally practical approximation to data-race detection.

Theorem 10 Detection of data races in Cilk programs is undecidable.

Proof: The proof is similar to the standard programming proof of the undecidability

of the halting problem. Assume there exists a serial decider has data race that takes

as input a Program P (represented as a string). has data race returns TRUE if P has

a data race, or FALSE if not.

Consider the program in Figure 6-1. The routine Run code with a race(), if

executed, may exhibit a data race. If we pass the DoOpposite program as an ar-

gument to itself, we obtain a contradiction. For, if has data race(DoOpposite)

returns TRUE, then DoOpposite returns without ever having a data race. If has

data race(DoOpposite) returns FALSE, then DoOpposite executes Run code with
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cilk int DoOpposite(Program P)

{

if (has_data_race(P))

{

return 0;

}

else

{

spawn Run_code_with_a_race();

sync;

return 0;

}

}

Figure 6-1: A program used to contradict the existence of a decider for race detection.

a race(), and so has a data race. Therefore, the serial decider has data race cannot

exist.

The implication of Theorem 10 is that we cannot detect data races exactly at

compile time. (We typically do not want to take the risk that our compiler may

run forever.) The question, then, is whether data races can be detected exactly at

run-time. Running the program does not suddenly turn an undecidable problem into

a decidable one. Rather, the program itself may still run forever. If we assume that

the program halts, however, then we may be able to guarantee that a detection tool

would halt.

The �rst observation about this approach is that when the program runs, there

may be portions of the code that do not execute at all due to the particular scheduling.

For that code, we are back to the original problem. We can't statically �nd races, so

we need to run that code as well and assume it terminates. Thus, if we assume that

every scheduling of the program terminates, we may be able to exactly detect data

races by running all possible schedulings. This approach requires O(T !) time, where

T is the ordinary execution time of the program.

This bound, while �nite, is far too expensive for a practical debugging tool. The

next question, then, is whether we can ignore code that is never executed and just

attempt to detect all data races in the code that gets run at least once. (This idea
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itself is not very well de�ned, but this particular discussion is intended to be informal.)

When critical sections execute, they occur in a particular order, but exactly detect-

ing data races requires determining whether critical sections \synchronize." Consider

the program in Figure 6-2(a). Whether the writes to x in Write1 and Write2 con-

stitute a data race depends on the behavior of the Unknown1 and Unknown2 routines.

If Unknown1 and Unknown2 do not a�ect each other's control 
ow, as is the case in

Figure 6-2(b), then the program has a data race, and the �nal value of x may be

either 1 or 2. The code in Figure 6-2(c), however, is also possible. In that code,

Unknown2 does not complete until Unknown1 runs �rst. In that case, there is no data

race, for the assignment x = 2 must always occur after the assignment x = 1.

In general, Unknown1 and Unknown2 could be arbitrary operations. In order to

detect whether the program in Figure 6-2 has a data race, we must determine whether

Unknown1 and Unknown2 synchronize each other in some way. This determination can

be shown to be undecidable in a similar fashion to the earlier undecidability proof.

One possible simpli�cation is to assume that critical sections always form some

kind of synchronization operation. We can model this simpli�cation by assuming

that every critical section is either an increment or a decrement of some \semaphore"

variable. A semaphore variable may be incremented or decremented, but may never

become negative. That is, if the semaphore is 0, then a decrement operation must

wait until the semaphore becomes positive before proceeding. We will refer to this

requirement as the semaphore constraint .

In this model, we do not need to discern the behavior of critical sections, as they

are assumed to be semaphore operations, and so we avoid that undecidable problem.

We still need to discern which instruction orderings are allowed by the semaphore

constraint, however. That is, in Figure 6-2(c), the statement x = 2 must always occur

after x = 1. If, however, there were a third parallel procedure that also incremented

done, then x = 2 could happen before x = 1, and there would be a data race.

For a program that runs in time T , discovering which reorderings of the instruc-

tions conform to the semaphore constraint can be reduced from a size T graph problem

that is NP-hard [25]. Thus, even in the simpli�ed case where all critical sections are
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int x; void Unknown1() void Unknown1()

int done; { {

Cilk_lockvar A; done++; done++;

} }

cilk int main()

{ void Unknown2() void Unknown2()

done = 0; { {

spawn Write1(); done++; while (!done)

spawn Write2(); } {

sync; /* allow Unknown1()

printf("%d", x); to acquire A */

return 0; Cilk_unlock(A);

} Cilk_lock(A);

}

cilk void Write1() }

{

x = 1;

Cilk_lock(A);

Unknown1();

Cilk_unlock(A);

}

cilk void Write2()

{

Cilk_lock(A);

Unknown2();

Cilk_unlock(A);

x = 2;

}

(a) (b) (c)

Figure 6-2: The program in (a) may exhibit a data race on x depending on the behavior

of Unknown1 and Unknown2. (b) shows an example of these routines that leads to a race on

x, whereas (c) shows an example that does not.
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known to be semaphore operations, exact detection of data races is still computation-

ally infeasible.

The Nondeterminator-2, therefore, does essentially the opposite: It assumes that

critical sections do not synchronize each other in any way. In other words, the

Nondeterminator-2 assumes that locks are being used only to provide atomicity,

and not to implement synchronization. Thus, for the program in Figure 6-2(c), the

Nondeterminator-2 reports a data race when there is none. This chapter has shown,

however, that any computationally practical algorithm cannot be 100 percent accu-

rate in its race-detection reporting. The precise meaning of the Nondeterminator's

race reports is discussed and formalized in the next few chapters.

An alternate assumption also allows computationally feasible race detection al-

gorithms. This approach only considers the particular semaphore ordering that is

exhibited in one execution of the program, rather than attempting to discern other

orderings. The advantage of this approach is that it only detects true data races. The

problem, however, is that many data races will be missed when, as is commonly the

case, critical sections do not synchronize.
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Chapter 7

The Dag Execution Model

We have seen that detection of data races is computationally infeasible, but we

have also seen that the Nondeterminator can e�ciently detect dag races. In this

chapter, we explain precisely why dag races are not the same thing as data races.

Since the Nondeterminator-2 detects dag races, this chapter details exactly when the

Nondeterminator-2 reports bugs that are not data races, and when the tool fails to

report data races.

When a Cilk program executes, it generates an associated computation dag.1 The

idea is that a dag generated by a single execution contains information about other

possible executions of the program. By examining the dag, we can glean information

about executions other than the one that was actually run. In other words, the dag

is an attempt to abstract away from a particular scheduling of threads to processors.

Hence, the dag contains \logical" relationships rather than \actual" ones. These

logical relationships, however, only represent the synchronization of the program due

to parallel control constructs, and not any synchronization that may occur due to the

operation of critical sections on shared memory.

1Formally, a computation dag can be constructed from an execution as follows. An initial node is

created that can be considered to correspond to the initialization of the �rst interpreter. Whenever

an interpreter executes an instruction I other than a return, with instantiation x, the interpreter

creates a new vertex x and adds to the dag an edge y ! x from its last executed instantiation y to x.

If the instruction is a spawn, an additional instantiation z is created (representing the initialization

of the child interpreter), and the edge y ! z is added to the dag. If the instruction is a return,

no new vertex is created, but an edge goes from y to the vertex created by the next sync of the

interpreter's parent.
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A scheduling X of a dag G is a topological sort of the dag.2 A scheduling is

legal if, for any two lock statements that acquire the same lock, there is an unlock

of that lock in between them. A dag G0 is said to be a pre�x of a dag G, if, for any

nodes x and y such that x �G y and y 2 G0, we have x �G0 y. A partial scheduling

of G is a legal scheduling of a pre�x of G, and if any partial scheduling of G can

be extended to a scheduling of G, we say that G is deadlock free. Otherwise, G

has at least one deadlock scheduling , which is a partial scheduling that cannot be

extended.

A legal scheduling of a dag, therefore, is an approximation to an execution of the

program. When a legal scheduling of the dag corresponds to an actual execution

of the program as de�ned by the machine model, we say that the scheduling is a

feasible scheduling ; otherwise, it is an infeasible scheduling .

It may in fact be the case that a legal scheduling of a dag is not feasible, for two

possible reasons. The �rst reason is demonstrated by the program and corresponding

dag in Figure 7-1.3 In particular, that dag is generated when bar1 obtains lock A

before bar2. Every scheduling of this dag contains the instantiation x6 even though

it does not occur in every execution. (If bar2 obtains lock A before bar1, then the

y = 3 statement is never executed.) So x0x1x8x9x10x11x3x4x5x6x7x2, for example, is

a legal scheduling that is not feasible.

We call this situation the forced program counter anomaly . A scheduling

of a dag speci�es an entire sequence of instantiations. When the machine model

executes an instantiation, the model also speci�es which instruction should next be

executed by that interpreter. The next instruction executed by that interpreter in

the dag scheduling, on the other hand, is \forced" to be the next one speci�ed in the

dag, and so may not match the one chosen by the machine model.

The other reason that legal schedulings may not be feasible is the forced memory

2A topological sort X of G is a permutation of the nodes of G that satis�es the constraints of

the dag; if x � y in G, then x must occur before y in X .
3Recall that the nodes of a dag are actually instantiations, not instructions. Since each instruction

is executed only once in this example, we simplify notation by labeling the instructions of the program

in Figure 7-1 with the instantiations xi they generate. This labeling is a further simpli�cation because

some lines of the program actually each correspond to multiple machine instantiations.
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int x;

int y;

Cilk lockvar A;

cilk int main()

f

x0 : x = 0;

x1 : Cilk lock init(A);

spawn foo1();

spawn foo2();

sync;

x2 : printf("%d", y);

return 0;

g

cilk void foo1()

f

x3 : Cilk lock(A);

x4 : x++;

x5 : if (x == 1)

x6 : y = 3;

x7 : Cilk unlock(A);

g

cilk void foo2()

f

x8 : Cilk lock(A);

x9 : x++;

x10 : Cilk unlock(A);

x11 : y = 4;

g

AAA
AAA

AA
AA

AA
AA

AA
AA
AA
AA

AA
AA

AA
AA
AAA
AAA

AA
AA

AA
AA

AA
AA

AA
AA

x0 x1

x3 x4 x5 x6 x7

x2

x8 x9 x10 x11

Figure 7-1: A program that generates a dag that exhibits the forced program counter

anomaly. The dag shown here is generated when foo1 acquires lock A before foo2. There

is a dag race between the highlighted instantiations, but the program has no data race.

location anomaly . An instantiation contains a shared memory location. In a dag

scheduling, the sequence of shared memory locations that are read is �xed. This

sequence may not match the memory locations that would be read, however, if the

machine model were to execute the same sequence of instructions. For example, an

instruction might be \read into register 1 the contents of memory that is at the

address contained in register 2." In a dag scheduling, the memory location read

by this instruction's instantiation is �xed, and may not correspond to the location

speci�ed by register 2.

