
Regions: A Scalable Infrastructure for Scoped

Service Location in Ubiquitous Computing

by

Kathryn Flores Benedicto

Submitted to the Department of Electrical Engineering

and Computer Science

in partial ful�llment of the requirements for the degrees of

Master of Engineering and Bachelor of Science in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1999

c
 Massachusetts Institute of Technology 1999. All rights reserved.

Author : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Department of Electrical Engineering

and Computer Science

May 14, 1999

Certi�ed by : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Karen R. Sollins

Research Scientist

Thesis Supervisor

Accepted by : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Arthur C. Smith

Chairman, Department Committee on Graduate Students



Regions: A Scalable Infrastructure for Scoped Service

Location in Ubiquitous Computing

by

Kathryn Flores Benedicto

Submitted to the Department of Electrical Engineering
and Computer Science

on May 14, 1999, in partial ful�llment of the
requirements for the degrees of

Master of Engineering and Bachelor of Science in Computer Science

Abstract

Until recently, most e�orts in service location have focused on �nding local services.
However, service location is also useful in large-scale networked environments con-
taining numerous, possibly non-local services. Regions address this need for scalable
service location. Regions are groups of services that provide scoped service location
by allowing user agents to �nd services within a region that have certain types or
attributes. Regions and the region infrastructure were developed to support ubiqui-
tous computing applications that integrate heterogeneous sets of networked devices
and services dynamically. We have designed a scalable architecture for regions which
meets the functional requirements of this application domain. This architecture in-
corporates hierarchy, 
exibility, type models, caching, and a model for services. We
have developed a prototype implementation of the region infrastructure using Sun
Microsystems' Jini technology. We have used this implementation to analyze region
performance and examine some of the factors a�ecting performance.

Keywords: service location, ubiquitous computing, Jini(tm), network scaling

Thesis Supervisor: Karen R. Sollins
Title: Research Scientist

2



Acknowledgments

I would like to thank Dr. Karen Sollins for the patience, support, and encouragement

she has given me over the past three years. I am grateful to have had the opportunity

to work for her. I especially appreciate her advocacy and sympathy in helping me

battle the adminstrative and bureaucratic demons lurking in Course 6!

I would also like to extend my appreciation to Rose Manela, my lifelong friend.

She inspired me to apply to MIT because I have been copying everything she does

since I was two.

My sincere gratitude goes to Charles Santori, whose warmth and sense of humor

have been nothing less than a lifeline during my college years.

This work is dedicated to my mother, Anna Benedicto, and to the memory of my

father, Perfecto Benedicto. The opportunities I have today are the fruits of their hard

work and struggles. I will be forever thankful for their support and love and the faith

they have in me.

This work has been funded in part by the Defense Advanced Research Projects

Agency (DARPA) under contract number 66557.

3



Contents

1 Introduction 11

1.1 The Big Picture : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

1.2 Regions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

1.3 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

1.4 Coming Attractions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

2 Related Work 16

2.1 Trends in Ubiquitous Computing : : : : : : : : : : : : : : : : : : : : 16

2.2 Millennium : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

2.3 Inferno : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

2.4 Infospheres Project : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

2.5 DNS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

2.6 SLP : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

2.7 Jini : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

2.8 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

3 Regions 24

3.1 Functional Requirements : : : : : : : : : : : : : : : : : : : : : : : : : 24

3.1.1 Scoping : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25

3.1.2 Sharing Service Information : : : : : : : : : : : : : : : : : : : 26

3.1.3 Scalability : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

3.1.4 Independent Administration : : : : : : : : : : : : : : : : : : : 27

3.1.5 Typing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

4



3.1.6 Robustness : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

3.1.7 Security : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

3.2 Architecture : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

3.2.1 The Three-Part Model : : : : : : : : : : : : : : : : : : : : : : 30

3.2.2 Structure and Hierarchy in Regions : : : : : : : : : : : : : : : 31

3.2.3 The Region Manager : : : : : : : : : : : : : : : : : : : : : : : 35

3.2.4 Service Queries : : : : : : : : : : : : : : : : : : : : : : : : : : 37

3.2.5 Caching and Updates : : : : : : : : : : : : : : : : : : : : : : : 38

3.2.6 Typing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

3.2.7 URN Resolution Service : : : : : : : : : : : : : : : : : : : : : 41

3.3 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

4 Services 43

4.1 Functional Requirements : : : : : : : : : : : : : : : : : : : : : : : : : 43

4.1.1 Service Function : : : : : : : : : : : : : : : : : : : : : : : : : 43

4.1.2 Integration with Regions : : : : : : : : : : : : : : : : : : : : : 44

4.1.3 Region-Dependent Functionality : : : : : : : : : : : : : : : : : 44

4.1.4 Ease of Con�guration : : : : : : : : : : : : : : : : : : : : : : : 44

4.1.5 Typing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45

4.1.6 Security : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45

4.2 Architecture : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46

4.2.1 Service : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46

4.2.2 Views : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

4.2.3 Registration and Update Protocol : : : : : : : : : : : : : : : : 48

4.3 Examples : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

4.3.1 Region Join : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51

4.3.2 Region Leave : : : : : : : : : : : : : : : : : : : : : : : : : : : 51

4.3.3 Service Join : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

4.3.4 Service Change : : : : : : : : : : : : : : : : : : : : : : : : : : 54

4.3.5 Service Leave : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

5



4.3.6 User Agent Query : : : : : : : : : : : : : : : : : : : : : : : : : 56

4.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 58

5 Implementation 60

5.1 Region Manager : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

5.1.1 Interface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

5.1.2 Data Structures : : : : : : : : : : : : : : : : : : : : : : : : : : 62

5.1.3 Caching and Update Policy : : : : : : : : : : : : : : : : : : : 63

5.2 Generic Service Framework : : : : : : : : : : : : : : : : : : : : : : : : 64

5.2.1 Jini Services : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

5.2.2 Service Backend : : : : : : : : : : : : : : : : : : : : : : : : : : 65

5.2.3 Service Manager : : : : : : : : : : : : : : : : : : : : : : : : : 66

5.2.4 GUI Menu : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68

5.3 URN Resolution Service : : : : : : : : : : : : : : : : : : : : : : : : : 68

5.4 Region Browser : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 69

5.5 Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 71

5.6 Some Comments on Implementation : : : : : : : : : : : : : : : : : : 79

5.7 The Role of Jini : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 80

5.8 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 81

6 Performance Issues 83

6.1 Factors A�ecting Performance : : : : : : : : : : : : : : : : : : : : : : 84

6.1.1 Region Characteristics : : : : : : : : : : : : : : : : : : : : : : 84

6.1.2 Network Layout : : : : : : : : : : : : : : : : : : : : : : : : : : 84

6.1.3 Caching and Update Policy : : : : : : : : : : : : : : : : : : : 85

6.1.4 Other Policy Goals : : : : : : : : : : : : : : : : : : : : : : : : 85

6.2 Metrics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86

6.3 Analyzing the Prototype Implementation : : : : : : : : : : : : : : : : 86

6.3.1 Improving E�ciency : : : : : : : : : : : : : : : : : : : : : : : 90

6.3.2 Tradeo�s : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92

6.3.3 Hidden Costs : : : : : : : : : : : : : : : : : : : : : : : : : : : 93

6



6.4 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 94

7 Conclusion 95

7.1 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 95

7.2 Final Thoughts : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 96

A Cost Analysis of Basic Region Operations 100

A.1 Adding a Region : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 100

A.2 Removing a Region : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102

A.3 Adding a Service : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102

A.4 Removing a Service : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102

A.5 Modifying a Service : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102

A.6 Looking Up Services : : : : : : : : : : : : : : : : : : : : : : : : : : : 102

A.7 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103

Bibliography 108

7



List of Figures

3-1 Examples of regions. The ovals represent regions and the black squares

represent services. A is a region with no nesting. B shows nested

regions. C illustrates arbitrary overlap in regions. : : : : : : : : : : : 25

3-2 Left: The three-part model. Regions act as intermediaries between

user agents and services. Right: Same, but depicted as a tree in which

the service is a child of the region. : : : : : : : : : : : : : : : : : : : : 30

3-3 Region based on extended three-part model with hierarchy. : : : : : : 32

3-4 Examples of structured regions. Note that both services and subregions

can be shared by two or more parents. Also note that two of the region

graphs show more than one top-level region. : : : : : : : : : : : : : : 33

3-5 Top-level region, subregions, and services. The top-level region con-

tains four subregions. All ten services shown in the �gure are contained

by the top-level region. : : : : : : : : : : : : : : : : : : : : : : : : : : 34

4-1 A service and its views. F is the total set of functions supported by

the service. For each view, A is the set of attributes, and interface I

is the subset of F that the view makes available. : : : : : : : : : : : : 48

4-2 Top: Region R4 joining region R2. Bottom: Region graph after R4 joins. 52

4-3 Top: Region R6 leaving region R4. Bottom: Region graph after R6

leaves. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53

4-4 Top: Service S9 joining region R4. Bottom: Region graph after S9 joins. 55

4-5 Service S9 changing its attributes and sending an update to region R4. 56

8



4-6 Top: Service S4 leaving region R3. Bottom: Region graph after S4

leaves. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57

4-7 User agent querying region R2. : : : : : : : : : : : : : : : : : : : : : 58

5-1 Left: The service architecture. Multiple Jini services are layered on

top of an object that implements the service. Right: The Jini services

can be used to expose di�erent attributes and interfaces to di�erent

regions. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65

5-2 Region menu. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68

5-3 URN Resolution Service. : : : : : : : : : : : : : : : : : : : : : : : : : 69

5-4 Region Browser. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70

5-5 Home region. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 71

5-6 Region Browser displaying Home region. : : : : : : : : : : : : : : : : : 72

5-7 Service information for Toaster. : : : : : : : : : : : : : : : : : : : : : 73

5-8 Service information for LightController. : : : : : : : : : : : : : : : 74

5-9 Service information for VCRRemote. : : : : : : : : : : : : : : : : : : : 75

5-10 URN Resolution Service. : : : : : : : : : : : : : : : : : : : : : : : : : 76

5-11 Search template for service lookup. : : : : : : : : : : : : : : : : : : : 77

5-12 Service lookup result. : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

9



List of Tables

6.1 Summary of costs for basic region operations. : : : : : : : : : : : : : 87

6.2 Operations and costs for R1 to add R2 as a child region. : : : : : : : 88

6.3 Update cost per ancestor of R1. : : : : : : : : : : : : : : : : : : : : : 89

A.1 Operations and costs for R1 to add R2 as a child region. : : : : : : : 101

A.2 Update cost per ancestor of R1. : : : : : : : : : : : : : : : : : : : : : 101

A.3 Summary of costs for R1 to add R2 as a child region. : : : : : : : : : 104

A.4 Operations and costs for R1 to remove child region R2. : : : : : : : : 104

A.5 Update cost per ancestor of R1. : : : : : : : : : : : : : : : : : : : : : 104

A.6 Summary of costs for R1 to remove child region R2. : : : : : : : : : : 104

A.7 Operations and costs for R to add S. : : : : : : : : : : : : : : : : : : 105

A.8 Update cost per ancestor of R. : : : : : : : : : : : : : : : : : : : : : : 105

A.9 Summary of costs for R to add S. : : : : : : : : : : : : : : : : : : : : 105

A.10 Operations and costs for R to remove S. : : : : : : : : : : : : : : : : 105

A.11 Update cost per ancestor of R. : : : : : : : : : : : : : : : : : : : : : : 105

A.12 Summary of costs for R to remove S. : : : : : : : : : : : : : : : : : : 106

A.13 Operations and costs for S to modify its attributes in R. : : : : : : : 106

A.14 Update cost per ancestor of R. : : : : : : : : : : : : : : : : : : : : : : 106

A.15 Summary of costs for S to modify its attributes in R. : : : : : : : : : 106

A.16 Operations and costs to look up services in R. : : : : : : : : : : : : : 106

A.17 Summary of costs to look up services in R. : : : : : : : : : : : : : : : 106

A.18 Summary of costs for basic region operations. : : : : : : : : : : : : : 107

10



Chapter 1

Introduction

Two trends are changing the face of computing today. One is the proliferation of net-

works small and large, wired and wireless. The other is the trend towards ubiquitous

computing. This is manifested in the popularity surge of mobile personal information

and communication devices, such as cellular phones, PDAs, laptops, and pagers. It

is also evident from the number of devices and appliances with embedded computers,

such as cars, VCRs, and microwaves. Taken together, these two trends give rise to

promising new networks inhabited not only by desktop PCs and printers, but also by

devices such as fax machines, PDAs, stereos, microwaves, cellular phones, VCRs, and

perhaps even cars and wristwatches.

But what is the best way to exploit these new networks of heterogeneous devices

and the services they provide? The applications that will be in the best position

to take advantage of these networks will be adaptive applications. They will have a

greater awareness of the networked environment in which they operate. They will be

able to choose dynamically the networked devices and services that are best suited

for the task at hand, such as an e-mail application that uses a visual interface in the

user's o�ce and a voice interface in the user's car.

To enable this \greater awareness" of services and devices in the network, an in-

frastructure must be in place that manages information about services in the network.

It must allow services to advertise themselves easily, with little or no human interven-

tion. It must organize services into groups that help de�ne administrative domains,

11



provide scoping, and make large numbers of services easier to handle. It must help

users �nd the services in a group that meet their needs. Lastly, it must scale well in

order to tap the potential of a global network of services and devices.

To this end, we propose the concept of regions and the supporting region infras-

tructure. Regions are scalable groups of services that can be searched using various

criteria, such as service type or service attributes. The region infrastructure stores

and manages information relating to the services and internal structure of regions. It

also manages the transfer of this information between regions, and provides protocols

for services to join and leave regions automatically.

The need for regions is best understood in the context of our broader research

goal, which will be explained in the following section.

1.1 The Big Picture

Our long-term goal is to create a distributed framework for ubiquitous computing that

combines regions with the adaptive applications described above. The applications

will be created dynamically by intelligent agents called catalysts. These catalysts can

discover the services and devices in their physical and/or virtual environment and use

them as building blocks to create an application that meets a high-level goal. The

result is applications that make full use of the services available in their surroundings,

and that can adapt to changes in the set of services available in the network.

These ideas are best illustrated by an example. Consider a homeowner who wishes

to install a home security system. Instead of purchasing a pre-built, pre-con�gured,

stand-alone security system, the homeowner could purchase individual components

such as alarm sirens and motion detectors and then connect these to his home net-

work. The homeowner could then employ a catalyst whose high-level goal is to build

security systems that deter intruders, detect break-ins, and notify the authorities if

necessary. The catalyst would discover the new security components, but it would

also be aware of services and devices already on the home network, such as PCs, tele-

phones, and controllers for house lights. The catalyst could then construct a home

12



security application that 
ashes the house lights to deter burglars, uses the motion

detectors to sense intruders, sounds the siren to alert neighbors of a break-in, and

uses the telephone to call police.

This scenario poses several questions about the infrastructure that must be in

place to support it. Three of these questions will be addressed by this work. The �rst

is: how does the catalyst learn about the devices and services in the home network?

Secondly, how can it tell that a particular service meets its needs? Finally, how does

the catalyst know to stay within the bounds of the home network? Regions are one

way to answer to the questions posed here.

1.2 Regions

Regions focus on the problem of sharing information about services. In the example

above, the security system catalyst needs to learn about the services in the home

network. Using the region system, the catalyst can do this by querying the Home

region, which is set up by the homeowner to correspond to all services in the home

network. Of course, the catalyst must also �nd out which services are relevant to

its purpose. For this reason, regions can be queried for services by desired service

type or service attributes. In this way, the catalyst can search for a service of type

Telephone or an AlarmSiren service with an attribute Volume=110db.

Regions also help to de�ne scopes by organizing services into groups. When the

security system catalyst builds its application, its operations must be restricted to

services in the home network's scope only, even if the home network is interconnected

with other homes in the neighborhood. It would not be desirable for the home security

application to 
ash the lights of every house on the block!

