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Abstract

This dissertation investigates a number of issues related to providing Quality of Service
guarantees in input-buffered crossbar switches with speedup. It is shown that speedup
of 4 is sufficient to ensure 100% asymptotic throughput with any maximal matching
algorithm employed by the arbiter. It is also demonstrated that the crossbar architecture
is capable of providing delay guarantees comparable to those known for output-buffered
switch architecture. Several algorithms which ensure different delay guarantees with
different values of speedup are presented and analyzed.
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Chapter 1

Introduction

1.1 Motivation and Background

In the last decade there has been a vast amount of work on providing service guarantees
in Integrated Services Networks. The need to support a large variety of applications
with diverse quality of service (QoS) requirements such as voice, video-on-demand, real-
time video conferencing etc., along with the development of fiber-optics technology, have
fueled the need for high-capacity high-speed switching technologies which are capable of
providing high-quality QoS. It has been widely accepted that scheduling mechanisms such
as Weighted Fair Queuing are needed for providing high-quality QoS. A large number
of scheduling mechanisms with various degrees of implementation complexity and QoS
guarantees such as [2], [4], [9], [10], [20], [25], [28], etc. have recently been developed. Yet,
the vast majority of this work has been done in the context of output-buffered switches. In
output buffered switches a cell arriving at an input port is immediately forwarded to its
output, where it is buffered until it can be transmitted over the appropriate output link.
The order of transmission of cells waiting at the output is controlled by a scheduler. The
bandwidth and delay guarantees that can be provided depend solely on the properties of
this scheduler and the shape of traffic at the entry to the switch. In particular, many of
the WFQ-like algorithms such as [2], [4], [20], [25] are capable of ensuring that each packet



can be guaranteed a bound on the aggregate delay which is only a function of the flow’s
own negotiated rate and its own burstiness at the entry to the switch, independently of
the behavior or the number of other flows. Other algorithms such as [9], [10] attempt
to trade-off implementation complexity for less stringent guarantees (e.g. the delay may
depend on the number of flows in the scheduler).

While the output-buffered architecture appears to be especially convenient for provid-
ing QoS guarantees, it has a serious limitation: both the switch fabric and the memory
at the output of the switch must be capable of running at least at the aggregate speed of
all inputs across the switch. Given the current state of technology, at multi-gigabit and
terabit speeds it becomes prohibitive to build output-buffered switches. Moreover, the
rate at which technologically available memory speeds grow appears to be substantially
lagging behind the growth rate of processor speeds. Hence, it is likely that memory speed
limitations will remain a bottleneck in the foreseeable future as well.

As a result, many practical high-speed implementations are based on the input-
buffered crossbar architecture [18], [29], [30]. In this architecture, buffering occurs at
the inputs, and the speed of the memory does not need to exceed the speed of a single
input. Given the current state of the art, this architecture is widely considered to be
substantially more scalable than output-buffered switches. However, the crossbar archi-
tecture itself presents many technical challenges that need to be overcome in order to
provide bandwidth and delay guarantees.

The crossbar architecture employs a set of programmable interconnects between the
inputs and the outputs. It typically assumes that data is packetized into cells of the
same size. While this assumption is true for cell-switching networks such as ATM, this
is clearly not the case for variable packet size networks such as IP and Ethernet. As
a result, if a crossbar switch is used in a variable-size network, packets are typically
fragmented into fixed-size cells at the input, and cells are re-assembled into packets at
the output. Upon arrival to the switch, cells are buffered at the input, where they wait

until they can be transmitted to the output. The cells are dispatched to the outputs in
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a synchronized manner. That is, time is divided into cell slots. In each cell slot, some
cells are transferred from the inputs to the outputs. Unlike an output buffered switch
where a cell from each input can be simultaneously transmitted to the same output, the
set of cells that can be simultaneously transmitted from inputs to outputs in a crossbar
must satisfy the so-called crossbar constraint: At any point in time, each output can only
accept data from a single input, which must concurrently be transmitting data only to
that output. Although under the ideal circumstances it may be possible to transmit a cell
from each busy input (or to each busy output) at the same time, the crossbar constraint
may substantially reduce achievable throughput. The benefit, however, is that due to the
crossbar constraint the memory at the output need not run faster than at the speed of
the input, which is clearly an advantage compared to the output-buffered switch, where
the output needs to run n times faster (where n is the number of inputs in the switch).
The other side of the coin however, is that the crossbar constraint is also the main cause
of the difficulty in providing both bandwidth and delay guarantees in this architecture.
This issue will become clear from the subsequent discussion.

Recently, a new architectural approach has been suggested in [22], which attempts
to overcome this difficulty by eliminating the crossbar constraint and the overhead for
fragmentation and re-assembly, while making use of the benefits of the crossbar architec-
ture. In this approach, the crossbar itself contains additional internal buffering with a
small amount of buffering per input-output pair. Each input can schedule its cells inde-
pendently and can put them into the appropriate internal switch buffer without fear of
conflicting with other inputs. The outputs, in turn, can pull the cells out of these buffers
independently of each other. In order to avoid overflowing these buffers, the switch em-
ploys a back-pressure mechanism which stops the input from transmitting new cells until
space becomes available there. It is shown that with appropriate scheduling mechanisms
at the inputs and the outputs, as well as an appropriate back-pressure mechanism, such
a buffered crossbar architecture is capable of providing bandwidth and delay guarantees

comparable to those available for output-buffered switches.
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While this architecture may have some appealing properties, it requires use of a non-
standard crossbar and flow control mechanisms integral to the datapath of the crossbar
itself. Traditional crossbars have the appeal of being commercially available and are con-
ceptually simpler since no internal buffering or flow control is required internally. As a
result, this dissertation concentrates on investigating the means for providing QoS guar-
antees in a traditional crossbar. The next Section provides additional background on the
scheduling algorithms and architectures for traditional crossbars and further motivates

the work presented in this dissertation.

1.2 Previous Work Related to Traditional Crossbar

Switches.

1.2.1 Providing Bandwidth Guarantees in the Crossbar Archi-

tecture.

One of the oldest and perhaps best-publicized results regarding the limitations of an
input-queued crossbar switch with respect to its ability to provide any bandwidth guar-
antees belongs to Karol et.al. [14]. It was shown in this work that for the case when there
is a single FIFO queue at each input it is impossible to ensure high throughput to the
switch due to the so-called head-of-the-line (HOL) blocking. In particular, for uniform
random arrivals of input traffic, the achievable throughput is only 58.6%.

HOL blocking results from a situation in which several inputs have the HOL cell in
their FIFO queues destined to the same output. Due to the crossbar constraint, only
one of these inputs can send to the output, while the other inputs remain idle even if
there are cells in their FIFO (queued behind the HOL cell) that are destined to currently
idle outputs. One way of reducing the effect of HOL-blocking is to increase the speed
of the switch fabric compared to the speed of the input/output channel. If the switch

fabric can run S times faster than an individual input or output, it is said that the switch
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has a speedup of S. There have been a number of studies such as [6],[13] which showed
that an input-buffered crossbar with a single FIFO at the input can achieve about 99%
throughput under certain assumptions on the input traffic statistics for speedup in the
range of 4 — 5. A more recent simulation study [11] suggested that speedup as low as 2
may be sufficient to obtain performance comparable to that of output-buffered switches.
However, all these results are of statistical rather than deterministic nature and are
limited by specific assumptions on the arrival distribution.

Another way of eliminating HOL-blocking is by changing the queueing structure at
the input. Instead of maintaining a single FIFO at the input, a separate queue for each
output can be maintained at each input. The arbitration problem then reduces to that
of computing a matching on a bi-partite graph (see, for example [1]). It can be shown
that with this queueing structure, even without any speedup, a number of arbitration
algorithms, all of which are based on computing a weighted maximum matching', ensure
100% asymptotic throughput for independent arrivals [16]. However, the complexity of
computing the maximum matching at each arbitration epoch is quite high. As a result,
many of the practical arbitration mechanisms are based on computing a maximal match-
ing® such as in [1]. While computing a maximal matching is generally substantially easier
than computing a maximum matching, maximal matching introduces a problem of its
own. It turns out that the simple algorithms such as [1],[24] may no longer achieve 100%
throughput, even when no inputs and no outputs are overbooked. The loss of bandwidth
can be quite substantial in the absence of speedup. An example of an intuitively fair
arbitration mechanism which fails to ensure a 100% bandwidth guarantee, even when

the input rates of all flows are such that no input and no output is overbooked, is given

'A (weighted) maximum matching on a bipartite graph is defined as a set of edges between input
and output vertices with the maximum number of edges (total weight) among all possible sets satisfying
the constraint that any vertex in the graph is adjacent to at most one edge in the set.

2A maximal matching on a bi-partite graph is defined as a set of edges between input and output
vertices such that the constraint that any vertex in the graph is adjacent to at most one edge in the
set holds, and no more edges can be added to the set without violating the above constraint. Clearly,
any maximum matching is also a maximal matching, but a maximal matching may not be a maximum
matching.
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in Chapter 2. In fact, to the best of my knowledge no algorithm based on maximal (but
not maximum) matching is known to guarantee 100% throughput without speedup for
arbitrary input traffic.

However, it has been empirically known that increasing the speedup factor to 2 ap-
pears to practically eliminate this problem. It is interesting to note here a potential
linkage of this effect to a well-known result from graph theory stating that the size
(weight) of any maximal matching is no less than half of the size (weight) of the maxi-
mum matching. This result intuitively suggests that at any matching phase an algorithm
based on computing a maximal matching would send no less than half of the cells that
would be sent if the maximum matching would be computed, implying that with speedup
factor of 2 one should be able to send at least as many cells with a maximum matching as
is sent with a maximum matching in the absence of the speedup®. Despite this intuition
and empirical results, it is unclear whether in fact it is true that any maximal matching
algorithm would ensure 100% throughput with speedup of 2.

An important breakthrough in understanding the effect of the speedup on the per-
formance of the switch came in [21], where it was shown that there exists a maximal
matching algorithm in a crossbar with speedup S = 4 that, under arbitrary traffic as-
sumptions, can emulate, or strictly mimic, the behavior of an output-buffered switch
with a single FIFO per output. Despite the theoretical importance of this result, the
algorithm presented there appears too complex to be feasible in practice. Another algo-
rithm described in [19] has been shown to emulate a FIFO output-buffered switch with
speedup S = 3 [23]. One simple consequence of these results is that as long as no input

and no output is overbooked, it is possible to guarantee a 100% throughput to all flows.

3An obvious flaw in this argument is that given identical inputs, with the exception of the first
matching epoch, the maximal matching algorithm (with the speedup of 2) and the maximum matching
algorithm (without speedup) see different sets of cells (different bipartite graphs) for which the matching
is required, and therefore it is unclear how to compare the number of cells sent.
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1.2.2 Results Related to Providing Delay Guarantees in Cross-

bar Switches.

With relation to providing strict delay guarantees for crossbar switches, surprisingly
little prior work is known in this context. Perhaps the only known approach to this
problem prior to the results of this dissertation is based on the off-line computation of
a schedule which is computed at connection setup time [1], [12]. The computation of
the schedule is quite complicated and is therefore typically done in software. Since the
schedule needs to be recomputed every time a new connection starts up, this approach is
basically unsuitable in a dynamically changing environment where new flows can come
and go quite frequently. Another limitation of this approach is the necessity to severely
limit the supported rate granularity in order to limit the size of the schedule. This leads
to lack of flexibility in supporting a range of applications with heterogeneous bandwidth
requirements.

Recently, an important result in providing both bandwidth and delay guarantees in
a crossbar has been reported in [7] and [26]!, where it was shown that S = 2 suffices not
only for emulating an output-buffered FIFO switch, but also for emulating an output-
buffered switch with a WFQ-like scheduler. This implies that the crossbar architecture
is theoretically capable of providing delay guarantees identical to the best available for
output-buffered switches. However, the complexity of these algorithms appears to be pro-
hibitive for practical real-time high-speed implementations. A more detailed discussion
of the relationship of this work to the results of this dissertation is deferred till Chapter
7.

Thus, there still appears to be a need for practical means for providing strict delay
guarantees in the crossbar architecture. This dissertation investigates the problem of

providing such guarantees.

*Unfortunately, there is an error in the algorithm published in [26]. Please refer to
http: //www.cs.cmu.edu/ istoica/iwqos98-fix.htmp for a discussion of the error.
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1.3 Outline

The remainder of this dissertation can be outlined as follows. Chapter 2 is dedicated
to investigating the conditions sufficient for providing 100% bandwidth guarantees in
crossbars with limited speedup where arbitration is based on a computation of a maximal
matching algorithm. It will be shown there that the speedup S > 4 is sufficient to ensure
that any maximal matching algorithm guarantees that each flow achieves 100% of its
bandwidth as long as no input and no output is overbooked. It will also be shown that
there exist maximal matching algorithms which achieve the same bandwidth guarantees
with a lower speedup value. In particular, a maximal matching algorithm providing a
100% bandwidth guarantee with speedup S = 2 is described at the end of Chapter 2.
Chapters 3, 4 and 5 are dedicated to investigating several algorithms that ensure
deterministic delay guarantees in a crossbar architecture. It is demonstrated that the
architecture needed to provide such guarantees can be conceptually subdivided into three
relatively independent building blocks: a QoS-capable scheduler employed by the input
channels, a QoS-capable scheduler employed by the output channels, and an arbiter which
computes a maximal matching between the inputs and the outputs. It is shown that while
these three pieces of the architecture can be designed independently of each other, the
resulting delay guarantees will strongly depend on the properties of each individual piece
in a predictable way. In particular, Chapter 3 is dedicated to describing a system in
which the inputs and the outputs run independent QoS-capable schedulers, while the
arbiter computes a maximal matching by attempting to give preference to those cells
which have been scheduled by the input scheduler earlier. It is shown that as a result of
such arbitration policy the worst case delay guarantees depend linearly on the size of the
switch. Chapter 4 is dedicated to a discussion on how the properties of the input and
output schedulers affect the delay guarantees that can be obtained across the switch. It
is demonstrated how the accuracy of both the input and the output schedulers affect the
overall guarantees that can be provided. It is further argued that in order to allow for

sufficiently tight delay guarantees in this context, the input scheduler should provide a
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rate-controlled service. In particular it is shown that a rate-controlled version of WF?Q
[4] is well-suited for this purpose because of its high accuracy.

In Chapter 5, it is shown that it is possible to provide deterministic delay guarantees
which are independent of the size of the switch. An arbitration mechanism which provides
tight delay guarantees with the speedup of S = 6 is described in detail.

Chapter 6 is dedicated to a discussion on how to accommodate both flows requiring
strict delay guarantees and traffic requiring a lower grade of service in the crossbar archi-
tecture. A simple scheduling mechanism is described which provides delay guarantees to
delay-sensitive flows while ensuring that ”lower grade” traffic fully utilizes the bandwidth
unused by guaranteed traffic. It is also shown that mechanisms similar to those described
in Chapters 3-5 can be used to ensure that bandwidth is distributed fairly among the
"lower grade” flows.

Finally, Chapter 7 summarizes the results of this dissertation and outlines areas for

future research.
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Chapter 2

Some Delay Properties of Loosely
Shaped Traffic in Input-Buffered
Crossbars with Limited Speedup

2.1 Preliminaries

We consider an input-buffered nxm crossbar with speedup S. Here n is the number of
input channels, m is the number of output channels. Each input and output channel
can have one or more! ports, each port being connected to an input or output link.
We make several assumptions on the architecture of the crossbar, all of which are the
standard properties of a crossbar switch, with the exception of the requirement that the

arbitration algorithm is a maximal matching algorithm?:

1. the capacity of each input and each output channel is the same (we denote it by

cells
unit time’

("); for convenience we choose the unit of time such that C' =1

IThe use of several ports per channel is typically motivated by the need of multiplexing several slow
links into one high-speed channel.

2In practice many simple arbitration algorithms compute only several iterations of a maximal match-
ing, falling short of complete computation.
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. the capacity (speed) of the switch fabric is S > 1 times greater than the speed of

each channel (S is assumed to be a rational number);

. each input has some buffer structure to hold arriving traffic until it can be dis-

patched to the outputs?®;

. each output has some queuing structure to accommodate potentially bursty traffic

arriving from the inputs;

. the arbiter operates in matching phases; the duration of a matching phase is %
units of time; in general no assumptions are made on synchronization between the
switch clock and the input (output) channel clock; the beginning of a matching

phase will be also referred to as matching opportunity;

. during each matching phase a set of cells is chosen to satisfy the so-called crossbar

constraint:

at most one cell can leave any input channel and at most one cell can enter any

output channel during a single matching phase;

. the arbitration policy is mazimal matching ;

. those cells which arrived at or before the beginning of a matching phase can be

considered for arbitration during this phase.

There could be a number of maximal matching policies. In the context of crossbar

arbitration, the standard graph-theoretic definition of maximal matching can be equiva-

lently formulated as follows:

Definition 1 An arbitration policy is called a maximal matching policy iff at the end of

any matching phase any cell buffered at any input i destined for any output j remains at

31n principle the buffers can be located at the port level or channel level. For reasons that will shortly
become clear it is more convenient to assume that the buffers are at the channel level.
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the input if and only if during this matching phase some other cell has been transmitted

either from input © and/or to output j.
Definition 2 The time required to transmit one cell at channel speed is called a cell slot.

Unless explicitly stated otherwise, a cell slot is used as a unit of time. The unit of

cell
cell slot*

cell
cell slot?

rate (speed) is chosen as so that the input/output channel speed is C' = 1

2.2 Bandwidth and Delay Guarantees for Arbitrary
Maximal Matching Policies.

The main result of this Section is that as long as the incoming rates! of all flows® are
feasible (i.e. no input and no output channel (port) is overbooked in the sense that the
sum of rates of all flows sharing the channel (port) does not exceed its capacity), and
as long as the combined burstiness of traffic arriving to any input and any output is
bounded, then a fixed speedup which is independent of the size of the switch suffices to
ensure that any mazimal matching policy can guarantee that each flow is ensured 100%
of its throughput.

To emphasize the significance of this result note that many simple arbitration algo-
rithms computing a maximal matching in the absence of speedup (that is, with S = 1)
cannot provide a 100% bandwidth guarantee even for feasible rate assignments (even
when the arrivals are ideally spaced according to the assigned feasible rates, i.e. with no
burstiness at all). Moreover, to the best of my knowledge no results are known about
any mazimal matching algorithm (which is not at the same time a mazimum matching)
which can provide such guarantees with S = 1. The following examples show how simple

maximal matching algorithms may fail to ensure 100% throughput for feasible rates.