Figure 7-2 shows an example of a program that exhibits the forced memory loca-
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int x[2];

int *y;

int z;

Cilk lockvar A;

cilk int main()

f
x[0] = 0;

x[1] = 1;

y = x;

Cilk lock init(A);

spawn bar1();

spawn bar2();

sync;

printf("%d", x);

return 0;

g

cilk void bar1()

f
Cilk lock(A);

z = *y;

Cilk unlock(A);

g

cilk void bar2()

f
Cilk lock(A);

(*y)++;

Cilk unlock(A);

g

Figure 7-2: A program that exhibits the forced memory location anomaly.

tion anomaly. The memory location that is read in the statement z = *y depends on

whether bar1 or bar2 obtains lock A �rst. Any dag for this program, however, has a

�xed memory location in the instantiation for the read of *y.

Although dag schedulings do not always correspond to machine executions, we can

still consider them as executions of a dag execution machine. The dag execution

machine behaves similarly to the ordinary Cilk execution machine, but the program

counter of each interpreter is always set to point to the next instruction in the dag,

and the memory locations read are those speci�ed in the instantiations, rather than by

the instructions. When viewed as a set of dag execution machine executions, the legal

schedulings of a dag form either a deterministic or nondeterministic set, according to

the de�nitions in Chapter 5. In particular, a dag has a data race if two of its legal

schedulings have a data race between them.

By de�nition, a dag race exists on a computation dag if two logically parallel

threads access the same memory locations while holding no locks in common, and at

least one of the threads writes the location. This de�nition of a dag race is equivalent

to the de�nition of a data race on the set of legal schedulings of a dag. For, if

two parallel threads hold no locks in common, then we can always construct a legal
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int max;

int x;

Cilk lockvar A;

cilk int main()

f

x0 : max = 0;

x1 : Cilk lock init(A);

spawn GetMax1(7);

spawn GetMax1(3);

sync;

x2 : printf("%d", x);

return 0;

g

cilk void GetMax1(int y)

f

x3 : x = max;

x4 : Cilk lock(A);

x5 : if (y > max)

x6 : max = y;

x7 : Cilk unlock(A);

g

cilk void GetMax2(int y)

f

x8 : Cilk lock(A);

x9 : if (y > max)

x10 : max = y;

x11 : Cilk unlock(A);

g
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x3 x4 x5 x6 x7

x2

x8 x9 x11

Figure 7-3: A program with a data race (on variable max) that may not appear as a dag

race due to the forced program counter anomaly. The dag shown, generated when GetMax1

acquires A before GetMax2, does not have a dag race.

scheduling of the dag by scheduling all of the predecessors of the threads, followed by

the threads themselves in either order.

Since dag executions are not always machine executions, it is not surprising that

dag races do not always correspond to data races in the program. Figure 7-1 shows

a program that does not exhibit a data race. Indeed, the �nal value of y is always 4.

The dag in Figure 7-1, however, exhibits a dag race on y, as the two writes to y are

logically in parallel, and do not hold any locks in common.

Additionally, there may be data races in the program that do not appear as dag

races. Such \missing races" once again may be due to the forced memory location or
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forced program counter anomalies. Figure 7-3 shows an example of the latter causing

a data race to be missing from the dag. The program takes the maximum of two

numbers in parallel, but the writes to the max variable depend on the order in which

the critical sections are executed. The dag in Figure 7-3, for example, is generated

by an execution in which GetMax1 obtains lock A before GetMax2. In that dag, the

potential write of max by GetMax2 does not appear. The dag has no dag races, but

there is a data race between the write of max in GetMax2 and the read of max done in

the x = max; statement. The �nal value of x in this program may be either 0 or 3.

There is another reason that data races may not appear as dag races that is not

due to either of the aforementioned anomalies. The reason is that some code may

never be executed, as discussed in Chapter 6. Figure 7-4 shows a simple example.

The dag in Figure 7-4, which has no dag races, is generated by an execution where

WriteX1 obtains lock A before WriteX2. Yet clearly, if the opposite occurred, there

would later be a race on the variable y.

In many cases, therefore, dag races are not the same as data races. Since the

Nondeterminator-2 reports dag races, its reports will not exactly correspond to data

races. When the computation has a dag race that is not actually a data race, the

Nondeterminator-2 will report a \false positive." When the program has a data race

that does not appear as a dag race in the computation, the Nondeterminator-2 will

fail to report that race | a \false negative."

The Nondeterminator-2 detects dag races because, intuitively, they may some-

times be the same as data races, as the dag is an approximation to the semantics of

the program. We would therefore like to answer the question: When is it that dag

races actually correspond to data races?
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int x;

int y;

Cilk lockvar A;

cilk int main()

f

x0 : x = 0;

x1 : y = 0;

x2 : Cilk lock init(A);

spawn WriteX1();

spawn WriteX2();

sync;

x3 : if (x == 1)

f

spawn RaceY(3);

spawn RaceY(4);

sync;

g

x4 : printf("%d", y);

return 0;

g

cilk void WriteX1()

f

x5 : Cilk lock(A);

x6 : x = 1;

x7 : Cilk unlock(A);

g

cilk void WriteX2()

f

x8 : Cilk lock(A);

x9 : x = 2;

x10 : Cilk unlock(A);

g

cilk void RaceY(int z)

f

x11 : y = z;

g

x0 x1 x2

x5 x6 x7

x8 x9 x10

x3 x4

Figure 7-4: A program with a data race (on variable y) that may not appear as a dag

race, because the code that exhibits the race may not be executed. Here we show the

dag generated when the lock A is obtained �rst by WriteX1 and then by WriteX2. As the

instantiation x11 appears nowhere in the dag, there is no dag race.
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Chapter 8

Abelian Programs

In this chapter, we de�ne \abelian" programs and prove that a deadlock-free abelian

program has a data race if and only if every possible generated dag has a dag race.1

Furthermore, we show that the absence of dag races in a single computation of a

deadlock-free abelian program implies that the program, when run on the same input,

is determinate. Thus, the Nondeterminator-2 can verify that a deadlock-free abelian

program is determinate for a given input.

In practice, most programs that use locks in any signi�cant way are not abelian.

The existence of the class of abelian programs is itself interesting, however. This

class shows that there is in fact a formal relationship between dag races and data

races. Furthermore, the guarantee that the Nondeterminator-2 provides for abelian

programs is a somewhat remarkable result, because programs that use locks are gen-

erally \inherently nondeterministic;" that is, they are read-permute nondeterministic.

Nonetheless, abelian read-permute nondeterministic programs can be shown to always

produce the same �nal machine state.

Abelian programs

The program in Figure 8-1 is an example of an abelian program. The program is

read-permute nondeterministic, as the updates to x may happen in di�erent orders.

1Some of the results in this chapter appear in [6].
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int x;

Cilk lockvar A;

cilk int main()

f

x = 0;

Cilk lock init(A);

spawn UpdateX1();

spawn UpdateX2();

sync;

printf("%d", x);

return 0;

g

cilk void UpdateX1()

f

Cilk lock(A);

x += 2;

Cilk unlock(A);

g

cilk void UpdateX2()

f

Cilk lock(A);

x += 3;

Cilk unlock(A);

g

Figure 8-1: An example of an abelian program. This particular program has no data

races or deadlocks, and so is determinate.

In other words, x has an \intermediate" value that is nondeterministically either 2 or

3, but x always ends with a value of 5.

The critical sections in the program in Figure 8-1 obey the following strict de�ni-

tion of commutativity: Two critical sections R1 and R2 commute if, beginning with

any reachable program state S, the execution of R1 followed by R2 yields the same

state S 0 as the execution of R2 followed by R1; and furthermore, in both execution

orders, each critical section must execute the identical sequence of instructions on

the identical memory locations.2 Thus, not only must the program state remain the

same, the same accesses to shared memory must occur, although the values returned

by those accesses may di�er.3 The program in Figure 8-1 also exhibits \properly

nested locking." Locks are properly nested if any thread that acquires a lock a and

then a lock b releases b before releasing a. We say that a program is abelian if any

pair of parallel critical sections that are protected by the same lock commute, and all

2It may be the case that even though R1 and R2 are in parallel, they cannot appear adjacent in

any execution, because a lock that is acquired preceding R1 and released after R1 is also acquired

by R2 (or vice versa). Therefore, we require the additional technical condition that the execution

of R1 followed by any pre�x R0

2
of R2 generates for R

0

2
the same instructions operating on the same

locations as executing R0

2
alone. This requirement is used in the proof of deadlock in Appendix A.

3By requiring that the entire machine state S remain the same, we mean that the private states

of the interpreters that execute R1 and R2, in addition to the shared memory M , must be the

same regardless of the execution order of the regions. This requirement implies that any temporary

variables that are used to store intermediate values should be reset at the end of every critical region,

in order to satisfy the commutativity de�nition. In practice, of course, temporary variables that are

not live at the end of critical regions can be left with nondeterministic values.
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locks in the program are properly nested.

The idea that critical sections should commute is natural. A programmer presum-

ably locks two critical sections with the same lock not only because he intends them

to be atomic, but because he intends them to \do the same thing" no matter in what

order they are executed. The programmer's notion of commutativity is usually less

restrictive, however, than what our de�nition allows. First, both execution orders

of two critical sections may produce distinct program states that the programmer

nevertheless views as equivalent. Our de�nition insists that the program states be

identical. Second, even if they leave identical program states, the two execution or-

ders may cause di�erent memory locations to be accessed. Our de�nition demands

that the same memory locations be accessed.

In practice, therefore, most programs are not abelian, but abelian programs nev-

ertheless form a nontrivial class of nondeterministic programs that can be checked for

determinacy. For example, programs that use locking to accumulate values atomi-

cally, such as a histogram program, fall into this class. Additionally, all programs that

don't use locks at all are abelian. Although abelian programs form an arguably small

class in practice, the algorithms that we present in this thesis can provide guaran-

tees of determinacy for abelian programs that are not provided by any other existing

race-detectors for any class of lock-employing programs.