The 
ip side of this coin is that regions enable controlled sharing of information

across administrative boundaries. If for some reason the homeowner decides that he

does want to share some of the services within his home, the region infrastructure

allows his neighbors to obtain information about those services.

The region infrastructure also includes support for building services that can in-

13



teract with regions. Its general framework for services includes support for attributes,

as well as a protocol for automatically joining, leaving, and sending updated informa-

tion to regions. It provides a layer of abstraction between regions and the software

or hardware providing the service, such as the motion detectors in the home security

system. This standardized interface between regions and services encourages devel-

opment and automates participation in the region system. This opens the door for

many new region-enabled services to be developed, further enhancing the value of the

region infrastructure.

1.3 Summary

The current trends toward ubiquitous computing and networking are prompting new

models of computation which feature many lightweight computing elements intercon-

nected via a network. Our eventual goal is to create a model that harnesses these

trends by using catalysts to integrate a wide variety of available devices and services

into a single application that meets a high-level goal.

Regions are a piece of the information infrastructure that makes this happen. They

group services together, creating natural administrative boundaries and resulting in

scopes in which users and catalysts can operate. They can be used to create domains

of trust. They match up users with the services they desire by providing lookups

of services based on types and attributes. They allow controlled sharing of service

information and service use between regions. They support the rapid development

of services and facilitate their inclusion into the region infrastructure. By providing

these capabilities, regions will contribute to the creation of powerful new networks of

heterogeneous devices and and allow them to be used to their fullest potential.

1.4 Coming Attractions

Chapter 2 covers related work, most notably Jini, SLP, DNS, and the Millenium,

Inferno, and Infospheres projects.

14



Chapters 3 and 4 discuss the functional requirements of regions and services and

the architecture we designed to satisfy them. Chapter 4 ends with a series of high-level

examples that illustrate how the region architecture works.

Chapter 5 describes our prototype implementation of the region infrastructure

and the prototype's various components. It gives an example of the prototype system

in use, and also contains a discussion about Jini's impact on our implementation.

Chapter 6 delves into the factors that a�ect the performance of the region in-

frastructure. It uses a performance analysis of our implementation as a vehicle for

discussing issues of e�ciency, design tradeo�s, and hidden costs that apply to all

region implementations.

Chapter 7 outlines the direction of future e�orts and concludes with some ideas

for possible future uses of the region infrastructure.

15



Chapter 2

Related Work

Current trends in ubiquitous computing are driving the development of the region

infrastructure. Here, we describe those trends and mention some of their o�shoots.

We also touch brie
y on three infrastructure projects that share some of our goals:

Millennium, Inferno, and Infospheres.

There exist many examples of naming and scoping systems that have similarities

to regions or attempt to solve some of the same problems. They are not listed

comprehensively here. However, three of these systems were heavily in
uential in

the design of the region infrastructure: DNS, SLP, and Jini. We describe them and

discuss their contribution to the region infrastructure.

2.1 Trends in Ubiquitous Computing

Recent developments in ubiquitous computing and related �elds such as home net-

working have been the motivating force behind the region infrastructure. New models

of computation are being explored in which computation is distributed among numer-

ous, lightweight, networked devices. The popularity of PDAs, mobile communications

devices, and appliances with embedded computers has contributed to this movement.

New standards for home, personal, and ad-hoc networks are being developed, such

as Bluetooth [4] and HAVi [8]. Research is underway that explores the possibilities

of ubiquitous computing systems for everyday use, such as a project at Xerox PARC

16



[18].

As the new computing paradigm gains ground, the need has arisen for supporting

infrastructure. The region infrastructure described here attempts to address part of

this need. The Millennium, Inferno, and Infospheres projects, which have various

degrees of overlap with the region infrastructure, also aim to �ll this need. These

three projects are described brie
y below.

2.2 Millennium

Millennium [3] is a new research e�ort at Microsoft. Its goal is to build a distributed

operating system. Applications that run in this operating system will have their

computations distributed automatically and will also have ready access to network re-

sources. The application itself will not need to know the details about the distributed

environment or the location of machines and network resources. Stated goals of the

Millennium project's distributed operating system include: seamless distribution of

computation, worldwide scalability, fault-tolerance, the ability to self-tune, the ability

to self-con�gure by automatically assimilating new network resources and machines,

security, and resource controls [2]. Although Millennium's approach of developing a

distributed operating system is di�erent from the region infrastructure approach,

many of the goals are similar, especially worldwide scalability, self-con�guration,

location-independent availability of network resources, and resource controls. Mil-

lennium is a new project, so its strategy for meeting these goals has not yet been

worked out in detail. However, in light of the many shared goals, Millennium de-

serves attention as it continues to evolve.

2.3 Inferno

Inferno 1 [17], developed by Lucent Technologies, is an operating system that repre-

sents resources on the network, as well as system resources, as �les in a hierarchical

1Inferno and InfernoSpaces are registered trademarks of Lucent Technologies.

17



�le system. This �le system metaphor is called a namespace. It simpli�es the interface

between applications and network resources, and also allows applications to access

resources without knowing their location. Network resources can be added by grafting

on additional namespaces. Namespaces also allows arbitrary groupings of resources

by creating a directory containing those resources. InfernoSpaces makes the Inferno

technology available to non-Inferno platforms by providing a software development

kit that runs on a virtual machine.

Several key ideas in the Inferno namespace model are applicable to regions. One

is the ability to create arbitrary groups of network resources. Another is the ability to

combine groups dynamically and in a hierarchical fashion through grafting. Location

and platform independence are also features of Inferno that are desirable in regions.

However, Inferno does not have a model for determining the attributes of network

resources, as regions do. In addition, Inferno dictates the model for how clients use

network resources. (Clients use an I/O model of reading and writing to virtual �les in

order to communicate with network resources.) This is outside the scope of regions.

2.4 Infospheres Project

The Caltech Infospheres Project [12] investigates compositional systems and the sur-

rounding issues of compositionality, scalability, dynamic recon�gurability, and high

con�dence [5]. One interesting product of this research initiative is the Infospheres

Infrastructure. This is an architecture and tool set that brings together applications

distributed in a network into a virtual network called an Infosphere. The Infosphere

can then be harnessed to perform a particular high-level task depending on the appli-

cations it contains. The Infospheres Infrastructure software includes tools for building

the distributed applications, messaging models for communication between them, and

tools for Infosphere management.

The Infospheres Project's focus on the composition of distributed applications to

meet a high-level goal is much like our own overall research aim. It approaches the

problem from a parallel/distributed computing perspective, though. It uses a model

18



of distributed objects within a virtual network, in contrast to the three-part model

used in SLP (Section 2.6) and also in regions (Section 3.2.1), as we shall see. The

Infospheres Infrastructure uses formal speci�cations of interfaces to locate objects

that meet a certain set of requirements. Regions, on the other hand, rely on both

attributes and a simple interface model to �nd the services that meet a user's needs.

The Infospheres Project also emphasizes low-level issues such as messaging between

objects. Such issues are outside the scope of regions, which focus more on service

discovery.

2.5 DNS

The Domain Name System (DNS) [11] is relevant because it addresses a central prob-

lem in the region infrastructure: the sharing of information across many independently-

administered domains. The DNS enables hosts in one Internet domain to obtain name

and addressing information about hosts in a di�erent domain. The DNS must pro-

vide this service to a large number of domains which are administered independently.

In order to preserve this autonomy and maintain high availability and reasonable

performance, the DNS works in a decentralized, distributed fashion.

Several lessons were drawn from the DNS for the design of the region system.

One lesson is the use of hierarchy to manage the large number of domains. While

regions have more 
exibility than the strict hierarchy required by the DNS, it is

likely that in many application areas, regions will naturally decompose into subregion

structures with a large degree of hierarchy. This hierarchy can be exploited for the

same bene�ts it provides in the DNS. Another lesson learned from the DNS is its

model for performing queries. Queries received at a higher-level domain are handed

down to subsequent subdomains until an authoritative answer is found. Although

the region infrastructure does not use the exact same model for performing queries,

it does use information 
ow between regions and subregions to answers queries at a

high-level region. The third lesson incorporated from the DNS is its heavy reliance

on caching to ensure reasonable performance. Caching plays a more complex role

19



in the region infrastructure because the rate of region information changes can vary

greatly between di�erent regions, or even within the same region over a period of time.

This is not the common case for the DNS; changes in the DNS occur at a relatively

steady rate and are relatively infrequent. However, caching is just as crucial in the

region infrastructure as in the DNS, especially for the kind of multiple-result feature-

matching queries that regions provide.

2.6 SLP

Service Location Protocol (SLP) [7] is an important conceptual precursor to the re-

gion infrastructure. SLP enables users to �nd networked services with a desired set of

characteristics in a particular (usually local) area. For example, a user could use SLP

to �nd the nearest color printer, or to �nd a printer in a certain building with a certain

resolution. SLP relies on a three-part model of user agents which seek services, ser-

vice agents which provide them, and directory agents which mediate the interaction

between the user agents and the service agents. It allows the user agents to query

the directory agents for services with a particular feature set. Also, it features a pro-

tocol for services to register automatically with local directory agents upon joining

the network. This protocol also sends automated updates to the directory agent if

changes should occur at the service. Additionally, it includes security mechanisms for

authenticating the senders of registration and update messages. The automated reg-

istration and update protocol, along with the three-part model used by SLP, appear

in later work such as Jini [15], and also in the region infrastructure. Lastly, SLP has a

scoping mechanism which limits the set of services considered when a directory agent

answers a user agent's query. Each directory agent is associated with a named scope,

and every service agent that is part of a scope must register with all directory agents

associated with that scope. While this scoping mechanism does not scale up to the

proposed size of the region infrastructure, the idea of querying for services within a

limited scope is in the same vein as the region concept.

In addition to the poor scalability of the scoping mechanism, SLP has other weak-

20



nesses which preclude it from being used to implement regions directly. SLP was

designed for �nding local services, i. e. services in the same building or on the same

campus as the user. Regions, on the other hand, are more general, may contain

more users and services, and are not necessarily local. The di�erence in design goals

accounts for the poor scalability of scopes up to regions and the lack of support for

hierarchy and nested scopes. Another issue with SLP is the use of keepalive messages

and multicast in the automated registration protocol, which can put a potential bur-

den on available bandwidth. Finally, SLP does not have typed scopes, and it does

not explicitly support the ability for the same service to register di�erent feature sets

within di�erent scopes.

2.7 Jini

Sun Microsystems' Jini 2 [15] technology provides an architecture and tools for facil-

itating ubiquitous computing. The goal of Jini is to form impromptu heterogeneous

networks of devices and instantly make their services available on the network, all

with little or no con�guration or human intervention. The Jini framework provides

protocols for devices to discover nearby Jini networks and join them. It also has

mechanisms that allow users to locate services on a Jini network based on the desired

service type and the attributes associated with the service. Furthermore, it has sup-

port mechanisms, such as leases, transactions, and events, that address the special

requirements of distributed systems.

Jini's approach bears a resemblance to that of SLP. It relies on a similar model of

users, services, and directories that manage the information and interaction between

the users and services. Like SLP, it allows services to be grouped together in di�erent

ways. Also, both Jini and SLP have protocols for services to automatically join, leave,

and update information within these groups, and these protocols employ both unicast

and multicast.

However, Jini has some advantages over SLP. It allows for more 
exibility in the

2Jini and Java are registered trademarks of Sun Microsystems, Inc.

21



way a service's attribute sets are organized. Also, unlike SLP, Jini extends to the

interaction between the user and the service. A user downloads an object or applet

that provides an interface to the service, and runs it on a Java virtual machine. Two

bene�ts of this approach are that it eliminates the need for the client application to

know about low-level details such as the communication protocol used by the service,

and it exploits Java's platform independence, which is especially useful on the client

side. A third bene�t is that this model of interaction with services is amenable to

both human and machine users. This re
ects the fact that Jini was designed with

service composition as one of its eventual goals.

As-is, Jini is not entirely suitable for representing regions directly. One issue is

that Jini does not explicitly support typed groups. Another issue is that Jini supports

only exact-match and wildcard lookups for services. It may be desirable for a region

infrastructure to provide more general query support, with options such as value-

range and predicate queries. Security measures have yet to be incorporated into

Jini. Also, Jini does not provide the level of support for hierarchy that is required

by the region infrastructure. While it is possible to connect Jini service directories

(called lookups) in a hierarchical manner, one must still query sublevels directly in

order to learn about the services they provide, rather than just querying a top-level

lookup once. Finally, Jini's protocol for services to discover lookups relies on the use

of a single, well-known multicast channel. This use of multicast, along with Jini's

insu�cient support of hierarchy, introduces potential scaling problems for regions,

especially those that include a large number of services and users, which are not

necessarily grouped by proximity in the network.

To be fair, Jini's scaling problems in the context of regions arise because its design

goals do not completely match those of regions. Jini is primarily meant for services

and users in the same local area. In this context, the use of multicast is appropri-

ate, and the groups of services are not large enough to require scaling management

strategies such as hierarchy.

Jini does meet the goals of the region infrastructure on a small scale, and we

believe it can be used as a building block to solve the region infrastructure problem

22



on a large scale. For this reason, we use Jini as the underlying foundation for the

region infrastructure. Section 5.7 discusses the impact of Jini on the design of the

region infrastructure, and the ways in which the design leverages Jini's strengths while

minimizing its weaknesses.

2.8 Summary

The development of the region infrastructure is motivated by the increasing shift from

traditional computing models using full-size, dedicated computers to a new model in

which the computing elements are lightweight, networked, and far greater in number.

This trend is re
ected in recent developments in home networking and related �elds.

This paradigm shift is creating the need for infrastructure that can combine net-

worked objects in useful ways and make them widely available and easy to locate and

use. The region infrastructure is one approach to this problem. Other approaches

include Millennium, a new research initiative into distributed operating systems; In-

ferno, a system which presents network resources as �les in a hierarchical �le system;

and Infospheres, which has produced software for tying together distributed applica-

tions into a virtual network.

While many examples of naming and scoping systems exist, the region infrastruc-

ture approach derives several of its ideas from three primary sources: DNS, SLP,

and Jini. The DNS solves the similar problem of sharing information among a large

number of independently-administered domains; its query model and use of hierar-

chy and caching provide important lessons for the region infrastructure. SLP deals

with the problem of service location; its key contributions are its model for managing

service and user information and interaction, its use of scopes, and its protocols for

automatic service registration within a scope. Jini expands on many of SLP's ideas,

solves the region problem at a local level, and provides software that serves as the

foundation for the region infrastructure.

23



Chapter 3

Regions

Regions group services together so that the services can be searched by type and

feature. What may not be apparent from this seemingly-simple concept is that regions

are powerful enablers. For example, applying the region concept to a home turns it

into a home network with easy-to-use, easy-to-con�gure services. Applying the region

concept to a laptop, pager, PC, cellular phone, and PDA turns them into a mobile

personal information network in which the devices can exchange information freely

and be composed into services more powerful than those provided by each device

separately.

This chapter delves into the details of the goals and other requirements of the

region infrastructure. It then outlines an architecture for the region infrastructure,

and discusses how this architecture meets the needs of regions.

3.1 Functional Requirements

Regions have scoping and service information sharing as their main function. But

in addition to these goals, other requirements must be met in order for regions to

work in a distributed, ubiquitous computing world. Among these are scalability,

independent administration, robustness, and security. All of these requirements are

described below.

24



A B

C

Figure 3-1: Examples of regions. The ovals represent regions and the black squares
represent services. A is a region with no nesting. B shows nested regions. C illustrates
arbitrary overlap in regions.

3.1.1 Scoping

A region's basic goals are to group services together and share information about

those services with user agents and with other regions. Thus, a region must be able

to organize a set of services into a group and act on behalf of that group. Furthermore,

a region must act as a scoping mechanism for user agents that want to learn about

and use its services.

Services may be grouped together by any number of criteria. For example, they

may be grouped by physical proximity, ownership, or security level. The region

infrastructure should not try to enforce a certain set of criteria; rather, regions should

be general enough to support the grouping of services by arbitrary criteria.

