
An Integrated Congestion Management

Architecture for Internet Hosts

Hari Balakrishnan, Hariharan S. Rahul, Srinivasan Seshan�

MIT Laboratory for Computer Science

545 Technology Square

Cambridge, MA 02139

fhari,rahulg@lcs.mit.edu, srini@watson.ibm.com

Abstract

This paper presents a novel framework for managing network congestion

from an end-to-end perspective. Our work is motivated by several trends in

traffic patterns that threaten the long-term stability of the Internet. These

trends include the use of multiple independent concurrent flows by Web ap-

plications and the increasing use of transport protocols and applications that

do not adapt to congestion. We present an end-system architecture centered

around a Congestion Manager (CM) that ensures proper congestion behavior

and allows applications to easily adapt to network congestion. Our frame-

work integrates congestion management across all applications and transport

protocols. The CM maintains congestion parameters and exposes an API

to enable applications to learn about network characteristics, pass informa-

tion to the CM, and schedule data transmissions. Internally, it uses a stable

rate-based control algorithm, a scheduler to regulate transmissions, and a

lightweight loss-resilient protocol to elicit feedback from receivers. Its rate-

based scheme uses additive increase/multiplicative decrease, combined with

a novel exponential aging scheme when receiver feedback is infrequent, to

obtain both stable network behavior and good application performance.

We describe how TCP and an adaptive real-time streaming audio appli-

cation can be implemented using the CM. Our simulation results show that

an ensemble of concurrent TCP connections can effectively share bandwidth

and obtain consistent performance, without adversely affecting other network

flows. Our results also show that the CM enables audio applications to adapt

to congestion conditions without having to perform congestion control or

bandwidth probing on their own. We conclude that the CM provides a useful

and pragmatic framework for building adaptive Internet applications.

�IBM T. J. Watson Research Center, Yorktown Heights, NY 10598

1



1 Introduction

The success of the Internet to date has been in large part due to the sound principles

of additive-increase/multiplicative-decrease [4] on which its dominant transport

protocol, TCP [16, 32], is based. Because most traffic in the Internet has been

dominated by long-running TCP flows, the network has shown relatively stable

behavior and has not undergone large-scale collapse in the past decade.

However, Internet traffic patterns have been changing rapidly and are certain

to be very different in the future. First, Web workloads stress network congestion

control heavily, and in unforeseen ways. Typical Web transfers are characterized

by multiple concurrent, short TCP connections. These short Web transfers do not

give TCP enough time or information to adapt to the state of the network, while

concurrent connections between the same pair of hosts compete rather than coop-

erate with each other for scarce resources. Second, there are commercial prod-

ucts being developed today that “accelerate” Web downloads, usually by turning

off or changing TCP’s congestion control in unknown and potentially dangerous

ways. Third, and perhaps most importantly, several increasingly popular real-time

streaming applications run over UDP using their own user-level transport proto-

cols for good application performance, but in most cases today do not adapt or

react properly to network congestion.

All these trends, coupled with the unknown nature of future applications, threaten

the long-term stability of the Internet. They make it likely that large portions of the

network might suffer congestion-triggered collapse due to unresponsiveness in the

face of congestion or aggressive mechanisms to probe for spare bandwidth. To

some, this might sound overly pessimistic, but even the optimists amongst us will

grant that applications should be able to track and adapt to congestion, available

bandwidth,and varying network conditions to obtain the best possible performance.

Unfortunately, protocol stacks today do not provide the right support for this; the

desire to be a good network citizen forces applications to use a single TCP connec-

tion, even if this transport model is ill-suited to the application at hand. Or, more

likely, because a single TCP connection is mismatched to the requirements of the

application, the result is a proliferation of flows that are not well-behaved and are

deleterious to the rest of the network.

Our work attempts to overcome these problems by developing a novel frame-

work for managing network congestion from an end-to-end perspective. Unlike

most past work on bandwidth management that focuses on mechanisms in the net-

work to provide QoS to flows or reduce adverse interactions between competing

flows [7, 25, 8, 5, 37, 2], we focus on developing an architecture at the end-hosts

2



to:

� Ensure proper and stable congestion behavior by building on the well-proven

principles of additive-increase/multiplicative (AIMD).

� Enable all applications and transport protocols to adapt easily to network

congestion and varying bandwidth by providing adaptation APIs.

The resulting framework is independent of specific applications and transport

protocol instances, but provides the ability for different flows to performshared

state learning. Here, flows learn from each other and share information about the

state of congestion along common network paths.

Increasingly, the trend on the Internet is for unicast data servers to transmit

a wide variety of data, ranging from best-effort (unreliable) real-time streaming

content to reliable Web pages and applets. As a result, many logically different

streams using different transport protocols will share the path between server and

client. These streams have to incorporate control protocols that dynamically probe

for spare bandwidth and react to congestion for the Internet to be stable. Further-

more, they will often have different reliability requirements, which implies that a

general congestion management architecture should separate the functions of loss

recovery and congestion control that are coupled in protocols like TCP.

At the core of our architecture is theCongestion Manager (CM),which main-

tains network statistics and orchestrates data transmissions governed by robust con-

trol principles. Rather than have each stream act in isolation and thereby adversely

interact with the others, the CM coordinates host- and domain-specific path infor-

mation. Path properties are shared between different streams because applications

and transport instances perform transmissions only with the CM’s consent.

Internally, the CM ensures stable network behavior by the sender because it

reacts to congestion, carefully (and passively) probes for spare bandwidth, imple-

ments a robust and lightweight protocol to elicit feedback from receivers about

losses and status, and schedules data transmissions by apportioning available ca-

pacity between different active flows. The CM’s internal algorithms and protocols

are described in Section 2, where we motivate them using ns-2 [21] simulation

experiments and analysis.

