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Abstract

The growing use of mobile code in downloaded programs such as applets and servlets has increased
interest in robust mechanisms for ensuring privacy and secrecy. Common security mechanisms such as
sandboxing and access control are either too restrictive or too weak—they prevent applications from shar-
ing data usefully, or allow private information to leak. For example, security mechanisms in Java prevent
many useful applications while still permitting Trojan horse applets to leak private information. This the-
sis describes thdecentralized label modeh new model of information flow control that protects private
data while allowing applications to share data. Unlike previous approaches to privacy protection based on
information flow, this label model idecentralizedit allows cooperative computation by mutually distrust-
ing principals, without mediation by highly trusted agents. Cooperative computation is possible because
individual principals cardeclassifytheir own data without infringing on other principals’ privacy. The de-
centralized label model permits programs using it to be checked statically, which is important for the precise
detection of information leaks.

This thesis also presents the new langudiglew, an extension to the Java programming language that
incorporates the decentralized label model and permits static checking of information flows within programs.
Variable declarations in JFlow programs are annotated with labels that allow the static checker to check
programs for information leaks efficiently, in a manner similar to type checking. Often, these labels can
be inferred automatically, so annotating programs is not onerous. Dynamic checks also may be used safely
when static checks are insufficiently powerful. A compiler has been implemented for the JFlow language.
Because most checking is performed statically at compile time, the impact on performance is usually small.

Keywords: constraint solving, covert channels, integrity, Java, labels, principals, privacy, programming
languages, role hierarchy, security, static checking, trojan horse, trusted computing base, type systems,
verification

This report is a minor revision of the dissertation of the same title submitted to the Department of
Electrical Engineering and Computer Science on January 7, 1999, in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in that department. The thesis was supervised by Professor Barbara
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Chapter 1

Introduction

Computer security is becoming increasingly important, as the result of several ongoing trends. Comput-
ers everywhere are becoming inextricably connected to the Internet. Increasingly, computation and even
data storage are distributed to geographically remote and untrusted sites, and both programs and data are
becoming highly mobile. Sensitive personal, corporate, and government data is being placed online and
is routinely accessed over networks. The number of users and other interacting entities also continues to
increase rapidly, and trust relationships among these entities are growing increasingly complex. In short,
there is more to protect and it is more difficult to protect it.

It is difficult even to characterize what protection is needed. Abstractly, the goal of computer security
is to ensure that all computations obey some set of policies, but there are two central goals of computer
security: private or secret data should not be leaked to parties that might misuse it, and valuable data should
not be damaged or destroyed by other parties. These complementary goals will be referred tpiheaeyas
andintegrity. This thesis focuses on the protection of privacy, though integrity is also considered briefly.
Protecting privacy and secrecy of data has long been known to be a very difficult problem, and existing
security techniques do not provide satisfactory solutions to this problem.

Systems that support the downloading of distrusted code are particularly in need of better protection for
privacy. For example, Java [GJS96] supports downloading of code from remote sites, creating the possibility
that the downloaded code will transfer private data to those sites. Suppose a user computes his taxes using
a downloaded applet. The user cannot ensure that the applet will not transfer his tax information back to
the applet provider. Java attempts to prevent improper transfers by using a compartmental security model
called thesandbox moddFM96, MF96], but this approach largely prevents applications from sharing data,
while still permitting privacy violations like the one just described. A key problem is that information must
be shared with downloaded code, while preventing that code from leaking the information.

There is no generally accepted definition of what it means to protect privacy. A distinction sometimes
has been drawn between privacy and other security goals suskceeyor confidentiality Sometimes
privacy is identified with the weaker goal ahonymity protecting the identity of various parties, as in a
medical protocol, rather than their data, as in [Swe96]. However, in this work the terms privacy and secrecy
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are considered to be synonymous; they both refer to the ability to control information leakage of any kind.
The use of the term privacy emphasizes that in a decentralized environment, no generally accepted notion
of the sensitivity of data exists. Users generally consider their own data to be private, and are naturally less
concerned with the privacy of the data of other users. However, the privacy requirements of all users are
treated as equally important.

In general, security enforcement mechanisms may be internal or external to the computing system. In-
ternal mechanisms attempt to prevent security violations by making them impossible; external mechanisms,
such as the threat of legal action, attempt to convince users not to initiate computation that would violate se-
curity. Current security mechanisms, both internal and external, are becoming less viable as the computing
system becomes large, decentralized, anonymous, and international.

With the widespread downloading of code, dealing with untrusted programs becomes a greater issue
for security than in the past. Conventionally, the focus is placed on protecting the operating system from
buggy or malicious programs, and on protecting users from each other. On most computer systems, the
programs that might be used to violate user privacy are programs already installed on the system, and
purchased from some vendor. Since the source of the program is known, some form of external redress is
available if the program is found to violate privacy. When programs such as Java applets are dynamically
downloaded and executed, the ability to identify and exact redress from the supplier of privacy-violating
code is reduced. Therefore, the goal of this work is to develop better internal mechanisms, preventing
programsfrom violating security policies rather than convinciagersnot to.

In another sense, the goal of this work is to reduce the cost of ensuring security—a cost that is passed on
to users. If a user downloads a free application, the user accepts either the risk that a program will violate se-
curity, or the considerable cost of ensuring that a program does not violate security. This observation applies
to commercial software as well; a company providing an application must ensure that it does not violate
user security, or else be liable in cases where it violates security, at least in the sense that the reputation of
the company may suffer. With both kinds of software, the cost is passed on to the users of that application.
Better internal mechanisms that can be applied either by end-users or by software developers should reduce
this cost.

1.1 Example

Figure 1.1 depicts an example with security requirements that cannot be satisfied using existing techniques.
This scenario contains mutually distrusting principals that must cooperate to perform useful work. In the
example, the user Bob is preparing his tax form using both a spreadsheet program and a piece of software
called “WebTax”. Bob would like to be able to prepare his final tax form using WebTax, but he does not
trust WebTax to protect his privacy. The computation is being performed using two programs: a spreadsheet
that he trusts and grants his full authority to, and the WebTax program, which he does not trust. Bob would
like to transmit his tax data from the spreadsheet to WebTax and receive a final tax form as a result, while
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Figure 1.1: A simple example

being protected against WebTax leaking his tax information.

In this example, there is another principal named Preparer that has privacy interests. The principal
Preparer represents a firm that distributes the WebTax software. The WebTax application computes the final
tax form using a proprietary database, shown at the bottom, that is owned by Preparer. This database might,
for example, contain algorithms for minimizing tax payments. Since this principal is the source of the
WebTax software, it trusts the program not to distribute the proprietary database through malicious action,
though the program might leak information because it contains bugs.

In principle, it may be difficult to prevent some information about the database contents from leaking
back to Bob, particularly if Bob is able to make a large number of requests and then carefully analyze the
resulting tax forms. This information leak is not a practical problem if Preparer can charge Bob a per-form
fee that exceeds the value of the information Bob obtains through each form.

To make this scenario work, the Preparer principal needs two pieces of functionality. First, it needs
protection against accidental or malicious release of information from the database by paths other than
through the final tax form. Second, it needs the abilitgitm offon the final tax form, confirming that the
information leaked in the final tax form is sufficiently small or scrambled by computation that the tax form
may be released to Bob.

It is worth noting that Bob and Preparer do need to trust that the execution platform has not been sub-
verted. For example, if WebTax is running on a computer that Bob completely controls, then Bob will
be able to steal the proprietary database. Clearly, Preparer cannot have any real expectation of privacy or
secrecy if its private data is manipulated in unencrypted form by an execution platform that it does not trust!

In this thesis, it is assumed that the execution platform is trusted, even though the programs running on
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that platform may not be. The issue of trust in the execution platform is discussed further in Section 1.4.

Even with this assumption, this scenario cannot be implemented satisfactorily or even modeled using exist-
ing security techniques. With current techniques, Bob must carefully inspect the Webtax code and verify

that it does not leak his data; in general, this task is difficult. The techniques described in this thesis allow

the security goals of both Bob and Preparer to be met without this inspection; Bob and Preparer then can
cooperate in performing useful computation. In another sense, this work shows how both Bob and Pre-
parer can inspect the Webtax program efficiently and simply to determine whether it violates their security

requirements.

1.2 Existing security techniques

Let us now briefly consider the application of existing security techniques to this problem; for a more
in-depth discussion, see Chapter 6. When most people think of computer security, they think of well-
established security techniques such as access control. Typical access control mechanisms (which support
discretionary access contjoto not protect privacy well when programs are not trusted: access control
prevents unauthorized information release but does not control information propagation once the information
has been accessed. For example, if a progdaimallowed to read useB’s data, B cannot control howA
distributes the information it has read.

A less well-known approach to protecting privacyimdormation flow contral In information flow
techniques (such asandatory access contjolevery piece of data has an attactsashsitivity label The
labels are typically from a small ordered set sucKw@as:lassified, classified, secret, top secret}. The labels
remain attached to data as it propagates through the system, preventing it from being released improperly
even if it is released to an untrusted program. Data mayelabeledto further restrict its use (such as
a relabeling fromsecret to top secret). However, relabeling data fromop secret to secret (or allowing
top secret data to affectecret data) would bedeclassificationor downgrading which could lead to an
information leak.

Intuitively, information flow control protects privacy much more directly than access control does, but
practical problems with information flow control have prevented its widespread adoption. Sensitivity labels
are usually maintained dynamically, causing substantial loss of performance. Dynamic labels impose even
greater run-time and storage overheads than access control mechanisms do, because for every primitive
operation, the label of the result must be computed. Another limitation is that sensitivity labels are implicitly
centralized they express the privacy concerns of a single principal (typically, the government). If one
considers providing privacy in a more decentralized setting, such as the community of Web users, it is clear
that no universal notion afecret sensitivity can be established.

All practical information flow control systems provide the abilitydeclassifyor downgradedata be-
cause strict information flow control is too restrictive for writing real applications. Declassification in these
systems lies outside the model: it performed tisuated subjectwhich is code possessing the authority of a
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highly trusted principal. However, the notion of a highly trusted principal does not extend to a decentralized
system. Traditional information flow models do not support workable declassification for a decentralized
environment.

Another important issue for information flow systems is fhiecisionof the detection of information
flow. Information is assumed to flow from one program value to another if there is any dependency be-
tween the values. Any unidentified dependency would create a potential information leak. However, it is
also important to avoid false dependencies, since a false dependency results in data being overly restric-
tively labeled, and thus not usable in situations where it ought to be. To provide a precise determination of
data dependencies, particularly dependencies arisingifngticit flows static analysis is required [DD77].
Dynamic enforcement of information flow control, as in mandatory access control systems [DOD85], can
determine data dependencies conservatively—even dependencies arising from implicit flows—but results in
false dependencies and overly restrictive labels.

1.3 Decentralized information flow control

The central goal of this work is to make information flow control a viable technique for providing privacy
in a complex, decentralized world with mutually distrusting principals. This work has involved two major
components, each of which is independently useful.

1.3.1 Decentralized label model

The first component is the development of a new model for labeling data that supports situations involving
mutual distrust. This model allows users to control the flow of their information without imposing the rigid
constraints of a traditional multilevel security system. It provides security guarantees to users and to groups
rather than to a monolithic organization—in essence, it provides every principal with its own multilevel
security.

The decentralized information flow model differs from previous work on information flow control: it
introduces a notion of ownership of data, and allows users to explicitly declassify data that they own. When
data is derived from several sources, all the sources own the data and must agree to release it. Previous
work on information flow allowed declassification only bytrasted agenbr trusted subjectvith essen-
tially arbitrary powers of declassification; the notion of a universally trusted agent is clearly inapplicable
to a decentralized environment. Declassification in this model provides a safe escape hatch from the rigid
restrictions of strict information flow checking. Deciding when declassification is appropriate is outside the
scope of this model; work imference controlsand statistical databasebsas developed some applicable
methods [Den82].

The decentralized label model has a number of important properties that are discussed further in Chap-
ter 2:
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¢ It allows individual principals to attach flow policies to pieces of data. The flow policies of all prin-
cipals are reflected in tHabel of the data, and the system guarantees that all the policies are obeyed
simultaneously. Therefore, the model works even when the principals do not trust each other.

e The model allows a principal to declassify data by modifying the flow policies in the attached label.
Arbitrary declassification is not possible because flow policies of other principals are still maintained.
Declassification permits the programmer to remove restrictions when appropriate; for example, the
programmer might determine that the amount of his information being leaked is acceptable using
techniques from information theory [Mil87].

e The model is compatible with static checking of information flow.

e It allows a richer set of safe relabelings than in previous label models [Den76, MMN9O0] by fully
exploiting information about relationships between different principals.

¢ It has a formal semantics that allows a precise characterization of what relabelings are legal.

e The rule for static checking is shown to be both sound and complete with respect to the formal se-
mantics: the rule allows only safe relabelings, and it allows all safe relabelings.

¢ In this model, labels form a lattice-like structure that helps make static checking of programs effective.

e The model can be applied in dual form to yield decentralized integrity policies.

1.3.2 Static information flow analysis

The second component of this work is a collection of new techniques for static analysis of information flow
in programs. These techniques have been incorporated in the new lantfitlage an extension of the

Java language [GJS96] that allows information in the program to be annotated with decentralized labels.
These annotations can then be checked statically, allowing more precise, fine-grained determination of in-
formation flows within programs than in previous languages allowing static checking of information flow.
Like other recent approaches [PO95, VSI96, ML97, SV98, HR98, Mye99], JFlow treats static checking of
flow annotations l&bel checkiny as an extended form of type checking. Programs written in JFlow can

be checked statically by the JFlow compiler, which detects any information leaks through covert storage
channels. JFlow is intended to support the writing of secure servers and applets that manipulate sensitive
data.

An important philosophical difference between JFlow and other work on statically checking information
flow is the focus on a usable programming model, avoiding the unnecessary restrictiveness of earlier systems
for static flow analysis. JFlow provides a more practical programming model than earlier work does. The
goal of this work is to add enough power to the static checking framework to allow reasonable programs to
be written in a natural manner.
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Figure 1.2: JFlow compiler

Adding this power has required several new contributions. Because JFlow extends a complex program-
ming language, it supports many language features that have not been integrated previously with static flow
checking, including mutable objects (which are more complex than function values), subclassing, dynamic
type tests, access control, and exceptions.

JFlow also provides powerful new features that make information flow checking less restrictive and
more convenient than in previous models:

e Label polymorphisnallows the writing of code that is generic with respect to the security class of the
data it manipulates.

¢ Run-time label checking and first-class label values create a dynamic escape in cases where static
checking is too restrictive. Run-time checks are statically checked to ensure that information is not
leaked by the success or failure of the run-time check itself.

e Automatic label inference makes it unnecessary to write many of the annotations that would be re-
quired otherwise.

¢ A statically-checked declassification operator allows safe declassification as described by the decen-
tralized label model.

The JFlow compiler is structured as a source-to-source translator; its output is a standard Java program
that can be compiled by any Java compiler. The operation of the compiler is depicted in Figure 1.2. The
input to the compiler is the text of a JFlow program and the compiled bytecode for any external program
modules used by the program. This model of compilation is exactly that of Java. Using this information, the
compiler checks JFlow programs and translates them into an equivalent Java program, which is converted
to executable form by a standard Java compiler. In addition, the JFlow compiler generates an auxiliary
file containing information about label annotations found within the program. This auxiliary file is used in
conjunction with the compiled bytecode file whenever this program is used as an external module for the
purpose of compiling other code that depends on it, as shown by the dashed arrow.

17



Program | Annotations

Trusted static
checker

Executable
program

Labeled _| Labeled

inputs ‘ outputs

Labeled data

Figure 1.3: Trusted execution platform

For the most part, translation involves removal of the static annotations in the JFlow program (after
checking them, of course). For this reason, there is little code space, data space, or run time overhead,
because most checking is performed statically.

1.4 Trusted computing base

An important aspect of any security mechanism is the identification dfrtiséeed computing basg@ CB):

the set of hardware and software that must function correctly in order for security to be maintained. In this
work, the trusted computing base includes many of the usual trusted components: hardware that has not
been subverted, a trustworthy underlying operating system, and a reliable authentication mechanism.

With conventional security mechanisms, all programs are part of the trusted computing base with respect
to the protection of privacy, since there is no internal mechanism ensuring that programs respect privacy.
For privacy to be protected, it is necessary that programs not transfer information in ways that violate it.
In this work, the model is that a static checker rejects programs containing information flows that violate
privacy. The static checker may be a compiler that statically checks the information flows in a program and
then digitally signs the program, or else a verifier that checks the work of such a compiler.

Together, these trusted components make a trusted execution platform. Figure 1.3 depicts a trusted
execution platform, into which code may enter only if it has been checked statically to ensure that it may be
trusted to obey the label model. Data in the system is labeled, as are inputs to and outputs from the system.

When this trusted computational environment is constructed from trusted nodes connected by a network,
the communication links between the nodes also must be trusted, which can be accomplished through phys-
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ical security or by encrypting and digitally signing communication between nodes. Unrelated third parties

are assumed to be unable to violate privacy and integrity by snooping on or subverting channels directly;
the question addressed here is how to prevent the intended receiver of an information transfer from violating
privacy.

1.5 Applications

The goal of this new information flow control system is to support secure distributed computation, including
the following useful applications:

¢ A node could share information with a downloaded program, yet prevent the mobile code from leaking
the information; additionally, the program could be protected from leaking its private information to
other programs running on the same node. This kind of security for mobile code would be useful both
for clients, which download applet code from servers, and for servers, which upload servlet code and
data from clients for remote evaluation.

e Secure servers and other heavily-used applications can be written in programming languages extended
with information flow annotations, adding confidence that sensitive information is not revealed to
clients of the service through programming errors.

e Trusted parties can providecure computation servetisat allow mutually distrusting parties to carry
out computations securely and privately, even though neither trusts that the programs of the other will
respect its security. This architecture is a solution to the problem that arises when neither party trusts
the execution platform of the other, and might be used in the tax preparation example. A trustworthy
platform for computation becomes a service with economic value for which the provider might charge.

The annotations used in the JFlow programming language could be used to extend many conventional
programming languages, intermediate code (such as Java Virtual Machine bytecode [LY96]), or machine
code, where the labeling system defined here makes a good basis for easily checkable security proofs as
in proof-carrying code [Nec97]. A good approach to producing proof annotations is for the compiler to
generate them as a by-product of static checking; this approach has been shown to work for checkable
type-safe machine code [MWCG98], and ought to be applicable to information flow labels as well.

1.6 Limitations

The static analysis techniques developed in Chapters 3 through 5 are intended to control covert and legitimate
storage channels. These techniques do does not deal with timing channels, which are harder to control.
Because the static analysis is applied to the program being executed, it cannot identify covert channels that
do not exist at the level of abstraction presented by the programming language. These covert channels are
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mostly timing channels that are ruled out in a single-threaded system. However, in a multi-threaded system,
information may be communicated by covert channels such as cache miss timing. Covert channels of this
sort cannot be identified by analysis of a program in source code form, because the source code is at too
high a level of abstraction.

1.7 Outline

The remainder of this thesis is structured as follows. Chapter 2 describes the decentralized label model and
demonstrates its formal properties. Chapter 3 presents the JFlow programming language, which extends
the Java language with support for information flow control. Chapter 4 shows how information flow in the
JFlow language can be checked statically through a process similar to type checking, though certain aspects
of static checking and source-to-source translation are deferred until Chapter 5. Other security techniques
and related work on privacy protection are discussed in Chapter 6. Chapter 7 concludes and offers some
thoughts on extensions to this work.
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Chapter 2

The Label Model

This chapter describes the decentralized label model. It has been presented earlier [ML97, ML98] but is
developed further in this thesis. The key new feature of the decentralized label model is that it supports
computation in an environment with mutual distrust. The ability to handle mutual distrust is achieved by
attaching a notion of ownership to information flow policies. These policies then can be modified safely
by their owners—a form of safdeclassification Arbitrary declassification is not possible because flow
policies of other principals remain in force.

The decentralized label model also supports a richer set of safe relabelings than earlier models. For
example, it enables every user to define a personal set of sensitivity levels, so that a data value can be
relabeled upward in sensitivity independently for each user. It also allows information flow policies to be
defined conveniently in terms of groups and roles. The rule for relabeling data is also shown togmubath
andcompletewith respect to a simple formal semantics for labels: the rule allows only safe relabelings, and
it allows all safe relabelings.

The decentralized label model also has the important property that it supports static checking of in-
formation flow, including the ability to infer many information flow labels automatically. Discussion of
static checking and how the model is integrated into a programming language is deferred until Chapters 3
and 4. However, this chapter does demonstrate that the model has the necessary properties to support this
integration.

This chapter has the following structure: in Section 2.1, the essentials of the label model are presented.
Section 2.2 provides some examples showing how the label model is applied to applications. The following
sections develop the model more carefully. Section 2.3 gives a formal semantics of labels in the system, and
Section 2.4 uses this semantics to develop more powerful rules for manipulating labels. Output channels are
discussed in Section 2.5. Section 2.6 discusses ways that labels and principals can be generalized to allow
more convenient modeling of security requirements.
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2.1 Basic model

This section presents the essentials of the decentralized label model: principals, which are the entities whose
privacy is protected by the model, and labels, which are the way that principals express their privacy con-
cerns. The rules that must be followed as computation proceeds in order to avoid information leaks are then
described, including the mechanism for safe declassification within this model.

2.1.1 Principals

In the decentralized label model, information is owned by, updated by, and releapddcipals users
and other authority entities such as groups or roles. For example, both users and groups in Unix would be
modeled as principals.

In this model, some principals are authorizeco for other principals Thacts forrelation is reflexive
and transitive, defining a hierarchy or partial order of principals. This relation is similar teptreks for
relation [LABW91]; the principal hierarchy is also similar to@e hierarchy[San96].

The acts-for relation can be used to model groups and roles conveniently, as shown in Figure 2.1. Arrows
in the figure indicate acts-for relations. A group, suchstaglents, is modeled by authorizing all of the
principals representing members of the groAp¢ andBob) to act for the group principal. A role, which
is a restrictive form of a user’s authority, is modeled by authorizing the user’s principal to act for the role
principal. In the figure, the roleSarl-chair andCarl-advisor are roles that the princip&larl can fill.

Information about the structure of the principal hierarchy is maintained in a secure database. Although
the principal hierarchy changes over time, revocations are assumed to occur infrequently. The handling of
revocation is discussed later, in Section 3.2.5.

This simple model of principals is easily generalized to provide more complete modeling of groups,
roles, and other entities; these extensions are explored later, in Section 2.6.3.

2.1.2 Labels

Every value used or computed in a program execution has an assdatzedi\s we will see later, the label

of a value functions as a kind of type, so program expressions can also be said to have a label. A label is a set
of policiesthat express privacy requirements. A privacy policy has two parts: an owner, and a set of readers,
and is written in the fornrowner. readers The owner of a policy is a principal whose data was observed in
order to construct the value labeled by this policy. The readers of a policy are a set of principals who are
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permitted by the owner to read the data. It is also implicitly understood that the owner of the policy permits
itself to read the data, even if it is not explicitly a reader. Other principals are not permitted to read the data.
The intuitive meaning of a label is that every policy in the label must be obeyed as data flows through the
system, so labeled information is released only by the consensus of all of the owners. A principal may read
the data only if it is a reader or owner for every policy in the label. Because the intersection of all of the
policies is enforced, adding more policies to a label only restricts the propagation of the labeled data.

An example of an expression that denotes a ldbed the following: L = {o; : r1,7r2; 02 : 72,73},
whereoy, 09, 11, 1o denote principals. Semicolons separate two policies within the label. The owners of
these policies are; ando,, the reader sets for the policies drg,r2} and{rq, 3}, respectively. A policy
with no readers means that only the owner of the policy is to be able to read the data. An example of a label
containing such a policy i§o; : }, which is equivalent to the labgb; : o;}.

If a label doesot contain any policy owned by a principal the effect is thap does not care how the
data propagates. It is as if there were a policyfdhat listedall possible principals as readers. The least
restrictive label possible is a label containing no policies, because no principal has expressed an interest in
restraining the data with this label. This label is written as an empty setf a label contains two or more
policies with the same owner the policies are enforced independently just as other policies are: a principal
may read the labeled data only if all the policies permit that principal as a reader.

If a policy K is part of the labelL (that is, K € L), then the notatioro(K’) denotes the owner of
that policy, and the notation(X’) denotes theetof readers specified by that policy. The functianand
r completely characterize a label, with typeslicy — principal andpolicy — set[principal], respectively.

For compactness, single-argument functions dikndr will often be expressed without parenthesizing the
arguments; for example, ady rather tharo(K). In the equations in this chapter, the lettérg, K always
denote label policies.

2.1.3 Relabeling by restriction

As a program computes, the information it manipulates will not leak as long as the labels of that informa-
tion obey certain rules. We can now begin to consider these rules, beginning with arguably the simplest
computation that can be performed by a program: assignment of a value into a variable.

In this model, every variable has a label that applies to the data within the variable. When a value is read
from a variable, it has the same label as the variable. When a value is stored into a variable, the label of the
value is forgotten; effectively, it acquires the label of that variable into which it is stored. Thus, assignment
of a value to a variable causeseabeling of the copy of the value that is assigned. To avoid leaking
information, the label of the copied value (which is the label of the variable) must be at least as restrictive
as the original label of the value. This kind of relabeling is therefore termestaction

The expressior.; C L, means that the labdl; is either less restrictive than or equal to the label
(alternatively,L- is at least as restrictive ds ), and that values can be relabeled frémto Ls. Using this
definition, an assignment from a valuénto a variablev is legal if L, C L,,, whereL, and L, are the labels
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of x andwv, respectively.

A relabeling is a restriction if all of the policies in the old label are guaranteed to be enforced in the
new label. A policyJ in L, is guaranteed to be enforced by a policyAnif the two policies have the
same owner, and the reader set0fs a subset of the reader set.bf This observation leads to tiseibset
relabeling rule

Relabeling by restriction: subset rule

V(J e L) 3(K € L) (oK =0J N rK CrlJ)
Ly E Ly

The following relabelings are restrictions under this rule, assuming the lettdrsdenote principals:

{A:B,C} C {A:B}
{A:B} C {A:;D:FE}
{A:B,C} C {A:B;A:(C}
0 C {A:B)

The subset relabeling rule is sound and captures relabelings that are safe regardless of the principal
hierarchy. However, if some knowledge of the principal hierarchy is available, additional relabelings can be
determined to be safe. However, presentation of a more permissive relabeling rule must wait until a formal
semantics for labels has been developed in Section 2.3, defining what it means for a relabeling to be safe.

In this model, variables arstatically boundto their labels, and a value loses its label upon assign-
ment. This approach to supporting variables differs from digeamic bindingapproach used in some
systems [MMN90, MR92], where the label of a variable is automatically made more restrictive when a
restricted value is written into it. Dynamic binding requires run-time overhead and prevents static analysis.
It also can lead tdabel creep in which a variable becomes gradually more restrictive until it is unusable.

In JFlow, the typeProtected, described in Chapter 3, can provide the behavior of a dynamically labeled
variable if it is needed.

2.1.4 Computation and label join

During computation, values are derived from other values. Because a derived value may contain information
about its sources, its label must reflect the policies of each of its sources. For example, if we multiply two
integers, the product’s label must be at least as restrictive as the labels of both operands.

To avoid unnecessarily restricting the result of a computation, the result should hdwadtnestrictive
label that is at least as restrictive as the labels of the operand; that lsagteipper bounar join of the
operand labels with respect to the relatian The join of the operands, which is constructed simply by
taking the union of the sets of policies in the operand labels, ensuring that all of the policies of the operands
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are enforced in the result. For example, the join of the labdls B} and{C : A}is{A: B; C : A}. For
any two labelsl.; and L,, their join is written ad.; LI L, and is defined as follows:

Join rule

LiULy =L ULy

This rule ensures that the policies in the label of a value propagate to the labels of all other values that it
affects, protecting the privacy of data even when it is used for computation. However, sometimes this rule
is too restrictive, and a way to relax these policies is needed.

2.1.5 Relabeling by declassification

Because labels in this model contain information about the owners of labeled data, these owners can retain
control over the dissemination of their data, and relax overly restrictive policies when appropriate. This is a
safe form ofdeclassificatiorthat provides a second way of relabeling data.

The ability of a process to declassify data depends on the authority possessed by the process. At any
moment while executing a program, a process is authorized to act on behalf of some (possibly empty) set of
principals. This set of principals is referred to as #uhority of the process. If a process has the authority
to act for a principal, actions performed by the process are assumed to be authorized by that principal. Code
running with the authority of a principal can declassify data by creating a copy in whose label a policy
owned by that principal is relaxed. In the label of the copy, readers may be added to the reader set, or the
policy may be removed entirely, effectively allowing all readers.

Because declassification applies on a per-owner basis, no centralized declassification process is needed,
as it is in systems that lack ownership labeling. Declassification is limited because it cannot affect the
policies of owners the process does not act for; declassification is safe for these other owners because
reading occurs only by the consensus of all owners.

The declassification mechanism makes it clear why the labels maintain independent reader sets for each
owning principal. For example, if a label consisted of just an owner set and a reader set, information about
the individual flow policies would be lost, reducing the power of declassification.

Because the ability to declassify depends on the run-time authority of the process, it requires a run-time
check for the proper authority. As shown in Chapter 4, the overhead of this run-time check can be reduced
in the proper static framework.

Declassification can be described more formally. A process may weaken or remove any policies owned
by principals that are part of its authority. Therefore, the labglmay be relabeled td.; as long as
L C Ly Ly, whereLy is alabel containing exactly the policies of the fofm:} for every principalp in
the current authority. The rule for declassification may be expressed as an inference rule:
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Relabeling by declassification

Ly= |_|(p in current authority{P D}
LiCELyULy
Ly may be declassified tby

This inference rule builds on the rule for relabeling by restriction. The subset rule for relaliglitay

L, states that for all policied in Ly, there must be a polic in L, that is at least as restrictive. The
declassification rule has the intended effect because for policied.; that are owned by a principalin

the current authority, a more restrictive poliéy is found in L 4. For other policies/, the corresponding
policy K must be found irLs, since the current authority does not have the power to weaken them. This rule
also shows that a labél; always may be declassified to a label that it could be relabeled to by restriction,
because the restriction conditidn C Lo implies the antecederdt; C Ly LI L 4.

2.1.6 Channels

In this model, users are assumed to be external to the system on which programs run. Information is leaked
only when it leaves the system. Giving private data to an untrusted program does not create an information
leak—even if that program runs with the authority of another principal—as long as that program obeys all of
the label rules described here. Information can be leaked only when it leaves the system througiutn
channe] so output channels are labeled to prevent leaks. Information can enter the system thrioypgit an
channe] which also is labeled to prevent leaks. It is safe for a process to manipulate data even though no
principal in its authority has the right to read it, because all the process can do with the data is write it to a
variable or a channel with a label that is at least as restrictive.

Input and output channels are half-variables; like variables, they have an associated label and can be
used as an information conduit. However, they only provide half of the functionality that a variable provides:
either input or output. As with a variable, when a value is read from an input channel, the value acquires
label of the input channel. Similarly, a value may be written to an output channel only if the label of the
output channel is at least as restrictive as the label on the value; otherwise, an information leak is presumed
to occur.

Obviously, the assignment of labels to channels is a security-critical operation. It is important that the
channel’s label reflect reality. For example, if the output of a printer can be read by a number of people, it
is important that the output channel to that printer identify all of them, because otherwise an information
leak is possible. If two computers communicate over channels, it is important that the labels of the matching
output and input channels agree; otherwise, labels can be laundered by a round trip.

Typically, an output or input channel has a label containing a single policy, though multiple-policy
channels work too. For an output channel, the owner of the policy can be thought of as a guarantor that the
data will be released tat mostthe principals listed in the reader set of that policy. As will become clear, the
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Figure 2.2: Annotated Tax Preparation Example

data of a principap can be written to an output channel onlyifrusts the owner of the output channel, and

the readers of the output channel are a subset of the readepsalt@ats. Conversely, the owner of an input
channel is a principal who demands that data arriving from the channel may be released only to the listed
readers. This policy may be overridden only by the owner or by a principal who can act for the owner. For
multiple-policy channels, each policy acts as an additional requirement for the release of the data.

2.2 Examples

Let us now consider two examples in which the decentralized label model is helpful in protecting privacy.
These examples illustrate the intuitions behind the model and demonstrate that it can capture the security
needs of interesting, useful computations.

2.2.1 Tax preparer example

The tax preparer example, illustrated in Figure 2.2, is identical to the example from Chapter 1, except that
all data in the example has been annotated with labels to protect the privacy of Bob and Preparer. It can be
seen that these labels obey the rules given and meet the security goals set out in Chapter 1 for this scenario.
In the figure, ovals indicate programs executing in the system. A boldface label beside an oval indicates
the authority with which a program acts. In this example, the principals involveBar@andPreparer, as
we have already seen, and they give their authority to the spreadsheet and WebTax programs, respectively.
Arrows in the diagrams represent information flows between principals; square boxes represent information
that is flowing, or databases of some sort.
First, Bob applies the lab€glBob: Bob} to his tax data. This label allows no one to read the data
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except Bob himself. With this label applied to it, tax data cannot be sent to an untrusted network location,
represented as an output channel with Iadelbecause it is not the case tH&ob: Bob} T {}. Bob can
give this data to the WebTax program with reasonable confidence that it cannot be leaked, because WebTax
will be unable to remove théBob: Bob} policy from the tax data or any data derived from it.

The WebTax program uses Bob’s tax data and its private database to compute the tax form. Any in-
termediate results computed from these data sources will have the{ Bdiel Bob; Preparer: Preparer}.
Because the reader sets of this label disagree, the label prevents both Bob and Preparer (and everyone else)
from reading the intermediate results. This joint label is generated by the rule for join:

{Bob : Bob} LI {Preparer : Preparer } = {Bob : Bob ; Preparer : Preparer }

Preparer is protected by this label against accidental disclosure of its private database through programming
errors in the WebTax application.

Before being released to Bob, the final tax form has the same label as the intermediate results, and is not
readable by Bob, appropriately. In order to make the tax form readable, the WebTax apptieatassifies
the label by removing th¢Preparer: Preparer} policy. The application can do this because Breparer
principal has granted the application its authority. This grant of authority is reasonable bBeeutser
supplied the application and presumably trusts that it will not use the power maliciously.

The authority to act aBreparer need not be possessed by the entire WebTax application, but only by
the part that performs the final release of the tax form. By limiting this authority to a small portion of the
application, the risk of accidental release of the database is reduced. However, it is important that this part
of the application not be exposed as a generally accessible external interface, because this exposure might
allow Bob and other parties to misuse the interface to declassify data owriadgayer.

2.2.2 Hospital example

In this example, there are three parties with privacy concerns: a patient obtaining medical services, a doctor
providing the services, and a health maintenance organization (HMO) that serves as an intermediary. There
are principals in the system for patientsgy, patient_A, and doctorse.g, doctor_B; additionally, all doctors

can act for a principadoctors that represents the group of doctors within the HMO. Two HMO principals

also exist: HMO, representing maximum authority within the HMO, aHdO _records, representing au-

thority over the record-keeping functions of the HMI@YO can act forHMO_records, andHMO _records
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can act for patients: each patient must trust the HMO to keep track of its records. The resulting principal
hierarchy is shown in Figure 2.3.

Figure 2.4 shows the hospital example, which shows how information flows as the patient receives med-
ical services. The HMO maintains the patient’s medical history, which has three parts: general information,
which is controlled by the patient but is readable by any doctor, private information (such as the medical his-
tory of the patient), which is normally not readable by doctors, and confidential information that the HMO
does not release to patients.

The first step in a patient/doctor interaction is for the doctor to obtain a copy of the patient’s record.
The record is declassified so that the doctor can read it; this can happen only with the authorization of the
patient. The patient, represented in the diagram by the dark oval |alseledt A, makes an authenticated
request to an existing program running with the authoritiibfO _records; this program uses the patient's
authority to provide the doctor with an edited version of the patient’s private information and of the HMO'’s
confidential information.

The doctor is represented by the dark oval labéledor_B. To read the information, the doctor requires
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an output channel to a display device with the single reattettor_B. This display device is certified by
HMO_records as a secure device that ordgctor_B is reading from. In principle, all of the information

in the patient records should be safe to write to this display device, though the subset relabeling rule will
not permit it. Thus, this example motivates the development of a better relabeling rule, which is developed
in the following sections. Writing the information to the display device is safe beddiE@_records can

act for all of the owners of the data in the patient recogdsiént_ A andHMO _records), so its certification
should be good enough. In addition, various parts of the patient record are reledsetbts or doctor_B,

and the actual readetoctor_B, can act for both these principals. Note that the patient information cannot
be written to a channel that has any readers other dbator_B, and that there is no way the doctor can
declassify the patient information.