The converse of the determinacy guarantee is not true. That is, a program may

have a data race, but later deterministically overwrite that value, resulting in a de-

terministic �nal memory state. Also, once a dag race is found, then later parts of the

dag may once again exhibit the forced memory location or forced program counter

anomalies. The guarantee, therefore, is that any computation dag of a deadlock-free

abelian program at least contains a dag race corresponding to the \�rst" data race

of the program (if a data race exists at all).

Proof of the Nondeterminator-2's determinacy guarantee

The proof of the determinacy guarantee centers around \regions" of instantiations,

which are sequences of instantiations executed by a single interpreter. Precisely, a
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region is either a single instantiation other than a lock or unlock instruction,

or a sequence of instantiations that comprise a critical section (including the lock

and unlock instantiations themselves).4 Every instantiation belongs to at least one

region and may belong to many. Since a region is a sequence of instantiations, it is

determined by a particular execution of the program and not by the program code

alone. We de�ne the nesting count of a region R to be the maximum number of

locks that are acquired in R and held simultaneously at some point in R.

Since we are only concerned with the �nal memory states of feasible schedulings,

we de�ne two legal schedulings of G to be equivalent if both are infeasible, or

both are feasible and have the same �nal memory state. An alternate de�nition of

commutativity, then, is that two regions R1 and R2 commute if, beginning with any

reachable machine state S, the instantiation sequences R1R2 and R2R1 are equivalent.

The proof of the equivalence of dag race freedom and �nal-state determinism

proceeds as follows. Starting with a dag-race free, deadlock-free computation G

resulting from the execution of an abelian program, we �rst prove that adjacent

regions in a legal scheduling of G can be commuted. Second, we show that regions

that are spread out in a legal scheduling of G can be grouped together. Third, we

prove that all legal schedulings of G are feasible and yield the same �nal memory

state. Finally, we prove that all executions of the abelian program generate the same

computation and hence the same �nal memory state.

Lemma 11 (Reordering) Let G be a dag-race free, deadlock-free computation re-

sulting from the execution of an abelian program. Let X be some legal scheduling of

G. If regions R1 and R2 appear adjacent in X, i.e., X = X1R1R2X2, and R1 k R2,

then the two schedulings X1R1R2X2 and X1R2R1X2 are equivalent.

Proof: We prove the lemma by double induction on the nesting count of the regions.

Our inductive hypotheses is the theorem as stated for regions R1 of nesting count i

and regions R2 of nesting count j.

4The instantiations within a critical section must be serially related in the dag, as we disallow

parallel control constructs while locks are held.
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Base case: i = 0. Then R1 is a single instantiation. Since R1 and R2 are adjacent

in X and are parallel, no instantiation of R2 can be guarded by a lock that guards R1,

because any lock held at R1 is not released until after R2. Therefore, since G is dag-

race free, either R1 and R2 access di�erent memory locations or R1 is a read and R2

does not write to the location read by R1. In either case, the instantiations of each of

R1 and R2 do not a�ect the behavior of the other, so they can be executed in either

order without a�ecting the �nal memory state.

Base case: j = 0. Symmetric with above.

Inductive step: In general, R1 has nesting count i � 1, and is of the form

lock(a) � � �unlock(a). R2 of count j � 1 has the form lock(b) � � �unlock(b).

If a = b, then R1 and R2 commute by the de�nition of abelian. Otherwise, there are

three possible cases.

Case 1: Lock a appears in R2, and lock b appears in R1. This situation cannot

occur, because it implies that G is not deadlock free, a contradiction. To construct a

deadlock scheduling, we schedule X1 followed by the instantiations of R1 up to (but

not including) the �rst lock(b). Then, we schedule the instantiations of R2 until a

deadlock is reached, which must occur, since R2 contains a lock(a) (although the

deadlock may occur before this instantiation is reached).

Case 2: Lock a does not appear in R2. We start with the sequence X1R1R2X2

and commute pieces of R1 one at a time with R2: �rst, the instantiation unlock(a),

then the (immediate) subregions of R1, and �nally the instantiation lock(a). The

instantiations lock(a) and unlock(a) commute withR2, because a does not appear

anywhere in R2. Each subregion of R1 commutes with R2 by the inductive hypothesis,

because each subregion has lower nesting count than R1. After commuting all of R1

past R2, we have an equivalent execution X1R2R1X2.

Case 3: Lock b does not appear in R1. Symmetric to Case 2.

Lemma 12 (Region grouping) Let G be a dag-race free, deadlock-free computa-

tion resulting from the execution of an abelian program. Let X be some legal scheduling

of G. Then, there exists an equivalent scheduling X 0 of G in which the instantiations
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of every region are contiguous.

Proof: We create X 0 by grouping the regions in X one at a time. Each grouping

operation does not destroy the grouping of already grouped regions, so eventually all

regions are grouped.

Let R be a noncontiguous region in X that completely overlaps no other noncon-

tiguous regions in X. Since region R is noncontiguous, other regions parallel with R

must overlap R in X. We �rst remove all overlapping regions that have exactly one

endpoint (an endpoint is the bounding lock or unlock of a region) in R, where by

\in" R, we mean appearing in X between the endpoints of R. We shall show how

to remove regions that have only their unlock in R. The technique for removing

regions with only their lock in R is symmetric.

Consider the partially overlapping region S with the leftmost unlock in R. Then

all subregions of S that have any instantiations inside R are completely inside R and

are therefore contiguous. We remove S by moving each of its (immediate) subregions

in R to just left of R using commuting operations. Let S1 be the leftmost subregion

of S that is also in R. We can commute S1 with every instruction I to its left until it

is just past the start of R. There are three cases for the type of instruction I. If I is

not a lock or unlock, it commutes with S1 by Lemma 11 because it is a region in

parallel with S1. If I = lock(b) for some lock b, then S1 commutes with I, because

S1 cannot contain lock(b) or unlock(b). If I = unlock(b), then there must exist

a matching lock(b) inside R, because S is chosen to be the region with the leftmost

unlock without a matching lock. Since there is a matching lock in R, the region

de�ned by the lock/unlock pair must be contiguous by the choice of R. Therefore,

we can commute S1 with this whole region at once using Lemma 11.

We can continue to commute S1 to the left until it is just before the start of R.

Repeat for all other subregions of S, left to right. Finally, the unlock at the end of

S can be moved to just before R, because no other lock or unlock of that same

lock appears in R up to that unlock.

Repeat this process for each region overlapping R that has only an unlock in R.

Then, remove all regions that have only their lock in R by pushing them to just
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after R using similar techniques. Finally, when there are no more unmatched lock

or unlock instantiations in R, we can remove any remaining overlapping regions by

pushing them in either direction to just before or just after R. The region R is now

contiguous.

Repeating for each region, we obtain an execution X 0 equivalent to X in which

each region is contiguous.

Lemma 13 Let G be a dag-race free, deadlock-free computation resulting from the

execution of an abelian program. Then every legal scheduling of G is feasible and

yields the same �nal memory state.

Proof: Let X be the execution that generates G. Then X is a feasible scheduling

of G. We wish to show that any legal scheduling Y of G is feasible. We shall

construct a set of equivalent schedulings of G that contain the schedulings X and Y ,

thus proving the lemma.

We construct this set using Lemma 12. Let X 0 and Y 0 be the schedulings of

G with contiguous regions that are obtained by applying Lemma 12 to X and Y ,

respectively. From X 0 and Y 0, we can commute whole regions using Lemma 11 to put

their threads in the serial depth-�rst order speci�ed by G, obtaining schedulings X 00

and Y 00. We have X 00 = Y 00, because a computation has only one serial depth-�rst

scheduling. Thus, all schedulings X, X 0, X 00 = Y 00, Y 0, and Y are equivalent. Since

X is a feasible scheduling, so is Y , and both have the same �nal memory state.

Lemma 14 Let G be a dag-race free, deadlock-free computation resulting from the

execution of an abelian program. Then every machine execution of the program (on

the same input) generates the same dag G.

Proof: Let X be the original machine execution that generated G. Let Y be an

arbitrary execution of the same program. Let H be the computation generated by Y ,

and let Hi be the pre�x of H that is generated by the �rst i instantiations of Y . If

Hi is a pre�x of G for all i, then H = G, proving the lemma. Otherwise, assume for
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contradiction that i0 is the largest value of i for which Hi is a pre�x of G. Suppose

that the (i0 + 1)st instantiation of Y is executed by an interpreter with name �. We

shall derive a contradiction through the creation of a new legal scheduling Z of G.

We construct Z by starting with the �rst i0 instantiations of Y , and next adding the

successor ofHi0 inG that is executed by interpreter �. We then complete Z by adding,

one by one, any nonblocked instantiation from the remaining portion of G. One such

instantiation always exists because G is deadlock free. By Lemma 13, the scheduling

Z that results is a feasible scheduling of G. We thus have two feasible schedulings that

are identical in the �rst i0 instantiations but that di�er in the (i0+1)st instantiation.

In both schedulings the (i0+1)st instantiation is executed by interpreter �. But, the

state of the machine is the same in both Y and Z after the �rst i0 instantiations,

which means that the (i0 + 1)st instantiation must be the same for both, which is a

contradiction.

Theorem 15 An abelian Cilk program that produces a deadlock-free computation with

no dag races is determinate.

Proof: Combine Lemma 13 and Lemma 14.

Theorem 16 A deadlock-free computation produced by an abelian Cilk program has

a dag race if and only if the program has a data race.

Proof: (() If a deadlock-free computation has no dag races, then from Lemma 14,

every machine execution generates the same dag, so every such execution is a schedul-

ing of that dag. Thus, if two machine executions have a data race between them, then

there is also a dag race between them, which is a contradiction.

()) Let G be a deadlock-free computation of an abelian program with a dag race

that is generated by an execution X of the program. Say that the dag race occurs

between instantiations x and y. Let Z = Z1xyZ2 be a legal scheduling of G in which

x and y occur adjacently. (Such a scheduling must exist, because x and y are in

parallel and have no locks in common by de�nition of dag race, and the computation

has no deadlocks.)
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We attempt to use the techniques of Lemma 13 to commute X into the form

of Z. That is, we commute X into the depth-�rst scheduling and then commute that

into Z. We show that each step either succeeds or yields a feasible data race.