The CM API is designed to enable easy application adaptation to congestion

and variable bandwidth, accommodating heterogeneous flows. The API includes

functions to query path status, schedule data transmissions, notify the CM upon

data transmission, and update variables upon congestion or successful transmis-

sion. It also includes callbacks to applications upon rate change. Motivated by the

3



end-to-end argument [29] and the principle of Application-Level Framing (ALF)

[6], the CM API permits the application to have the final say in deciding what to

transmit, especially when available bandwidth is smaller than what the application

desires. We discuss our design decisions and the details of the API in Section 3. In

the same section, we also discuss how two applications—a Web server and an audio

server can be implemented using the CM API and adapt efficiently to congestion.

Section 4 discusses the actual performance results for different applications.

The resulting end-to-end network architecture from the viewpoint of a data

sender is shown in Figure 1. The CM frees transport protocols and applications

from having to (re-)implement congestion control and management from scratch,

and it discourages applications from using an inappropriate transport protocol (e.g.,

TCP for high-quality audio) simply because the transport implements a congestion

control scheme. Above all, the CM provides the required support and a simple API

over which adaptive Internet applications can be developed.

RTSP Audio

Transport
Instances

Control path

Manager

IP

TCP1 TCP2 UDP

RTP Video

Congestion
A

P
I

HTTP FTP

Applications Datapath

Figure 1: New sender architecture with centered around the Congestion Manager.

While we believe that there are several aspects of the CM that are novel, this

is not the first paper to suggest aggregating congestion control information across

flows. In RFC 2140 [34], Touch proposes a scheme called “TCP control block

interdependence,” where the goal is to share part of the TCP control block between

connections to improve transient TCP performance, while maintaining backward-

compatibility with existing implementations. In [1, 24], the authors present an

integrated approach to TCP where TCP control block state is shared for better

congestion control and loss recovery for concurrent connections. However, both

4



these proposals restrict themselves to simultaneous TCP connections and do not

consider other types of applications. Nor do they provide any APIs for application

adaptation, primarily because they maintain TCP’s API. As we will see in the rest

of this paper, the mechanisms to probe for bandwidth, react to congestion and

accommodate heterogeneous flows are significantly harder than multiplexing TCP

flows alone. Section 5 discusses and compares our work to other approaches.

The following are our main contributions:

� Congestion Manager (CM).The design of a Congestion Manager to per-

form integrated congestion management across an ensemble of unicast flows

in an application- and transport-independent manner. To ensure stable net-

work behavior and shared state learning, the CM incorporates (i) a rate-based

AIMD scheme, (ii) a loss-resilient protocol to periodically elicit feedback

from receivers, (iii) an exponential aging mechanism to regulate transmis-

sions in a stable manner when feedback is infrequent, (iv) loss-based segre-

gation mechanisms for inferring the existence of routers implementing dif-

ferential services, and (v) a scheduler to apportion bandwidth to flows.

� CM adaptation API. An API for applications and transport protocols to

adapt well to network congestion and varying bandwidth. We also describe

how TCP and an adaptive layered audio application can be implemented

using the API.

� CM applications and performance. We present simulations of application

performance that demonstrate that the CM ensures stable network behav-

ior. It also greatly improves performance predictability and consistency, and

enables applications such as audio servers to effectively transmit the best

among several available source encodings.

2 CM Algorithms and Protocols

In this section, we present the CM’s internal algorithms and protocols. We first

present the CM’s rate control algorithm based on AIMD and discuss experimental

data showing its stable behavior and TCP-friendliness [10]. Then, we address the

issue of receiver feedback, motivating why it is needed, how it is obtained, and

what the CM does to ensure stability even when it is infrequent. We then discuss

extensions to the CM to perform well over differentiated services network, by seg-

regating flows based on observed loss rates and throughputs. We conclude this

section with a description of the CM scheduler, which schedules all transmissions

and ensures proper rate allocations to the different flows.

5



2.1 Stable Congestion Control

One of the key features of the CM is that it ensures proper congestion behavior.

This implies that its mechanisms for reacting to network congestion and probing

for spare capacity be sound and robust. In our current implementation, the CM

achieves this by arate-basedAIMD control scheme. This rate changes as the

CM learns from active flows about the state of the network and as it carefully

increases the rates allocated to them to probe for spare capacity. The additive

increase component is no more aggressive than a comparable TCP flow, in that

both the number of bytes successfully transferred and the round-trip time estimate

are taken into account in determining the rate increase. This does lead to a bias

against long round-trip flows in a congested network [13, 36], but we felt that an

accurate emulation of TCP’s increase algorithm is currently the safest deployment

alternative. Upon a loss, the rate reduces by a factor of two, and when persistent

congestion occurs (e.g., a TCP timeout), the rate drops to a small value forcing

slow start [16] to occur.

We chose to implement a rate-based instead of a TCP-like window-based scheme

for two main reasons. First, carefully designed rate-based schemes avoid bursts of

transmissions that window-based schemes (e.g., TCP) are prone to, which make

them less likely to overwhelm bottleneck router buffers on the path to the receiver.

Second, several applications, unlike TCP, provide relatively scarce and infrequent

receiver feedback about received data, and our experiments showed that a stable

rate-based scheme provides more consistent performance in these situations.

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18 20

Se
qu

en
ce

 N
um

be
r

Time (seconds)

TCP Newreno
TCP/CM

Figure 2: Sequence traces for TCP Newreno and TCP/CM, showing TCP/CM’s

true emulation of TCP

We conducted several experiments to validate the soundness of the CM’s rate-

based algorithm and tune it to perform well and in a TCP-friendly manner. Re-

6



sults from one set of experiments, for two connections—TCP Newreno [14] and

TCP/CM—running over a network with random Web-like background traffic are

shown in Figure 2. This figure shows sequence traces of the two TCPs over a large

range of bottleneck capacities. It is clear from these results that TCP/CM closely

emulates a vanilla TCP.

0
1e+06
2e+06
3e+06
4e+06
5e+06
6e+06
7e+06
8e+06

0 20 40 60 80 100 120 140 160

(p
ac

ke
ts

 r
ec

ei
ve

d)
2

(packets received)/(packets dropped)

TCP Newreno
TCP/CM

Figure 3: CM’s rate control is TCP-friendly.