Eventually, the doctor sends a report to the HMO of services rendered. In addition to the comments of
the doctor, the report contain information from all three components of the patient’s record, so it acquires a
joint label reflecting all these sources. Note that the general patient information does not explicitly permit
doctor_B as a reader. Using the subset relabeling rule, the first policy ownedtisnt_A in the resulting
joint label prevents the doctor from reading his own report. This example of unnecessary restrictiveness also
arises from the subset relabeling rule and is fixed by the more flexible relabeling rule developed later.

The audit program runs with the authority of tH& O _records principal and thus can store the informa-
tion with the appropriate labels both in the log and in the patient record database. It can also send a report to
the patient; as in the tax preparer example, the designer of the audit program must use mechanisms outside
the scope of information flow control to determine either that no HMO-confidential information is leaked or
that the leak is acceptably small.

2.3 Extending and interpreting labels

The hospital example presented in the previous section shows that the basic model is not powerful enough,
and a more permissive relabeling rule is needed that takes the principal hierarchy into account. This section
formalizes the notions of labels and principal hierarchies and then defines a condition for judging whether a
relabeling rule is correct.

2.3.1 Limitations of the subset relabeling rule

One way to think about whether a relabeling rule is safe is by considerimgmental relabelingthat can

make a label more restrictive, or leave it equally restrictive. The relabeling rules discussed in this thesis can
be understood in terms of the incremental relabelings they allow. For example, the subset relabeling rule
allows the following two kinds oincremental relabelingswhich make a label more restrictive (or possibly
have no effect).

e Removing a readetr Removing a reader from a policy will restrict the propagation of the labeled data
further, if it has any effect at all.
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e Adding a policy. Similarly, adding a new policy only can restrict the data further, because all policies
in a label are enforced.

Any sequence of such relabelings will also result in a label that is at least as restrictive as the original. To
compare two labels and see whether a sequence of such incremental relabelings can be found is trivial.

The subset relabeling rule defined earlier is clearly sound, in that it only permits a value to be relabeled
to a more restrictive label. However, it prevents valid relabelings. There are three kinds of such relabelings,
which are based on the existence of an acts-for relationship between principals:

e Adding readers. It should be possible to add a readétto a policy if the policy already allows a
readerr thatr’ acts for. This rule is safe becauserifacts forr, it has all of the privileges of-.
Allowing r to read the data also allows all principals that actftw read.

e Replacing owners.It should be possible to replace an owneawvith some principab’ that acts for.
This rule is safe because the new label allows only processes that attdateclassify it, while the
original label also allows processes with the weaker authoritytofdeclassify it.

e Self-authorization. If a principal o is the owner of a policy, it is safe to add as a reader any principal
r that acts for. We already consider the owner of a policy to be a reader, so it is reasonable to allow
the owner to be added explicitly to the list of readers. Similarly, the addition of readers that act for the
owner should be allowed.

If readers may be added, the doctor in the example is able to view his own report. The confidential
patient information has the labgbatient_A: patient_A,doctors}, which allows any doctor to view the data
item, and therefore it should be possible to relabel the item explicitly to allow a particular doctor to view it,
e.g, {patient_A: patient_A,doctor_B}. The doctordoctor_B then can view the report, becausector_B is
a reader in every policy in the joint label.

If owners may be replaced, the output channel in the hospital example (Figure 2.4) will work as intended.
The output channel is labeled @dMO_records: doctor_B}, which means that the HMO records division
has certified thatloctor_B is the only reader on this channel. With this label, the display device can be used
to display all the information in the patient’s record, since the prindifidiO_records acts forpatient_A.

There is no global notion of the principals that can read from the output channel; data owned by an owner
o can be written to this channel onlyadftrusts the HMO records division (that i¥MO_records can act for
0).

The self-authorization rule does not add any significant power to the label model, since the policy owner
always can be added explicitly as a reader of the policy. However, it does make the expression of many
common labels more concise.

If the subset relabeling rule is used, then relabelings that add readers or replace owners can be done
only by a process with sufficient authority, using the declassification mechanism. However, because these
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relabelings are restrictions, it would be safe for any process to perform them regardless of its authority.
Direct support for the relabelings is therefore consistent with the principle of least privilege [Sal74], since it
avoids unnecessarily vesting excessive privilege in processes.

Extending the label model with support for these relabelings also facilitates the modeling of some de-
sirable security policies. For example, suppose that a user wants to define security classes in a multi-level
fashion: their own personailnclassified, classified, andsecret classes for protecting their data. With these
extensions, these three security classes can be represented as principals in the system, sstreteptite
cipal can act forlassified, andclassified for unclassified. The user then can assign security classes to other
principals in the system by allowing them to act for one of these three principals; the user correspondingly
marks each data item as readable by the appropriate security class principal.

It is not trivial to extend the relabeling rule to permit these relabelings, because we want to preserve the
ability to analyze information flow statically. As pointed out by Denning and Denning [DD77], information
flow should be checked staticallg.§, at compile time) to avoid leaks througmplicit flows which are
discussed later in Section 3.1. The new relabelings above depend on the principal hierarchy as it exists
at run time. The principal hierarchy that exists at run time is likely to differ from the principal hierarchy
at compile time, so the rule for relabeling must work when the principal hierarchy changes. The trick is
to check relabelings statically using a rule that ensures that the relabelings are sdifdhiierarchies that
might be encountered at run time at that point in the program.

This problem is addressed in two steps. The remainder of this section presents a formal model for labels
that allows a precise definition of legal relabelings. Section 2.4 then defines the rules for static checking and
shows that they are both sound and complete.

2.3.2 Interpreting labels

A relabeling is allowed if it does not create new ways for the relabeled information to flow. However, to
characterize this rule precisely, we need a wanterpreta label: that is, to decide what information flows
are described by a label. It is useful to think of a label as describing a Skiwsg where a flow is an
(owner, reader) pair. The set of denoted flows is the laliégpretation A flow (o, ) represents a flow

of information from the ownep to the reader; if the interpretation of a label contains a fldw, ), it
means that according to the principalthe labeled data may be read by the principalin general, the
interpretation of a label includes flows not explicitly stated in the label.

The subset relabeling rule corresponds to a very literal interpretation of a label as a set of flows: if a
label L has a policyK, then this interpretation af contains flowgo K, r) for every reader in the setr K.
However, if a principab’ is not an owner in the label, the interpretation/ofontains flowgo’, r) for every
principalr. In other wordsy’ permits flows to every principal because it has not expressed a flow policy for
the labeled data and does not care how it flows. For example, in a system containing three prihdipals
andC, the label{A : B; C' : } is interpreted as the set of floW$A, B), (B, A), (B, B),(B,C)}. There
are flows fromB to every other principal because it is not an owner, but no flows ftgmeince it allows
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no readers. If a principal is an owner of multiple policie®;, then the label only describes flovis r) for
readers in the intersection of all the setdy;. This interpretation is a function that maps labels into sets of
flows, and is calleK. For any label_, the expressioiX,(L) is a simple, literal interpretation df as a set

of flows.

We have seen already that the subset relabeling rule is too restrictive to support certain safe relabelings,
because it does not take the principal hierarchy into account. A more flexible relabeling rule requires an
interpretation function that, unlik¥,, does take the principal hierarchy into account.

Despite the limitations of th& interpretation, it has a use here as a shorthand for expressing sets of
flows, precisely because it is so literal. Writing down sets of flows is inconvenient because the sets of flows
are usually large and contain uninteresting flows, such as the many flows from principals that are not owners.
However, a set of flows can be expressed unambiguously in a manner that is independent of the principal
hierarchy by writing a label whose interpretation Xy is that set of flows. For every set of flows that is
of interest, a label can be constructed easily whose interpretatiof s/that set of flows; in this chapter,
these labels are given in place of much longer sets of flows that have the same meaning.

2.3.3 Formalizing the principal hierarchy

To express a richer interpretation precisely, it is necessary to clarify the idea of the principal hierarchy.
If 2 can act fory, it is denoted formally by the expressiart-y. The binary relation> is reflexive and
transitive, but not anti-symmetric: two distinct principals may act for each other, in which case the principals
are said to be equivalent. A relation of this sort is called a pre-order. The nofation > y indicates that

the principalxz can act for the principa} in the principal hierarchyP. A principal hierarchy is a pre-order

on principals, and can therefore be treated as a set of ordered pairs of principals that specifies all relations
that exist. With this interpretatior? - z = y is equivalent tdz, y) € P. When one principal hierarchy’

contains more acts-for relations than anottignwe say that”’ extendsP, which is written as®’ O P.

The space of principals is assumed to be infinite, immutable, and pre-existing. Of course, a real im-
plementation must be finite and will allow the creation of new principals. In this model, the creation of a
new principal is treated as the assignment of new meaning to some already existing (but unused) principal.
The advantage of this treatment is that a principal hieraiéhy just a set of acts-for relations; it does not
specify the set of its principals as well.

2.3.4 Label interpretation function

The idea behind a richer interpretation is that actual flows denoted by the label depend on the principal
hierarchy. The label interpretation function has the fotfi, P), whereX is a function yet to be defined,

L is the label being interpreted, aitlis the principal hierarchy in which it is being interpreted. Taking the
current principal hierarchy as an implicit argument for now, the set of fléwss the interpretation of the
label L.
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Informally, the functionX is defined as follows: a floo, ') is denoted by a labédl if every policy I
whose owner can act ferpermits the flow—either explicitly, becauséis either a member of the reader set
of I or the owner ofl; or implicitly, because some principalis a member of the reader set (or the owner),
andr’ = r. Also, if there is no policyl whose owner can act fer, the flow is permitted becausedoes not
care how the data propagates.

There are two intuitions behind this new interpretation. First, if a policy lists a reager reader, that
policy implicitly authorizes as readers all principalssuch that’ = r. This implicit authorization makes
sense because suchsdshould possess every power thatdoes. Second, suppose there is a paliay the
label owned by a principal’. In this case, it is as if the label contains policies owned by every prinoipal
thato’ acts for, and these policies have reader sets identical to that of the politgther words, the policies
dictated byo’ apply to every principab that it acts for. In the following sections, the basis for interpretation
function X is developed more carefully, formally specifyiXgand showing how it is constructed. This more
complex interpretation is then used to develop a less restrictive relabeling rule.

2.3.5 Flow set constraints

If we consider the label as a set of flows, we can see that there are two constraints that a set of flows ought
to satisfy in a particular principal hierarchy—one constraint on readers, and one on owners. A set of flows
makes sense only if it satisfies both of these constraints. As we will see, these constraints underlie the label
interpretation function just described.

Thereader constraintorresponds to the first intuition just described: if a set of flows contains a flow
(o,r), andr’ is a principal that can act far, then the set must also contain the flgwr’). For example,
the label{ patient_A: doctors} is equivalent to the labdlpatient_A: doctors, doctor_B}, since the principal
doctor_B can act for the principadoctors. The reader constraint can be stated more formally as follows,
using the symbol- for implication:

r'=r A (o,r) € XL — (0,r") € XL

However, the reader constraint is not sufficient, because we also want to allow relabelings that change
the label's owners. Consider the relabeling frgpatient_A: doctor_B} to {HMO_records: doctor_B}.
This relabeling effectively transfers the responsibility of controlling the flow of the data from the principal
patient_A to the principaHMO _records. This transfer restricts the data’s flow, sind® O _records can act
for patient_A. The key insight to allowing this kind of relabeling is tbe/ner constraint

=0 N (d,r) € XL — (o,7) & XL

The interpretation of this constraint is that when a superior owner states that a flow must not occur,
this flow is removed from the reader sets of all inferior owners (principals that the superior owner acts for).
Restrictions applied by superior owners apply to inferior owners as well. However, if a superior owner does
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doctor_B

doctors

Figure 2.5: A small principal hierarchy

not try to prevent a flow, inferior owners may still prevent it. Thus, the inferior owner’s policy must be at
least as restrictive as the superior owner’s policy.

Using this constraint, the labgHMO_records: doctor_B} is equivalent to the labelHMO _records:
doctor_B; patient_A: doctor_B}, in the principal hierarchy of Figure 2.3. While the first label would seem
to allow flows frompatient_A to all readers, the only flow it allows froputient_A is (patient_A, doctor_B),
becauséiMO_records = patient_A and theHMO_records policy only allows a flow tadoctor_B.

2.3.6 Label functions

To help construct the label interpretation functi®n two functions are defined that establish the reader
and owner constraints. First, the functiBhexpands the set of readers in a policio include the readers
implicitly allowed by the reader constraint, as well the owner of the pali@nd any principals that can
act for it. Given a policy!, the function produces an expanded polRy. Using the notatiofol : r/) to
denote the policy with owneas and readers/, the function is defined as follows:

RI= (ol :{r'|r'=0ol v 3(rerl)r' =r})

This function is expressed concisely using a functiorthat yields the reader set of a policy, plus its owner:

r'I = rlU{ol}
RI = (ol :{r|3(" ex™I)r=1"})

For convenience, the application of the functiBnto an entire label is defined as the label produced
by applyingR to each of its individual policiesRL = {RI | I € L}. SupposeR is applied to the
two-policy labelL; = {doctors : patient_A; doctor_B : patient_A, patient_B}, in a principal hierarchy
containing only the single relatiafoctor_B = doctors, as shown in Figure 2.5. In this case, we hRve; =
{doctors : patient_A, doctors, doctor_B; doctor_B : patient_A, patient_B, doctor_.B}. Note thatdoctors
self-authorizes itself as a reader in the first policy, anddbator_B is therefore a reader because it acts for
doctors.

To establish the owner constraint, the functidrconverts a label into a set of flows by restricting it. It
generates a floyo, r) only if all operative policies in the label (those policiefor which ol - o) allow the
flow. The intuitive effect ofO is to remove flows that would violate the owner constraint.
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OL={(o,r)|VY(I€L)ol>0—recrl}

The function also generates a fldw, r) if there areno policies in the label for whiclo! - o, since in that
case the implication is vacuously true for all policiesn L. These flows capture the intuition that if a
principal does not own a policy, it allows flows to all possible readers.

For example, consider applyin@ to RL;, from the previous example. The set of flows that results is
the interpretation of the labddoctors : patient_A, doctor_B; doctor_B : patient_A, patient_B, doctor_B}
by Xo. Notice that this set of flows includes the flddoctor, doctor_B) but not (doctors, doctors), even
though the first policy iR L, seems to specify the latter flow. The flgdoctors, doctors) is eliminated by
O because the owner of the second polityctor_B, does not allow a flow t@octors, anddoctor_B acts
for the owner of the first policydoctors.

As we would expectR is monotonic with respect to reader sets that it is applied to, in the following
sense: ifrl; D rl; andol; = ol , thenrRI; D rRl,. O is also monotonic in reader sets;[if and Lo
are two labels that differ only in the reader sets of their respective poligiaad I, with o/; = ol and
rl; D rly, thenOL; D OLs.

However, the functions differ in their behavior as the principal hierarchy changes. To show this, the
principal hierarchyP must appear as an explicit argument to the functions. If the principal hierdrctsy
an extension of? (that is,P’ D P), then the following relations hold:

rR(I,P)) 2 rR(I,P)
O(L, P)

o
=~
N
N

Unlike R, the functionO is anti-monotonic in its argumeri.
By composing théR andO functions, we obtain the label interpretation functdéywhich maps a label
to a set of flows, given a particular principal hierarchy.

Definition of the interpretation function X

XL = ORL=O{RI|IcL}=
{(o,r)|VI € L)ol =0 — r € rRI}
= {(o,r)|VI €L)ol=0o—[r=ol v A+ exl)r=r"]}

The result ofX L satisfies both the reader and owner constraints, dihgeeserves the reader constraint
established in each policy bR. The result is that this formula has the same meaning as the informal
definition forX presented earlier in Section 2.3.4. We have already seen an example of the applic4tion of
to the label{doctors : patient_A; doctor_B : patient_A, patient_B}, because the earlier examples applied
R andO sequentially to it, just as in the definition f
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The functionX can now be used to express ttmrectness conditiofor relabeling in the presence of
an arbitrary principal hierarchy. The relabeling framto L, in principal hierarchyP is valid as long as no
new flows are added. Making the principal hierarchy an explicit argumexi tioe correctness condition is
the following:

Correctness condition

X(L17P) 2 X(L27P)
Relabeling fromL; to L, is safe inP

We can apply this rule to show the validity of the relabeling frém= {patient_A: doctors} to Ly =
{HMO_records: doctor_B}, using the principal hierarchy of Figure 2.3. ApplyiXgto L, gives us a set
containing the flowKIMO _records, doctor_B) and the flows#%, doctor_B) for every patienty (sinceHMO
acts for all patients), as well as other flows £) for unrelated owners and all readers. Applying X to
L, gives us a set containing all these pairs and mdi®1@ _records, r) for everyr, for example. Because
XL1 D XLo, the relabeling from., to L, is safe.

Because the functioX is a composition oR andO, it is monotonic with respect to reader setdlin
but neither monotonic nor anti-monotonic with respecftolt also has some other interesting properties.
We can interpret the set produced by apply¥tp a label as a label itself (although one that is too large to
write down!); this is the label in which every flow is mentioned explicitly, even the flows from owners that
allow all readers. With this interpretation, we can see that@kandR, the functionX is idempotent; that
is, XL = XXL.

2.4 Checking relabeling statically

Static checking of programs containing label annotations is desirable because it allows precise, fine-grained
analysis of information flows and can capture implicit flows properly [DD77], whereas dynamic label checks
create information channels that must be controlled through additional static checking [ML97]. However,
the correctness conditioiX{,; O XIL,) derived in Section 2.3 cannot be used directly in static checking;

it depends on the principal hierarchy at the time that the relabeling takes place, but static checking is done
earlier, perhaps as part of compilation. The principal hierarchy may have changed between compilation and
execution, so the full run-time principal hierarchy is not available when relabeling is checked. Therefore,
relabeling must be checked using only partial information about the principal hierarchy.

In this section, a general rule is developed for checking relabelings statically, using partial information
about the principal hierarchy. Section 2.4.1 begins by giving a sketch of how programs are annotated.
Section 2.4.2 demonstrates that defining a sound relabeling rule for static environment is non-trivial. Then,
Section 2.4.3 defines a relabeling rule for static checking and shows that it is both sound and complete.
Finally, Section 2.4.4 shows that the label model has the lattice properties needed to support label checking
and automatic label inference in a static environment.
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int{patient: doctors} x;
int{patient: doctor_B} y;
actsFor (doctor_B, doctors) { y = x; }

Figure 2.6: Assignment using the static principal hierarchy

2.4.1 Annotations

Programs are statically annotated with information about the labels of data that they manipulate. A static
label checker uses these annotations to analyze information flows within these programs and determine
whether the program follows the information flow rules that have been described.

In Chapters 3 and 4, a set of language annotations is described that permits static information-flow
checking. The following summarizes the features that are important for understanding how static analysis
affects the model:

e All variables, arguments, and procedure return values have labeled types. For example, a labeled
integer variable might be declared @as{patient_A: doctors} x;. The label may be omitted from
a local variable, causing it to be inferred automatically. If the label is omitted from a procedure
argument, it is an implicit parameter, and the procedure is generic with respect to it.

e The statemendctsFor(p1, p2) S allows a run-time test of the structure of the principal hierarchy. The
statements is executed only if the principal; can act for principaps. The label checker then uses
the knowledge that; = p, when checking relabelings that occur within The statement also has an
optionalelse clause that is executed if the specified relationship does not exist.

e The expressiodeclassify(e, L) relabels the valuewith the labelL. The label may add readers to the
label ofe for some owners;, or remove some ownets; the statement is legal only if it is statically
known that the process can act for each ofdhe

e Procedures are assigned a principal when they are compiled; this principal derives from the user who
is running the compilation. When a procedure is called it always runs under this authority. Code that
calls a procedure also can grant the called procedure the authority to act for one or more principals
the caller acts for, but this grant must be made explicitly.

For example, the assignment fronto y in Figure 2.6 is legal because within the body of HaesFor
statement, the checker knows tldattor_B can act fordoctors.

For each program statement that the label checker verifies, some acts-for relations can be determined
to exist, based on the lexical nesting of thesFor statements. These relations form a subset of the true
principal hierarchy that exists at run time; all that is known statically is that the true principal hierarchy
contains the explicitly stated acts-for relations.
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Using this fairly general model for programming with static information flow annotations, the challenge
is to define a sound (conservative) rule for checking relabelings.

2.4.2 Static correctness condition

When a program assigns a value to a variable, it relabels the data being assigned, because the value’s label
is changed to be the same as the label on the variable. This relabeling is sound as long as it does not
create new ways for the assigned data to flow. One example of a sound relabeling rule is the original subset
relabeling rule of Section 2.1.3. For this rule, the monotonicit guarantees that the correctness condition
holds, regardless of the run-time principal hierarchy. However, the subset relabeling rule, as we've seen, is
excessively restrictive. We would like a rule that uses the information about the principal hierarchy that is
available statically.

Let P be a principal hierarchy that contains only the acts-for relations that are statically known based
on the containingictsFor statements. This principal hierarchy is called stetic principal hierarchy The
actual principal hierarchy at run time is an extensionPpfit must contain all of the acts-for relations in
P, but may contain additional relations. ¥ is the actual principal hierarchy, we hai® O P. Using
this notation, and introducing the principal hierarchy as an explicit argument to the fudGtite static
correctness conditiosays that it is safe to relabel from to Ls in P if the following condition holds at the
time of static checking:

Static correctness condition

V(P' 2 P) X(Ly,P") 2 X(Lsy, P")
Relabeling fromL, to L, is statically safe inP

It is interesting to note that a more restrictive static correctness conditi@h), X(Li, P) O X(Lo, P), is
almost the same as checking the subset relabeling rule (the difference is that is allows self-authorization).
The subset relabeling rule expresses the requirement that a relabeling be safe in all principal hierarchies, but
what we want is a relabeling rule that takes advantage of information about the run-time principal hierarchy,
as expressed by the conditidl O P in the static correctness condition.

One might expect that to check whether a relabeling is valid, we could check a weaker condition, which
simply applies the correctness condition directly to the static hierafchy

X(L1, P) 2 X(La, P)

By construction, this rule allows all valid relabelings to take place; if a relabeling is not allowed by this rule,
then it creates new flows in the principal hierarcRy Therefore, this rule is necessary but not sufficient.
The following example will show that this rule is not sound.

Consider the following (bad) relabeling frofy to Lo, whereL is the same label that was used in the
examples of Section 2.3.6:
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L, = { doctors: patient_A; doctor_B: patient_A, patient_B }
Lo = { doctors: staff, patient_A ; doctor_B: patient_A, patient_B }

Now, consider what happens when we apfiyo each of these labels while assuming that the principal
hierarchy P contains a single relatiodoctor_B >~ doctors that is known to hold at compile time; in other
words, the principal hierarchy shown in Figure 2.7(a). The result when applied to each label is a set of
flows, which is written as a label for brevity, using tkg interpretation:

X L1 = { doctors: patient_A, doctor_B; doctor_B: patient_A, patient_B, doctor_B }
X Lo = { doctors: patient_A, doctor_B; doctor_B: patient_A, patient_B, doctor_B }

Note thatX L, does not contain the flondéctors, staff) because the superior owndsctor_B rules it out.

It would seem that the relabeling is safe because these two label interpretations are equal. However, sup-
pose that the run-time principal hierarchy is the one shown in Figure 2.7(b); thattispt_B is also a

staff member gatient_B > staff). Applying X to each label using this hierarchy leads to a quite different
conclusion:

X L1 ={ doctors: patient_A, doctor_B; doctor_B: patient_A, patient_B, doctor_B }
XLg = { doctors: patient_B, patient_A, doctor_B; doctor_B: patient_A, patient_B, doctor_B }

The relabeling is invalid under the principal hierarcRY, because it adds the flowldctors, patient_B).
This example shows that the correctness condition cannot be applied directly as a static relabeling rule.

2.4.3 A sound and complete relabeling rule

Now let us examine a relabeling rule that does worli.{lfcan be relabeled tb, under principal hierarchy
P, it will be written asP - L1 C Lo, an expression that is defined formally as follows:

doctor_B doctor_B patient_B
doctors doctors staff
€) (b)

Figure 2.7: Two small principal hierarchies
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Definition of the complete relabeling rule (C)

(PHIiCLy) = VIelL)3IJely)PHICJ
(PFICJ) = ProJ>=ol A rJCrR(I,P)
= PtoJxol ANV(rjerJ)[Ptrj=ol V 3(r; erl) Pt rj>=r
= ProJ=ol Ar"JCrR(I,P)
= ProJ=ol AV(rjer™J)I(r,extl) Pkrj=r

The rule for checking a relabeling from labg| to label L, is straightforward: for every policy in Ly,
there must be a corresponding poliéyn Ls that is at least as restrictive &sIf the policy J is at least as
restrictive ad in the principal hierarchyP, it will be expressed aB + I C .J, which also is defined formally
in the figure. This condition will also be described informally ascovers!”; informally, the relabeling
rule says that any policy may be replaced by a policy that covers it.

The policy covering rule is stated four different ways. The second and fourth statements of the policy
covering rule are simply expansions of the first and third, respectively, but it may not be obvious why the first
and third definitions are equivalent. The first definition contains the condition rR (7, P), and the third
replaces this condition witn™.J C rR.(I, P). The first definition implies the third becau#e- oJ = ol
implieso € rR(I, P), which impliesr*J C rR(I, P) in conjunction withrJ C rR(I, P). The third
definition implies the first because the statemehtC r*.J transitively impliesrJ C rR(I, P). Therefore,
the two definitions are equivalent. When the complete relabeling rule is used in the following sections, the
most convenient definition for each use will be selected.

The difference between this relabeling rule and the unsafe relabeling rule of Section 2.4.2 can be ex-
plained simply. The rule here says that for every poliap L1, asinglepolicy J in Ly must cover it. The
earlier, unsafe rule effectively allowsultiple policies in L, to cover a policy inL;. When the principal
hierarchy is extended, these policies can interact in unexpected ways and fail td.cover

The binary relationC is defined on labels for any principal hierarcRy The relation is gre-order. it
is transitive and reflexive, but not anti-symmetric, since two labels may be equivalent without being equal.
If A andB are equivalent, we writel ~ B to meanAC B A BLC A. For example, with the hierarchy
of Figure 2.3, the label§HMO: doctors} and{HMO: doctors, doctor_A} are equivalent. Every principal
hierarchy generates a pre-order on labels, defining the legal relabelings.

The nature of the relabeling rule can be understood by considering the incremental relabelings that it
permits. We have already seen in Section 2.3.1 that the subset relabeling rule can be characterized by two
incremental relabeling rules. The new relabeling rule also allows the three additional relabelings described
in Section 2.3.1 that the subset relabeling rule does not permit. The result is that this new rule allows an
arbitrary sequence of any of the following five kinds of relabelings, each of which is sound individually:
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A reader may be dropped from some owner’s reader set.

A new owner may be added to the label, with an arbitrary reader set.
¢ A reader may be added if it acts for a member of the reader set.

An owner may be replaced by an owner that acts for it.

¢ A reader may be added if it acts for the owner.

Interestingly, these incremental relabelings also capliref the sound relabelings. In other words, the
rule for C on page 41 is both sound and complete, and therefore is callednmgete relabeling ruleThe
rule is complete in the sense that it exactly captures the set of valid relabelings, with respect to the static
correctness condition defined in Section 2.4.2, and using our assumptions about the static checking environ-
ment. Now let us consider the proofs of these statements, which are given in Figures 2.8 though 2.10. (The
relabeling rule has also been checked for soundness using Nitpick, a counter-example generator [JD96].)
Soundness.If the rule is sound, then if the relabeling rule holds for some principal hierafthihe
correctness condition holds for all possible extensiBhs

(P L1 C L) = [V(P' 2 P) X(L1, P') 2 X(Ls, P')]

A formal proof of this statement is given in Figure 2.8, using the definitiom-ofor policies given on
page 41. Some comments about the proof notation are in order. In this proof, the introduction of a hypothesis
is indicated by an increase in the level of indentation. The notatieny is used in the right-hand columns
wheny is substituted for: in some statement. This step happens when a forawl&(x) is replaced by
P(y), wherey is a fresh variable, as at step 8; it also happens when a foivnul¥(z) is instantiated on an
existing expressiop, producingP(y), as at step 20.

The proof can be argued informally as follows. Soundness is proved by contradiction. Suppdse that
can be relabeled té- in P, P’ > P, andX (L, P’") does not contain some flofw, ). We will show that
(o,7) cannot be inX(L», P’) either, and that therefore the relabeling is safgolf-) is not in X(L4, P’),
there must be some policy in L; that suppresses it¢., » ¢ rR(I;,P’) and P’ - ol > 0). Because
P Ly C Lo, there is a policy/; in Ly that coversl;: r*J; C rR(I;,P) andP  oJ; = ol;. Since
PF oJy=oli,we haveP’ |- 0oJ; = ol, and transitivelyP’ - o.J; = o.

Now, assume the flovv, r) is a member oK (L,, P’). We will show that this generates a contradiction.
BecauseP’ + oJ; > o, there must be some reader in r*.J; such thatP’ - r>ry. Sincer™J; C
rR(I, P), o must also be a member oR (I, P). There must be another readerin r*17; such that
P + ry =71, which means thaf’ + r,=r;, and transitively,”’ + r>=r;. But this contradicts the
statement that ¢ rR([, P’).

By contradiction, we conclud@, r) ¢ X(Ls, P’). Because flows not iK (L, P’) are not inX(Lz, P’)
either, every flow inX (Lo, P’) is also inX(L4, P’). Therefore, the relabeling rule is sound.
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PHLiC Ly (Assumption) (1)

P'DOP (Assumption/arbitrary?’)  (2)
(0,7) € X(La, P") (Assumption/arbitrary, r)  (3)
(o,7) & X(L1, P") (Assumption) 4)
VIel)3(Jely) PFICT (1, Defn. of C) (5)
V(I € Ly)PFol=0o—rerR(,P) (3, Defn. ofX) (6)
Al ely)PProl=0o A rgrR(I,P) (4, Defn. ofX) (7
Leli NP Foli =0 ArgrR(I1, P) (7, 1= 1) (8)
V(' erth) —~(P'Fr=1') (8, Defn. ofR) (9)
IJeLl)PFLTJ (5, 8) (10)
P-LCJ (20,J = J1) (12)
ProJi=ol; A r"J; CrR([1,P) (11, Defn. of C) (12)
P'toJy=oly (2,12) (13)
P'FoJi=o (8,13) (14)
P'FoJi=0—rerR(J, P) 6,1 =J7) (15)
r e rR(Jy, P') (14, 15) (16)
A ert ) P Er=r’ (16, Defn. ofR) an
ro€rtJy A P Er=r a7,7" = ry) (18)
V(rj €extJy)3(r; exTh) PErj=1; (12, Defn. ofR) (29)
Ar; ext) PEry=ry (18, 19,7 = 1) (20)
riertli AN PFrornr (20,r; = r1) (22)
Pl = T2 i?“l (2, 21) (22)
Prr=r (18, 22) (23)
—(P'+r>=mr) (9, 21) (24)
contradiction (23, 24) (25)
(o,7) € X(Ly, P") (4, 25) (26)
V(o,7) (0,7) € X(La, P') — (o0,7) € X(L1, P’) (3, 26) (27)
X(L1,P') D X(La, P') 27) (28)
V(P' 2 P)X(L1, P') 2 X(La, P') (2, 28) (29)
Pr L CLy— (P 2 P)X(Li,P) 2 X(La, P (1, 29) (30)

Figure 2.8: Proof of soundness

Completeness. We must show the converse:
[V(P' 2 P)X(Ly,P') D X(La, P")] — (P F L1 C Ly)

We prove this statement by contradiction: if a relabeling is rejected by thekul&(L-), we can find aP’
such thatP’ O P butX(Lq, P') 2 X(Lo, P’). In other words, if a relabeling is rejected, it might result in a
leak. This proof is given formally in Figures 2.9 and 2.10. Part 1 shows how to construct the new principal
hierarchyP’, and Part 2 shows that the relabeling is unsound in that principal hierarchy. The argument goes
as follows:

If =(P + LiC Ls), there must be some polick in L; such that for every policy/ in L, where
oJ = ol,rJ € rRI;. Consider an arbitrary such polickin L. If there is no suchy, the relabeling leaks
even inP. For each such policy, it must have a readet; wherer; € rJ butr; ¢ rR1I;. We will now use
the readers; of every such/ to construct a principal hierarchy’ that extends” and results in a leak.
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-(P+LiCLy) (Assumption) (1)

(I € L) V(J € Ly) ~(PF ICJ) (1, Defn. of C)  (2)
ILieli A V(JELQ) —\(Pl—fl EJ) (Z,I:>11) (3)
V(J € Ly) P-oJ>ol; — 3(r; erJ)r; € rR([1, P) (3, Defn. of C) (4)

Now, let F' be a Skolem function that maps from afguch that
J € Ly andP - oJ > ol; to a corresponding;, as described

in step 4: (Define F) (5)
V(J € Ly) P+ oJ =ol, — FJ ¢ rR(I, P)
Ly={J|J€Ly AN P-oJ=ol } (Define L}) (6)

Letr be a fresh principal with no relation in principal hierarchy

P to any owners or readers iy or L. (Definer) (7)
Rat = Ujer, DU Uyep, ™) (Define Ryy;) (8)
V(' € Ray) "(PFr=r") A ~(PFr'=7) (7, 8) 9
P =PU{(r,)|3(JeLy)P-FJ=r"} (Define P") (20)
V(r' € Ray) (P'Fr=r" = 3(J € L)) P-FJx1") (9, 10) (11)

Figure 2.9: Proof of Completeness, part 1

Consider a principal hierarch§’ that is exactly likeP, except that there is an additional principahat
in P is unrelated to any of the owners or readerg.irand L,. It is assumed that new principals always can
be added to the principal hierarchy after static checking, so such a principal always potentially exists. We
form P’ by adding a relatiorir, ;) for eachr; and taking the transitive closure:

P =PuU{(rr)|3r;: (r;,r") € P}

Note that sinceP is a pre-order, the relatiofr, ) is already a member aP. Becausel’ is a transitive
closure of a reflexive relation, it is a pre-order too. Using this definitionFAgrwe find that(ol;,r) €
X(Lg, P') but (ol1,7) ¢ X(Ly, P'): the relabeling causes a leak ii. Therefore, the relabeling rule is
complete.

This completeness result can be strengthened further. This rule is complete even in the presence of
negative information about relationships in the principal hierarchy. In fact, negative information is available
in theelse clause in thectsFor statement. BecausetsFor tests whether one principal can act for another,
in the body of theelse clause it is known statically that the specified principal relationship doésxist.

This static information could be used to establishupper boundn the dynamic principal hierarchy, just as

the static principal hierarchy establishes a lower bound. However, an upper bound is not useful in checking
relabelings: the proof for completeness still holds in the presence of an upper boitidbatause we can
choose an arbitrary that is not mentioned in the upper bound.