If all steps succeed, then Z is feasible. Since x and y are logically in parallel, they

execute on di�erent interpreters. Moreover, since the instantiation of an instruction

depends only on the private state of its interpreter, changing the order of execution

of I(x) and I(y) does not a�ect the instantiations of either of those instructions.

Therefore, Z 0 = Z1yx is a feasible partial execution of the program, and so the

program has a data race between executions Z and Z 0.

The only place where the technique of Lemma 13 can fail is in the base case

of the proof of Lemma 11, as that is the only portion that depends on dag-race

freedom. In that case, we have a scheduling X1R1R2X2 that is equivalent to the

original execution X (and so is feasible), with R1 a single instantiation, say x0, and

R1 k R2. The regions R1 and R2 can successfully be commuted unless x0 writes a

location accessed by R2 or x
0 reads a location written by R2. Let y

0 be the �rst such

con
icting instantiation in R2. Then, we can commute x0 until it is adjacent with

y0, yielding a feasible scheduling X 0

1x
0y0X 0

2. By the same argument as above, X 0

1y
0x0

is also a feasible (partial) execution of the program, and so the program has a data

race. A symmetric argument can be made when R2 consists of a single instantiation

by choosing the last con
icting instantiation in R1.

All of the results so far have assumed a deadlock-free computation, but in gen-

eral, a deadlock-free computation is not equivalent to a deadlock-free program. For-

tunately, the following lemma shows that the programmer does not need to worry

about this distinction when applying Theorems 15 and 16. The proof of this lemma

is complicated and so is left to Appendix A.

Lemma 17 Let G be a dag-race free computation generated by an abelian program.

G is deadlock free if and only if the program is deadlock free (on the same input).
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Corollary 18 If the All-Sets algorithm detects no data races in an execution of a

deadlock-free abelian Cilk program, then the program running on the same input has

no data races and is determinate.

Proof: Combine Theorems 3 and 15 and Lemma 17.

Corollary 19 If the Brelly algorithm detects no violations of the umbrella disci-

pline in an execution of a deadlock-free abelian Cilk program, then the program run

on the same input has no data races and is determinate.

Proof: Combine Theorems 5, 8, and 15 and Lemma 17.
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Part III

Using the Nondeterminator-2
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Chapter 9

Implementation Issues

In this chapter, we discuss practical issues surrounding the implementation and use

of the Nondeterminator-2. We explain how to catch dag races involving the dynamic

memory allocator, and show that memory cannot be recycled without the risk of miss-

ing races. We provide some heuristics for reducing the number of false reports that the

Nondeterminator-2 may produce in the case of nonabelian programs, when dag races

may not really be data races. Finally, we give some timings of the Nondeterminator-2

on a selection of Cilk codes, which show that the algorithms roughly conform to their

theoretical bounds in practice. On all of our sample codes, Brelly is fast enough

to be used as an interactive debugger, but All-Sets sometimes runs too slow to be

practical.

Dynamic memory allocation

Cilk provides the routines Cilk malloc() and Cilk free() to dynamically allocate

and deallocate shared memory. (We refer to these as single instructions malloc and

free in the Cilk machine model.) The �rst observation is that these routines may in

fact be involved in data races. For example, a read of *x occurring in parallel with

the command Cilk free(x) constitutes a race. If the free instruction happens �rst,

then the value in *x might become garbage before it is read.1

1The semantics of free allow it to write garbage into memory, although in practice the memory

really only changes after it is allocated again.
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The solution is to treat the free instruction like a write when it occurs. In other

words, when a free occurs, it is compared with all the past accesses in the shadow

space to check for races. After the free occurs, any later access to the freed memory

(other than a malloc) is an error, regardless of whether the access is a serial or

parallel access. The free instruction therefore puts the special tag FREE ID into the

shadow space. If a later access observes this value, a bug is reported.

Once memory is freed, later accesses to it are always incorrect, regardless of which

locks are held. Therefore, after memory is freed, the history of which locks have been

used to access that memory is no longer needed. The Nondeterminator-2's internal

memory, which is used to store that information, can thus be deallocated as well. This

approach maintains the convenient property that the internal memory for storing lock

sets is only allocated as long as the user's memory is allocated.

When memory is about to be allocated via a malloc statement, the shadow space

contains FREE ID. (The memory allocator is trusted to be correct.) malloc simply

overwrites FREE ID with the id of whatever thread it's running in. In this way, false

positives are not reported when memory is reused. For example, consider two threads

e1 k e2:

Thread e1 Thread e2

*x = 5; y = Cilk malloc(...)

Cilk free(x); *y = 6;

Even though e1 k e2, it is possible that in a particular execution, e1 runs before

e2, and that the address returned from Cilk malloc() and assigned to y is the same

as the address contained in x. It would therefore appear that there is a dag race

between the two writes to that address, *x = 5 and *y = 6, as those two writes are

logically in parallel. The writes do not actually constitute a race, however, because

if the Cilk malloc() statement were executed before the Cilk free(x) statement,

the memory allocator would assure that Cilk malloc() would return an address

di�erent from x. The protocol for the Nondeterminator-2 we have described handles

this situation correctly, because the Cilk malloc() statement puts the ID for thread
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e2 in the shadow space, and so the *y = 6 is a serial access and does not appear to

be a race with the write to *x.

This approach also catches races involving the malloc statement itself. That

is, by writing the current thread id into newly allocated memory, dag races can be

caught if that memory is written in parallel.

There is, however, a problem with the approach we have described. Consider the

following example, which is similar to the one above, but in which e2 writes *x rather

than *y.

Thread e1 Thread e2

*x = 5; y = Cilk malloc(...)

Cilk free(x); *x = 6;

In this example, there is always a race between the writes to *x. This race may

be missed, however, if the Cilk malloc() statement returns the same address as x.

Then the *x = 6 appears to be writing newly allocated memory, rather than writing

to the data pointed to by x.

In order to distinguish this case from the previous one, we need some way to dis-

tinguish between writing to \*x" and \*y" even though both end up writing the same

memory location. Making this distinction requires some understanding of the mean-

ing of the program, rather than just monitoring of the memory locations accessed.

This sort of alias analysis is typically very di�cult, and we do not attempt to do it.

Rather, our solution is very simple. The Nondeterminator-2 does not recycle

memory. That is, when the memory allocator is run in debugging mode, it assures

that Cilk malloc() never returns memory that has previously been allocated. When

memory is freed, it is simply left in the free state forever. In this way, memory is

never aliased, and the problem in the previous example cannot occur.

The justi�cation for this approach is that in modern machines, memory (and

virtual address space) is large and cheap. It is acceptable to use a lot of memory

when debugging; memory is still be recycled when the application is in production

mode. If users do not have enough memory, they can simply turn this feature of the
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Nondeterminator-2 o�, and go back to recycling memory. In that case, however, the

dag race in the last example will be missed.

Reducing false race reports

As we have seen, some dag races may not correspond to data races if they are arti-

facts of other races or of noncommutative critical sections. Other researchers have

attempted to algorithmically identify \�rst races," as compared to later artifacts of

those races [33, 34]. While we do not attempt anything of this magnitude, we do

implement several tricks that can make the race reports of the Nondeterminator-2

more manageable for the user.

The �rst trick is to avoid reporting the \same" race more than once. When a race

is reported, we enter all of the involved line numbers and �le names into a hash table.

If we later encounter a race with the same lines in the same �les, we don't report it,

as it is assumed to be another instance of the same race. This feature is essential

for making the number of races reported be manageable; without it, a single race,

executed over and over again, could produce thousands of lines of debugging reports.

The Brelly algorithm has an additional problem of reporting multiple races. If

an unprotected umbrella is discovered, that umbrella may potentially be reported once

for every access in the umbrella (other than the �rst one). Rather than reporting all

of these separately, the Brelly algorithm should group all the accesses together and

report them all at once. In some cases, it is possible to determine that some subset

of the accesses actually constitutes a dag race, and those accesses can be reported in

preference to the entire umbrella. See [5] for more details.

When false reports due to infeasible dag races occur, we would like to provide some

way for the user to inform the Nondeterminator-2 that these races are infeasible, so

that it can avoid reporting them in future executions. One approach is to allow the

user to \turn o�" the Nondeterminator-2's memory checking, so that certain memory

accesses are ignored. User annotation can either be done lexically via a compiler

pragma or dynamically by setting a global 
ag. While this approach may reduce

race reports, it requires users to manually assure themselves that there are no races
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involving the ignored accesses.

A solution that requires less veri�cation from the user is to use of fake locks|locks

that are acquired and released only in debugging mode, as in the implicit r-lock

fake lock. The user can then protect accesses involved in infeasible dag races using

a common fake lock. Fake locks reduce the number of false reports made by the

Nondeterminator-2, and they require the user to manually check for data races only

between critical sections locked by the same fake lock.

A particularly common cause of false reports is \publishing." One thread allocates

a heap object, initializes it, and then \publishes" it by atomically making a �eld in a

global data structure point to the new object so that the object is now available to

other threads. If a logically parallel thread now accesses the object in parallel through

the global data structure, an infeasible dag race occurs between the initialization of

the object and the access after it was published.

Fake locks do not seem to help much with the publishing problem, because it is

hard for the initializer to know all the other threads that may later access the object,

and we do not wish to suppress data races among those later accesses. One possible

solution is to allow users to explicitly put in publish statements in the program,

to declare that memory is being published. The e�ect of a publish statement is to

erase the history of past accesses that is contained in the shadow space. Since parallel

threads were unable to access the memory up to the point of the publish statement,

accesses before that statement cannot be involved in races.

There are some practical di�culties in using publish in C. The size of struc-

tures may not be known statically, so the user may be required to supply the size.

Furthermore, there is no way to specify that structures that are nested via pointers

are all part of the same \object." The user must therefore explicitly issue a publish

statement for each nested pointer data structure. Publishing of objects could be more

elegantly handled in a strongly-typed language. A possible solution for C is to use

checkpointing technology, which is able to automatically trace through entire data

structures [40]. Even then, the semantics of publish could be di�cult to express if

only parts of a data structure are being published.
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Timings of the Nondeterminator-2

In this section, we give some experimental measurements of the performance of the

Nondeterminator-2.2 As it is a debugging tool, the Nondeterminator-2 does not need

to achieve absolutely optimal performance. Rather, it just needs to be fast enough

to use in an interactive debugging environment.