Also, regions must provide 
exibility in their internal organization. For many

users, the model of a region as a simple, 
at grouping of services may be satisfactory.

However, a region with many services might be more manageable if it is broken

25



up into several subregions that make up a larger region. For example, a region

consisting of all the services in a corporation could be decomposed into smaller regions

by division, department, etc. This illustrates the importance of supporting nested

regions. Regions also require 
exible organization in the case of shared, publicly-

available services that can be incorporated into any region. Several region owners

might want to share a service by including it in their respective regions. For example,

o�cemates might own regions consisting of their individual telephones and PCs and

a shared fax machine. In this scenario, a single service may be part of multiple

regions that are not necessarily nested. Thus, regions must support arbitrary overlap

in addition to 
at and nested organizations.

3.1.2 Sharing Service Information

Besides grouping services together, the other major purpose of a region is to facilitate

the sharing of information about services. This goal requires a two-pronged approach.

One part of this approach is to enable services to join a region and provide information

about themselves easily. The other part is to allow user agents to query a region for

services that meet the user agents' needs.

In order for services to join regions and share information easily, some kind of

protocol is required. This protocol should allow services to locate and join one or

more regions of interest, and leave those regions at a later time if desired. The

protocol should communicate the service information to the region as part of the

process of registering with the region. It should send updates to the region when the

service information changes. It should have provisions for dealing with distributed

failure (discussed further in 4.2.3). Finally, this protocol for service registration should

be automated. Only the service information and its list of regions should need to be

con�gured; the protocol sends the appropriate registration, deregistration, and update

messages when this con�guration changes. Automating the protocol and minimizing

the required amount of con�guration is crucial. It opens the door for the development

and deployment of many new services which can easily plug themselves into a region

and become available to any user agent in the region infrastructure.

26



In addition to the service protocol mentioned above, regions must provide user

agent query support in order to share service information e�ectively. User agents

must be able to query a region with a desired set of characteristics and obtain a

list of one or more services with those characteristics. These desired characteristics

may include attributes and their values, service types and instances, and functions or

functional interfaces. Along with this rich set of characteristics, regions should also

support a broad range of queries. User agents should be able to look up services using

exact-match, wildcard, predicate, and value-range queries.

3.1.3 Scalability

One common aspect of the other systems on which regions are based, such as Jini and

SLP, is that they aim to solve the grouping/scoping and service location problems

on a local scale [7, 15]. They tend to adhere to assumptions about the number of

services in a group and the services' proximity in the network or in the physical world.

Regions are more general than this|and thus more powerful. They are intended to

operate in a world with large numbers of services, and in which the services grouped

together in a region may in fact be widely-dispersed geographically or topologically.

One example is the use of regions to manage the networked services of a worldwide

corporation. As a result of this design goal, scalability is absolutely essential to

the region infrastructure, to deal with both the large number of services and the

potentially large distances between them.

3.1.4 Independent Administration

The world in which regions operate is too big to assume that all regions will be

administered by a single owner, or even a handful of cooperating owners. A better

model is one similar to the DNS model [11], in which administrators manage their

regions independently of each other, but service information can be shared across

regions. This model of autonomous regions lends itself to a distributed, decentralized

mode of operation. While it may contribute to complexity in some respects, it carves

27



up the region world into more manageable chunks, and it obviates region owners'

dependence on a central authority (in which this model di�ers from DNS). It also

avoids having a single point of failure, and can help isolate regions from problems in

other regions.

3.1.5 Typing

Regions need a type model, especially in the context of interoperation with catalysts.

A catalyst is just a specialized user agent; it synthesizes applications through com-

position of services in its environment, which is a region or set of regions. To this

end, it is helpful for a catalyst to be able to have some expectations about the region

in which it operates. It should have an idea of what kinds of services and attributes

it might �nd in the region, without having to perform a comprehensive search. This

facilitates the synthesis of applications. Hence, regions should be typed.

What does it mean for a region to have a type? In keeping with the purpose of

region types as guidelines to catalysts, region types are speci�ed as requirements and

restrictions on the attributes, attribute values, service types, and functional interfaces

in a region's services. For example, a region of type Kitchen might be required to

have services of type Microwave, Dishwasher, and Toaster. Region types may also

include attributes and attribute values that are common to all instances of a type,

much like non-static and static �eld variables in a class. In addition, region types

follow the usual rules for inheritance and other features commonly found in type

models.

3.1.6 Robustness

Regions need to be robust. In particular, the various parts of the region infrastructure

should be able to detect and recover from distributed failure. The service protocol

should account for the possibility of the service being cut o� from its containing

region at any point during registration, update, and deregistration. The user agent

may want to have a policy in place for retrying failed queries or detecting when a

28



region is up or down. Most importantly, regions, which obtain information from their

subregions and services, should be prepared to cope with losses, delays, and reordering

of information messages sent by those subregions and services. Furthermore, they

should have a method for restoring and maintaining a fairly consistent view of the

world.

3.1.7 Security

A region allows user agents and other regions to obtain information about it and

the services that it contains. It also permits the use of those services. Clearly, this

has security implications. We will not attempt to be exhaustive about the security

requirements of regions here, nor will we emphasize security mechanisms in our archi-

tecture; that is a subject for future work. However, we will touch on some important

points in this area.

Authorization and access control are key parts of the security picture. Regions may

wish to impose restrictions on which services may join them, which user agents may

query them, and what service information user agents are allowed to see. Likewise,

regions and services may wish to impose restrictions on which user agents may actually

use the service.

Authentication is also important, both for access control as described above, and

for the information updates that pass between regions, their subregions, and their

services. A region's knowledge of its services comes from directly-contained services

and from subregions which contain services. This information is conveyed in the form

of join and update messages from services and subregions. As a consequence, falsi�ed

update messages can wreak havoc with a region's view of the world.

The region type model also introduces some trust issues. User agents and services

may interact di�erently with a region depending on its type. Services, in particular,

can expose a di�erent interface and attribute set depending on the region in which

they are. The behavior of catalysts can also be in
uenced by the type of the region in

which they operate. This leads to the question of where a region's type and inheritance

information is stored, and whether or not this information can be trusted. Digital

29



user
agent

? service

region service

user
agent

?
region

Figure 3-2: Left: The three-part model. Regions act as intermediaries between user
agents and services. Right: Same, but depicted as a tree in which the service is a
child of the region.

signatures are one possible strategy for making such information trustworthy.

3.2 Architecture

Here we describe a design for the region architecture that meets the above require-

ments. The design uses a three-part model for regions, which is extended with hi-

erarchy to provide more 
exible region structures. It employs a Region Manager,

which maintains service, structure, and region type information and answers queries

about services in the region. Lastly, the architecture for regions also includes URN

resolution services and a region type model.

3.2.1 The Three-Part Model

The most basic regions are based directly on the three-part model described in SLP

[7] and later in Jini [15]. This model consists of a user agent, a service, and an agent,

called a Region Manager, that represents the region.

User Agent

A user agent is a client that uses one or more services. One example of a user agent is

a word processing program that uses a printer service to print documents. In general,

a user agent initially does not know which service to use, but it does know what

characteristics the service should have. User agents use the region infrastructure to

30



match them up with services that have this set of desired characteristics. They query

a region for services with the desired characteristics. The region responds with a list

of service entries describing the matching services and providing handles to them.

The user agent can then use the services.

Service

A service is an object that performs some set of functions for user agents. One ex-

ample is a printer service. The functionality of a service is speci�ed by its type, its

attributes and their values, and a functional interface. In the case of the printer

service, its service type may be Printer, and its attributes and values may in-

clude ColorType=BLACK AND WHITE and Resolution=600dpi. The functional inter-

face might include the functions printSingleSided() and printDoubleSided();

these functions could be called by user agents.

Services are described more fully in Chapter 4.

Region Manager

The Region Manager is an agent that embodies the region. It manages the information

about how the region is organized and which services it contains. It keeps track of

services as they join, leave, and change their attributes. The Region Manager also

acts as a intermediary between user agents and the region's services by providing

service information to user agents in response to their queries.

The Region Manager's role is analogous to the Directory Agent in SLP [7] and the

Lookup Service in Jini [15], but its capabilities and the information it contains are a

superset of those in SLP and Jini. The additional capabilities are for managing the

more complex internal structure found in regions. These capabilities are described

later in Section 3.2.3, which discusses the Region Manager's role in greater detail.

3.2.2 Structure and Hierarchy in Regions

31



top-level region

subregions

services

?

?

user agents

Figure 3-3: Region based on extended three-part model with hierarchy.

The basic three-part model described above, with its 
at collection of services, is

insu�cient for most regions because of the scaling and administrative requirements of

regions. To accommodate these requirements, the region infrastructure uses hierarchy

to extend the three-part model and create regions with more complex and 
exible

structures. In this extended model, not only may regions contain services, but they

may also contain other regions. Regions take on a role similar to services: they may

join and leave other regions, and when their information changes, they must update

their containing regions. This enables regions like the one in Figure 3-3 to be created.

The new model for structuring regions requires more 
exibility than a strict hier-

archy provides, however. One way in which it di�ers from a strict hierarchy is that

it allows a region to be contained in two or more regions that are not necessarily

nested. In other words, a region can have multiple parent regions. This provides for

arbitrary overlap of subregions as well as services. It also means that multiple paths

may exist to the same service or subregion within a region hierarchy. Also, a region

may directly contain subregions, services, or a mixture of both. Figure 3-4 illustrates

the variety of regions that can be built with this 
exible model.

In this new model for regions, what does it mean for a region to \contain" a

service? We take the position that a region contains a service if and only if the

service belongs to the region directly, or belongs to any of the region's subregions,

ignoring access control for the moment. A similar de�nition applies for containment of

one region inside another. We also take the position that a region cannot contain itself

32



Figure 3-4: Examples of structured regions. Note that both services and subregions
can be shared by two or more parents. Also note that two of the region graphs show
more than one top-level region.

33



top-level region

Figure 3-5: Top-level region, subregions, and services. The top-level region contains
four subregions. All ten services shown in the �gure are contained by the top-level
region.

directly or indirectly, because such a relationship is not useful for service location.

By applying this notion of containment to Figure 3-5, one can see that all services

shown in the �gure are contained by the top-level region, and that the top-level region

contains four subregions. This containment model is especially useful as it applies to

services. A region possesses, or can obtain, information about all of the services it

contains. As a result, a user agent can search among all of a region's services and all

of its subregions' services with a single query.

It is important to note that containment of a service or a subregion does not imply

control over it or the ability to get complete information about it. It is possible to

build regions in which containment relationships re
ect delegation of authority. But

the region infrastructure should also support controlled sharing between regions that

do not necessarily trust each other. For this reason, a region at any level can choose

to hide some of its service information from its parents. An example of this would be

a region corresponding to a business center of the kind commonly found in business

hotels. Such a region might contain PC, printer, telephone, fax, and copier services.

The manager of the business center might include the business center region in her

personal region, in order to perform administrative tasks. A hotel guest might include

the business center region in her personal region for the duration of her stay, in order

to make use of its services. Although both use the business center as a subregion,

the business center region may permit the manager to access administrative services

34



that are hidden from the hotel guest.

The model for region structure, which incorporates both 
exibility and elements

of hierarchy, satis�es several of the functional requirements of regions. It provides a

scoping mechanism that allows nested scopes and the arbitrary overlap of regions. It

contributes to scalability by permitting regions with a large number of services to be

organized into a hierarchy of subregions, each of which manages only a small number

of services directly. It facilitates the sharing of service information by allowing a

region to include a subregion that it may not necessarily control, obtain information

from that subregion, and share it with user agents. At the same time, it preserves the

ability of regions to be administered independently, and bolsters security by allowing

subregions to hide service information from parents.

3.2.3 The Region Manager

We now turn to the question of how the individual regions manage their interactions

with user agents, services, and each other. These interactions are handled by the

Region Manager. The Region Manager stores information about the structure of

the region and the services it contains. It then uses this information to perform its

management tasks. These tasks are: to keep track of regions and services as they

join, leave, and modify their attributes; to perform region type-checking when the

region is created and when its membership changes; to respond to user agent queries;

to send and receive information updates from other region managers; and to cache

information when appropriate.

First and foremost, the Region Manager stores information about the services it

contains directly. This information includes the attributes, attribute values, types,

functional interface, identi�er, and handle for each service.

The Region Manager also uses information about services it contains indirectly.

In addition to the service information listed above, it also stores those services' parent

regions, i. e., the regions that contain them directly. Information about indirectly-

contained services may be cached in the Region Manager, or may be obtained directly

from a subregion's Region Manager. Caching is discussed in Section 3.2.5.

35



Along with service information, the Region Manager stores information about the

structure of the region in the form of the interconnections between the subregions.

This information, together with the service information, is su�cient for reconstructing

the complete subtree consisting of the region, its descendents, its services, and the

subregion to which each service belongs. This is enough information for the Region

Manager to perform its management tasks.

One of these management tasks is keeping track of services as they join and leave

the region and its subregions, and updating service information when services change

their attributes or attribute values. Likewise, the Region Manager must keep track

of subregions as they are added and removed, and how these changes a�ect the set

of all services contained by the region.

A related task is type-checking of services and subregions. Type-checking occurs

at the time the region is created, in order to ensure that none of the services or

subregions violate the requirements imposed by the region type. However, type-

checking is a continuous process because regions are dynamic; their services and

subregions change. The type model is described further in 3.2.6.

One critical task of the Region Manager is its caching of service and structure

information and its handling of information update messages passed between it and

other Region Managers. The Region Manager uses these messages to update its

knowledge about subregions and their services. Caching and update messages are

described more in 3.2.5.

Of course, management tasks aside, the fundamental role of the Region Manager

is to help user agents �nd the services they need within the scope of the region. The

Region Manager manages information about the services it contains so that it can

respond to user agent queries for services.

The Region Manager contributes to the ful�llment of several functional require-

ments. It helps manage the sharing of service information by tracking changes in

subregions and services, and by supporting user agent queries. It enforces region

typing through type-checking of subregions and services. Also, the natural place to

put mechanisms for robustness and security is in the Region Manager.

36



3.2.4 Service Queries

A central role of the region infrastructure is to help user agents �nd services according

to the kind of service the user agent wants and the features it should have. This role is

�lled by the Region Manager, which supports service queries from user agents. These

queries specify the characteristics that the service must have. In response to these

queries, the Region Manager searches among its local services as well as those of its

subregions in order to �nd one or more services that �t the description.

Queries for services use three criteria: service type, identi�er, and attributes.

The service type refers to both the type of a service object as well as the types of

any functional interfaces it may implement. The service identi�er is unique for each

service and provides a way to request a particular service instance. The attributes

allow the user agent to specify the service features it needs. The user agent can

specify which attribute types should be present; in addition, it can specify the values

that the attributes should have.

Service queries may be expressed in a number of ways. The query format may in-

clude exact-match queries, wildcards, predicate-based queries, and value-range queries

on the service type, identi�er, and attributes. Ideally, the Region Manager should

support this broad array of queries. For now, our architecture and implementation

use a query scheme in which either a wildcard or an exact-match value is given for

the service ID, type, and attributes.

One issue which should be mentioned at this point is the speci�cation language

for service attributes. What attributes are important for characterizing a particular

service, such as a printer? What format or schema should be used for expressing these

attributes? Although these questions are not addressed here, they are nonetheless

signi�cant. Some clues to the answers may be found in [9] and [10].

Another key feature of region query support is that a user agent need only query

one region in order to �nd out about its subregions' services as well as its own local

services. Internally, the Region Manager may rely on a combination of cached in-

formation and subregion queries for assembling its response to the user agent. The

37



number of required subregion queries depends on how the Region Manager is con�g-

ured for caching. Note, however, that if the Region Manager relies entirely on cached

information, no subregion queries may be necessary.

3.2.5 Caching and Updates

The caching of service and structure information is crucial for maintaining scalability

and adequate performance in the region architecture. Caching is necessitated by the

sheer volume of services that may be present in a region. It allows Region Managers

to answer user agent queries in a reasonable amount of time without resorting to

extra subregion queries. These have the negative e�ects of slowing down response

time and generating excess network tra�c.