2.4.4 Static checking

The label model must have certain lattice properties in order to support static checking. Checking of assign-
ments has already been explained by the complete relabeling rule. But the labels being compared may be
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(oly,7) € X(Ly, P') (Assumption) (12)

V(I € L1) P Fol =0l —rerR(I,P) (12, Defn. ofX)  (13)
P'Foli=ol; »rerR(,P) (3,13, = 1) (14)
r € rR(Iy, P') (13, Reflexivity)  (15)
I exrth) PP Er=v (15, Defn. ofR)  (16)
ro€rtlh AN P Fr=nr (16,7 = r9) (17)
T €LY PFFJ=r (11, 17) (18)
Ji€Ly A PhoJi=oly A PFFJi =1y (6,18,J = J;)  (19)
FJ, ¢ rR(Iy, P) (5, 19) (20)
Vir' erth) ~(P+F FJy=71") (20, Defn. ofR) (21)
=(PF FJy=r3) (17, 21) (22)
contradiction (29, 22) (23)
(ol1,7) & X(Ly, P") (12, 23) (24)
(ol1,r) & X(Lo, P') (Assumption) (25)
AIel)oltolh = N rgrRI} (25, Defn. ofX)  (26)
Ji€Ly A P'Fody=ol, A r¢rR(Jy, P) (26,1 = Jy) (27)
—(PFoJs>ol) (Assumption) (28)
(oJy,0l1) € (P’ — P) (27, 28) (29)
oJy=r (10, 29) (30)
contradiction (7, 30) (31)
PFoJy=ol (28,31) (32)
ry=FJy (5, 31, definery)  (33)
re €rtJy A ry € TR(I1, P) (4,5, 33) (34)
P'rr=mry (10, 34) (35)
V(r' exrtJy) =(P' Fr=r') (27, Defn. ofR)  (36)
=(P' b ri=ry) (34, 36) (37)
contradiction (35, 37) (38)
(ol1,7) € X(La, P") (25, 38) (39)
X(Ly,P') 2 X(Ly, P) (24, 39) (40)
(P’ 2 P) X(Ly, P') 2 X(La, P') (10, 40) (41)
~(P+ LiCLy) — 3(P' 2 P) X(Ly, P') 2 X(Ly, P') (1, 41) (42)
V(P 2 P) X (L1, P') 2 X(La, P') = (PF L1 CLy)  (42) (43)

Figure 2.10: Proof of Completeness, part 2

the results of joins (to account for computations), and meets (which occur during the process of automatic
label inference). Therefore, join and meet also must be defined. Join was defined earlier in Section 2.1.4,
but it is revisited here in the context of the new definition of the relafion

Labels form a pre-order rather than a lattice or even a partial order, because two labels can be equivalent
without being equal. However, labels do preserve the important properties of a lattice that make static
reasoning about information flow feasible: any pair of elements possesses least upper bounds and greatest
lower bounds. Because labels form a pre-order, these bounds are equivalence classes of labels rather than
single labels. The set of labels also has a bottom elementwhich is the label}. For mathematical
completeness, the set of labels is considered to have a top elememhich is more restrictive than any
other label. In addition, the join and meet operations distribute over each other.
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The definitions of join and meet have the desirable properties that join and meet are easy to evaluate and
that the resulting labels are easy to deal with when applying the complete relabeling rule.

Join. Using the new definition for the relatioi, we can now revisit the definition for the join, or least
upper bound, of two labels. The join is useful in assigning a label to the result of an operation that combines
several values, such as adding two numbers. The result of adding two numbers ought in general to be
restricted at least as much as the numbers being added. However, we would also like not to restrict the sum
unnecessarily; therefore, it is assigned kst restrictive label that is at least as restrictive as both input
labels. In a lattice, there is a unique least label; however, uniqueness is not important for our purposes. Any
label within an equivalence class is acceptable as long as it can be relabeled to every label that is at least as
restrictive as the input labels.

The join of two label expressions can be defined quite simply; the definition of Section 2.1.4 still holds
with the complete relabeling rule:

Definition of join

LiULy =L ULy

The following are examples of join expressions, whdreB, and C' are principals unrelated by the
acts-for relation:

{A:B}u{B:C} = {A:B;B:C} (2.1)
{A:B}uU{A:B,C} = {A:B} (2.2)
{A:B}u{A:C} = {A:B;A:C} (2.3)

After doing a join, a compiler often can simplify the label expression by removing redundant policies,
so that future checking steps run more efficiently. This simplification has been performed in the second
example, whereas neither policy is redundant in the third example. A policy is redundant if the relabeling
rules behave identically for the label regardless of whether the policy is present. Onelpuolikes another
policy J redundant in static principal hierarchy if I coversJ (that is, P - JC I). In the second join
example, the relatioA : B,C'} C {A: B} istrue, so the former policy is redundant in the join result.

We can now see why it is important that owners be repeatable in labels: it completes the lattice of
equivalence classes. If repeated owners were not allowed, there would be no least upper bound for many
pairs of labels. Consider the third example again, but disallowing repeated ownétss #nother principal
with A’ = A, and it is the only such principal, then the least restrictive labels that{btttB} and{A: C'}
could be relabeled to would included: }, {A: B; A”: C'}, and{A": B; A: C'}, none of which can be
relabeled to any other. There would be three upper bounds in different equivalence classedeast no
upper boundor these two labels.
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The join operation just described produces the least upper bound of two labels. This can be seen by
interpreting a join result as a set of flows, in an extended principal hierdpthly follows directly from the
definition of X that for all such hierarchies’,

X(AUB,P') = X(A,P)nX(B,P)

This result follows becausk L takes the intersection of the sets of flows generates by each of the policies

in the labelL. This equation means that there is no label less restrictive Ahai that bothA and B can

be relabeled to. The result of the join operator can be relabeled to every label that bathB can be
relabeled to, and every label that has this property is in the same equivalence class as the result of the join
operator, since it has the same interpretation as a set of flows. This equivalence class defines the least upper
bound of the two labels.

Declassification. In Section 2.1.5, the rule for declassification was presented as follows: thellabedy

be relabeled td., as long ad.; C L, LI L 4, whereL 4 is a label containing exactly the policies of the form

{p :} for every principalp that the process can act for. This definition continues to have the intended effect
with the complete relabeling rule, and can be performed statically if there is a static notion of the process
authority, which is called thstatic authorityhere.

Becausel.; must be capable of relabeling 1o, LI L 4, every policy inL; must be covered by some
policy in Lo L L4. However, the policies il; that are owned by a principal in the static authority are
automatically covered by policies ih4. Only policies inL; not owned by any principal in the static
authority need be covered ly,, so the effect is that policies ih; that are owned by the static authority
may be weakened arbitrarily by declassification.

Reasoning about joins. Policies in a join independently can be relabeled or declassified. This property is
important because it allows checking of code that is generic with respect to some of the labels that appear
in it. In the case of declassification, there are no surprises for the declassifying principal: the set of flows
that are added by declassifying a join is always a subset of the set of flows that would be added by declas-
sifying the individual policies. There are no interactions between the two parts of the join that create new,
unexpected flows.

For example, if label.; can be relabeled tb,, thenl LI L3 can be relabeled tb, U L3, regardless of
what L3 is. Lz may be an unknown label, or even a label that is determined at run time, without invalidating
the relabeling. Similarly, if.; can be declassified tb,, thenL LI L3 can be declassified th, LI L3. These
relabelings and declassifications work because the join guarantees that all policiesilhbe respected.

Meet. The meet or greatest lower bound of two labels is the most restrictive label that can be relabeled
to both of them. The meet of two labels is not produced by computations during the program’s execution,
but it is useful in defining algorithms for automatic label inference [DD77, ML97]. The meet is useful for
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Definition of meet

A=l a

Figure 2.11: The meet of two labels

inferring the labels of inputs automatically, just as the join is useful for producing the labels of outputs. For
example, in the following code, the most restrictive labebuld have can be expressed by using a meet:

int x;

int{A}y;

int{B} z

y=x

Z =X,
In this example, the variablgsandz have labels oA andB respectively. The variable can be assigned
any labelC so long as it can be relabeled to bathand B. Therefore, AT B is an upper bound on the
label forx. The algorithm for inferring variable labels that is described in Chapter 5 uses a succession of
meet operations in this fashion, refining unknown variable labels downward until either all variables have
consistent assignments or a contradiction is reached.

To construct the meet of two labels, let us first consider the meet of two paolicesl K. If there is no
statically known relation between the owners of these policies, the mgpbiscause no other label can be
relabeled to botty and K. This result is obtained when eithéror K is uninterpretedd.g, is a label pa-
rameter), or when both have known owners but no relationship is known statically to exist between them (by
some containingctsFor statement). Otherwise, suppose that {0 : ..., } andK = {0’ : 7} ... 7], }.

If o’ can act foro or they are equal, the meet of the two policie§ds 71 ...7,,7...70,}. If o is equiv-
alent but not equal to, the meet of the two policies i = ry...rp, 7.7 o'« ryooorp,ry o b
This label is equivalent to other, simpler labels sucha@s r;...7,, 7] ... r;,}, but it is chosen because it
is symmetrical with respect to the two policies.

Now, consider the meet of two arbitrary labels. Because a label containing several policies is the join of
these policies, the meet can be computed by distributing the meet over both joins. The result of the meet,
shown in Figure 2.11, is the join of all pairwise meets of policies, using one policy from each label. In
the figure, labelsd and B are composed of policias, andb;, respectively. Some of these pairwise meets
a; Mb; may produce the labgl}, which of course can be dropped from the join.

As with join, the validity of this formula for meet can be seen by using the interpretation fun€tion
If P’ is some extension of the principal hierarchy used to compute the meet of lalzeld B, then the
following relation holds:
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X(ANB,P') 2 X(A, P'YUX(B, P

Unlike the formula for join, the definition of meet does not always produce the most restrictive label
for all possible extension®”’, though it produces the most restrictive label existing in the static principal
hierarchy. This result occurs because the rule for joining two policies refyrmgen the owners are not
known statically to have a relationship, though in the run-time hierarchy, a relationship may exist. The
practical effect is that label inference must be conservative in some cases. These cases do not seem to be a
significant problem since even explicit label declarations do not work in those cases: any explicitly declared
label more restrictive thafi} would cause static checking to fail.

Distribution properties. It can also be shown straightforwardly that join and meet distribute over each
other in the expected way for distributive lattices, producing equivalent labels:

AN(BUC) =~ (ANB)U(ANCQC)
Au(BNC) ~ (AUB)M(AUCQC)
This means that a static checker doing label inference as described elsewhere [ML97] can rely on the prop-
erties of meet and join to simplify label expressions.
The first equation follows trivially from the definition of meet:

AnBuc) = (a)n(db)u e
= U, anepud, aine
= (ANB)U(ANCQC)

Proving the second equation is only slightly harder:

(AUB)N(AUC) = (|_| |_|b |_| (Ukck))
= (U, enadu, enby (], e U], b Ner)
- Usov (L, s nau (L, jaine) w(L, es e (L, b5 New)
~ (|_|iai)|_|(|_|j7kbj|—|ck

= AU(BNC)

The fourth step is a bit tricky, relying on an absorption property for polieiendb: all(aMb) ~
Because of this property, the telin|; a;) makes redundant other terms containing meets ayith

The absorption property follows directly from the definition of meet for policies, because in any label
containing both the policies andaMb, the latter term will be redundant. To see why, consider the three
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possible cases for the result of the expressiorb, wherea = {0 : ry,...,r,} andb = {0’ : r},... 7, }.
In the first case, the meet may bg, in which case the absorption property holds since{} = a. The
second case is = o' or o’ = o (buto ando’ are not equivalent); in that case,

ald(amb) ={0:71,...., 0 0:T1,.c T, T, .., T}~ a
because the second policy is weaker than or equal to the first. The absorption property also holds in the third
case, where ando’ are equivalent:

/ /

) C o / oo / /
al(alb) = {071, e Tn; O, e Ty Ty ey Ty O ST Loy Py Ty e ooy T

%

a

Again, the second and third policies are redundant.

2.5 Output channels

Itis assumed the private information is not leaked by computation, even computation performed by untrusted
programs, as long as the label discipline is observed. Information is leaked only through transmission outside
the region where labels are enforced. Note that the region of enforcement may include many computers and
networks, but that there is no control over humans, who may choose to violate the rules. The reader-set
component of an output channel policy is the characterization of the part of the outside world that the
output channel leads to. It is essential that the output channel be labeled properly, because information
is transmitted through an output channel based on whether its label can be relabeled to that of the output
channel.

Because the output channel has a decentralized label, there does not need to be any universally accepted
notion of the readers on an output channel. The effect of the relabeling rules is that a prirefieatively
accepts the reader set of a policy only if the owner of the policy acts.ftm fact, the process of creating
labeled output channels can be described rather neatly with almost no additional mechanism. The only
additional mechanism needed is the ability to createsaoutput channelan output channel with the label
{}. Data can be written to such a channel only if it has no privacy restrictions, so the creation of such a
channel is a safe operation: the channel cannot leak any private data.

Labeled output channels can be constructed on top of raw channels in a straightforward manner. A
labeled output channel is simply a function that accepts data with labeld performs the following three
steps:

1. an optional transformation of the data, such as encryption with a public key,
2. declassification of the transformed data to the Idbel

3. and transmission over the raw output channel.
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Step 2 can be performed only if a function runs with the authority of all the owners of thellabel
other words, the labeling system ensures that the owners of all the policies that the output channel claims
to enforce must have granted their authority to the process that creates the output channel; these owners
explicitly trust the output channel. How these owners decide to grant their authority to the output channel is
outside the scope of this thesis, but the granting of authority should be based on the belief that the channel
delivers data to at most the listed readers. Two possible reasons for this belief are the following:

e The physical connection that the raw channel models is known to be a secure connection to at most
the listed readers.

¢ Data being sent on the channel is encrypted in such a way that only the intended recipients will be
able to decrypt it.

2.6 Generalizing labels and principals

There are several interesting ways to extend the basic label model described so far. In this section, a few of
them will be considered.

2.6.1 Integrity policies

We have seen that the decentralized label model supports labels containing privacy policies. All of the struc-
ture that has been developed to this point can now be applied to integrity policies. Integrity policies [Bib77]
are the dual of privacy policies. Just as privacy policies protect against datarbathgnproperly, even

if it passes through or is used by untrusted programs, integrity policies protect data from being improperly
written. An integrity label keeps track of all theourcesthat have affected a value, even if those sources
only affect the value indirectly. It prevents untrustworthy data from having an effect on trusted storage.

The structure of aecentralized integrity policys identical to that of a decentralized privacy policy.

It has anowner, the principal for whom the policy is enforced, and a setwoiters. principals who are
permitted to affect the data. A label may contain a number of integrity policies on behalf of various owners.
The intuitive meaning of an integrity policy is that it is a guarantee of quality. A pdlicy wy, w9} is

a guarantee by the principalthat onlyw; andws will be able to affect the value of the data. The most
restrictive integrity label is the label containing no policiég, This is the label that provides no guarantees

as to the contents of the labeled value, and can be used as the data input only when the receiver imposes no
integrity requirements.

Using an integrity label, a variable can be protected against improper modification. For example, sup-
pose that a variable has a single poligy : wy,w2}. A value labeled{o : w;} may be written to this
variable, because that value has been affected only;hyand the label of the variable permit to affect
it. If the value were labeledo : w;,ws}, the write would not in general be permitted, because the value
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was affected byws, a principal not mentioned as an allowed writer in the label of the variable. (It would be
permitted ifws > w.) Finally, consider a value labelda : w1; 0’ : ws}. In this case, the write is permitted,
because the first policy says thabelieves onlyw; has affected the value. That the second policy exists on
behalf ofo’ does not affect the legality of the write to the variable; it is a superfluous guarantee of quality.

Just as with privacy policies earlier, assignment relabels the value being copied into the variable, and to
avoid violations of integrity, the label of the variable must be more restrictive than the label of the value. In
the preceding sections, a relabeling rule has been developed for privacy. We will now see that this work also
can be applied to integrity labels. In Section 2.4.3, it was said that any legal relabeling for privacy policies
can be characterized by a set of five incremental relabelings. This characterization was attractive because
it is easier to judge the correctness of an incremental relabeling. For an integrity label, there are also five
incremental relabelings:

e A writer may be added to a policyT his addition is safe because an additional writer in an integrity
policy is an additional warning of contamination and can make the value only more restricted in
subsequent use.

e A policy may be removedAn integrity policy may be thought of as an assurance that at most the
principals in a given set (the writers) have affected the data. Removing such an assurance is safe and
restricts subsequent use of the value.

¢ In a policy, a writerw’ may be replaced by a writer that it acts for Becausev’ has the ability to act
for w, a policy permittingw as a writer permits bothy andw’ as writers, whereas a policy permitting
w’ does not, in general, permit. Therefore, replacing’ by w really adds writers, a change that is
safe.

¢ A policy J may be added that is identical to an existing policy | exceptdhat oJ. The new policy
offers a weaker integrity guarantee than the existing one, so the value is not made less restrictive by
the addition of this policy.

e Any principal that acts for the owner of a policy may be removed as a writee most restrictive
integrity policy that any principad would want to express is that ondy(or principals that can act for
o) could write to the labeled variable. Therefore, the owner of a policy (and any principal that acts for
the owner) is implicitly considered to be a writer, and need not be expressed explicitly as such. This
rule is the equivalent of self-authorization for privacy policies.

These five kinds of relabelings turn out to capture exactly the inverse of the relabelings that are allowed
by the incremental rules for privacy labels, described in Section 2.4.3. To see why, consider each of the
incremental rules above in turn. The effect of each of these rules can be reversed by applying the privacy
rules:
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e Adding a writer.The privacy rules permit removing a reader.
e Removing a policyThe privacy rules permit adding an arbitrary policy.

e Replacing a writerw’ with w, wherew’ = w. The privacy rules allow a readef to be added is if
also a reader, with’ > . The reader then can be removed.

e Adding a policyJ identical to an existing policy, with an inferior owner 6I>-o0.J). The privacy
rules allow the owner of to be replaced witlo/, making the two policies identical.

e Removing the owner of a policy from the writer SEhe owner of a policy may be added to the reader
set of a policy.

Similarly, the effect of each of the privacy rules may be reversed by applying the integrity rules.

If L, and L, are privacy labels, anfl; can be relabeled th-, then there is a sequence of incremental
privacy relabelings that converfs; into L,. Suppose thal} and L/, are integrity labels with the same
form asL; and L,. There must be a sequence of incremental integrity relabelings leadingZfydmZ.
Therefore, ifL; C Lo, thenL,, C LY. The ordering relations for privacy and integrity labels are perfect duals.

This property means that all of the rules for integrity can be derived directly from the rules for privacy.
We have just seen that for privacy labéls and L, and corresponding integrity label§ and L5,

PrIL CLy«— P+LYC L]

This logical equivalence defines the complete relabeling rule for integrity in terms of the corresponding rule
for privacy that was given in Section 2.4.3.

The rules for the meet and join of two integrity labels are similarly expressed in terms of their privacy
label counterparts. These rules follow directly from the dual relationship of the ordering refation the
two kinds of labels.

L3%L1|_|L2 — Lg’f-l:‘L/lﬂL/Q

L3%L1|_|L2 — Lg'&"L&ULIQ

Operationally, theneetof two integrity labels is performed by simply concatenating their policies, as if
thejoin of the corresponding privacy labels were being evaluated, arjdithef integrity labels corresponds
to themeetof the corresponding privacy labels. In other words, the meet of two labels is the most restrictive
label that is less restrictive than (contains all the policies of) the labels, so it is performed by taking a union
of the policies. Similarly, the join of two integrity labels can contain only policies enforced by both labels.
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Declassification. An analogue to declassification also exists for integrity labels. For privacy labels, the
declassification mechanism allows privacy policies to be removed in cases where reasoning outside the
scope of strict dependency analysis (as in the tax-preparer example) suggests that the policy is overly strict.
The dual action for integrity policies is 'dd new integrity policies in situations where the data has higher
integrity than strict dependency analysis might suggest. If a principal adds a new integrity policy to a label,
or removes writers from an existing policy, it represents a vote of confidence in the integrity of the data, and
allows that data to be used more freely subsequently. Just as with declassification for privacy, however, the
reasons why a principal might choose to do so lie outside the scope of this model.

Adding new policies is safe because the new policy may be added only if the current process of the
authority to act for the owner of the policy. Other principals will not be affected unless they trust the policy
owner (and by extension, the process performing the declassification) to act for them.

Declassification can be described more formally: declassification of integrity Iabkel a labelLs is
permitted whenl, 1 L% C Ly, whereL’, is an integrity label in which there is a policy for every principal
in the authority of the process. Each such policy lists all principals in the system as writers. Note the duality
of this rule to the rule for declassification of privacy labels.

Code labels. Integrity labels do introduce one new issue: code can damage integrity without access to
any extra labeled resource. For example, the routine alleged to add two numbers might perform a different
computation, destroying integrity. To keep track of this effect, an integrity label must be assigned to each
function in a program, and joined with any value computed by the function. In a program expression like
f(x,y), all three sub-expressiong,(x, andy) have an associated integrity label.

Code labels could be applied to privacy as well, and would have some utility in the case where the code
itself were a secret. For both privacy and integrity the natural default code lapg! Isowever, this default
label has quite different effects for the two kinds of labels. The l§eis theleastrestrictive privacy label
and has no effect when joined with another label. As an integrity label, it imtrsrestrictive label, since
it offers no guarantee about the integrity of the data computed by the function.

Because an integrity label offers a quality guarantee, some authority is needed to label code with it—
specifically, the authority to act for the owners of any integrity policies in the label. One would expect that
the owner of the integrity label typically would not be the author of the code. Instead, the author would
appear as writer in the integrity label.

2.6.2 Combining integrity and privacy

The set of all privacy labels, which will be callegl>, and the set of all integrity labelsSf), each form
a pre-order with ordering relations p and C ;, respectively. These two kinds of labels can be used to
generate a system of combined labels that enforce privacy and integrity constraints simultaneously.

A combined label is written as a sequence of privacy and integrity policies. To disambiguate the two
kinds of policies, privacy policies are written in the fofm — 1,79, ...}, and integrity policies are written
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in the form{o «— w1, w9, ...}, where the arrows suggest the direction of information flow. A combined
label can be considered as a pdit>, L), which is a member of the sét> x S;. The ordering relation on
combined labels and the join and meet operations are easily defined in the usual way for product spaces of
ordered sets:

(Lp,L1)T(Lp, L) = LpCpLpANLiCrL}
<LP,L[>|_|<L93,L,I> = <Lp|_|PL93,L[|_|[L[>
(Lp, L)y (Lp,L}) = (LpNpLp,LiN;Ly)

Similarly, a combined labelLp, L) can be declassified to another combined 184}, L’;) if both com-
ponents can be declassified. Helé, is used to refer to the label calldd, earlier.
Lp Cp (LpULY)

(Lyng LY) Ep LY
(Lp, L) can be declassified td/}», L)

In summary, for all of these rules for combined labels, the integrity and privacy policies are indepen-
dently enforced and do not interact.

2.6.3 Generalizing principals and the acts-for relation

Principals and the principal hierarchy are more powerful concepts that might be apparent. Principals can be
used to represent a broader range of entities than users, groups, and roles. When used as readers or writers in
policies, principals may also represent input and output devices, user-defined privacy or integrity levels, and
compartments. Also, it is not necessary that owners and readers (and writers) are the same kinds of entities.
Using the notation of Section 2.6.2, an external connection to a user A through a cable might be repre-
sented as an output channel with the single-policy privacy laeelt — A, cable}, where root is a trusted
principal. Information that is not marked as readable by the cable principal will be prevented from trans-
mission on the cable. Having the cable principal as one of the readers of the output channel is a way of
reflecting the danger that the cable may leak information in some way. Similarly, if the cable is used as
an input channel it might be assigned the integrity polieyot < A, cable} to indicate that data from this
input channel passed through the cable on its way into the system and was conceivably damaged in transit.
The principal hierarchy can be used to establish categories of such devices. If the prabipaicts
for another principakecure-channel, it effectively becomes one of the secure-channel devices, and will
interoperate with labels that are expressed in termasanfe-channel rather than in terms of specific devices.
Also, a user can express trust in secure channels by allowingdine-channel principal to act for the user’s
principal; this trust will allow any data that lists the user as a reader to be sent to the channel, assuming the
policy owners have the required degree of trust. We will see in a moment that less trusteitutleechannel
principal is needed than one might expect.
Users can establish their own abstract privacy levels by introducing new role principals to represent these
privacy levels. The acts-for relation among these principals expresses the information flows allowed among
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the levels, in the absence of the use of declassification. For example, a user might have two jobs whose in-
formation should by default be kept compartmentalized. Suppose Amy is both a manager and a committee
chair. Her compartmentalization concerns are addressed by introducing two new prinsipglsianager
andAmy_chair, as shown in Figure 2.12. As long as Amy does not assume the full power Afrth@rinci-

pal, data will not be allowed to move between the compartments. However, the declassification mechanism
is always available for explicit use in cases where she deems it appropriate. Roles can be introduced to
represent user-specific integrity levels in a similar fashion.

One unsatisfactory but repairable aspect of the model described so far is that the acts-for relation appears
to give too much power. For example, the approach that has been described for modeling a group principal
is for each of the members of the group to act for the group principal. This structure allows group members
to read anything that can be read by the group principal. However, it also gives them the additional power to
declassify and redistribute publicly anythiogvnedby the group. This added power violates the principle
of least privilege.

What we would like is to introduce different kinds of acts-for relations, so that group members have the
power to read group data but not to declassify it. Suppose that Amy and Bob are group members; Amy is a
group administrator with the power to declassify data owned by the group, whereas Bob is a group member
who is able merely to read data that can be read by the group. This scenario can be modeled as shown in
Figure 2.13. As the diagram shows, Bob has the right&al forthe group, whereas Amy has the full power
to act for the group, which implies the ability to read for and alsddolassify fothe group. Both of these
new, weaker relations are transitive:zifreads fory andy reads forz, thenz reads forz; declassifies-for
behaves similarly.

To understand the implications of the extended acts-for relations, it is not necessary to develop a new
theory of labels, because a system containing extended acts-for relations can be translated into the original
model. A principal hierarchy’r supporting these extended relations can be translated into as another prin-
cipal hierarchyP that contains only the simple acts-for relation; a label that names princip&ls elso
may be translated into a corresponding label that names principglsTihe semantics for the extended sys-
tem Pr, are determined simply by applying the existing rules for relabeling, join, and meet to the translated
forms of the labels irP.

The translation fromPg to P is performed as follows. Each principalin Pr corresponds to three
principals in P namedp,, p., andp,,, with the acts-for relations shown in Figure 2.14: bgthand p,,

Amy

N\

Amy_manager Amy_chair

Figure 2.12: Compartments through hierarchy
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Bob Amy

reads-for \ / acts-for

group

Figure 2.13: Modeling a group

act for p,. As the names suggest, each of the principalsp,., andp,, is used in only one of the three
possible positions it might occupy in a label: as an owner, reader, or writer, respectively. A privacy label
{Bob: group}, which mentions principals i#®, is translated to the labg¢Bob,: group, }, becauséob is
being used as an owner, agoup as a reader. Becauge always acts fop,, a principal is automatically
authorized to read data that it owns. Process authority also must be translategfrmmP. A process
running with authority op actually runs with the authority of the principal; the authority of the principals
pr andp,, is never given to a process.

Figure 2.15 shows how the principal hierarchy of Figure 2.13 is translated into the simpler model. In the
figure, Bob has power only over the princigabup,., giving him the right to read. The ability of Amy to act
for both thegroup, andgroup, principals means that she both can declassify data owned by the group and
can read data readable by the group.

There is a third relationship that Amy can have to the group:stéiereadsrelationship, which means
that Amy can read any data owned by the group. By itself, this relationship does not mean that Amy can
read data readable by the group, or that she can declassify group data. The self-reads relationship is weaker
than the other two relationships, because the abilitiesro§ to read for and to declassify fgroup each
imply by transitivity thatAmy self-readsgroup.

These three different kinds of acts-for relations in fhghierarchy between two principaté andp are
translated as follows to th2 hierarchy:

The principalp’ reads forthe principalp. P> pr

The principalp’ declassifies fothe principalp. P> Do
The principaly’ is self-authorized to read for (self-reads)  pl. > p,

These three relations also correspond to three of the incremental relabeling rules defined in Section 2.3.1:
reads-for corresponds to the rule for adding readers, declassifies-for corresponds to the rule for replacing
owners, and self-reads corresponds to the rule for self-authorization.

P, P,
pO

Figure 2.14: Splitting principals
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Figure 2.15: Modeling a group with split principals

We can see from this that the extended principal hiera€hysupports five new relations that are
indicated by writing appropriate subscripts after thsign.

e declassifies-for p'>=,p = P> p,
o reads-for p=rp = phzpr
e writes-for, P'Ewd = Dy Dw
o self-reads P'=d = DPLEDo
o self-writes P Zwol = Py Do

The three relations that affect privacy (declassifies-for, reads-for, and self-reads) correspond exactly
to the three ways that the relation is used in the second definition of the relatiotnon page 41. In
that definition, the expressiasJ/ = ol compares two owners, and is therefore a test of the declassifies-for
relation. The expression; >~ ol compares a reader to an owner, so it is a test of the self-reads relation.
Finally, r; = r; compares two readers, and is a test of the reads-for relation. The complete relabeling rule
therefore can be expressed in g system in such a way that enforcing this new rule directly has the same
effect as enforcing the original complete relabeling rule on the translated labels. The new version of the
complete relabeling rule is as follows:

PHICJ=(PFoJz,0l) NY(rjer]) [PFrj=,0l V 3(r; €xl) Pl rj=,r

By using this rule, the model with extended acts-for relations can be enforced directly ia thierarchy,
without reference to the transformation 8f into the original model.

These five acts-for relations-(,, =, =, =r0, —wo) CaN be viewed as access control lists [Lam71]. For
each principalp and distinct kind of acts-for relation, there is a list of principals thailows to act for
it in that manner. The relations are similar to access control lists in that there is an appropriate notion of
ownership: a principal (typically) has the power to change which other principals are in its lists. These
acts-for relations are not complete: for example, one privilege that a principal might usefully grant another
is the ability to modify these lists, changing the principal hierarchy. Such privileges and their management,
though important, are outside the scope of this work.

The relations differ from the usual concept of access control lists in that certain axioms connect the
relations. One axiom is that authorization is transitivep ifeads forg andq reads forr, thenp reads for
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acts-for

|

implies declassifies-for
reads-for writes-for
self-reads self_writes

Figure 2.16: Partial order on the extended acts-for relations

r. In addition, some of these relations imply others; there is a partial order on the relations, as shown in
Figure 2.16. The original relation acts-for, which gives one principal the full privileges of another, implies
all five of the new relations.

2.7 Summary

The decentralized label model is a promising approach to specifying information flow policies for privacy
and integrity. It provides considerable flexibility by allowing individual principals to attach flow policies to
individual values manipulated by a program. These flexible labels then permit values to be declassified by
an owner of the value. This declassification is safe because it does not affect the secrecy guarantees to other
principals who have an interest in the secrecy of the data. This support for multiple principals makes the
label model ideal for mutually distrusting principals.

One important feature of the decentralized label model is the complete relabeling rule, which precisely
captures all the legal relabelings that are allowed when knowledge about the principal hierarchy is available
statically. The rule is both sound and complete, and easy to apply. The rule is formalized as a pre-order
relation with distributive lattice properties: join and meet operators are defined on these labels, so a compiler
or static checker can use them to check information flow. When information flow is checked statically, run-
time overhead is avoided. The compile-time overhead of checking these rules also is small.

The new rules for relabeling, join, and meet make the decentralized label model more practical and more
usable. They also make it easier to model common security paradigms. For example, information flow can
be described concisely in a system with group or role principals. Individual principals can model their own
multilevel security classes in a decentralized fashion, and the rules also can be used in their dual form to
protect integrity, or to protect both privacy and integrity simultaneously.
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Chapter 3

The JFlow Language

The preceding chapter discusses the decentralized label model with only a little consideration about how
to apply it to a programming language. This chapter presents JFlow, a new programming language that
extends the Java language [GJS96] and permits static checking of flow annotations. A shorter description of
the JFlow language also has been published elsewhere [Mye99]. JFlow is intended to support the writing of
secure servers and applets that manipulate sensitive data.

Like other recent approaches to static information-flow checking [VSI96, SV98, HR98], JFlow treats
static checking of flow annotations as an extended form of type checking. Programs written in JFlow can
be checked statically by the JFlow compiler, which detects any information leaks through covert storage
channels. If a program is type-safe and flow-safe, it is translated by the JFlow compiler into an equivalent
Java program that can be converted into executable code by a standard Java compiler. The static checker
does not, however, detect leaks through covert timing channels.

JFlow is the most practical programming language developed to date that allows static information flow
checking. An important philosophical difference between JFlow and other work on statically checking
information flow is the focus on a usable programming model. Despite a long history, static information
flow analysis has not been accepted widely as a security technique. One major reason is that previous models
of static flow analysis were too limited or too restrictive to be used in practice. The goal of this work has
been to add enough power to the static checking framework to allow reasonable programs to be written in a
natural manner.

This work has involved several new contributions. Because JFlow extends a complex, object-oriented
programming language, it supports many language features that have not been integrated with static flow
checking previously, including mutable objects, subclassing, dynamic type tests, access control, and excep-
tions. JFlow also provides powerful new features that make information flow checking less restrictive and
more convenient than in previous models:

e The decentralized label model presented in Chapter 2 is supported, allowing multiple principals to
protect their privacy even in the presence of mutual distrust. JFlow also supports the safe, statically-
checkedleclassificatioomechanism described in Chapter 2, which permits a principal to relax its own
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privacy policies, but not to weaken the policies of other principals.

e Label polymorphisnallows the expression of code that is generic with respect to the security class of
the data it manipulates.

e Run-time label checking and first-class label values provide a dynamic escape when static checking
is too restrictive. Run-time checks are statically checked to ensure that information is not leaked by
the success or failure of the run-time check itself.

¢ Automatic label inference makes it unnecessary to write many of the annotations that would be re-
quired otherwise.

The goal of type checking is to ensure that the apparent, static type of each expression is a supertype of
the actual, run-time type of every value it might produce; similarly, the goal of label checking is to ensure
that the apparent label of every expression is at least as restrictive as the actual label of every value it might
produce. In addition, label checking guarantees that, except when declassification is used, the apparent label
of a value is at least as restrictive as the actual label of every value that afigbtit. In principle, the
actual label could be computed precisely at run time. Static checking ensures that the apparent, static label
is always a conservative approximation of the actual label. For this reason, it is typically unnecessary to
represent the actual label at run time.

However, the two kinds of static checking differ in at least one important way. With type checking, it
is not as important to achieve a language that can be checked entirely statically. Limitations in static type
checking can be worked around by resorting to dynamic type checking, as in Java, or by simply trusting that
programmers understand the types in their programs better than the static checker does, as in C++. These
fallback positions are not available when checking information flow, because dynamic information flow
checking itself creates a new information channel. Itis for this reason that the language mechanisms in JFlow
that support static checking of information flow are more elaborate than the usual language mechanisms for
static type checking.

The JFlow compiler is structured as a source-to-source translator, so its output is a standard Java program
that can be compiled by any Java compiler. For the most part, translation involves removal of the static
annotations in the JFlow program after checking them; there is little code space, data space, or run time
overhead, because most checking is performed statically.

JFlow is not completely a superset of Java. Certain features have been omitted to make information flow
control tractable. Also, JFlow does not eliminate all possible information leaks. Certain covert channels
(particularly, various kinds ofiming channels are difficult to eliminate. These limitations of JFlow are
enumerated later, in Section 3.5.
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int{public} x;
boolean{secret} b;

int x = 0;

if (b) {
x=1;
}

Figure 3.1: Implicit flow example

3.1 Static vs. dynamic checking

Information flow checks can be viewed as an extension to type checking. For both kinds of static analysis,
the compiler determines that certain operations are not permitted on certain data values. Type checks may be
performed at compile time or at run time, though compile-time checks usually are preferred when applicable
because they impose no run-time overhead.

By contrast, fine-grained information flow control is practical only with some static analysis. This claim
may sound odd; after all, any check that can be performed by the compiler can be performed at run time
as well. The difficulty with run-time checks is exactly the fact that they f@n In failing, they may
communicate information about the data that the program is running on. Unless the information flow model
is properly constructed, the fact of failure (or its absence) can serve as a covert channel. By contrast, the
failure of a compile-time check reveals no information about the actual data passing through a program. A
compile-time check only provides information about the program that is being compiled. Similarly, link-
time and load-time checks provide information only about the program, and may be considered to be static
checks for the purposes of this work.

For example, consider the code segment of Figure 3.1. By examining the value of the vaaiftehis
segment has executed, we can determine the value of the secret bmatgan thoughx has been assigned
only constant values. This flow of information frasrinto x is called anmplicit flow, because information
is transferred through the program control structure rather than through a direct assignment. The problem is
the assignment = 1, which should not be allowed.

Static analysis is required in order to make this program work safely. A run-time check easily can
detect that the assignment 1 communicates information improperly, and abort the program at this point.
Consider, however, the case wheris false: no assignment tooccurs within the context in which affects
the flow of control. The fact that the program aborts or continues implicitly communicates information
about the value o0f. This information can be used in at least the case whésdalse.

Most multilevel-secure systems handle such programs safely by restricting all writes that folldw the
statement, on the grounds that once the process has obsgriteasl irrevocably tainted. Every value the
process computes is tainted by the labdi,afven if it does not depend on the conditional in any way. A label
is associated with the process, and becomes more restrictive with every value that the process observes. The
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problem with this approach is that it is too coarse-grained: the process label easily can become so restrictive
that every value the process computes is unusable.

We could imagine inspecting the body of tifistatement at run time to see whether it contains disallowed
operations, but in general this requires the evaluation of all possible execution paths of the program, which
is clearly infeasible at run time. The advantage of compile-time checking is that in effect, static analysis
efficiently constructs proofs thatto possible execution path contains disallowed operations. We will see
shortly how static analysis can be used to check this small program properly.