Our implementations of All-Sets and Brelly have not yet been optimized,

and so the timings presented here are preliminary; better performance than what we

report here is likely to be possible. In particular, our current implementation treats

every read like an access with the fake r-lock, as described in Chapter 2. This

approach requires an allocation of a lock set at every read operation. We expect that

the running time of both algorithms could be greatly improved if we optimized the

common case of reads with no locks held.

According to Theorem 4, the factor by which All-Sets slows down a program is

roughly �(Lk) in the worst case, where L is the maximum number of distinct lock sets

used by the program when accessing any particular location, and k is the maximum

number of locks held by a thread at one time. According to Theorem 9, the worst-case

slowdown factor for Brelly is about �(k). In order to compare our experimental

results with the theoretical bounds, we characterize our four test programs in terms

of the parameters k and L:3

maxflow: A maximum-
ow code based on Goldberg's push-relabel method [17].

Each vertex in the graph contains a lock. Parallel threads perform simple operations

asynchronously on graph edges and vertices. To operate on a vertex u, a thread

acquires u's lock, and to operate on an edge (u; v), the thread acquires both u's lock

and v's lock (making sure not to introduce a deadlock). Thus, for this application, the

maximum number of locks held by a thread is k = 2, and L is at most the maximum

degree of any vertex.

n-body: An n-body gravity simulation using the Barnes-Hut algorithm [1]. In

one phase of the program, parallel threads race to build various parts of an \octtree"

2Some of the results in this section appear in [6].
3These characterizations do not count the implicit fake r-lock used by the detection algorithms.
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Parameters Time (sec.) Slowdown

Program input k L orig. All. Br. All. Br.

maxflow sp. 1K 2 32 0.05 30 3 590 66

sp. 4K 2 64 0.2 484 14 2421 68

d. 256 2 256 0.2 263 15 1315 78

d. 512 2 512 2.0 7578 136 3789 68

n-body 1K 1 1 0.6 47 47 79 78

2K 1 1 1.6 122 119 76 74

bucket 100K 1 1 0.3 22 22 74 73

rad iter. 1 2 65 1.2 109 45 91 37

iter. 2 2 94 1.0 179 45 179 45

iter. 5 2 168 2.8 773 94 276 33

iter. 13 2 528 9.1 13123 559 1442 61

Figure 9-1: Timings of our implementations on a variety of programs and inputs, run

on an UltraSPARC I. (The input parameters are given as sparse/dense and number of

vertices for maxflow, number of bodies for n-body, number of elements for bucket, and

iteration number for rad.) The parameter L is the maximum number of distinct lock sets

used while accessing any particular location, and k is the maximum number of locks held

simultaneously. Running times for the original optimized code, for All-Sets, and for

Brelly are given, as well as the slowdowns of All-Sets and Brelly as compared to the

original running time.

data structure. Each part is protected by an associated lock, and the �rst thread to

acquire that lock builds that part of the structure. As the program never holds more

than one lock at a time, we have k = L = 1.

bucket: A bucket sort [8, Section 9.4]. Parallel threads acquire the lock associated

with a bucket before adding elements to it. This algorithm is analogous to the typical

way a hash table is accessed in parallel. For this program, we have k = L = 1.

rad: The radiosity application (discussed further in Chapter 10). The code locks a

\patch" of the scene along with the \surface" that the patch is on, so that k = 2, and

L is the maximum number of patches per surface, which increases at each iteration

as the rendering is re�ned.

Figure 9-1 shows the preliminary results of our experiments on the test codes.

These results indicate that the performance of All-Sets is indeed dependent on the

parameter L. Essentially no performance di�erence exists between All-Sets and

Brelly when L = 1, but All-Sets gets progressively worse as L increases. On all

of our test programs, Brelly runs fast enough to be useful as a debugging tool. In
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some cases, All-Sets is as fast, but in other cases, the overhead of All-Sets is too

extreme (iteration 13 of rad takes over 3.5 hours) to allow interactive debugging.
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Chapter 10

Parallel Radiosity

In this chapter, we describe our experiences parallelizing a large, real-world radios-

ity application. We view this application as a case study for the usefulness of the

Nondeterminator-2. We used the Nondeterminator-2 to minimize the amount of the

radiosity code that we needed to examine and understand. Figure 10-1 shows the

speedup of our Cilk code as compared to the original optimized C version. With less

than 5 percent of the code from the original version changed, the entire application

achieves a speedup of 5.97 on 8 processors. Furthermore, the Nondeterminator-2 gives

us a high degree of con�dence that the code is actually data-race free.

Goals of parallelizing radiosity

Radiosity is a graphics algorithm for modeling light in di�use environments. It is an

irregular application, and therefore the computation is di�cult to balance statically

across processors. That is, the area where the majority of the CPU time is spent

depends on the input scene, and varies dynamically as the lighting is calculated. In

order to get good performance on a parallel machine, the CPU time must be balanced

evenly across all processors, so that all processors are utilized fully. This balancing

is di�cult to do at compile time when the behavior of the computation is di�cult to

predict.

Cilk provides a dynamic scheduler which balances tasks across processors using
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Figure 10-1: Speedup of the rad application on a maze scene as compared to the original

optimized C code. Measurements were done on an 8-processor 167-MHz UltraSPARC I.

a provably good work-stealing algorithm [4]. Radiosity, then, is a good test for the

capabilities of Cilk's scheduler. Past attempts at parallelizing radiosity have required

the algorithm to be modi�ed with explicit load balancing [41].

In order to e�ectively test Cilk's performance, we prefer not to develop our own

radiosity application. It is somewhat \unfair" to develop such a test by writing code

that is intentionally designed to work well with Cilk. Also, we would prefer to have

a known benchmark against which to measure the parallelized code. Speeding up

our own code by parallelizing it is not convincing, because it might be that serial

optimizations could perform as well or better. Therefore, a better test is to try to

parallelize code that was written and optimized by someone else. If we can speed

up code that has already been optimized by graphics experts, our results clearly

demonstrate the usefulness of Cilk.

We therefore downloaded a radiosity application, rad, which was originally written
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by Bekaert, Suykens de Laet, and Dutre at the Katholieke Universiteit Leuven in

Belgium [2]. The application is large, consisting of 75 source �les and around 25,000

lines of code. The application is written in C, and every C program is a legal Cilk

program, so \porting" the application to Cilk required no e�ort.

Correctly parallelizing the code, however, is not as trivial. The code was not

originally written to be parallelized. Although we might expect certain operations to

be in principle independent, in fact they may use some shared data structures simply

because the programmer implemented it that way. Such code would result in data

races if those operations were executed in parallel.

Ordinarily, in order to parallelize the code without introducing data races, we

would have to search through the entire code looking for shared data structures.

The Nondeterminator-2, however, provides an alternate approach. We simply run

in parallel those operations that we think should in principle be independent. Then

we run the code through the Nondeterminator, which points us to the places in the

code where there is unexpected data sharing. We can �x these problems by copying

the data, or by adding locks. More importantly, we do not need to examine at all

code that is not 
agged by the Nondeterminator-2; we simply leave it as is. In that

way, we minimize the amount of time we need to spend studying and understanding

someone else's code.

When parallelizing the radiosity application, we took precisely this approach of

immediately depending on the Nondeterminator-2, although we actually began by

using the original Nondeterminator and not the Nondeterminator-2. This particular

application was actually developed in conjunction with the Nondeterminator-2, and

served as the inspiration for many of that tool's features. We now illustrate some of

the details of our e�ort in order to give a more concrete sense of what was involved.

The parallelization e�ort

The �rst step was to gain an understanding of the underlying radiosity algorithm, so

we could �gure out what to parallelize. Radiosity is a lighting model that is suited for

di�use environments. Light striking a surface is assumed to undergo an ideal di�use
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re
ection, meaning that it scatters equally in all directions. The di�use re
ection

assumption is in contrast to ray tracing's assumption of specular re
ection, wherein

a beam of light is assumed to re
ect o� a surface in another single beam, with the

angle of re
ection equaling the angle of incidence.

As in many graphics algorithms, radiosity divides the scene into several small

\patches." Each patch i has an associated power per unit area Bi from which the

color of the patch i can be determined.1 The idea is that the power leaving patch i

is the sum of the power emitted by i (if i is a light source) and the power re
ecting

o� i that comes from all of the other patches in the room. This formula leads to the

following set of linear equations [18]:

Bi = Ei + �i�jBjFij

where Bi is the power/area of patch i, Ei is the emitted power/area of patch i, �i

is the re
ectance of patch i, and Fij is the formfactor from i to j, the fraction of

radiant power leaving i that arrives at j.

We can solve for Bi by numerical iteration. The majority of the calculation time,

however, is not spent in the numerical solution, but rather in the calculation of the

formfactors Fij. The formfactor from a point patch i to a patch j is the fraction of

i's hemisphere that j occupies. Computing the formfactor Fij thus requires a double

integral over the points of patch i and patch j. The formfactors are entirely a property

of the geometry of the scene, and do not depend on lighting.

As they are calculated directly from the initial geometry of the scene, distinct

formfactors can be computed in parallel. Since the calculation of formfactors com-

prises the majority of the execution time of the radiosity algorithm, this parallelization

should noticeably speed up the entire execution.

Armed with this knowledge, we searched through the rad code for the calculation

of the formfactors, and ran them in parallel. We then ran the resulting code through

1Actually, the color of patches is determined by assigning colors to vertices and then interpolating

those colors to the rest of the patch, typically with Gourard shading [19].
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the Nondeterminator to look for data races.

Since the code was initially serial, it did not contain any locks, and was there-

fore abelian. One goal of parallelization is to keep the program abelian \as long as

possible," which provides the stronger guarantee for the Nondeterminator-2. (This

strategy often amounts to avoiding introducing locks for as long as possible.) When

�nally forced to make the program nonabelian, the programmer must be sure to think

about the implementation more carefully.

The �rst dag races we ran across in rad involved global variables. In some cases,

these globals appeared to be used only for convenience, to avoid passing them around

as arguments to procedures. We modi�ed the code to pass arguments rather than use

globals whenever possible. Another common use of global variables we found was just

for statistical purposes, such as timings. These statistics can either be ignored in the

parallel execution (i.e. allowed to become garbage values), or they can be updated

atomically through the use of locks. Such atomic updates are commutative, and so

preserve the abelian property of the program.