We now argue that our experimental data is consistent with a TCP-friendly

congestion scheme. We performed a sequence of independent experiments with

different bottleneck bandwidths for both TCP Newreno and TCP/CM. In any ex-

periment, letnr be the number of successfully received packets andnd be the

number of dropped packets, We show that the(nr; nd) data in our experiments

is consistent with the� = K=
p
p TCP-friendliness relationship, where� is the

throughput,p the packet loss rate observed, andK is a constant that depends on

the packet size and the round-trip time [18, 22, 23]

Let n = nr + nd be the total number of transmitted packets. Clearly,� / nr

andp / nd=n. Then, for the experimental data for TCP/CM to be consistent with

the TCP-friendly relationship,nr = K=
p

(nd=n), orn2

r = K2(nr=nd)+K2 must

hold. That is,n2

r must be linear innr=nd. Our measurements are consistent with

this, as shown in Figure 3 which plotsn2

r as a function ofnr=nd for TCP/CM and

TCP Newreno. The best-fit lines through these points have similar slopes for both

protocols, since they have the same packet size and RTT.

2.2 Receiver Feedback

One of the fundamental requirements for stable end-to-end congestion control is

receiver feedback. Without it, the sender would not be able to know if its cur-

rent transmission rate is higher or lower than available capacity. Furthermore, this

7



feedback about successfully received data and observed congestion needs to be

communicated to the sender in some way. The sender’s CM uses standard conges-

tion indicators – packet losses and Explicit Congestion Notification (ECN) [9, 26]

bits set by routers and echoed by the receiver.

We now address three issues: feedback frequency, feedback mechanism, and

exponential aging to perform well when feedback frequency is lower than optimal.

2.2.1 Feedback frequency

TCP’s feedback mechanism using ACKs provides the sender with feedback several

times every round-trip, since the receiver generates an ACK for at least every other

packet. In contrast, several streaming protocols are not reliable, and hence do

not inform the sender of transmission status as frequently. Because the CM must

function well across all applications, we first need to determine an appropriate

feedback frequency.

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0 1 2 3 4 5 6

L
os

s 
Pr

ob
ab

ili
ty

Probe Frequency (# of RTTs)

Figure 4: Variation of packet loss probability with feedback frequency

Figure 4 shows the performance of CM’s congestion control at different feed-

back frequencies, by plotting packet loss probabilities. These results show that

for good adaptation, feedback should be obtained at least twice every round-trip

period.

2.2.2 Feedback mechanism

The CM uses two forms of feedback to adjust its rate and react to congestion:

implicit feedbackandexplicit feedback. When the receiver application (or transport

protocol) provides feedback to the sender application, implicit feedback is possible

and no extra traffic need be generated. The sender application can now notify the

CM about the number of transmitted and received bytes, if any losses occurred,

8



and if any ECN information was received. For example, TCP over CM uses this

method and the CM design for such situations does not require any changes at the

receiver.

Unfortunately, not all applications are as considerate as TCP in providing fre-

quent feedback. This moves us to incorporate an explicit feedback protocol in the

CM architecture, with modifications to the receiver to respond to periodic probe

messages from the CM sender and report loss or ECN information to the sender.

This protocol should not generate too much traffic on its own and also be resilient

to losses.

We now describe our lightweight probing protocol. The sender CM periodi-

cally sends probes to the receiver CM to elicit responses. The current frequency

of these probes is twice every round-trip. Each probe includes an incrementing,

unique sequence number. The receiver CM, on receiving this probe, responds with

the numbers of the last probe it received (i.e., the current one), the last probe it

responded to, and the number of packets received for each flow in between these

two probes. Upon receipt of the response, the sender can estimate per-flow loss

rates because it keeps track of the number of packets sent per flow, the total loss

rate in the network, and update its round-trip time estimate. Because the sender

maintains information about all probes since the last one for which a response was

received, the protocol is robust to losses of probes or responses.

Figure 5 shows pseudocode for the probing protocol at the sender and receiver.

For simplicity of exposition, we assume that the sender and receiver maintain infor-

mation aggregated across all flows. The sender maintains an arrayprobe indexed

by the probe number. Each entry of the array is a structure with two elements:

timesent , the time at which the probe was sent, andnsent , the number of

bytes sent since the previous probe. It also has a variableprobeseqnum which

is the sequence number of the next probe to be sent.

2.2.3 Exponential aging

Figure 4 shows the problems with infrequent feedback, which does not allow the

CM to adapt well to changing network conditions. The probing protocol described

above addresses this by periodically eliciting receiver feedback. However, during

times of congestion, probe messages or responses are lost, because of which the

sender will not have an accurate estimate of the network state.

The first possible way to handle this is to clamp sender transmissions if more

than one round-trip time elapses since the receipt of the last response. This is

a conservative response and is the least likely to lead to instability. However, it

comes at significant cost, because all flows stall until we hear a response once

9



Sending a probe to the receiver

message = <probe,probeseqnum>;

send(message);

probe(probeseqnum) = {probeseqnum, now, nsent};

nsent = 0;

probeseqnum = probeseqnum+1;

Responding to probe numberthisprobe

message=<response,thisprobe,lastprobe,nrecd>;

send(message);

lastprobe = thisprobe;

nrecd = 0;

Sender action on receiving a response

<response,thisprobe,lastprobe,nrecd>

nsent = 0;

for(i=lastprobe+1; i<=thisprobe; i++) do

nsent += probe(i).nsent;

end;

lossprob = nrecd/nsent;

Delete all entries in probe less than

thisprobe;

Figure 5: Sender and receiver side pseudocode for handling probes/responses

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16

Se
qu

en
ce

 N
um

be
r

Time (seconds)

rttmin
srtt

Figure 6: Sequence traces showing that exponential aging based on mean round-

trip time is significantly inferior to using the minimum.

10



again, which could take quite a while longer because of the low probe frequency.