3.2 Language support for information flow checking

The next two sections present an overview of the JFlow language. This section concentrates on the new
features added to the JFlow language and the rationale for their addition. The following section examines
interactions between information flow control and complex programming language features such as objects,
methods, and inheritance. In both sections, ordinary Java semantics are not discussed, because Java is widely
known and well-documented [GJS96].

3.2.1 Labeled types

In a JFlow program, a label is denoted biabel expressiopwhich is a set oEomponent expressionshese
expressions may take the form seen in Section 2.1.2: a label expression may be a series of policy expressions,
separated by semicolons, such{as: 1, ro; 02: r2, r3}. In this case, the two component expressions are
both policy expressions. JFlow supports only privacy policies, although it would be straightforward to add
combined privacy and integrity policies of the sort described in Section 2.6.2.

As in Chapter 2, the component expressiavner. reader, reader, ...denotes a policy. In a program,
a component expression may take a few additional forms. One added component form is a variable name,
which denotes theetof policies in the label of the variable named. For example, the label expregsjon
contains a single component expression; this label means that value it labels should be as restricted as the
contents o are. The label expressidfa; o: r} contains two component expressions, indicating that the
labeled value should be as restrictechas, and also that the principalrestricts the value to be read by at
mostr. Other kinds of label components will be introduced later.

In JFlow, every value has labeled typehat consists of two parts: an ordinary Java type sucintas
and alabel that describes the ways that the value can propagate. Any type expressgrbe labeled with
any label expressioh This labeled type expression is writtentdls; for example, the labeled typet{p:}
represents an integer that principadwns and, because no readers are listed, thatpcdy read. A labeled
type may occur in a JFlow program in most places where a type may occur in a Java program. For example,
variables may be declared with labeled type:
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int{p:} x;

int{x}y;

Int z;
The label usually may be omitted from a labeled type, as in the declaration here of the varisiiesn
a label is omitted, a default label is automatically provided in a manner that depends on the context. For
example, when the label of a local variable is omitted, the label is inferred automatically from the uses of
the variable. When the label of an instance variable (also knowrfiakl@r member variableis omitted,
the default label is the labdl}. As in Chapter 2, this label is the least restrictive possible label because it
contains no components to restrict the data it labels. There are several other cases in which default labels
are assigned; however, these cases are discussed later.

The type and label parts of a labeled type act largely independently. The natatioff’ is used here

to mean that the typ# is a subtype of the typ&'. The intuitive behavior of subtyping is that it operates
independently on the type and label: for any two tySfesdT and labeld.; andLs, S < TAL1 C Ly «+—
S{L1} < T{Ly} (asin [VSI96]). However, this rule is really true only in an environment in which there
is no mutation, such as a functional programming language. In this thesis, subtyping is a relation only on
types, not on labeled types.

3.2.2 Implicit flows

In JFlow, the label of an expression’s value varies depending on the evaluation context. This somewhat
unusual property is needed to prevent leaks through implicit flows: channels created by the control flow
structure itself. To prevent information leaks through implicit flows, the compiler associgieg@mm-
counter label(pc) with every statement and expression, representing the information that might be learned
from the knowledge that the statement or expression was evaluated. The the idea of the program-counter
label is due to Fenton [Fen74]. For example, consider the program of Figure 3.1 again, assuming that no
information can be learned from the fact that the program is executed (that is, ingitaty {}). In this
case, the value gfc during the consequent of thiestatement igb}. After theif statement, it is again true
thatpc = {}, because no information abobitcan be deduced from the fact that the statement afteif the
statement is executed. (It is not true in general that the valpe dverts afteif statements, but is true here
because thig statement always terminates normally.) The label of a literal expressionl(eigthe same
as itspc, or {b} in this case. The unsafe assignment in the example is prevented because the label of the
variable being assigneddublic}) is not at least as restrictive as the label of the value being assighgd (
or {secret}). The label of a variable is the same as its declared label, joined witbcthethe point of its
declaration. The label of a variable expression (such) s the join of the variable label and tipe at the
point where the expression occurs. The label of the expreds®fib}, so the assignment is in general not
permitted: the conditiogb} C {x} translates tdsecret} C {public}, which is not true in general.

One way of thinking of the program-counter label is that there is a distinébr every basic block in
the program. In general, the flow of control within a program depends on the values of certain expressions.
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Figure 3.2: Basic blocks for afistatement
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At any given point during execution, various valug$ave been observed in order to decide to arrive at the
current basic block; therefore, the labels of these values affect the cperent

pc = UZ{UZ} = {Ul}Ll{’Ug}l_l R

Any mutation (that is, assignment) potentially can leak information about the observed valseshe
variable that is being mutated must be at least as restricted as the labels on all these variables; in other words,
its label must be at least as restrictive as the label

This labell_|;{v;} can be determined through straightforward static analysis of the program’s basic block
diagram. The decision about which exit point to follow from a basic biBgklepends on the observation
of some valuey;. The labelpc for a particular basic bloci is the join of some of the labelg); }. A label
{v;} isincluded in the join if it is possible to readh from B;, and it is also possible to reach the final node
from B; without passing througl®. If all paths fromB; to the final node pass throudh, then arriving at
B conveys no information abowt.

This rule for propagating labels through basic blocks is equivalent to the rule of Denning and Den-
ning [DD77]. JFlow does not apply this rule directly. Instead, the rules for determining:thiea statement
or expression are expressed as static inference rules in Chapter 4. Usually the static inference rules generate
the samepc label as the rule based on basic block analysis, though there are cases in which the inference
rules generate a more restrictive label, resulting in a loss of precision. This loss of precision occurs in code
that throws and catches exceptions in a complex manner; it does not appear to be a problem in practice.

3.2.3 Termination channels

Information can be transmitted by the termination or non-termination of a program. Consider the execution
of a “while” statement, which creates a loop in the basic block diagram. This situation is illustrated in
Figure 3.3. Using the basic block rule just given or the static inference rules that will be presented later, it is
the case that after the statement terminatess {}, using the same reasoning as for tife Statement. This
labeling might seem strange, because we know the valbendfen we arrive at the final block. However,
arriving at the final block gives no information about the valué before the code started.
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x=0;

W)?Ilel(;b) { while (b)
b = false; F

}

O X

Figure 3.3: Basic blocks forahile statement

There is no way to use code of this sort to transmit information improperly as long as all programs termi-
nate, or at least if there is no way to derive information from non-termination of a program [DD77, AR80].
The way one decides that a program has not terminated is to time its execution, either explicitly or through
asynchronous communication with another thread. As discussed later, JFlow does not attempt to control
information transfers through timing channels, termination channels, or asynchronous communication be-
tween threads.

3.2.4 Run-time labels

In JFlow, labels are not purely static entities; they may also be used as values. First-class values of the
new primitive typelabel represent labels. This functionality is needed when the label of a value cannot
be determined statically. For example, if a bank stores a number of customer accounts as elements of a
large array, each account might have a different label expressing the privacy requirements of the individual
customer. To implement this example in JFlow, each account can be labeled by an attached dynamic label
value.

A variable of typelabel may be used both as a first-class value and as a label for other values. For
example, methods can accept arguments with run-time labels, as in the following method declaration:

static float{*Ib} compute(int x{*Ib}, label Ib)

In this example, the component expressfimdenotes the label contain@dthe variableb, rather than the
label of the variablelb. To preserve safety, variables of tyfabel (such adb) may be used to construct
labels only if they are immutable after initialization; in Java terminology, if theyfiaeg.

The important power that run-time labels add is the ability to be examined at run time, usivgtidte
label statement, an example of which is shown in Figure 3.4. The code in this figure attempts to transfer
an integer from the variabbe to the variabley. This transfer is not necessarily safe, becausdabel, Ib,
is not known statically. The statement examines the run-time label of the expresaiwh executes one of
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label{L} Ib;
int{xlb} x;

int{p:} v;
switch label(x) {

case (int{y} z) y = z;
else throw new UnsafeTransfer();

}

Figure 3.4: Switch label

severalcase statements, or an optionake statement. The statement executed is the first whose associated
label is at least as restrictive as the expression label; that is, the first statement for which the assignment of
the expression value to the declared variable (in this caseegal. If it is the case thdt«lb} C {p :}, the

first arm of the switch will be executed, and the transfer will occur safely viatherwise, thelse clause

will be executed and an exception thrown.

The statement appears superficially likeypecase statement as in Modula-3 [Nel91]; however, it does
not permit any discrimination on the actual (run-time) type of the expression. The types of the variables
declared in each of the arms of the statement must all be supertypes of the apparent type of the expression.
In this example, the apparent type>of int, so the declared type aefmust also bént.

Becausdb is a run-time value, information may be transferred through it; in the example, one might
observe which of the two arms of thaitch are executed and infer the valuelbfaccordingly. However,
this information channel is not covert. To prevent this information channel from becoming an information
leak, thepc in the first arm is augmented to inclutles label, L. The assignment fromto y is permitted
only if L C {y}. Thus, the ordinary label-checking rules are used to control this information channel.

As we have seen, this run-time test of the labib} and{y} gives information about the contents
of the variablelb. If the principalp is afinal local variable of typeprincipal, the run-time test may give
information about the contents pfas well. Thus, the assignment is permitted onlyp} C {y}, because
information about bothb and p affects the possibility of executing that first arm. Note that iE not a
run-time principal, the{p} = {}, and the conditioqp} C {y} is trivially true.

A switch label statement may contain sevetabe arms. In each arm, the fact that it is executed gives
information about the labels of all previousse clauses, because the earlier clauses are kmowto have
been executed. Therefore, thein each arm, including the final, optiongte clause, is as restrictive as the
labels ofall of the labels that the previous case arms tested against. In this example pfitbeelse clause
is as restrictive as botflL} and{p}.

Run-time labels can be manipulated statically, though conservatively; they are treated as an unknown
but fixed label. The presence of such opaque labels is not a problem for static analysis, because of the lattice
properties of these labels. For example, given any two labglsnd L, whereL; C Lo, it is the case for
any third labelLs that L, LI L3 T Lo LI L3. This implication makes it possible for an opaque labglto
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appear in a label without preventing static analysis. Thus, unknown labels, including run-time labels, can be
propagated statically.

3.2.5 Reasoning about principals

JFlow contains a mechanism for determining the authority of a running process that is both dynamically and
statically checked. This authority mechanism is similar to that in other systems supporting more complex
access control mechanisms. In JFlow, a method executes with some authority that has been granted to it. The
authority is essentially the capability to act for some set of principals, and controls the ability to declassify
data. This simple authority mechanism can be used to build more complex access control mechanisms,
though the focus of this work is on using authority only to control declassification.

At any given point within a program, the static checker understands the code to be running with the
ability to act for some set of principals, which is the static authority of the code at that point. The actual
authority may be greater, because those principals may be able to act for other principals. The static authority
can never exceed the actual authority unless revocation occurs while the program is running.

Static principal hierarchy. The static checker maintains a notion of #tatic principal hierarchyat every
point in the program. The static principal hierarchy is a set of acts-for relations that are known to exist. The
static principal hierarchy is a subset of the acts-for relations that exist in the true principal hierarchy.

The static authority of a procedure may be augmented by testing the principal hierarchy dynamically.
The principal hierarchy is tested using the newsFor statement. The statementtsFor(p;, p2) Sexecutes
the statemen$if the principalp; can act for the principad, in the current principal hierarchy. Otherwise,
the statemensis skipped. The statemeSBis checked statically using the knowledge that the tested acts-for
relation exists: for example, if the static authority inclugiesthen duringSit is augmented to includg,.

In addition, theactsFor statement may also have @ge clause, just as if it were afistatement. Thelse
clause is executed when the tested relationship does not exist. Howewse ttlause is statically checked
without any additional knowledge. As Section 2.4.3 showed, negative information about acts-for relations
cannot be used to augment static checking.

The authority of a process can be viewed simply as part of the principal hierarchy. The process represents
a transient principal within the hierarchy. When authority is granted to the process, either by a principal in
the system or by calling code that explicitly grants the authority, it can be thought of as a transient acts-for
relation.

Revocation. It is possible that while anctsFor statement is being executed, the principal hierarchy may

change in a way that would cause the test in the statement to fail. In this case, it may be desirable to revoke
the code’s permission to run with that authority, and it is assumed that the underlying system can do this,
by halting the process that is executing the code at some point after the hierarchy changes. If a running
program is halted because of a revocation, information may be leaked about what part of the program was
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int b;
inty =0;
if (b) {
declassify ({y})y =1,
¥

Figure 3.5: Adeclassify statement

being executed. This leak is a covert channel, but probably one that can be made slow enough that it is
impractical to use.

Another strategy for dealing with asynchronous revocation is to run the program as a series of transac-
tions. The principal hierarchy is checked at the time that the transaction commits to ensure dbiat no
For statements were executed using principal hierarchy information that was invalidated by the time that
the transaction committed. If invalid acts-for relations were used, the transaction is aborted and all of its
changes are rolled back, preventing improper information flows. In this framework, handling revocation
properly becomes a by-product of the isolation from asynchronous modification that transaction systems
normally provide.

The current JFlow implementation does not attempt to invalidate execution because of revocation. How-
ever, there is one form of revocation that requires no extra support: the revocation that occurs when a method
that has been granted authority terminates. As described in the preceding section, such a method can be con-
sidered a transient principal within the system. Revocation of the privileges of this principal is safe because
the principal itself no longer exists after revocation; there is no way to name the principal corresponding to
an executing method.

3.2.6 Declassification

A program can use its authority to declassify a value according to the model of Section 2.4.4. The expression
declassify(e, L) relabels the result of an expressiowith the labelL. Declassification is checked statically,
using the static authority at the point of declassification. déwtassify expression may relax only policies
owned by principals in the static authority.

A program also can use its authority to declassify the program-counter label. This functionality is
provided by the new statemediclassify(L) S, which executes the statemefiusing the program-counter
label L. This form of declassification is also checked statically. For example, Figure 3.5 contains an example
of adeclassify statement. Assuming that the labelya§ not more restrictive than the labellafthis program
declassifies the implicit flow frorb into y. For the duration of the assignment intothe program-counter
label is relaxed until it is no more restrictive thaitself. The legitimacy of the declassification is statically
checked using the label gfand the static authority of the program at this point. Note that the labeds of
andy are both automatically inferred in this example; these automatically inferred labels are not a problem
for checking declassification statically.
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class Account {
final principal customer;
String{customer:} name;
float{customer:} balance;

}

Figure 3.6: Bank account using run-time principals

3.2.7 Run-time principals

Like labels, principals may also be used as first-class values at run time. Theriygeal represents a
principal that is a value. Ainal variable of typeprincipal may be used as if it were a real principal. For
example, an explicit policy may usefaal variable of typeprincipal to name an owner or reader. These
variables may also be used intsFor statements, allowing static reasoning about parts of the principal
hierarchy that may vary at run time. When labels are constructed using run-time principals, declassification
may also be performed on these labels.

Run-time principals are needed in order to model systems that are heterogeneous with respect to the
principals in the system, without resorting to declassification. For example, a bank might store bank accounts
with the structure shown in Figure 3.6, using run-time principals rather than run-time labels. With this
structure, each account may be owned by a different principal (the customer whose account it is). The
security policy for each account has similar structure but is owned by the principal in the member variable
customer. Code can manipulate the account in a manner that is generic with respect to the contained
principal, but can also determine at run time which principal is being used. The principainer may be
manipulated by anactsFor statement, and the labgtustomer:} may be used by switch label statement.

3.3 Interactions with features of Java

One novel aspect of JFlow is its integration of information flow analysis into a practical, object-oriented
programming language. Java has complex features such as mutable objects, inheritance, subtyping and
exceptions, and these features interact with label checking. This section describes how some of these Java
language constructs have been extended or modified to support information flow control.

JFlow is an object-oriented language and supports inheritance and subtyping. Classes in JFlow are
largely an extension of classes in Java. They may contain methods, static methods, and instance variables.
Instance variables are declared with labeled types, just like local variables within methods.

Some class-related features of Java are not supported in JFlow: neither inner classes nor static instance
variables are supported. Inner classes are not supported because they are a complication that is unnecessary
for the goals of this work. Static instance variables are not supported because they would create covert
channels, as discussed later in Section 3.5. However, non-static instance variables usually can substitute for
static instance variables.
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3.3.1 Method declarations

The syntax of a JFlow method declaration has some extensions when compared to Java syntax; there are
a few optional annotations to manage information flow and authority delegation. A method header has
the syntax shown in Figure 3.7, in the syntax of (and using some definitions from) the Java Language
Specification [GJS96].

MethodHeader:
Modifiers,,: LabeledType Identifier
BeginLabel,; ( FormalParameterLis}, ) EndLabel,;
Throws,,; WhereConstraints,

FormalParameter:
LabeledType Identifier OptDims

Figure 3.7: Grammar of a method header

As this grammar shows, the return value, the arguments, and the exceptions each may be labeled in-
dividually. There are two optional labels in a method declaration calletbege-labeland theend-label
The begin-label is used to specify any restrictionparat the point of invocation of the method. The begin-
label allows information about thec of the caller to be used for statically checking the implementation,
preventing assignments within the method from creating implicit flows of information.

Figure 3.8 contains an example of a JFlow class declaration: a JFlow version of the standard Java class
Vector. It provides several examples of JFlow method declarations. s&tidementAt method in this
declaration is prevented from leaking information by its begin-labe},. It can be called only if thec
of the caller is no more restrictive thgi.}. The labels of the argumentsandi are written ag }, but as
discussed in the following section, argument labels automatically include the begin-label, so both arguments
also are labeled byl }.

public class Vector[label L] extends AbstractList[L] {
private int{L} length;
private Object{L}[ ]{L} elements;

public Vector() ...
public Object elementAt(int i):{L; i} throws (IndexOutOfBoundsException) {
return elementsi];

¥
public void setElementAt{L}(Object{} o, int{} i) ...

public int{L} size() { return length; }
public void clear{L}() ...

Figure 3.8: A JFlow version of the cla¥ector
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The end-label of a method specifies #eat the point of termination of the method, and captures the
restrictions on the information that can be learned by observing whether the method terminates normally.
Individual exceptions and the return value itself also may have their own distinct labels, allowing static label
checking to track information flow at fine granularity. For example, the end-label efdimentAt method
in Figure 3.8 means that tipe following normal termination is at least as restrictive as both the lalaeld
the label of the argumeint This end-label is necessary because the index-out-of-bounds exception is thrown
because of an observation of the instance varialeleents and the argumerit Therefore, knowledge of
the termination path of the method may give information about the contents of these two variables.

Unlike in Java, method arguments in JFlow are always impliditlgl. This change makes the use of
first-class principals and labels more convenient, since arguments of thddlypleendprincipal are nearly
always desired to bénal. This simple change does not remove any significant power from the language,
since code that assigns to an argument variable always can be rewritten to use a local variable instead.

3.3.2 Default labels

Figure 3.8 contains examples of JFlow method declarations that demonstrate some of the features of method
declarations. Some types in the example are labeled, such as the types of the argameini§the method
setElementAt. Other types in this figure are unlabeled, such as the types of the argument and return value
of elementAt. Whenever labels are omitted in a JFlow program, a default label is assigned, providing both
greater expressiveness and greater convenience. The effect of these defaults is that often methods require no
label annotations whatever. This section describes how default labels are assigned.

Labels may be omitted from a method declaration, signifying the usamlfcit label polymorphism
For example, the argument of the methadementAt is unlabeled. When an argument label is omitted,
the method is generic with respect to the label of the argument. The argument label becomes an implicit
parameter of the procedure. The metlk@gnentAt can be called with any integéregardless of its label.

Label polymorphism is important for building libraries of reusable code; without it, methods would need
to be reimplemented for every argument label ever used. Consider implementing a nesttiad evaluates
the cosine of its argument. Without implicit label polymorphism, there are two strategies: reimplement it
for every argument label ever used, or implement it using run-time labels. The former approach is clearly
infeasible. Implicit labels have the advantage over run-time labels that when they provide adequate power,
they are easier and cheaper to use. Without implicit labels, the signature afstheethod would be the
following:

float{xIx} cos (float{xIx} x, label{} Ix)

Implicit label polymorphism eliminates the run-time overhead and the gratuitous method arguments in this
method signature, allowing the simpler signature that would be used in Java:

float cos (float x);

Other labels are assigned defaults as well. The end-label of a method always includes the begin-label
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even if the end-label is not declared explicitly; if the end-label of the method is omitted, it is equal to the
begin-label. The default label for the return value of a method is the end-label, joined with the labels of all
the arguments. This default makes sense because it is the common case. For thecosetheddefault

return value label igx}, and therefore does not need to be written explicitly. Methods may also return
exceptionally, and exceptions may be labeled; the rule for default exception labels is the same as the rule for
the end-label.

If the begin-label is omitted, it becomes an implicit parameter to the method. A method with an implicit
begin-label parameter can be called regardless opthef the caller, because the code of the method is
guaranteed not to leak information that is given to it. In general, methods without side-effects can be written
in this fashion, which makes them convenient to use and to implement. The static checking rules described
in Section 4 place restrictions on the implementation of such a method that limit its ability to cause side
effects: local variables may of course be modified, and a method of this sort may mutate objects passed as
arguments if appropriately declared, but other side effects will be prevented. Every assignment requires that
the label of the variable be more restrictive than pheat the point of assignment; however, the label of a
variable external to the method cannot be proved more restrictive than the begin-label, so such an assignment
will be rejected statically.

3.3.3 Method constraints

Unlike in Java, a method may contain a listoginstraintsprefixed by the keyworevhere:

WhereConstraints:
where Constraints

Constraint:
authority ( Principals)
caller ( Principals)
actsFor ( Principal, Principal)

There are three different kinds of constraints:

e authority(p1,...,p,) This clause lists principals that the method is authorized to act for. The
static authority at the beginning of the method includes the set of principals listed in this clause.
The principals listed may be either names of global principals, or names of class parameters of type
principal. Every listed principal must be also listed in thethority clause of the method’s class,
as described later in Section 3.3.8. This authority mechanism obeys the principle of least privilege,
because not all the methods of a class need to possess the full authority of the class.

e caller(p1,...,pn) Calling code may also dynamically grant authority to a method that kalea
constraint. Unlike with theauthority clause, where the authority devolves from the object itself,
authority in this case devolves from the caller. A method withl&r clause may be called only if the
calling code possesses the requisite static authority.
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void m1(principal p, ...):{p} throws(AccessDenied)
where caller(p) {
actsFor(p, manager) {

} else {
throw new AccessDenied();

}
}

void m2() where caller(manager) {
}

Figure 3.9: Using the caller constraint

The principals named in thealler clause need not be constants; they may also be the names of method
arguments whose type pgincipal. By passing a principal as the corresponding argument, the caller
grants that principal’s authority to the code. These dynamic principals may be used as first-class
principals; for example, they may be used in labels.

e actsFor (p1,p2) An actsFor constraint may be used to prevent the method from being called unless
the specified acts-for relationship;(acts forps) holds at the call site. When the method body is
checked, the static principal hierarchy is assumed to contain any acts-for relationships declared in the
method header. This constraint allows information about the principal hierarchy to be transmitted to
the called method without any dynamic checking.

Thecaller mechanism provides a simple access control mechanism that can be checked either statically
or dynamically. To check authority dynamically, a method can usaller constraint to accept a grant of
unknown authority, then use thetsFor statement to test that the granted authority is sufficiently powerful.
This access control mechanism can be used to build more elaborate access control mechanisms such as
access control lists.

For example, consider the method skeletons in Figure 3.9. The methalynamically tests whether
the caller has the authority to act for the principalnager. Because of the caller constraint, the caller must
pass a principab for which it can act. ThectsFor test then tests whether and therefore this method, has
the authority to act for the principahanager. If not, the AccessDenied exception is thrown. Note that the
end-label of the method is, because knowing whether the method terminated normally or exceptionally
gives information about the principal passed. Thus, authority tests do not leak information through their
success or failure.

The methodn?2 statically enforces the same test of authority thattests dynamically. It can be called
only from code that is statically known to act feranager, such as the consequent of thetsFor test in
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the methodn1, or from within another method liken2 itself. The methodn?2 is not as flexible a1, but
incurs no dynamic overhead.

3.3.4 Exceptions

Exceptions in JFlow are almost identical to exceptions in Java. There are two changes, one syntactic and
one semantic. The syntactic change is that the list of exceptions in a method header must be delimited by
parentheses. Parentheses are needed in case the exception is labeled, as in the following declaration.
int f(Object a, Object b):{a;b}
throws (NullPointerException{a}, NotFound)
Without parentheses, it cannot be determined unambiguously whether the brace folawiPgnterEx-
ception is the beginning of a label expression or the beginning of the method.

The more substantive change to Java is the treatment of unchecked exceptions. Java allows users to de-
fine exceptions that need not be declared in method headwrhdcked exceptionslthough this practice
is described as atypical [GJS96]. In JFlow, only a few specific exceptions are allowed to be unchecked,
because unchecked exceptions can serve as covert channels. All other exceptions Ksui¢tviaserEx-
ception and IndexOutOfBoundsException) must be declared explicitly in a method header if the method
might throw the exception. Only one unchecked exception is allowed: the new excEptibError, which
may not be caught by atch clause. This exception is used for error conditions such as stack overflow and
heap exhaustion. Because it is unchecked, it can serve as a covert information channel. However, since it
cannot be caught, the exceptibatalError can be used to transmit only one bit of information per program
execution.

In JFlow as well as in Java, thatch clause of ary...catch statement is a type discrimination mech-
anism as well as an exception-handling mechanism. It is also one of the few places in JFlow where a type
may not be labeled. As in Javacatch clause takes the formatch (C' v) S , whereC is an unlabeled
class that inherits fronT hrowable, v is a variable name, an8l is a statement to be executed if the clause
catches the exception. The decision about whitleh clause of ary. . .catch statement to execute, if any,
depends only on the dynamic type of the exception. Within eaoth clause, thepc is determined by the
labels attached to the exceptions that might be thrown by the statementtif theuse of the statement.

Thebreak andcontinue statements provide another exception mechanism in Java, since they may specify
a statement label to jump to. These statements are structured goto statements. They are supported in JFlow
and introduce the simple requirement that plaeat the destination statement is at least as restrictive as the
pc at thebreak or continue statement.

3.3.5 Parameterized classes

Parameterized types have long been known to be important for building reusable data structures. A parame-
terized class is generic with respect to some set of type parameters. This genericity is particularly useful for
building collection classes such as generic sets and maps. It is even more important to have polymorphism in
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public class Vector[label L] extends AbstractList[L] {
private int{L} length;
private Object{L}[ ][{L} elements;

public Vector() ...

public Object elementAt(int i):{L; i} throws (IndexOutOfBoundsException) {
return elementsi];

}

public void setElementAt{L}(Object{} o, int{} i) ...
public int{L} size() { return length; }
public void clear{L}() ...

Figure 3.10: Parameterization over labels

the information flow domain; the usual way to handle the absence of statically-checked type polymorphism
is to perform dynamic type casts, but this approach works poorly when applied to information flow, because
dynamic tests create new information channels.

In JFlow, class and interface declarations are extended to pimameterizationthey may be generic
with respect to some number of labels or principals, by including a set of explicitly declared parameters.
Parameterized types are important for building reusable data structures in JFlow.

An example of a reusable data structure is the J&eaor class, which may be translated to JFlow as
shown in Figure 3.10. This example also appeared earlier, in Figure 3.8/eth& class is parameterized
on a labelL that represents the label of the contained elements. Assumingethet and public are ap-
propriately defined, the typaéctor[{secret}] andVector[{public}] would represent vectors of elements of
differing sensitivity. These types are referred taregtantiationsof the parameterized typéector. Without
the ability to instantiate classes on particular labels, it would be necessary to reimpésuentfor every
distinct element label.

A class may also be parameterized over principals, as in the example of Figure 3.11. This class may be
instantiated with any two principalsandq. For exampleparamCell[Bob,Amy] has a fieldcontents with
the label{Bob: Amy}. This functionality provides power similar to that of run-time principals (as in the
bank account example of Figure 3.6), but without the run-time or storage overhead that run-time principals
can incur.

class paramCell[principal p, principal q] {
int{p: q} contents;
}

Figure 3.11: Parameterization over principals
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The semantics of class parameters are defined in such a way that class parameters do not need to be
represented at run time, because information then cannot be conveyed through class parameters. As a result,
class parameters may not be used in run-time tests; for example, label parameters may not be tested in a
switch label statement, nor may principal parameters appear wcesfror test.

When a parameterized or unparameterized type inherits from a superclass, or implements an interface,
the supertype may be an instantiation. The instantiation that is inherited from or implemented must be
a legal type within the scope of the class that is inheriting from or implementing it. This is a specific
instance of a more general rule in JFlow: within a parameterized class or interface, the formal parameters
of the class may be used as actual parameters to instantiations of parameterized types within its scope.
This rule corresponds exactly to the approach taken in many languages that support parameterization over
types [LCD"94, LMM98, OW97].

JFlow does not provide parameterization with respect to types, because it seems unnecessary for in-
vestigating static information flow control. It would be straightforward to addonstrained parametric
polymorphismin which the implementation of a polymorphic abstraction is unable to use any knowledge
of the type parameter. This kind of parametric polymorphism is less expressive than that which appears in
similar languages like PolyJ [MBL97, LMM98] or Pizza [OW97]. Constrained parametric polymorphism,
as in those languages, creates complications for information flow control, because the parameter can be used
as an information channel.

The addition of label and principal parameters to JFlow makes parameterized classes intaspaple
dent typegCar91], because types contain values. To ensure that these dependent types have a well-defined
meaning, onlyfinal variables may be used as parameters; since they are immutable, their meaning cannot
change. An alternative approach would be to allow all variables to be used as parameters; however, in that
case two different types that mention the same variable would have different meanings if an assignment to
the variable occurred between them.

Note that even if public} T {secret}, itis not the case thatector[{public}] < Vector[{secret}]. (The
subtype relation is again denoted ¥y) This subtype relation would be unsound becadsgor is mutable,
an observation that applies to subtyping relations on type parameters as well [DGLM95].

When such a subtype relation is sound, the parameter may be declaredvagant label rather than
as alabel. Covariant label parameters are made sound by placing additional restrictions on their use, as
follows. A covariant label parameter may not be used to construct the label forfanabimstance variable.

It also may not be used as an actual parameter to a class whose formal parametieslisHowever, im-
mutable {inal) instance variables and method arguments and return values may be labeled using a covariant
parameter.

Within non-static methods and on an instance variable, the vatiailenay be used to construct labels,
where it denotes the label of the object that the method was invoked on, or the object that the instance
variable is part of. If an instance variable is labeledthig, it would not be safe to allow an assignment
to that variable, since there might be another reference to the object whose label is less restrictive than the
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class passwordFile authority(root) {
public boolean check (String user, String password)
where authority(root) {

Figure 3.12: An authority declaration

label of the reference being used for the assignment. This other reference could then be used to observe the
assigned value. For this reason, the variahle is treated as an implicit covariant label parameter when

used in a label. The use of the labehis} is restricted in the same way that the use of other covariant
parameters is restricted: it may not be used to labelfirahinstance variables.

3.3.6 Arrays

Although JFlow does not support user-defined type parameters, it does support one type with a type param-
eter: the built-in Java array type, which is used as the type of the instance vatiabdats in Figure 3.10.

In JFlow, arrays are parameterized with respect to both the type of the contained elements and the label of
those elements. In the example Mctor, the type of the instance varialdements is Object{ L} | which
represents an array @bject where each element in the array is labeled withThe array type behaves as
though it were a typerray[T’, L] with two parameters: an element type and an element label; in this case

T = Object. The label parameter may be omitted, in which case it defaul{g.té-or example, the types

int[ ] andint{}[ | are equal.

One might wonder why the label on the array itself is not sufficient to protect the array elements. The
reason is that arrays are mutable data containers. Suppose that arrays did not have a separate label parameter.
In that case, a variable of typet[ |{} could be assigned to a variable with the labeled typg]|{L} for
some more restrictive labdl. A value of labeled typg L} then could be assigned to an array element
in apparent safety; however, that same value could also be observed through the original array with the
unrestricted labe{}, laundering its label away. This argument also applies to the\gpeor[L] discussed
in the preceding section.

The subtyping rule for arrays in JFlow is the same as in Java: if theSyipea subtype of the typ#,
then the typerray[S,L] is a subtype oérray[T",L]. However, the label parameter is not covariant, sbif
and L are labels, theil,; C L, does not imply thasrray[T, L] is a subtype oérray[T’, Lo].

JFlow arrays offer one additional operation: the pseudo-figlgkth that returns the number of elements
in the array. The label of thiength field is the same as the label of the armagi the element label. This
label is safe because the length of a JFlow array (and a Java array) is immutable after array creation.
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3.3.7 Run-time type discrimination

Java supports two expressions for run-time type discrimination: run-time casts anstdlheeof operator.
The expressior{T') E attempts to cast an expressi@hto type T, throwing an exception if this is not
possible; the expressiofi instanceof T returns a boolean indicating whethBrproduced an expression
that can be assigned to a variable of typeBoth of these operators are supported by JFlow as well. The
result of both expressions is as restricted as the result of the exprésgon

JFlow imposes one limitation on these operators: they may be invoked only with @ tyya is not an
instantiation. The reason for this restriction is that information about the parametérs afot available
at run time. If information about the parameters were available at run time, it would create an additional
information channel to be controlled. However, the use of parameterized types with these operators would
be safe if it could be determined statically that the parameters used in the cast match the parameters of the
dynamic type of the class. This approach is taken with type parameters in the language Pizza [OW97],
because Pizza does not represent type parameters at run time, but it is not currently supported in JFlow.

3.3.8 Authority declarations

Classes in JFlow also support authority declarations. A class may have some authority granted to its objects
by the addition of arauthority clause to the class header. Figure 3.12 contains a partial example of a class
passwordFile that declares the authority of the principabt; its methodcheck then claims the authority of

root and can use it within the body of the method.

Theauthority clause of a class may name principals external to the program (as in this case), or class
parameters of typerincipal. In either case, if a clasS has a superclass,, any authority inC's must be
covered by thauthority clause ofC: if Cs; has some principas in its authority clause( must too. The
effect of this rule is that it is not possible to obtain authority by inheriting from a superclass.

The ability to give a class the authority of external principals is useful but also potentially dangerous and
therefore must be controlled. If thasthority clause of a class names external principals, these principals
must permit the creation of the class. This permission can be tested by requiring that the process that installs
the class into the system (perhaps the compiler) has been granted the appropriate authority by the principals
named.

When theauthority clause names a parameter of the class that is of pyjpeipal, the code of the
class acts for an arbitrary principal that is specified by the instantiator. The static authority at the point
of invocation of the class constructor must include the authority of the actual principal parameters that are
used in the call to the constructor; this ensures that the authority of the class was received from a process
that actually possessed that authority. This rule differs from the rule that is used when external principals
are named in theuthority clause, because the authority derives from the code that invokes the constructor,
rather than from the process that installs the class into the system. Note that static methods of the class
do not possess the authority of principal parameters because otherwise the construction-time test would be
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bypassed.

This language feature is both powerful and dangerous, because an object created in this manner can be
used to capture and retain authority that is granted to a method by a caller; it is a general, free-standing
capability [DV66, WCC'74] for that authority. In JFlow, there is no way to tell whether authority that is
granted to a subsystem has been captured by the subsystem in a capability of this sort; thus, this mechanism
can be misused to credt@ing attacks in which a subsystem acquires authority without the knowledge of
its caller [WBF97]. For this reason, most principals should not be permitted even to define a class that places
a principal parameter in itsuthority clause; these classes may be defined only by a highly trusted principal,
such asoot.

3.3.9 Inheritance and constructors

Like Java classes, a JFlow class may declare that it has some supertypes: a superclass that it inherits from
or interfaces that it implements. Inheritance and subtyping have some interactions with the new features of
JFlow.

As in Java, methods may be overloaded and are distinguished by their argument types. The signature of
a class method must conform to the signatures of the same method in its supertypes, where method identity
is determined by the argument type. Signature conformance in JFlow includes the Java requirement that the
return types of the two signatures must be identical, but also places restrictions on the labels of the subclass
method signature: the labels of method arguments in the subclass must be at least as restrictive as the labels
of method arguments in the superclass, and the label of the return value in the subclass may be at most as
restrictive as the label of the return value in the superclass.

JFlow classes support constructors, just like Java classes. A constructor far' tlakaves like a static
method that returns a new object of type Constructors do not declare a return label; the label on the
returned object is the same as the end-label of the method. Consider this constructor declaration:

class C {
C{Bob:}(int x{}, inty{}) { ... }

}

The constructor declared here has a begin-label and end{IBbbkl}, and the object produced by a call to
the new operator that uses this constructor has this same label.