The rad code does not exactly implement the radiosity algorithm as we have

described it. The code does not precompute all the formfactors and then solve the

numerical system, as computing all the formfactors would require too much CPU

time and memory. Rather, the code interleaves the solution to the system with the

formfactor calculations. Speci�cally, it chooses a single patch i where the error in the

Bi approximation is the greatest. It then improves the estimate for Bi by improving

its approximation of the formfactors Fij for all other patches j. The �rst few itera-

tions of the application, shown in Figure 10-2, demonstrate how the code interleaves

the updating of the patch radiosities with the calculations of the formfactors. This

algorithm poses some problems for the parallel execution, because separate iterations

of the numerical solution cannot be run in parallel, as each iteration is dependent on

the previous one. The calculations of the formfactors from i to all the other patches

j can still be parallelized, however.2

2Once again, we could have rewritten the code to perform more formfactor calculations at once,

but then we would have lost the serial optimizations of the original authors.
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Figure 10-2: The �rst three iterations of the rad program on a maze scene. At each

iteration, the program re�nes its formfactor estimates for the patch where the error is

greatest. In the �rst few iterations, the error is greatest near the light sources, so the

program appears to be \lighting up" the lights one by one.

The formfactors Fij are stored in a linked list in a data structure for patch i.

Thus, we encountered a dag race on the updates to this list, as formfactors were

being added in parallel to it. Fortunately, the order in which the formfactors occur in

the list doesn't matter, so they can be added in parallel as long as the list insertion

operations are made to be atomic. We added a lock to each patch data structure for

this purpose.

This logic causes the program to be nonabelian, as the order of the nodes in the

linked list depends on the order of execution of critical sections. Nonetheless, it is

not hard to argue that the Nondeterminator still catches all dag races involving this

list. The reason is that the code never reads only part of the list; rather, it always

reads the entire list at once. Thus, if any writes race with those reads, they race with

the reads regardless of the order of the elements in the list.

The next di�culty we encountered in our parallelization was patch re�nement.

When the error in the estimate for the formfactor Fij is deemed to be too great,

either patch i or j is re�ned. (The patch re�ned is the one with the greater surface

area.) Re�nement means that the patch is subdivided into smaller patches in order

to get more accurate radiosity estimates.

If two parallel threads attempt to subdivide a patch i at once, a data race occurs

on that patch. It is allowable, however, for either thread to do the actual re�nement,

as long as the re�nement is done only once. This logic can be implemented with

locks. The �rst thread to acquire the \re�nement lock" for the patch performs the
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subdivision, and the second thread waits on that lock. After the �rst thread �nishes

the re�nement and releases the lock, the second thread acquires the lock but discovers

that the re�nement has already been done, and so does not repeat it. Also, re�ning

patch i does not destroy i, it merely creates \subpatches" of i. Therefore, a thread

e1 that re�nes a patch i does not interfere with a parallel thread e2 that calculates

directly with i. We can thus have many parallel threads calculating formfactors for

patch i, some of which re�ne i and some of which do not, without any data races.

This protocol, unfortunately, is entirely nonabelian. A single thread creates and

initializes the subpatches of i. Many parallel threads read these subpatches, resulting

in dag races. These dag races are not actually data races, because the locking protocol

assures that no threads read the subpatches until the \�rst" thread �nishes initializing

them. This protocol is an example of the \publishing" problem discussed in Chapter 9,

and false race reports for this protocol can be avoided by annotating the code with

publish statements.

When a patch is re�ned, the newly created vertices are added to a list stored in

the patch's \surface." A surface is the top-level patch that initially gets created from

the scene description. Multiple patches can thus have the same surface, so we need to

create a lock for each surface that is acquired when vertices are added to it. Adding

vertices to a surface, therefore, is similar to adding formfactors to a patch.

When we initially ran the code, it appeared to be behaving correctly. We later

observed, however, that the code was behaving nondeterministically after running for

about 10 iterations. Investigation of this problem showed that its manifestation was

that a thread would read from freed memory. This discovery led us to think about the

mechanism for detecting races with the memory allocator, as discussed in Chapter 9,

although that turned out not to be the problem in this particular case.

We had been running the code through the Nondeterminator-2 for only one iter-

ation, expecting that all dag races would show up there. We were also at that point

struggling with a large number of false reports (dag races that were not actually data

races). This di�culty led us to the idea of a hash table to avoid reporting the \same"

race twice, as discussed in Chapter 9. After implementing that idea, we ran the
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debugging code for many iterations. Many false reports still showed up in the �rst

iteration, but those were not reported again, so that later iterations did not report

races. The �rst new race report appeared in iteration 10, and this report pointed us

to the bug that we had seen.

At this point, we were able to obtain a reasonable speedup, but we discovered

that the serial code for patch re�nement was taking a lot of the execution time. The

expensive part of this code is that in order to avoid adding duplicate vertices to the

surface's list of vertices, the program must search that list before adding each vertex.

This search can be parallelized, because searching only requires reading the elements

of the list, not writing them.

This parallelization requires an elaborate protocol, which is described in Figure 10-

3. We �rst obtain the lock for the list, and record the head pointer of the list. We

then release the lock and search the rest of the list for the vertex in question. If the

vertex is found, then we don't need to add it to the list, so we're �nished. If the

vertex is not found, then we acquire the lock for the list again in order to add it.

Other vertices, however, may have been added to the list since the time we began

our search. We thus must search the beginning of the list, up to the point where we

began our earlier search, in order to check if a parallel thread has already added the

vertex in question. If not, then we add the vertex to the front of the list while still

holding the lock for the list. The idea of this protocol is that the majority of the

computation time is spent searching the bulk of the list with no locks held, which can

be done by many threads in parallel.3

This protocol is once again nonabelian. When vertices are added to the list, they

are being \published." False races can thus be avoided by judicious use of publish

statements.

As mentioned above, a \re�nement lock" is acquired when a patch is re�ned.

The parallelism within patch re�nement, therefore, actually occurs while a lock is

held. This behavior is in theory disallowed, but in reality it does not cause any fatal

3This code could likely be improved by using a more e�cient data structure than a linked list,

but we do not wish to change the underlying algorithms of the original implementation.
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. . .

SAVE_HEAD

. . .

SAVE_HEAD

. . .

SAVE_HEAD

...

HEAD

Step 1. While holding the lock for the list, record the current head pointer of the list

into a local variable SAVE HEAD.

Step 2. Search the list starting at SAVE HEAD for the particular node in question. If

the node is not found, go to step 3; otherwise, nothing else need be done. The lock

for the list is not held during this step, so many searches may occur in parallel.

Step 3. Acquire the lock for the list again. Search for the node in question from the

current head pointer of the list until the node saved in SAVE HEAD. If the node is not

found, add it to the front of the list.

Figure 10-3: The protocol for adding vertices to the surface's vertex list. Most of the

searching of the list can be done in parallel.
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problems. The only danger is that the Nondeterminator-2 may miss races because

the re�nement lock appears to be protecting the parallel accesses when in fact it does

not. In this particular case, no races are missed, because there are parallel threads

that operate on di�erent patches but the same surface; these parallel accesses are not

protected by any single patch re�nement lock.

When we ran the rad application on many processors, we discovered that the form-

factor calculations and patch re�nement were su�ciently fast that other portions of

the code were becoming bottlenecks. We parallelized two other CPU intensive rou-

tines. One of these routines calculates the color of vertices from the patch radiosities;

this color calculation can be done for the entire scene in parallel. The other routine

performs \T-vertex elimination," which essentially deallocates memory for certain

undesirable kinds of vertices.

Parallelization results

Timings of the rad routines are given in Figure 10-4. As expected, the formfac-

tor/patch re�nement calculations dominate execution time in the one processor exe-

cution. Vertex color computation and T-vertex elimination also comprise a sizeable

portion of the execution time. The rest of the CPU time is labeled \Other," and

corresponds to the remaining code, which was not parallelized. This code includes,

for example, the numerical iterations updating the radiosity values and the hardware

rendering of the scene to the monitor. As the parallel routines speed up in multipro-

cessor execution, the formfactor calculation with patch re�nement is still the most

expensive operation, but the time spent in nonparallelized code becomes comparable.

Figure 10-5 shows these measurements as speedups as compared to the original

optimized C code. In particular, we observe that the one processor Cilk version

is negligibly slower than the original C version.4 The speedup curve for the entire

parallelized application shows the combination of the running times of the four com-

ponents given in Figure 10-4. The entire execution achieves a 5.97 times speedup on

4The added overhead of Cilk procedure calls is balanced by the speedup from Cilk's fast memory

allocator.
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Figure 10-4: Running times of the components of the rad application. Timings were

done of 100 iterations of the application on the maze scene on an 8-processor 167-MHz

UltraSPARC I.

8 processors.

Additionally, Cilk provides a way to measure the work and critical path of the

computation. The work T1 is the time it takes the Cilk program to execute on a

single processor. The critical path T1 is the time it would take to execute the

program on in�nitely many processors. The average parallelism is de�ned to

be T1=T1, and represents a measure of the speedup that the program can obtain.

When the average parallelism of the program is much greater than the number of

processors P being used, a theorem shows that Cilk's scheduler runs the program in

time approximately T1=P with high probability [4]. The average parallelism of the

formfactor calculations is measured as 221. Unfortunately, this measurement does

not account for time spent in contention for user locks; such contention both adds

work for the program and reduces parallelism. On 8 processors, however, the work is

only increased by 18 percent, and the average parallelism is around 195. This high

average parallelism implies that the calculations could be further sped up with more

than 8 processors.
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Figure 10-5: Speedup of the components of the rad application on the maze scene as

compared to the original optimized C code. The measurements were taken on an 8-processor

167-MHz UltraSPARC I.

Upon examination, we �nd that our parallelization changed less than 5 percent of

the total code. We were not required to examine nor understand the majority of the

code. Furthermore, the Nondeterminator-2 gives us reason to believe that the code is

data-race free. The combination of Cilk and the Nondeterminator-2 made it practical

to e�ciently and correctly parallelize this large-scale, real-world application.
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Chapter 11

Conclusion

The many challenges to successfully parallelizing programs include expressing the

parallelism in the program, getting good performance out of parallel hardware, and

debugging. Cilk is designed to address the �rst two issues, and in this thesis, we

have addressed the third. We presented the All-Sets and Brelly algorithms for

�nding dag races, and explained how those races relate to the semantics of the pro-

gram. We showed how these tools were used to parallelize a large, real-world radiosity

application.