Caching and update strategy also deserve special attention because they are heav-

ily dependent on characteristics which are unique to each region. An example of one

such characteristic is the rate at which services join, leave, and change their attributes.

Regions in a networking research facility are subject to frequent changes as services

go on- and o�-line and change their attributes. In contrast, services in a home net-

work region may be very static. Clearly, a caching strategy that works in one region

may not work in another. Performance in a particular region depends on how well

its caching and update policy is tuned to its speci�c characteristics.

Another region \characteristic" that a�ects the caching strategy is the region pol-

icy. The region administrator must make certain policy decisions about the amount of

cache inconsistency permissible in exchange for better performance. Policy decisions,

as well as region characteristics, are re
ected in the caching strategy.

For the reasons given above, we do not attempt to prescribe a caching and update

strategy for use with all regions. Rather, the region architecture supports a wide range

of caching and update policies; the only requirement is that updates propagate from

subregions to their parents. This gives administrators the freedom to make policy

decisions on which subregions to cache; whether to use full updates, incremental

updates, or both; and whether to use batch or individual updates. Administrators

are free to implement higher-level policies, such as limiting the rate at which a parent

38



region receives updates from its children, in terms of bandwidth or number of updates

received per unit time. Administrators can also choose values for parameters such as

time between updates. In this way, region administrators can pick the caching and

update strategy and parameter values best suited for the conditions in their region.

Since caching and updates have such an impact on performance, they are also

discussed in Section 6.1.3.

3.2.6 Typing

Region types are necessary to provide user agents with reasonable expectations about

what services they will �nd in a region. Our ideal region type model would express a

region type in terms of the service types and subregion types contained by a region of

that type, as well as the attributes supported by the region type. Service types would

in turn be expressed in terms of the attributes and functional interfaces supported

by services of that type.

However, we have not yet formulated such a type model because it is unclear what

role attributes should play within it. This confusion stems from two reasons. The

�rst is that our service architecture allows a service's attributes and their values to be

speci�ed independently of its functional interface. This gives services a greater degree

of 
exibility, but is in opposition to a type model that associates certain attributes

with certain functional interfaces under the umbrella of a single type. The second

reason is that attributes can be imposed onto a region or service from an outside

source. The most common occurrence of this is when a child region or service joins a

parent region and inherits some of the parent region's attributes, as described later in

this section. In this case, the parent region is imposing attributes on the child which

may or may not be relevant to the child's type. It is not yet understood what e�ect

these imposed attributes should have within the type model.

For now, the region infrastructure uses the following type model. Region types

exist as constraints on the types of a region's subregions and on the attributes and

functional interfaces of its services. A formalized notion of \service type" does not re-

ally play a role in this model, due to the reasons given above. (However, Section 4.2.2

39



contains a discussion of services and the possible relationships between attributes,

functional interfaces, and service type.) The constraints for each type are expressed

as a set of rules, and type-checking is the process of checking that a region adheres

to the rules for its type. Some examples of these rules are:

� A region of type T1 must contain at least one service with the functional interface

I1.

� A region of type T2 can only contain services with functional interfaces I1, I2,

or I3.

� Every service in a region of type T3 must have attributes A1 and A2, with

attribute A1 having a value of x.

� A region of type T4 can only have regions of type T1 and T2 as its subregions.

A region type may also specify attributes and attribute values that are associated

with the region itself, much like non-static and static �eld variables in a class. These

attributes and attribute values are inherited by subtypes of the region type. Option-

ally, they can be inherited by services that join regions of that type. For example, a

region type may have an attribute/value pair Owner=MIT which may be inherited by

objects that join regions of that type.

Each Region Manager stores its own type information. This information includes

the region type and supertypes and the type inheritance relationships. When a service

joins a region, it consults the region for its type information, and then the service

exposes the appropriate attributes and interface for that region type and instance

(see Section 4.2.2). Of course, this has security rami�cations|it assumes that Re-

gion Managers are honest about their type information. It does not prevent Region

Managers from claiming to have a \privileged" type which is allowed access to all of

a service's attributes and interfaces. Future versions of the region architecture will

have to deal with this issue, possibly by using a trusted third party for storing type

information, or by applying digital signatures to type information.

40



Type-checking for each region is performed by the Region Manager, both when the

region is created and on a continuing basis as services and subregions join, leave, and

change. The region architecture provides a basic Region Manager, which developers

can extend with typing rules to create typed regions.

The region infrastructure typing model must eventually include types for services,

in addition to types for regions. This is so that user agents can have reasonable

expectations about what a service does. User agents themselves may have types,

although that is not as integral to the region infrastructure as service and region

typing are.

3.2.7 URN Resolution Service

One more seemingly-minor piece is necessary to complete the region infrastructure.

Given the name of a region, how does one contact its Region Manager? In ad-

dition to a region's name, one must also know where to look for its Region Man-

ager. In our architecture, this location is phrased as a Jini URL with the format

jini://hostname[:port]. But how does one discover the mapping from a region

name to its Jini URL?

Likewise, suppose one knows the identi�er of a service but cannot query the service

directly. Then how does one �nd out the regions to which the services belongs, so

that the regions can be queried for service information instead?

The answer to problems like these is to incorporate URN resolution services into

the architecture [14, 13]. These services map resource names to their locations.

Within the region infrastructure, URN resolution services may map region names

to Jini URLs, or they may map service names to their parent region names and/or

URLs. By doing this, the URN resolution services in the region infrastructure enable

communication with regions while keeping region and service names separate from

and independent of their locations.

41



3.3 Summary

The main goal of the region infrastructure is to share information about services

within a scope. At the same time, it must allow these scopes to be administered

independently. Also, these scopes must be 
exible enough in structure to handle large

numbers of services which may be widely dispersed. In addition, regions must provide

a typing model so that user agents can exploit their services e�ectively. Finally,

regions must be su�ciently robust and secure for use in a distributed setting.

The region architecture is a framework for meeting these needs. Its basic building

block is the three-part model of user agents, services, and Region Managers which

govern the interaction between the services and user agents. Hierarchy is used to

extend this model to more 
exible structures which incorporate nesting and arbitrary

overlap. Hierarchy also contributes to scalability and allows regions to be partitioned

according to administrative policy and/or functionality. Within the extended model,

the Region Manager keeps track of information about the region's services and inter-

nal structure. It provides user agents with service information in response to their

queries. To ensure good performance, the Region Manager relies on caching and

update strategies that are geared to its region's particular characteristics and the

administrator's policy needs. The Region Manager also manages region typing infor-

mation and performs the necessary type-checking. Finally, URN resolution services

help user agents obtain the location of a particular Region Manager or the parent

regions of a service.

42



Chapter 4

Services

Services are the basic units of functionality that are grouped together into regions.

In this chapter, we explore the functional requirements for a service, in the context

of the special functions it provides and also in the context of its interactions with

regions. We then describe an architecture for services that handles these interactions

and can be extended to provide any desired service functions. We end with examples

that demonstrate how regions, services, and user agents work together.

4.1 Functional Requirements

Services have several functional requirements. Some stem from their role of providing

functionality to user agents. Others, such as security and region-dependent func-

tionality, arise from their interaction with regions. Still other requirements, such as

typing and ease of con�guration, belong to both categories. The various functional

requirements of services are described below.

4.1.1 Service Function

A service must provide some kind of functionality of which user agents can make

use. This functionality should be expressed through service attributes and functional

interfaces. A user agent can obtain this information in order to use the service or

43



decide whether or not the service is suitable for its needs. Also, the service type (see

Section 4.1.5) provides hints about a service's functionality.

4.1.2 Integration with Regions

Services must integrate readily with the region infrastructure described in the pre-

vious chapter. They should capable of joining and leaving regions, and should also

report any changes in their attributes, attribute values, or functional interfaces to

their parent regions. To facilitate the sharing of service information across regions

and user agents, services should have interfaces and mechanisms for providing and

communicating their information.

4.1.3 Region-Dependent Functionality

A service should be able to expose di�erent subsets of its functionality to di�erent

region types or instances. This means that two regions may directly contain the same

service, but each region \sees" a di�erent attribute set and functional interface for

that service.

This serves two purposes. The �rst, obviously, is access control. Trusted regions

may be able to access a larger set of functional interfaces and attributes than untrusted

regions. The second reason for region-dependent functionality is that a service or

device may have multiple features and functions, but only some of them are relevant

in a particular region setting. For example, in a home network, a universal remote

control might expose di�erent features in a kitchen region than in an entertainment

region.

4.1.4 Ease of Con�guration

Services should also be easy to con�gure, especially with respect to regions. Services

may require some con�guration in regard to the functionality they provide to user

agents; this should be kept to a minimum. However, a service should require little,

if any, con�guration in order to take part in the region infrastructure, join and leave

44



regions, and perform other region-related tasks. The goal is to eliminate barriers to

the development of region-capable services. The simpler a service is to con�gure,

the more services will participate in the region infrastructure. This greatly enhances

the region infrastructure, whose power lies in the ability to make large collections of

services available to any user agent.

4.1.5 Typing

Services should have types. As is the case with region types, service types provide

valuable information about what user agents and regions may expect of a service, in

terms of its interface and attributes. This is helpful for user agents, especially ones

like catalysts, which compose larger services from smaller ones and stand to bene�t

greatly from an object-oriented type model. Also, the service type model is part of

the region type model; certain region types may put restrictions on the services they

contain based on the service type.

4.1.6 Security

As with regions, service security will not be given a comprehensive treatment here

or in the following architecture description. However, we will touch on a few of

the security issues for services. Several of these were already mentioned in Section

3.1.7: access control and authentication for user agents who wish to use the service,

and authentication of services when they join a region or send information update

messages. Services also have type information trust issues similar to those of regions;

namely, they can falsely claim to have a privileged type or supertype which allows

them to join regions they could not join otherwise. The measures suggested in Section

3.1.7 for making region type information trustworthy can also be applied here.

45



4.2 Architecture

An architecture for services must enable a service to provide a speci�c kind of func-

tionality while maintaining a common interface to the rest of the region infrastructure.

It must also meet the requirements above. We describe a framework for services that

maintains special information about regions and region-dependent features, and par-

ticipates in a registration and update protocol with regions.

4.2.1 Service

Every service must manage its interaction with regions. It must also store informa-

tion about regions along with information about its own functionality. The service

architecture provides a generic service which handles this information and manages

the interaction with regions. This generic service can be extended with additional

functionality to create a speci�c service type, such as a printing service or a voice

mail service.

Each service has a unique identi�er. This serves to di�erentiate between service

instances. Even if a service exposes di�erent attributes and interfaces in di�erent re-

gions, the identi�er can be used to determine whether the apparently-di�erent services

are actually one and the same. This information is important for various purposes,

such as load-balancing between services. Also, it is important because a user agent

may get unexpected results from using two services if it assumes that they are distinct,

but in fact they are implemented by the same underlying object (e. g., a database

being modi�ed by the user agent).

In addition to its identi�er, each service stores its attributes, attribute values,

and information about the functional interfaces it provides. Another vital piece of

information that services store is which attributes and interfaces to expose in which

region types and instances. A mapping from a region name or type to an attribute

set/interface pair is called a view, and these mappings are collected into a table

of views, which is consulted whenever a service joins a region. A default view is

provided for regions and region types not speci�cally listed in the view table. Views

46



are discussed further in the next section.

Services also maintain a list of the parent regions to which they belong. This list

can be modi�ed by the administrator of the service. Services use this list to join and

leave regions and send information update messages to regions as appropriate.

Services interact with regions via the registration and update protocol. Services

use this protocol for joining, leaving, and updating their parent regions. This protocol

is the means by which regions obtain information from services they contain directly;

services send their information when they register to join a region and in subsequent

updates. This protocol is discussed in Section 4.2.3.

Services provide a handle that allows user agents to interact with them. Currently,

this handle is an object stub which performs remote procedure calls to the service.

Presumably other forms of service handles will be available in the region infrastructure

in later versions. User agents can obtain the service handle from the Region Manager

of a region when they query it for services.

4.2.2 Views

The service architecture uses views to satisfy the requirement that a service should

be able to expose di�erent interfaces and features to di�erent regions or region types.

A view is a mapping from a region name or type to an interface and attribute set.

The service keeps its set of views in a table.

Before a service joins a region, it must determine the appropriate interface and

attribute set to use for its registration. This is dependent on the name and type of

the region and is determined using the following algorithm. First, the service looks

up the region name in the view table. If no matching view is found, it looks up the

region's type and supertypes in the view table, starting with the region's immediate

type and proceeding up the type hierarchy. If a matching view is not found this way,

the service falls back on a default view. The service then registers with the region

using the interface and attributes in the selected view. If a service has already joined

a region, the same algorithm is used to send updates to the region when changes are

made to the service's attributes or interfaces.

47



f
4

f
5

I = { },

A
3

a
3

= A
5

a
5

=A
5

a
5

= }A = { ,

View 2

f
1

f
2

f
5

I = { }, ,

A
1 1

a= A
4

a
4

=A = { },

View 1

f
1

f
3

I = { },

A
2

a
2

= A
3

a
3

= A
5

a
5

=A = { }, ,

View 3

f
1

f
2

f
3

f
4

f
5

F = { }, , , ,

Underlying Service Object

Figure 4-1: A service and its views. F is the total set of functions supported by the
service. For each view, A is the set of attributes, and interface I is the subset of F
that the view makes available.

It is worthwhile to note that the views described here bear a resemblance to

the service types desired in the ideal type model of Section 3.2.6. They combine a

functional interface with a set of attributes to be exposed in a region. However, for

the reasons stated in Section 3.2.6, views are unsuitable for use as types at this time.

Views operate according to the model in Figure 4-1. Each view shows a subset of

the total set of functions supported by the service. Each view also shows its own

set of attributes. However, views allow their functional interface and their attribute

set to be speci�ed independently, while types imply more of a constraint on which

attributes are associated with which interfaces. Ultimately, service types will probably

incorporate both functional interfaces and attribute sets in their de�nition, but at this

point it is not clear how.

4.2.3 Registration and Update Protocol

The registration and update protocol serves as the interface between services and

the rest of the region infrastructure. Services use it to indicate their desire to join

or leave a region and to communicate the necessary attributes and information to

48



the region. The protocol is modeled on the Jini Discovery and Join speci�cation

[16] both conceptually and in its implementation; in fact, our implementation of the

region infrastructure makes substantial direct use of the Discovery and Join protocols

and implementation.

The registration and update protocol consists of several phases. First, a service

must locate and establish contact with the Region Manager of the region it wants to

join. Then the service joins the region, sending its attribute and interface information

to the Region Manager. Subsequently, the service may change its service information;

it sends the appropriate updates to the Region Manager. Finally, a service can notify

the Region Manager that it wishes to leave the region.

The �rst step, locating and establishing contact with the Region Manager, can

happen in several ways. The most general way is for the service to contact a URN

resolution service to obtain a URL that can be used to contact the Region Manager

for a given region. This method is appropriate for regions whose members are widely-

dispersed as well as regions with local members, e. g., regions situated across WANs

as well as in LANs. Another method is to use a protocol akin to the Jini multi-

cast request and multicast announcement protocols, which are part of the Discovery

and Join speci�cation. In the multicast request protocol, services multicast a mes-

sage indicating their desire to join one or more particular regions, and the relevant

Region Managers respond. Regions use the multicast announcement protocol to peri-

odically advertise their existence and their corresponding URL. In this way, services

can circumvent the URN resolution service when contacting a Region Manager. This

method is only appropriate when the entities in the protocol are in the same local

network or are reasonably close by. However, it does allow services to learn which

regions are available in the local network.

Once the service has contacted the appropriate Region Manager, it registers to

join the region. It sends a message which includes the attributes and interface it is

using to join this particular region (determined using the algorithm in the previous

section). When the service changes, it sends update messages to the Region Manager

with the new information. Finally, when a service wants to leave a region, it noti�es

49



the Region Manager, which deregisters the service and performs various cleanup tasks.