Constructors in Java and JFlow must invoke a superclass constructor if the class inherits from a super-
class. JFlow differs from Java in requiriigral instance variables of the subclass to be initialized before
the call to the superclass constructor, if any. This requirement arises because it is important tofipegvent
instance variables of typebel or principal from being observed before they are initialized. Such an obser-
vation might lead to information leaks. Suppose a variabbé type label is used to construct the label of
another variable, using the declaration{L} x. If the variablex is used as an argument tewitch label
statement before the variallgs initialized, the statement will not determine the case to execute properly,
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class Complex {
public final float real, imaginary;

public Complex{r;i}(float r, float i) {
real =r;
imaginary = i

}

Figure 3.13: Implementation of complex numbers

and may invoke a case that creates an information leak.

The section of the constructor before the superclass invocation is a sequence of arbitrary statements that
is referred to here as tlwwnstructor prologueEveryfinal instance variable of the class must be initialized in
the constructor prologue; it must include an assignment of the fosmF’; for everyfinal instance variable
v and some expressioA. In the prologue and in the call to the superclass constructor, the obiét (
and its instance variables are not in scope (may not be used), except that they may of course be used on the
left-hand side of their own initialization assignments. The purpose of this rule is to prevent uninitialized
data from being read, possibly causing information leaks.

An initialization assignment is checked using a more relaxed rule than for other variable assignments.
For an ordinary assignment = F, the safety condition id.p C {v}, where L is the label of the ex-
pressiont’ and takes into account the currgnt. For an initialization assignment, the weaker condition
Li T {v; Lr} is enforced, wherd.r is the end-label of the constructor, which is the label of the object
being constructed. This weaker condition is safe because the instance variable cannot be accessed without
using a reference to the object being constructed. Any access to an instance variable through an object ref-
erence causes the result to acquire the label of the reference. Thus, the label on the object will protect the
instance variable.

This weaker initialization rule is helpful when writing classes that represent immutable abstractions,
such as a class representing complex numbers. For example, consider the code in Figure 3.13, which im-
plements a simple complex number abstraction that is convenient to use. Th€a®lgdsx has a single
constructor that takes two argumentndi. The object returned by the constructor is automatically labeled
as restrictively as bothandi, because the end-label of the constructdfris}. The implementation of the
constructor is also particularly simple. This convenient abstraction and others like it are made possible by
the weaker initialization rule. The initializations of the instance variabdelsandimaginary are permitted
because the end-label of the construcfer, i}, is at least as restrictive as the labels of the values being
assignedr andi. Without the weaker initialization rule, the assignment would not be permitted, because the
label of both instance variable§}, is not known to be more restrictive than the implicit label parameters
associated with the argumentandi. However, the weaker initialization rule is safe because any access to

81



class passwordFile authority(root) {
public boolean check (String user, String password)
where authority(root) {
// Return whether password is correct
boolean match = false;
try {
for (int i = 0; i < names.length; i++) {
if (names[i] == user &&
passwords[i] == password) {
match = true;
break;

}
}

catch (NullPointerException €e) {}
catch (IndexOutOfBoundsException e) {}
return declassify(match, {user; password});
}
private String [ | names;
private String { root: } [ ] passwords;

}

}

Figure 3.14: A JFlow password file

the instance variablesal andimaginary must be through the object, which is labeled at least as restrictively
as the data that was stored into it usirandi.

3.4 Examples

Now that the essentials of the JFlow language have been covered, we are ready to consider some interesting
examples of JFlow code.

3.4.1 Example:passwordFile

Figure 3.14 contains a JFlow implementation of a simple password file, in which the passwords are protected
by information flow controls. Only the method for checking passwords is shown. This metfead,
accepts a password and a user name, and returns a boolean indicating whether the string is the right password
for that user. In this method, the label of the local varialtesch andi are not stated explicitly, and are
automatically inferred from their uses.

Theif statement is conditional on the elementgeéswords and on the variablegser and password,
whose labels are implicit parameters. Therefore, the body offtseatement hagpc = {user; pass-
word; root:}, and the variablematch also must have this label in order to allow the assignnmesmtch
= true. This label preventsnatch from being returned directly as a result, because the label of the return
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class Protected {
Object{xIb} content;
final label{this} Ib;

public Protected{LL }(Object{*LL} x, label LL) {

Ib = LL; // must occur before call teuper()
super(); //
content = x; // checked assuminig == LL

}
public Object get(label L):{L} throws (lllegalAccessError) {

switch label(content) {
when (Object{*L} unwrapped) return unwrapped;
else throw new lllegalAccess();

}

}
public label get_label() {

return |b;

}
}

Figure 3.15: The’rotected class

value is the default labekuser; password}. Finally, the method declassifiesatch to this desired label,
using its compiled-in authority to act fesot.

More precise reasoning about the possibility of exceptions would make writing the code more conve-
nient. In this example, the exceptiohiillPointerException and IndexOutOfBoundsException must be
caught explicitly, because the method does not explicitly declare them. However, it is possible to show in
this case that the exceptions cannot be thrown.

Otherwise there is very little difference between this code and the equivalent Java code. Only three
annotations have been added:aanhority clause stating that the principalot trusts the code, declassify
expression, and a label on the elementpabwords. The labels for all local variables and return values
are either inferred automatically or assigned sensible defaults. The task of writing programs is made easier
in JFlow because label annotations tend to be required only where interesting security issues are present,
although a number of novel language features have been needed to make this possible.

In this method, the implementor of the class has decided that declassificatioatdf results in an
acceptably small leak of information. Like all login procedures, this method does leak information, be-
cause exhaustively trying passwords eventually will extract the passwords from the password file. However,
assuming that the space of passwords is large and passwords are difficult to guess, the expected amount
of password information gained in each such trial is far less than one bit. Reasoning about when leaks of
information are acceptable lies outside the domain of classic information flow control.
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3.4.2 Example:Protected

The clas®rotected provides a convenient way of managing run-time labels, as in the bank account example
mentioned earlier. Its implementation is shown in Figure 3.15. As the implementation shows, an object of
type Protected is an immutable pair containing a valdentent of type Object and a labelb that protects
the value. Its value can be extracted with g method, but the caller must provide a label to use for
extraction. If the label is insufficient to protect the data, an exception is thrown. A value oPtgpeted
behaves very much like a value in dynamically-checked information flow systems, because it carries a run-
time label. AProtected has an obvious analogue in the type domain: a value dynamically associated with a
type tag (for example, thBynamic type [ACPP91)).

One key to makind’rotected convenient is that becaudieis final, it can be labeled simply dg. In
effect, its label is the same as the label of the containing object. The initializatittniogllowed by the
permissive initialization rule of Section 3.3.9. For the assignnitert LL, the initialization rule requires
that the formula{LL} C {} U {LL} be true, which it obviously is. Note that it is not necessary that the
instance variableontent befinal for this code to be correct.

3.5 Limitations

This section summarizes the ways that JFlow is not a superset of Java, and also covert channels that JFlow
cannot eliminate. Certain covert channels (particularly, various kinds of timing channels) are difficult to
eliminate. Prior work has addressed static control of timing channels, though the resulting languages are
restrictive [AR80, SV98]. Other covert channels arise from Java language features that consequently must
be removed.

Threads: JFlow does not prevent threads from communicating covertly via the timing of asynchronous
modifications to shared objects. This covert channel can be prevented by requiring only single-threaded
programs.

Timing channels: JFlow cannot prevent threads from covertly gaining information by timing code with
the system clock, except by removing access to the clock.

Hashcode: The built-in implementation of thiashcode method, provided by the cla€bject, can be used

to communicate information improperly, because it gives information about the memory address at which
an object has been allocated. This information allows the memory allocator to be used as a covert channel.
As a result, in JFlow every class must implement its dwashcode.

Static variables: The order of static variable initialization could be used to communicate information
improperly. This covert channel is blocked by ruling out static variables. However, static methods are legal.
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Finalizers: Finalizers are run in a separate thread from the main program, and therefore can be used to
communicate covertly. Finalizers are not part of JFlow.

Resource exhaustion: An OutOfMemoryError could be used to communicate information covertly, by
conditionally allocating objects until the heap is exhausted. JFlow treats this error by converting it to a
FatalError exception, preventing it from communicating more than a single bit of expected information per
program execution. Other resource exhaustion errors such as stack overflow are treated similarly.

Wall-clock timing channels: A JFlow program can change its run time because of private information it
has observed. As an extreme example, it can enter an infinite loop. JFlow does not attempt to control these
channels, which are a variety of timing channel because information only leaks if one is able to time the
program.

Unchecked exceptions: As described in Section 3.3.4, JFlow has no unchecked exceptions because they
could serve as covert channels.

Backward compatibility: JFlow is not backward compatible with Java, since existing Java libraries are not
flow-checked and do not provide flow annotations. However, in many cases, a Java library can be wrapped
in a JFlow library that provides reasonable annotations.

3.6 Grammar extensions

JFlow contains several extensions to the standard Java grammatr, in order to allow information flow annota-
tions to be added. The following productions must be added to or modified from the standard Java Language
Specification [GJS96]. As with the Java grammar, some modifications to this grammar are required if the

grammar is to be input to a parser generator. These grammar modifications (and, in fact, the code of the
JFlow compiler itself) were to a considerable extent derived from those of PolyJ, an extension to Java that
supports parametric polymorphism [MBL97, LMM98].

3.6.1 Label expressions

LabelExpr:
{ Components,; }

Components:
Component
Components Component

Component:
Principal: Principals,:
this
Identifier
* Identifier

Principals:
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Principal
Principals, Principal

Principal: Name

3.6.2 Labeled types

Types are extended to permit labels. The new primitive tygles andprincipal are also added.

LabeledType:
Primitive Type LabelExpy,:
ArrayType LabelExps,:
Name LabelExpy,,
TypeOrindex LabelExpy,.

PrimitiveType:
NumericType
boolean
label
principal

The TypeOrindexproduction represents either an instantiation or an array index expression. Since both use
brackets, the ambiguity is resolved after parsing.

TypeOrindex:
Name[ ParamOrExprList

Arrayindex:
TypeOrindex
PrimaryNoNewArrayf Expression

ClassOrinterfaceType:
Name
TypeOrindex

ParamOrExprList:
ParamOrExpr
ParamOrExprList ParamOrExpr

ParamOrExpr:
Expression
LabelExpr

ArrayType:
LabeledTypé |

ArrayCreationExpression:
new LabeledType DimExprs OptDims

3.6.3 Class declarations

ClassDeclaration:
Modifiers,,: class Identifier Paramg,:
Supeg,, Interfaces,; optAuthority ClassBody

InterfaceDeclaration:
Modifiers,,; interface Identifier Params,.
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Extendsinterfaces;
Interfaces,. InterfaceBody

Params:
[ ParameterLisit

ParameterList:
Parameter
ParameterList Parameter

Parameter:
label Identifier
covariant label Identifier
principal Identifier

Authority:
authority ( Principals)

3.6.4 Method declarations

MethodHeader:
Modifiers,,: LabeledType Identifier
BeginLabel,; ( FormalParameterLig}, ) EndLabel,,
Throws,,;: WhereConstraints:
Modifiers,,: void Identifier
BeginLabel,; ( FormalParameterLis}; ) EndLabe},;
Throws,,: WhereConstraints;

ConstructorDeclaration:
Modifiers,,. Identifier BeginLabe,, ( FormalParameterLigt
EndLabel,; Throws,,; WhereConstraints,

FormalParameter:
LabeledType Identifier OptDims

BeginLabel:
LabelExpr

EndLabel:
: LabelExpr

WhereConstraints:
where Constraints

Constraints:
Constraint
Constraints Constraint

Constraint:

Authority

caller ( Principals)

actsFor ( Principal, Principal)

To avoid ambiguity, the classes irtlarows list must be placed in parentheses. Otherwise a label might
be confused with the method body.

Throws:
throws ( ThrowList)
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3.6.5 New statements

Statement:

StatementWithoutTrailingSubstatement

...existing productions. .

ForStatement

SwitchLabelStatement

ActsForStatement

DeclassifyStatement

Theswitch label statement executes the first case in which the label of the new variable introduced is at
least as restrictive as the label of the expression on which the statement is invoked. This determination is
based upon the static comparison of label components that are not run-time representable, and the dynamic
comparison of label component that are run-time representable. The new variable (if any) is initialized with
the value of the expression. If none of the cases are executedsdfodause, if any, is executed.

SwitchLabelStatement:
switch label ( Expression) { LabelCase$

LabelCases:
LabelCase
LabelCases LabelCase

LabelCase:

case ( Type LabelExpr Identifiey OptBlockStatements

case LabelExpr OptBlockStatements

else OptBlockStatements

The actsFor statement executes a statement if the first principal can act for the second principal in
the current principal hierarchy. The knowledge of the existence of the acts-for relationship is used when
statically checking this statement. If the acts-for relationship does not exist, the statemenrdda thause,
if any, is executed.
ActsForStatement:

actsFor ( Principal, Principal) Statement OptElse

Thedeclassify statement executes a statement, but with some restrictions removegdrom

DeclassifyStatement:
declassify ( LabelExpr) Statement

3.6.6 New expressions

The new label expression produces a new run-time value of tighel. The expression must describe a
label that is entirely run-time representable; it may not mention any principal or label parameters (implicit
or explicit).

Literal:
...existing productions. .
new label LabelExpr

Thedeclassify expression evaluates an expression and returns its result, but with a possibly declassified
label. The static authority at the point of invocation must be sufficiently strong.

88



DeclassifyExpression:
declassify ( Expression LabelExpr)
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Chapter 4

Statically Checking JFlow

This chapter shows that the language presented in Chapter 3 can be checked statically in a straightforward
manner. It also describes the JFlow language more completely than the previous chapter did, because it
shows precisely how static checking is performed, using formal inference rules and function definitions.
These rules are also explained informally. The approach taken is to describe the aspects of JFlow that differ
from Java. For example, type checking is largely ignored because it is almost identical to that in Java. The
execution semantics of the language also are sufficiently close to Java that they are not described formally.

By focusing on information flow checking, the formal rules provide a concise description of many of
the interesting aspects of the JFlow compiler implementation. This chapter describes much of the static
checking that is done by the JFlow compiler; however, the description of the label inference algorithm and
source-to-source translation are found later, in Chapter 5.

4.1 Correctness

Because this chapter presents rules for statically checking the JFlow language, it is useful to consider the
criteria for whether these rules are correct.

The notion of correctness in this language is essentially the same as in other recent work on statically
checking information flow as a kind of type system [VSI196, SV98, HR98]. For simple JFlow programs that
do not use parameters, run-time labels, or subtyping, the rules needed for static checking are essentially
the same as the static checking rules presented in that work. However, extra static checking machinery is
present in JFlow to support the new language features that are presented in Chapter 3.

The rules are intended to enforce the following two properties:

e The apparent label of every expression is at least as restrictive as the actual label of every value it
might produce.

e The actual label of a value is at least as restrictive as the actual label of every value thaaffeight
it. (modulo declassification). One valug is considered to affect anothes, if a change tay, might
causev, to change.

90



The first property expresses the usual idea that static checking must be conservative; the second property
enforces the usual definition of correctness for information flean-interferencgGM84]. Intuitively,
non-interference says that the low-security outputs of a program may not be affected by its high-security
inputs. In Java (and JFlow), objects may exist both before and after the program runs, so they are effectively
persistent, and must be considered to be inputs and outputs themselves.

The non-interference condition must be weakened because of the presence of declassification in the
language model. Declassification allows higher-security data to interfere with lower-security data, through
the explicit action of the principal whose security is affected. The relaxed version of non-interference is that
inputs may affect lower-security outputs only with the explicit authorization of a principal able to override
the corresponding policies.

To properly define the notion of actual labelfor each expression, an operational semantics for JFlow
could be defined. The argument for correctness would be twofold: the operational semantics enforce the
modified non-interference property, and the static checking rules are conservative with respect to the opera-
tional semantics.

This approach has been taken for type checking Java [Sym97, Nv98], but is not taken in this the-
sis because important features in JFlow such as objects, inheritance, and dependent types make formal
proofs of correctness difficult at this point. The operational semantics of Java also are defined clearly else-
where [GJS96, DE97], and the notion of the actual label is clear simply from the static checking rules
themselves. Many of the static checking rules, particularly those for standard Java constructs, are seen
to be correct by inspection, and are similar to static checking rules seen in other work on information
flow [DD77, VSI96, HR98] (except for the support for exceptions). In addition, an attempt is made to argue
informally for the correctness of all the rules.

Section 3.5 described several Java features such as threads and theHaghitciode method that have
been removed from JFlow, and information channels that have been ignored, such as stack overflow, which
can leak one bit of information. The reason for removing these information channels is that they are difficult
to characterize with static typing rules without making the language impractically restrictive. Absent these
information channels, the information flows in a JFlow program are easily characterized in a local manner
for each statement or expression in the language, as this chapter shows.

4.2 Static checking framework

For the sake of clarity, certain simplifications are made when describing the static checking of JFlow pro-
grams. In JFlow, as in Java, a class may be named with a fully qualified name, or with only its base name if
either the class or its package has been imported. The rules in this chapter ignore this complication because
it is orthogonal to information flow checking. For this reason, all classes are assumed to reside in the same
package and names are unqualified. Similarly, visibility modifiers sughls& or private also are ignored:

all classes and class members are assumed to be public for the purpose of checking information flow. The
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standard visibility checking and class name resolution performed by a Java compiler suffices for JFlow as
well.

Before presenting the rules for checking the various language constructs, it will be necessary to establish
certain notational and semantic conventions to permit the concise expression of these rules. The purpose
of this section is to describe this basic framework upon which the static checking rules are built. The static
checking rules are then presented in Sections 4.4 through 4.7.

4.2.1 Type checking vs. label checking

The JFlow compiler performs two kinds of static checking as it compiles a program: type checking and
label checking. These two aspects of checking cannot be disentangled entirely, because labels are type
constructors and appear in the rules for subtyping. However, the checks needed to show that a statement
or expression is sound largely can be classified as either type or label checks. This chapter focuses on the
rules for checking labels, because type-checking JFlow is almost exactly the same as type-checking Java.
However, there are some interesting interactions between the two kinds of checking.

Static type checking is typically expressed as an attempt to proyeegudgementin inference rules
for static type checking, the formuld - E : T typically has the meaning that in the environmeht
the expressiort has the typel’. If the expressionE is the entire program, this formula expresses the
idea that the program is well-typed. The environmdntaptures information about the context in which
the expressiorf occurs, or about the context in which the entire program is being checked; in a typical
compiler, A is the symbol table. In this work, this formula will be written4s-r E : T, with the subscript
T indicating a judgement in the type domain.

Since this thesis is about statically checking information flow, the forrAutaFE : X is used to indicate
a judgement in the domain of information flow. By analogy with type checking, one might expect that the
letter X in this formula represents a label. However, this is not the case, because of the need to describe
exceptions fully. Instead, the lettéf is used to represent a setmdth labels which capture information
flow along all the possible ways in which the expression can terminate. We will return to the structure of
path labels in Section 4.2.3.

4.2.2 Environments

Programs in JFlow are checked for correctness in an environment, which is a binding from symbols (names
of various entities) to associated information. These symbols may be names of classes, principals, local
variables, and other pieces of the static checking context. The environment also contains the static principal
hierarchy and the static authority. The letieis used in the static checking rules to represent an environ-
ment. The binding of the symbdal in the environmen# is written asA[id]. New environments are created

by the expression form[id := B], which creates a new environment identicald@xcept that the symbol

id is re-bound taB.
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A an environment, which maps from an identifier such as a variable name

to its binding

A9 the global environment, containing all class definitions and environ-
mental information external to the program being checked

Alid] the binding of identifieid in A

Alid := B] a new environment witid re-bound taB

AFE: X The expressior generates path labels when evaluated in environ-
mentA.

AFS: X StatementS generates path labels in environmentA.

Al p1>=po The principalp; is known to act for the principaps, based on the
knowledge of the principal hierarchy contained4n

AFLiC Ly The labelL; is at most as restrictive as the laldgl, given the knowl-
edge of the principal hierarchy containedAn

AF Ly~ Ly L is equivalent tal,, given the principal hierarchy contained.h

Abrp E:T The expressioi has typeT'.

Abr Ty <Th The typeTy is a subtype of the typé;.

Aty = predicatéx,x9,...) The predicate nameagtedicateis true in environment.

Figure 4.1: Environments and judgements

Theglobal environmentA9, contains definitions for all the classes in the system, and any constant part
of the principal hierarchy. As code is checked, more complex environments are constructed thatiéxtend
to contain definitions for local variables, class parameters, and other bindings.

In addition to the judgements just describetif £ : X andA +p F : T), a few more judgements will
be used to describe the static correctness of JFlow. For convenience, these judgements and the syntax for
environments just described are summarized in the table of Figure 4.1, but will be explained in more detail
as they are introduced.

One convention worth explaining is the syntax for proving auxiliary predicates (the final line in Fig-
ure 4.1). The convention followed is that the variable or variall@spresent outputs and variables
represent inputs. Although in a formal sense there is no difference between inputs and outputs in a predicate
or an inference rule, in the natural implementation of these rules some predicate arguments are outputs, and
it is useful to distinguish them on this basis.

4.2.3 Exceptions

An important limitation of earlier attempts to create languages for static flow checking has been the ab-
sence of usable exceptions. For example, in the original work by Denning and Denning on static flow
checking [DD77], exceptions terminated the program, because any other treatment of exceptions could leak
information. Subsequent work has avoided exceptions entirely.
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It might seem unnecessary to treat exceptions directly, because in many languages, a function that gen-
erates exceptions can be desugared into a function that retalissraminated unioror oneof However,
this approach leads to coarse-grained tracking of information flow. The obvious way to treat oneof types
is by analogy with record types. Each arm of the oneof has a distinct label associated with it. In addition,
there is an added integer fielgg that indicates which of the arms of the oneof is active. The problem with
this model is that every assignment to the oneof will require {bag¢} C pc, and every attempt to use the
oneof will read{tag} implicitly. As a result, every arm of the oneof effectively will carry the same label.

For modeling exceptions, this is an unacceptable loss of precision.

Another reason why it might seem unnecessary to treat exceptions directly is that exceptions are usually
ignored even in treatments of static type checking. However, it is not feasible to ignore exceptions when
checking information flow, because an exception ignored by static checking leads to a possible security
violation. One reason why static type checking rules often ignore exceptions may be the legacy of the
programming language ML [MTH90], which is strongly typed, and also statically typed except when an
expression terminates with an exception, which the static type checking rules ignore. Other programming
languages such as CLU [LAB4] and Theta [LCD 94] do statically check exceptions, and languages such
as C++ [Sto87], Modula-3 [Nel91], and Java also treat at least some exceptions statically.

In JFlow, all exceptions exceputalError are checked statically. For each expression or statement, the
static checker determines it&th labels which are the labels for the information transmitted by various
possible termination paths such as normal termination, termination through exceptions, termination through
a return statement, and so on. This fine-grained analysis avoids the unnecessary restrictiveness that would
be produced by desugaring: each exception that can be thrown by evaluating a statement or expression
has a possibly distinct label that is transferred to jheof catch clauses that might intercept it. Even
finer resolution is provided for normal termination and ferurn termination, where the value label of an
expression may differ from the path label. Without this differentiation between the value label and the path
label, thepc at a given point in the program would become as restrictive as every value computed prior to
that point, making JFlow impractically restrictive.

The path labels for a statement or expression are represented as a total map from paths to labels. Each
mapping represents a termination path that the statement or expression might take, and the label of the
mapping conservatively indicates what information would be learned if this path were known to be the
actual termination path. Paths, the domain of the map, may be one of the following:

e The symboh, which represents normal termination.
e The symbol, which represents termination througlegurn statement.

e The symbolswv andrv represent the labels of the normal value of an expression and the return value
of a statement, respectively. They do not represent paths themselves, but it is convenient to include
them as part of the map.
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X a set of path labels: a map from symbel® labelsL
AF E:X The expressiotl generates path labels when evaluated in environment

s either a class that extend$irowable, one of the special symbois nv, r, or rv, or a pair
(goto label) for some statement labklbel, associated with termination througtbeeak
or continue statement mentioninigbel

X|s] the label corresponding to path

L the least restrictive label possible. This label is expressed in prografis ies, a label
containing no policies.

T the most restrictive label possible. This label cannot be and does not need to be expressed
directly in programs.

0 a pseudo-label representing a path that cannot be takéfs|lf= () for some pats, there

is no way for the expression or statement to terminate through the corresponding path.
X[s:= L] a setof path labels identical t&, except that the label associated with the patis

changed td..

Xy a set of path labels describing an expression that does not termiat&g[s| = (

X16X, the join of two sets of path labels, which is simply the join of all corresponding labels:
X=X19Xy = Vs (X[S] :Xl[S]UXQ[S])

exc This function is useful for creating path labels for expressions that throw exceptions, and is

defined as follows, wher€ represents an exception type (a class that extends Throwable):
exc-labe{X, C) — UC’:(C/SC Vi CSC/) X[C,]

Figure 4.2: Definitions for path labels

e Names of classes that inherit frofthrowable. Such a class represents an exception, and a mapping
from the class represents the path of termination through that exception.

e Atuple of the form(goto £) represents termination by executing a namxedk or continue statement
that jumps to the targef. A break or continue statement that does not name a target is represented
by the tuple(goto ¢). .

Members of the domain ok (paths) are denoted by (Unfortunately, the lettep is already heavily
overloaded.) The same notation used for environments is also used for path labels: the expfégsion
denotes the label thaf mapss to, and the expressioli [s := L] denotes a new map that is exactly like
except that the pathis bound to the label. The range of path labels is not precisely the set of labels; it is
the set of labels augmented with the pseudo-l@béla paths is mapped td), it indicates that the statement
cannot terminate through the path When used in joins, the lab8lbehaves as if it were lower than any
other label:L U () = L for all labels, including the labgl}. Figure 4.2 summarizes this notation and defines
some additional notation relating to path labels.
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L  alabel or the special value

l a label expression, which produces a label when intepreted in an environment
T atype

t a type expression

7  alabeled type expression: an expression of the fofth or ¢. The functionlabeled r)
distinguishes between these two cases.

p aprincipal or a principal expression (which must be a name)
P acomponent (policy) of a label (See Section 4.2.7)

P aformal parameter of a class

q an actual parameter of a class, as a program expression

@ an actual parameter of a class, as part of a type

C  the name of a class

v the name of a variable

S astatement

S amethod or field signature

M acomplete method declaration, including its implementation

Figure 4.3: Additional conventions

4.2.4 Additional notation conventions

Certain other conventions that are used in this chapter are worth mentioning at this point. In the rules that
follow, the symbols used suggest the kind of type, value, or expression being denoted. These conventions
are summarized in Figure 4.3 for easy reference, and are described in more detail when used later.
Sequences of items of the same kind are represented by the notation The lettersi, j, &, I, and
m are used only as indices into such sequences. Items in the sequence are assumed to be separated by the
appropriate delimiterse(g, “,” and “;"), though these delimiters will be included in some cases for clarity,
as in the expression; z;;.. . An equation in which an index variable suchiaagppears holds for afl in
its range, which is 1 tanax(i) unless explicitly indicated otherwise. A sequence of items. is distinct
from a sequencexz;.. ; the subscript is used not only to index the items, but also to distinguish them. This
convention is chosen for its compactness, and is inspired by the convention of repeated indices used in
relativistic physics.
Optional items are indicated by large brackets, as in the expre%s]onn many rules, these optional
expressions denote an implicit variable generated by unification against some syntactic form or component
of the environment. For example, consider this rule:

extendA, [final} Tv) = Alv := (var [final} type-par{r, A){var-label(r, A)} |
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(var T{L} uid) the name of a mutable (ndinal) variable maps to this tuple, representing a
variable of typ€el” and labelL

var final T{L} uid)  afinal variable
param principal uid) a parameter of typgrincipal
param label uid) a parameter of typkbel

(

(

(

(covariant label uid)  a covariant parameter of typebel

(classC...{...}) a class. The entire class declaration is stored in the environment.
(constant principal)  areal principal external to the program

(

goto L) a variable representing the of the statement labeled by the=ak or continue
targetL

Figure 4.4: Environment mappings

The {final} on the right is present whenever the corresponding option is present in the argurextenid
Optional items are also used as the condition off @xpression; in this case the condition is understood to
be true if the optional item is present. The notat{ nis used to represent an empty optional value. In some
cases the brackets are written in a subscript, e{ﬁmal]n. In this case, the subscript is used to distinguish
different optional items.

4.2.5 Environment bindings

In the JFlow static checker, environments store a variety of different kinds of information. Certain informa-
tion is stored in the environment under special symbols. These special symbalstanec, andph:

Alauth] the set of principals that the program is known to be authorized to act for at a
particular point in the program: thetatic authority
Al the program-counter label

Al

E

the static principal hierarchy. This is a set of pairs of princigalg’), meaning
thatp is known to act fop’ in the environment.

The environment also contains mappings for various named entities, such as local variables. The map-
pings shown in Figure 4.4 are found in the environment. In these bindings and elsewhere in the rules,
the notationuid represents a unique identifier that is generated during static analysis and that distinguishes
program identifiers that share the same name.

As indicated, classes and interfaces are entered in the environment. In order to support mutual references
among classes, class and interface bindings are present in the global enviraAfméom which all other
environments are generated by extension. The global environment also contains some other information;
the entry A9[ph| contains a part of the static principal hierarchy that is assumed to be constant. Code
compiled against such a global environment will need to be invalidated if the relations describ€dhn
are revoked. Similarly, the entr9[auth] contains principals willing to grant their authority to the code
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being compiled (or more precisely, being added to the system). Again, if any of these principals revoke their
grant of authority, the code must be invalidated.

4.2.6 Representing principals

For almost all JFlow entities, including principals, types, and labels, a sharp distinction is drawn between
the syntactic expression denoting an entity and the representation of the entity that is used during static
checking. For example, principals are named in JFlow programs using identifiers. These identifiers may be
the names of principals external to the program, or parameters denoting unknown principals, or names of
variables of typerincipal. However, during static checking, principals are represented by one of three kinds

of tuples:
(pr-external p) a principal external to the program: typically, a username
(pr-param uid) a static principal parameter. Static parameters have no run-time represen-

tation.
(pr-dynamic uid L) a run-time principal variable. The labglis the label of this variable, and

keeps track of what information is conveyed by knowing which principal
this variable denotes.
Principals appearing in a policy expression may take any of these forms. These forms do not appear
in the range of the environment map; for example, a variable of pypeipal maps to a tuple of form
(var final principal{ L} uid) rather than to one of fornpr-dynamic...). The mapping from principal iden-
tifiers to their internal representation is performed by the funcimerp-P, which is short for “interpret
principal”’. This function assumes that an appropriate environment entry has been installed for the identifier
in question. How this is done will become clear later.
interp-P(id, A) = case A[id] of
(constant principal) : (pr-external id)
(param principal uid) : (pr-param uid)
(var final principal{ L} uid) : (pr-dynamic uid L)
end

4.2.7 Representing labels and components

Labels are also represented differently during static checking than in program expressions. A label is ex-
pressed in a JFlow program as a set of component expreqsioRs ..} separated by semicolons. The letter

P denotes a component het ¢tands fopolicy). These component expressions may be policy expressions,
components that name a variable or parameter, or dynamic components. During static checking, the label
is represented as a join of components produced by interpreting the corresponding component expressions.
A label L is written asP, Ll ... U P,, or ..U P; .., or even as.P;.. . As with principals, components

and component expressions are represented with different notation. There are four possible forms for a

component, corresponding to the allowed ways to write a component expression:
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interp-L(o : ..r.. , A) = (policy interp-P(o, A) : .., interp-P(r;, A), ..)

interp-L(v, A) =

case A[v] of
(var [final| T{L} uid) : L
(covariant label uid) : (covariant-label uid)
(param label uid) : (label-param uid)
(constant principal) : {}
(param principal uid) : {}

end

interp-L(xv, A) =
case A[v] of
(var final label{L} uid) : (dynamic uid L)
end

Figure 4.5: Interpreting labels

(policy o : ..,7;,..) represents a policy: a label component with an explicit ownand readers;, all of
which are principals. This kind of component is generated by a policy expression of the:farm .

(label-param uid) a fixed but unknown label, corresponding to an explicit class label parameter.

(covariant-label uid) a fixed but unknown label, corresponding to a class parameter ofdppkthat has
been declared to bsvariant, or to an implicit argument label parameter

(dynamic uid L) the dynamic label contained infaal variable of typelabel. This kind of component
is generated by an expression of the fofm wherewv is the variable. The environment is the
environment that exists after the declaration of the variable

(variable uid) An undeclared label, resulting from a label that was omitted from the program. A label of
this sort is inferred by a constraint solver, as described in Chapter 5. In the definitions later, the
function fresh-variabl€) produces new labels containing a singkgiable component, with a fresh
identifieruid. Its definition isfresh-variable) = (variable fresh-uid)), where the functioffresh-uid)
generates a unique identifier never before used during static checking.

A label expression in a program is converted into a join of components by the fumttiop-L, which
interprets the individual component expressions and joins them together:
interp-L({ P1;...; P,}, A) = interp-L(P;, A) U ... Uinterp-L(P,, A)

A component expression is interpreted straightforwardly, producing one of the kinds of policies above.
This interpretation process is shown formally in Figure 4.5. Some of the details of label interpretation hold
interest. As the first definition shows, a policy is interpreted by recursively interpreting the principals named
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in the policy. A component expression consisting of an identifier is interpreted differently depending on the
significance of the identifier. An identifier that is the name of a variable simply denotes the label of that
variable when used as a component expression. An identifier that is a label parameter denotes that label
parameter. Other identifiers such as the names of external principals are not associated with any information
flow, and denote the empty lab€l}. Finally, the contents of a variablke of type label may be used to
construct a dynamic component using the notation

4.2.8 Representing types

Some care must be taken to represent JFlow types unambiguously during static checking. Java has three
kinds of type constructors: class types, interface types, and arrays. JFlow adds labels and the ability to
instantiate a class on some parameters. The internal representation of a class or interface type is a symbol
(the name of the class) followed by a possibly empty sequence of parameters. Basic typesistuateas
represented in this way, with an empty sequence of parameigrk: Arrays are represented by the symbol

array, followed by two parameters: the type of contained elements, and their common label. Thus, the type
int{L}[ ] is represented internally agray[int,L]. As in Java, arrays are the only type that allow another type

as a parameter.

The predicaténterp-T translates a type expression into this internal representation, as shown in Fig-
ure 4.6. For convenience in expressing static-checking rules, this predicate is written as if it were a function.
When interpreting instantiations of parameterized classes, the preititgafe paramis used to interpret the
actual parameters used.

The first two rules forinterp-T show how simple object types are interpreted. The first rule shows
interpretation of a non-parameterized class, which is treated exactly like a parameterized class having no
parameters. The second rule shows how a parameterized instantiation is interpreted, ustegptparam
predicate. The third and fourth rules define interpretation of a JFlow array type in accordance with Sec-
tion 3.3.6. The final three rules show how actual parameters to a parameterized class are interpreted. The
only subtle issue for parameter interpretation is that a non-covariant ftebshjparameter may not be sup-
plied with a covariant actual label parameter, as in the fifth rule. The predmoatgant is defined in the
next section.

In the static checking rules in this chapter, the symbd used to represent a labeled type expression:
an expression of the for{(} or t. For convenience, the functiotsbeled type-part andlabel-part are
used to manipulate labeled type expressions, as defined in Figure 4.7.

4.2.9 Invariant vs. covariant types

The presence of covariant label parameters makes it necessary to distinguish letasant andcovari-

ant types. Invariant types are types that do not mention any covariant label parameters; the meaning of
an invariant type does not vary with the parameter. Covariant types are types that vary with one or more
covariant label parameters. A type is invariant as long as all of its actual label parameters are invariant. The
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AlC] = (classC ... {...})
C[] = interp-T(C, A)

AlC]) = (class C[.P;..] ... {...})
Q; = interp-paran{q;, P;, A)
Cl..Q;..] = interp-T(C|..¢;..], A)

T = interp-T(t, A)
invariant(7")
array[T, L] = interp-T(¢] ], A)

L = interp-L(l, A) T = interp-T(t, A)
invariant(L) invariant(7")
array[T', L] = interp-T(¢{{}[ ], A)

L = interp-L(q, A)
invariant(L)
L = interp-parangq, label id, A)

L = interp-L(q, A)
L = interp-paraniq, covariant labelid, A)

p = interp-P(q, A)
p = interp-paran{q, principal id, A)

Figure 4.6: Interpreting type expressions

labeledt{l}, A) = true
type-par(t{l}, A) = interp-T(t, A)
label-part(t{l}, A) = interp-L({, A)

labeledt, A) = false
type-par(t, A) = interp-T(¢, A)
label-part(t, A) = L

Figure 4.7: Definitions for labeled types

case Q; of
..U P;U..:A7,uid P; = (covariant-label uid)
else true

end

invariant(C1..Q;..])