4The rate of a flow is to be precisely defined later
A flow is defined as a source-destination pair with an associated transmission rate.
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input 1 input 2 input 3

flow 1 flow 2 flow 4
rate 0.25 rate 0.25 rate 0.5
output 1 output 2 output 3

Figure 2-1: Example of Underutilization Caused by a Maximal Matching Algorithm.
Flow 3 achieves only 50% of its bandwidth.

Consider a crossbar switch in a cell-switching network with three inputs and three
outputs. All inputs and outputs are of unit capacity. There are three flows (denoted
f1, f2, f3) arriving at input 1, destined to outputs 1, 2 and 3 respectively. Flow f; arrives
at input 3 and is destined to output 3. There are no other flows. Flows f; and f> are
assigned rates 0.25, while flows f3 and f; are assigned rates 0.5. Note that such rate
assignment is feasible since no input and no output is overbooked. Assume for simplicity
that each flow arrives from a separate physical link (i.e. input channel 1 has three input
ports) so that the arrivals of all flows are ideally spaced: a cell of flows f3 and f; arrives
every second cell slot, and a cell of flows f; and f, arrives every fourth slot, starting from
time zero. This configuration is shown in Figure 2-1.

At each cell slot a maximal matching is computed by the following iterative re-
quest/grant protocol. Initially each input chooses one of its flows by some rule and

sends a request to the appropriate output. When an output receives one or more re-
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quests it chooses one of the requests by some rule and sends a grant to the appropriate
input. If input ¢ receives a grant from output j, the pair (4, 7) is added to the matching
and is removed from consideration for the duration of the current computation of the
maximal matching. It is said in this case that the input ¢ and the output ;7 have been
matched. The request/grant exchange is repeated until no more matches can be made.

The two examples discussed below differ in the rules by which the inputs and the
outputs determine the flow to send request/grant for. In the first example input 1 chooses
flows f1, fa, f3 with priorities 1,2, and 3 respectively (1 being the highest priority), while
output 3 chooses flows f3 and f; with priorities 4 and 3. In this case flow f3 which should
be chosen every other cell slot on the average will in fact be consistently scheduled only
every fourth slot, thus losing 50% of its bandwidth.

The loss of bandwidth in this example is not that surprising since flow f3 is treated
at consistently lower priority than its competition at the input and output channels.
A lot more surprising is the fact that even intuitively ”fair” algorithms can result in
a similar loss of bandwidth. To see this consider another example where each input
channel uses a round-robin schedule to choose a flow to send a request for. Each output
logically maintains an entry for each of the inputs and a round-robin pointer for the
inputs. Each input sends a request to the arbiter for the queue currently next in its
round-robin schedule (skipping all queues which have no cells in them). If the output
receives one or more requests, it sends back a grant for the input appearing next in its
round-robin schedule (skipping all the inputs for which it has no requests). Once a pair
(1,7) has been matched, both input ¢ and output j advance their round-robin pointers
and remove themselves from the current computation of the maximal matching. The
matching process iterates as described above.

Stepping through this algorithm for the four flows in the configuration with the ideal
arrival times as described above one can verify that flow f3 can achieve only rate 0.25
rather than its input rate 0.5, thus loosing 50% of its bandwidth. This result can be

intuitively explained as follows. Due to the contention at output 3 flow f3 is chosen by
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its output only 50% of the time since it competes with flow f;. However, 50% of all the
times when f3 is chosen by its output, it looses the contention with flows f; and f, at its
input.

This example demonstrates that repeated arbitration conflicts in the absence of
speedup can cause consistent loss of bandwidth even for an intuitively fair arbitration
algorithm.

A possible approach to eliminate the loss of bandwidth due to arbitration conflicts
is to use speedup. In fact, it has been empirically known that increasing the speedup
to S = 2 appears to practically eliminate the loss of bandwidth. However, it has so far
been unknown how much speedup is really needed to ensure no loss of bandwidth. One
of the goals of this Chapter is to investigate the values of speedup sufficient to eliminate
this problem for any maximal matching arbitration algorithm.

Next, it is necessary to formalize the notions of rate feasibility with limited burstiness.
Consider first the case when all flows f are leaky-bucket constrained [27] with parameters
(rs,br). That is, in any interval [t1,t2) the amount of data A (t1,t2) of a flow f arriving
at the switch satisfies

Af(tl,tg) S T’f(tg — tl) + bf (21)

Here 7 is the flow’s assigned rate (which is typically negotiated at connection setup),
while b is the limit on the maximum burstiness of the flow. The conformance of input
traffic to a leaky bucket is the standard assumption for the so-called guaranteed flows,
which are typically required to shape their traffic at the entry to the network. Assuming
output-buffered switches with WFQ-like schedulers inside the network, it can be shown
that if a flow conforms to a leaky bucket at the entry to the network, it also conforms
to a leaky bucket with the same rate (but potentially larger burst size) at the entry to
any switch inside the network [20]. As will be shown later, the scheduling algorithms
considered in this dissertation for input-buffered crossbar switches also ensure that a flow
shaped by a leaky bucket at the entry to the network conforms to a leaky bucket with the

same rate but potentially larger burstiness at the entry to any switch inside the network.
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In this context rate feasibility means that the sum of assigned rates r; of all flows
sharing a particular switch channel (input or output) does not exceed the capacity of this
channel. It is easy to see that given a maximum number N of flows supported by the
switch and a bound b on individual flow burstiness, the total amount A;(¢;,t2) of traffic
arriving at the input to the switch in any interval [t1,¢2) and sharing either any input or

any output channel i satisfies

Ai(th tg) < C(tg — tl) + bN (22)

In the case of traffic with less stringent QoS requirements, such as best effort, traffic
may not be shaped at the network entry, and the notion of an assigned rate may not
be meaningful. For this type of traffic congestion control algorithms are typically used
to ensure that data is not lost due to buffer overload. The degree with which this goal
is achieved varies greatly with the type of congestion control algorithm utilized in the
network. It is assumed however that the congestion control algorithm is ”good enough”,
which means that, given a sufficient buffer size, no data is lost. This can be formalized by
assuming that there exists some (potentially large but finite) value B which is independent
of time, such that input traffic sharing any input (or any output) ¢ in the switch satisfies

the constraint

Ai(t1,t2) < C(ty —t1) + B (2.3)

for any interval [t1,?5). The value B in this case determines the buffer requirements of
the congestion control algorithm.

Note that (2.3) does not imply that an individual flow conforms to a particular rate
(such as the rate r; in the case of leaky-bucket constrained flows). Instead, it is only
required that the combined rate of all flows sharing a particular channel does not exceed
the capacity of that channel by more than a fixed bound B in any interval of time. That
is, the condition (2.2) is a special (stronger) case of (2.3). This Chapter assumes only

that (2.3) is satisfied, without requiring shaping the traffic of any individual flow.
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The main result of this Chapter is the fact that for any speedup S > 4 any maximal
matching arbitration policy ensures 100% throughput for traffic satisfying assumption
(2.3).

This fact is proved by showing that each cell is delivered to its output within a
certain fixed bound after its arrival to the switch. This immediately implies that the rate
at which any flow enters its output is asymptotically the same as its input rate to the
switch. Assuming that the output channel employs any of the known schedulers which
preserve the asymptotic rates of the flows in the context of an output-buffered switches
(such as FIFO, WFQ), etc.), it follows that a flow is guaranteed its bandwidth across the
switch.

The following Theorem states that each cell is delivered to the output within a certain

bound after its arrival:

Theorem 3 If input traffic satisfies assumption (2.3), then, given a sufficiently large
buffer size, for any speedup S > 4 and any maximal matching arbitration policy a cell

arriving to the input at time t will be delivered to the output by time t + % + %
First, the following simple Lemma will be proved:

Lemma 4 The number of matching opportunities M (t,t + T) occurring inside any in-
terval [t,t + T) satisfies
TS —1< M(t,t+7) (2.4)

Proof of Lemma 4.

The Lemma follows immediately from the observation that at least |7.5] — 1 matching
phases (each of length % units of time) must be fully contained in an interval of length
7. This implies that the number of matching opportunities (which correspond to the
boundaries of matching phases) inside any interval of length 7.5 must be at least |7.5] >
7S —1. |

Proof of Theorem 3.
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It will now be shown that a cell arriving at time ¢ will be chosen by the arbiter no later
than by time ¢t + D. Since it takes exactly time % to deliver a cell from the input to the
output at the speed of the switch fabric, the statement of the Theorem follows. Suppose
that there exists a cell for which the arbitration delay bound D is violated. Pick a cell ¢
with the earliest arrival time of all such ”violating” cells (breaking ties arbitrarily). Let
t denote the time of its arrival. Then, since ¢ violated its delay bound D, and since cells
are scheduled only at the discrete cell-time boundaries, it must be that there exists an
€p > 0 such that for any 0 < & < gy the cell ¢ is still at its input at time ¢t + D + €. Since
the policy is a maximal matching, in order for ¢ not to be scheduled at or before time
t + D, it must be that another cell from input ¢ and/or destined to output j was chosen
by the arbiter at every arbitration epoch in the interval [¢, ¢+ D]. Therefore, by Lemma 4
it must be that at least DS — 1 other cells either from input ¢ or/and destined to output j
were chosen by the arbiter in the interval [t, ¢+ D]. It will be shown now that there could
not be as many cells available to the arbiter in this interval. Note that, by assumption,
c is the first cell to miss its deadline D, and therefore all the cells which arrived before
time ¢t — D must have already been scheduled by time t. Therefore, each cell that can
still be at the input at time ¢ must have arrived in the interval [t — D,t]. Therefore,
each competing cell that could be available to the arbiter in the interval [t,¢ + D] must
have arrived in the interval [t — D, ¢ + D] and must either share input ¢ or output j with
c. From (2.3), the number of such cells arriving in [t — D,t + D] C [t — D,t + D + ¢)
can be at most 4D + 2B + 2¢. This includes c itself, counted both at its input and its
output. Therefore the total number of cells competing with ¢ might have in the interval
[t — D,t+ D] is at most 4D + 2e + 2B — 2. If the number of cells which can possibly
prevent ¢ from being scheduled at or before time ¢ 4+ D is less than the minimal number
of arbitration opportunities in the interval [t,¢ + D + €), then no cell can be delayed at

the input by more than D. Hence, if the inequality

AD+2:+2B—2< DS —1 (2.5)
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is satisfied, then cell ¢ cannot remain at the input at time ¢t + D. Rewriting (2.5) as

D(S—4)>2B—1+2

and choosing ¢ sufficiently small, and S > 4, it can be easily seen that (2.5) is satisfied

if D> 25:41. Hence the cell ¢ cannot remain at the input longer than 25:41 after it has

been scheduled by its input scheduler. |

2.3 Reducing the Speedup to S>2

The result of the previous Section is that S > 4 is sufficient to ensure each flow 100%
bandwidth guarantee (with bounded per-cell delay) with any maximal matching algo-
rithm. However, it is not the case that the condition S > 4 is necessary for any maximal
matching algorithm to provide such guarantee. It will now be shown that a particular
maximal matching policy can give the same arbitration delay bound (and hence 100%
bandwidth guarantee) with any S > 2. The idea here is quite simple - to disallow cells
which arrive later to compete with earlier arrivals, thus reducing the amount of potential
”competition” and therefore the speedup required to transfer all possible ”competition”.

To do so, consider the following algorithm:

Oldest Cell First maximal matching (OCF): Upon arrival each cell is ”stamped” with
the time of its arrival. At each matching phase the arbiter does the following: It
chooses the cell with the oldest stamp and adds its input and output to the match.
It then removes from consideration all cells with the same input and/or output and

repeats the previous step until no more cells can be added.

Theorem 5 If the input traffic satisfies assumption (2.3), then the OCF arbitration

policy in a crossbar with speedup S > 2 ensures that any cell arriving at time t will be

delivered to its output no later than by time t + 25?__21 + %
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The reduction in the required speedup is enabled by the fact that due to arbitration
based on OCF, cells arriving after some cell ¢ cannot be ¢’s competition, because they
have a later timestamp. The proof given below is conceptually very similar to that of
Theorem 3.

Proof.

Just as in the previous Section it will be shown that any cell will be scheduled no

later than D = 25:21 after its arrival. Suppose it is not the case. Then there must exist
at least one cell that arrived at some time £ and was not scheduled by time £ + D . Let t
be the earliest arrival time of all such cells and let ¢ denote a cell which arrived at time ¢
and remained at the input at time ¢t + D. Since cells are scheduled by the input scheduler
only at discrete cell slot boundaries, it must be that there exists some ¢y > 0 such that
for any 0 < € < gg the cell ¢ is still at the input at time ¢ + . Just as in the proof
of Theorem 3 it will be shown that this cannot happen because there are not enough
”competing” cells to prevent ¢ from being scheduled at or before time ¢+ D. The crucial
observation here is that by the operation of the OCF algorithm a cell with timestamp ¢
which is waiting at input ¢ and is destined to output j is not scheduled at a matching
phase boundary iff a cell with a smaller or equal timestamp is scheduled either from input
i or/and from some other input destined to output j. Therefore, no cells arriving after
time t can prevent ¢ from being scheduled (since their timestamps are greater than that
of ¢). As a result, the only cells that constitute ¢’s ”competition” are those which arrived
at 7 < t. Since it was assumed that c is the first cell to miss its scheduling deadline of
D, it must be the case that any cell arriving before t — D is already scheduled by time
t. Hence, the only ”competition” of ¢ are those cells which arrived to input ¢ or/and to
output j in the interval [t — D, t]. By the traffic assumption 2.3 at most D + B+ ¢ cells
can arrive at any input ¢, and at most D + B + ¢ of cells can arrive at all inputs destined
to output j in any interval [t — D,t] C [t — D,t +¢). This includes c itself, counted both
at its input and its output. Therefore, the total amount of ¢’s competition is bounded

by 2D + 2B + 2 — 2.
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By Lemma 4 there are at least DS — 1 matching phase boundaries in the interval
[t,t + D]. In order for ¢ to remain at its input at time ¢ + D, at least one competing cell
must be scheduled at every matching phase boundary in the interval [t, ¢ + D], and so it
must be that 2D + 2B 4 2¢ — 2 > DS — 1. However, it is easy to see that for S > 2 and

25:21 in fact 2D + 2B — 2 < DS — 1. This contradiction

sufficiently small ¢, for any D >

2B—1
S—2

shows that as long as S > 2, any cell is scheduled by the arbiter no later than time
after its arrival to the input. Noting that it takes exactly % units of time to transmit the

cell across the switch completes the proof of this Theorem. |

Corollary 6 For any speedup S = 2 + €,¢ > 0 the matching arbitration policy based
on OCF ensures 100% bandwidth guarantees to all flows, as long as traffic satisfies the
assumption (2.3).

It can be easily seen that the Theorem holds also if the ”timestamp” is any monoton-

ically increasing function of arrival time.
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Chapter 3

Delay Guarantees for Per-Flow

Shaped Traffic

3.1 The Necessity of Flow Isolation

In the previous Section the bounds on the delay incurred by any cell from the time of
its arrival at an input port of the switch to the time it is delivered to its output port
were obtained as a function of the speedup and the maximum burst size B that could
be experienced by the totality of all flows at a given input or output. The presence of a
single misbehaved flow can make B unacceptably large, affecting delays of ” well-behaved”
flows. Even when each individual flow is well behaved, i.e. if the degree of the individual
flow burstiness is relatively small, the combined burstiness of all flows multiplexed to a
particular output or input can be quite large. At the input the cumulative burstiness
can be quite large especially in the case when the total capacity of all incoming ports at
an input exceeds the input channel capacity'. Since the total capacity of all input links

is typically much larger than that of a single output link, the combined burstiness at the

!The channel capacity can be overbooked, for example, if several links multiplexed into a single
channel are leased to different users which are not expected to simultaneously utilize the entire bandwidth
leased to them. In this case overbooking of channel capacity may be desired to achieve higher channel
utilization due to statistical multiplexing.
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output can be quite large even when the combined input link bandwidth does not exceed
the input channel capacity. There is an obvious necessity to protect well-behaved flows
from misbehaved ones, and in general to minimize the effect of the cumulative burstiness
on the performance of individual flows.

The issue of providing such flow isolation has been widely discussed in the literature in
the context of providing QoS in output-buffered switches. Typical approaches to achieve
such isolation include per-flow buffering and a QoS- capable scheduler employing a WFQ-
like service discipline such as in [2], [20], etc. This Section will discuss how to achieve the
goal of flow isolation and consequently deterministic delay bounds for individual flows
which are independent of the burstiness of other flows in the context of input-buffered

crossbars.

3.2 Achieving Per-cell Delay Bounds with Flow Iso-

lation.

3.2.1 The Basic Idea

As is well understood from the existing work on providing QoS in a network of output-
buffered or shared memory switches, provisioning per-flow queueing and a QoS-capable
scheduler at all queuing points in the network can yield end-to-end QoS guarantees for
all well-behaved flows. It appears only natural that this is also true for input-buffered
crossbars. As can be easily seen, in an input-buffered crossbar with speedup there are
in fact two queuing points - at the input and at the output. An immediate extension
of the previous QoS work would be to provide per-flow queues both at the input and at
the output. It is less clear how to do the scheduling to ensure that arbitration conflicts
caused by input/output contention have minimal effect on the resulting QoS guarantees
that can be ensured for all flows. It turns out that to ensure that the delays experienced

by an individual flow are independent of the combined burstiness, a policy conceptually
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similar to the Oldest Cell First policy described in the previous Chapter can be employed
in combination with techniques developed for providing QoS in output-buffered switches.

The main idea here is to modify the ”arrivals” of individual flows by passing them
through a QoS-capable rate-controlled scheduler. Only cells already ”filtered through”
a rate-controller are considered conceptually ”arrived” to the switch and are therefore
eligible for arbitration. When a cell "emerges” from such a rate-controlled scheduler, it is
immediately assigned a timestamp. The arbiter uses the ”oldest timestamp first” policy,
which is just OCF discussed in Section 2.3 in which the actual arrival times are replaced
by the times a cell is released from the input rate controller. In the remainder of this

Section this will be described in more detail.