It should be noted that the messages sent and received in the registration and

update protocol can trigger events in the caching scheme, if one is in use. Most

notably, the Region Manager cache information may be modi�ed, and join, leave,

and update messages from a service may cause updates to propagate up to a region's

parents and ancestors, informing them of a change in the region's state.

It should also be noted that the process of joining and leaving a region is meant to

occur as a part of service startup and shutdown. When the protocol is used this way,

services automatically integrate themselves into the region infrastructure without user

intervention. The only information that must be con�gured beforehand is the list of

regions for the service to join initially and the table of views. This contributes to ease

of con�guration.

The protocol outlined here is virtually identical to those described in the Discov-

ery and Join speci�cation. The important di�erences are the use of a URN resolution

service, the existence of an analogous protocol for regions to join and leave other re-

gions (see Section 3.2.2), the propagation of update information in a region hierarchy,

and the role of the Jini lookup service being played by the Region Manager instead.

These changes augment the Jini protocols by adapting them for use in large-scale

regions; Jini already presents a reasonable solution for the small-scale problem.

Details on the protocols in the Discovery and Join speci�cation can be found in

[16]. Notably, these details include mechanisms for addressing issues of distributed

operation, such as using randomized timers to prevent response 
oods and using

leases as an expiration mechanism for service registrations.

4.3 Examples

Now that we have laid out the functional requirements and architecture for both

regions and services, we present some examples that illustrate the workings of the

region infrastructure at a high level.

The following examples assume a caching and update model in which Region Man-

50



agers cache information about all of the services they contain, and update messages

are sent immediately and individually (as opposed to in a batch).

4.3.1 Region Join

Figure 4-2 shows region R4 joining region R2 and becoming one of its subregions (and

hence, one of R1's subregions). For simplicity, services are not shown in the diagram.

1. R4 must �nd out the location of R2's Region Manager, so it queries a URN

resolution service.

2. The URN resolution service returns the URL jini://host.foo.org:33832 for

R2.

3. R4 sends R2 a message saying that it wants to join. The message includes

information about R4's structure and services. R2 updates its own internal

information to re
ect the new subregion.

4. R2 sends an update message to its parent, R1, to notify it about R4 joining.

The message contains all of the information in the original join message, along

with the name of the region being joined (R2). R1 also updates its internal

information.

4.3.2 Region Leave

Figure 4-3 shows region R6 leaving its parent region, R4.

1. R6 sends R4 a message saying that it wants to leave. R4 updates its internal

information to re
ect the change.

2. R4 sends an update message to its parent, R2, to notify it that R6 has left R4.

R4 updates its internal information to re
ect the change.

3. R2 propagates the update up the hierarchy to its parent.

51



join

update

URN Resolution Service

R1

R2 R3

R4

R5 R6

R2?

jini://host.foo.org:33832

3

4

1

2

R1

R2 R3

R4

R5 R6

Figure 4-2: Top: Region R4 joining region R2. Bottom: Region graph after R4 joins.

52



update

leave

3

2

1

R1

R2 R3

R4

R5 R6

R1

R2 R3

R4

R5 R6

Figure 4-3: Top: Region R6 leaving region R4. Bottom: Region graph after R6
leaves.

53



Note that R6 has not been deleted or destroyed; it has merely asked R4 to remove

it from R4's list of child regions. In fact, R6 may still be a subregion of other regions

not shown here.

4.3.3 Service Join

Figure 4-4 shows service S9 joining region R4. In this �gure and those that follow,

the services are shown.

1. S9 queries a URN resolution service to �nd out the location of R4's Region

Manager.

2. The URN resolution service returns jini://host.bar.com for R4.

3. S9 sends R4 a message saying that it wants to join. The message includes S9's

interfaces, attributes, and their values as obtained from the table of views. R4

adds S9 to its list of local services.

4. R4 sends an update message to its parent, R2, to notify it that a new service has

joined. The message contains all of the information in the original join message,

along with the name of the service's parent region (R4). R2 also updates its

internal information.

5. R2 propagates the update up the hierarchy to its parent.

4.3.4 Service Change

Figure 4-5 shows service S9 changing its attributes and sending an update message

about the changes to its parent, R4.

1. S9 sends an update message to its parent, R4, containing the updated set of

attributes and values. R4 updates its service information accordingly.

2. R4 sends the update message to its parent, R2.

3. R2 continues to propagate the update upward.

54



2

URN Resolution Service
1

S1

S2 S3 S4

S5

S6 S8S7

S9

join
3

update

4

5 R1

R2 R3

R4

R5 R6

S1

S2 S3 S4

S5

S6 S8S7

S9

jini://host.bar.com

R4?

R1

R2 R3

R4

R5 R6

Figure 4-4: Top: Service S9 joining region R4. Bottom: Region graph after S9 joins.

55



S1

S2 S3 S4

S5

S6 S8S7

S9

3

update
1

2

R1

R2 R3

R4

R5 R6

Figure 4-5: Service S9 changing its attributes and sending an update to region R4.

4.3.5 Service Leave

Figure 4-6 shows service S4 leaving its parent region, R3.

1. S4 sends R3 a message saying that it wants to leave. R3 removes S4 from its

list of local services.

2. R3 sends an update message to its parent, R1, to notify it that S4 has left. R1

also updates its internal information.

4.3.6 User Agent Query

Figure 4-7 shows a user agent querying region R2 for services with a given set of

characteristics.

1. The user agent queries a URN resolution service to �nd out the location of R2's

Region Manager.

2. The URN resolution service returns jini://host.foo.org:33832 for R2.

3. The user agent sends a query to R2's Region Manager. It requests all services

contained by R2 that have interface types t1 and t2 and that have attributes A1

56



S1

S2 S3

S5

S6 S8S7

S9

S1

S2 S3 S4

S5

S6 S8S7

S9

leave

1

2

update

R1

R2 R3

R4

R5 R6

R1

R2 R3

R4

R5 R6

Figure 4-6: Top: Service S4 leaving region R3. Bottom: Region graph after S4 leaves.

57



User Agent

type: {t1, t2}
attr: {A1=a1, A2=a2} ? S1

S2 S3

S5

S6 S8S7

S9

URN Resolution Service

3

4

1
2

{S2, S5, S7}

R1

R2 R3

R4

R5 R6

R2?
jini://host.foo.org:33832

Figure 4-7: User agent querying region R2.

and A2 with values a1 and a2 respectively.

4. R2's Region Manager checks its information on the services it contains|S2, S5,

S6, S7, and S9. It �nds that S2, S5, and S7 meet the above conditions, and

includes them in the list of service entries it sends back to the user agent.

Note that R2's Region Manager examined the local services of its subregions, R4

and R5, as well as its own local services. Also note that since R2's Region Manager

caches information on all of the services it contains, it did not need to query R4 or

R5 in order to answer the user agent. A di�erent caching scheme might have required

R2 to query one or both of its subregions.

4.4 Summary

Services provide valuable functionality to user agents, and their usefulness can be

increased substantially by including them in the region infrastructure. In order to

work e�ectively as part of the region infrastructure, services must meet a number of

requirements. One requirement is that not only must they provide functionality, but

this functionality should be dependent on the region and/or region type, allowing a

58



service to tailor itself to di�erent regions. Services also need a way to share informa-

tion and join regions easily. They need to be easy to con�gure so as not to hinder

development and use. Finally, services must have a type model to assist user agents

and to �t in with the region type model, and they must address security needs such

as authentication, authorization, and type information trust issues.

The proposed architecture for meeting these requirements is a service augmented

with a protocol and with additional information required by the region infrastructure.

This additional information consists of an identi�er for distinguishing between service

instances, a table of views which capture the notion of region-dependent attributes

and interfaces, and a list of the service's parent regions. The protocol is used for

communicating with Region Managers in order to join and leave regions and update

the service's information. Both this protocol and the additional information comprise

a generic service which can be extended to create a speci�c service type. Lastly, some

examples are given to provide a high-level view of services and regions in action.

59



Chapter 5

Implementation

We have built a prototype of the region infrastructure. This prototype implementa-

tion consists of four major parts: a Region Manager, a generic service framework, a

URN resolution service, and a region browser for viewing and manipulating regions

and their services. The prototype was developed with the Solaris Reference Imple-

mentation of Java 2, and it makes substantial use of the Jini 1.0 development kit.

In the following sections, we describe the four parts of the prototype and give an

example to demonstrate their use. We then describe some of the issues that arose

during the implementation process, and conclude with a discussion of Jini's impact

on the prototype implementation.

5.1 Region Manager

The Region Manager implementation divides its tasks into two parts. One is the

management of local services. The other is the management of the region hierarchy.

Management of the hierarchy is performed by the Region Manager, while management

of local services is delegated to Jini.

The Region Manager uses a Jini lookup and a Jini construct called a group to

manage a region's local services. A group is a 
at collection of services, much like

the \basic region" from Section 3.2.1. A Jini lookup does for a group what a Region

Manager does for a region|that is, it coordinates the joining and leaving of services

60



and also allows users to query for services based on attributes and type. Thus,

groups and Jini lookups are well-suited for managing a region's local services. In the

prototype system, there is a one-to-one mapping between regions and groups of the

same name.

Since Jini does not have the kind of support for hierarchy that we desire for

regions, the Region Manager has its own functions and information pertaining to

region hierarchy. This includes knowledge about the region's parents, knowledge

about its subregions and their services, functions for adding and removing subregions,

functions for propagating updated information throughout the hierarchy, and a lookup

function that spans across a region and its subregions.

The Region Manager and the Jini lookup interact to provide a complete picture

of a region. The Jini lookup speaks the protocol and does the bookkeeping for local

services that join, leave, or change. The Jini lookup noti�es the Region Manager

when changes occur in its group of services. The Region Manager takes care of

propagating the changes. Meanwhile, the Region Manager handles other tasks, like

service queries over all subregions and the addition and removal of subregions, of

which the Jini lookup is unaware.

It is important to note that, despite their specialized functions, the Region Man-

ager and the Jini lookup are considered to be services that exist as part of the region.

They too have attributes, identi�ers, and the other features that characterize a ser-

vice. Of course, they are subject to the restriction that they must not leave the region,

since they are responsible for managing it. Also, only one local Region Manager and

Jini lookup are allowed in each region (not counting the ones for its subregions).

5.1.1 Interface

The Region Manager implementation provides an interface with the following func-

tions:

� Add/remove subregions Add or remove a child subregion of a parent region.

61



� Add/remove/modify local services Called when the Jini lookup noti�es

the Region Manager about changes in the service group.

� Update Called by a region to inform parent regions of a change; used to prop-

agate information up the hierarchy.

� Get types In this implementation, regions store their own type information

and provide it upon request.

� Get tree Get the subtree consisting of the region and all regions which are its

descendents.

� Get local services Get the list of services directly contained by this region

(i. e., its child services).

� Get all services Get the list of all services contained by this region (including

those in subregions).

� Lookup Find services with the speci�ed ID, types, attributes, and/or attribute

values.

5.1.2 Data Structures

The Region Manager implementation contains the following data structures for region

management:

� Name A human-readable, globally-unique identi�er for the region (not the same

as its service ID).

� Type information Its interfaces, types, and supertypes, and their hierarchy.

� Parent regions The parents of the region.

� Child regions The region's child subregions.

62



� Tree of subregions The subtree consisting of the region and all regions which

are its descendents. (The regions are represented as node objects; the tree

represents the region structure.)

� Jini lookup A pointer to the Jini lookup that handles its group of local services.

� URN resolver service A pointer to a URN resolution service for performing

any necessary URN lookups.

These data structures are examined and manipulated by the functions in the

previous section.

5.1.3 Caching and Update Policy

Various choices can be made in regard to a caching and update policy. One choice is

whether to use incremental updates or specify the full state in updates. Incremental

updates are smaller, but full updates are idempotent and greatly reduce the complex-

ity of error recovery. Another choice is whether to use individual or batch updates,

and how often updates should occur. Individual updates require more overhead, but

allow updates to be sent immediately. Frequent updates maintain a high level of cache

consistency, but generate more tra�c. Still another choice is the decision of which

subregions to include in the cache. Caching many subregions reduces lookup time,

but requires more storage space at the Region Manager. Also, the Region Manager

may need to deal with missing, out-of-order, or duplicate updates, which can add to

the complexity introduced by the caching and update policy. In general, the factors

involved in caching and update policy tradeo�s include cache size, update message

size, number of messages, and complexity.

The caching policy used in the prototype implementation is to cache all subregion

information; use individual, incremental updates; send updates as soon as a change

is detected; and ignore out-of-order and duplicate updates. The advantages of this

scheme are that it is simple to implement, it keeps the region caches fairly consistent,

and it does not require additional subregion queries when searching for services, since

63



all service information is in the cache. Its disadvantages are that it is not very

robust in case of distributed failure, and it incurs a signi�cant communication cost

by generating a large number of messages, which may additionally have overhead.

5.2 Generic Service Framework

The generic service framework in the prototype supports tasks common to all services,

such as managing attributes and communicating via the registration and update

protocol. It provides classes that implement these tasks and that can be extended to

create a speci�c type of service. In this version, user agents access services using Java's

Remote Method Invocation (RMI) mechanism. Future versions may have additional

access methods.

Like the Region Manager, the service framework divides its functionality into

several parts, and some of these parts are delegated to Jini. The Service Backend

implements the service's specialized functionality. The Service Manager and Jini

services are used to coordinate the joining and leaving of regions, to handle the

associated protocols, and to control the exposure of interfaces and attributes.

5.2.1 Jini Services

Jini has a model for services. Jini services have types, attributes, and identi�ers.

They know the protocol for interacting with Jini lookup services. Jini services can

even register with multiple groups. A problem, though, is that a Jini service cannot

expose di�erent interfaces and attribute sets to di�erent groups, which is one of the

requirements for services in regions. As a result, the Jini service model cannot be

used directly for implementing the services in the region infrastructure.

The prototype implementation works around this by using Jini services as an

interface between a region and a service in the region infrastructure. A service is

represented by a di�erent Jini service in each of the regions it joins, and each of the

Jini services is con�gured with its own interface and attribute set. This architecture is

shown in Figure 5-1. Although this arrangement may not be ideal from an e�ciency

64



Jini Service Jini Service Jini Service

(underlying service object)
Service Backend

Figure 5-1: Left: The service architecture. Multiple Jini services are layered on top
of an object that implements the service. Right: The Jini services can be used to
expose di�erent attributes and interfaces to di�erent regions.

or design perspective, it enables rapid development by taking full advantage of Jini's

capabilities.

5.2.2 Service Backend

The Service Backend is the component of the service that actually implements the

service's specialized functions, which can be accessed remotely via RMI. The Service

Backend uses the Java interface mechanism together with Jini services to expose

di�erent sets of these functions in di�erent regions. Each Service Backend is associated

with several Jini service classes. Each of these classes has an interface which provides

access to a subset of the Service Backend's functions. Whenever the service joins a

region, a Jini service class with the appropriate interface is instantiated, and it serves

as the Service Backend's interface to the region. In this implementation, one Jini

service is instantiated per joined region, rather than sharing Jini services between

regions. This allows the service administrator to change the Jini service interface to

one region without a�ecting other regions. Presumably, alternative implementations

could use shared Jini services for e�ciency, but they must have a way to address

the situation in which regions that had a common Jini service interface subsequently

require di�erent ones.

65



Developers create services by extending the Service Backend class and adding

their specialized functions. They must also write the Java interface �les containing

the various service interfaces they wish to make available. The prototype includes a

compiler that will generate the appropriate Jini service classes for those interfaces.

One di�culty with this approach is that the selection of service interfaces must be

speci�ed at compile-time. It also does not allow the service provider to add or remove

individual functions from an interface at runtime. These are constraints imposed

by Java and its interface mechanism. However, developing a new mechanism for

functional interfaces for services would require substantially more e�ort than using

Java's interface mechanism and accepting its limitations, so we have chosen this

approach for now.