Although the Nondeterminator-2 is an e�cient tool for race-detection, many issues

surrounding its use remain unresolved. A key decision by Cilk programmers is whether

to adopt the umbrella locking discipline. Programmers might �rst debug with All-

Sets, but unless they have adopted the umbrella discipline, they will be unable to

fall back on Brelly if All-Sets seems too slow. We recommend that programmers

use the umbrella discipline initially, which is good programming practice in any event,

and only use All-Sets if they are forced to drop the discipline.

Even when using All-Sets, users can encounter false positives and false nega-

tives from the Nondeterminator-2 when their programs are nonabelian. It is an open

question whether there are other classes of programs (besides abelian programs) for

which the Nondeterminator-2 can provide guarantees of determinacy. If we examine

the proof in Chapter 8, we �nd that we don't actually need the strong requirement

of commutativity that each of two critical sections must execute the \identical se-
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quence of instructions on the identical memory locations" in either order of execution.

Rather, it is only necessary that each critical section read and write the same set of

memory locations in either execution order, and also that in either execution order

each critical section acquire the same locks in the same order. Thus, we may be able

to consider as abelian some programs that are not formally abelian by the de�nition

given in Chapter 8.

This generalization of the de�nition of abelian has implications for nonabelian

programs as well; it could provide an approach to avoid some of the false negative

problems discussed in Chapter 7. It may be possible for a compiler to conservatively

estimate the memory locations touched by critical sections. Thus, even if a critical

section does not happen to touch all of those locations in a given computation, we may

be able to �nd dag races in other computations using those conservative estimates.

In Chapter 10, we argued that although the process of adding nodes to a linked

list in parallel is nonabelian, in practice the Nondeterminator-2 does not miss races,

because the order of the nodes in the linked list doesn't matter. It may be possible

to prove such a claim by proving that the code operates on the same set of memory

locations regardless of the order of the nodes in the linked list.

The techniques we have presented for reducing the number of false race reports in

nonabelian programs are at best imperfect. It would be preferable to have a \higher

level" language construct for annotating code than publish, which requires the user

to be explicitly aware of the exact memory locations being published. Furthermore,

in some cases publish does not properly convey the semantics of the user's code.

The user may in fact be using critical sections to synchronize the entire program, and

not to publish any particular memory. Such semantics might be better handled by

introducing other language constructs into Cilk that precisely express the synchro-

nization semantics intended. A preferable solution is probably to once again allow the

user to annotate the code, expressing the fact that certain critical regions actually

synchronize the program. In order to properly handle such directives, we need to

extend the SP-bags algorithm to graphs that are not series-parallel.

Missed races and false reports are not a problem when the program being debugged
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is abelian, but programmers would like to know whether an ostensibly abelian pro-

gram is actually abelian. Dinning and Schonberg give a conservative compile-time

algorithm to check if a program is \internally deterministic" [11], and we have given

thought as to how the abelian property might likewise be conservatively checked. The

parallelizing compiler techniques of Rinard and Diniz [38] may be applicable.

The guarantee of the Nondeterminator-2 for abelian programs requires that the

program be deadlock-free, which is left to the user to verify. We would prefer to have

a way of checking if a program, or at least a computation of a program, is deadlock

free. While this problem in general appears di�cult, there may be a reasonable,


exible locking discipline that precludes deadlocks and that allows e�cient detection.

Although we believe that the Nondeterminator-2 is a useful tool, we have the unfair

advantage of having developed it. Other programmers may not want to take the time

to learn how to use the tool. Past experience has shown that many programmers

assume that their program is correct if they run it several times without failures.

Will such programmers be willing to try out a debugging tool that may only produce

false race reports anyway? The answer remains to be seen, but from our experience

we know that correct parallelization is hard, and we believe that any user would be

well advised to take the time to learn how to debug with the Nondeterminator-2.
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Appendix A

Deadlock in the Computation

In this appendix, we give a proof of Lemma 17.1 This lemma shows that for abelian

programs, a deadlock in a dag-race free computation corresponds exactly to a deadlock

in the program.

Ideally, we would have an algorithm that checks for deadlocks in a computation

dag. Users would run this algorithm along with All-Sets or Brelly to directly

use the results of Theorems 15 and 16. Since we do not (yet) have an e�cient

algorithm to detect deadlocks in a dag, however, using Theorems 15 and 16 directly

requires users to manually examine computation dags for deadlocks. Users, however,

presumably don't really care about deadlocks in computations; they care whether

their programs can actually deadlock. Fortunately, Lemma 17 shows that checking an

abelian program for deadlocks is equivalent to checking any dag-race free computation

of that program for deadlocks.

In our current formulation, proving that a deadlock scheduling of a computation

is feasible is not su�cient to show that the machine actually deadlocks. A deadlock

scheduling is one that cannot be extended in the computation, but it may be pos-

sible for the machine to extend the execution if the next machine instruction does

not correspond to one of the possibilities in the dag. In this appendix, in order

to prove machine deadlocks, we think of a lock instruction as being composed of

1This proof is joint work with Keith Randall.
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two instructions: lock attempt and lock succeed. Every two lock succeed

instantiations that acquire the same lock must be separated by an unlock of that

lock, but multiple lock attempt instantiations for the same lock can be executed by

di�erent interpreters in arbitrary order. In other words, lock attempt instructions

can always be executed by the interpreter, but lock succeed instructions cannot

be executed unless no other interpreter holds the lock. If an interpreter executes a

lock attempt instruction, the next instruction executed by the interpreter must

be a lock succeed instruction for the same lock. A feasible deadlock scheduling

is therefore an actual machine deadlock, because the lock succeed instantiations

that come next in the dag are always the same as the next possible instantiations for

the machine.

A lock attempt instantiation commutes with any other parallel instantiation.

For convenience, we still use the single instantiation lock to mean the sequence

lock attempt lock succeed.

It is the proof of Lemma 17 that requires the extra technical condition on com-

mutativity that is mentioned in Chapter 8, which we call pre�x commutativity :

essentially, a pre�x of a region locked by the same lock as a complete region must

\commute" with the complete region. Precisely, given a partial scheduling X, two

parallel regions R1 and R2 that are surrounded by the same lock, and R0

2 a pre�x

of R2, then XR1R
0

2 being feasible implies that XR0

2 is feasible. The reason for this

requirement is that it may be the case that it is never possible for two complete re-

gions to execute adjacent to each other. An example is shown in Figure A-1. In that

program, it is never possible for the two regions that lock the lock b (lines 11{17 and

20{26) to execute adjacent to each other, because those regions each acquire locks

that are held by the other thread. Therefore, without the requirement of pre�x com-

mutativity those regions would not be required to commute in any way. It is possible,

however, to execute one entire region, say lines 11{17, and then a pre�x of the other,

namely from line 20 up to the lock attempt(a) in line 23. Pre�x commutativity

requires that this pre�x consist of the same instantiations as if it were executed before

the complete region in lines 11{17. The code for the program in Figure A-1 does not
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int x;

Cilk lockvar A;

Cilk lockvar B;

Cilk lockvar C;

cilk double main()

f

1: x = 0;

2: Cilk lock init(A);

3: Cilk lock init(B);

4: Cilk lock init(C);

5: spawn foo1();

6: spawn foo2();

7: sync;

8: printf("%d", x);

9: return 0;

g

cilk void foo1()

f

10: Cilk lock(A);

11: Cilk lock(B);

12: x++;

13: if (x==2)

f

14: Cilk lock(C);

15: x = 5;

16: Cilk unlock(C);

g

17: Cilk unlock(B);

18: Cilk unlock(A);

g

cilk void foo2()

f

19: Cilk lock(C);

20: Cilk lock(B);

21: x++;

22: if (x==2)

f

23: Cilk lock(A);

24: x = 6;

25: Cilk unlock(A);

g

26: Cilk unlock(B);

27: Cilk unlock(C);

g

Figure A-1: A program that illustrates the need for the pre�x commutativity requirement.

The program does not deadlock; of the two lock(b) � � �unlock(b) regions (lines 11{17 and

20{26), only the second one to execute acquires another lock (either a or c). Furthermore,

those regions can never execute entirely adjacent to each other, for the second one to execute

must wait for the entire other thread to complete. This program does not have any data (or

dag) races, but it may produce a �nal value of x as either 5 or 6. The pre�x commutativity

requirement means that this program is not considered to be abelian, because the pre�x in

lines 20{23 does not \commute" with the complete region in lines 11{17.

satisfy this requirement, and so the program is not abelian. In particular, we observe

that the program uses special logic to avoid the possibility of deadlock. The pre-

�x commutativity requirement allows us to prove that when parallel regions cannot

actually occur adjacent in an execution, then the program must contain a deadlock.

To prove Lemma 17, we �rst introduce new versions of Lemmas 11, 12, and 13

that assume a deadlock-free program instead of a deadlock-free dag. We then use

these modi�ed versions to prove Lemma 17.

Lemma 20 (Reordering) Let G be a dag-race free computation resulting from the

execution of a deadlock-free abelian program, and let R1 and R2 be two parallel regions

in G. Then:

1. Let X be a partial scheduling of G of the form X1R1R2X2. The partial scheduling

X and the partial scheduling X1R2R1X2 are equivalent.

2. Let Y be a feasible partial scheduling of G of the form Y = Y1R1R
0

2, where R
0

2
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is a pre�x of R2. Then then the partial scheduling Y1R
0

2 is feasible.

Proof: We prove the lemma by double induction on the nesting count of the regions.

Our inductive hypothesis is the theorem as stated for regions R1 of nesting count i

and regions R2 of nesting count j. The proofs for part 1 and part 2 are similar, so

sometimes we will prove part 1 and provide the modi�cations needed for part 2 in

parentheses.

Base case: i = 0. Then R1 is a single instantiation. Since R1 and R2 (R0

2) are

parallel and are adjacent in X (Y ), no instantiation of R2 (R
0

2) can be guarded by a

lock that guards R1, because any lock held at R1 is not released until after R2 (R
0

2).

Therefore, since G is dag-race free, either R1 and R2 (R0

2) access di�erent memory

locations or R1 is a read and R2 (R
0

2) does not write to the location read by R1. In

either case, the instantiations of each of R1 and R2 (R
0

2) do not a�ect the behavior of

the other, so they can be executed in either order without a�ecting the �nal memory

state.

Base case: j = 0. Symmetric with above.

Inductive step: In general, R1 has nesting count i � 1, and is of the form

lock(a) � � �unlock(a). R2 of count j � 1 has the form lock(b) � � �unlock(b).