3.2.2 The Queueing Structure at the Input

At each input there are per-flow queues. Each queue has a rate associated with it,
which is typically assigned to the flow at connection setup time. In a cell-switching
network, when cells arrive to the switch, they are simply placed into the corresponding
queues. In a packet-switching network, arriving packets are fragmented into cells?, and
the cells are added to the corresponding per-flow queue, where they wait until they can
be transmitted to the output channel. In addition to queues per flow, there are also per
output queues at each input - one per output. According to a standard convention they
are referred to as wvirtual output queues. Unlike the flow queues which contain cells, the
virtual output queues contain pointers to cells as will be explained below. Denote by ¢/

the queue corresponding to flow f. Further, denote by );; the virtual output queue at

>There are several possible ways of performing fragmentation if the packet size is not a multiple of a
cell size. One is generally referred to as padding, when the last cell is padded by some special ”dummy”
symbols. While being the simplest, this method has a disadvantage of wasting potentially as much as
half the switch bandwidth (if the size of all packets is a small € longer than the cell size). In this case one
can use what is usually referred as ”cell-stuffing”. In this method data from the beginning of the next
packet is attached to the end of the previous packet. While this approach may be beneficial in certain
cases, it introduces additional complexity in performing fragmentation and reassembly. Moreover, the
benefit in saved throughput depends on the assumptions about the packet length distribution, which are
not always known. This thesis will assume a simple fragmentation with padding, in most cases ignoring
a potential loss of bandwidth that may be associated with it.
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Figure 3-1: Buffering and scheduling structure at the input channel.
corresponds to a switch with 3 output channels.
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input ¢ corresponding to output j. Each queue g, is assigned a rate ry corresponding to
the rate assigned to flow f. Assume that the per-flow queues at each input are grouped
according to the destination output, so that each group of flow queues is associated with
a particular virtual output queue. Each virtual output queue @);; is also assigned a rate
R;; which is the sum of the assigned rates of all flows at the input destined for the output
associated with this queue, i.e. Rjj =), 7y, where f — j denotes " f is destined to
7”. The scheduling mechanism that determines the order of transmission of cells across
the switch to their destination output channel is described in the next two Sections. The
queuing structure for a single input is shown in Figure 3-1.

Frequently, it will be convenient to imagine that at time zero the flow queues are
infinitely backlogged with imaginary ”"dummy” cells. When a real cell arrives at the

input, it replaces the closest dummy cell to the head of its flow’s queue. The scheduling
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mechanisms described below do not distinguish between dummy and real cells. When
a dummy cell is chosen to be transmitted to the output channel (as described in the

Sections below), it is simply removed from the flow queue.

3.2.3 The Input Rate-Controlled Scheduler

The goal of a rate-controlled scheduler located at an input channel, which will be denoted
by S'NP is to ensure that the cells of each flow f become available for arbitration with

SINP g constructed in a hierarchical

the frequency corresponding to the flow’s rate ry.
manner - the top level of the hierarchy ensures that each virtual output queue Q;; is
chosen with the frequency R;; corresponding to the combined rate of all flows in the
group corresponding to this virtual output queue. More specifically, the top level of the
hierarchy at input channel i consists of a rate-controller, which is denoted by S, (7). Every
channel cell time this rate-controller S,(7) chooses a particular Q;;.

At the second level of the hierarchy there are flow-level rate-controllers at each input
channel, one for each group of flows at each input ¢ corresponding to a given output
J, denoted by S¢(i, 7). The goal of the second level of the hierarchy is to ensure that
each flow within the group is chosen with the frequency corresponding to the flow’s rate.
When @;; is chosen by S,(¢), the S¢(7, ) corresponding to the chosen j is invoked to
choose a particular low f. At this time a pointer to the next so far unscheduled?® cell
of the chosen flow f is added to the tail of the virtual output queue @;;. The location
of schedulers S, and S; with respect to the queueing structure at the input is shown in
Figure 3-1.

The time instance when S, (i) chooses queue @;; will be referred to as the scheduling
opportunity of the virtual output queue );;. When a pointer to a cell is added to the
appropriate virtual output queue, this cell is said to be scheduled by the scheduler S™NF.

It is important to understand that a cell which has been scheduled by S’ may not

3That is, the cell in the flow queue for which no pointer has yet been added to the corresponding
virtual output queue.
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be transferred to its output immediately, but may remain in its queue until the arbiter
chooses it, as described in the next Section.

In general, a variety of rate-controllers can be used for schedulers S, and S; at the
two levels of the hierarchical scheduler S™V”. As will be shown in the Sections below
the properties of these schedulers determine the delay a cell can experience at the input

channel.

3.2.4 The Arbiter

This Section describes how the cells are removed from the input channel. The scheduler
responsible for this removal is called the arbiter. At each matching opportunity the
arbiter computes a maximal matching among the cells pointed to by the HOL pointers in
the virtual output queues. Once a virtual output queue is added to the current matching,
the HOL cell of the flow queue ¢; pointed by the HOL pointer in this virtual output queue
is transmitted to the output channel, at which point this cell is removed from the flow
queue, and the pointer to it is removed from the virtual output queue. The goal of the
arbiter is to ensure that each virtual queue @);; is polled (added to the matching) with
the frequency corresponding to its rate R;;.

To achieve this goal, the arbiter uses a variant of the OCF algorithm described in
the previous Chapter. Conceptually, imagine that any time a pointer to a flow queue is
added to a virtual output queue, a timestamp corresponding to the time of this event
is stored along with the pointer. At each arbitration epoch, the arbiter computes the
maximal matching among all virtual output queues by choosing the oldest timestamp at
the head of all virtual output queues at all inputs using these timestamps, as in the OCF
algorithm described in the previous Chapter.

However, such an approach presents the following implementation difficulty. Since
the arbiter needs to have access to the HOL timestamps of all virtual output queues at
each matching phase, storing the timestamps in the virtual output queues would require

communicating nxm timestamps from the input channel to the arbiter every matching
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phase. It turns out that one can substantially reduce the communication overhead by
storing the timestamps directly in the arbiter. In this implementation, the arbiter main-
tains a queue a;; corresponding to each input-output channel pair. Initially all queues
are empty. The queues a;; are filled with timestamps, corresponding to the time at
which the input scheduler S,(i) at input i chooses the corresponding );;. Recall that
the input schedulers operate at channel speeds, and therefore every channel cell slot the
input needs to communicate the appropriate information to the arbiter. One way is to
straightforwardly transmit the timestamp with the queue index to the arbiter. However,
it is easy to see that it suffices to transmit the index alone (which would typically re-
quire a smaller number of bits), since the arbiter can simply add the current time to the
queue a;; corresponding to this index. Thus, the addition of timestamps to the arbiter
queue occurs once per channel cell time, when one timestamp must be added per input
channel. The removal of timestamps occurs once per matching phase as follows. At each
matching opportunity the arbiter computes a maximal matching as described below. It
chooses a;; with the oldest HOL timestamp, adds the corresponding ();; to the match,
and removes the HOL timestamp from a;;. It then removes from consideration all queues
with the same input and/or output and repeats the previous step until no more queues
can be added to the matching. Once the matching is complete, the arbiter notifies the
inputs which @);; are chosen in the current matching. The HOL cells in the virtual output
queues corresponding to this matching are then transmitted to the output channels.
The time instance when the arbiter chooses a particular virtual output queue is re-
ferred to as the arbitration opportunity of this virtual output queue, or, equivalently, the
arbitration opportunity of the input/output channel pair corresponding to the virtual
queue. The arbitration epoch at which a cell (potentially dummy) of some flow is chosen

for transmission to its output channel is referred to as the arbitration opportunity of this

flow.
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3.2.5 The Output Channel Architecture.

Assume that there may be several physical links outgoing from a particular output chan-
nel, with an output port associated with each link. In a cell-switching network such as
ATM, where no fragmentation and reassembly function is required, a cell arriving from
an input to the output channel is immediately placed in the appropriate buffer at the port
corresponding to its destination link. In the case of packet-switching networks, assume
that upon arrival to the output, cells are placed in re-assembly queues. Once all cells
of a packet have been collected in the queue, the packet is assembled and placed in the
corresponding packet queue at the destination port.

Assume that each output port p employs per-flow buffering and a QoS-capable sched-
uler S,(p). There is substantial flexibility in the choice of a particular S,(p)— one can
choose from a large arsenal of QoS-capable schedulers available for output-buffered ar-
chitectures such as [2], [20], etc. The choice of a scheduler defines the portion of delay
corresponding to a cell/packet residence at the output. The architecture of the output
channel is shown in Figure 3-2.

Finally, the entire switch architecture described in this Chapter is shown in Figure

3-3.

3.3 Considerations for Choosing Input And Output
Schedulers

The total delay of a cell in a switch is the combined delay it experiences in the input
channel and the output channel. The remainder of this Chapter will examine the depen-
dence of the input and output delay components on the properties of the input and the
output schedulers for the case of timestamp-based arbitration described above.

Recall that in the algorithm considered in this Chapter the input delay of a cell has

two logical components. The first component, which will be referred to as the input
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Figure 3-2: Ouput channel architecture.
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SINP " is the time elapsed from the arrival of a cell at the input

scheduling delay in
channel and the time a pointer to this cell is added to the appropriate virtual output
queue. The second component, which will be referred to as the arbitration delay, is the
time elapsed from the moment the pointer to the cell is added to the tail of the virtual
output queue and the time cell is removed from the flow queue and transmitted to the
output.

It turns out that both of these components strongly depend on the properties of a

S'NP employed at the input, and more specifically

particular rate-controlled scheduler
on the accuracy with which the rate-controller approximates the ideal ”fluid” scheduler.

Intuitively, the quality of a generic rate-controller can be described as follows. Con-
sider some rate-controller operating at unit speed on n flows f with rates r; satisfying
> ;Tr < 1. If cells were infinitely divisible, it would be possible to serve each flow f so
that in any interval of length ¢ each flow f would be offered exactly ¢r; units service.
Such idealized service is referred to as the ”ideal” or "fluid” service at rate ry. However,
due to the discrete nature of the system, the amount of service which can be actually
offered to a flow will differ from the ideal service. The bound on discrepancy between
the ideal and the actual service offered to a flow by the scheduler can be viewed as a
measure of the quality of the rate-controller.

To quantify this notion, denote by A(t1,?2) the amount of actual service offered to
flow f in the time interval [t1,?2), where the time is measured in channel cell slots, and

the amount of service is measured in cells. Suppose that for all flows f the rate-controller

ensures that the following constraints are satisfied for all times ¢1, to:
Af(thtg) < (tg —t1)1“f —FE (31)

Aty t2) = (2 —t)ry — E (3:2)

where E > 0 and E > 0 are independent of time and the flow f. The bounds E and E

can be viewed as the measure of the accuracy of the rate-controller: the smaller these
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bounds, the better the rate-controller. It is easy to see that the meaning of E and E is
how much more or less service (in units of work such as cells or bits) the rate-controller
gives a flow compared to its ideal fluid service at its rate. There are several known rate-
controllers satisfying (3.1) and (3.2) with different values of £ and E. Some of these
schedulers will be discussed in the next Chapter.

Equivalently, one can also look at the accuracy of a rate-controller from the point
of view of time discrepancy rather than of service discrepancy. Consider a sequence of
cells of a flow f with assigned rate r;. If the flow were serviced as a fluid, starting from
time zero, the k-th cell (K > 0) would start service exactly at time % (provided of course
the cell is there to be served). The ideal rate-controller would give the flow a service
opportunity exactly every # units of time, so that the k-th service opportunity is offered
to the flow exactly at time t; = % (regardless whether a cell of a flow is actually there
or not). If the real rate-controller offers its scheduling opportunities at some times 7y,
the time discrepancy can be defined simply as the difference between the ideal and the
actual time of a service opportunity t; — 7. The accuracy of a rate-controller can now
be characterized as a bound on this time difference.

While the time and service discrepancy can be used interchangeably, in most cases it
will be more convenient to use the service discrepancy bounds (3.1) and (3.2).

It can be intuitively expected that the bound on the delay a cell can incur in the
input rate-controlled scheduler depends on the lower bound on service discrepancy E.
Specifically, it is shown in the next Section that the input scheduling delay of any flow

SINP " as well as the

depends on the value E of the two-level hierarchical scheduler
individual burstiness of the flow at the input to the switch. Further, in Section 3.3.2 a
less intuitive result is proved: the bound on arbitration delay depends on the value E of
the top level rate-controller S, in the scheduler S™V*. To distinguish service discrepancy
bounds of the scheduler S, from those of the two-level scheduler S’77 | denote the bounds

corresponding to S, by E'? and FIQ, and the bounds E and E corresponding to S’V Fby

E™" and o respectively. It will be shown that in the framework described in this
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Chapter the arbitration delay bound is also a function of the number of channels in the
switch.

It should be clear that once a cell has entered the output channel, its delay depends
on the properties of the output scheduler. It is assumed that the output scheduler is
some QoS-capable scheduler, for example one of the WFQ-like schedulers such as PGPS
[20]. For these schedulers it is known that the delay bound depends only on the assigned
rate (weight) of a flow and its individual burstiness. It is shown in Section 3.3.3 that the
bound on the burstiness of any flow at the entry to the output channel is determined by
the accuracy of the input rate-controller.

While it is possible to employ both work-conserving and non-work-conserving sched-
ulers at the output, the case considered in this Section is when the output scheduler is a
non-work-conserving rate-controller satisfying (3.1) and (3.2) with some values of E**
and B, The case of work-conserving schedulers at the output will be considered later.
The bounds on the output delay are derived in Section 3.3.3 below.

Finally, the bound on the total switch delay is derived in Section 3.3.4, where traffic

burstiness at the output of the switch is also described.

3.3.1 A Bound on the Input Scheduling Delay

Consider a generic scheduler satisfying (3.2) operating at unit speed on some flows with
rate assignments satisfying > ,7; < 1. The next Theorem gives an upper bound on
the delay any cell can experience in such a scheduler. As can be expected, this bound
depends on E (how much behind the ideal service a flow can be in the scheduler) and
the degree of burstiness of this flow at the input to the scheduler. Although this result
is rather straightforward, it will be repeatedly used in this thesis and therefore is stated

as a separate theorem.

Theorem 7 If flow f is constrained by a leaky bucket with parameters (r,b) at the input
to a scheduler satisfying (3.2), then each cell is scheduled no later than time @ after

its arrival.

42



Proof.
Consider some cell ¢ arriving at some time ¢ to the queue of flow f . Suppose first
that c¢ starts a busy period of this flow. Then c is scheduled at the first scheduling

opportunity of flow f occurring at or after time ¢. By (3.2) for any ¢ > 0 the scheduler
LE+te

™

must start service of at least one cell in the interval [¢,¢ + ) , which implies that c

E+e

will be scheduled no later than at time ¢ + =—=. Since € can be chosen arbitrarily small,
this implies the statement of the Theorem.

Suppose now that ¢ is not the first cell in a busy period of flow f, and let ¢y be
the beginning of the busy period containing ¢. Consider any time 7 > t at which ¢
still remains in the queue. By (3.2) in the interval [to, 7] D [to, 7) the flow f must have
received at least (7 — to)r — E scheduling opportunities (in units of service). Since the
queue of f has been continuously non-empty in the interval [ty, 7), at least (ty — 7)r — E
cells have been served. Note that all of these cells must have arrived to the queue of f
prior to the arrival of ¢ at time ¢. Since the flow is constrained by a leaky-bucket (r,b),

there could have been at most (t —to)r + b cells (including ¢) which could arrive before ¢

in the considered busy period. Therefore, it must be that (¢t — to)r +b > (1 — to)r — E

==

E+b

T

which implies that for any time 7 at which ¢ could still be in the queue 7 < t +
Therefore, the waiting time in queue is bounded by @ |

Theorem 7 immediately implies that in the context of the input scheduler S’V given
the leaky bucket parameters (b, r) at the input to the switch (which is assumed indepen-
dent of the internal switch architecture), the input scheduling delay is fully determined
by the bound E'NF of the scheduler S™NF. That is, denoting the input scheduling delay
by D'NP_ Theorem 7 yields

DINP < Z = (3.3)

Note that in addition to giving a bound on the input delay, Theorem 7 also gives
the bound on the output delay as a function of E°* and the burstiness of the flow
at the entry to the output channel. However, the output delay depends on the leaky-

bucket parameters of the flow’s traffic as it enters the output channel. The latter, as
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will be shown, depends on the properties of the input rate controlled scheduler and the

arbitration policy. A more detailed discussion of this issue is delayed till Section 3.3.3.

3.3.2 A Bound on Arbitration Delay (The Case of Speedup
S>2).

In this Section bounds on the delay incurred by each cell which are due to crossbar
arbitration conflicts are derived. This delay is specifically due to the constraint of the
crossbar architecture. The ability to limit it in a timely manner is vitally important to
ensure strict bandwidth and delay guarantees. It will be shown here that for the simple
arbitration algorithm described in Section 3.2.4 above it is possible to ensure that each
cell is delivered to its output within a certain bound from the time this cell is released
by the input rate-controlled scheduler. As will be shown, this bound depends on the size
of the switch and the speedup factor. More importantly, it will be shown that this delay
also depends on the properties of the input rate-controlled scheduler S’V described in
Section 3.2.3, and more specifically on the properties of the top-level scheduler S, in
SINP

The next Theorem gives the bound on the arbitration delay as a function of the bound
E'Y of the top-level scheduler S, at the input. The bound also depends on the speedup

of the switch fabric and the size of the switch.

Theorem 8 If the rate-controllers S, employed at the top level of input schedulers S™NF
satisfy property (3.1) (with upper bound on the service discrepancy of S, in (3.1) denoted
by FIQ), then for arbitrary rational speedup S > 2, with no assumption on synchroniza-
tion between the cell slot clock and the phase clock (no alignment of phases in cell slots)

the arbitration delay of any cell is upper bounded by

EIQ(n —-1)+1

DA =
S —2

where n is the number of input channels in the switch.
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Note that since the schedulers S, operate on the virtual output queues, the bounds
(3.1) and (3.2) should be viewed as the difference in service received by the aggregate
of all flows multiplexed to this virtual output queue compared to the ideal service the
queue should have received if it were scheduled ideally at the aggregate rate assigned to
this virtual output queue.

Proof.