5.2.3 Service Manager

The Service Manager handles the protocol for joining and leaving a region's Jini

group. It maintains the list of regions to which a service belongs. It is responsible

for joining and leaving all of those regions at startup and shutdown. When the

service administrator makes changes to the region list, the Service Manager makes the

necessary registrations and deregistrations. Likewise, when the service administrator

changes the service attributes or interface, the Service Manager responds by updating

the registrations in the a�ected regions.

The Service Manager's most important job is its coordination of Jini services as

interfaces which provide region-dependent attributes. When a service joins a region,

its Service Manager �rst looks up the appropriate view for the region, in the manner

described by Section 4.2.2. The view contains an interface and an attribute set. The

Service Manager spawns a new Jini service which implements the interface in the

view. Then the Service Manager con�gures the Jini service with the attributes in

the view. Finally, the Service Manager has the Jini service join the region's Jini

group, and the Jini service subsequently serves as the interface between the region

and the Service Backend. Thus, the Service Manager manages multiple Jini services

in di�erent regions for its single underlying service object.

66



Interface

The Service Manager implementation provides an interface with the following func-

tions:

� Join/leave one or more regions Join or leave a set of one or more parent

regions.

� Add/remove/modify attributes Add, remove, or modify the set of at-

tributes seen by a particular parent region.

� Re-register Remove an old Jini service from a region and replace it with a new

service. Necessary if the service changes the interface to expose in that region.

� Get service ID Get the identi�er of the underlying service object (not the Jini

service ID).

� Get table of views Get the table of views used by the service.

� Get region list Get the list of parent regions which the service has joined.

� Save con�guration Save the service con�guration information, which includes

the view table, region list, and ID.

Data Structures

The Service Manager implementation contains the following data structures for ser-

vice management:

� Service Backend A pointer to the Service Backend that implements all of the

service methods.

� List of Jini service interfaces The Jini services that are acting as interfaces

between the Service Backend and the various regions the service has joined.

� Service ID Identi�er for the Service Backend.

� List of regions to join Regions to join upon service startup.

67



Figure 5-2: Region menu.

� Table of views Table that maps regions and region types to the view (attribute

set and interfaces) exposed by the service in each region or region type.

5.2.4 GUI Menu

The generic service framework does not provide a full GUI because each service has

di�erent user interface requirements. However, it does provide a menu GUI compo-

nent which can be incorporated into a service's menu bar (Figure 5-2). This menu

contains options for viewing and editing con�guration information. These options are

useful for any service that is part of the region infrastructure.

5.3 URN Resolution Service

The URN Resolution Service is a simple database which maps region names such

as MyKitchen to Jini URLs such as jini://kitchen.home.net that can be used to

�nd the Region Manager (Figure 5-3). The database is populated by manual addi-

tion of entries and also by listening to multicast announcements made by a region's

Jini lookup. The URN Resolution Service is an example of how the generic service

framework can be extended to create a specialized service.

It should be noted that the URN Resolution Service provided with this imple-

mentation is in reality a placeholder for a more complicated URN resolution service.

URNs and URN resolution pose a number of complex and interesting issues, but they

are not the main thrust of this work. For a further discussion of URNs and URN

68



Figure 5-3: URN Resolution Service.

resolution, see [14, 13].

5.4 Region Browser

The Region Browser is a graphical tool for viewing and constructing regions and

browsing their services (Figure 5-4). The browser is set to point at a top-level region,

whose name is displayed at the top. The upper panel of the browser shows the

hierarchy of subregions. The lower panel shows the region services. The user can

elect to view either the local services only, or all services contained in the region.

The File menu contains options for setting the top-level region and for viewing the

names of the region's parents, the region's types and supertypes, its service ID, and

its Jini URL. The Edit menu contains options to add and remove subregions and to

�nd services using attribute/type lookup.

69



Figure 5-4: Region Browser.

70



Microwave Toaster

UniversalRemoteControl

VCR

Lamp

Home

Kitchen

Entertainment

Living Room

Figure 5-5: Home region.

5.5 Example

The following example illustrates how the concepts outlined in Chapters 3 and 4 are

embodied in the prototype implementation.

In Figure 5-6, the Region Browser displays the Home region shown in Figure 5-5.

The Subregions panel of the browser shows the region hierarchy. The hierarchy can

be constructed by using the Region Browser's Edit menu or by directly calling the

appropriate Region Manager methods. This causes joining and/or leaving messages

to be sent to the regions involved, and it also triggers updates that propagate up the

hierarchy.

The Services panel of Figure 5-6 shows all of the services contained by the Home

region, along with each service's parent region. Note that each region contains the

local services ServiceRegistrar and RegionManager. These correspond to the Jini

lookup and the Region Manager, which are responsible for managing the region.

Figure 5-7 is the service information for the Toaster service. It shows the func-

tional interface (Java interface net.regions.example.home.toaster.Toaster) and

the attribute set and values that the Toaster service exposes in its parent region,

Kitchen. The underlying service object is of Java type net.regions.example.home.

71



Figure 5-6: Region Browser displaying Home region.

72



F
ig
u
re
5-
7:
S
er
v
ic
e
in
fo
rm
at
io
n
fo
r
T
o
a
s
t
e
r
.

73



F
ig
u
re
5-
8:
S
er
v
ic
e
in
fo
rm
at
io
n
fo
r
L
i
g
h
t
C
o
n
t
r
o
l
l
e
r
.

74



F
ig
u
re
5-
9:
S
er
v
ic
e
in
fo
rm
at
io
n
fo
r
V
C
R
R
e
m
o
t
e
.

75



Figure 5-10: URN Resolution Service.

toaster.ToasterImpl, as indicated by the Implementing object ID �eld.

Figures 5-8 and 5-9 show an underlying service object which is exposing di�er-

ent views in di�erent regions. In the Living Room region, it acts as a remote con-

trol for the Lamp. In the Entertainment region, it controls the VCR. Also, some

of the attributes di�er between the two regions. However, both LightController

and VCRRemote are implemented by the same underlying service object of Java type

net.regions.example.home.remote.UniversalRemoteControlImpl, as evidenced

by the matching implementing object IDs.

The URN Resolution Service is shown in Figure 5-10. It contains the mappings

from region names to Jini URLs. It also highlights some of the features of the generic

service framework, which are made available through the Regions menu. This menu

contains options for displaying the ID of the underlying service object, as well as

options for editing the view table and the list of parent regions. When the view

table and parent region settings are changed, the updated information is sent to the

a�ected Region Managers, which propagate the information as necessary. In addition,

76



Figure 5-11: Search template for service lookup.

77



Figure 5-12: Service lookup result.

78



the settings can be saved so that the con�guration automatically takes e�ect upon

subsequent service startups.

Figures 5-11 and 5-12 demonstrate the Region Browser's service lookup capability.

In the search template window, the user speci�es the service ID, functional interface,

attributes, and values desired in the service. The user can also modify the scope of

the search by changing the Region Browser top-level region from Home to Kitchen

or Entertainment, for example. In this case, the service and several of the attribute

values are wildcards, and the top-level region is Home. Only one service matches the

template|the Toaster service in the Kitchen subregion.

5.6 Some Comments on Implementation

One caveat to o�er about the region infrastructure implementation described here is

that it is a prototype, not a complete implementation. It contains the basic func-

tionality for the region infrastructure. However, it is not as comprehensive as the

system described in Chapter 3. It does not provide several caching and update poli-

cies; currently it only supports the policy in Section 5.1.3. It does not have multiple

query formats, such as value-range or predicate-based queries. It does not contain

examples of regions that hide information from their parents, or services that inherit

attributes from their parent regions. It also contains no examples of typed regions

that perform the kind of type-checking described in Section 3.2.6, although develop-

ers can create such regions by extending the Region Manager classes and adding any

necessary type-checking restrictions and code.

Another comment to add is that this prototype is a demonstration and proof-of-

concept. It is not meant to be production-quality software. Numerous improvements

would be required to make it production-quality. E�ciency would have to be scruti-

nized, and some of the algorithms would have to be replaced with faster ones. The

implementation would have to be more graceful and robust in its handling of errors,

both distributed and local. The GUI would bene�t from increased usability and per-

haps a redesign. Finally, this system cannot be deployed in a real-life setting without

79



more work on its security requirements and the mechanisms for meeting them.

5.7 The Role of Jini

From our description, it is clear that Jini was an intrinsic part of our prototype region

infrastructure. Given its role, it is important for us to examine Jini's impact on our

implementation.

What did we gain by using Jini? One huge bene�t was that Jini already adheres

to the three-part model we wished to adopt. It has a model for services, complete

with types and attributes. The Jini lookups already keep track of services joining

and leaving Jini groups, and Jini provides the Discovery and Join speci�cation for

communication between services and lookups. The Jini technology extends to tools for

distributed computing, such as leases and distributed events and transactions, which

are very convenient for developing the region infrastructure. Also, since Jini uses

Java, our prototype can take advantage of Java's type model, interface mechanism,

and ease of use. Basically, Jini provides the tools and infrastructure for a local solution

to the scoped service location problem, and these can be used and adapted to our

needs, resulting in a much faster implementation time than if we had started from

scratch.

Of course, Jini is not without its drawbacks. The very fact that it is a local solution

becomes a limitation in the domain of regions, which are meant to be large and

scalable. This limitation is apparent in Jini's poor support for hierarchies of groups.

It also shows up in the design of some of the protocols, which use multicast in a way

that may not scale up to regions. We have had to introduce various workarounds

in our design to address these di�culties. Another problematic aspect of Jini is its

performance. Much of the development and testing occurred on one machine, which

became unacceptably slow when multiple services and Region Managers were run on

it. Performance was restored to a tolerable level by running the Region Managers

and services as multiple threads under one Java Virtual Machine, rather than as

separate processes, each with their own virtual machine. Presumably, performance

80



problems would also be ameliorated by running the services and Region Managers

on several di�erent machines, which is a more realistic scenario. Another mitigating

factor is that the region infrastructure's role of service discovery is only one part

of the interaction between user agents and services. Depending on usage patterns

of regions and services, these performance problems may not be as signi�cant in

the larger context of user agent{service interaction. However, Java is notorious for

its performance issues. These may have to be addressed, especially in view of the

major role played by lightweight, computationally-impoverished devices in the region

infrastructure. The ultimate answer may involve developing part or all of the region

infrastructure in a di�erent language.

Our basic approach to integrating Jini was to leverage its strengths by utilizing

it heavily for administration of local services, and augment it by adding hierarchy

support and related functions like caching. We used workarounds when the models

provided by Jini did not entirely suit our needs, as in the case of Jini services, which

could not be used directly. We also treated Jini as a black box to be used through

its functional interface, rather than by modifying its source code; this helped speed

development.

Our strategy for using Jini proved highly e�ective for rapid prototyping of the

region infrastructure. However, in retrospect the design and implementation of the

region infrastructure might be cleaner and more e�cient if Jini were directly modi�ed

to adapt it to regions. This would require considerably more development e�ort,

and the end product would no longer conform to the Jini speci�cation. In the long

term, perhaps the best direction for the region e�ort is to persuade the Jini design

community to go beyond local service location and adopt the more general goals of

regions in their speci�cation of Jini.

5.8 Summary

Our prototype implementation of the region infrastructure includes a Region Man-

ager, an extensible generic service framework, a URN resolution service, and the

81



Region Browser. The Region Manager is organized into two parts: a Jini lookup,

which manages local services, and a Region Manager service, which manages region

structure. The generic service framework uses Jini services layered over an underlying

Service Backend that implements the specialized functionality. A Service Manager

coordinates the joining and leaving of services.

It is important to note that our prototype is not as expansive in its features as the

region architecture described earlier, nor is it meant as production-quality software.

It was intended, and has served, as an exploration of feasibility, an opportunity to

thresh out problems, and a proof-of-concept.

It is also important to examine the role of Jini in our implementation. Jini is

extremely e�ective for managing local services and service location, but falls short in

the areas of scalability, hierarchy support, and performance. We exploit Jini's bene�ts

and make up for its shortcomings by relying on Jini for local service administration,

and augmenting it with additional components and workarounds as necessary. We

also treat the Jini technology as a black box. This led to faster implementation,

but the long-term solution may involve changing Jini's design goals and speci�cation

directly.

As of this writing, the source code for version 1.0 of the region infrastructure is

available from [1]. The Jini development kit and related information may be found

at [15].

82



Chapter 6

Performance Issues

Predicting the performance of the region infrastructure can be problematic. Its per-

formance is dependent on a host of factors. Some of these factors di�er from region

to region, meaning that the same region infrastructure may be applied to di�erent

regions and yield di�erent performance for those regions. Other variables that af-

fect performance are set by the administrator of a region, who can select values to

optimize performance for that particular region. Performance is a�ected by some of

the implementation and representation choices made within the region infrastructure.

The performance of a region is also a�ected by the other regions with which it inter-

operates; these other regions may use di�erent implementation choices and system

parameter values.

Because of the di�culties in predicting, analyzing, and measuring region infras-

tructure performance, we will limit ourselves to the following. First, we will discuss

the factors that a�ect performance. We also list various metrics that can be used for

performance quanti�cation and comparison. Finally, we analyze the costs incurred by

our own implementation of the region infrastructure, probe the factors that contribute

to these costs, and discuss ways to improve the performance of this implementation.

This discussion is intended to shed some light on how various factors a�ect region

performance, and to serve as a general guide for performance evaluation.

83



6.1 Factors A�ecting Performance

Most of the factors a�ecting region performance fall into four broad categories: region

characteristics, network layout of the region, caching and update policy, and other

policy goals.

6.1.1 Region Characteristics

The performance of the region infrastructure can be heavily in
uenced by the char-

acteristics of a particular region. The topology of the region is a case in point. It

determines the amount of tra�c generated for updates, the time for information to

pass from one region to another, and the load on various subregions. It may be dif-

�cult to characterize region topology, since regions were designed to allow arbitrary

topologies. However, some topologies can be characterized in a way that may facil-

itate analysis of the relationship between topology and performance. For example,

hierarchical regions can be characterized in terms of branching factor, height, and

size.

Another characteristic which di�ers from region to region and which also a�ects

performance is the frequency of changes in a region. This corresponds to how often

subregions and services are added, removed, or changed. In a home network region,

this will happen rarely, as the set of devices and attributes in such a region is fairly

static. At a trade conference, however, changes could be very frequent, with numerous

services joining and leaving regions continually. Of course, the frequency of changes

will have a bearing on the amount of update tra�c in a region, which in turn a�ects

performance.

6.1.2 Network Layout

On a practical level, network layout of the various entities in a region can have an

impact on performance. Region topology may not correspond exactly to network

topology, and this may have an impact on how region load and tra�c a�ect the

network and the computers connected to it. Although we will not discuss this in

84



further detail, it is prudent to keep in mind the in
uence that network layout can

have on region performance.

6.1.3 Caching and Update Policy

The caching and update policy has a crucial impact on region infrastructure perfor-

mance for several reasons. One reason is that it interacts with the region character-

istics mentioned previously. Another reason is that updates account for a signi�cant

portion of communication costs in a region, and caching can help reduce these costs.

Finally, the caching and update policy is one of the factors a�ecting performance over

which the region administrator has complete control; the administrator's choices play

an important role in performance tuning.

Section 3.2.5 listed the various choices that can be made when specifying a caching

and update policy: the subregions to cache, the type and frequency of updates to

use, the timing parameters for updates, and the high-level policies to implement.

Intuitively, di�erent choices seem better for di�erent regions. For example, individual

updates work well in a fairly static region, and they are easy to manage. However,

the overhead might prove prohibitive for a very dynamic region, and batch updates

might be a better solution in that case. Although the relative merits of speci�c

caching and update policies are outside the scope of this discussion, the policy does

have an impact on performance, and it should be chosen to optimize performance in

the region in which it will be used.