The second possible way to handle this is exactly the opposite: continue to

transmit at the same rate until a response arrives, which may indicate that all pack-

ets were successfully received or that losses happened. The CM can now either

increase or decrease its rate at this time. However, this is overly aggressive behav-

ior because the sender transmits data in open-loop fashion for multiple round-trips

without attention to the true state of the network. We are therefore forced to search

for a compromise that avoids complete stalls, but yet transmits at prudent rates

while in open-loop mode.

Our solution is a technique we callexponential aging,which is triggered when

the CM does not receive a response to a probe message within a round-trip time.

In each subsequent round-trip period starting from this point, the open-loop trans-

mission rate is halved to its current value. This leads to an exponential fall-off

in the rate as a function of time while in open-loop mode. It is not hard to see

that this algorithm is stable because, in the worst case, each subsequent round-trip

will also be congested. Such rate reduction would be the appropriate action if this

were to happen, and it is easy to verify that the throughput-loss relationship has

the same behavior as for TCP. Thus, exponential aging permits flows to continue

transmitting data without stalls, albeit at lower rates.

An important parameter in exponential aging is the time intervals at which

rate reduction is done, or the “half-life” of the algorithm. Our first choice was to

use the sender’s smoothed round-trip estimate for this. However, Figure 6 shows

that this choice of half-life is too aggressive. This is because upon the onset of

congestion, the sender’s smoothed round-trip estimate often increases because of

increased queueing delays, and rather than decay at an exponent governed by the

true mean round-trip time, the decay occurs at a much slower rate. This leads to

unstable behavior and induces a large number of losses.

Fortunately, there is an easy solution to this problem that significantly improves

things by ensuring more conservative behavior. Because the problem is caused by

the sender transmitting too rapidly and for too long in open-loop mode, we decrease

the time-constant of exponential decay. The CM keeps track of theminimumof all

its round-trip samples obtained over the duration of activity and decays the open-

loop rate based on this. The improvements over using the mean round-trip estimate

are apparent from Figure 6 which shows the sequence traces of transfers in each

mode.

11



2.3 Better than Best-Effort Networks

Thus far, our design of the CM architecture assumes that the underlying network

provides a best-effort service model. It is likely that the future Internet infras-

tructure will incorporate mechanisms such as differentiated services, integrated

services, prioritization based on flow identifiers or port numbers, etc., and that a

non-trivial fraction of Internet traffic will use these enhancements. In such situ-

ations, the previously described approach of aggregating congestion information

based on the peer host address will in general be incorrect because different flows

might experience different bandwidths and loss rates, depending on how routers

treat them.

Fortunately, there is a solution to this problem based onflow segregation, where

the API between a flow and the CM is keyed not by host address but by some com-

bination of address, port numbers and flow identifiers. If an application knows

beforehand that some of its flows will be treated differently from best-effort traffic,

it can inform the CM of this. To function well in the absence of such explicit infor-

mation, the CM incorporates a segregation algorithm to classify flows into aggre-

gates based on loss rates and perceived receiver throughputs. Using a combination

of the probing protocol and application hints, the CM obtains per-flow loss-rates

and bandwidths, to segregate (and therefore also cluster) flows if their properties

are very different. At this point, we have not implemented or experimented with

this, but plan to do so soon.

2.4 Flow Scheduling

The CM internally schedules all requests using a Hierarchical Round Robin (HRR)

Scheduler [17]. The scheduler apportions bandwidth among flows in proportion to

pre-configured weights, as well as receiver hints. The scheduler is invoked when-

ever any application makes a call to the CM. If the scheduler can satisfy the next

pending request based on the current bandwidth estimate of the CM at the present

time, it performs an application callback informing it about the appropriate num-

ber of bytes allowed. Otherwise, it notifies the application at a future point in

time based on the minimum number of bytes requested by the application, and the

sending rate. Theapp notify() call is described in greater detail in Section 3.

The scheduler as currently implemented performs only bandwidth allocation,

and does not use delay bounds in its scheduling. This is adequate for flows which

use TCP. We are however investigating other mechanisms [33] to provide combined

bandwidth and delay guarantees.

Figure 7 shows flows starting at different times eventually achieving the same

12



0
50

100
150
200
250
300
350
400

0 2 4 6 8 10 12 14 16

Se
qu

en
ce

 N
um

be
r

Time (seconds)

Figure 7: The CM scheduler apportions bandwidth well between simultaneous

flows.

rate allocation from the scheduler.

3 The CM API

Network congestion is a property of the path traversed by flows between a sender

and receiver. The CM frees applications from having to maintain information about

the state of congestion and available bandwidth along any path. Using its API,

flows can determine their share of the available bandwidth, request and have their

data transmissions scheduled, inform the CM about successful transmissions, and

be informed when the CM’s estimate of path bandwidth changes.

3.1 Design Rationale

Rather than simply present the CM API without justification, we motivate our de-

sign choices and discuss the API in terms of four guiding principles.

1. Put the application in control:While the CM decides the rate at which

each application flow can transmit data, it follows the end-to-end argument [29]

and puts the application in firm control of two critical decisions: (i) decidingwhat

to transmit at each point in time, and (ii) deciding the relative fraction of available

bandwidth to allocate to each flow. To achieve this, the CM does not buffer any ap-

plication data; instead, it allows applications the opportunity to adapt to unexpected

network changes at the last possible instant. This design decision to not buffer any

data is a direct consequence of the Application Level Framing (ALF) [6] approach

to protocol design, and leads to the API described below.

If the CM were to queue data and eventually transmit it at some rate, the send-

13



ing API would consist simply of acm send() call, much like the BSD Sock-

ets API [31]. However, this would preclude applications from “pulling out” and

repacketizing data upon learning about any rate change. Thus, we decide to de-

sign a non-blocking request/callback/notify API. Here, an application wishing to

sendnsend bytes callscm request(nsend) . After some time, depending on

the rate, the CM invokes an application callback usingapp notify(nsend) ,

which is a grant for the application to send up tonsend bytes. The application

is expected to transmit up tonsend bytes soon after this, and it does not matter

if those bytes are different from the ones for which the original request was made.