Suppose this is not the case. Then there must exist a cell which was scheduled by its

SINP at its input at some time ¢ and was not scheduled by the arbiter at or

scheduler
before time £ + D?. Let t be the smallest such ¢ at which any such cell was scheduled by
any of the input schedulers S”V*, and denote such earliest ”violating” cell by c. Let ¢ and
j be ¢’s input and output respectively. Since the arbiter chooses cells on the ”smallest
timestamp first” basis, and since the timestamp of a cell is its scheduling time under
the STV scheduler, no cell which was scheduled by its S’V scheduler after time ¢ could
prevent ¢ from being chosen by the arbiter. Further, by the choice of ¢, no cell scheduled
by its S’V* scheduler prior to time t — D can remain at its input at time ¢. Therefore,
the only ”competition” which could prevent ¢ from being chosen by the arbiter up to

SINF at ¢’s input in the

and including time ¢ + D are those cells that were scheduled by
interval [t — D?,¢], and those cells destined to output j that were scheduled by S’V at
all other inputs in this interval. Since D4 is measured in units of channel cell slots, and
t is a cell slot boundary, there are at most D + 1 cell slot boundaries in the interval
[t — DA, #]. Since schedulers S’V make their scheduling decisions at cell slot boundaries
only, there are at most D +1 cells scheduled by S”V* in the interval [t — D%, t], including
c itself. Note now that the only times when a cell destined to output j from some input

ST must correspond to the times when the top-level

i can be scheduled by its scheduler
scheduler S, (i) at its input chooses the virtual queue Q; ;- Since the S,(i') are assumed to
satisfy the property (3.1), and since the scheduling decisions at all inputs are made only
at discrete time boundaries, it must be that the virtual queue @), ; was scheduled by Se(i')

at most (D" +¢)R;; +E' times, (and hence at most (D” +¢)R;; +E' cells destined to
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output j were scheduled by S™V) at any input ¢ in the interval [t — D4, t] C [t— D, t+4¢)
for any arbitrarily small value of . Therefore, the maximum number of cells ” competing”
with ¢ cannot exceed D + (D" +¢) ", Ry, + FIQ(n —1) < 2D+ (n— 1)E1Q +e¢e. By

Lemma 4, there are at least DS — 1 arbitration opportunities in the interval [t, ¢+ DA].

(n—1)E' %41
5 2

It is easy to see that for S > 2, choosing sufficiently small ¢, for any D4 > it
must be that DAS —1 > 2D4 + (n — 1)F1Q + £, and so the number of matching phases
exceeds the number of competing cells. Therefore, ¢ could not remain at the input at
t + D*. The obtained contradiction proves the Theorem. |

Note that the arbitration delay is straightforwardly affected by the accuracy of the

input scheduler.

3.3.3 A Bound on the Output Delay (The Case of a Cell-switching
Network)

This Section considers the output delay of a switch in a cell switching network, where
the output scheduler operates directly on cells rather than on re-assembled packets. The
discussion of the output delay in a packet-switching network is delayed till Section 3.3.5.

As follows from Theorem 7, the output delay is defined by the value E°* of the
scheduler employed at the output and the leaky bucket parameters of a flow at the entry
to the output channel. While the former is entirely determined by the choice of the output
scheduler, as will now be shown, the latter is a function of the arbitration delay (and
hence the arbitration algorithm) and the accuracy of the input rate-controlled scheduler.

More specifically, the following Theorem holds:

Theorem 9 If the input rate-controller satisfies (3.1) with work discrepancy bound EINP,
and if the arbitration delay is bounded by some time-independent D, then the flow which
conforms to a leaky bucket with parameters (r,b) at the entry to the switch conforms to

a leaky bucket with parameters (r, D + FINP) at its entry to the output channel.

Proof of Theorem 9.
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Consider an arbitrary interval [t1,%,]. Since it takes exactly time ¢ (in channel cell

times) to move a cell from the input to the output channel in a switch with speedup S,

any cell entering the output at some time 7 € [t1, to] was scheduled by the arbiter at time

T — % € [ty — %, ty — %] Since this cell could have spent at most time D* after it passed

its input rate-controller, it could pass the input rate-controller anywhere in the interval

[t — ¢ — D4, 7]. Therefore, a cell arriving to the output channel in the interval [t;, t,]
1

could have passed the input rate-controller anywhere in the interval [¢t; — % — DAty — 5)-

By Theorem 11 there could be at most (t; —t1 + DA)T —{—FINP < (to—t1)r+ DA —{—FINP

such cells (the inequality following from the fact that the sum of all rates assigned to all
flows does not exceed the capacity of an input or output channel, which is assumed to be
unit, implying r < 1). Therefore, by the definition of the leaky bucket the traffic of any
flow conforms to a leaky bucket with parameters (r, D4 + EINP) as it enters the output
channel. |

Theorems 7 and 9 now immediately yield

Theorem 10 The delay at the output channel of any cell of a flow with assigned rate r

satisfies

DA EINP EOut
pout < 227 s (3.5)
T

where D* is the bound on arbitration delay, E™T s the work discrepancy bound of the
input rate-controlled scheduler (3.1), and E°* is the work discrepancy bound of the output

scheduler in (3.2).

Finally, the following simple fact characterizes the burstiness of a flow on the output

of a generic rate-controller. This fact follows straightforwardly from (3.1):

Theorem 11 If the scheduler satisfies (3.1) then the flow is constrained by a leaky bucket

with parameters (r, E) at the output from the scheduler.

Proof.

47



Consider any interval [¢1,ts] at the output from the scheduler. The departure of cells
from the server is offset by a fixed time interval from the scheduling time (where the offset
is simply the time required to transmit one cell at the speed of the server). By (3.1), at
most r(t,—*1)+E cells could have been served in this interval, which immediately implies

the statement of the Theorem. [ |

3.3.4 Bounds on the Aggregate Delay and Outgoing Traffic

Burstiness

The results of the previous three Sections will now be used to derive the bound on the
total delay through the switch of any flow whose burstiness is constrained at the input
to the switch. This bound is independent of the number of or the behavior of any other

flows.

Theorem 12 For any speedup S > 2 the total switching delay of a any cell of a flow
constrained by a leaky bucket (r,b) at the entry to the switch satisfies

b+ E'NP L BTN 4 gout 1B
< +(1+-)
r r S -2

n—1)+1 1 1

D —_
+ S + Cout

(3.6)

where E™T and E™T are work discrepancy bounds in (3.1) and (3.2) of the input
rate-controlled scheduler SN, E' is the upper work discrepancy bound in (3.1) of the
top-level scheduler S, at the input, E°" is the lower work discrepancy bound in (3.2) of
the output scheduler, n is the number of input channels in the switch, and C°"* is the

capacity of the output link of this flow.

Proof of Theorem 12.

The aggregate delay at the switch is simply the sum of the input scheduling delay
D'NP the arbitration delay D4, the output scheduling delay D, plus the time required
to transmit one cell across the switch at the speed of the switch fabric, and also plus the

time required to transmit one cell at the speed of the outgoing link. Assuming that the
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propagation delay across the switch is negligible, the time to transmit the cell across the
switch is simply % The time to transmit a cell over the output link is ﬁ

Combining the bounds (3.3) and (3.5) on D'MF and D" yields

b+ ENT L BN 4 po 1., 1 1
D < = = 1+-)D — .
< " + ( +T) +S+C’out (3.7)
Using (3.4) immediately implies the statement of the Theorem. |

It is easy to see that Theorem 12 quantifies the intuition that the more accurate the
schedulers at the input and output channels, the smaller the delay bound.

Therefore, employing accurate schedulers at the input and the output appears essen-
tial. The next Chapter discusses some known schedulers and their accuracy.

Finally, Theorem 11 immediately implies that the traffic of a flow at the output from

the switch satisfies the following Theorem:
Theorem 13 The traffic at the output of the switch conforms to a leaky bucket (r, Fom)

Note that the burstiness of the traffic at the output of the switch does not depend
on anything but the upper bound on service discrepancy of the output scheduler. This
property follows from the assumption that traffic is reshaped at the output, so the more

reshaping is desired, the more accurate traffic shaper should be employed at the output.

3.3.5 Switching Delay in a Packet Network.

The previous Section was dedicated to the derivation of a switching delay bound in a
cell-switching network such as ATM. In the case of a packet switching network, however,
it is typically the packet delay that is of interest.

Recall that in a packet-switching network as soon as a packet arrives to the input
channel it is fragmented into cells. When the cells reach the output channel, they are
reassembled into packets and only then are passed through the output scheduler.

This Section examines the components of the total switching delay for a packet. It

is assumed that an upper bound L., on the length of a packet is known, and that the
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time required to fragment a packet is bounded by TF#4¢ | Similarly, it is assumed that
the reassembly delay at the output (once all the cells of a packet have already arrived
there) is also bounded by T#MB,

When a packet is fragmented into cells, typically some header information needs to be
added to each cell to allow correct reassembly at the output. Furthermore, if there is not
enough data in the packet to fill an integer number of cells, the last cell may be ”padded”
by some dummy bits. All these issues introduce additional bandwidth overhead, which
affects both the effective ”cell bandwidth” and ”cell burst size” of a flow.

The amount of overhead strongly depends on the particular algorithms used for frag-
mentation and reassembly (e.g. whether it is allowed to put data from the end of one
packet and the beginning of the next packet in one cell). Furthermore, the overhead de-
pends on the distribution of the packet size. This dissertation does not consider specific
fragmentation and reassembly algorithms, and therefore this overhead is not quantified.
Instead it is assumed that the assigned rate as well as the burst size in the input leaky
bucket parameters are already adjusted to accommodate this overhead. Namely, if a flow
conforms to a ”packet” leaky bucket with parameters (r7,b”) at the input, these para-
meters are adjusted to (r,b) where r > 7P, and typically b > bP. It is assumed that the
negotiation of ”packet rates” rP at connection setup takes into account the fragmenta-
tion overhead, so that the "cell rates” r; of all flows sharing an input channel still satisfy
Zf ry < 1, while the "packet rates” 7’? of all flows sharing an output link of capacity
COU satisfy PP 7’? < OO < 1.

With this in mind, the rest of this Section will operate with the already adjusted
"cell” leaky bucket parameters (r,b).

Consider now the first and the last cell of a packet, which are denoted by c¢; and ¢;.
Since these cells are part of the same packet, their arrival to the switch occurred at the
same time (it is assumed that the packet is fully arrived when its last bit has arrived,
and that all cells of a packet ”arrive” to the switch simultaneously at the end of the

fragmentation process). Therefore, the packet scheduling delay is simply the scheduling
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delay of its last cell, and therefore, Theorem 7 implies that for the packet case D'MF

satisfies (3.3).

Since the packet is considered arrived at the output when its last bit arrives at the
output, it is easy to see that the packet arrives to the output channel no later than
DFRAG 4 DINP 4 DA 4 L. which is the bound on the total input scheduling and the
arbitration delay of the last cell plus the time required to transmit the last cell at the
speed of the switch. Note that input scheduling delay, and the arbitration delay of all
the previous cells of the packet are ”hidden” in the bound D'V*+ D4 since by the time
the last cell of a packet is chosen by the arbiter, all the previous cells must have been
transmitted to the output.

Finally, the packet delay at the output is now evaluated.

Note that Theorem 9 regarding the maximum burst of the leaky bucket parameters of
a flow at the entry to the output channel continues to hold, since the size of the maximum
burst after packets have been reassembled cannot exceed the size of the maximum burst
in cells (before the cell headers is stripped off and possible padding removed).

It is assumed that just as in the case of a cell scheduler at the output, the output
packet scheduler satisfies (3.1) and (3.2), where the bounds E™" and EOu may depend
on the bounds on the size of the packet!. Given this assumption, the proof of Theorem
10 holds without modification (except replacing the word ”cell” by ”packet”), and so
the output scheduling delay is bounded by DFSMEB 1 DO with DO satisfying (3.5).

Finally, it takes at most é‘gz’g time units to transmit a packet over the output link.
Combining the bounds for D'V D4 and D°* immediately implies that the bound

DP total delay of packet in the switch is given

DP S DFRAG+DRSZV[B+ (38)

*An example of a packet scheduler satisfying (3.1) and (3.2), with tight bounds E% and EOu will
be given in the next chapter.
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r

3.4 Delay Bounds for Small Speedup Values.

So far the delay bounds have been obtained for a switch with speedup S > 2. Since
the higher the speedup, the more expensive the switch, this Section investigates the
possibility of providing bandwidth and delay guarantees with small speedup values. In
particular, the values of speedup 1 < .S < 2 are considered here.

It turns out that even for small speedup values one can still ensure certain delay
bounds as long as the total rates of all flows requiring delay guarantees sharing an input or
an output channel are restricted to a certain fraction of the channel bandwidth. Namely,
it is shown that the total switching delay of any cell is bounded as long as for any input
channel ¢ and output channel j the rates of guaranteed flows are restricted to satisfy the

following conditions:

Z R < «, (3.9)
Z Rij < «
J

where 0 < a < g and R;; is the combined rate of all flows destined from input ¢ to output
]

Restricting the rates of guaranteed flows to a portion of the channel bandwidth clearly
leads to bandwidth under-utilization in the absence of any other classes of service. How-
ever, if best-effort traffic is used along with the guaranteed traffic, then the bandwidth
unused by the guaranteed flows can be used by best-effort traffic.

With this in mind, the delay bounds for the smaller values of speedup will now be
derived.

First, note that the input and output delays D'V" and D are not affected by the

value of the speedup. Hence, it is only needed to obtain the arbitration delay bound,
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which is given by the following Theorem:

Theorem 14 If the rate-controllers S, at the top level of the schedulers S™NT satisfy
property (3.1), and if the rates of all flows are restricted as to satisfy (3.9) with a < 2,
then for arbitrary speedup in the range 1 < S < 2, with no assumption on synchronization

between the cell slot clock and the phase clock, the arbitration delay D* of any cell is

Ee (m+n—1)

bounded from above by —s——

Proof.

Suppose that the statement of the Theorem is false, and choose a cell ¢ with the
earliest scheduling time ¢ under its S, scheduler, for which the arbitration delay bound
is violated. Let ¢ and j be ¢’s input and output channels respectively. Since there are at
least D4S — 1 matching opportunities in the interval [¢,# + D*], in order for ¢ to not be
scheduled by and including time ¢ + D it must be that a cell from input i and/or a cell
destined to output j with timestamps smaller than or equal to ¢ (which is the timestamp
of ¢) must be chosen by the arbiter in each of these matching opportunities. Hence,
there must be at least DS — 1 ”competing” cells available in the interval [t,t 4+ D*].
Note as in the proof of Theorem 14 that any competing cell must be scheduled by its S,
scheduler in the interval [t — D*,t], since any cell scheduled before ¢t — D4 must be gone
by t by the assumption that c is the first cell to violate the arbitration delay bound D*,

SINP after time t cannot prevent ¢ from being chosen by the

and any cell scheduled by
arbiter due to the "smallest timestamp first” arbitration policy. Since the time when a
cell is scheduled by S must correspond to the time when the corresponding virtual
output queue is chosen by S,, and since all the schedulers S, satisfy (3.1), it means that
at most (¢ + D4) > Rij + mE < (e + D*)a + mE cells can be scheduled by the input
scheduler S™™ at input 4, including c itself, and at most (¢ + D*) Y, Rij + (n — 1)E <
(e + DMYa + (n — 1)E cells destined to j can be scheduled at all other inputs in the

interval [t — DA t] C [t — DAt + ¢) for any arbitrary small values of e. Therefore,

the total number of competing cells is bounded by 2(D* + &)a + (m +n — 1)E — 1.
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In order for ¢ not to be scheduled by the arbiter at or before D, it must be that
2D+ (m+n—1)E —1+2ca > DAS —1. It is easy to see that for any a < %, choosing
sufficiently small €, this cannot be true for any D4 > % this cannot be true for
any a < % The obtained contradiction proves the statement of the Theorem. |

The aggregate switching delay bound can now be immediately obtained from inequal-

ity (3.7) using the value % for a bound on D4.
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Chapter 4

Choosing Input and Output
Schedulers

4.1 Why Use A Rate-Controller at the Input?

In general a work-conserving scheduler which is never idle as long as it has work to do
has a lot of intuitive appeal since it eliminates unnecessary loss of bandwidth. However,
it turns out that in the context of the particular timestamp-based arbitration mechanism
described in the previous Chapter a rate controller at the input yields substantially
smaller delay bounds compared to those which can be obtained if a work-conserving
scheduler is used. Intuitively, this follows from the fact that for a rate-controller, the
upper bound on service discrepancy (which in turn defines the arbitration delay bound)
does not depend on the shape of the incoming traffic, while as will be shown below, for
a work-conserving scheduler this bound is at least linear with the combined burstiness of
all other traffic destined to the same output. In addition to yielding a larger delay bound,
this is quite undesirable since it jeopardizes the principle of flow isolation: a flow with a
small burstiness may be affected by a large burst of some other (potentially misbehaved)
flow at some other input. In contrast, if a rate-controller is used at the input, the delay

bound of a flow does not depend on the burstiness of any other flows.
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To get more intuition on this, consider the following example. Consider an nxn
switch in a cell-switching network with a work-conserving scheduler at each input, and
assume that the arbitration mechanism is timestamp-based as described in Section 3.2.4.
Suppose further that there are n + 1 flows labelled 1,2...n + 1 sharing a single output.
Flows 1 and 2 are from input 1, each with assigned rate 1/2n, while flows 3,4..n,n + 1
are from inputs 2, 3, ...n, each with assigned rate 1/n. Note that this rate assignment is
feasible, since no input or output (each of unit capacity) is overbooked. Suppose further
that at the input to the switch all flows 2,3...n + 1 conform to leaky buckets (r,b) with
the same burstiness b, while flow 1 has burstiness b;. Suppose at time zero b cells of each
of flows 2, 3, ...n+1 arrive to their corresponding inputs. They are scheduled by the input
schedulers in a FIFO order, so that the b-th cell is scheduled at time b. Since all cells in
the switch share a single output, only a single cell can be chosen by the arbiter at each
matching opportunity. Therefore, in b cell times exactly bS cells can be sent across the
switch, and at time b nb — bS cells will still remain at their inputs. All of these cells will
have timestamps not exceeding b, since they were scheduled by the input schedulers by
time b. Suppose now that at time b+ 1 a single cell of flow 1 arrives at input 1. It will
be immediately scheduled by the input scheduler and will be assigned timestamp b + 1.
Since it will have the largest timestamp among all cells across the switch, all sharing the
same output, it will have to wait until all the other cells are transmitted to the output,

nb—bS __
f =2 =

yielding the total input plus arbitration delay o %b —b. As can be seen, this delay

is proportional to n times the burst size of the other flows. In contrast, if a two-level

rate-controlled scheduler with constant work discrepancy bounds were used at the input,

bi+EINP | B9 (n—1)+1
r S—2

the total input plus arbitration delay would be given by , which does
not depend on the combined burstiness nb of other flows at all. This example illustrates
that for the switch of the same size and speedup, in the presence of some flows with large
burstiness b, using a rate-controlled scheduler with constant service discrepancy bounds

is beneficial compared to using a work-conserving scheduler.

An example of a rate-controlled scheduler with a small bound on service discrepancy
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is discussed in the rest of this Chapter.
Note finally that the considerations discussed in this Section have no effect on whether
a rate-controller or a work-conserving scheduler is chosen at the output channel. There

appears to be no overwhelming advantage of one approach versus the other.

4.2 Operation of RC-WF?Q.

The rate-controllers at the input and output channels, which will be used in this Chapter,
are based on the so-called RC-WF?Q [4], which is a rate-controlled version of WF?Q
[2]. The choice of RC-WF?Q is motivated by its high accuracy, yielding small service
discrepancy bounds. The next Section is dedicated to the description of RC-WF?2Q and

its basic properties.