6.1.4 Other Policy Goals

Another factor a�ecting the outlook on performance is the policy goals that are set by

administrators. Region administrators want their regions to \perform well," but how

is good performance de�ned? One possible performance goal is to limit the amount

of bandwidth used by the region. Another is to limit the rate at which updates are

received by any region in the system. Other possibilities are to have an upper bound

on the time for updates to propagate, or on the time for looking up services. There

85



are still more possibilities. Region administrators may have targets and tolerances

for each of these quantities. When evaluating performance, one must also take into

account how well the region infrastructure meets these goals, which are chosen by the

administrator and may be di�erent for di�erent regions.

6.2 Metrics

What are the various quantities that can be measured and calculated when evaluating

the performance of the region infrastructure? Some were mentioned in the previous

section: the amount of bandwidth used, the rate at which updates are received by

regions, the time for updates to propagate, and the time for looking up services in

a region. Other quantities for measuring performance are the storage space required

for each region; the running time for region operations such as adding, removing,

and modifying subregions and services; and the number and size of messages sent

during these operations. We will examine some of these quantities in the analysis to

follow. It is important to remember that although these metrics can be calculated or

measured quantitatively, performance comparisons are ultimately subjective because

of the di�erent performance goals one may have, as discussed in the previous section.

6.3 Analyzing the Prototype Implementation

We have analyzed some of the costs in our prototype implementation of the region

infrastructure. Our approach was to determine the costs of each basic region operation

(adding/removing child regions and adding/removing/modifying/looking up services)

by examination of the algorithms and source code. These costs are expressed in terms

of running time, space required, messages sent, and message size. The details of the

analysis are given in Appendix A. The results are summarized in Table A.18, which

is reproduced here as Table 6.1.

86



Table 6.1: Summary of costs for basic region operations.
Costs Time Space # of Msgs Message Size
Adding a region

Parent region �(S + N) O(S + A + N) 6 O(1)
Child region O(1) O(1) 2 �(S + A), �(N)
Update cost per ancestor �(S + N) O(S + A + N) 1 �(S + A), �(N)

Removing a region
Parent region �(S + N) - 1 O(1)
Child region O(1) - 1 �(S + A)
Update cost per ancestor �(S + N) - 1 �(S + A)

Adding a service
Region O(1) O(A) - -
Service - - 1 �(A)
Jini lookup �(E + C + A) �(A) 1 �(A)
Update cost per ancestor O(1) O(A) 1 �(A)

Removing a service
Region O(1) - - -
Service - - 1 O(1)
Jini lookup �(C + A) - 1 O(1)
Update cost per ancestor O(1) - 1 O(1)

Modifying a service
Region O(1) O(A) - -
Service - - 1 �(A)
Jini lookup �(E + C + A) O(A) 1 �(A)
Update cost per ancestor O(1) O(A) 1 �(A)

Looking up services
User agent - - 1 �(AQ + CQ)
Region O(AQA + CQC) - 1 �(SM + AM)

87



As an example of how the costs of operations were analyzed, Tables A.1 and A.2

from Appendix A are reproduced here as Tables 6.2 and 6.3, respectively. They show

the costs for the operation of adding a region. (R1 is the parent region and R2 is

the child region.) Table 6.2 outlines the steps that take place during the operation.

Table 6.3 shows the cost per region ancestor for propagating update messages up the

region hierarchy. In both of these tables, the steps shown in boldface contribute to

the cost of the operation, and the cost is shown to the right. Appendix A contains

similar analyses for the remainder of the region operations.

Table 6.2: Operations and costs for R1 to add R2 as a child region.
Operations Time Space Message Size
R1 �nds R2's Region Manager

R1 resolves R2's name
R1 sends message to URN
resolution service - - O(1)
URN resolution service looks up
URL for R2 O(1) - -
URN resolution service sends
message to R1 - - O(1)

R1 queries R2's Jini lookup for its Region
Manager service
R1 sends message to Jini lookup - - O(1)
Jini lookup �nds Region Manager
service O(1) - -
Jini lookup sends message to R1 - - O(1)

R1 adds R2 to its set of child regions O(1) O(1) -
R1 queries R2 for all of its services

R1 sends a message to R2 - - O(1)
R2 sends a message to R1 - - �(S + A)

R1 adds R2's services to its set of services �(S) O(S + A) -
R1 queries R2 for its subtree

R1 sends a message to R2 - - O(1)
R2 sends a message to R1 - - �(N)

R1 inserts an edge in its graph between
itself and R2 O(1) - -

R1 adds R2's subtree nodes to its
set of nodes �(N) O(N) -

R1 sends update messages to its parents
R2 adds R1 to its set of parent regions O(1) O(1) -

88



Table 6.3: Update cost per ancestor of R1.
Operations Time Space Message Size
Receive update message - - �(S + A)
Add child region's services to set of services �(S) O(S + A) -
Look up nodes for parent and child regions O(1) - -
Add child region's subtree nodes to
set of nodes �(N) O(N) -

The variables in the �rst two rows of Table 6.1 are as follows: S is the number

of services contained by the child region (including non-local services), A is the total

number of attributes for all S services, and N is the number of nodes in the subtree

consisting of the child region and its descendents. The variables in the next three rows

are as follows: A is the number of attributes that the service has, C is the number

of types that the service instantiates (i. e., how many classes and interfaces it has,

including all supertypes), L is the parent region's Jini lookup, and E is the number

of services already registered in L. The variables in the last row are as follows: A is

the total number of attributes in all of the region's services; C is the total number

of types instantiated by all of the region's services; AQ and CQ are the number of

attributes and types, respectively, in the user agent's query; SM is the number of

matching services in the region; and AM is the total number of attributes in all SM

matching services.

We can make several observations about this implementation. First of all, the most

costly operation is adding a region. It is signi�cantly more expensive than the other

operations in most measures of cost shown, particularly in communication costs. This

is partly due to the Region Manager's policy of caching the entire state of a region

and its subregions. It is also due to the decision to use a Region Manager service in

conjunction with a Jini lookup to implement the Region Manager functionality. As

a consequence of this decision, the two services must communicate with each other

frequently. Another observation is that updates are potentially expensive because

they require one message per region ancestor, which could add up to a signi�cant

number of messages. This is a result of the policy of using individual updates which

are sent immediately upon detection of a change. Lastly, the lookup operation incurs

89



no communication costs beyond the query and reply messages. In particular, it incurs

no costs from messages to subregions. This is also because of the caching and update

policy.

This implementation might be best suited for regions with a low to moderate

frequency of change, especially those that do not add regions frequently. The reason

for this is that it generates considerable tra�c for each change. This implementation

may also work well for regions in which it is important for information changes to

propagate quickly, as long as one is willing to bear the communication costs. The

implementation also provides fast lookups, but again the caveat about update com-

munication costs applies. However, the implementation should probably not be used

for regions in which services or subregions frequently have multiple parents because

the high \inverse branching factor" could drive up the number of ancestors and hence

the number of update messages generated.

In the following sections, we use the cost analysis of the prototype implementation

as a jumping-o� point for making observations about improving e�ciency, design

tradeo�s, and hidden costs. Many of the issues raised here are applicable when

evaluating performance for any region or implementation.

6.3.1 Improving E�ciency

We now turn to the question of how to improve the e�ciency of this implementation.

The �rst and most important observation to make is that communication costs are

most likely the bottleneck. Commercial databases are available that can handle the

thousands or even millions of entries necessary for a large number of subregions and

services. As a result, running time and storage space are probably less signi�cant than

communication costs, unless the Region Manager is running on a device with limited

computational ability or storage. A second observation is that special attention should

be given to improving the e�ciency of the operation for adding regions, since it is the

most expensive.

In light of these two points, several changes can be made to improve performance.

First of all, responses to URN resolution service queries should be cached. This

90



will reduce the number of messages sent during the region-adding operation by two.

Consolidating the Region Manager and the Jini lookup into one service would also

help, since messages sent between the two services account for a signi�cant part of

the tra�c when adding a region. Furthermore, integrating the Jini lookup instead of

treating it as a black box may reduce the degree to which performance depends on

the Jini implementation. The reason for this is that the Jini internals could then be

modi�ed. Lastly, the use of batch updates as opposed to individual updates would

reduce the communication cost per ancestor for all of the operations, although it

might a�ect the rate at which updated information propagates through a region.

This implementation already has a few features which bode well for e�ciency.

In most cases, incremental updates are used, instead of full updates which contain

the complete state. This reduces the size of the update messages, although it makes

updates non-idempotent, which introduces other issues. Also, the policy of caching

complete state and issuing updates immediately hides the latency of subregion queries

from user agents that are looking up services. If a region must query one or more

of its subregions while processing a user agent's query, the additional communication

costs are added to the latency perceived by the user agent. For this reason, cache

misses are relatively expensive to the user agent. But since the full state is cached

and updates happen \o�ine" (i. e., not during the user agent's query), the user agent

does not see any additional communication costs other than the messages it sends to

and receives from the Region Manager.

Lastly, to improve performance one must consider the characteristics of the region

in which this implementation will be used. The operation costs are functions of

variables which are dependent on region topology and other region characteristics

(such as S and N). A knowledge of which of these variables dominate is invaluable

to analyzing and improving e�ciency. Also, the bounds given for running time or

storage space sometimes depend on region topology. For example, the O(S + A +

N) upper bound on the space requirement for adding a region is only reached when

no previous path exists from the parent region to the services in the child region to

be added. In addition, the implementation should be tested extensively in the region,

91



if possible. This provides a more accurate picture of where the bottlenecks are, and

how to tune the system parameters for performance, especially those for caching and

updating.

6.3.2 Tradeo�s

The cost analysis of this prototype implementation also sheds some light on the var-

ious tradeo�s that can be made within the region infrastructure, and how they a�ect

various aspects of performance. Some of these tradeo�s are made by the implementor

of the region infrastructure, and others are made by the administrator of a region.

One of the choices made by the implementor is how to represent the region as one

or more data structures. The tradeo� here is between storage and computation costs;

some representations are more compact, but they may require more computation to

derive the desired information. In our own implementation, the basic data structures

are a tree that represents region structure and a separate table of service entries

containing the attributes, ID, and parent region. Auxiliary tables store tree nodes

and services keyed in di�erent ways. Only one copy of a tree node or service entry

is stored. This makes for a compact representation. However, it requires additional

management such as reference counting. It also renders certain operations slightly

more expensive, such as �nding all services with a given parent region. This requires

a pass through the table of service entries, while a di�erent representation could

accomplish it in constant time.

Another decision borne partly by the implementor and partly by the administrator

is how to distribute costs between the various operations. Some of the costs are

\hard," but there is sometimes 
exibility as to which operations should bear these

hard costs. For example, if a region needs to respond to a user agent query, then at

some point it must receive a message of size �(S+A) to get the necessary information

from its subregion, making the message size a hard cost. In our implementation, the

operation for adding a region bears this cost. However, this cost could be deferred to

the lookup operation, which would result in a less-expensive region-adding operation,

but would add to the latency perceived by the user agent. For another example,

92



suppose we dispensed with caching in our implementation. The space requirement

for adding a region would be reduced to almost nil, but the communication cost for

lookups would become very high. Needless to say, the choice of caching and update

strategy in
uences the distribution of costs between operations, which is why the

region administrator is involved in this tradeo�.

6.3.3 Hidden Costs

One last contributor to the overall view of performance is the hidden costs of the

underlying mechanisms and infrastructure used to implement regions. In our imple-

mentation, these stem from URN resolver tra�c, Java's Remote Method Invocation

(RMI) mechanism, and Jini.

Although URN resolution is only listed once in the cost analysis of the region-

adding operation, it also occurs during the service-adding operation, although it does

not play as integral a role for that operation. There are also redundant URN lookups

within the region-adding operation itself. Many of these repeated queries to the URN

resolution service are probably unnecessary, and they serve as another argument for

caching these queries. Nevertheless, they do occur in this implementation, and can

add to the cost of operations.

The use of RMI may also incur a signi�cant cost in our implementation. Typically,

the marshalling and demarshalling of arguments and return values for remote method

calls is an expensive operation. During development, we treated RMI as a black box

and did not attempt to assess its impact on performance. However, it would be foolish

to assume that RMI's contribution to the total cost is negligible.

Lastly, Jini itself has some bearing on the overall performance of the system.

Tables A.7, A.10, and A.13 in Appendix A list parts of basic region operations whose

costs depend on the implementation of Jini. Again, we did not attempt to assess the

performance of Jini beyond a brief examination of the source code, but these costs

must be taken into account as well.

93



6.4 Summary

Predicting and analyzing the performance of the region infrastructure is di�cult be-

cause it is a complex system with many variables and many arbitrary choices that can

be made. Among the many factors that in
uence performance are the characteristics

of the region, the network layout of the infrastructure, the caching and update policy

adopted, and any other policy goals set by the administrator. Performance can be

assessed in several ways, including the amount of bandwidth used, the rate of update

propagation, the load on Region Managers, and the time required for lookups. How-

ever, the �nal measure of performance is how well the region infrastructure meets its

goals, which are de�ned by the region administrator and expressed in terms of these

quantities.

We have conducted an analysis of the costs of basic region operations in our own

region infrastructure implementation. By doing so, we have uncovered several general

issues that may provide guidance in assessing the performance of any region system.

Some of these involve e�ciency. We have identi�ed communication costs and the

region-add operation as bottlenecks. We suggest URN query caching, consolidation

of the Region Manager and Jini lookup, batch updates, and region testing in order

to increase e�ciency. We also examined tradeo�s in data structure representations

and in cost distribution. Finally, we took a look at some of the hidden costs of the

implementation, which included costs from URN query tra�c, RMI, and Jini.

Much remains to be done in the area of region infrastructure performance. An

important question which remains open is the question of how regions can be catego-

rized according to their characteristics. If related regions can be classi�ed by topology,

frequency of change, and other attributes, this would greatly assist research on what

parameter choices work best for a particular family of regions. And of course, these

e�orts need to be validated by extensive testing of di�erent types of regions with

di�erent con�gurations of the region infrastructure. Together, these research e�orts

will provide a more comprehensive picture of region infrastructure performance.

94



Chapter 7

Conclusion

7.1 Future Work

Many avenues for exploration remain in the region infrastructure project, and there

are also many areas for improvement. Future e�orts will be aimed at speci�cation

languages for attributes, security mechanisms for regions, distributed operation and

failure, improvements in implementation, and characterization of regions for perfor-

mance analysis.

Services within regions might bene�t from a common scheme for specifying their

attributes and values. Such a scheme might specify the set of attributes that a

particular service (like a printer service) might have, as well as the format used to

express the attribute value. An attribute speci�cation language needs to support rich,

specialized feature sets for services, yet be applicable across all services. It must also

be extensible, especially since new types of services must be supportable. Right now,

attribute schemes tend toward the ad-hoc, which is su�cient for locally-used services

whose attributes have human-readable names and values. However, a broader solution

is required for regions, which may cover large areas and large numbers of services,

and which requiring sharing of information across di�erent administrative domains.

Security is another area that requires further study as it applies to regions. Se-

curity e�orts should focus on identifying the principals in the region system and

developing authentication and access control mechanisms to ensure that only autho-

95



rized user agents, regions, or services can join, leave, or otherwise obtain information

from a region. Regions also have special trust issues relating to service and region

types, authorization based on type, and maintaining the trustworthiness of type in-

formation. These issues must addressed, possibly with a digital signature scheme as

mentioned earlier.

The caching and update strategies used by the region infrastructure give rise to is-

sues with distributed operation and failure that have not been fully addressed. Meth-

ods must be developed for maintaining consistency across Region Manager caches,

and further investigation is required on how to de�ne an acceptable level of consis-

tency. In addition, the Region Manager needs to be able to detect and recover from

distributed failure; it should have a way to repair the cache and restore a consistent

world view.

Our implementation of the region infrastructure stands to bene�t from a few

changes. The measures for improving e�ciency discussed in Section 6.3.1 should

be applied. The lookup and matching algorithms can also be replaced with faster

versions. Issues with the GUI and thread safety should be resolved, and error-checking

and robustness should be strengthened.

Lastly, additional work must be done on characterizing region based on their

features. The questions of what features are relevant, and how they can be quanti-

�ed need to be addressed. Also, it would be valuable to determine if there are any

\common case" region con�gurations that would be particularly bene�cial to analyze.