In addition, the application notifies the CM usingcm notify(nsent) telling it

thatnsent bytes were transmitted so it can update its internal state.

To learn about per-flow available bandwidth and the round-trip time, applica-

tions use the CM’scm query(&rate, &srtt) call, which fills in the desired

quantities.

2. Accommodate traffic heterogeneity:The CM should benefit a variety of

traffic types, including TCP bulk transfers and short transactions, real-time flows

that can transmit at a continuum of rates, and layered streams that can transmit only

at discrete rate intervals.

3. Accommodate application heterogeneity:The design of the CM API should

not force a particular application style; rather, the API should be flexible enough

to accommodate different styles. In particular, the API should accommodate two

common styles of transmitters: theasynchronousstyle and thesynchronousstyle.

Asynchronous transmitters do not transmit based on a periodic clock, but do so

triggered by asynchronous events like file reads or captured frames. For these trans-

mitters that typically have bytes ready to be transmitted, the request/callback/notify

API described above is appropriate because their transmissions are scheduled by

the CM. On the other hand, synchronous transmitters implement timer-driven, and

would use the CM to adapt the frequency of their internal timers. Such applications

will benefit from a CM callback informing them of changes in rates, for which we

provide thechange rate(newrate) function. Thus, there are two callback

functions implemented by the CM:app notify(nsend) in response to a pre-

vious request call, andchange rate(newrate) whenever a flow’s share of the

available rate changes. This second method is provided for both types of transmit-

ters, because the knowledge of sustainable rate is useful for asynchronous applica-

tions as well; e.g., an asynchronous Web server disseminating images using TCP

could useapp notify() to schedule its transmissions andchange rate()

to decide whether to send a low-resolution or high-resolution image.

4. Learn from the application:The API includes functions that applications

14



can use to provide feedback to the CM. In addition tocm notify() to inform

the CM on each transmission, they can usecm update(nrecd, duration,

loss occurred, rtt) call to inform the CM thatnrecd bytes were received

overduration seconds, that the observed RTT wasrtt , and whether any losses

occurred. The feedback could be through ACKs as in TCP, through RTCP in the

case of real-time applications, or through any other protocol. The CM uses this as a

hint to internally update its sustainable sending rate and round-trip time estimates.

An application callscm close() when a flow is terminated allowing the CM

to destroy the internal state associated with that flow and repartition available band-

width.

The CM API is summarized in Figure 8.

3.2 Using the API

In this section, we describe how applications and transport protocols use the CM

API. We focus on two applications—a Web server disseminating objects using TCP

and an adaptive audio server that disseminates objects using a user-level transport

protocol over UDP.

3.2.1 Web server over TCP

Using HTTP1, clients request index files and sets of objects from the server. The

CM enables the sender to decide what fraction of the bandwidth to use for what

flow, based on hints from the receiver. It also helps the sender to choose between

multiple representations that are available for some objects, e.g., low-, medium-

and high-resolution images, for the best application performance.

Using the receiver CM API, the client expresses its relative interest in then

objects with a vector of tuples of the form[o1 : r1; o2 : r2; : : : ; on : rn], whereoi
is theith object andri the relative fraction of the available bandwidth to allocate

to that stream. The sender takes this into account to apportion bandwidth while

transmitting these objects. This is similar to the WebTP [12] protocol.

Multiple representations of different sizes exist for several of these objects. The

sender uses thecm query() call and thechange rate() handler to adapt to

changing available bandwidths (tracked by the CM) and pick the representation

that maximizes receiver quality without incurring high latency. We are currently

extending the HTTP content negotiation protocol [15] to incorporate these ideas.

1It really does not matter what version of HTTP, but as we will see in Section 5, the use of

persistent connections in P-HTTP has some drawbacks.

15



Data Structures:

struct cm_entry {

addr dst;

double rate;

double mean_rtt;

double rttvar;

};

typedef int cm_id;

Query:

void cm_query(cm_entry *entry, addr dst);

Control:

cm_id cm_open(addr src, addr dst);

void cm_request(cm_id id, int nbytes,

int minbytes,

double latency);

void cm_notify(cm_id id, int nsent);

void cm_update(cm_id id, int nrecd,

bool loss_occured,

double rtt);

void cm_close(cm_id id);

Application callback:

void app_notify(int nallowed);

void change_rate(double rate);

Figure 8: Data structures and functions for the sender-side CM API

The Web server uses TCP to disseminate data, which in turn uses the CM to

perform congestion management; thus, the TCP/CM2 now only performs loss re-

covery and connection management. We now outline how TCP congestion control

can be written as a CM application.

Normally, TCP’s congestion management keeps track of a congestion win-

dow on a per-connection basis. When ACKs arrive, TCP updates the congestion

window and transmits data if its congestion window allows it, and when it de-

tects losses, the window is reduced by at least a factor of two. To use the CM,

2This is supposed to be read as: “TCP over CM”

16



we modify TCP to callcm open() when it establishes a connection. When

nsend bytes of data arrive from the application (e.g., Web server), TCP/CM calls

cm request(nsend) to schedule the transmission ofnsend bytes of data.

When an ACK arrives from the network acknowledgingnrecd bytes of data,

TCP/CM callscm update(nrecd) as a useful hint to update the congestion

state in the CM. It then callscm request() if the receiver-advertised flow con-

trol window has opened up and there is more data queued for transmission.

When the CM decides to service TCP/CM’s request, it performs a callback

usingapp notify() to the TCP/CM send routine that accepts a parameter indi-

cating the maximum amount of data it is allowed to transmit. The TCP send routine

then transmits the minimum f the flow control window and the amount allowed by

the CM in the callback. Immediately after transmitting this data, TCP/CM uses the

cm notify() call to update CM with the actual amount of data sent. This could

be smaller than the amount permitted, and may even be zero at some points in time,

e.g., when the TCP/CM sender performs silly window syndrome avoidance [35].