Figure 4.8: Determining type invariance
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AFpi=po
Al p2=p3
Al pr=p3

Uid1 = Uidg
A+ (pr-param uid;) = (pr-param uidz)
Ak (pr-dynamic uid; L) > (pr-dynamic uidy L2)
A I (pr-external uid;) = (pr-external uids)

| (v} 7%) € Alph] |
get-uidp)) = get-uidp)  get-uidpy) = get-uidpo)
AFpi=po

Figure 4.9: Inferring the= relation

predicateinvariant(7"), defined in Figure 4.8, uses this simple rule. For a ldb#b be invariant, it must
not contain any components of the forgovariant-label uid). This condition can also be expressed by
requiring that the label for any label parameter may be at most as restrictive;as a label that contains
every label componergxceptcomponents of the formcovariant-label uid). It is an ordinary member of
the set of labels, but one that is too large to write down.

4.3 Basicrules

Using the representations of principals, labels, and types that have just been defined, the basic rules for
reasoning about these entities can now be expressed, starting with principals.

4.3.1 Reasoning about principals

In an environmentA, the static principal hierarchy is stored in the componéfth], which is a set of

pairs of principals %1, p2). The notationA - p; = ps means that given the static knowledge contained

in the environment4, the principalp, is known to act for the principal,. The necessary reflexivity and
transitivity of the static principal hierarchy (see Section 2.1.1) is achieved by inference rules that transitively
and reflexively extend the set of pairsAfph]. These rules are shown in Figure 4.9. The first rule expresses
the transitivity of the acts-for relation. The second rule captures the reflexive property of the acts-for relation.
The third rule describes how the static principal hierarchy is accessed to check acts-for relations. The
function get-uid extracts theuid component of a principal.

4.3.2 Reasoning about labels

The rules shown in Figure 4.10 are used for checking label constraints. The first two rules are simply
the complete relabeling rule from Section 2.4.3. The next two rules show that non-policy components are
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AFo>o
Vi(AFri=oV 3 AT =r)
A+ (policy 0 : ..r;..) E (policy o' : 7“3)

true
A+ (label-param uid) C (label-param uid)

true
A+ (covariant-label uid) C (covariant-label uid)

AFL1C Ly
A I (dynamic uid L) C (dynamic uid L)

A-LCL
AFL'CL
A-L~L

Figure 4.10: Inferring the_ relation

treated as if they were opaque. The final rule reduces reasoning about label equivalence to reasoning about
relabeling.

These rules say nothing about label variables: components of the(farmble uid). The rules in
Figure 4.10 cannot be applied fully until all label variables are given satisfying assignments, replacing them
with one of the other kinds of components defined in Section 4.2.7.

In the fourth rule, a dynamic component can be relabeled to another dynamic component only if they
have the sameid; in other words, if they are the contents of the same variable ofityaé Otherwise, they
correspond to the contents of different variables, and no static relationship can be inferred. The relationship
between two such components depends on their contained labelsd L,. One would expect that these
contained labels would be the same, because they are the labels of the same variable. However, such compo-
nents can acquire different labels during constraint solving, because the label of the variable didiype
is being automatically inferred. In this case, the contained label is a conservative approximation to the true
label of the variable, and different dynamic components may contain different conservative approximations.

4.3.3 Class scope and environments

JFlow is unique among languages that support static checking of information flow because it fully supports
objects. Itis also unigue in its support for parameterization, including parameterization over both labels and
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class-enyC|[..Q;..]) =
case AY[C] of
(class C[[..Pi..]} ..y 2 A9 param-id P;) := Q;..]
end

inner-class-en(C') =
case AY[C] of
(class C[[PZ]} {authority(..pk..)b :
let A = A9[..param-id(P;) := formal-to-actua(?;)..] in
Alauth := {..interp-P(pg, A)..}]

end
end
param-idP) =
case P of
{covariant} label id : id
principal id : id
end

formal-to-actua(P) =
case P of
covariant label id : (covariant label fresh-uid))
label id : (param label fresh-uid))
principal id : (param principal fresh-uid))
end

Figure 4.11: Modifying an environment for class scope

principals. This section describes several functions and predicates that support these features.

Handling class parameters. A class in JFlow has a possibly empty list of formal parameters that may be
instantiated with actual parameters of the appropriate sort. For code both external and internal to the class,
it is necessary to create environments in which these formal parameters are bound. Functions for creating
these augmented environments are defined in Figure 4.11.

The functionclass-envis used when checking code external to the class, where that code mentions an
instantiation of the class. It augments the environment with definitions for the parameters of a class, given
some instantiation of the class on parameters, creating a binding from each formal parameter of the class to
the corresponding actual parameter used in the instantiation.

The functioninner-class-envalso augments environments with class parameters, creating an environ-
ment for checking the code of the class itself. It adds definitions for the parameters of the class, but treats
the formal parameters as actual parameters of the appropriate type. Checking the code of a class against
these definitions ensures that the class is safe for all possible actual parameters that might be supplied. For
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A" = Althis := (var final C[..Q;..]{Alpc]} fresh-uid))]
A" = extend-all-ivargA’, C|..Q;..])
A" = obj-en(4, C[..Q;..])

case AJ[C] of
(class C[[P,]} [implements ot } {...}):
A=A
(class C[[P,]} extends t5...) :
A" = extend-all-ivarg A4, interp-T(t,, class-enyC|..Q;..])))
end
A" = extend-ivar$A’, C[..Q;..])
A" = extend-all-ivarg A, C[..Q;..])

AI[C] = (class C'.. . {... [final} Tp Un - .. })
V= {n|[final| A 7, =label{l,}}
V' ={n]| {final} A Tp = principal{l, }}
V' ={.n.}
L,, = fresh-variablg)

A’ = Al..vup; := (var final label{ L, } fresh-uid())..]
A" = Al..vy, = (var final principal{ Ly, } fresh-uid))..]
A"+ L, ~ interp-L(l,, A”)

A" = extend-ivar$A, C|..Q;..])

Figure 4.12: Extending the object environment

example, a class parameter of tylagel is bound to a label containing a single component of the form
(param label fresh-uid)), wherefresh-uid) is the function that generates a previously unused identifier.
The static checking rules treat this component as an opaque label about which nothing is known except that
it is equivalent to itself. Because this condition holds for any possible label, code parameterized over this
label will be sound regardless of what actual parameter that code is instantiated on.

Building object environments. In JFlow,final instance variables of tydebel andprincipal may be used to
construct dynamic label components and policies when their containing objects are in scope. For example,
one instance variable of typebel may be used to label another instance variable in the same object. These
instance variables may also be used to construct labels within non-static methods of the class.

When performing static checking, tlobdj-envpredicate extends the environment to add definitions for
final instance variables of typebel or principal. Its definition is shown in Figure 4.12. The primary use of
obj-envis for checking the correctness of a method body. In this context, the vatldblalso is in scope.
Other instance variables do not need to be placed in scope because an ordinary access to an instance variable

105



x is treated as the expressidfis.x.

The predicatextend-all-ivarsensures that all the appropriate instance variables are added to the envi-
ronment. It too is defined in Figure 4.12. Instance variables are added to the environment starting from
the topmost superclass, and working down. This ordering ensures that any instance variables that shadow
superclass definitions are bound correctly.

The predicatextend-ivarsalso shown in Figure 4.12, adds tiral instance variables of tydebel and
principal that are members of the single class that is the second argument. The rule works by extracting the
indices of thefinal variables of typdabel andprincipal into variables..n;.. and..nj,.., respectively. These
indices are used to select the variables that are entered successively into the augmented envirtbnments
and A”. This process is complicated by the fact that the labels of the instance variables may refer to each
other. For each instance variahig, a new label variabld.,, is used to handle the potential circularity. The
label L,, is the label used when entering the variable into the environment, and it is required by the final
antecedent to be equivalent to the interpretation of the declared label of the vakjalietlie environment
in which all of the necessary instance variables are defidéyl (

Instance variable and method signatures. An important part of static checking is looking up the sig-
natures of class members, including members that are inherited from superclasses. These class members
include both instance variables and methods.

The judgemens = signaturé T, f) has the meaning that the memljeof the typeT has the signature
S. The typeT must be a class type. The rules for looking up signatures are given in Figures 4.13. The
memberf may be either the name of an instance variable, or a method identifier, which is of the form
m(T;), where theT; are the types of the arguments. flis the name of an instance variable, the signature
has the form( {final} 7 id). When using the rule provided to look up method signatures, a signature match
the argument types; only if the argument types in the signature are supertypes of the corresponding types
t;. This condition is the final antecedent of the rule for method signature lookup. However, using this rule,
multiple overloaded signatures may satisfy given argument typek Java, this situation is a static error
unless one of the signatures is at least as specific as all the others. The rules given here do not capture this
aspect of static checking, for the sake of simplicity.

Methods and fields can also be inherited from superclasses, using the last rule in Figure 4.13. In this
rule, t; represents the type expression for the superclags ahd7; represents the superclass(f The
type expression; is interpreted in the environmewgtass-enyC|..Q;..]) because it may mention formal
parameters of the clags. The same rule holds for methods as welkif7’;) is substituted forf.

4.3.4 Reasoning about subtypes

Consider the judgement -7 S < T, which is relevant to JFlow, as to all languages with subtyping. Here,
S andT are ordinary unlabeled types. The subtype rule is as in Java, except that it handles class parameters.
If S orTis an instantiation of a parameterized class, subtyping is invariant in the parameters except when a
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A9[C] = (class [[.Pi]] .. {... [final] 7 f ...}
A = obj-en\(A9, C[..Q;..])
Ty = type-par(r, A)
L; = (if labeledr) then label-part(r, A) else 1)
([final] T4{L;}) = signaturdC[..Q;..], )

A9[C] = (class [[73@]} A
... [static] 7, m[{1}] (-7 a;..) [: {R}] throws(..7y..) where Ky {S} ...
1
A = class-enyC'..Q;..])
Abr T; < type-par(t;, A)
([static| 7 m[{1}] (.75 a;..)[:{R}] throws(..7;...) where K;) = signaturdC[..Q;..], m(T}))

A9[C] = (class [[PZ]} extends ts ...{...})
f is not a member of’
Ts = interp-T(t,, class-enyC|..Q;..]))
S = signaturéTy, f)
S = signaturdC[..Q;..], f)

Figure 4.13: Looking up field and method signatures

label parameter is declared to be covariant. This subtyping rule is the first one shown in Figure 4.14. Using
this rule,Vector[L] (from Figure 3.8) would be a subtype AbstractList[L'] only if L ~ L'.

Checking subtype relations in JFlow is straightforward.Sland7T" are not instantiations of the same
class, it is necessary to walk up the type hierarchy fi§rto T, rewriting parameters, as shown in the
second rule in Figure 4.14. Together, the two rules inductively prove the appropriate subtype relationships,
including reflexivity and transitivity. Two instantiations of the same class have a subtype relation if their
parameters are equivalent, or if the parameteris/ariant label and the labels have the appropriate relation.

A9[C] = (class C[[.P:.]] ... {...})
(AF Q; = Q) V (P; = (covariant label id) AN A+ Q; C Q})
AF7 O[O0 ] < O[O

A9[C] = (class C[[PZ]} extends ts...{...})
Ts = interp-T(t,, class-enyC|..Q;..]))
Abr T, < C'..Q;.]

Abp C[L.Q;..] < C'[..Q5.]

Figure 4.14: Subtype rules
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true
Al Xp[n = Alpc]]

true
At literal : Xy[n := Alpc], nv := Alpc]]

A S Xyls:=1]
se{n,r}
Al S: X[s:= Alpd]

Figure 4.15: Some simple rules

These rules for checking a subtype relationship between instantiations of parameterized types are similar
to the checking performed by the PolyJ compiler, which supports only type parameters [MBL97]. Checking
a subtype relation between a class and an interface, or between two interfaces, is done in exactly the same
way as between two classes.

4.4 Checking Java statements and expressions

This section presents rules for statically checking information flow in the statements and expressions that
JFlow inherits from Java. The semantics for these statements are the same as in Java, so no discussion of
their behavior is needed. One kind of Java expression is deferred until Section 4.6: a call to method or
constructor, which differs somewhat in JFlow from Java.

4.4.1 Simple rules

Rules for most statement forms can be expressed simply using the definitions provided so far. Figure 4.15
contains some important static-checking rules.

The first rule in the figure is interpreted as follows: an empty statement always terminates normally,
with the samepc at its end as at the start. Thus, it simply passes alongtits any statement that follows
it. In the second rule, it is seen that a literal expression such as a numeric constant also terminates normally
always, and is labeled with the currgnt, as described earlier.

The third rule in Figure 4.15 applies to any statement, and is important for relaxing restrictive path
labels. The intuitive meaning of this rule is that if a statement can terminate only normalpy; #i¢he end
is the same as thegc at the beginning. The normal termination of the statement gives no new information.
The same is true if the statement can terminate only throughuan statement. This rule is called the
single-path rule It would not be safe for this rule to apply to exception paths, so the rule requires that
the single patls be eithern or r. To see why, suppose that a set of path labels formally contains only a
single exception path'. However, that path might include multiple paths consisting of exceptions that are
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A}—Elin
A[]ﬁ&:: Xl[ﬂ]] FEQ :XQ
X=Xih:=0oX,
AFE +Ey: X

AF E1 : X1
A[jﬁ& = Xl[ﬂ]] F EQ : XQ
X =exdXi[n := (] ® X, Xo[nv], ArithmeticException)
AF El/EQ X

exdX,L,C)=X[n:=X[n]UL, nv:=X[nv|UL, C:=X[C|UL]

Figure 4.16: Arithmetic rules

subclasses af’. These multiple paths can be discriminated using a . catch statement. Because the Java
exception model identifies exceptions with types, and Java supports subtyping, the single-path rule may not
be applied safely to exception paths. If exceptions were not identified with types (as in CLU"RAB

the single-path rule could be applied to exceptions too.

4.4.2 Arithmetic

Figure 4.16 gives rules for checking arithmetic operations. Arithmetic operations that cannot throw an
exception, such as addition, are covered by the first rule. Java evaluates the second argument to an arithmetic
operation only when the first argument terminates normally. Therefore, the second argument is checked
statically using ac of X [n]. The operation can terminate in any of the ways thiatan terminate, except
normally, because in that cag® would be evaluated. The operation can also terminate in any of the ways
that E», can terminate. Therefore, the path labels for the whole expression are derived by applying the
operator to the path labels from the individual expressidasgnd X5), with the normal termination path

from E removed.

For arithmetic operations that can throw an exception, such as division or modulo, the second rule
applies. These operations throw an exception if the second argument is zero. To simplify the description
of the static checking, the functicexcis used. Its definition is repeated at the bottom of the figure. This
function creates a set of path labels that are just like the input path |ahedxcept that they include an
additional path, the exceptiofi, with the path labelL. If normal termination or the normal termination
value are observed, the knowledge that the exceptiomattirown may leak the same information as the
knowledge that iwvasthrown. Therefore, thexcapplies the labelL to these two componenta éndnv)
as well. For example, in the division rule, an arithmetic exception is thrown depending on the value of the
denominator; hence, the static rule appkgswith L = X[nv].
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extend 4, ([final|7 v)) = A[v = (var [final| type-partr, 4){var-label(r, 4)} fresh-uid))]
extendA, (S1; S2)) = extendextend A, (S1)), (S2))
extendA4, (5)) = A (for other statements S)

var-label(r, A) = (if labeled 7) then label-part(r, A) U A[pc] else fresh-variabl€))

Figure 4.17: Adding local variable definitions

4.4.3 Local variables

The static checker stores information about local variables in the environment. The fuextgod defined
in Figure 4.17, is used to augment environments with definitions of local variables. When applied to any
statement, the function extracts the local variable definitions; it is needed because Java (and JFlow) allow
variable definitions at any point within a method. Angle brackets are placed around the statement argument
for clarity. For most statement forms, the functiertendreturns an unchanged environment. For local
variable definitions, it adds an appropriate binding, as shown in the first case. Note that the label of the
variable is interpreted in the environmeat the variablev may not be used in its own label. A sequence
of statements is also considered to be a single statement; the second definition recursiveleeeplis
statements in the sequence to accumulate all the definitions.

The functionvar-label creates the appropriate label for a variable declared to have extended.type
If the variable has a declared label, the true label is the declared label joined wipk Higthe point of
declaration. Any access to the variable must be tainteddyyso applying a weaker label to the variable
would make it immutable.

Argument variable definitions are added to the environment by a different set of rules (see Section 4.7.4).

4.4.4 Variable access

Some simple rules for accessing variables and components of objects are given in Figure 4.18. The first
rule covers an expression consisting of a variable name. The value of a variable is labeled with not only the
variable’s label, but also the curremt. Joining the label with the currept is necessary because the label
of every expression includes tlpe in which the expression occurs. The label of the variable itself only
includes thepc at the point of declaration of the variable.

The second rule covers an array index expression. This rule mirrors the order of evaluation of the
expression. First, the array expressidf ) is evaluated, yielding path labels,. If it completes normally,
the index expressionF},) is evaluated, yieldingX,. If this completes normally, two tests are performed.
First, the array is checked to make sure it is not null; then, the index is checked to make sure it is in bounds
for the array. If either test fails, an appropriate exception is thrown.

The meaning of the final antecedent in this rule is that the label of the array index expression depends
on the labels of the array expression, the index expression, and the array elemgntJtie possible
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Alv] = (var [final| T{L} uid)
X = Xpy[n := Alpc], nv := LU Afpc]]
AFv: X

Abp Eqy : T{L,}[]
AFE,: X,
A[IE = Xa[ﬂ]] H Eb : Xb
X1 = exd X, ® Xy, X, [nv], NullPointerException)
Xo = exd X1, X, [nv] U Xp[nv], OutOfBoundsException)
X = XQ[M =L, UXQ[MH

AF B By : X

Arbr E:T
L = field-labelT, f)
AFE: Xg
X' = exd X, Xg[nv], NullPointerException)
X = X'[nv := LU Xg[nv]]
AFE.f: X

({final} T f) = signaturéT, f)
A = class-enyT)
L = (if labeled7) then label-part(r, A) else L)
L = field-label T, f)

Abp E :array[T, L
AFFE: Xg
X = exd Xg, Xg[nv], NullPointerException)
AF Elength: X

Figure 4.18: Accessing variables and fields

termination paths of an array index expression include all of the normal termination pathsaofd £,
plus the two exceptions just mentioned. This rule usesgheperator to coalesce all these paths.

The third rule in Figure 4.18 is for checking accesses to instance variables (fields). It is similar to the
rule for checking array index expressions, except that there is no index to be evaluated or tested. Also, the
label of the instance variable is obtained by using the predidtklabel defined just below. This predicate
ensures that the labél is the label of the fieldf in the typeT’, by using thesignaturepredicate to obtain
the field’s signature, and then interpreting the label of that signaturefiditidabelpredicate will be useful
again shortly.

The final rule checks accesses to the immutable pseudoHigdch of arrays. Note that the value of
length is not labeled with’, the label of the array elements, because it is immutable.
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AFFE: X
Alv] = (var T{L} uid)
Ak X[W]C L
AFv=F:X

AFE,: X,
Abp E,: T{Ly}[]
A[IE = Xa[ﬂ]] H Eb : Xb
Alpc:= Xpn]| F E, : X,

X1 =exd X, ® X ® Xy, Xo[nv], NullPointerException)
Xo = exd X1, X, [nv] U Xp[nv], OutOfBoundsException)
X = exd Xy, X,[nv] U X, [nv], ArrayStoreException)
Al XynvUXnC L,

AT BBy = By : X

A l_T E1 :T
L = field-labelT, f)
AF E1 . X1
A[jﬁ& = Xl[ﬂ]] F EQ : XQ
X = exd X @ Xo, X1[nv], NullPointerException)
AF X[nv]C L
AF Elf = EQ : X

Figure 4.19: Assignment rules

4.4.5 Variable assignment

Figure 4.19 contains various rules for assignment. The first rule covers the simple assignment of an ex-
pressionE to a nonfinal local variablev. The termination paths of the statement are exactly those of the
expressionE. The only restriction is that the label of the variable must be more restrictive than the label of
the result being assigned ¢ X[nv]C L).

The rules for assignment to array elements and object fields are complicated by the fact that Java defers
checking the validity of the variable being assigned until the right-hand side is fully evaluated. The rule for
array element assignment is similar to the rule for array element access. First, the array ex@gssion
evaluated, yielding path labels,. If it completes normally, the index expressiél is evaluated, yielding
Xp. Then, the assigned value is evaluated. Java checks for three possible exceptions before performing the
assignment. Finally, avoiding leaks requires that the label on the array elerbghis &t least as restrictive
as the label on the information being storéd, (nv] LI X [n]).

Assignment to an instance variable also is similar to access to an instance variable. As in that earlier
rule, the predicatdield-label obtains the label of the instance variable. This label is compared against the
label of the assigned information to prevent leaks.
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Al Sl . X1
extend A, S1)[pc := Xi[n]] F S2 : X.
X=Xin:=0®X,
Al 51;52 X

A E: Xg
A[jﬁ& = XE[MH H Sl : X1
Alpc := Xg[nv]] F Sy : X
X =Xgh:=0aX;®X,
A if (E) Syelse So: X

L = fresh-variablég)
A" = Alpc := L, (goto€) := L]
AFE:Xg
A'lpc := Xgnv]] F S Xs
AF Xg[n]C
X = (XE@Xs)KgOtO €> =0
AT while (E) S
A+ do S while (£ ).X

AF {Sl; while (El) {Sg; SQ}} : X
A+ for (51; E1; Sg) S3 : X

Figure 4.20: Compound statement rules

4.4.6 Compound statements

Figure 4.20 presents rules for checking some compound statements. The first rule is for the simplest state-
ment containing other statements: a sequence of two statements. The second statement is executed only
if the first statement terminates normally, so fieis augmented to include the information of its normal
termination (X;[n]). The environment of the second statement also includes any local variables that were
defined in the first. The possible termination paths of the sequence include all the termination gaths of
plus the abnormal termination paths.®f. Note that the statement sequence operator (;) is assumed to be
associative; this rule works even wh&nand.S, are sequences of statements themselves.

The next rule shows how to check #nstatement. First, the path label§z of the expression are
determined. Since execution 8f or S5 is conditional onFE, the pc for these statements must include the
value label ofE, Xg[nv|. Finally, the statement as a whole can terminate through any of the paths that
terminateFE, Si, or Ss—except normal termination af, because normal termination would cause one of
S1 or Sy to be executed. If the statement hasefse clause, the statemenst, is considered to be an empty
statement, and the second rule in Figure 4.15 is applied.

The third rule, for thewhile statement, is more subtle because of the presence of a loop. This rule
introduces a label variablé to represent the information carried by the continuation of the loop through
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AFE: Xg
X = Xgh =0® Xy[r :== Xg[n],rv := Xg[nv]|
AbFreturn E: X

Al Alpc]C Alfgoto £)
A F continue £ : Xg[(goto L) := T]
A+ break L : Xy[(goto L) := T]

L = fresh-variablég)
A" = Al(goto L) := L]
A/ = Sl . X1
A/[p_C = Xl[ﬂ] |_|L] FSy: Xs
X = (Xi[n:= 0] ® X3)[(goto L) := (]
AES1; L: S X

Figure 4.21: Checking goto-like statements in JFlow

various paths. The labdl is a loop invariant orpc; its value is discovered by the constraint solver de-
scribed in Chapter 5. It may carry information from exceptional terminatiof’ of S, or from break or
continue statements that occur inside the loop. An entry is added to the environmégbfore) to capture
information flows from anybreak or continue statements within the loop. The rules for checkbrgak
andcontinue, presented in the next section, use these environment entries to apply the proper restriction on
information flow.

4.4.7 Goto-like statements

Figure 4.21 gives the rules for checking statements that transfer control non-locally. Firstis a ruteder a
statement. A return statement can terminate either by abnormal termination of the expression evaluated, or
by ther path. Thus, the rule shown results. If there is no expression to return, the proper path labels are
simply X = Xy[r := Alpc]]. These are the same path labels generated by the return of a constant, except
that there is no return value label).

The break andcontinue statements are handled by using a special entry in the environment that keeps
track of the label containing all information transferred to their targets. In the ruleHids, in Figure 4.20,
we saw an example of such an entry foeak and continue statements lacking a specific target. Since
break and continue transfer information about the curremt to their target, the rule for these statements
simply requires that the restrictions in the curreatbe transferred to the target, which is expressed as
Alpc] C A[(goto £)]. These two statements also generate path labels containing a mapping from the tuple
(goto L) to the labelT. The reason for adding these mappings is to prevent the single-path rule from being
erroneously used. The labélis used because the label binding is not used except that it must not be equal
to (.
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Abr E:classC{...}
AFFE: Xg
X = exd X, Xplnv], O)fn := ]

AF throw E : X

A F try{try {S} ..catch(C; v;) {S;}..} finally{S'} : X
At try {S} ..catch(C; v;) {S;}.. finally{S’} : X

AFS: Xg
pc; = exc-labe(Xg, C;)
Alpc := pg;, v; := (var final C;{pg;} fresh-uid))] - S; : X;
X = (6, X;) ®uncaughtXs, (.., Ci, ..))
At try {S} ..catch(C; v;) {S;}..: X

AFSlixl AFSQ:XQ
X =Xih:=0]®X,
A try {51} finally {S2} : X

exc-labelX, C) = cr <o v e<cry X[C']
(X’ =uncaughtX, (..,C;,..))) = Vs X'[s] = (if (Fi(s < C;)) then () else X[s])

Figure 4.22:try statements

The next rule ensures that appropriate environment entries are created for named goto targets. It intro-
duces a binding from the name of a goto label that m@gpso £) to a label variablel.. This binding is
placed in the environment that is used to ch&glandS,. This rule exploits non-determinism for concise-
ness; because statement sequencing is associative, the rule does not make clear what sequences of statements
should be considered to 3§ and.S,. Itis only necessary thaf; contain allbreak statements naming,
and thatS; contain allcontinue statements naming it. I§; and.S; cannot be chosen in this manner, the
program is incorrect.

The JFlow compiler implementation does not precisely follow the approach described in this rule; in-
stead, for each method it constructs a tahlgets that maps targets to label variables. This table is used
to impose the conditioni[pc| C targets[L] for eachbreak or continue statement encountered, just as in the
rule.

4.4.8 Exceptions

Exceptions can be thrown and caught safely in JFlow using the usual Java constructs. Figure 4.22 shows the
rules for various exception-handling statements. The first rulehfotv statements, is straightforward.

The next rule shows how to desugar an arbitrary statement of the tigrm catch. . . finally into a
try...catch statement nested within tay. . . finally statement, which reduces the set of statements to be
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y = true,

try {
if (x) throw new E();

y = false;

}
catch (Ee) { }

Figure 4.23: An implicit flow usinghrow

checked statically.

The idea behind they. . . catch rule is that eachatch clause is executed withg that includes all the
paths that might cause the clause to be executed: all the paths that are exceptions where the exception class
is eithera subclass or a superclass of the class named itatiag clause. The functioexc-labeljoins the
labels of these paths in path lab&ls The join is finite because only the exceptions pathX dhat are not
0 need to be joined. The path labels of the whole statement merge all the path labels of the various catch
clauses, plus the paths froiig that might not be caught by sometch clause, which include the normal
termination path ofX g if any.

Thetry. .. finally rule is similar to the rule for sequencing two statements. One interesting difference is
that the statemerfi; is checked with exactly the same initigd that.S; is, becauses is executed no matter
how S; terminates.

To see how these exception rules work, consider the code in Figure 4.23. In this exaaude, are
boolean variables. This code transfers the informatiorxito y by using an implicit flow resulting from
an exception. In fact, the code is equivalent to the assigngnentx. Using the rule of Figure 4.22, the
path labels of thehrow statement aréE — {x}}, so the path labels of thé statement ar&X = {E —
{x},n — {x}}. The assignment = false is checked witlpc = X [n] = {x}, so the code is allowed only if
{x} C {y}. This restriction is correct because it is exactly what the equivalent assignment statement would
have required. Finally, applying both the try-catch rule here and the single-path rule from Figure 4.15, the
value ofpc after the code fragment is seen to be the same as at its start. Throwing and catching an exception
does not necessarily taint subsequent computation.

4.4.9 Dynamic type discrimination

Java provides two mechanisms for dynamic type discrimination: checked run-time type casts and the
stanceof operator. The rules for checking these constructs are shown in Figure 4.24. They are both straight-
forward. In each case, the result of the expression depends on the label of the value of the exprdasion
instanceof, the path labels of the boolean result are the same as.féior a run-time cast, the path labels

are the same as fdr, except that &lassCastException is thrown if £ has the wrong dynamic type; this
exception is conditional on the value labeligf that is, X g[nv].
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AFE X
AF Einstanceof t : X

AFFE: Xg
X = exd Xg, Xg[nv], ClassCastException)
AF()E: X

Figure 4.24: Dynamic type discrimination

AF P1: X1
Alpc = Xi[n]] F p2 : Xo
py = interp-P(p1, A)  ph = interp-P(p2, A)
Auid (p) = (pr-param uid) V p,, = (pr-param uid))
A" = Alpc := X1 [nv] U Xo[nv]]
A'[ph := Alph] U {(p},p5)}] - S1: X3
if [else Sg] (A'F Syt Xy) else (X4 = Xp)
X=X10XoD X35b Xy
A | actsFor(p1, p2) S1 {else SQJ : X

Figure 4.25: Checking thactsFor statement

4.5 Checking new statements and expressions

The previous section presented the rules for checking information flow in existing Java statements and
expressions. This section shows how to statically check the JFlow statements and expressions that are not
found in Java.

4.5.1 Testing the principal hierarchy

The actsFor statement is used to dynamically test the relationship between two principals in the current
principal hierarchy. If the relationship exists between the two named principals, a statement is executed.
Figure 4.25 shows how this statement is checked statically. The expregsiandp, must be identifiers;

this condition is enforced because the functioterp-P is used to interpret them. They must name either
external principals or run-time principals, because principals that are class parameterspointipel are

not available at run time to be tested. Since the expresgicasdp, are identifiers, they cannot generate any
exceptions when evaluated. However, if they name run-time principals, their values may carry information,
which affects the result of the test; this information is in the labél&v] and X2[nv]. For this reason, the

pc for S is augmented to include these labels. Phecomponent of the environment is also augmented to
include the painp), p,), making the knowledge that; = p, available when statically checking,. Note

that no extra knowledge is available when statically checléngas discussed in Section 2.4.3, negative
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AFE: Xg
L = interp-L(I, A)
A+ Xgnv] Cinterp-L(L, A) U auth-label[ A)
A I declassify (E, 1) : X

L = interp-L(I, A)
A+ Alpc] C L Uauth-label A)
Alpc:=L|F S: Xg
X = Xsln := Xsln]U Alpc]
At declassify (1) S : X

auth-labe(L, A) = | |(p € Alauth])(policy p : )

Figure 4.26: Declassification statement and expression

information about the principal hierarchy is not useful during static checking.

45.2 Declassification

JFlow provides two mechanisms for declassifying information:dduassify expression and thdeclassify
statement. Both of these constructs are checked statically, using the static authority of the code at the point
of invocation, as shown in Figure 4.26. The static authority of the code is stored in the environment entry
Alauth] as a set of principals—principals for whom the code is currently known to have the authority to act.
Principals for whom principals inl[auth] can act also are implicitly in the static authority.

To check whether a labdl; can be declassified tb,, the equation’; C L, Ll auth-labe(A) must be
satisfied, thus enforcing the constralntC L, LI L 4 from Section 2.4.4. The labalth-labe[ A), defined in
the figure, contains policies of the forfpolicy p :) for every principalp in A[auth]. This label is equivalent
to L 4, a label in which policies of the forrpolicy p :) are present for every principain the static authority,
because the additional policies are redundant according to the redundancy rule of Section 2.4.4.

The first rule determines the path labels on the expredsiand ensures that the label of the valug:bf
(Xg[nv]) can be declassified to the labiel The second rule ensures that the curggntan be declassified
to the desired label; this new declassifiedc is then used to check the stateménhtThe declassifiegc
does not carry through to the statement followingdbéassify, because the fourth line rejoinpc]| to the
normal termination label. However, any exceptions or return statements performed Svithilirbe able to
take advantage of the declassifigd because these paths are not joined foc|.

This statement could have been defined to modify gheof the subsequent statements by defining
X|[n] = X;s[n], but that definition seems more likely to result in unintentional declassification. The semantics
chosen are an engineering choice to avoid programming accidents.
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AFE: Xg

L; = interp-L(l;, A)

A Xgnv|E L;ULgy

Arbr E:T

T; = interp-T(t;, A)
AFr T <T;
pcy = Xp[n]

pc; = pg;_; Ulabel( X g[nv| U L;)
A[}E = PG, v; 1= (var final Tz{Lz} fresh-uic{))] S X;
X = Xg @ (B, X,)
A+ switch label(E){..case (t;{l;} vi) S;..} : X

Figure 4.27: Checkingwitch label

45.3 Run-time label tests

The most interesting aspect of checking JFlow is checkingwiteh label statement, which inspects a label
value at run time. The inference rule for checking this statement is given in Figure 4.27. Intuitively, the
switch label statement tests the equatidiz[nv] C L; for every arm until it finds one for which the equation
holds, and executes it. However, this test cannot be evaluated either statically or at run time. For this reason,
the test is split into two stronger conditions: one that can be tested statically, and one that can be tested
dynamically. This rule naturally contains the static part of the test.

Let Lry be the join of all possible run-time-representable policies (that is, policies that do not mention
label or principal parameters). The static test is thatnv] Ll Lrr C L; L Lrr (or the simpler but equiva-
lent testX g[nv] C L; Ll Lrr); the dynamic test is thaX z[nv] M Lrr C L; 1 Lrr. Together, these two tests
imply the full condition X g[nv] C L,.

The test itself may be used as an information channel, so after the checig thast include the
labelsof X [nv] and everyL; up to this point. The rule uses tit@bel function, defined in Figure 4.28,
to determine which labels to join together. When applied to a lab¢he functionlabel generates a new
label that includes all the policies on variables that are mentionéd Trhis function is complicated by the
possibility of transferring information through dynamic principals, an information channel that is captured
by the functionpr-label.

Extracting the label from dynamic component must account for the possible presence of recursive label
references. Intuitively, the label of a componétgnamic uid L) is simply the labelL. However, the label
L might refer to the component that contains it. Recursive label references are not generated by any static
checking rule seen so far; they are created by the constraint solver as it does its work. The definition of the
function subst which rewritesL to eliminate recursive references, accordingly is deferred until Chapter 5,
where the constraint solver is discussed.
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label(L) =

label(T) =

Iabel(<|abe| param uid)) = label({(covariant-label uid)) = L
label((dynamic uid L)) = substuid, L, L)

label({policy o : .., 7;,..)) = pr-label(o) L ... LI pr-label(r;) L

pr-label(p) =
case p of
(pr-external name : L
(pr-param uid) : L
(pr-dynamic uid L) : L
end

Figure 4.28: Taking the label of a label

4.6 Method and constructor calls

Static checking in object-oriented languages is often complex, and the various features of JFlow only add
to the complexity: covariant and invariant class parameters, implicit argument parameters, and method
constraints. This section shows how, despite this complexity, method calls and constructor calls (via the
operatomew) can be checked statically.

4.6.1 Generic checking

The rules for checking method and constructor calls are shown in Figures 4.29 through 4.31. To avoid
repetition, the checking of both static and non-static method calls, and also constructor calls, is expressed in
terms of the predicateall, which is defined in Figure 4.29. This predicate is in turn expressed in terms of
two predicatescall-beginandcall-end

The predicateall-beginchecks the argument expressions and checks whether the constraints for calling
the method are satisfied. It produces the begin ldhelthe argument environmem®, which binds all
the method arguments to appropriately labeled types, and the default returlﬁ,ﬁbelnvoking a method
requires evaluation of the argumertfs, producing corresponding path labels. The argument labels are
bound inA“ to labelsL;, so the line ;[nv] C L;) ensures that the actual arguments can be assigned to the
formals. If the begin-label is explicitly declared (as testedfbM), it is interpreted and is required to be
more restrictive than thec after evaluating all of the arguments, which¥s, ;). If the begin-label is not
declared, it is an implicit parameter and is boundiig,, ;). It therefore passes the test againsf. ;)
automatically.