Once regions can be characterized, research should be done on which region system

parameter values are good and bad for the various region categories, especially in the

context of caching and update policy choices. Finally, this research should be backed

up by extensive simulation and testing.

7.2 Final Thoughts

The future of computation that we envision is no longer bound by notions of cen-

tralized computing by immobile PCs. Having moved beyond the age of the massive

96



mainframe, we are now moving beyond the age of the desktop PC as the center of com-

putation. With the advent of laptops, cellular phones, pagers, PDAs, and computer

chips in just about every appliance and device imaginable, the power of computation

and communication is cropping up everywhere.

Just as the networking of PCs ushered in a new era in computing, we believe

that networking these devices and appliances has the potential to unleash a new

wave of distributed computing with mobile, lightweight devices. In particular, we

believe that networking these devices would open the 
oodgates for powerful and

innovative applications. These applications would be created by intelligent agents

called catalysts. The catalysts combine the various lower-level services provided by

the devices into a new application that accomplishes a higher-level goal.

But what is the best way to organize services into a network? Until now, most

approaches have been ad-hoc networks that tie together a small number of devices

or services. A more systematic approach is necessary in order to enable catalyst

application-building on a large scale and tap the true potential of this networking

concept. Our approach must have a means for sharing information about a service

and its capabilities. It must provide independent administration of groups of services,

yet permit sharing of service information across administrative boundaries. It must

scale to large numbers of services, which may be widely dispersed geographically

or in the network. It must provide scoping, which allows catalysts to work with a

manageable and meaningful set of services. And it must be robust and secure.

Our answer to this problem is regions. Regions are basically groups of services.

Regions can be nested, overlapping, or combined in arbitrary ways. Most importantly,

they can be queried for information about the services they contain, and they can be

searched for services that meet a certain set of criteria.

The region infrastructure provides the supporting framework for regions. It con-

sists of the region architecture and the service architecture, which have their roots

in Jini and SLP. The region architecture is composed of a three-part model of user

agents, services, and Region Managers, which is extended using hierarchy to give it

better scaling and organizational properties. The Region Manager manages subregion

97



and service information, responds to user agent queries about services, and handles

caching for performance. The region architecture also provides a type model and a

URN resolution service. The service architecture provides interfaces that allow ser-

vices to expose di�erent attributes, values, and functions depending on the region or

region type. It also has a registration and update protocol which allows services to

join and leave regions and send updates to regions when the attributes of the service

change, all with a minimum of con�guration.

Our prototype implementation demonstrates the capabilities of the region infras-

tructure. The implementation provides a Region Manager with full caching and

immediate individual updates. The implementation also includes a generic service

framework that can be extended to create specialized services that will work with

regions. A URN resolution service and a Region Browser for building and browsing

regions are also included. All of these come with convenient GUI tools and inter-

faces. The implementation also makes extensive use of Jini, which introduces some

issues when applied to regions, but provides a wealth of features that enable rapid

development.

Our prototype also provides some valuable lessons about the performance of the

region architecture and some of the factors that in
uence performance, such as re-

gion characteristics, physical layout, caching and update strategy, and policy goals.

Analyzing the costs of region operations in our implementation led to insights about

e�ciency, tradeo�s, and hidden costs that can be applied to any region infrastructure

implementation or con�guration.

How will regions be used in the future? One can envision them in a variety of

settings. Universities could have their own regions, with subregions to manage the

resources of various departments and labs. A global corporation with o�ces worldwide

could use regions to group together the resources in each o�ce, and to connect o�ces

or divisions that are geographically distributed but share resources. Regions could

tie together participants in a company teleconference. A company employee in the

Sydney o�ce could access services in the Hong Kong o�ce. These services would

not only include PCs, �les, and databases, but also laptops, printers, audio/visual

98



services, voice mail, fax, and PDAs. Regions also have a wealth of potential in the

home. Imagine a \chef" catalyst using services in the kitchen region to brew co�ee and

make breakfast every morning. Another catalyst could integrate the PC, VCR, TV,

video game system, and stereo system in the living room region into an impressive,

Internet-enabled home entertainment system.

Regions group services together in 
exible and powerful ways. They make services

widely available and easy to use, on a large scale. They make it possible for users

and agents to �nd exactly the kind of services they need, within the boundaries they

specify. By accomplishing all of these goals, regions help break down the barriers that

separate our futuristic vision from reality.

99



Appendix A

Cost Analysis of Basic Region

Operations

The following tables present a cost analysis of the basic region operations, based

on our implementation of the region infrastructure. Three tables are shown for the

�rst �ve operations. The �rst table outlines the steps that take place during the

operation. The second table shows the cost per region ancestor for propagating

update messages up the region hierarchy. In both of these tables, the steps shown in

boldface contribute to the cost of the operation, and the cost is shown to the right.

The third table summarizes the information in the previous two tables. Only the

�rst and third type of table are shown for the last operation, since it does not involve

propagating updates.

Note that our implementation uses hash tables, so most insertion/deletion/lookup

operations are O(1). Note also that the costs of some operations depend on Sun

Microsystems' Jini implementation, over which we had no control.

A.1 Adding a Region

Tables A.1{A.3 show the costs for region R1 to add region R2 as a child region. The

variables in this and the next set of tables are as follows: S is the number of services

contained by R2 (including non-local services), A is the total number of attributes

100



for all S services, and N is the number of nodes in the subtree consisting of R2 and

its descendents.

Table A.1: Operations and costs for R1 to add R2 as a child region.
Operations Time Space Message Size
R1 �nds R2's Region Manager

R1 resolves R2's name
R1 sends message to URN
resolution service - - O(1)
URN resolution service looks up
URL for R2 O(1) - -
URN resolution service sends
message to R1 - - O(1)

R1 queries R2's Jini lookup for its Region
Manager service
R1 sends message to Jini lookup - - O(1)
Jini lookup �nds Region Manager
service O(1) - -
Jini lookup sends message to R1 - - O(1)

R1 adds R2 to its set of child regions O(1) O(1) -
R1 queries R2 for all of its services

R1 sends a message to R2 - - O(1)
R2 sends a message to R1 - - �(S + A)

R1 adds R2's services to its set of services �(S) O(S + A) -
R1 queries R2 for its subtree

R1 sends a message to R2 - - O(1)
R2 sends a message to R1 - - �(N)

R1 inserts an edge in its graph between
itself and R2 O(1) - -

R1 adds R2's subtree nodes to its
set of nodes �(N) O(N) -

R1 sends update messages to its parents
R2 adds R1 to its set of parent regions O(1) O(1) -

Table A.2: Update cost per ancestor of R1.
Operations Time Space Message Size
Receive update message - - �(S + A)
Add child region's services to set of services �(S) O(S + A) -
Look up nodes for parent and child regions O(1) - -
Add child region's subtree nodes to
set of nodes �(N) O(N) -

101



A.2 Removing a Region

Tables A.4{A.6 show the costs for region R1 to remove its child region R2.

A.3 Adding a Service

Tables A.7{A.9 show the costs for region R to add service S. The variables in this

and the next two sets of tables are as follows: A is the number of attributes that S

has, C is the number of types S instantiates (i. e., how many classes and interfaces it

has, including all supertypes), L is R's Jini lookup, and E is the number of services

already registered in L.

A.4 Removing a Service

Tables A.10{A.12 show the costs for region R to remove service S.

A.5 Modifying a Service

Tables A.13{A.15 show the costs for service S to modify its attributes in region R.

A.6 Looking Up Services

Tables A.16{A.17 show the costs for user agent U to look up services in region R.

A is the total number of attributes in all of R's services. C is the total number of

types instantiated by all services in R. AQ and CQ are the number of attributes and

the number of types, respectively, in the user agent's query. SM is the number of

102



matching services in R, and AM is the total number of attributes in all SM matching

services.

A.7 Summary

Table A.18 summarizes the costs for the various basic region operations.

103



Table A.3: Summary of costs for R1 to add R2 as a child region.
Costs Time Space # of Msgs Message Size
Parent region �(S + N) O(S + A + N) 6 O(1)
Child region O(1) O(1) 2 �(S + A), �(N)
Update cost per ancestor �(S + N) O(S + A + N) 1 �(S + A), �(N)

Table A.4: Operations and costs for R1 to remove child region R2.
Operations Time Space Message Size
R1 removes R2 from its set of child regions O(1) - -
R1 queries R2 for all of its services

R1 sends message to R2 - - O(1)
R2 sends message to R1 - - �(S + A)

R1 removes R2's services from its set of services �(S) - -
R1 removes the edge in its graph between
itself and R2 O(1) - -

R1 removes R2's subtree nodes from
its set of nodes �(N) - -

R1 sends update messages to its parents
R2 removes R1 from its set of parent regions O(1) - -

Table A.5: Update cost per ancestor of R1.
Operations Time Space Message Size
Receive update message - - �(S + A)
Remove child region's services from set of services �(S) - -
Look up nodes for parent and child regions O(1) - -
Remove child region's subtree nodes from
set of nodes �(N) - -

Table A.6: Summary of costs for R1 to remove child region R2.
Costs Time Space # of Msgs Message Size
Parent region �(S + N) - 1 O(1)
Child region O(1) - 1 �(S + A)
Update cost per ancestor �(S + N) - 1 �(S + A)

104



Table A.7: Operations and costs for R to add S.
Operations Time Space Message Size
S joins R's Jini group

S sends message to L - - �(A)
L adds S to its set of services1 �(E + C + A) �(A)
L noti�es R's Region Manager about S

L sends message to R - - �(A)
R adds S to its set of services O(1) O(A) -
R sends update messages to its parents

1Dependent on Jini implementation.

Table A.8: Update cost per ancestor of R.
Operations Time Space Message Size
Receive update message - - �(A)
Add service to set of services O(1) O(A) -

Table A.9: Summary of costs for R to add S.
Costs Time Space # of Msgs Message Size
Region O(1) O(A) - -
Service - - 1 �(A)
Jini lookup �(E + C + A) �(A) 1 �(A)
Update cost per ancestor O(1) O(A) 1 �(A)

Table A.10: Operations and costs for R to remove S.
Operations Time Space Message Size
S leaves R's Jini group

S sends message to L - - O(1)
L removes S from its set of services1 �(C + A) - -
L noti�es R's Region Manager about S leaving

L sends message to R - - O(1)
R removes S from its set of services O(1) - -
R sends update messages to its parents

1Dependent on Jini implementation.

Table A.11: Update cost per ancestor of R.
Operations Time Space Message Size
Receive update message - - O(1)
Remove service from set of services O(1) - -

105



Table A.12: Summary of costs for R to remove S.
Costs Time Space # of Msgs Message Size
Region O(1) - - -
Service - - 1 O(1)
Jini lookup �(C + A) - 1 O(1)
Update cost per ancestor O(1) - 1 O(1)

Table A.13: Operations and costs for S to modify its attributes in R.
Operations Time Space Message Size
S noti�es L of changes

S sends message to L - - �(A)
L modi�es S's entry in its set of services1 �(E + C + A) O(A) -
L noti�es R's Region Manager about S changing

L sends message to R - - �(A)
R replaces S in its set of services O(1) O(A) -
R sends update messages to its parents

1Dependent on Jini implementation.

Table A.14: Update cost per ancestor of R.
Operations Time Space Message Size
Receive update message - - �(A)
Replace service in set of services O(1) O(A) -

Table A.15: Summary of costs for S to modify its attributes in R.
Costs Time Space # of Msgs Message Size
Region O(1) O(A) - -
Service - - 1 �(A)
Jini lookup �(E + C + A) O(A) 1 �(A)
Update cost per ancestor O(1) O(A) 1 �(A)

Table A.16: Operations and costs to look up services in R.
Operations Time Space Message Size
U queries R for services matching a
given set of attributes and interfaces
U sends a message to R - - �(AQ + CQ)
R looks up matching services in cache O(AQA + CQC) - -
R sends a message to U - - �(SM + AM )

Table A.17: Summary of costs to look up services in R.
Costs Time Space # of Msgs Message Size
User agent - - 1 �(AQ + CQ)
Region O(AQA + CQC) - 1 �(SM + AM)

106



Table A.18: Summary of costs for basic region operations.
Costs Time Space # of Msgs Message Size
Adding a region

Parent region �(S + N) O(S + A + N) 6 O(1)
Child region O(1) O(1) 2 �(S + A), �(N)
Update cost per ancestor �(S + N) O(S + A + N) 1 �(S + A), �(N)

Removing a region
Parent region �(S + N) - 1 O(1)
Child region O(1) - 1 �(S + A)
Update cost per ancestor �(S + N) - 1 �(S + A)

Adding a service
Region O(1) O(A) - -
Service - - 1 �(A)
Jini lookup �(E + C + A) �(A) 1 �(A)
Update cost per ancestor O(1) O(A) 1 �(A)

Removing a service
Region O(1) - - -
Service - - 1 O(1)
Jini lookup �(C + A) - 1 O(1)
Update cost per ancestor O(1) - 1 O(1)

Modifying a service
Region O(1) O(A) - -
Service - - 1 �(A)
Jini lookup �(E + C + A) O(A) 1 �(A)
Update cost per ancestor O(1) O(A) 1 �(A)

Looking up services
User agent - - 1 �(AQ + CQ)
Region O(AQA + CQC) - 1 �(SM + AM)

107



Bibliography

[1] Kathryn F. Benedicto. Regions: A scalable infrastructure for scoped

service location in ubiquitous computing (web site with source code).

http://www.ana.lcs.mit.edu/puc/java-regions/, May 1999.

[2] William J. Bolosky, Richard P. Draves, Robert P. Fitzgerald, Christopher W.

Fraser, Michael B. Jones, Todd B. Knoblock, and Rick Rashid. Operating system

directions for the next millennium. Technical report, Microsoft Research, 1999.

[3] Microsoft Corp. The Millenium research project. http://www.research.microsoft.

com/research/os/millennium/, March 1999.

[4] Bluetooth Special Interest Group. Bluetooth. http://www.bluetooth.com/,

March 1999.

[5] Caltech Infospheres Group. Caltech Infospheres Project description.

http://www.infospheres.caltech.edu/infospheres.html, March 1999.

[6] Eric Guttman, Charles Perkins, John Veizades, and Michael Day. Service Loca-

tion Protocol. RFC 2165, Internet Engineering Task Force, June 1997.

[7] Eric Guttman, Charles Perkins, John Veizades, and Michael Day. Service Loca-

tion Protocol, Version 2. Internet Draft, Internet Engineering Task Force, April

1999. Work in progress.

[8] HAVi website. http://www.havi.org/, March 1999.

[9] G. Klyne. A syntax for describing media feature sets. RFC 2533, Internet

Engineering Task Force, March 1999.

108



[10] L. Masinter, D. Wing, A. Mutz, and K. Holtman. Media features for display,

print, and fax. RFC 2534, Internet Engineering Task Force, March 1999.

[11] Paul V. Mockapetris and Kevin J. Dunlap. Development of the Domain Name

System. In Proc. of SIGCOMM Symposium, pages 123{133, 1988. Also published

as ACM Computer Communications Review 18, 4 (August, 1988).

[12] California Institute of Technology. Caltech Infospheres Project. http://www.

infospheres.caltech.edu/, March 1999.

[13] K. Sollins. Architectural principles of uniform resource name resolution. RFC

2276, Internet Engineering Task Force, January 1998.

[14] K. Sollins and L. Masinter. Functional requirements for uniform resource names.

RFC 1737, Internet Engineering Task Force, December 1994.

[15] Sun Microsystems, Inc. Jini. http://www.javasoft.com/products/jini/, Decem-

ber 1998.

[16] Sun Microsystems, Inc. Jini Discovery and Join Speci�cation.

http://www.sun.com/jini/specs/boot.ps, January 1999.

[17] Lucent Technologies. Inferno. http://www.lucent-inferno.com/, March 1999.

[18] Mark Weiser. Some computer science issues in ubiquitous computing. Commu-

nications of the ACM, 36(7):75{84, July 1993.

109