Notice that we have eliminated the need for tracking and reacting to congestion

in TCP/CM, because proper congestion behavior is ensured by the CM and its

callback-based transmission API. Notice also that duplicate ACK, timeout based

loss recovery remain unchanged and end-to-end flow control based on advertised

windows remain unchanged. In our implementation and experiments, we use the

Newreno flavor of TCP/CM [14] because it performs better than TCP Reno under

most conditions. The result is that the CM permits an ensemble of TCP connections

to behave in a manner less deleterious to the health of the network.

3.2.2 Audio server for layered audio streams

Many Internet audio servers support a variety of audio sampling rates and audio

encodings. Fundamentally, the purpose of supporting this selection is to provide

the client with a tradeoff of quality for network bandwidth. Typically, the end user

is forced to manually select the most appropriate encoding for the current network

conditions. The use of the CM enables the audio server to correctly adapt its choice

of audio encoding to the congestion state of the network.

When requested to transmit audio to a client, the server first performs acm open()

call. It then uses thecm query() call to determine how quickly it may transmit

data. It then begins transmitting audio at the highest quality encoding that does not

exceed the rate returned bycm query() . Immediately after transmitting data, the

server usescm notify() to inform CM of the amount sent. Although some real-

time servers solicit feedback about network conditions from their clients, many do

not. We have chosen to model a server which does not monitor network connectiv-

17



ity. As a result, the congestion feedback is provided by the CM’s probing protocol.

If the CM identifies a change in the available bandwidth upon the arrival of a probe

response, it notifies the audio server of this change using thechange rate()

callback. The audio server’s implementation ofchange rate() can then adjust

its data encoding using the new rate information. Via these simple interactions with

the CM, the audio server becomes capable of automatically adjusting audio quality

to reflect the quality of client-server communications.

4 Application Performance

We have implemented the CM in the VINT ns-2 framework. We have also imple-

mented a TCP agent and an audio server application to use the CM.

4.1 Web Performance

This section presents the results of experiments with a simple Web-like workload

consisting of four concurrent connections with significant TCP and constant bit-

rate cross-traffic in a network with a 1 Mbps bottleneck link and round-trip prop-

agation delay of 120ms. Our results, shown in Figure 9, demonstrate that the CM

ensures proper behavior in the face of congestion and improves the consistency of

application performance.

Using TCP Newreno, the performance of the four connections varies between

120 Kbps and 213 Kbps, nearly a 100% difference in transfer time between the

fastest and slowest connections! This is because of the lack of shared state learning

and the competitive, rather than cooperative congestion control for the ensemble

of connections. In contrast, the four connections using TCP/CM progress at very

similar, consistent rates sharing bandwidth equitably. All four connections achieve

throughputs of 120 Kbps, without incurring too many losses along the way. Thus,

the CM enables the ensemble of connections to effectively share bandwidth and

learn from each other about the network.

We note that the aggregate throughput obtained by TCP/CM (� 500 Kbps) is

lower than the aggregate throughput obtained by independent TCP Newreno con-

nections (� 650 Kbps). This is hardly surprising because the CM forces the con-

current connections to behave as one from the point of congestion control, whereas

the effective decrease and increase coefficients for the independent connections

are significantly larger than for a single TCP. The CM does indeed ensure that a

group of connections between the same hosts behaves in a socially proper way.

The observed throughput degradation, while unfortunate, is a consequence of cor-

18



0
50

100
150
200
250
300
350
400

0 2 4 6 8 10 12 14 16

Se
qu

en
ce

 N
um

be
r

Time (seconds)

0
50

100
150
200
250
300
350
400

0 2 4 6 8 10 12 14 16

Se
qu

en
ce

 N
um

be
r

Time (seconds)

Figure 9: The top chart shows sequence traces for a Web-like workload using

4 concurrent TCP Newreno connections. The performance of these transfers is

highly variable and inconsistent. The bottom graph shows the same workload

over TCP/CM, demonstrating the consistent and predictable performance of a Web

workload using the CM - the four connections are indistinguishable!.

rect congestion control. But TCP applications do directly benefit in significant

ways: they obtain improved performance consistency and predictability, which is

a definite incentive for adoption.

4.2 Layered Audio Performance

This section discusses the results of experiments testing the interactions of adap-

tive audio applications using CM with TCP traffic. Our experiment consisted of

performing test transfers against competing TCP and constant bit rate cross traffic

across a bottleneck link of 0.5 Mbps and a round-trip delay of 120ms. The test

traffic consisted of a single audio transfer using CM, a single TCP/CM transfer (on

the same end-host) and a TCP Newreno transfer. The expected and desired result

is that the combined bandwidth of the TCP/CM and audio transfer would equal

19



the bandwidth of the TCP Newreno transfer. In addition, the audio transfer should

choose an encoding that most closely matched it to the bandwidth of the TCP/CM

transfer. In our experiment, the audio application choose amongst encodings of 10,

20, 40, 80, 160 and 320 Kbps. It always performed transmissions of 1KB packets.

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14

Se
qu

en
ce

 N
um

be
r

Time (seconds)

Audio/CM
TCP/CM
TCP Newreno

Figure 10: Performance of an adaptive audio application

The results of the experiment, shown in Figure 10, confirm that the CM, TCP/CM

and adaptive audio perform as expected. The TCP Newreno transfer obtained ap-

proximately 150Kbps. The combination of the audio, at 50Kbps, and the TCP/CM,

at 85Kbps, was quite close to the traditional TCP performance. The audio primarily

used the 80Kbps encoding, occasionally switching to the 40 and 160Kbps encod-

ings. Given the fact that the audio application had to deal with such coarse grained

adaptation, its performance was sufficiently similar to the associated TCP/CM con-

nection. From these results, it is clear that the CM allows streaming applications

to perform the correct adaptation to congestion in the network.

5 Related Work

Most Web sessions today use multiple concurrent TCP connections. Each con-

nection wastefully performs slow start irrespective of whether other connections

are currently active to the same client. Furthermore, upon experiencing congestion

along the path to a client, only a subset of the connections (the ones that experi-

ence losses) reduce their window. The resulting multiplicative decrease factor for

the ensemble of connections is often larger than 0.5 [1], the value used by indi-

vidual TCPs3. This is unfair relative to other clients that use fewer connections,

3If there aren concurrent connections with equal windows andm of them experience a loss, the

decrease factor is(1�m=2n).