4.2.1 The Cell RC-WF?Q.

The description of RC-WF2Q presented here is equivalent to that of [4]. The scheduler
maintains two state variables per flow: s; and f;. These variables have the meaning
of the ideal starting and finishing transmission time of the HOL cell of g;, where the
ideal time is computed in reference to the flow’s ”fluid” model, in which cells of this flow
are infinitely divisible and the flow is transmitted continuously at the constant rate ry.
Initially sy = 0, f; = 1j—';” for all flows f, where the rates of the flows are measured in
cells per unit time. In addition, RC-WF2(Q maintains a single variable now, which is
simply equal to the current real time. If the server capacity is C' cells/unit time, then
now increases by 1076” each scheduling opportunity, because it takes exactly 1‘376” units
of time to transmit a cell at speed C. All flows satisfying the condition s; < now are

referred to as eligible flows at time now. At each cell slot boundary RC-WF2Q picks the

flow with the smallest finish time f; among all eligible flows. If a flow f is chosen at the
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current cell boundary, its state variables are updated as

1

S <= S+ — (4.1)
Ty
1

fr <= fr+—. (4.2)
Ty

If a flow is not chosen, its state variables remain unchanged. In contrast with a non-rate-
controlled version of WF2Q, the flow is scheduled regardless of whether it actually has a
cell or not. If a flow is scheduled when there is no cell in it, the flow simply misses the
scheduling opportunity (but note that the state variables of the flow are updated as if
the cell were there).

The following Theorem and Corollaries characterize the accuracy of RC-WF2Q:

Theorem 15 For all k > 1, the k-th scheduling opportunity under RC-WF?Q of a flow

k—1 k:]

r Jr

with assigned rate r occurs in the interval |

This Theorem can be derived from the results in [2], [4]. Below is an alternative proof
derived from the properties of PGPS [20].

Proof of Theorem 15.

Consider first the case when the system is fully booked, i.e. ) ;r; = 1. The operation
of RC-WF2Q is independent of any arrival pattern, since the scheduling opportunities
occur as if for all & > 1 the k-th cell would arrive exactly at its ideal arrival time
%. Therefore, for the fully booked case the operation of RC-WF?2Q is equivalent to the
operation of PGPS under the ideal arrivals of all cells of all flows. Theorem 1.1 of [20]
implies that in a fully booked PGPS scheduler operating at unit speed on unit size packets
(cells) arriving exactly at their ideal arrival time, the k-th cell finishes its transmission no
later than at time % + 1. Since it takes exactly unit time to transmit a cell at unit speed,
it means that the k-th scheduling opportunity (i.e. the time at which the k-th cell begins
its transmission) occurs no later than at time é, where r is the rate assigned to this flow.

Moreover, since under the considered ideal arrival pattern the k-th cell arrives exactly at
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time %, it clearly cannot be transmitted before that time. Hence, under PGPS with

ideal arrivals in the fully booked case, the k-th scheduling opportunity of any flow occurs
% k1, immediately yielding the statement of the Theorem for the fully

’r

in the interval |
booked RC-WF?2Q scheduler.

It remains to show that the Theorem is true for the case when 7, < 1. Consider
a dummy flow (which will be denoted by fvwith rate r = 1 — Zf rr. Assume that the

)

”dummy” cells of this "dummy” flow arrive at their ideal arrival times. Let 7;(k) and
t;(k) denote the time of the k-th scheduling opportunity of some flow f under RC-WF?Q
in the presence of the dummy flow and without it, respectively. Note that for all k£ the
values of variables sy and f assigned at the k-th update of these variables do not depend
on the time of the update or the state variables of any other flow in the system. Therefore,
although the presence of the dummy flow may change the scheduling times of the real
flows, it cannot change the relative scheduling order of the real flows. This implies that

the presence of the dummy flow can only cause the k-th scheduling opportunity of a

real flow to occur later than that in the absence of the dummy flow. Hence, for all k

ti(k) < 74(k). As shown above, for the fully booked case 7;(k) € [£2, %], and hence

tr(k) < 74(k) < £ On the other hand, by operation of the algorithm no cell can be
scheduled before its eligibility time, implying ¢7(k) > £2L. Hence, t;(k) € [£2L,£]. W

r ’r

Corollary 16 Service discrepancy bounds of an RC-WF?Q scheduler satisfy EFCW Y Q=

- 2
2 cells and ERCWF @ _ 2 cells.

Proof of Corollary 16.
It will be shown below that the number of scheduling opportunities (measured in
cells) of a flow with assigned rates r which can occur in any interval [t1,¢5), which we

denote by A, (t1,12), satisfies
(tQ — tl)’l“ —-2< Ar(tl,tg) < (tQ — t1)’l“ + 2 (43)

Since (ty — t1)r is the amount of ”ideal” service which should be received in fluid at rate
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r, the statement of the Corollary will follow.

Let m74 <t <2, %’7_1 <ty < 2 for some m > 0, p > 1. Clearly,

r

-1 m+p—1 m m + m—1 +1
p = P —— <ty —1 < p— :p
T r T r r r

(4.4)

By Theorem 15 all scheduling opportunities of the considered flow indexed m+1,m+
2,...m+ p— 1 must occur in the interval [¢1,t5]. Since there are at least p — 1 of them, it

must be that A,(t1,%2) > p — 1. In conjunction with (4.4) this implies that
Ar(tl,tg) > p— 1> (tg — tl)T -2

which is the lefthand side of (4.3). On the other hand, by Theorem 15 only scheduling
opportunities of the considered flow numbered m, m+1, ....m+p can possibly occur in the
interval [t1,%2). Since there are at most p 4+ 1 of those, it must be that A,(t1,t2) < p+ 1.

In conjunction with (4.4) this implies that
Ar(tl,tg) < P+ 1< (tg — tl)T + 2

which is the righthand side of (4.3). [

4.2.2 The Input scheduler based on RC-WF?2Q.

The input rate-controlled scheduler was described in the previous Chapter as a two-
level hierarchical scheduler in which the top level scheduler controls the input to the
virtual output queues, and the second level schedulers operate on per-flow queues. In
this context, an RC-WF2Q scheduler is used at the top level of the hierarchy to arbitrate
among virtual output queues at each input (that is, all S,(i) schedulers are RC-WF?Q
schedulers as described in the previous Section).

At the second level of the hierarchy at input i there are n RC-WF2Q schedulers

S¢(i.7), one for each of the n output channels. Unlike the top-level scheduler, S (i, j)

60



does not operate in real time, but rather is invoked any time the top-level RC-WF?Q
chooses the virtual output queue @);;. The only distinction between the operation of the
second-level schedulers S; (7, j) and the non-hierarchical RC-WF?Q described above is in
the meaning and the value of the variable now, which we will denote 7 to distinguish
from the variable now of the top level of the hierarchy . While now is simply the real
time in the top-level scheduler, in S¢(, j) 7 advances by R%_j only at the times when Q);;
is chosen by the top-level scheduler, after the scheduling decision of S¢(7,7) is made.
More specifically, initially now = 7 = 0. If at real time now = t the top-level RC-WF?2Q
chooses @);;, then Sf(7,j) chooses the flow with the smallest f; of all of its flows with
sy > 7, and then updates 7 « 7+ Rij The variable 7 will be referred to as ”simulated

time” to distinguish it from the real time.

Theorem 17 For all k > 1 the k-the scheduling opportunity of flow f with assigned rate

k+1
) g

r¢ under the two-level hierarchical RC-WF*Q occurs in the interval [’“Zl

This Theorem can be derived from the results of [3] for hierarchical WFQ schedulers.
A more direct proof is given below.

Proof of Theorem 17.

Consider a scheduler Sf(i, j) in the hierarchy and let ¢1,ts, .... be the sequence of real
times corresponding to the time epochs when variables s; and f; changed for at least

one flow in the scheduler. Let 7, 7, .... be the corresponding values of the simulated time

k—1
R;; °

variable 7 of this scheduler. By operation of the algorithm 7 = 0,5 = TE =

1
Fpr
Consider now an isolated WF2(Q scheduler operating on the same flows with the same
rate assignments on a link of capacity R;;. Let t1 = 0,1, = RL],EC = I;T_le be
the real times corresponding to ”cell times” at this link speed. It is easy to see that
although the real times ¢y, to, .... may differ from ¢;, ts.....,the sequence of simulated times
T1,To, ... is identical to ti, to....... Furthermore, by operation of the algorithm the values
of variables sy and f; at times 1, s, .... for the scheduler in the hierarchy are identical
to the corresponding values of these variables at times ¢1, to...... for the isolated WF2Q

scheduler.
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Consider now the real time t of the k-th scheduling opportunity of flow f with the
S¢(i,7) scheduler. This time can occur only at a time when the corresponding @Q;; is
scheduled under the top-level RC-WF2Q. Let this be the m-th scheduling opportunity of
Qi; under the top-level RC-WF2Q). By Theorem 15 applied to the top level RC-WF?Q,

m—1 m

<t <
R; ~— "7 Ry

(4.5)

By operation of the algorithm, the variable 7 of S(i,j) at time ¢, (at the time the

scheduling decision is made, before the update of 7) which we denote as 7(tx) is given by

m—1

T(tk) = —5-
ij

(4.6)

Applying Theorem 15 to the S(4, j) operating in isolation on a link of capacity R;;

we get

< 7(tg) < — (4.7)

E—1 k
ry

ry
(4.6) and (4.7) imply

k—1 k
rf rf

which, together with (4.5) yields

1 <k+1
Rij_ ry

kE—1 m— 1 m
< <t <
Tf R;; Ri;

k
<=+
ry

where the last inequality follows from the fact that R;; > r, since R;; is the sum of rates

of all flows destined from i to j. This completes the proof of the Theorem. [ |

Corollary 18 Service discrepancy bounds of a two-level hierarchical RC-WF?Q satisfy
E =3 cells and E = 3 cells.

Proof of Corollary 18.
The proof is very similar to that of Corollary 16. It will be shown that the number

A, (t1,t2) of scheduling opportunities of a flow with assigned rates r which can occur in
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any interval [tq, ] satisfies
(tQ — tl)’l“ -3 < Ar(tl,tg) < (tQ — t1)’l“ +3 (48)

Since (ty — t1)r is the amount of ”ideal” service which should be received in fluid at rate
r, the statement of the Corollary will follow.
Letm74§t1<%, %p_lgt2<m7+p,m20,p21. Clearly,
p—1 m+p—1 m m+p m—1 p+1

— = <ty—t < —
T r T r T T

(4.9)

By Theorem 17 all scheduling opportunities of the considered flow indexed m+1,m +
2,...m+p — 2 of the given flow must occur in the interval [¢,t5]. Since there are at least
p — 2 such opportunities, it must be that A,(¢;,t2) > p — 2. In conjunction with (4.9)
this implies that

Ap(ty,ta) >p—2> (ta —t1)r —3

which is the lefthand side of (4.8). On the other hand, by Theorem 15 only scheduling
opportunities of the considered flow numbered m — 2, m — 1,....m + p — 1 can possibly
occur in the interval [tq,ts]. Since there are at most p + 2 of those, it must be that

A, (t1,t2) < p+ 1. In conjunction with (4.9) this implies that

Ar(tbtg) < D+ 2 < (tQ — tl)’l“ +3

which is the righthand side of (4.8). [ |

4.2.3 Switching Delay Bounds

Consider first the case of a cell-switching network, and assume that the output channel
employs a single-level RC-WF2Q scheduler, while the input runs a two-level RC-WF2Q

scheduler as discussed in the previous Section. The arbitration algorithm uses scheduling
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times of the input scheduler as discussed in Section 3.2.4. The results of the previous
two Sections yield BN = ENFP =3 EIC = E'° = EOu =9,
The total switching delay bound can now be immediately obtained by substituting

these values into the general delay bound of Theorem 12:

Theorem 19 In a cell-switching network, for any speedup S > 2 the total switching
delay of a any cell of a flow constrained by a leaky bucket (r,b) at the entry to the switch

satisfies

b+38 12n—1 1 1
+(1+-)

D < —
- 7 1“5—2+S+C'0“’t

Consider now a packet-switching network. In this case a packet scheduler is used at
the output. Since either a rate-controller or a work-conserving scheduler can be used
at the output, suppose that a work-conserving packet WF2(Q scheduler is used at the
output. As follows from the results in [2], its delay satisfies DO = DWF2@ < M%,
where L., is the length of the longest packet, and b is the burstiness of the flow at the
input to the scheduler (i.e. at the entry to the output channel). Since the input delay
D'NP and the arbitration delay D* are the same as for the cell-switching network, and

the leaky-bucket parameters of the flow at the entry to the switch is given by Theorem

9, the total delay in a packet switching network becomes

DP < DFRAG+DRSAIB+
b+6+2LmaX
—— (14

L2011 L
r’5—2 5" Cou

where as before D4 and DRSMPB denote the fragmentation and reassembly delay.
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Chapter 5

Arbitration Delay Bounds
Independent of the Switch Size.

5.1 A Limitation of Arbitration Based on Input Schedul-
ing Times.

The scheduling mechanisms in the previous Chapters are conceptually simple and pro-
vide deterministic bandwidth and delay guarantees to leaky-bucket constrained flows
independently of the behavior of the other flows. The main weakness of the described
approach, however, is that the resulting delay bounds are a function of the size of the
switch. While the linear dependence of the arbitration delay on the size of the switch
may be acceptable for small switches, it clearly is very unfortunate when the number of
input channels becomes large. It is therefore desirable to design algorithms that would
provide delay guarantees independent of the size of the switch. This Chapter is dedicated
to a description of an algorithm which yields delay bounds independent of the size of the
switch.

The arbitration algorithm discussed in the previous Chapters was based on the

timestamps corresponding to the scheduling times of the input rate-controller S’/V*. In
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this framework, the input scheduler is aware of the rate assignments, while the arbiter
is completely oblivious to them, relying on the inputs to schedule different flows at the
correct rate. It is this "rate-blindness” of the arbiter that causes the arbitration delay
bound to be linear in the number of input channels. This can be trivially seen by con-
sidering an example in which a single output is shared by n flows, indexed 1...,n each

arriving at a different input channel. Assume that the rate r; of flow 1 is very close to

1—ry
n—1

the (unit) channel capacity, while the rates r; (i = 2,..n) of all other flows r; =
are very close to zero. Suppose that a cell of each of the flows 1,..n arrives at time
zero to the corresponding input channels, and are immediately scheduled by the input
rate-controllers (in the absence of any other cells at the inputs). Then all of these n cells
are assigned the timestamp ¢t = 0. Suppose now that the arbiter breaks ties by choosing
the input with the largest index first. Then the cell of flow 1 will have to wait n — 1
matching phases before it can be transmitted to the output, so its arbitration delay is
1

which is linear in n. Note that since the rate of flow 1 is close to 1, ”T_l R ”T_lﬁ, ie.

n—1

S

the arbitration delay, as expressed in ideal inter-scheduling intervals of the flow, grows
linearly with the size of the switch.

The next section is dedicated to a description of an algorithm which is proven to
provide a total switching delay bound which is independent of the size of the switch with

speedup S > 6. In this algorithm the arbiter is made aware of the flow rates.

5.1.1 The Basic Algorithm

We begin by describing an algorithm which is easy to analyze but which suffers from
high complexity of the arbiter, since it needs to maintain individual state information
for all flows. We then show how to reduce this load by distributing some of the state
information and the computational load among the input channels. Consider first the
case when the input channels have per-flow queues (but no virtual output queueing).
In this framework, the input channel simply stores the arriving cells in the appropriate

queues where they wait for the arbiter to decide when to transfer them to the output.
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The arbiter maintains the following per-flow information: the rate r; of each flow f, and
the ideal start time of the HOL cell of f in the queue, denoted as before by s;. As in
the rate-controlled version of WF2(Q) described above, we call flows with s; < ¢ eligible

at time t. Initially, s; = 0. The arbiter computes the maximal matching as follows:

1. if no eligible flows, stop, else initialize set ¥ = {all eligible flows};

2. pick flow f € ¥ with the highest rate, breaking ties arbitrarily; put f in the

matching! and update sy < sy + #

3. remove from ¥ all flows with the same input or output as the flow f picked in step

1; if ¥ = &, stop, else go to step 2

This algorithm will be referred to as Fastest Rate Eligible Cell First (FRECF). Note
that being a rate-controller, FRECF does not concern itself with whether or not the flow
it schedules (puts in the match) at any given time actually has a cell or not. This is
motivated primarily by the assumption that guaranteed traffic is run at a higher priority,

and that any arbitration opportunities missed by a guaranteed flow are used by best-effort

traffic.

5.1.2 A Delay Bound for Speedup S = 6.

The following Theorem characterizes the accuracy of FRECF:

Theorem 20 With speedup S > 6 the k-th scheduling opportunity of flow f with rate r¢

under FRECF occurs in the interval [’“T_fl, %]

Proof. Just as in the case of RC-WF?Q), it is convenient to imagine that the scheduler
is backlogged with ”dummy” cells which are replaced by real cells upon their arrival. We

first show that the first scheduling opportunity of any flow f occurs in the interval [0, %]

!Note here that in step 2 a flow is chosen (and its start time is updated) even if there is actually no
cell in the flow’s queue.

67



for any S > 4. Note that the first cell of each flow becomes eligible at time 0. Consider
any flow f destined from input ¢ to output j and suppose that its first cell ¢ is not

scheduled up to and including time TL By the operation of the algorithm this means

!

that at each matching phase, an eligible cell, either from input ¢ or destined to output
J, with 7y > 7y was scheduled by the arbiter. Note now that for any such flow f,
only cells with eligibility times in the interval [0, %] can prevent ¢ from being scheduled
in the interval [0, #] It is easy to see that for any 7y > r; there could be at most
% +1< 2% such cells. Recalling that the sum of rates of all flows at any input (or
destined to any output) does not exceed 1, it follows that there are at most 5 2%/ < %
cells with eligibility time not exceeding # at input ¢, which includes c itself. Therefore,
the maximum number of ¢’s competitors at the input is at most % — 1, and similarly,
there are at most % — 1 competing cells destined to output j. Therefore there are at most
% — 2 cells that can prevent ¢ from being scheduled in the interval [0, #] On the other
hand, by Lemma 4 there are at least % — 1 matching phase boundaries in the interval
[0, %], and hence there will not be enough competing cells for any S > 4.