The predicatsatisfies-constraintss used bycall-beginto establish that the constrairis for calling the
method are satisfied. Onballer andactsFor constraints need to be satisfied, becausg®ority constraints
are tested when the class of the method is compiled, rather than when the method is used. The rule for this
predicate, also in Figure 4.29, uses the funcfiaerp-P-call, which maps identifiers used in the method
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A (A% Ly, LYy = call-beginC[Qi], (.., E;, ..), S)
A+ call-end C[Q;], S, Aa,LI,L}if‘f) : X
AF call(C[O], (-, Ej, ), S) : X

S= ([static} Tr m[{[}} (.75 a;..) {{R}} throws(..7..) where K;)
Xo = Xgln := Alpd]]
Alpc := X 1[n]] - Ej - X
L; = fresh-variabl€)
uid; = fresh-uid)
A¢ = class-enyC[Q;])
A® = A°[..a; := (var final type-par(7;, A°){L;} uid;)..]
Ly = (if [{I}] then interp-L(I, A%) else X y0x;)[n])
AF L; = (if labeled ;) then label-part(;, A*) U L; else L;)
At Xjlnv| EL;
Al Xmax(j)[ﬂ] ELs
L9 = (if (, = void) then {} else | |;X;[nv])
satisfies-constraintsd, A%, A[..a; := E;..],(..K;..))
AF (A% Ly, L) = call-beginC[Qi], (..E;..),S)

let interp(p) = interp-P-call(p, A, A%, A™) in
Vi case IC; of
authority(...) : true
caller(..pj..) : ¥(p;)3(p’ € Alauth]) At p’ > interp(p;)
actsFor(p1,p2) : A interp(py) = interp(p2)
end
end

satisfies-constraintsi, A%, A™, (..K;..))

8 = ([static| 7 m[{1}] (-.7; a;..)[:{R}] throws(..7y..) where K))
Ly = LyU(if | : {R}] then interp-L(R, A%) else {})
Lry = Lr U (if labeled 7, ) then label-part(7,, A%) else Lf%e";)
Ck[ | = type-par(;, class-enyC[Q;]))
X' = (®; Xj)In:= Lg, nv:= Lgy]
X = X'® Xy[..Cy, := label-part(ry, A*) U Lg..]
AF call-end C[Q;], S, A%, L, L%T) - X

Figure 4.29: Generic method-call checking

constraints to the corresponding principals. This function is defined in Figure 4.30. To perform this mapping,
the function needs environments corresponding to the calling cédehe called codeA®), and a special
environment that binds the actual argumems$*). The environment entryd[auth] contains the set of
principals that the code is known statically to act for.
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interp-P-call(p, A, A%, A™) =
let p’ = interp-P(p, A%) in
case p’ of
(pr-dynamic uid L) : interp-P(A™[p], A)
else p/
end
end

Figure 4.30: Interpreting principals in a method call

Finally, the predicateall-endproduces the path labels of the method call by assuming that the method
returns the path labels that its header claims. The Iﬁ;‘j@] is used as the label of the return value in the
case where the return type,, is not labeled. It joins together the labels of all of the arguments, because
typically the return value of a function depends on all of its arguments. This rule also shows that the default
end-label is the same as the begin-label, and that the end-label is included in the labels of all of the exception
paths as well as in the label of the return value. The argument labels are not by default included in the end-
label, because exceptions often do not depend on all of the arguments to a function; if argument labels were
included by default, the programmer would be encouraged to write method specifications that were overly
restrictive.

4.6.2 Specific rules for checking calls

The rules for the various kinds of method calls are built on top of this framework, as shown in Figure 4.31.
The only subtlety that arises in these rules is that constructors are checked as though they were static methods
with a similar signature. The functigignatureobtains the signature of the named method from the class.

Ordinary method calls are checked by using tiadl predicate in a straightforward manner. The
for the call predicate is set from the normal termination path of the expression for the method reEgiver,

Static method calls are checked even more simply, because there is no evaluation of a method receiver before
the arguments are evaluated.

The final rule in Figure 4.31 covers calls to a constructor, which are handled similarly to a call to a static
method. In fact, as the rule shows, a constructor call is checked as though it were a static method of the
same class.

There is one additional check needed for constructor calls, however. Recall that the class declaration
can have anauthority clause that mentions principals that the objects of that class can act for. Two kinds of
principals may be named in that clause: external principals, and parameters of the class ofjihedigpé
The authority of an external principal derives from the user who installs the class in the system, but the
authority of a principal parameter derives from the code that creates the object by calling a constructor. As
the rule shows, the static authority of the caller must include any actual principal parameters passed in the
position of formal parameters that happen to be listed iratheority clause of the class.
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Abr Es: C[.Q;.]
A FT Ej : T]
S = signatur€C'[..Q;..], m(..7}..))
AFE,: X,
Alpc := Xg[nv]] Fcall(C[..Q;..], (..E;..),S) : X
AFE; m(.Ej.): X

T = interp-T(t, A)
A FT Ej : T]
S = signaturgT’, m(..7;..))
AFcal(T,(..E;..),S) : X
At .m(Ej.): X

T = CJ..Q;..| = interp-T(¢, A)
A9[C] = (class C |[.P;.]| .. [authority(..ps..)] ...
A FT Ej : T]

S = signatureT’, C(..7}..))

S = (C[{D}] (.75 a;..)|:{ R} throws(..7;...) where k)

§' = (static T{} dummy [{1}] (..7; a;..)[:{R}| throws(..7;...) where K)
AtFcal(T,(..E;..),S) : X
V(parameterpy) 3(p € Alauth]) A F p > interp-P(py, class-enyT’))
AFnewt(.E;.): X

Figure 4.31: Method and constructor call checking

4.7 Checking classes and methods

The rules for checking virtually all of the statements and expressions of JFlow have now been defined.
These rules have relied on the environment being properly set up with entries sd¢ugg and A[ph],

and entries for method argument variables and class parameters. This section addresses static checking of
information flow in entire class definitions, including the method and constructor declarations within them.

4.7.1 Checking classes

A class contains some number of methods and possibly extends a superclass and some interfaces. It may
also be granted some authority by external principals or by principals that are its own parameters. The
rule in Figure 4.32 describes how the various components of a class are checked in terms of a number of
lower-level predicates that are discussed in the following sections.

In the figure, the functionnner-class-envs used to create an environment in which the contents of
the classC are checked. This function was defined earlier in Section 4.3.3. It adds a definition to the
environmentA for every formal parameter of the class. For example, label parameters of the class are bound
to entries of the form{param label uid), which stand in for the actual parameters supplied in an instantiation
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A9[C] = class C{[PZ]} {extends ts} [implements b, authority(..pk..)}{
Mo {final}n Tn U

A = inner-class-eniC')
A + authority-ok C)
A F match-methog@nterp-T(¢,, A), M
A = match-methotinterp-T(t;, A), M
T = interp-T(C[..param-id7;)..], A
A + check-method’, M,,,)
(if [final}n then true else invariant(type-par(r,, A)) A invariant(label-part(7,,, A)))

check-clas&’)

m)
m)
)

Figure 4.32: Checking a class

of the class. The static checking rules are conservative with respect to these parameters, ensuring that the
class would also statically check if any actual parameter were substituted for the corresponding formal
parameter. The type expressiQrdenotes the superclass@f if any, and the type expressiofisdenote the
interfaces that” implements, if any. These type expressions are interpreted in the envirodnimtause
they may mention the formal parameters of the class

Various aspects of the class declaration must be checked statically. The successive lines in the rule
correspond to the following static tests, which are discussed in more detail in the remainder of the chapter.

e The authority declared in theuthority clause of the class must actually have been granted to the class.
This authority must also be at least as great as the authority of the superclass. These conditions are
tested by the predicatauthority-ok described in Section 4.7.2.

e The signature of every methoti,,, must also be compatible with signatures that are inherited from
the superclass or from interfaces that the class implements. The predate-methoddefined in
Section 4.7.3 verifies this compatibility.

e Each of the methods of the class also must provide an implementation that is safe with respect to
information flow, and obeys the declared signature of the method. The prethieate methodnsures
that the methods of the class have these properties, as described below in Section 4.7.4.

e Covariant label parameters may not be used to construct the labeled type of any instance variable
(v,) unless it is declareélnal. Instance variables that mention covariant label parameters cannot be
mutable because they could be used to create information leaks.
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A9[C] = (class C[[PZ]} {extends Cs } [implements ot } authority(..pg..))
P}, = interp-P(py,, A)
case pj. of
(pr-external uid) : 3(pj, € A9[auth]) A9 & p] = p}.
(pr-param uid) : true
end

A9[Cs] = (class Cs ... authority(..p;..)...)
VI 3(p" € {.p..}) A9 F p" = interp-P(p;, A)
A + authority-ok C)

Figure 4.33: Checking the authority of a class

4.7.2 Class authority

The authority clause of a class declaration, if any, must be validated; any external principals listed in this
clause must have granted their authority to the installation of this class.autherity clause may also
name principals that are parameters of the class, but as discussed in Section 4.6.2, the authority for these
principals is granted at the time of object creation. The prediaatbority-ok checks that the claimed
authority is present in the global environment, as shown in Figure 4.33.

The final two lines of this rule enforce another condition, that the authority declared wutherity
clause of the class is at least as great as the authority declared in its superclass. Otherwise authority would
be obtained by inheriting methods from the superclass.

4.7.3 Method signature compatibility

The methods of the class must have signatures compatible with the same methods in its superclass and
interfaces it implements. JFlow follows Java in requiring exact matches in argument types for a method to
be considered the same; overloaded methods are distinguished by their argument types. However, labels
on argument and return types are not part of the method identity, and need not be the same in a class as in
its superclass. As in the usual contravariance/covariance type rules [AC96], argument labels may be made
more restrictive, whereas return labels and exception labels may be made less restrictive. In both cases, the
subclass is able to accept more (or at least as many) values as method arguments, and may return fewer
values. In addition, the constraints on the superclass method must be sufficiently strong to guarantee the
satisfaction of the constraints on the subclass method.

All these conditions are enforced by theatch-method-on&est in Figure 4.34. In JFlow, as in most
object-oriented languages, the essence of the test for method conformity is that the subclass method should
be a valid implementation of the superclass method in the case that the object on which the method is in-
voked is actually of the subclass type. The rule in Figure 4.34 performs exactly this test, with one additional
condition: the types of method arguments must be equal in the two classes—a Java rule. This strengthen-
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A9[Cy] = (class C1 |[Pi]] . {. My}
My =t m|[{1 ] (-} al.)| s {B1}] throws(.7}..) where(K}){. ..}
My =8{.1}
A, = class-enyC1|..Q;..])
Ay (L, A)) = check-argumen(s%[{[l}]} (k) (ab), (KGL))
type-par(r}, A;) = type-par(77, A;)

A = obj-en(4}, C1[..9;..])
A/ll F Ca”(Cl[Qz], (ajl),Sg) : X
A! b check-bodyL;, X, ; , [ : {Rl}},f,}, (L)

As F match-method-on(€[..Q;..], M2)

M = (static 72 m[{1,}](7? a2) | : {Rg}}2 throws(..72..) where(K2))
Ay + match-method-on€'[..Q;..], M)

Figure 4.34: Superclass method conformance

A F match-method-on€..Q;..], M)
A9[C] = (class C[[PZ]} [extends ts} [implements s } .
A" = class-enyC[..Q;..])
if [extends ts} then (A F match-metho@interp-T(ts, A’), M))
if [implements ot w then (A F match-methofinterp-T(¢;, A"), M))
A + match-metho@”|..Q;..], M)

Figure 4.35: Recursively checking method compatibility

ing condition is needed because the subclass method is a valid implementation of the superclass method
even when the types of the method arguments in the subclass are supertypes of the corresponding method
argument types in the superclass. Java enforces this rule because it supports overloading, not because it is
needed for type soundness. In the rule, the subscript 1 indicates superclass components, and the subscript 2
indicates subclass components. The goal of the rule is to check the signatures of the mvétharts Mo
against each other. The signatdigis the signature of the method,; the body of the method is irrelevant
to this test. The rule works by simulating the checking of a call to methtdfrom within a method with
the same signature asgl;.
The second rule in Figure 4.34 shows that checking for method signature conformance is not needed
for static methods. It is also unnecessary for constructors. Finallyntieh-method-ontest is satisfied
not only through the rule of Figure 4.34, but also if the superd@s<;..] has no method with a matching
name and argument types, a condition that is more easily described in words than in an inference rule.
Method compatibility must be insured not only with the direct superclass, but also with indirect super-

126



M = [static| . m[{I}] (.7; a;..) [:{R}] throws(..7;...) where K; {S}
At (Ly, A) = check-argument${1}], (..7;..), (-.a;..), (-.Ki..))
if [static| then A” = A’ else A” = obj-enVA’,C[..Q;.])
A - check-bod{Ly, Xy, S, | : {R}], 7, (-.7%.))
A+ check-metho(..Q;..], M)

Figure 4.36: Checking method declarations

L; = fresh-variabl€)
uid; = fresh-uid)
A" = [..a; := (var final type-par{(7;, A){L;} uid;)..]
L; = (if [{1}} then interp-L(I, A’) else (covariant-label fresh-uid)))
A"+ L; ~ arg-label(r;, A")U L;
A" = A'[pc := Ly, auth := constraint-authority(..X;..), A"), ph := constraint-pH(..X;..), A")]
V(p € A"[auth])3(p' € Alauth]) A" F p' = p
At (L, A") = check-arguments{7}], (.7;..), (-.a;..))

arg-label(r, A) = (if labeled 7) then label-part(, A) else (covariant-label fresh-uid)))

Figure 4.37: Checking a method header

classes and interfaces. Thwtch-methodest, used in the rule faheck-classabove, applies the function
match-method-ont all of the supertypes of the class, as shown in Figure 4.35.

4.7.4 Method declarations

There are several kinds of methods: object methods, static methods, and different kinds of constructors.
Object methods and static methods are treated similarly. The predivatk-methods defined for these
methods as shown in Figure 4.36. There are three parts to this rule: first, the method argumentd (
constraints ;) are used to create an environmeitin which the body of the method (the statemgéiican

be checked. If the method is non-static, the environmns effectively extended to include definitions for

the identifierthis and the norfinal instance variables.

We saw earlier that checking calls to these different kinds of methods had much in common, and general
predicatesall-beginandcall-endwere defined to capture this common checking. Similarly, there is much
common in checking the declarations of different kinds of methods. In particular, checking the method
arguments and the paths at method termination involve common work. These common checks are defined
by thecheck-argumentandcheck-bodypredicates, defined in Figures 4.37 and 4.40.
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caller

{ method
call-begin

check-arguments

call-end check-body

Figure 4.38: Structure of method checking

Checking method arguments. The check-argumentpredicate is similar in form to theall-begin pred-

icate defined earlier in Figure 4.29. This is not surprising, because these two predicates are the caller-

side and callee-side tests for method arguments, respectively, as indicated intuitively in Figure 4.38. The

check-argumentgpredicate establishes the begin-laligl which is also the label of the objethis in a

non-static method. This label is defined as the interpretation of the {dbef it is provided, or as a label

parameter otherwise. In either case, the ingiiafor checking the method body is defined by. If {I} is

omitted, L; is defined to be a fresh label parameter that cannot be mentioned anywhere outside the method.

No results of computations performed by the method can be stored externally, because no external label can

be provably as restrictive ds;. For this reason, methods lacking an explicit begin-label are side-effect free.
The predicateheck-argumentalso establishes the environmetit, which is used for statically check-

ing the body of the method. It contains definitions for the arguments of the method. The arguments are

automaticallyfinal variables of the declared type. The method arguments are all in scope for use in label

expressions in the method header, so a level of indirection is required to define their labels. To allow the

variables to refer to one another, the argumentare bound to label variables;, in the third line. Equa-

tions are then constructed that require theséo be equivalent to the interpretation of the label partof

in the environmentd’, which contains bindings fat;. This indirection allows the label parts of to refer

to each other’s variables. Note that the begin-label,is automatically a part of every argument label. The

sixth line establishes the environmett that is used to check the body of the method. This environment

extends the argument environmetitto add definitions for the method bogby, its authority futh), and

static principal hierarchyph). The functionsonstraint-authorityandconstraint-ph defined in Figure 4.39,

are used to construct these definitions. The seventh line ensures that the authority claimed by the method

(in its authority clause) is a subset of the authority possessed by the class. The envirohmérith was

defined by thenner-class-enfunction, contains the class authority; the seventh line requires that each prin-

cipal in the method authority is authorized by some principal in the class authority (which may be a principal

parameter).
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constraint-authority(..X;..), A) =
let (for all 1) authy =
case (K;) of
(authority (..pk..)) : {..interp-P(p, A)..}
(caller (p§)> : {..interp-P(pg-,A)..}
else {}

end
in
U, authy

end

constraint-ph(..X;..), A) =
let (for all 7) ph, =
case (K;) of
(actsFor (pf,ph)) : {(interp-P(p}, A),interp-P(ph, A))}
else {}

end
in
U ph,

end

Figure 4.39: Building environment entries from constraints

AFES: XX = XoP X,
Ly = (if | : {R}] then interp-L(R, A") U Ly else Ly)
AF XnUX[|E Ly
Lry = (if [n} A labeled 7)) then label-part(7,., A) U L else 0)
AF X[M] I_IX[r_v] C Lgry
V(C": X[C] #Q)V(k: C" < type-par(ry, A)) A+ X[C'] Clabel-part(ry, A)U Lg
At check-bodLy, Xo, 5, | : {R}], [7:], (-.7%-.))

Figure 4.40: Checking a method body

Checking method bodies. Using the environment established tlyeck-argumenthecking of a method

body is completed by using thaheck-bodypredicate, shown in Figure 4.40. This rule determines the path
labels ofS in the environment and then requires that the result path labels declared in the method header
are at least as restrictive as the path labelS.of he need for the second argumekit, will not be clear at

this point; it is used for checking constructors. It effectively allows the insertion of an arbitrary statement to
be executed in the method body beféreFor ordinary methodsXy = Xj.

Checking constructor bodies. Constructors are checked similarly to ordinary methods, but there is added
complexity because of the need to initialize instance variables and invoke superclass constructors. A con-
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M= (C[{D}] (.75 a;.) [:{R}] throws(..7;...) where K; {S})
final-vargC) = {}
At check-argument${1}], (..7;..), (-a;..), (-.px-.), L1, A)
A" = obj-en(A’, C[..Q;..))
A" b check-bodyL;, Xg, S, [ : {R}}, H,(..Tk..))
A+ check-metho(..Q;..], M)

Figure 4.41: A simple constructor

M= (C[{D}] (.75 aj.) [:{R}] throws(..7;...) where K; {C(Ep); S3)
At check-argument${1}], (-.7;..), (-a;..), (-.px-.), L1, A)
A9[C] = (class C[[PZ]} -

q; = param-id P;)

A new Cl..gi. |(Em) : X

A" = obj-en( A", C]..Q;..])
A" b check-bodyL;, X, S, [ : {R}}, H (.75.2))
A + check-metho@”[..Q;..], M)

Figure 4.42: A constructor with a superclass constructor invocation

structor for a class with néinal instance variables and no superclass is checked simply, as shown in Fig-
ure 4.41. The conditiofinal-vargC') = {} preventsC from having anyfinal instance variables.

A constructor may also defer initialization to another constructor of the same class, as shown in Fig-
ure 4.42. It is checked as though the constructor body is executed after another object @fislas=ated.

The final form of a constructor is one that invokes a superclass constructor, as shown in Figure 4.43. All
final instance variables must to be initialized before the call to the superclass constructor. Thetbhject (
and its instance variables are not in scope in this prologue to the constructor, nor in the call to the superclass
constructor. This scoping rule is shown by the use of the environdfeintthese contexts.

Checking instance variable initialization. A constructor prologue must be checked while keeping track
of which final instance variables have been initialized. Theck-initspredicate, in Figure 4.44, describes
this checking. The predicate builds a new environment into which instance variables of typabel are
placed for use in label checking.
Figure 4.45 contains one final rule that improves static reasoning about dynamic labels in constructors,
by keeping track of what expressidimal instance variables of typabel are initialized with. This rule is
used preferentially to the more general rule for an initial statemeatE. Its effect is that if an instance
variable is initialized from anothdinal variable of typdabel, the two variables will share the samiel and
will be treated as containing the same label. Without this rule, we would expeect, thaiuld obtain a fresh
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M= (C[{D}] (.75 a;.) [:{R}] throws(..7;...) where K; {S1; super(Epn); Sa})
At check-argument§{I}], (..7;..), (-.a;..), (-px..), L1, A)
A"+ A" = check-init3C, Sy, final-varg (), Xj)
A9[C] = (class C[[PZ]} extends s .. .)
A"[pc := Xo[n]] F new ts(Ep,) : X3
A" = A"[this := (var final C[Q;|{A[pc]} fresh-uid)), pc := X7 [n]]
A" - check-bodyL;, Xo & X1, Sa, [ : {R}}, H,(..T,g..))
A+ check-metho(..Q;..], M)

Figure 4.43: A constructor witfinal instance variables

true
A+ A = check-init§C, ;, {}, Xy[n := Alpc]])

(S) = (v = E; Sy)
AlC) = (classC...{...final Tv...})
AFE: Xg
A+ Xg[nv] C label-part(r, A)
Alpc := Xgn]] + A" = check-init§C, Sz, V — {v}, X2)
X=Xp® X,
A+ A’ = check-init$C, S, V, X)

(S) = (S1;52)
AlF Sl : X1
Alpc := Xi[n]] F A’ = check-init§C, S, V, X)
A+ A’ = check-init$C, S, V, X)

Figure 4.44: Checking instance variable initialization

uid and would be treated statically as containing a different label. This optimization avoids unnecessary
dynamic testing of the labels in some situations where they can be determined to be identical statically. One

(S) = (v1 =23 S2)
AlC] = (classC...{...final Tv;...})
Alvg] = (var final label{ L} uid)
A LU Alpc] C label-part(r, A)
A" = Alvy := (var final label{label-part(r, A)} uid)
A"+ A" = check-init§C, Sz, V — {v}, X)
A+ A" = check-initgC, S, V, X)

Figure 4.45: Improving static reasoning about dynamic labels
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example of this situation is in the implementation of the classtected, in Figure 3.15. The assignment
context = x can be checked statically becaullseandLL are bound to the same dynamic label variable using
the rule of Figure 4.45. The key step in this rule is the fifth line, which creates the environthestting

the label of the instance variable to beuid, which is the same as the label of the assigned variabj&s

seen in the second line.
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Chapter 5

Constraint Solving and Translation

This chapter covers some aspects of implementing JFlow that were not described in Chapter 4. Figure 5.1
depicts the top-level structure of the JFlow compiler. In this figure, the dark ovals indicate two parts of
this implementation that have yet to be described. Chapter 4 described the first phase of static checking:
application of the inference rules by the rule checker. The second phase of static checking is constraint
solving, which is described in Section 5.1. Constraint solving is used to assign labels automatically to local
variables and to the program countge); If a satisfying assignment is constructed by the constraint solver,

the JFlow program is translated into an equivalent Java program, a process that is described in Section 5.2.

5.1 Constraint solving

As the rules for static checking are applied, they generate a constraint system of labels for each method.
For example, the assignment rule of Figure 4.15 generates a conaffaint_ L. In this constraint system,
some of the labels are unknowns and are cdlids| variables The job of the constraint solver is to

Inference
rules

JFlow Rule Constraint
program checker system

Y

Java
program

Constraint
solver

Figure 5.1: Structure of the JFlow compiler
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find assignments for these label variables that satisfy all of the constraints. The inference rules generate
label variables whenever the functifresh-variabl€) is used, as described in Section 4.2.7. This section
describes the final step in statically checking JFlow code: solving the system of constraints generated during
the application of the inference rules, and producing satisfying assignments for all label variables. By
producing these satisfying assignments, the constraint solver automatically infers labels for local variables
and the program counter.

5.1.1 Integrating static checking and constraint solving

As the inference rules in Chapter 4 are used to check the program, antecedents in the form of label con-
straints are encountered. In general, these constraints contain label variables and cannot be tested when the
constraints are first encountered. The static checker records these constraints for later consideration.

Each constraint takes the forth = L, C Lo, whereA is an environment and; and L, are labels.
Constraints may also take the fouh- L, ~ Lo, but this constraint is equivalent to the pair of constraints
AFLiCLyandAtF Ly C L.

Deferring the checking of label constraints is safe because no searching is necessary to apply the infer-
ence rules of the previous chapter, despite the apparent non-determinism of the rules. The selection of which
rule to apply at each step is based on syntactic considerations, not whether a particular label constraint can
be satisfied. In other words, removing all the antecedents from the inference rules that are label constraints
would have no effect on which rules would need to be applied to show a program correct.

Solving constraints is also practical because it is done on a method-by-method basis rather than on an
entire program. Although the rules of the previous chapter do not make it explicit, the constraints generated
by statically checking one method do not affect the constraints of any other method, so the constraint systems
of the various methods can be solved in isolation without loss of expressive power. This property holds
because every label variable (for which the constraint solver is to find a value) is associated with only one
method, and each constraint mentions label variables from only one method. Constraint systems tend to be
small because the constraint system generated by each method can be solved in isolation.

5.1.2 Constraint equations

The first step in solving a set of constraint equations is to put them in canonical form. The constraints
generated by application of the inference rules are all of the férm L, C Lo, whereL; and L, may be

the join of other labels. The first step in creating the canonical constraint equations is to break up the labels
Ly and Ly into their individual components. The letté will be used here to denote a label containing

a single component, so the labdls and L, can be written as a join of their components) P! L. and

.U Pj2 L.. . Because of the properties of the join operatar)(the constrainf; C L, is equivalent to a set

of individual constraints! C .. LI P? LI .. for each left-hand-side componefit. Therefore, in the canonical

form of the constraints, the left-hand side of each equation is a single component.
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Constraint:
LHS C RHS

LHS:
SimpleComponent
LabelVariable
label(LabelVariable)

RHS:
L
RHS U RHSComponent

SimpleComponent:
{(policy o : ..,7;,..)
(label-param uid)
(covariant-label uid)
(dynamic uid DynamicLabel)

LabelVariable:
(variable uid)

RHSComponent:
LHS
Lin'u
Lgr

DynamicLabel:
1
DynamicLabel_I SimpleComponent
DynamicLabel I LabelVariable

Figure 5.2: Grammar of canonical constraints

The canonical form of a constraint is expressed by the grammar in Figure 5.2. The terminals in this
grammar are all expressions that appear in the static checking rules of the previous chapter. The four simple
component typesplicy, label-param, covariant-label, dynamic) are the only components that may appear
in the constraint solver solution. The job of the constraint solver is to replace each label variable with a join
of these simple components, with the result that all the constraints are satisfied. These components and the
other components are summarized here:

(policy 0 : ..1;..) a policy

(Iabel-param uid) an invariant label parameter

(covariant-label uid) a covariant label parameter

(dynamic uid L) a dynamic label contained infaal variable of typdabel

(variable uid) a label variable: a label to be solved for

Liny the join of all components that are not invariant label parameters
Lgr the join of all run-time representable components

label(L) the label of a labeL, which may contain only simple components or

variable components
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Certain terms may appear on the right-hand side of an equation but not on the left: the two special
labelsL pr and L;,,,,, which are used when checking theitch label statement and thiavariant predicate,
respectively. These labels are infinite but are never expanded during static checking.

A constraint term also may take the fotabel(L) for some labelZ, using the functiorlabel that was
defined earlier in Figure 4.28. Applyirgbelto a join of several components is defined as the joilaloél
applied to the individual components. The result of applyaigel to all label components is well-defined,
except for label variables (of typgariable uid)). Therefore, the functiokabel shows up in the canonical
constraint equations only in terms of the folabel( (variable uid)).

Dynamic labels have the unique property that they contain anotherllalielthe canonical form of the
constraint system, this internal labElis also reduced to canonical form, as a join of simple components
and label variables, as shown in the grammar.

A constraint equation contains more than just a pair of labels; it also contains an envirofmérith
records the static checking environment in which the label constraint occurred. However, only one part of the
static checking environment is relevant for label constraints: the static principal hierarchy, which is stored
in A[ph]. The static principal hierarchy affects judgements aboutheelation between two policies, as
seen earlier in Figure 4.10.

5.1.3 Solving constraints

A simple iterative work-list algorithm can be used to solve constraints in the canonical form just described.
Ignoring dynamic components and terms involving the functiaiel, the constraint equations form a sim-
ple system of lattice constraints that can be solved using a generalization of the linear-time algorithm for
satisfying boolean Horn clauses [DG84, RM96]. The Horn-clause algorithm works because gjoiy the
operator appears in the constraint equations; ifnleetoperator were allowed, the SAT problem would be
reducible to this form, and the constraint-solving problem would become NP-complete [RM96].

The algorithm works by keeping track of conservative upper bounds for each label variable, and itera-
tively refining that upper bound downward in the label lattice. Initially, all the upper bounds areTsghie
top of the label lattice. The algorithm then iteratively refines the upper bounds, until either all constraints
are satisfied or a contradiction is observed. The upper bound of a variable always isTedharjoin of
simple components. At each step, the algorithm picks a constraint that might not be satisfied when all label
variables are substituted by their upper boundsapmiesthe constraint, forcing it to become satisfied.

A possibly unsatisfied constraint is applied as follows: If the constraint has a label variable on its left-
hand side, the upper bound estimate for the variable is lowered to beeiter ) of its current upper bound
and the value of the right-hand side. The upper bound of a variable is denoted lé¢& hyln evaluating
the right-hand side, all variables are replaced with their current upper bound estimates. In other words, a
constraint of the fornV C L, whereV is a label variable and is a join of some components is satisfied by
the assignment/ (V') := U(V) M U(L). This assignment ensures that the constraint in question is satisfied
by the current assignments of all variables, evel idppears inL. If the assignment has no effect, the
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constraint was already satisfied by the existing”). Since the meet operator produces the most restrictive
label that is at most as restrictive as its operands, the iiéW) is the most restrictive label that can

have while still managing to satisfy both the constraint and the old upper bound. Inductively, the new upper
bound remains conservative.

At every step during constraint solving, the upper bound of each variable is @itber join of com-
ponents of the sorts that are allowed in the final solutigsiicy, param-label, covariant-label, or dynamic.
Therefore, once all constraints are satisfied, the upper bounds of each variable are legal satisfying assign-
ments. If at some step the component on the left-hand-side of an unsatisfied constraint is not a variable
(that is, one of the constant policies named above), the constraint system is not solvable: a contradiction has
been observed. The reason that the constraints are not solvable is that all variable assignments are conser-
vative upper bounds, so no set of refinements of variable assignments can cause the unsatisfied constraint to
become satisfied.

The labels found by this simple algorithm are the most restrictive labels that satisfy the constraints.
However, the actual values that the inference algorithm finds are irrelevant, because they are never converted
to first-class values of typlabel. What is important is that theiie a satisfying assignment to all the labels,
proving that the code is safe.

The special labelé g and L;,,,, are added to the constraint system by checkingtiech label state-
ments and the invariance of labels, respectively. In principle, these labels are each a join of a potentially
infinite set of components. In practice, they can be integrated into the algorithm just described in a straight-
forward manner. Recall thatzr is the join of all run-time-representable label components, as defined
in Section 4.5.3. The labelzr appears in constraints of the forlnC L U Lry, whereV is a vari-
able component and is a join of arbitrary terms. If this constraint is selected to be satistigd]) is
updated just as in the simple algorithm. The n&\W) is U(V) MU (LU Lgr), which is equivalent to
(U(V)nU(L))u(U(V)N Lgrr) because of the distribution propertiesiofand Li. The termU (V) M Ly
is theintersectionof U (V') and L g7, which is a join of all run-time-representable componentS {'). In
other words, the infinitely large labélr; can be manipulated without expansion into its full form.

The labelL;,,, is treated similarly. This label, defined in Section 4.2.9, arises only from occurrences
of the invariant predicate. This predicate results in constraints of the form L;,,,,. If this constraint is
selected to be satisfied, the upper boundifds changed t@/ (V') M L;,,,; in other words, any components
of the form(covariant-label uid) are dropped from the upper boundof

5.1.4 Determining the meet of two components

In Section 2.4.4, the rule for the meet of two labels was defined. However, in the model of Chapter 2,
labels only contained policy components. The rule for meet extends to labels containing the four simple
kinds of components, while preserving the necessary label lattice properties. The rule follows directly from
the rule for the ordering operatdr presented earlier in Section 4.3.2. As in Chapter 2, the meet of two
components that have no relabeling relationship is the bottom labellf the two components have a
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(label-param uid) Mp (label-param uid) = (label-param uid)
(covariant-label uid) Mp (covariant-label uid) = (covariant-label uid)

(dynamic uid L) Mp (dynamic uid Ly) = (dynamic uid (L1 M Ls))

0=0V(PFJd >o)
(policy 0 : .., 74, ..) Mp (policy o' : ..,r},..) = (policy 0 : .., 7y, ..,..,r}, )

Plromd N(o#0)
L = (policy 0 : .., 7,0y .y %, ) U (policy o'+ .y ooy 705 )

_77
(policy 0 : .., 4, ..) Mp (policy o' : ..;7r},..) = L

Figure 5.3: The meet of two related components

relabeling relationship according to the rules of Figure 4.10, their meet is defined by the rules in Figure 5.3.
Note that the meet of two components is defined with respect to a static principal hierarahys is
indicated in the rules by writing the static principal hierarchy as a subscript. Note that the last two

rules in the figure correspond to the definitions of Section 4.3.2. The not@atien’ - o is used to indicate

thato’ acts foro in P, but not vice-versa.

5.1.5 Handling dynamic constraints

The algorithm described in the previous section does not handle terms in constraint equations of the form
label( (variable uid)). These terms may be generated by uses ofiliech label construct, as seen in the
rule of Figure 4.27.

A term of this form may occur on either the left- or right-hand side of a constraint equation. Let us first
consider how to handle terms of this form that occur on the right-hand side.

An important property of the constraint systems considered in the previous section is that as the upper
bounds are refined downward in the label lattice, the values of the right-hand sides of constraint equations
also change monotonically downward in the lattice. That is, if the upper bound for a veliéblgiter-
atively takes the valuegi, . .., V,, during constraint solving, it is always the case that_ ... C V4. In
addition, if the right-hand side of a constraint is the labgthenU (L) also decreases monotonically during
solving. This property is important for ensuring ttiatV’) is always a conservative upper boundionso
application of constraints with a non-variable on the left-hand side can be delayed until all constraints with
a variable on the left-hand side are satisfied.

Because of the structure of the functil@bel, this important property can be preserved even with the
introduction of terms that udabel. The definition oflabel, which was presented earlier in Figure 4.28, is
reproduced here in Figure 5.4. This definition allows the funclirel to be applied to the current upper
bound of any variable, since it is defined for all components that can occur in an upper bound.
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label(L) =

label(T) =

Iabel(<|abe| param uid)) = label({(covariant-label uid)) = L
label((dynamic uid L)) = substuid, L, L)

label({(policy o : ..,7;,..)) = pr-label(o) U ... U pr-label(r;) L ...

pr-label(p) =
case p of
(pr-external name : L
(pr-param uid) : L
(pr-dynamic uid L) : L
end

Figure 5.4: Taking the label of a label

Whenlabel is applied to a dynamic component, the result is the contained Iab8bme substitution
(applied by the functiorsubs) may be necessary to handle recursive references; this effect is described
shortly. As the constraint solver refines variables downward, the current upper bound of the contained label
L also changes downward monotonically, and therefore so does the result of apgibghip thedynamic
component. As the constraint solver iteratively refines the upper bounds of variables, thelsetnot
components in the current upper bound of a variable only can decrease in size, because the upper bound is
refined by using the meet operator.

When the functioriabel is applied to a label, the result may contain components that derive from
policy components in. where the principals in the policy are variables of typéncipal. The function
pr-label in Figure 5.4 extracts the label of such policies. Just as dgttamic components, the set of
policies in an upper bound only can decrease in size.

Since the set oflynamic components and policy components only can decrease as constraints are ap-
plied, and the result of applyinigibel to either kind of component can move only downward in the label
lattice, the result of applyinfabelto a label can move only downward in the label lattice as well.

This argument shows that terms of the folatbel(1") are well-behaved during constraint solving, and
so the constraint-solving algorithm needs little modification to support terms of this form oigtitdand
side of a constraint equation. When a constraint is used to refine the upper bound of a variable, any terms
of this form are evaluated using the current upper bound for the varialdad the definition ofabel in
Figure 5.4.