20



and worse, will lead to instability in a network where most clients operate in this

fashion.

There has also been some recent work in developing application-specific con-

gestion control schemes for real-time multimedia streams. We discuss two classes

of solutions to the unicast congestion control problem—application-level solutions

andtransport-level solutions.

5.1 Application-level Solutions

Application-level solutions for Web transport multiplex several logically distinct

streams onto a single transport (TCP) connection to overcome the adverse effects

of independent competing TCP transfers. Examples of this include Persistent-

connection HTTP (P-HTTP, part of HTTP/1.1), which is application-specific, and

the Session Control Protocol (SCP) [30] and the MUX protocol [11], which are not

tied to HTTP.

There are several drawbacks with this class of solutions.

� Architectural problems:These solutions are application-specific and attempt

toavoidthe poor congestion management support provided by protocol stacks

today. However, congestion is a property of the network path and the right

point in the system to manage it is inside the protocol stack, not at the ap-

plication. If the right support is provided by the system, the need for such

solutions can be eliminated.

� Application-specificity:These solutions require each class of applications

(Web, real-time streams, file transfers, etc.) to reimplement much of the

same machinery, or else force them to use protocols like TCP that are not

well-suited to the task at hand.

� Undesirable coupling:These solutions typically multiplex logically distinct

streams onto a single byte-stream abstraction. If packets belonging to one

of the streams is lost, another stream could stall even if none of its packets

are lost. This is because of the in-order delivery provided by TCP, which

forces a linear order over all the transferred bytes when only a partial order

is desired. This is a violation of the ALF principle [6], which states that

independent Application Data Units (ADUs) should be independently pro-

cessible by receivers independent of the order in which they were received.

The WebTP proposal [12] aims to develop a receiver-oriented approach to han-

dling concurrent Web transactions. This includes maintaining congestion param-

eters at the receivers, which makes it easy to incorporate our equivalent receiver

21



hints for bandwidth partitioning between flows. On the other hand, because the

eventual transmissions are performed by the sender, we believe that the CM design

is sound and also achieves some of WebTP’s benefits. Like the CM, WebTP has

also been heavily motivated by ALF as a protocol design principle.

There has been some recent work in developing congestion control protocols

for real-time multimedia and streaming applications. Much of this work has been in

the context of multicast video (e.g., IVS [3], RLM [20], etc.). There have also been

numerous recent congestion control proposals for various reliable multicast appli-

cations (for a survey, see [28]). In contrast to these efforts which are application-

specific, our aim is to develop a substrate that manages congestion and allows

applications to implement their own adaptation policies. Perhaps, closer in spirit to

our goal is the RAP protocol [27], which is a rate-based congestion control scheme

intended for streaming applications. While the internal algorithms of the CM are

in fact rate-based, its architecture is radically different from RAP. In particular, it

is independent of the transport protocol and permits information to be shared be-

tween transports in a coherent manner (e.g., it integrates congestion management

across concurrent rate-based audio flows and window-based TCP flows).

5.2 Transport-level solutions

Motivated in part by the drawbacks of the above solutions and by the desire to

improve Web transfer performance, various researchers have proposed modifica-

tions to TCP itself [1, 24, 34]. Although these approaches do solve most of the

problems associated with the Web scenario, they are transport-specific. They only

handle TCP transfers, and applications that use other protocols cannot take advan-

tage of them. Prominent examples of such applications include various real-time

streaming media services.

Recently, a transport protocol for heterogeneous packet flows (HPF) has been

described in [19]. A key difference between the CM and HPF is that the CM inte-

grates congestion management across an ensemble of flows and provides a different

adaptation API, while HPF does not consider the interactions between concurrent

active flows.

6 Concluding Remarks

In this paper, we presented an end-system architecture centered around a Conges-

tion Manager (CM) that ensures proper congestion behavior and allows applica-

tions to easily adapt to network congestion.

22



The CM incorporates a rate-based control protocol, a lightweight loss-resilient

protocol for receiver feedback, and an exponential aging scheme to regulate trans-

missions when feedback is infrequent. It provides a simple API for applications

to adapt conveniently to network congestion and varying bandwidth availability.

It enables multiple concurrent flows to cooperate rather than compete for network

resources, performing the function of a trusted intermediary for these resources.

We have simulated TCP and an adaptive audio application on top of the CM.

Our results show that while an ensemble of vanilla TCP Newreno connections has

almost a 100% variation between the slowest and fastest connections, an ensem-

ble of TCP/CM connections with the same bottleneck bandwidth and cross-traffic

shares bandwidth equally and consistently with little variation between the rates of

different connections. Furthermore, the ensemble of CM-modulated flows displays

social and stable network behavior while achieving this. The adaptive audio appli-

cation is able to use the CM API to transmit an encoding that closely matches the

varying available bandwidth, without having to constantly probe the network for

excess capacity on its own. These results demonstrate that the CM ensures stable

network behavior, while improving application performance in several ways.

References

[1] BALAKRISHNAN , H., PADMANABHAN , V. N., SESHAN, S., STEMM, M.,

AND KATZ, R. TCP Behavior of a Busy Web Server: Analysis and Improve-

ments. InProc. IEEE INFOCOM(Mar. 1998).

[2] BENNETT, J., AND ZHANG, H. Hierarchical Packet Fair Queueing Algo-

rithms. InProc. ACM SIGCOMM(Aug. 1996).

[3] BOLOT, J., TURLETTI, T., AND WAKEMAN , I. Scalable Feedback for Mul-

ticast Video Distribution in the Internet. InProc. ACM SIGCOMM(London,

England, Aug 1994).

[4] CHIU, D.-M., AND JAIN , R. Analysis of the Increase and Decrease Al-

gorithms for Congestion Avoidance in Computer Networks.Computer Net-

works and ISDN Systems 17(1989), 1–14.