We now show that for S > 6 the statement of the Theorem holds for any £ > 1 as well.
Note that by operation of the algorithm a cell cannot be scheduled before its eligibility
time. Therefore, we only need to prove that the k-th cell of each flow is scheduled before
%, which is its ideal finishing time in fluid. Suppose that the statement of the Theorem
is false. This means that there exists some flow f and some k > 2 such that the k-th cell
of f was not scheduled by % We call such cell a violating cell. Consider the violating cell
c with the smallest eligibility time of all violating cells, and let f be the flow it belongs

to. Assume that f is destined from an input 7 to an output j. Let k be ¢’s index, so

that its eligibility time is kr—;l In order for ¢ to not be transmitted by its deadline %, it

k-1 k

vy Ty

must be that at each matching phase boundary in the interval [ ] an eligible cell
with faster rate was scheduled either from the input 7, and/or to the output j. Note now
that by the choice of ¢, it must be that all cells with ideal finish times less than ";—’fl must

have been transmitted by kr—’fl Therefore, the only ”competition” to ¢ that can prevent
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it from being scheduled by its deadline % are those cells whose rates are larger, whose
eligibility times do not exceed ﬁ , and whose finish times are at least ";—’fl It is easy to see
that for any f with Te 2Ty there could be at most -L- —i— 2 < 3 ~ such cells. Summing
as earlier these cells over all flows with rates 7 > ry at ¢’s 1nput and output, we see

that the maximum amount of competition that can prevent ¢ from being scheduled by

k—1

o is at most % — 2, which falls short of the number of matching phase boundaries in

the interval [

—, %] which is at least & — 1. The obtained contradiction completes the
Frs Ty

proof of the Theorem. |

Corollary 21 A cell of flow f arriving to the switch at time t and finding Q) cells in its

queue s delivered to the output no later than at time t + QT—tQ + % for S > 6.

Proof.
Consider a cell ¢ arriving to the switch at some time ¢. Suppose first that at time ¢

there are no other cells in the flow’s queue, i.e. ) = 0 and c starts a busy period. Let

Tf <t< for some k > 1. Since the k-th scheduling opportunity of this flow might

have occurred prior to t in the interval [—f, t), the cell ¢ may need to wait till the next
ko k1

re’ Ty

scheduling opportunity, which is guaranteed to occur in the interval [ ], so ¢ will
be scheduled no later than at time ¢ + = o and will be delivered to its output at most by
t+2+3

Suppose now that () > 0 at time ¢, i.e. the cell c arrives to a busy queue. Let ¢y, ca...cq
be the sequence of cells in the queue ahead of ¢, staring from the head-of-the-line cell.
Using the same argument as above, it must be that cell ¢; is scheduled by time k“ , which

implies that cell ¢ will be scheduled at the next scheduling opportunity by time kr—f,

and, inductively, cell c¢g will be scheduled by time %, and finally the cell ¢ itself will

be scheduled no later than by time HQH

. Recalling that ﬂ <t< % it immediately
follows that the cell ¢ is scheduled no later than by time ¢ + Q+2 , and so it is guaranteed

to arrive to its output by time t 4 QT—tQ + §. |

Corollary 22 If the input traffic of flow f with assigned rate ry conforms to a leaky
bucket (ry,b) then the queue of this flow is bounded by b+ 1 for S > 6.
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Proof.

Suppose this is not the case. Then there must exist some time ¢ at which there are
at least b 4 2 cells of the considered flow in the queue. Let t; denote the beginning
of the flow’s busy period containing ¢. Since the flow is constrained by a leaky bucket
(ry,b), at most (t — tg)ry + b+ ery cells could have arrived to the queue in the interval
[to,t + €) for any € > 0. On the other hand, it follows from Theorem 20 that at least
(t — to)ry — 1 scheduling opportunities of this flow must have occurred in the interval
[to,t] C [to,t + €). Furthermore, since the queue has been continuously backlogged in
the interval [to, t], a cell of this flow was actually transmitted at each of these scheduling
opportunities. Therefore, for any ¢ > 0 the queue is bounded from above by b+ 1 + ery.
Since € can be chosen arbitrarily small, the statement of the Corollary follows.

These two last Corollaries immediately imply the following Theorem:

Theorem 23 For any flow conforming to a leaky bucket (ry,b) at the input to the switch,
the delay of any cell between its arrival to the switch and its delivery to the output channel

is bounded by % + % for S > 6.

Theorem 24 Flow f conforms to a leaky bucket (ry,2) at the entry to the output channel
regardless of the shape of its traffic at the input to the switch for S > 6.

Proof.

Consider any interval [t1,t2) and let

k—1 k
<t < — (5.1)
rr rr
k -1 k
Erm—l oy Exm (5.2)
ry ry

for some integer k£ > 1,m > 0. By Theorem 20 at most m + 1 cells can be scheduled in
[t1,t2). From (5.1) k > ty7. From (5.2) m < tor; —k+1. Therefore m+1 < tor; —k+2 <
(ta—t1)rp+2. By definition this implies that the flow conforms to a leaky bucket (7, 2).H
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Finally, using this Theorem in conjunction with Theorems 7 and 23 yields the follow-

ing Theorem:

Theorem 25 The total switching delay of any cell of a flow constrained by a leaky bucket

b+EOut+5

(ry,b) at the entry to the switch is e %, where E°" is the lower bound on the

work discrepancy of the output scheduler.

5.1.3 A Delay Bound for a Range of Speedup Values - a Gen-

eralization.

The previous Section demonstrated that S = 6 is sufficient to guarantee that any flow

with rate r will be ensured that its k—th scheduling opportunity will occur in the interval

[’“;1, %] In this Section it will be shown that if the requirement on the accuracy of the
FRECF arbitration is relaxed to require that the k-th scheduling opportunity occurs in
the half-interval [%, %) for some a > 0, then a lower speedup value (which depends

on the desired value of parameter a) will suffice to provide such accuracy.

We now prove the following Theorem:

Theorem 26 For anya >0, if S >4+ a%l then the k-th scheduling opportunity of flow

k1 kta),

f with assigned rate vy occurs in the interval | el

Proof.

Just as in the case of RC-WF2Q, it is convenient to imagine that the scheduler
is backlogged with "dummy” cells which are replaced by real cells upon their arrival.
Suppose that the statement of the Theorem is not true. Then there must exist some
cell of some flow f such that the statement of the Theorem is violated. Consider the
cell ¢ with the earliest eligibility time of all such violating cells of all flows (breaking ties
arbitrarily). Let r; be the rate of the flow f to which ¢ belongs, and let k£ > 0 be the

sequence number of ¢, so that kr—’fl is its eligibility time. In order for ¢ not be scheduled

k—1 k+a

in the interval [ o 7), it must be that a cell either from c’s input or destined to c’s
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output which was also eligible and belonged to some flow ¢ (which may also be f itself)
with r¢ > ry.

Note now that any such cell competing with ¢ must have become eligible at some time

2 L(am m—1
k

ré
< kr;fl for some m > 0 (and was not yet scheduled by time % to belong

T . To see this, note that if a cell ¢ became eligible at some time ¢ =

< —1—(a+1)

m—1 m—{—a)

reg ' ro
-1 1 k—1 1 — =
n";;a _m jdgf” ) <ot ar_+f1 % + “:fl = kT—fI, and hence ¢ would be a

to the competition to ¢), then ¢ will not have been scheduled in the interval [Z

because
violating cell with an earlier eligibility time than ¢, which would contradict the choice of
c.

As a result, the only competition that could prevent ¢ from being scheduled in the

L k+a) must be those cells that are

interval [*— -

k—1—(a+1) k+a)
rf ory

1. eligible in the interval |
2. share the same input or output with c
3. belong to flows which have rates higher than r¢

Let n; and n, denote the number of flows with rates higher than r; at f’s input and
output. Since the sum of all rates sharing an input (or an output) is bounded by 1, then
for all such flows ¢ at the same input with f (n; +1)r <r+3_, .., 7¢ <1, and hence
n; < % — 1, and analogously n, < % —1.

Further, for any flow with rate r¢ there are at most Qi—fr(ﬁ +1 cells whose eligibility
k-1—(a+1) k+a

time is in the interval | ). Therefore, there are at most Qif D g TO 1

Ty ’ory
< 2’:—;& +L Tf —-1= 2“+3 — 1 competing cells at f’s input, and at most 2‘;;“2 > brpsr TP T1o
< 2?—” ++—-1= M — 1 at f’s output. Therefore, the total amount of competition
f Tf Ty

cannot exceed 4‘jj6 — 2. Since there are at least “—HS — 1 arbitration opportunities in the

interval [k_lz—ﬁaﬂ), k:;a) in order for c to be a violating cell it must be that “+1S 1<
4‘714;6 2,or S < (4‘”6 -1) a:{l Therefore, as long as S > 4 + —= +1 - +1, the assumption

that the statement of the Theorem is invalid leads to a contradiction. In particular, since

44 -2 T 44 2 e a:fl this means that for any S > 4+ —= the statement of the Theorem
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holds. Note that as a — oo, the speedup sufficient to ensure that the k-th scheduling

k=1—(a+1) k+a
'I‘f ) 'I‘f

Note finally that for a = 0 we obtain the result of the previous Section, i.e. that

opportunity occurs in the interval | ) asymptotically approaches 4. |

S = 6 suffices to ensure that the k-th scheduling opportunity of any flow f occurs in the
k—1 k:)

r or

interval |

5.1.4 Reducing the Complexity of the Arbiter.

Moving virtual output queues to the Arbiter.

The major drawback of the algorithm described in the previous Section is that the arbiter
needs to maintain state for, and perform the arbitration among, all flows traversing the
entire switch, which is by far too impractical. We now show how to reduce this complexity
by distributing the load of per-flow scheduling among input ports.

The basic idea here is to group flows by the virtual output queues as earlier in Chapter
3, but move the virtual output queue level rate-controllers S,(i) to the arbiter. More
specifically, the arbiter maintains a logical entry for each input/output pair. These entries
contain conceptually the same state information as the rate-controllers S,(i) needed in
the case of timestamp-based arbitration. In particular, considering FRECF' described in
the previous Section, the state information for each of the nxm entries at the arbiter will
be the rates R;; (which are the same as the rates assigned to the virtual output queues
at each input for the timestamp-based arbitration, i.e. R;; is the sum of rates of all
flows destined from input ¢ to output j), and the eligibility times s;;. Unlike the previous
Section, where FRECF was run by the arbiter at the flow level (and consequently the
arbiter needed to maintain the rates and the eligibility times for all flows), the arbiter
considered in this Section maintains and schedules only the nxm logical entries, each of
them corresponding to an input/output pair. For convenience, these entries will still be
referred to as ”virtual output queues” (the quotes indicating that these are the logical
queues rather than the actual queues). Just as in the previous Section, during each

matching phase the arbiter iteratively computes a maximal matching as follows. It picks
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the ”virtual output queue” corresponding to the input/output pair (7, j) with the fastest
rate R;; of all those for which the current time is no less than the current eligibility time
si;, adds it to the matching and removes all ”virtual output queues” corresponding to the
chosen input and output. It reiterates this process until no more ”virtual output queues”
can be added to the matching. At the end of the matching phase the arbiter tells the
input channels in the chosen matching the output they need to transmit a cell to. If the
pair (i,7) is in the current matching, then, once the input 4 is informed by the arbiter
that it can send a cell to output j, the input ¢ invokes the appropriate flow-level scheduler
S¢(i,7), which in turn chooses the cell among all flow queues at this input destined to
the output j. Note that just as in the case of the 2-level hierarchical scheduler in the
timestamp-based architecture, the schedulers S¢(7,j) do not operate in real time - the
now variable of each of these schedulers advances by RL] when the scheduler is invoked,
while all the state variables remain unchanged when the scheduler is not invoked.

This architecture is shown in Fig. 5-1.

Delay Guarantees.

Just as in the case of the timestamp-based architecture, the delay guarantees that can
be ensured in this architecture depend on the properties of input rate-controllers S (i, 7)
and on the choice of a rate-controller employed at the arbiter. This subsection gives
the bound on the switching delay in the case when the flow schedulers S(i,j) at the
input channel are RC-WF?2Q, while the arbiter employs FRECF. A more general case is
considered at the end of this Chapter.

Theorem 27 If the rate-controllers Sy(i,j) at the inputs are RC-WEF*Q and the arbiter
computes the maximal matching using FRECF applied to the nxm virtual output queues

then any cell of a flow constrained at the input to the switch by a leaky-bucket (rs,b) is

b+4

delivered to the output channel no later than time o + % after its arrival to the input

channel as long as the speedup S > 6.
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Figure 5-1: Switch architecture with a rate-controlled arbiter. The squares in the arbiter
denote the logical entries, one per input/output pair. They are referred to as ”virtual
queues”, since they logically correspond to the virtual queues of the timestamp-based
architecture.
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The proof of this Theorem is based on several lemmas given below. With the excep-
tion of several details the proofs of these Lemmas are very similar to the proofs of the

corresponding results in the previous Section.

Lemma 28 In the context of Theorem 27 the k-th arbitration epoch of flow f with as-

k-1 k:+1]
'I‘f ’ 'I‘f

signed rate Ty occurs in the interval |

Proof of Lemma 28.

The proof of this Lemma is very similar to that of Theorem 15. By operation of
the algorithm, the state variables s; and f; for any flow in any of the RC-WF?Q-
based schedulers S (i,j) do not depend on the time they are updated, but rather on
the sequence number of the update. Therefore, the sequence of the values of the state
variables in the these schedulers when invoked by the arbiter is indistinguishable from
the sequence of an isolated one-level RC-WF?(Q scheduler operating in isolation on flows
with the same rate assignment on a link of capacity R;;. Consider the real time tj of
the k-th scheduling opportunity of some flow f . This time can occur only at the time
when the corresponding ”virtual output queue” corresponding to input/output pair (i, j)
is chosen by the arbiter. Let this be the m-th arbitration epoch of the ”virtual output
queue” (i,7). By Theorem 20, the m-th scheduling opportunity of any ”virtual output

queue” occurs in the interval [Z=L ] Therefore

Rij 7 Ryj
m—1<t<m (5.3)
R; ~— "~ Ry '

By operation of the algorithm, the variable 7 of S(i,j) at time ¢, (at the time the

scheduling decision is made, before the update of 7) which we denote as 7(t) is given by

m—1

T(tg) = (5.4)
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Applying Theorem 15 to the S(4, j) operating in isolation on a link of capacity R;;

we get
k-1 k
ty) < — 5.5
— <) < 7 (5.5
Further, (5.4) and (5.5) imply
E—1
Ri+1<m<—R;+1
Ty )
which, together with (5.3) yields
k—1 m-—1 m k 1 kE+1
< <tk < < —+ <
T Rz j Rz j (i Rij Ty

where the last inequality follows from the fact that R;; > ry, since R;; is the sum of rates
of all flows destined from i to j. Hence, the k-th arbitration epoch of flow f occurs in the

[lc 1 k+1]

interval This completes the proof of the Lemma. [ |

Lemma 29 In the context of Theorem 27 a cell arriving at time t for a given flow f

with a queue of length @ will be delivered to its output no later than at time t + Qr_ti% + %

Proof of Lemma 29.

Consider a cell ¢ arriving to the switch at some time ¢. Let ¢, c2...co be the cells in
the queue before ¢ (if ¢ starts a busy period, then () = 0 and there are no cells ahead
of it in the queue). Choose k to satisfy = ﬂ <t< ﬁ. By Lemma 28 it must be that
the k-th arbitration epoch of the flow occurs in the 1nterva1 [2=L fl k“] while the k + 1-st
arbitration epoch of this flow occurs in the interval [k k+2] While the first cell in the
queue may have missed the k-th arbitration epoch (if the latter occurred in the interval
[kr—’fl, t)), it will be scheduled no later than at the & + 1-st arbitration epoch. Hence, the
first cell in the queue at time ¢ must be scheduled to be transmitted to its output no

later than by time kr—f, which implies that cell cs will be scheduled by time kj‘a’

o and,
inductively, cell cg will be scheduled by time k+r—€+2, and finally the cell ¢ itself will be

scheduled no later than by time g1 = % If ¢ started a busy period, then c itself
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will be scheduled no later than at time ¢;, and so will be delivered to its output no later

than at time ¢ + ¢ = ’%2—1— T <t+ % + &, which proves the statement of the Lemma in

this case. Otherwise, the cell c itself will be scheduled by time tg.1 = k%?fz <t-+ Qr—ja,

and is guaranteed to arrive to its output by time ¢ 4 @ + % |
!

Lemma 30 If, in the context of Theorem 27, the input traffic of flow f with assigned

rate ry conforms to a leaky bucket (r¢,b) then the queue of this flow is bounded by b+ 2.

Proof.

The proof is similar to the proof of Corollary 22. Suppose this is not the case. Then
there must exist some time ¢ at which there are at least b+ 3 cells of the considered flow
in the queue. Let ¢y denote the beginning of the flow’s busy period containing ¢. Since
the flow is constrained by a leaky bucket (rf,b), at most (¢t — to)ry + b+ ery cells could
have arrived to the queue in the interval [ty,t + ¢) for any € > 0. On the other hand, by
Lemma 28, at least (¢ —to)r; — 2 scheduling opportunities of this flow must have occurred
in the interval [to,t] C [to,t + €). Furthermore, since the queue has been continuously
backlogged in the interval [to, t], an actual cell of this flow was scheduled at each of these
scheduling opportunities. Therefore, for any ¢ > 0 the queue is bounded from above
b+ 2+ ery. Since € can be chosen arbitrarily small, the statement of the Lemma follows.
|

The proof of Theorem 27 now follows immediately from Lemmas 28 and 30.

Corollary 31 In the context of Theorem 27 a flow with assigned rate r¢ conforms to a

leaky bucket (rs,3) at the entry to its output channel.

Proof of Corollary 31.

Consider any interval [t;,t2) and let

k-1 k
<t <— (5.6)
T Ty
k -1 k
rtm—1 <ty < +m (5.7)
Tf Tf
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for some integer £ > 1,m > 0. By Lemma 28 at most m + 2 cells can be scheduled in
[t1,t2). From (5.6) k > ty7. From (5.7) m < tor; —k+1. Therefore m+2 < tor;—k+3 <
(to—t1)rs+3. By definition this implies that the flow conforms to a leaky bucket (7, 3).H

Corollary 31 in conjunction with Theorem 7 immediately yields

Corollary 32 In the context of Theorem 27 the output delay of any flow is bounded by

#ﬁg where E°" is the lower bound on the work discrepancy of the output scheduler.
Finally, the following Theorem gives an upper bound on the total switching delay:

Theorem 33 The total switching delay of any cell of a flow constrained by a leaky-bucket
(r,b) at the entry to the switch with speedup S > 6, with RC-WF®Q at the input channels
and a FRECF-based arbiter is bounded by EO#;FHS + % + ﬁ where Cyyt 18 the speed of
the output link.