If a = b, then R1 and R2 commute by the de�nition of abelian. Part 1 then follows

from the de�nition of commutativity, and part 2 follows from pre�x commutativity.

Otherwise, there are three possible cases.

Case 1: Lock a does not appear in R2 (R
0

2). For part 1, we start with the sequence

X1R1R2X2 and commute pieces of R1 one at a time with R2: �rst, the instantia-

tion unlock(a), then the immediate subregions of R1, and �nally the instantiation

lock(a). The instantiations lock(a) and unlock(a) commute with R2, because

a does not appear anywhere in R2. Each subregion of R1 commutes with R2 by the

inductive hypothesis, because each subregion has lower nesting count than R1. After

commuting all of R1 past R2, we have an equivalent execution X1R2R1X2. For part 2,

the same procedure can be used to drop pieces of R1 in the feasible partial schedule

Y1R1R
0

2 until the feasible partial schedule Y1R
0

2 is reached.

Case 2: Lock b does not appear in R1. The argument for part 1 is symmetric with
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Case 1. For part 2, we break R0

2 into its constituents: R0

2 = lock(b)R2;1 : : : R2;nR
00

2 ,

where R2;1 through R2;n are complete regions, and R00

2 is a pre�x of a region. The

instantiation lock(b) commutes with R1 because b does not appear in R1, and

the complete regions R2;1 through R2;n commute with R1 by induction. From the

schedule Y1lock(b)R2;1 : : : R2;nR1R
00

2 , we again apply the inductive hypothesis to

drop R1, which proves that Y1lock(b)R2;1 : : : R2;nR
00

2 = Y1R
0

2 is feasible.

Case 3: Lock a appears in R2 (R
0

2), and lock b appears in R1. For part 1, if both

schedulings X1R1R2X2 and X1R2R1X2 are infeasible, then we are done. Otherwise,

we prove a contradiction by showing that the program can deadlock. Without loss of

generality, let the scheduling X1R1R2X2 be a feasible scheduling. Because X1R1R2X2

is a feasible scheduling, the partial scheduling X1R1R2 is feasible as well.

We now continue the proof for both parts of the lemma. Let �1 be the pre�x of R1

up to (and including) the �rst lock attempt(b) instantiation, let �1 be the rest of

R1, and let �2 be the pre�x of R2 (R
0

2) up to (and including) the �rst lock attempt

of a lock acquired in R2 (R0

2) that is acquired but not released in �1. At least one

such lock exists, namely a, so �2 is not all of R2 (R
0

2).

We show that the partial scheduling X1�1�2 is also feasible. This partial schedul-

ing, however, cannot be completed to a full scheduling of the program because �1

and �2 each hold the lock that the other is attempting to acquire.

We prove the partial schedulingX1�1�2 is feasible by starting with the feasible par-

tial scheduling X1R1�2 = X1�1�1�2 and dropping complete subregions and unpaired

unlocks in �1 from in front of �2. The sequence �1 has two types of instantiations,

those in regions completely contained in �1, and unpaired unlocks.

Unpaired unlocks in �1 must have their matching lock in �1, so that lock does

not appear in �2 by construction. Therefore, an unlock instantiation just before �2

commutes with �2 and thus can be dropped from the schedule. Any complete region

just before �2 can be dropped by the inductive hypothesis. When we have dropped

all instantiations in �1, we obtain the feasible partial scheduling X1�1�2 which cannot

be completed, and hence the program has a deadlock.
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Lemma 21 (Region grouping) Let G be a dag-race free computation generated by

the execution of a deadlock-free abelian program. Let X1XX2 be a scheduling of G,

for some instantiation sequences X1, X, and X2. Then, there exists an instantiation

sequence X 0 such that X1X
0X2 is equivalent to X1XX2 and every region entirely

contained in X 0 is contiguous.

Proof: As a �rst step, we create X 00 by commuting each lock attempt in X to

immediately before the corresponding lock succeed. In this way, every complete

region begins with a lock instantiation. If there is no corresponding lock succeed

in X, we commute the lock attempt instantiation to the end of X 00.

Next, we create our desired X 0 by grouping all the complete regions in X 00 one

at a time. This can be done using identical techniques to the proof of Lemma 12,

applying Lemma 20 in place of Lemma 11.

Lemma 22 Let G be a dag-race free computation resulting from the execution of a

deadlock-free abelian program. Then every legal scheduling of G is feasible and yields

the same �nal memory state.

Proof: The proof is identical to the proof of Lemma 13, using the Reordering and

Region Grouping lemmas from this appendix in place of those from Chapter 8.

We restate and then prove Lemma 17.

Lemma 17 Let G be a dag-race free computation generated by an abelian program.

G is deadlock free if and only if the program is deadlock free (on the same input).

Proof: (() If G is deadlock free, then every machine execution of the program is a

scheduling of G by Lemma 14, so the machine cannot have a deadlock execution.

()) By contradiction. Assume that a deadlock-free abelian program P can gener-

ate a dag-race free computationG that has a deadlock. We show that P can deadlock,

which is a contradiction.
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The proof has two parts. In the �rst part, we generate a feasible scheduling Y of G

that is \almost" a deadlock scheduling. Then, we show that Y can be modi�ed slightly

to generate a deadlock scheduling that is also feasible, which proves the contradiction.

Every deadlock scheduling contains a set of threads e1; e2; : : : en, some of which

are completed and some of which are not. Each thread ei has a depth , which

is the length of the longest path in G from the initial node to the last instan-

tiation in ei. We can de�ne the depth of a deadlock scheduling as the n-tuple

hdepth(e1); depth(e2); : : : ; depth(en)i, where we order the ei such that depth(e1) �

depth(e2) � : : : � depth(en). Depths of deadlocked schedulings are compared in the

dictionary order.2

We generate the scheduling Y of G which is almost a deadlock scheduling by

modifying a particular deadlock scheduling of G. We choose the deadlock scheduling

X from which we will create the scheduling Y to have the maximum depth of any

deadlock scheduling of G.

Let us examine the structure of X in relation to G. The deadlock scheduling X di-

vides G into a set of completely executed threads, X1, a set of unexecuted threads X2,

and a set of partially executed threads T = ft1; : : : ; tng, which are the threads whose

last executed instantiation in the deadlock scheduling is a lock attempt. We divide

each of the threads in T into two pieces. Let A = f�1; : : : ; �ng be the parts of the ti

up to and including the last executed instantiation, and let B = f�1; : : : ; �ng be the

rest of the instantiations of the ti. We say that �i blocks �j if the �rst instantiation

in �j is a lock succeed on a lock that is acquired but not released by �i.

X is a deadlock scheduling containing the instantiations in X1 [A. To isolate the

e�ect of the incomplete regions in A, we construct the legal scheduling X 0 which �rst

schedules all of the instantiations in X1 in the same order as they appear in X, and

then all of the instantiations in A in the same order as they appear in X.

The �rst instantiations of the �i cannot be scheduled in X 0 because they blocked

2The dictionary order <D is a partial order on tuples that can be de�ned as follows: The size

0 tuple is less than any other tuple. hii; i2; : : : ; imi <D hj1; j2; : : : ; jni if i1 < j1 or if i1 = j1 and

hi2; i3; : : : ; imi <D hj2; j3; : : : ; jni.
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by some �j. We now prove that the blocking relation is a bijection. Certainly, a

particular �i can only be blocked by one �j. Suppose there exists an �j blocking

two or more threads in B. Then by the pigeonhole principle some thread �k blocks

no threads in B. This contradicts that fact that X has maximum depth, because

the deadlock scheduling obtained by scheduling the sequence X1tk, all subsequently

runnable threads in X2 in any order, and then the n� 1 partial threads in A� f�kg

is a deadlock scheduling with a greater depth than X.

Without loss of generality, let �2 be a thread in A with a deepest last instantiation.

Since the blocking relation is a bijection, only one thread blocks �2; without loss of

generality, let it be �1. Break �1 up into two parts, �1 = �L1�
R
1 , where the �rst

instantiation of �R1 attempts to acquire the lock that blocks �2. (�
L
1 may be empty.)

To construct a legal schedule, we start with X 0 and remove the instantiations in �R1

from X 0. The result is still a legal scheduling because we did not remove any unlock

without also removing its matching lock. We then schedule the �rst instantiation

of �2, which we know is legal because we just unblocked it. We then complete the

scheduling of the threads in T by scheduling the remaining instantiations in T (�R1 and

all instantiations in B except for the �rst one in �2). We know that such a scheduling

exists, because if it didn't, then there would be a deeper deadlock schedule (because

we executed one additional instantiation from �2, the deepest incomplete thread,

and we didn't remove any completed threads). We �nish o� this legal scheduling by

completing X2 in topological sort order.

As a result, the constructed schedule consists of four pieces, which we call Y1, Y2,

Y 0

3 , and Y4. The sequence Y1 is some scheduling of the instantiations in X1, Y2 is some

scheduling of the instantiations in �L1 [ �2 [ : : : [ �n, Y 0

3 is some scheduling of the

instantiations in �R1 [ �1 [ : : : [ �n, and Y4 is some scheduling of the instantiations

in X2. To construct Y , we �rst group the complete regions in Y 0

3 using Lemma 21

to get Y3, and then de�ne Y to be the schedule Y1Y2Y3Y4. Since Y is a (complete)

scheduling of G, it is feasible by Lemma 22.

The feasible scheduling Y is almost the same as the deadlock scheduling X, except

�R1 is not in the right place. We further subdivide �R1 into two pieces, �R1 = �01�
00

1,
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where �01 is the maximum pre�x of �R1 that contains no lock succeed instantiations

of locks that are held but not released by the instantiations in �L1 ; �2; : : : ; �n. (Such

an �01 must exist in �
R
1 by choice of �R1 , and furthermore �01 is contiguous in Y because

�1 completes the region started at �01, and both �1 and �01 are part of Y3.) We now

drop all instantiations after �01 to make a partial scheduling. We then commute

�01 to the beginning of Y3, dropping instantiations as we go, to form the feasible

scheduling Y1Y2�
0

1. Two types of instantiations are in front of �01. Complete regions

before �01 are contiguous and can be dropped using Lemma 20. Unlock instantiations

can be dropped from in front of �01 because they are unlocks of some lock acquired in

�L1 ; �2; : : : ; �n, which do not appear in �
0

1 by construction. By dropping instantiations,

we arrive at the feasible scheduling Y1Y2�
0

1, which is a deadlock scheduling, as every

thread is blocked. This completes the proof.
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