[5] CLARK , D., SHENKER, S., AND ZHANG, L. Supporting Real-Time Appli-

cations in an Integrated Services Packet Network: Architecture and Mecha-

nisms. InProc. ACM SIGCOMM(August 1992).

[6] CLARK , D., AND TENNENHOUSE, D. Architectural Consideration for a

New Generation of Protocols. InProc. ACM SIGCOMM(September 1990).

23



[7] DEMERS, A., KESHAV, S.,AND SHENKER, S. Analysis and Simulations of

a Fair-Queueing Algorithm.Internetworking: Research and Experience V,

17 (1990), 3–26.

[8] FERRARI, D., AND VERMA, D. A scheme for real-time communication

services in wide-area networks.IEEE Journal on Selected Areas in Commu-

nications 8, 3 (Apr. 1990), 368–379.

[9] FLOYD, S. TCP and Explicit Congestion Notification.Computer Communi-

cations Review 24, 5 (Oct. 1994).

[10] FLOYD, S.,AND FALL , K. Router Mechanisms to Support End-to-End Con-

gestion Control. Tech. rep., LBNL, 1997.

[11] GETTYS, J. Mux protocol specification, wd-mux-961023.

http://www.w3.org/pub/WWW/Protocols/MUX/WD-mux-961023.html,

1996.

[12] GUPTA, R. WebTP: A User-Centric Receiver-Driven Web Transport Proto-

col. University of California, Berkeley, Berkeley, CA, 1998.

[13] HASHEM, E. Analysis of Random Drop for Gateway Congestion Control.

Tech. Rep. LCS TR-465, Laboratory for Computer Science, MIT, 1989.

[14] HOE, J. C. Improving the Start-up Behavior of a Congestion Control Scheme

for TCP. InProc. ACM SIGCOMM ’96(Aug. 1996).

[15] HOLTMAN , K. Transparent Content Negotiation in HTTP. RFC, March

1998. RFC-2295.

[16] JACOBSON, V. Congestion Avoidance and Control. InProc. ACM SIG-

COMM 88(August 1988).

[17] KALMANEK , C. R., KANAKIA , H., AND KESHAV, S. Rate Controlled

Servers for Very High-Speed Networks. InProceedings of the IEEE Con-

ference on Global Communications(Dec 1990).

[18] LAKSHMAN , T. V., MADHOW, U., AND SUTER, B. Window-based Error

Recovery and Flow Control with a Slow Acknowledgement Channel: A study

of TCP/IP Performance. InProc. Infocom 97(April 1997).

[19] LI, J., DWYER, D., AND BHARGHAVAN , V. A Transport Protocol for Het-

erogeneous Packet Flows. InProc. IEEE INFOCOM(Mar. 1999).

24



[20] MCCANNE, S., JACOBSON, V., AND VETTERLI, M. Receiver-driven Lay-

ered Multicast. InProc ACM SIGCOMM(Aug. 1996).

[21] ns-2 Network Simulator. http://www-mash.cs.berkeley.edu/ns/, 1998.

[22] OTT, T., KEMPERMAN, J., AND MATHIS, M. The Stationary Distribution

of Ideal TCP Congestion Avoidance, 1996.

[23] PADHYE, J., FIROIU, V., TOWSLEY, D., AND KUROSE, J. Modeling TCP

throughput: A Simple Model and its Empirical Validation. InProc. ACM

SIGCOMM(Sept. 1998).

[24] PADMANABHAN , V. N. Addressing the Challenges of Web Data Transport.

PhD thesis, Univ. of California, Berkeley, 1998. In preparation.

[25] PAREKH, A. K., AND GALLAGER, R. G. A Generalized Processor Sharing

Approach to Flow Control in Integrated Services Networks: The Single-Node

Case.IEEE/ACM Transactions on Networking 1, 3 (June 1993), 344–357.

[26] RAMAKRISHNAN , K., AND FLOYD, S. A Proposal to Add Explicit Conges-

tion Notification (ECN) to IPv6 and to TCP. Internet Draft draft-kksjf-ecn-

00.txt, Nov. 1997. Work in progress.

[27] REJAIE, R., HANDLEY, M., AND ESTRIN, D. RAP: An End-to-end Rate-

based Congestion Control Mechanism for Realtime Streams in the Internet.

To appear in Proc. Infocom 99.

[28] Reliable Multicast Research Group. http://www.east.isi.edu/RMRG/, 1997.

[29] SALTZER, J., REED, D., AND CLARK , D. End-to-end Arguments in System

Design.ACM Transactions on Computer Systems 2(Nov 1984), 277–288.

[30] SPERO, S. Session control protocol (scp).

http://www.w3.org/pub/WWW/Protocols/HTTP-NG/http-ng-scp.html,

1996.

[31] STEVENS, W. R. UNIX Network Programming. Addison-Wesley, Reading,

MA, 1992.

[32] STEVENS, W. R. TCP Slow Start, Congestion Avoidance, Fast Retransmit,

and Fast Recovery Algorithms, Jan 1997. RFC-2001.

[33] STOICA, I., AND ZHANG, H. A Hierarchical Fair Service Curve Algorithm

for Link-Sharing, Real-Time and Priority Services. InProc. ACM SIGCOMM

’97 (1997).

25



[34] TOUCH, J. TCP Control Block Interdependence. RFC, April 1997. RFC-

2140.

[35] WRIGHT, G., AND STEVENS, W. R. TCP/IP Illustrated, Volume 2. Addison-

Wesley, Reading, MA, Jan 1995.

[36] ZHANG, L. A New Architecture for Packet Switching Network Protocols.

Tech. Rep. LCS TR-455, Laboratory for Computer Science, MIT, Aug. 1989.

[37] ZHANG, L., DEERING, S., ESTRIN, D., SHENKER, S., AND ZAPPALA,

D. RSVP: A new resource ReSerVation Protocol.IEEE Network Magazine

(Sept. 1993), 8–18.

26