This Theorem is proved simply by adding the bounds given by Lemma 28 and Corol-

1
Cout

lary 32 and adding an additional to account for the time required to transmit one

cell at the speed of the outgoing link.

Speedup Required for Deterministic Delay Guarantees for Fractional Link

Utilization.

The results of the previous Section hold for up to 100% booking of channel bandwidth
by guaranteed flows. It will now be shown that if the total bandwidth allocated to
guaranteed flows does not exceed a fraction 0 < a < 1 of the capacity of any channel, then
the speedup S > 6« suffices to ensure deterministic bandwidth and delay guarantees. For
example, as long as at most half the bandwidth of any channel is allocated to guaranteed
traffic, speedup S > 3 suffices to ensure delay guarantees of the previous Section.

This result is based on a straightforward generalization of Theorem 20:

Theorem 34 If the total bandwidth allocated to guaranteed flows sharing any channel

does not exceed a fraction 0 < o < 1, then with speedup S > 6« the k-th scheduling

k ﬁ]

opportunity of flow f with rate ry under FRECF occurs in the interval | ;flv it
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Proof. The proof is almost identical to that of Theorem 20. Just as in the case of
RC-WF?Q, it is convenient to imagine that the scheduler is backlogged with ”dummy”
cells which are replaced by real cells upon their arrival. We first show that the first
scheduling opportunity of any flow f occurs in the interval [0, %] for any S > 4. Note
that the first cell of any flow becomes eligible at time 0. Consider any flow f destined
from input ¢ to output j and suppose that its first cell ¢ is not scheduled until after
time % By the operation of the algorithm this means that at each matching phase an
eligible cell either from input 7 or destined to output j with r > ry was scheduled by
the arbiter. Note now that for any such flow f', only cells with eligibility times in the
interval [0, #] can prevent ¢ from being scheduled in the interval [0, #] It is easy to see
that for any r,» > r; there could be at most %l +1< 2%' of such cells. Recalling that
the sum of rates of all flows at any input (or destined to any output) does not exceed «,
it follows that there are at most Zf: 2%’ < i—i‘ cells with eligibility time not exceeding
% at input ¢, which includes c itself. Therefore, the maximum amount of ¢’s competition
at the input is at most i—‘; — 1, and similarly, there are at most i—(f)‘ — 1 competing cells
destined to output j. Therefore there are at most f—i‘ — 2 cells that can prevent ¢ from
being scheduled in the interval [0, #] On the other hand, by Lemma 4 there are at least
% — 1 matching phase boundaries in the interval [0, %], and hence there will not be
enough competing cells for any S > 4a.

We now show that for S > 6« the statement of the Theorem holds for any k£ > 1
as well. Note that by operation of the algorithm a cell cannot be scheduled before
its eligibility time. Therefore, we only need to prove that the k-th cell of each flow is
scheduled before %, which is its ideal finishing time in fluid. Suppose that the statement
of the Theorem is false. This means that there exists some flow f and some k£ > 2 such
that the k-th cell of f was not scheduled by % We call such cell a violating cell. Consider
the violating cell ¢ with the smallest eligibility time of all violating cells, and let f be
the flow it belongs to. Assume that f is destined from an input ¢ to an output j. Let k

be ¢’s index, so that its eligibility time is ’“T;fl In order for ¢ to not be transmitted by its
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k—1 k.
Tf 77‘f

deadline %, it must be that at each matching phase boundary in the interval | ] an
eligible cell with faster rate was scheduled either from the input ¢, and/or to the output
j. Note now that by the choice of ¢, it must be that all cells with ideal finish times

less than &=L

must have been transmitted by kr—_fl Therefore, the only ”competition”
to ¢ that can prevent it from being scheduled by its deadline % are those cells whose
rates are larger, whose eligibility time does not exceed % , and whose finish times are at
least ’“T;fl It is easy to see that for any rp > ry there could be at most %’ +2< 3%:
of such cells. Summing these cells as before over all flows with rates rp > 7y at ¢’s
input and output, and recalling that the sum of rates of all flows sharing a particular
channel does not exceed «, we see that the maximum amount of competition that can
prevent ¢ from being scheduled by kr—’fl is at most E—‘; —2, which falls short of the number of
matching phase boundaries in the interval [kr—’fl, %], which is at least E—‘;‘ —1. The obtained
contradiction completes the proof of the Theorem. |

The main result of this Section is now given by the following Theorem, the proof of

which is identical to the proof of the corresponding result of the switching delay in the

previous Section given by Theorem 34, and is therefore omitted here.

Theorem 35 If the total bandwidth allocated to guaranteed flows sharing any channel
does not exceed a fraction 0 < « < 1,the total switching delay of any cell of a flow
constrained by a leaky-bucket (ry,b) at the entry to the switch with speedup S > 6a, with
RC-WFQ at the input channels and a FRECF-based arbiter is bounded by EO#;M +
% + ﬁ where Cyy; s the speed of the output link.

Some Implementation-Related Issues.

While the details of implementation are beyond the scope of this dissertation, this Section
contains a brief discussion of the key issues related to implementation.

It is important to note that in the framework discussed in the previous two subsections
the amount of control communication between the input/output channels and the arbiter

is relatively small. When a new flow enters or leaves the switch, the arbiter needs to be
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notified about the change in the total rate assigned to the appropriate input/output pair.
Hence, the communication between the arbiter and the input channels is still required at
the time of connection setup. It should be noted that for connection-oriented guaranteed
flows it is expected that the duration of a connection is much larger than the set-up/tear-
down time, and so the efficient operation during normal operation is highly desirable.
For the period of time when the number and the rates of all flows remains stable, the
arbiter described in this Chapter does not need any information from the inputs to make
its decisions since it maintains all the scheduling variables locally.

Note that since the arbiter is rate-controlled, it does not need to know whether a
particular input/output pair actually has a cell to transmit. If it chooses an input /output
pair which currently has no cells to send, then the cell is simply not sent?. This is precisely
what allows the reduction of the communication overhead, which becomes a substantial
bottleneck in high speed switches. For example, the communication overhead is a major
obstacle for the algorithm described in [7].

Essentially, the only limitation of the approach described in this Chapter is the speed
of the arbiter. In the straightforward sequential implementation the complexity per
matching phase of the arbiter is O(nxm), where n and m are the number of input and
output channels in the switch. Note that all known maximal matching algorithms have
the same order of worst case complexity.

As discussed in the Introduction, the rate of increase in processing speeds appears
to be far ahead of the rate of the increase in memory speeds. Therefore, shifting the

memory speed bottleneck to processing speed appears to be a substantial advancement.

’Note that such ”missed” opportunities have no effect on delay and bandwidth guarantees of any
other flows. Nevertheless, at first glance it may seem that this may cause unnecessary loss of bandwidth.
However, this becomes less of a concern if the rate-controlled arbitration is used to schedule a subset of
guaranteed flows, while best-effort traffic is scheduled at lower priority using some simpler mechanism.
The interaction of guaranteed and best-effort traffic will be discussed in more detail in the next chapter.
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5.1.5 Using Other Rate-Controllers at the Arbiter.

So far the rate-controller employed at the arbiter was assumed to be FRECF. For this case
it could be shown that, with the appropriate value of speedup, it is guaranteed that each
input /output pair receives its arbitration opportunities with the appropriate frequency
with a very small discrepancy from the ideal rate corresponding to this input/output
pair. In the context of this Chapter the accuracy of the arbiter with respect to each
input/output pair has been expressed in terms of the discrepancy between the time of
the actual arbitration opportunities and the ideal transmission time of the aggregate
flow between any given input/output pair. More specifically, it was shown that if the
total rate of flows sharing an input/output pair (i,7) is R;;, then the k-th arbitration
opportunity of this input/output pair occurs in the interval [';T R—], while the ideal
time of the k-th arbitration opportunity is %— i

In principle, any other rate-controller can be incorporated into the arbiter. The
accuracy of this rate-controller will affect the switching delays. In fact, using an argument
almost identical to the proof of switching delay for FRECF in Section 5.1.4, it will now
be shown that

Theorem 36 If the arbiter guarantees that the k-th arbitration opportunity of input/output
pair occurs in the interval [E=2=L i‘] L ]”B ] (where A >0, B > 0, are constants), and if the

inputs employ RC-WF?Q-based ﬂow schedulers Sy, then the total switching delay of a

EOv'4b4+3(A+B)+7
Ty

flow constrained by a leaky bucket (ry,b) is upper bounded by +3 ﬁ

Here the constants A and B characterize the accuracy of the arbiter in terms of the
discrepancy between the times of the ideal and the actual arbitration opportunities of

any given input/output pair. The proof of the Theorem is based on several lemmas.

Lemma 37 In the context of Theorem 36, the k-th arbitration opportunity of flow f with

assigned rate ry occurs in the interval [k A 1, ’“Jf“]
ij
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Proof of Lemma 37.

By the operation of the algorithm the state variables s; and f; for any flow in any
of the RC-WF2Q-based schedulers S (i, j) do not depend on the time they are updated,
but rather on the sequence number of the update. Therefore, the sequence of values of
the state variables in these schedulers when invoked by the arbiter is indistinguishable
from the sequence of an isolated one-level RC-WF2Q scheduler operating in isolation on
flows with the same rate assignment on a link of capacity R;;. Consider the real time t;
of the k-th scheduling opportunity of some flow f . This time can occur only at the time
when the corresponding ”virtual output queue” corresponding to input/output pair (i, j)
is chosen by the arbiter. Let this be the m-th arbitration opportunity of the ”virtual
output queue” (i,7). By the statement of the Theorem, the m-th scheduling opportunity

of any ”virtual output queue” occurs in the interval [m}f‘fl, "}‘; |. Therefore
ij 1]

m—A—1 m+ B

(5.8)
By operation of the algorithm, the variable 7 of S(i,j) at time ¢, (at the time the
scheduling decision is made, before the update of 7) which we denote as 7(tx) is given by

m—1

T(ty) = (5.9)

Applying Theorem 15 to the S(4, j) operating in isolation on a link of capacity R;;

we get
k—1 k
<7(te) < — (5.10)
re re
(5.9) and (5.10) imply
k-1
Rz]+1§m<_Rz]+1
! !
which, together with (5.8) yields
k—1—-A k-1 A m—A-—1 m + B k 1 B k+1+4+B
< - S—F <t < < —+ + <
ry ryo I R Ry oy Ry Ry Ty



where the first and the last inequalities follow from the fact that R;; > ry, since R;; is

the sum of rates of all flows destined from ¢ to j. Hence, the k-th arbitration opportunity

k—1-A k+1+4B

of flow f occurs in the interval | oy |. This completes the proof of the Lemma.l

Lemma 38 In the context of Theorem 36, a cell arriving at time t and finding a queue

of length Q) will be delivered to its output no later than by time t + %ﬁBH + %

Proof of Lemma 38.

Consider a cell ¢ arriving to the switch at some time ¢. Let ¢, ca...co be the cells in
the queue before c¢ (if ¢ starts a busy period, then () = 0 and there are no cells ahead of it
in the queue). Let the arrival time ¢ of the cell ¢ satisfy kr—_fl <t< % for some k > 1. By

the previous Lemma it must be that the next arbitration opportunity of the flow occurs

no later than in the interval [%, %f’g”]. Hence, the first cell in the queue at time ¢
must be scheduled to be transmitted to its output no later than by ¢; = %f“z, which

implies that cell ¢; will be scheduled by time t; = w

will be scheduled by time to = kA4 BHO+] and finally the cell ¢ itself will be scheduled

rf

, and, inductively, cell cg

no later than by time {g41 = HA+TQ+2. If ¢ started a busy period, then c itself will

be scheduled no later than at time ¢;, and so will be delivered to its output no later

which proves the statement of the

than at time #; + ¢ = B2AEBE2 L L <y A+th?+3 L1

’r‘f 57
Lemma in this case. Otherwise, as discussed above, the cell ¢ will be scheduled by time

w <t+ %ﬁBH, and is guaranteed to arrive to its output by time

tQ+ ’
t_{_w_‘_l [}

’r‘f S

Lemma 39 If, in the context of Theorem 36, the input traffic of flow f with assigned rate
ry conforms to a leaky bucket (ry,b) then the queue of this flow is bounded by b+ A+ B+2.

Proof of Lemma 39.
Suppose this is not the case. Then there must exist some time ¢ at which there are at
least b+ A+ B+ 1 cells of the considered flow in the queue. Let ¢y denote the beginning

of the flow’s busy period containing ¢.
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Since the flow is constrained by a leaky bucket (rf,b), at most (¢ —tg)ry+b+ery cells
could have arrived to the queue in the interval [t, t+¢) for any £ > 0. On the other hand,
by Lemma 37, at least (t — to)r; — A — B — 2 scheduling opportunities of this flow must
have occurred in the interval [to,t] C [to,t + €). Furthermore, since the queue has been
continuously backlogged in the interval [tg, ¢], a cell of this flow was actually transmitted
at each of these scheduling opportunities. Therefore, for any € > 0 the queue is bounded
from above by (t —to)ry +b+ery— (t —to)ry+ A+ B+2=0b+ A+ B+ 2. Since € can

be chosen arbitrarily small, the statement of the Lemma follows. |

Lemma 40 In the context of Theorem 36 a flow with assigned rate ry conforms to a

leaky bucket (ry, A+ B+ 3) at the entry to its output channel.

Proof of Lemma 40.

Consider any interval [t1,t2) and let

k-1 k
<t < — (5.11)
Ty Ty
k+m—1 k
EEmT g, B (5.12)
Ty Ty

for some integer £k > 1,m > 0. By Lemma 37 at most m + A + B + 2 cells can be
scheduled in [t1,%3). From (5.11) k > tyrp. From (5.12) m < tory — k + 1. Therefore
m+A+B+2<tyy—k+A+B+3< (to —tl)ry + A+ B + 3. By definition this
implies that the flow conforms to a leaky bucket (r;, A+ B + 3). |
Proof of Theorem 36.
First note that Lemmas 37 and 39 it immediately follows that any cell of a flow con-

strained by a leaky bucket (rf,b) at the entry to the switch is delivered to the output

b+2(A+B)+5
rf

channel no later than time + % after its arrival. Using Lemma 40 in conjunc-
tion with Theorem 7 immediately implies that the output delay of any flow is bounded
by EOYHAYBE3 hore E°"" is the lower bound on the work discrepancy of the output

Tf

scheduler. Adding these bounds and adding further an additional ﬁ to account for the
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time required to transmit one cell at the speed of the outgoing link we obtain that the

total switching delay is bounded by Eout+b+i(A+B) 8 4 % + ij. |
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Chapter 6

Providing For Different Classes of

Service

6.1 Coexistence of Guaranteed Flows with Other Classes
of Service

So far the main emphasis of this thesis has been on providing bandwidth and delay guar-
antees to the so-called guaranteed flows. However, the results of the previous Chapters
can also be applied to allow support for flows with less stringent QoS requirements along
with guaranteed flows. In particular, it is possible to ensure that while the guaranteed
flows receive the guarantees promised at connection setup, the ”lower grade service” traf-
fic fills up the remaining bandwidth, ensuring high link utilization. This Section discusses
this issue in more detail.

Consider the switch architecture of Chapter 5 (Figure 5-1), where the arbiter main-
tains a logical entry per virtual output queue and uses some rate-controlled arbitration
mechanism such as FRECF to compute a maximal matching. Recall that FRECF com-
putes a maximal matching only among eligible logical virtual output queues. Therefore,

although no more eligible queues can be added to the matching, there may still be some
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unmatched inputs and outputs for which no connections have been made. If there is
any “lower grade” traffic, it may be possible to transmit some number of the ”lower
grade” cells between these unmatched inputs and outputs. This observation motivates
the following approach. Suppose that the switch runs two different algorithms A% and
ALG for guaranteed and ”lower grade” traffic respectively. Assume that A is run at
strictly higher priority than A“, and suppose for example that A“ is FRECF, while
AFC is any arbitration algorithm which computes a maximal matching on a bi-partite
graph given a set of requests from a subset of inputs to a subset of outputs. Examples of
such algorithms can be SLIP [17], PIM [1], WPIM [24], LOOFA[19], etc. The arbitration

proceeds as follows.

1. At the beginning of a matching phase, the arbiter runs A% and computes a max-
imal matching among all eligible logical virtual output queues. At the end of this
computation a subset of inputs and outputs are matched. Let S and S§ be the
subsets of all inputs and outputs matched by A%, and let S; and Sp be the sets of

remaining inputs and outputs.

2. For the chosen input/output pairs in sets S and S§ the flow-level input schedulers
(e.g. WF?Q as described in the previous Chapter) are used to choose guaranteed
flows corresponding to the chosen ”guaranteed matching”. If the chosen guaranteed
flow’s queue is non-empty, its HOL cell is transmitted. If for any input/output pair
(1,7) the chosen guaranteed flow queue is empty, the input i and the output j are

added to the so far unmatched sets S; and Sp.

3. Once all guaranteed cells chosen in the previous step are transmitted, AX“ is in-
voked to compute a maximal matching among the remaining unmatched sets of
inputs and outputs S; and Sp, choosing some subsets SILG C Sr and SéG C Sy for

the ”lower-grade matching”.

Note here that unlike A% which in the described context operates independently

of the input schedulers, A““ in principle may involve some additional communication
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between inputs, outputs and the arbiter, as well as some additional scheduling of ”lower
grade” traffic at the input channels. For example, the round-robin request/grant protocol
described in the example at the beginning of Chapter 2 involves exchanging request and
grants, as well as round-robin scheduling at the inputs. Similar control communication
and scheduling is used in algorithms such as SLIP, PIM, etc. that could be chosen for
this purpose.

It is easy to see that regardless of the choice of AF“, the arbitration of guaranteed
flows in this framework in the presence of “lower grade” traffic is indistinguishable from
the case considered in Chapter 5 in the absence of “lower grade” traffic. This is a simple
consequence of the fact that guaranteed flows are treated at a strictly higher priority and
therefore are completely unaffected by the presence of the ”lower grade” traffic. Hence
the framework described here preserves all the guarantees shown in Chapter 5 for the
guaranteed flows.

Recall that the results of Chapter 2 imply that as long as traffic is restricted by
some traffic management algorithm so that the total bandwidth consumed by it does
not exceed the capacity available to it, (in the sense that in any interval of time of
length ¢ the total amount of input traffic sharing a channel of capacity C' does not
exceed Ct + B for some constant B), then any maximal matching algorithm can ensure
a 100% bandwidth guarantee with the appropriate speedup. Note now that the two-level
arbitration algorithm described in this Section (e.g. apply A¢ first, then apply AF¢
on remaining inputs and outputs) yields a maximal matching. Assuming the existence
of some traffic management algorithm which ensures that there exists some constant!
BY% such that the amount of input ”lower grade” traffic A(¢;,t,) arriving in any interval

(t1,t2) never exceeds the limit

Aty ty) < CHC(ty — t1) + B* (6.1)

'Recall from the discussion in chapter 2 that this constant essentially determines the buffer require-
ments needed to ensure that lower traffic suffers no loss. An example of a service class for which this
assumption holds is Available Bit Rate (ABR) service in ATM.
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(where C*¢ = C' — O is the bandwidth available to best effort flows), and assuming that
the guaranteed flows are leaky-bucket constrained at the entry to the switch, the results of
Chapter 2 then immediately imply that the "lower grade” traffic can be provided a 100%
bandwidth guarantee as long as the speedup satisfies S > 4. In conjunction with the
results of Chapter 5 this means that S > 6 suffices to ensure that, with FRECF used for
A% any maximal matching arbitration algorithm guarantees that ”lower grade” traffic
can achieve 100% of the ”leftover” bandwidth CT“. This assumes the existence of a
traffic management algorithm controlling the input rates of the ”lower grade” traffic as
discussed above.

In fact, using the results of Chapter 5 related to the speedup needed to ensure delay
guarantees in a fractionally booked system, a stronger statement can be made in this
context if the admission control policy for guaranteed flows ensures that C¢ < %C’, i.e. the
guaranteed flows are not allowed to book more than two thirds of any channel capacity.
In this case using FRECF-based A% with any maximal matching algorithm A”“ and the
speedup S = 4 suffices to ensure both deterministic bandwidth and delay guarantees for
guaranteed traffic as well as bandwidth guarantees for ”lower grade” traffic, provided the
latter is controlled by a traffic management algorithm to satisfy (6.1). Furthermore, if the
OCF-based algorithm discussed in Chapter 2 is used for "lower grade” traffic scheduler
ALG then the results of Sections 2.3 and Chapter 5 imply that the speedup S = 2 suffices
to provide such guarantees to both guaranteed traffic and ”lower grade” traffic as long
as the bandwidth allocated for guaranteed flows does not exceed half of any channel
bandwidth.

Note finally that a very similar approach can be used if timestamp-based arbitration
discussed in Chapters 3-4 is used for A“. Although the delay bounds obtained for guar-
anteed flows in this framework will be worse than that for FRECF (since they depend on
the size of the switch), the results of Chapters 3 and 4 imply that S = 4 suffices in this
case to ensure that the "lower grade” traffic can be provided the bandwidth guarantee

(as long as it does not exceed the bandwidth unused by the guaranteed flows), while
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preserving the bandwidth and delay guarantees for the guaranteed traffic as described
in Chapters 3-4 even if guaranteed traffic occupies a high percentage of some channel

bandwidth.

6.2 Providing Fair Service for ”lower grade” Flows

In the previous Section it was assumed that ”lower grade” traffic is managed to ensure
that the total input rate of "lower grade” traffic does not exceed the available capacity in
the sense that given sufficient buffer, no data is lost. This assumption, however, did not
account for potential preferential treatment of some ”lower grade” flows at the expense
of other best effort traffic. It is desirable that given identical demands, flows sharing the
same channel /link should be given identical service by the switch.

In practice, the share of service guaranteed to a flow strongly depends on the buffering
and scheduling policies employed by the switch. In the context of the crossbar architec-
ture with virtual output queueing at the inputs, providing per-flow fair service turns
out to be a significant challenge. Many of the simple arbitration algorithms used in the
industry such as SLIP [17], PIM [1] attempt to treat each virtual output queue fairly.
However, this may result in unfairness towards individual flows. Suppose for example
that input 1 has 100 flows destined to output 1, while input 2 has only one flow destined
to this output. As a result, the virtual output queue at input 1 destined to output 1
will represent 100 flows, while the corresponding virtual output queue at input 2 will
represent a single flow. Clearly, if these two virtual output queues are ensured the same
service rate, then each of the flows at input 1 will receive only 0.01 of the service received
by the flow at input 2. Note that the flow from input 2 will be given half the capacity of
the output channel, while each of the other flows will be given only zLoo of this capacity.

One way of correcting this problem is to make the arbitration mechanism aware of

the rates at which the ”lower grade” virtual output queues must be served. For example,

CI"P COut

Nl NOut)’ where C1,,,, and Cp,; denote

suppose that each flow is assigned a rate of min(
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the amounts of bandwidth available for ”lower grade” traffic at the input and output
channels respectively, while N;,, and No,; denote the numbers of "lower grade” flows
sharing the input and the output. Once this is done, one can assign each ”lower grade”
virtual output queue at each input the rate which is simply the sum of fair rates of
all "lower grade” flows. Now, we can use any of the algorithms described in Chapters
3-5 to arbitrate among the ”lower grade” virtual output queues as well. Since ”lower
grade” traffic does not require strict delay guarantees, one can use a simple round-robin
scheduler for flow-level schedulers at the input. For example, in the absence of guaranteed
flows one can use the same architecture as shown in Figure 5-1, where the rate-based
arbitration described in Chapter 5 is used, where the flow-level schedulers at each input
are round-robin schedulers. It is easy to see that the results of Chapter 5 imply that in

the absence of guaranteed traffic each virtual output queue is ensured the service equal

to REY = Zfi’l” Y mm(%’ -, JC\Yngi ), and so each virtual output queue will be given enough
service to ensure that each flow can receive its fair service. This architecture does not
consider the coexistence of "lower grade” traffic with guaranteed flows. It turns out
that once the ”fair” rates of ”lower grade” traffic are estimated, the following simple
mechanism can be used. Consider the architecture shown in Figure 6-1, where the ”lower
grade” and the guaranteed arbitration coexist.

We use the arbitration mechanism of Chapter 5, where the arbiter maintains mxn
logical virtual output queue entries, while the inputs run WF2Q flow schedulers for
guaranteed traffic. However, the rates assigned to a logical virtual output queue @);;
are now R;; = Rg + R{JJG. The arbitration between the logical virtual output queues
proceeds exactly as described in Chapter 5, e.g. using FRECF. At the input channels

the guaranteed flow queues are still grouped by the output as in Chapter 5, except now

there is an additional ”dummy” queue Qi[;- per each output. The dummy queue Qg

LG
ij

is assigned the R;7", which is the combined estimated rate of all "lower grade” flows
destined from input ¢ to output j. Each Qf;- is scheduled along with other guaranteed

flow queues by the guaranteed scheduler Sy(7, j) which is invoked any time the arbiter
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Figure 6-1: Architecture for combined scheduling of ”lower grade” and guaranteed flows.

chooses the input/output pair (7, 7). Whenever scheduler S;(7, j) chooses the ”dummy”
queue, a round-robin scheduler S¥“(i, ) is invoked to pick the next non-empty queue in
its round-robin schedule among the ”lower grade” flows at this input destined to output
j. Whenever a "regular” guaranteed flow is scheduled and the queue of this flow is
non-empty, the HOL cell of that guaranteed flow is transmitted. However, if the chosen
guaranteed flow has no cells to send, this scheduling opportunity is ”passed” to the

round-robin scheduler S““(i, j) to choose the next non-empty "lower grade” queue. Note

here that when S¢(7, j) chooses the dummy queue Qg, the state variables of the dummy
queue are updated according to the operation of the scheduler. In contrast, when a real
flow queue is chosen, but has no cells to send, it is the state variables of that real queue
which are updated, whereas the state of the dummy queue remains the same.

It is easy to see that the results of Chapter 5 immediately imply that the bandwidth
and delay guarantees of all guaranteed flows remain as derived there. Moreover, each

”dummy” queue corresponding to the ”lower grade” traffic is guaranteed to be scheduled
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at least at the correct ”fair” rate RiLjG. The round-robin ”lower grade” scheduler in turn
ensures that all busy best-effort queues are given an equal share of the total ”lower
grade” service rate. Hence, the approach described here eliminates the problem of unfair
treatment of some flows at the expense of other flows.

A drawback of the approach presented here for "lower grade” traffic is that it is
non-workconserving. Although scheduling opportunities unused by guaranteed flows are
passed to "lower grade” flows, it is still possible that when a particular input-output pair
is chosen by the matching algorithm, there may be no ”lower grade” traffic between this
input and output at that time. Of course, this problem can be eliminated by running a
second round of ”lower grade” arbitration using yet another ”lower grade” algorithm and
run it at lower priority as in the previous Section to choose a maximal matching among
a subset of inputs and outputs for which no cells were transmitted in the first round.
However, this clearly adds yet more complexity.

Another drawback in the described approach lies in the estimation of fair share as
simply the minimum of an equal share of the input and output bandwidth. This approach
does not take into account the fact that some flows may not be able to use this computed
fair share, while other flows may benefit by sharing the portion of bandwidth unused
by such flows. A definition of fairness that captures this notion is the so-called maxmin
fairness (see for example [5]). Let F' be the set of all ("lower grade”) flows in the switch
and let 7; denote the input rate (demand) of flow f. Assuming that all demands ry are
known, the maxmin fair bandwidth allocation in the context of a crossbar switch can be

defined by the following iterative procedure:

1. For each channel ¢ with V; # 0 compute R; = %, where C} is the available capacity

of channel 7, and N; is the number of "lower grade” flows sharing this channel
2. Find minfep7i(rf, Rl)

3. If the minimum in the previous step is r; and is achieved for some flow(s) f, then

do the following for all such flows:
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(a) if ¢, 7 are the input and output channels of f respectively, set C; «— C; — 1y,

(b) assign the flow f its demand r; and remove f from consideration, i.e. set

F—F\{f}

4. If the minimum in step 2 is R; and achieved for some channel ¢, then for all flows

f sharing this channel do the following;:

(a) if 7,5 are the input and output channels of f respectively, set C; «— C; — R;,

(b) assign the flow f rate Ry and remove f from consideration, i.e. set F' < F\{f}
5. If F'# (), go to step 1; otherwise stop

The rate allocation obtained by this procedure is called a maxmin fair allocation.
While it captures the desire to allocate to each flow no more bandwidth than it can
use while preserving the equal sharing of bottleneck capacity, computing this allocation
is undoubtedly more complicated than a simple equal share described earlier in this
Section. In addition to extra computational complexity, it requires the knowledge of the
input rates (demands) of all flows. While in some cases this information may be readily
available (for example in the Available Bit Rate (ABR) service in ATM networks the
rate information is explicitly written in special resource management (RM) cells), in a
typical packet switching network the input rates of flows are not known. To obtain this
information, one would need to perform per-flow rate measurement at the input to the
switch, which is typically expensive and difficult to perform at high speeds. Hence, there
is an obvious trade-off between the complexity of the computation of fair share and the

accuracy of this computation.
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Chapter 7

Summary and Discussion

7.1 Summary of the Contributions.

This dissertation has investigated a number of issues related to providing various de-
grees of QoS in a crossbar switch architecture. To the best of my knowledge, the results
presented here were the first to demonstrate that it is possible to provide determinis-
tic delay guarantees in crossbars with speedup which is independent of the size of the
switch. While recently there have been new results which allow providing even stricter
delay guarantees with lower speedup values in crossbars by strictly emulating an output
buffered switch, the complexity of implementation of these algorithms appears to be too
high for practical high speed implementations (see the next Section for a more detailed
discussion of this issue). As a result, it appears that the algorithms for providing delay
guarantees described in this dissertation remain the only known algorithms that yield
practical high speed implementations while also providing strict delay guarantees.

It has been shown that the architecture which suffices to provide deterministic delay
guarantees to leaky-bucket constrained flows can be decomposed into three fairly inde-
pendent pieces - the input and output channel schedulers and the arbiter. It has been
shown that while these pieces can be designed independently of each other, they inter-

act in a predictable way, allowing the computation of delay guarantees resulting from
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the properties of the individual pieces. Thus, while allowing independent design of the
building blocks of the architecture, the results of this thesis also provide means for a
quantitative understanding of how implementation trade-offs for any particular building
block affect the guarantees that can be provided by the whole architecture.

Another contribution of this dissertation has been in demonstrating that only a lim-
ited amount of speedup (S = 4) suffices to overcome the bandwidth loss for an arbitrary
maximal matching arbitration algorithm, while also demonstrating that there exist maxi-
mal matching algorithms which yield the same bandwidth guarantees with lower speedup
such as (S = 2). In particular, this result implies that the bandwidth loss due to arbi-
tration conflict in an arbitrary maximal matching arbitration algorithm does not depend
on the size of the switch, and can be overcome by increasing the speedup of the switch
fabric by a small constant factor.

In general, the results of this dissertation suggest that, contrary to the widely accepted
view that crossbars are unsuitable for providing QoS guarantees in Integrated Services
Networks, this architecture is capable of providing strict bandwidth and delay guarantees
as long as the switch fabric has a limited speedup, and an appropriate scheduling archi-
tecture is used. Since the crossbar architecture is widely considered the most scalable in
required memory speed, the existence of implementable QoS-capable algorithms for this
architecture open the way for practical high-speed crossbar implementations for modern

high-speed Integrated Services Networks.

7.2 Relationship To the Latest Results in Providing
Delay Guarantees In Crossbar Architectures.

As mentioned earlier in this dissertation, it has been recently reported that it is possible
to strictly emulate an output buffered switch with a WFQ-like scheduler at the outputs
in a crossbar with speedup S = 2. The results of this work imply that for flows which are

leaky bucket constrained at the entry to the switch, the crossbar architecture is capable of
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providing exactly the same delay guarantees as those possible in output-buffered switches.
In particular, since it is possible to emulate, in principle, an output-buffered switch
with a WFQ-like scheduler at the output, it means that it is theoretically possible to
provide tighter delay guarantees than those obtained in this dissertation. However, the
complexity of the algorithms for exact emulation appears to be prohibitively high for real-
time high speed implementations. Of course, the problem of providing delay guarantees
considered in this dissertation is a simpler problem that the much more ambitious problem
of exact emulation. Therefore, it is not surprising that substantially simpler solutions
can be found for a simpler problem.

The complexity of implementation of the algorithms for exact emulation of an output-
buffered switch can be conceptually separated into three parts. First is the complexity of
the computation of the stable matching. In the straightforward version of the algorithms
described in [7], the arbiter needs to consider cells from potentially all flows to compute
a stable matching. However, this complexity can be reduced by grouping flows by virtual
output queues.

A more serious source of implementation complexity of algorithms for exact emulation
stems from the fact that each input in the real switch should be aware of the ordering
of its cells in their respective output schedules of the emulated switch. This implies that
each output needs to be immediately informed of all new arrivals which occur during the
current cell time, compute the position of all the new arriving cells in the emulated (WFQ-
like) scheduler, and then notify the inputs of the newly computed value. In particular
this could mean that even for a single arrival per cell time per input (as is assumed in
[7]), a single output may need to inform all inputs of the position of the newly arrived
cells in its schedule. This information must be relayed to the inputs during a single
matching phase. The associated control communication overhead represents a serious
bottleneck which needs to be overcome in order to allow for high-speed implementations
of the exact emulation of output-buffered switches. In contrast, the approach described

in this dissertation does not suffer from the control communication bottleneck, since the
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amount of communication it requires is negligible.

Finally, the third source of complexity of exact emulation is related to obtaining and
maintaining the information that needs to be communicated. In particular, it appears
to require that the departure time of each cell in the emulated output-buffered switch
is known. The situation is made even more difficult by the fact that in the case of an
emulated output-buffered switch with a WFQ-like scheduler, a single arrival may change
the absolute departure times of all cells already in the switch destined to the same output.
This will cause the necessity not only to compute the departure time of the newly arrived
cell, but also to change the departure times of potentially all cells in the crossbar switch
destined to the output corresponding to the new cell. All this needs to be accomplished in
a single cell slot. These issues have to be addressed in order to allow real-time high-speed
implementations of algorithms for exact emulation of output-buffered switch employing
a WFQ-like scheduler. To the best of my knowledge, the solution to this problem is
currently unknown.

Another limitation with the approach in [7] is the assumption that at most one cell
can arrive at an input channel in one cell slot. This assumption is quite natural in
the case when there is a single input link per input channel (of the same speed as the
channel). The assumption of a single arrival per channel is essential in the proofs given
in [7]. However, in practice it is frequently desirable to multiplex several lower-speed
links into a higher-speed channel. To accommodate such multiplexing, most commercial
switch designs accommodate several links (line cards) per channel. In this case, even if
admitted rates do not exceed the channel capacity, many cells can arrive at the same
input in a cell time, violating the essential assumption in the proofs of the results of [7].
In contrast, the approach described in this dissertation does not rely on the assumption
of a single arrival per cell time, and can therefore easily accommodate multiplexing of

several links on a single channel.
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7.3 Areas for Future Research

While the algorithms for providing guaranteed delay described in this dissertation are,
to the best of my knowledge, the most implementable among the existing work, the
complexity of computing a maximal matching at the arbiter remains quite substantial.
The challenge in providing delay guarantees in crossbars has been reduced to the challenge
of building sufficiently fast arbiters. Since the arbitration algorithms described here
requires very little control communication, the processing speed of the arbiter is the
main factor determining the speed at which these algorithms can be run. With processing
speeds doubling every year compared to an approximately 10% yearly growth in memory
speeds, shifting the bottleneck from memory speeds to processing capacity appears to
be a significant achievement. Yet, there is a lot to be done in this respect. It may
be possible to find efficient hardware implementations for the arbitration algorithms
described here. This will eliminate the computational bottleneck and hence reduce the
required processing speeds.

Further, it seems that the performance bounds obtained here are quite loose. It
seems that there is much room for further work in determining tighter delay bounds. It
also appears that there may exist algorithms of similar complexity and with similar delay
bounds which can be achieved with smaller speedup values. In particular, it is conjectured
that using WF2Q directly in the arbiter instead of FRECF in the framework discussed
in Chapter 5 may yield the same delay bounds with substantially smaller speedup value.
More specifically, it is conjectured that speedup S = 2 is probably sufficient to provide
the same delay guarantees in this case.

The focus of this dissertation has been providing QoS guarantees for unicast traffic.
With the proportion of multicast traffic growing every year, finding solutions capable of
supporting multicast traffic in scalable switch architectures is necessary. Providing QoS
guarantees for multicast traffic in traditional crossbar switches is a challenging problem
which remains unsolved. Extending the results of this dissertation to multicast traffic,

as well as finding other means for solving this problem, is an important area for future
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work.
In general, the need for providing high-speed switch implementations capable of
supporting heterogeneous traffic requirements while handling multi-gigabit and tera-bit

speeds call for a search for yet simpler algorithms capable of providing QoS guarantees.
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