Terms of the formlabel(V') may also appear on the left-hand side of a constraint. A constraint of the
form label(V') C L is called adynamic constrainhere. A dynamic constraint is applied differently from
other constraints. If it is not satisfied, at least one compoérin label(U(V')) is not covered by any
component i/ (L). This component must come from the contained ldBelf some dynamic component
or policy PinU(V).
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In general, there are two ways to refine the upper bounds of variables in the constraint system to ensure
that P is not part oflabel(U(V)). In general, neither refinement is guaranteed to preserve the upper-bound
property. One refinement is to drop the compon@ritom U (V'), lowering the upper bound df. It is also
possible that/ (L’) containsP’ becausd.’ includes a variabl®”’, and the componer?’ is part of U (V). If
U(V") is the only source of”’, then dropping?’ from U (V') also will ensure the constraitgbel(V) C L.

If both refinements (dropping from U (V') or P’ from someU (V")) can be used to ensure the constraint,
then neither refinement is in general safe, in the sense that néitf€r nor U(V’) are guaranteed to be
upper bounds for their respective variables. The two refinements are not guaranteed to be confluent.

If there is ambiguity about which refinement to apply to eliminate a particular compdtiettie dy-
namic constraint is deferred, and another unsatisfied constraint is applied instead. If all unsatisfied con-
straints are dynamic constraints with this ambiguity, the JFlow constraint solver always selects the refine-
ment of droppingP from U (V). If this arbitrary choice results in a contradiction, the constraint solver
reports that it is unable to prove that the method is correct, rather than reporting that the method is provably
incorrect. In this case, the programmer must add label annotations to the code to help the constraint solver.
Adding these label annotations is usually straightforward. It is only necessary for code that contains the
relatively infrequenswitch label construct, and only when the label of either the expression whose label
is being tested, or of the case labels, must be at least partly inferred automatically. However, in this case
the programmer can annotate the code with explicit labels in order to avoid the need to infer them. Thus,
the label inference algorithm is not complete for code contaisiwitch label statements, but it is sound. It
would be possible to provide a complete constraint solver by adding searching (allowing both refinements
to be tried). However, the worst case solving time then would be exponential in the size of the program.

5.1.6 Recursion in dynamic components

A problem that is unique tdynamic components is recursion. When tihgnamic component is evaluated
using the current upper bounds of the label variables, these upper bounds may menljyoiarttie compo-
nent that is being evaluated, creating infinite recursion. This situation can arise when label variables refer to
each other, as in the following function definition:
void f(label{xb} a, label{xa} b) {

}

This function has two arguments of tyfadel, each of which dynamically labels the other. This function
will result in constraints of the following form, whete b, la, andlb are the unique identifiers for the various
components:

(variablea) T (dynamic [b (variable b))

(variable b)) T (dynamic la (variable a))
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Assuming the first constraint is applied first, the algorithm as described so far will refine the upper bounds
in the following infinite sequence:

(variable a) := (variablebd) : =T

(variable a) := (dynamiclbT)

(variable b) := (dynamicla (dynamiclb T))

(variable a) := (dynamic (b (dynamic la (dynamic b T)))

(variable b) := (dynamic la (dynamic [b (dynamic la (dynamic lb T))))

To avoid this recursion, an additional kind of component is needed when the label contained in a dynamic
component refers to its containing label. This kind of recursive reference cannot occur in the initial set
of constraints, even when reduced to canonical form, but as the previous example demonstrates, it can
arise during constraint applications. A component of the fodgmrec uid) is used to support recursive
dynamic components: components of the faynamic uid L) where the label contains a reference to
the enclosing component. To prevent infinite recursion, any such reference is replaced by a component of
the form (dynrec uid), with a matchinguid. The previous example is solved as follows:

(variable a) := (variable b) := T

(variable a) := (dynamiclb T)

(variable by := (dynamic la (dynamic (b T))

(variable a) := (dynamic (b (dynamic la (dynrec b )))
(variable b) := (dynamic la (dynamic [b (dynrec la )))

At this point, both constraints are satisfied by the upper bounds of the two label variables.

Components of this new form can occur only withirdgnamic component that refers to the same
variable. Therefore, the definition lafbel for dynamic components must take into consideration the possible
presence oflynrec components by replacing them with the containing component. This substitution is
performed by the functiosubst defined in Figure 5.5. It rewrites the label that is its third argument,
substituting any occurrences @fynrec uid) for its second argument. The functisabstonly needs to be
defined on simple components, pligirec components.

5.1.7 Ordering the relaxation steps

The algorithm as described may requirénh) constraint applications, whereis the number of variables in
the constraint system, aridis the maximum height of the label lattice. The height of the lattice that can be
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substuid, L, .. P;LI..) = ..Usubstuid, L, P;) LI ..

substuid, L, (label-param uid)) = (label-param uid)
substuid, L, (covariant-label uid)) = (covariant-label uid)

substuid, L, (policy o : ..r;..)) = (policy pr-substuid, L, o) : ..pr-substuid, L, r;)..)
substuid, L, (dynrec uid’)) = (if (uid = uid’) then L else (dynrec uid))

pr-substuid, L, p) =
case pin
(pr-dynamic uid L)) : (pr-dynamic uid substuid, L, L"))
else: p
end

Figure 5.5: Substituting away recursive label references

observed during an execution of this algorithm is at most equal to the number of non-variable components
present in the constraint system. Therefore, the number of lowerings is a4y in the size of the

method being checked, even when constraints are selected for application in the worst possible order. The
performance of the algorithm usually can be improved by more intelligently selecting constraints to be
applied. This section discusses how to select and apply constraints so that a satisfying assignment (or a
contradiction) is arrived at as rapidly as possible.

The constraint systems solved by the JFlow static checker are similar in fornddtathow analysis
framework[Kil73, KU76], and techniques used to accelerate iterative dataflow analysis also can be used to
accelerate their solution.

The key observation for accelerating the constraint solver is that thedepemdenciebetween differ-
ent constraints in the constraint system. We are now concerned only with constraints in which the left-hand
side is a variable; constraints in which the left-hand side is not a variable are only used to determine whether
the constraints are satisfiable once all the former constraints have been satisfied. If one cdishraina
variablev; on its left-hand side, applying this constraint will resulvibeing updated so thdt; is satisfied.

If v; appears on the right-hand side of another constiginthenF, can be said tadependon F;. It makes
sense to applys; before E, so that the constraint enforced By affectsFs’s variable.

The dependencies among the constraints can be envisionatepsrdency graphwith nodes for each
of the constraints in the constraint system. The dependency graph is a directed graph; nodes in the graph
are connected if there is a dependency between the corresponding constraints. In the simplest case, the
dependency graph is acyclic, and the constraint system can be solved with only one application of each
constraint. In this case, the constraints are topologically sorted and then applied sequentially in the order
generated. The time required to perform the topological sort is linear in the number of constraints.

In general, the dependency graph will contain cycles. For example, loops in the program will generate
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ordered = 0;

visited = new boolean|n];
ordering = new int[n];

position = new int[n];

for (inti=0;i < n;i++) visit(i);

void visit(int i) {
if (visited[i]) return;
visited[i] = true;
Iterator[int] e = dependencies(i);
while (e.hasMore()) visit(e.next());

ordered-++;
ordering[n — ordered] = i
position[i] = n — ordered,

Figure 5.6: Ordering the constraint equations

cycles in the label dependency graph. In the rule fomthide statement (Section 4.4.6), a label variables
introduced and explicitly made part of a constraint cycle. Cycles in the dependency graph resatigty
connected componentsets of constraints in which each constraint is transitively dependent on every other
constraint. A strongly connected component can be handled by simply looping on each of the constraints in
the component in turn until every constraint is satisfied.

The JFlow constraint solver selects constraints by first topologically sorting the constraints using the
standard algorithm based on the depth-first traversal of the constraints [CLR90]. This algorithm is shown in
the PolyJ code of Figure 5.6. This code places the indices of the constraints — 1 in the arrayordering,
and assumes thaependencies(i) produces ariterator that yields the indices of constraints dependent on
constrainti. The inverse obrdering is placed in the arrayosition.

When applied to a directed acyclic graph, this algorithm produces an ordering of the nodes in which a
node never occurs before any node that it depends on. Strongly connected components within the ordering
then can be identified by a depth-first traversal of titesposeddependency graph—also a linear-time
algorithm [CLR90].

The algorithm using strongly connected components effectively constructs a schedule for solving the
constraint system. Once they are identified, the constraint solver applies the strongly connected components
in topological order. Each strongly connected component is looped over sequentially in the order in which its
node occurred within the original topological sort, until every constraint in the component is satisfied. Once
an entire component is satisfied, its constraints need no further consideration. A subtle benefit of applying
strongly connected components using the topological ordering is that constraints tend to be propagated
very effectivelywithin a strongly connected component. For example, a strongly connected component
comprising a single cycle needs to repeated only once in order to ensure that all the constraints in the

143



200
'§ J
‘5 150
? |
U) .
5 —a— fixed
= ] - +—-LRF
2 100 ---9-- topo-fixed
% 1 —a— FIFO queue
® —e— topo-sce
c
B ]
UCIS 50
5]
3 |

0 ; T ; T ; |
0 20 40 60

Size of constraint system (terms)

Figure 5.7: Performance of various heuristics for ordering constraints

component are satisfied.

This algorithm is similar in its use of topological sorting and identification of strongly connected com-
ponents to thériority-Sccalgorithm used to optimize iterative dataflow analysis [HDT87]. Apart from the
difference in the form of the constraint equations, one difference between the algorithms is that the dataflow
analysis algorithm ordengariablesrather tharconstraintsas in this algorithm. Ordering on the basis of in-
dividual constraints appears always to offer better performance in empirical measurements. The number of
iterations required by the dataflow analysis algorithm has been showr¢a& whered is the maximum
number of back edges in depth-first traversal of the constraint dependency graph. For dataflow analysis it
has been observed that the number of back ediggebounded for reasonable programs; this property seems
to hold for label constraints as well. Even when the number of back edges is linear in the size of the graph,
it proves very difficult to observe th@(n?) behavior that this asymptotic bound predicts; for example, the
results in the next section do not suggési?) behavior. However, a tighter bound on the run time of the
algorithm has not been shown.

5.1.8 Empirical comparisons

The observed behavior of the JFlow compiler is that constraint solving is a negligible part of run time when
compiling methods of a few tens of lines in length. However, an empirical analysis of performance is
useful for understanding how the performance of the constraint-solving technique scales with the size of the
constraint system.

The algorithm based on identification of strongly connected components and several other algorithms
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for solving dataflow systems were empirically compared for label constraint systems. Many of the same
ordering algorithms have been empirically compared earlier for use in dataflow analysis [KW94]. The
results observed for dataflow analysis largely agree with the results for label constraints, which are shown
in Figure 5.7. The Y axis is the maximum number of iterations required to solve a complex system of
constraints containing a number of back edges linear in the number of constraints, using various techniques
for choosing constraints. The size of the constraint systems tested is about the same as or somewhat larger
than the constraint systems generated by typical method definitions.

The constraints in these systems are all of the form v- LI L;, wherev; andwv, are variables and; is
a non-variable constraint. Empirically, constraints of this form require a relatively large number of iterations
to arrive at a fixed point assignment to all of the upper bounds. The maximum number of iterations for a
constraint system is determined by introducing componéptuch that the meet of every possible subset
of the L; resulted in a different label. Programs with this behavior are extremely unlikely, but the resulting
constraint system is useful in gaining some understanding of the behavior of the algorithms. The constraint
systems used for the comparison are related to each other in a simple fashion; each consecutive constraint
system is the same as the next smaller constraint system, but with one or two additional constraints.

The performance of several heuristics for ordering was compared for these constraint systems. In this
comparison, all of the ordering heuristics are used within a common constraint-solving framework. This
framework uses information about the dependencies between constraints, to keep track of which constraints
might be unsatisfied at any given step. Often a constraint is known to be satisfied because it was previously
known to be satisfied, and no variable on its right-hand side has been modified since that point. With all of
the constraint-ordering heuristics, a constraint was not applied if it was known to be satisfied based on this
reasoning.

The ordering heuristics tested were the following:

e fixed the constraints are placed in a fixed order; the first potentially unsatisfied constraint is applied
at each step.

e topo-fixed the constraints are topologically sorted using the algorithm of Figure 5.6, and this ordering
is used as in théxedordering.

¢ LRF: the least-recently-firedordering of Kanamori and Weise [KW94]; the least-recently-applied
unsatisfied constraint is selected at each step.

e FIFO queue a FIFO queue of potentially unsatisfied constraints is maintained. This is the standard
technique for iterative dataflow analysis [KW94].

e topo-scc this is the approach implemented in the JFlow constraint solver; as described in Sec-
tion 5.1.7, it loops on strongly connected components.
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T [actsFor(p1, p2) S1 {else SQ} I =
if (Principal.actsFor(T [p1], T [p2])) T[51] [else T HSQ]]}

T [p] = case Alp| of
(param principal uid) : error
(constant principal) : jflow.principal.p. ThePrincipal
(var final principal{ L} uid) : p

end

Figure 5.8: Translating principals and actsFor

In the particular example for which results are presented, almost the entire constraint system was a single
strongly connected component. This situation is a worst case for the topo-scc ordering for comparison to
the other orderings. However, the topo-scc ordering still results in substantially better performance than the
other ordering techniques. The results shown in Figure 5.7 are in fact typical for a variety of different kinds
of constraint systems containing strongly connected components.

Interestingly, the best ordering techniques appear to be the FIFO queue ordering and the topological sort
with strongly connected components. The number of iterations required with a simple fixed ordering grows
asO(n?) for this sequence of constraint systems, and even for simpler constraint systems that do not contain
strongly connected components.

5.2 Translation

The JFlow compiler is a static checker and source-to-source translator. Its output is a standard Java program.
Most of the annotations in JFlow have no run-time representation; translation erases them, leaving a Java
program. For example, all type labels are erased to produce the corresponding unlabeled Java type. Class
parameters anduthority clauses are erased, including the label parameter of array types. Method begin-
and end-labels and constraints are erased. dEhlassify expression and statement are replaced by their
contained expression or statement.

Variables of the built-in typefabel andprincipal are translated to the Java typéisw.lang.Label and
jflow.lang.Principal, respectively. Variables declared to have these types remain in the translated program.
Only two statements translate to interesting code:athieFor andswitch label statements. The translated
code for each is simple and efficient, as shown in Figures 5.8 and 5.9. In these fi§Jrgq, is the
translation of a JFlow expressidninto a Java expression, aflti[ S| is the translation of a statemetit

5.2.1 Principal values and theactsFor statement

The actsFor statement translates to énstatement that tests the current principal hierarchy and executes
either the statemerfi; or .S;, depending on whether the relation between the two principals exists. The
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T[t] =t
T[t{}] =t
T [t{B}[]] = ¢[]

T [new label{ Pi; Py;...; P,}] = TL[{P; P;...; Py} ]
TL[{Py; Pos...s Po}] =
TL [new label{ P; Py;...; B, }] =
new Label(TL[ P;]).join(new Label(TL[P])..... join(new Label(TL[P,]))...))

TL[v] = case A[v] of
(var [final| T{L} uid) : TL[L]
(constant principal) : Label.bottom()

(param principal uid) : Label.bottom()
end

TL[o: ..,7;,..] =new Label(T[o],..,T[r:],..)

TL[ xv] =
case Av] of
(var final label{ L} uid) : v
end

T [switch label(E){..case( t;{l;}) S;.. else S} ] =
Tv = T[E];
if (TL[XEg[nv]M Lrr].relabelsTo(TL[L1MNLgrr])){
T[S:]
}else. ..
if (TL [[XE[M] M LRT]] .reIabeIsTo(TL [[Lz M LRT]] ){
T[5:]
b.o.o.else{T[S]}

Figure 5.9: Translating labels and switch label

classjflow.lang.Principal provides a static methoaktsFor that can be used to test whether one principal
may act for another.

Principals in JFlow are represented both by classes that are subclagées.ihg.Principal, and by
instances of these classes. Having a class for each principal in the system simplifies the management of the
principal hierarchy in a Java run-time system. EReincipal object contains a list of othérincipal objects
that can act for it directly: its immediatguperiorsin the principal hierarchy. The object also contains a
hash table that magrincipal objects to booleans; this hash table is useth&moizeactsFor tests so that
they can be performed more quickly the second and following times. Every subcRssdapal contains a
static initializer that sets up it6hePrincipal object with the initial list of superiors and an empty hash table.

Every subclass of the clas¥incipal is located in the packagglow.principal, and contains a static
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variable ThePrincipal of type Principal. Thus, references in JFlow code to an external principare
translated to expressions of the fojftew.principal.p. ThePrincipal. New principals may be added freely to

the packagéflow.principal, since a principal is only responsible for identifying the principals that may act
for it; adding a new principal cannot grant new privileges to that principal, or give power to any principal
over any other principal but the new principal. However, the right to modify the class of a principal in order
to add new superiors must be controlled, since adding superiors to or removing superiors from an existing
principal can affect the principal hierarchy in potentially unsafe ways. The current implementation does not
model this aspect of the system, although it appears to be straightforward.

5.2.2 Label values and the switch label statement

As indicated by Figure 5.9, most labels are simply erased from the JFlow program as it is translated into Java.
Labels that must be represented at run time are represented as valuesjtibtypang.Label. The trans-
lation functionTL [ L] translates a label expression into a Java expression that generates the appropriate
run-time representation. It is undefined for components that are not representable at run time, such as label
parameters. Note that policies within a label are translated by translating the principals mentioned in the
policies; a policy is only representable at run time if all of the principals it mentions are also representable
at run time.

The translation rule foswitch label uses definitions from the static checking rule faiitch label in
Figure 4.27. As discussed earlier, the run-time check to be perform®gisv] 1 Lrr C L; M Lgr, a test
that mentions only labels that are representable at run timereldielsTo method is used to check whether
this label relationship exists. LikectsFor, therelabelsTo method is accelerated by a hash table lookup into
a cache of memoized results.
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Chapter 6

Related Work

Most of this thesis has been concerned with the problem of protecting the secrecy of data. This problem
has been recognized for at least 25 years, and also has been referrezbidiremen{Lam73] of data,

or confidentiality In this thesis, it has been referred to as protecfirigacy, since the goal is to protect

data owned by mutually distrusting principals, rather than the secret data of a single entity such as the
government. A great deal of work has gone into addressing the problem of secrecy, and it is not feasible to
enumerate all of it. This chapter summarizes previous work done on various kinds of security techniques
that relate to this work, particularly focusing on information flow control.

6.1 Access control

Most systems protect privacy and integrity throutjbcretionary access controbr what is usually called
simply access controlThe idea of access control is that before a potentially dangerous action may be taken
by a computer program, a run-time test is made to ensure that the program has been granted the necessary
authority for the action. Many access control mechanisms have been designed, cajphlal#ies[DV66,
WCC74], access control listfLam71], and various hybrid schemesd, [RSC92]). Actions that do not
conform to stated policies are not permitted, whether they are reads, writes, or higher-level operations. Unix
file permissions are an example of a simple, well-known access-control mechanism.

Since JFlow provides a simple mechanism for controlling the privileges of a program, in the form of
static authority, it is interesting to compare it to existing Java access control models, basadkdnspec-
tion [WBF97, WF98]. Current versions of the Java run-time environment provided by Netscape, Microsoft,
and Sun implement variants of this model [Net97, Mic97, GS98]. In Java, privileges are needed to perform
various unsafe operations, such as accesses to the local filesystem. In the stack inspection approach, these
privileges are known asirgets Each class can be authorized to claim one or more privileges, but by default,
the class code does not possess these privileges. Explicit operations are provided for enabling and disabling
privileges. When a privilege is needed in order to perform an unsafe operation, the stack leading up from the
point of invocation is inspected at run time. Every class whose code is on the stack, up to the point where
the needed privilege was enabled, must be authorized to claim that privilege. This model allows a class to
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grant a privilege, but only if it has itself enabled the privilege explicitly. The privilege can be granted only to
the code of another trusted class that could have claimed the privilege for itself. Thus, privilege is enabled
explicitly, but grantedmplicitly, by the act of calling another method while the privilege has been enabled.
This set of design choices differs in several respects from those in JFlow. In JFlow, principals may be
used to represent targets as well as usersatitterity clause of a class gives a class the power to act for the
named principals, but individual methods do not possess the corresponding privilege unless they explicitly
declare it. Thus, the models are similar in that privileges are not available unless explicitly declared. In
JFlow, authority is granted to a called methedplicitly: it is passed as an argument of tygéncipal that
is present in aaller clause of the called method. Unlike in Java, the called method need not have the
potential authority of that principai.€., target). The stated reason for preventing this in the Java models
is that it defeatduring attacksin which the authority granted is misused by the called method. Luring
attacks are a greater concern in the Java model, since authority is granted implicitly. In JFlow, it is clear
what authority is granted to the called method (although it may be a run-time parameter). JFlow also allows
authority to be bound into an object in a parametric fashion; a class can require that its constructors be
called from a site possessing the authority of its principal parameters; this authority is bound into the object.
An obvious difference between the models is the manner in which they are enforced. The JFlow authority
mechanisms are largely statically checked (though there is support for dynamic checking), whereas the Java
model is checked entirely dynamically, with consequent run-time overhead. Static checking is possible in
JFlow because authority transfers are completely explicit. Since the Java model of access control is largely
a subset of that in JFlow, it seems likely that it could be enforced at load time by an extended Java Virtual
Machine if class files were extended with explicit annotations about granted authority.

6.2 Limitations of discretionary access control

Discretionary access control does not support privacy well, because although it prevents information release,
it does not control information propagation. For example, consider the tax preparer example of Section 1.1,
reproduced here in Figure 6.1. In this example, Bob is preparing his tax form using a piece of software
called “WebTax”. Bob would like to be able to prepare his final tax form using WebTax, but without trusting
WebTax to protect his privacy. Bob can impose an access check that determines whether Preparer can
see his tax data. However, once the access is allowed, Bob cannot control how Preparer distributes the
information it has read. He is forced to trust that the WebTax program will respect his privacy correctly.
Thus, discretionary access protects the privacy of data against others, but it is vulnerable to Trojan horse
programs.

Everything that has just been said about privacy applies to integrity as well. If prédgatiows program
B to modify A’s data, therA has controlled who may write the data, but cannot control Baltains the data
to write there. With only discretionary access contfomust trust not oni\B but every program that might
have affected the dafis providing. Discretionary access control is a point-of-sale mechanism that cannot
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Figure 6.1: Tax preparer example

control either the propagation of information after its release or the propagation of information leading to an
update.

6.3 Information flow control

In the case of both privacy and integrity, what is wanted is a way to extend access restrictions transitively,
arbitrarily far from the point where data is released or updated. This transitive extension is not possible in a
conventional discretionary access control system, because the decision about whether to transfer information
from programA to programB is made based upon the authority and privileges possessédany B;
restrictions that the data’s ultimate source or destination might like to apply cannot be enforced reliably
because information about these restrictions in general has been lost. This insight leémtsation flow
controlandmandatory access controlodels, which apply sensitivity labels to data. These labels propagate
with the data and are used to mediate information transfers within and between programs. Restrictions on
the use of data propagate with the data and apply to any data derived from it. Privacy restrictions prevent
data from being seen by untrusted users; integrity restrictions prevent untrusted data from affecting storage
locations. A good overview of information flow control is presented by Denning [Den82].

The original model of information flow for secrecy comes from the early work of Bell and LaPad-
ula [BL75]. In this work, objects in the system are assigned to security classes from a small ordered set
(e.g.,unclassified, classified, secret). Information can flow between the partitions only by moving upward
in security class. A subject, or process, in the system is assigned a security class, and the data it manipulates
is assigned the same security class. It can read data from a subject of the same or lower security class.
The Bell-LaPadula model supports privacy through information flow control; it also controls writes through
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access control. Non-destructive writes are permitted to an object of a higher security class, but destructive
writes are permitted only to objects of the same security class. This rule prevents low-level subjects from
overwriting high-level data, even though this overwriting would not cause an information leak.

The most common information flow enforcement mechanism is dynamic. Fenton’s Data Mark Machine
(DMM), an early abstract model for information flow enforcement [Fen73, Fen74], is a good example of
the dynamic approach to fine-grained information flow. As a program computes, sensitivity labels (security
classes) are associated with all data values. The sensitivity label of a computed value must be at least as
restrictive as the sensitivity labels of the values it was computed from. In the DMM model, the program-
counter labebc is maintained at run time. One weakness of the DMM model is its inability to deal with
implicit flows precisely. After arf statementpc does not revert to its former value, unlike in JFlow. Data
computed after a conditional becomes excessively restrictively labeled. The DMM model is made workable
because thgc is unaffected by a function call, but at the cost that exceptions are not supported. JFlow allows
the program-counter label to revert if the method can terminate only normally, but also allows fine-grained
tracking of information communicated through exceptions.

The DoD Orange book requires a dynamic mechanism for enforogagdatory access contr@MAC)
for secure systems of class B1 and higher [DOD85]. In this approach, a fixed label is associated with the
currently running process. As in the Bell-LaPadula model, a process may read only from objects with a label
that is of the same or lower level than its own. However, it may write to an object with an equal or higher-
security label. The Orange Book specifies that in systems with mandatory access control, information can
leak only by leaving the system throughannels There are two kinds of channels: single-level channels,
which have a single fixed label against which all data is dynamically tested before transmission; and multi-
level channels, which allow arbitrarily labeled data to be transmitted, but also dynamically transmit the label
of the data along with it.

The JFlow language provides both static and dynamic enforcement of information flow, with an em-
phasis on making static enforcement as expressive as possible. However, the dynamic enforcement features
of mandatory access control can be simulated in JFlow by using run-time labels and run-time principals.
Channels in the decentralized label model are single-level channels; however, multi-level channels can be
simulated by transmitting values of the typPeotected, which encapsulates a value with its label. JFlow
also provides fine-grained tracking of information labels. With mandatory access control, a process is irre-
vocably tainted by the label of data it has observed, and therefore passes the label on to all data it touches
afterward, making that data unnecessarily restrictive. This approach is necessary with purely dynamic en-
forcement in order to prevent implicit flows. The fine-grained static analysis in JFlow allows implicit flows
to be prevented while avoiding many unnecessary restrictions.

There has been considerable work on developing richer and more expressive models for labeling data.
Denning extended and clarified the Bell-LaPadula label model with the notionlattiee of security
classes [Den75, Den76]. As in the model defined in this thesis, information may be relabeled upward in
the lattice, and information derived from multiple sources acquires a label (security class) that is the join of
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the labels of the sources. The decentralized label model does not quite fit into Denning’s lattice structure,
although it retains the essential properties. One obvious difference is that the decentralized label model sup-
ports a limited form of declassification. The label system looks different to each principal; every principal
shares a common set of safe relabelings, but has access to itegclassification relabelingsRelabeling

in the decentralized label model defines an ordering relatiof, @s in Denning’s model, but it is not a
partial order, since two labels may be equivalent without being equal. However, it does support the lattice
operations of join (1) and meet (1) on equivalence classes of labels, and these operations distribute over
each other.

Denning’s lattice framework was instantiated by Feiertag et al. [FLR7#dltilevel security policies
A multilevel security policy is a paifA, C'), where A is a hierarchical security classandC' is a set of
categories Hierarchical security classes form a totally ordered set like that of the Bell-LaPadula model; cat-
egories are arbitrary symbols. One multilevel security palidy, C;) can be relabeled to anothéd,, Cs),
aslong asA; C A, and(Cy C Cs. Categories operate in the reverse direction one might expect: it is accept-
able to increase the set of categories but not to decrease them. They provide a notion of the owners of the
data rather than of potential readers of the data.

Multilevel security policies are a common underlying model used with mandatory access control sys-
tems. However, they can be modeled straightforwardly within the decentralized label model by introducing
principals to represent each of the hierarchical security classes and each of the possible categories. The
principals representing security classes have the corresponding acts-for relations: the principal representing
top secret can act for the principal representisecret, and so on. A multilevel policy A, {cy ...¢,}) is
translated to a decentralized laded : ; ¢; : ;...; ¢, : }; the complete relabeling rule then enforces
exactly the relabeling rule for multilevel policies. Users are given security classifications by introducing
acts-for relations between their principals and the appropdadadc; principals; the output channel to a
userp can be labeledoot : p (whereroot is a highly trusted principal) and the relabeling rule will enforce
the appropriate restriction. One weakness of this translation is that it allows thg wsdeclassify all the
data he can read; this flaw can be fixed using the approach of Section 2.6.3.

Biba showed that information flow control can be used to enfortsyrity as well as secrecy, and that
integrity is a dual of secrecy [Bib77]; this insight has been employed in several subsequent systems, and also
applies to the decentralized integrity policies described in Section 2.6.1. IX [MR92] is a good example of
a real-world information flow control system that implements MAC and supports both secrecy and integrity
policies simultaneously.

More recent work on label models has not been as widely adopted. One popular theme has been
models for commercial applications that capture conflicts of interest and allow non-transitive flow poli-
cies [CW87, BN89, TW89, Fol91]. The Chinese Wall policy of Brewer and Nash [BN89] has been the
subject of some study. The idea behind this policy is that information labels should be able to enforce sep-
aration of duties. For example, a bank might maintain a separation between its accounts and investments
departments. An employee who is supposed to handle the investments of the bank should not have access
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to information about customer accounts, and vice versa. However, Sandhu has argued that the Chinese Wall
policy can be implemented according to a standard lattice-based labeling policy by properly distinguish-
ing users and programs [San92]. In the decentralized label model, this separation of duties can be enforced
through restrictions on the principal hierarchy rather than through labels. The group principaists and
investments are introduced, and employee principals are prohibited from belonging to both groups. This
structure is arguably more intuitive, since the separation of duties is built into the principals themselves,
rather than into the labels of individual pieces of data. More recent work on modeling separation of duties
has taken a similar approach of mapping user and duties into a role hierarchy [GGF98].

The decentralized label model has several similarities to the ORAC model of McCollum et al. [MMN90]:
both models provide some approximation of the “originator-controlled release” labeling used by the U.S.
DoD/Intelligence community. The ORAC model was developed because of the observation that conven-
tional MAC and DAC policies do not adequately support this kind of security policy. Both ORAC and the
decentralized label model have the key concepbwhershipof policies. Both models also support the
joining of labels as computation occurs, though the ORAC model lacks some important lattice properties
since it attempts to merge policies with common owners. In the ORAC model, as in some mandatory access
control models, both process labels and object labels can float upward in the label lattice arbitrarily, a phe-
nomenon callethbel creepthat leads to excessively restrictive labels. The absence of lattice properties and
the dynamic binding of labels to objects and processes makes any static analysis of the ORAC model rather
difficult. Interestingly, ORAC does allow owners to be replaced in label components (based on ACL checks
that are analogous to acts-for checks), but it does not support extension of the reader set. The ORAC model
also does not support any form of declassification.

All practical information flow control systems provide the abilitydeclassifyor downgradedata be-
cause strict information flow control is too restrictive for writing real applications. More complex mecha-
nisms such amference control$Den82, SS98] often are used to decide when declassification is appropriate.
Declassification in these systems lies outside the label model, so declassification is perfornmadtada
subject code with the authority of a highly trusted principal. A recent variant of this approach by Ferrari
et. al [FSBJ97] introduces a form of dynamically-checked declassification through spabiatsto strict
flow checking. Some of the need for declassification in their framework would be avoided with fine-grained
static analysis. Because waivers are applied dynamically and mention specific data objects, they seem likely
to have administrative and run-time overheads. One key advantage of the new label structure is that it is
decentralized unlike in the trusted subject approach, other principals in the system need not trust the de-
classification decision of a principal sincep cannot weaken the policies of principals that it does not act
for.

Previous information flow techniques do not deal well with situations of mutual distrust. These tech-
nigues were originally designed to protect the privacy and integrity of data owned by a single principal—
typically, the government. If one considers privacy and integrity in a more decentralized setting, such as
the community of Web users, it is clear that no universal notioseofet sensitivity can be established.
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No label including a hierarchical security class can be acceptable in a decentralized environment. Even
schemes containing a generalized lattice of labels do not solve the problem of mutual distrust. Consider the
tax preparation example in a lattice-based MAC system. Unless Bob can act for Preparer or vice-versa, the
final tax form in this example will be labeled so that neither Bob nor Preparer are able to read it—a result
that is safe but not very useful.

JFlow provides a programming model that integrates information flow control and a simple model of
access control. Stoughton [Sto81] developed a purely dynamic model integrating both access control and
information flow control, defined formally using denotational semantics. This model does not seem to have
been implemented. In the model, objects have batbreent access levelind apotential access levellhe
potential access level is used to enforce information flow constraints as in mandatory access control systems.
The current access level is used to enforce discretionary access control; it can be relaxed by an appropriately
trusted principal, but only to the point where it is as restrictive as the potential access level. To relax it
further would violate information flow control. Thus, this model does not support declassification. Because
this model is purely dynamic, it also does not treat implicit flows securely. The model of access control is
particularly simple; it mediates accesses at the level of reads and writes to objects, and does not provide the
ability to control higher-level operations.

6.4 Static enforcement of security policies

JFlow is unusual not only in integrating information flow control and access control, but also in provid-
ing both static and dynamic enforcement of these mechanisms. Most prior security work has focused on
dynamic enforcement, but there has been some earlier work on static enforcement of access control.

Jones and Liskov defined a system for statically enforcing discretionary access control through a scheme
of restricted types, in which some methods were marked as inaccessible [JL78]. Their rules define a form
of subtyping, with security guaranteed by the inability to cast downward in the type hierarchy dynamically.
However, the lack of any capability for dynamically enforcing access control checks makes this scheme
impractical.

The CACL model of access control [RSC92] has a model of mixed static and dynamic enforcement of
access control that is more practical. Asinthe Jones and Liskov model, references to objects may have a type
in which certain methods are inaccessible. However, when objects cross protection domains, new copies of
the references are constructed for which method accessibility is recomputed lazily. In JFlow, methods can
be called only if all of theikaller constraints are satisfied. When objects are passed between different trust
domains, method accessibility changes automatically based on static reasoning about authority; no rewriting
is needed.

Static analysis was applied to information flow control early on by Denning and Denning [DD77], but
has not been adopted widely since because of its limitations. Static checking allows the fine-grained tracking
of sensitivity and integrity labels through program computations, without the run-time overhead of dynamic
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security classes. Because this approach inspects entire programs, it has a significant advantage over simple
dynamic checking: a program can be checked to determine that no possible execution results in a security
policy violation. However, dynamic checking is needed for some programming examples, and previous
static checking techniques did not integrate dynamic checking, making them impractical. Earlier static
checking techniques did not handle exceptions, either.

Another approach to checking programs for information flows statically has been automatic or semi-
automatic theorem proving. Researchers at MITRE [Mil76, Mil81] and SRI [Fei80] developed techniques
for information flow checking using formal specifications. Feiertag [Fei80] developed a tool for automati-
cally checking these specifications using a Boyer-Moore theorem prover.

Recently, there has been more interest in provably-secure programming languages, treating informa-
tion flow checks in the domain of type checking, which does not require a theorem prover. Palsberg and
@rbaek have developed a simple type system for checking integrity [PO95]. Volpano, Smith and Irvine
have taken a similar approach to static analysis of secrecy, encoding Denning’s rules in a functional type
system and showing them to be sound using standard programming language techniques [VSI96, Vol97].
Also, Abadi [Aba97] has examined the problem of achieving secrecy in security protocols, also using typing
rules, and has shown that encryption can be treated as a form of safe declassification through a primitive
encryption operator.

Heintze and Riecke [HR98] have shown that information-flow-like labels can be applied to a simple
language with reference types (the SLam calculus). They show how to statically check an integrated model
that provides access control, information flow control, and integrity. Their model is similar to Stoughton’s
earlier, dynamic model; labels include two components: one that enforces conventional access control, and
another that enforces information flow control. Their model inherits some limitations of Stoughton’s model.

The models of Smith, Volpano, and Irvine and of Heintze and Riecke have the limitation that they are
entirely static: unlike JFlow, they have no run-time access control, no declassification, and no run-time flow
checking. These models also do not provide label polymorphism or support for objects. Addition of these
features is important for supporting a realistic programming model, though it does make the programming
language more difficult to treat with the conventional tools of programming language theory. Heintze and
Riecke do prove some useful soundness theorems for their model. This step would be desirable for JFlow,
but the various language extensions make formal proofs of correctness difficult at this point.

6.5 Modeling principals and roles

The notion of a principal hierarchy, used in the decentralized label model, is similar to several other models
for modeling roles. The acts-for relation is similar to #peaks-forelation that is introduced by Lampson

et al. [LABW91] for describing authentication in a distributed system. In that model, a notimongiound
principals is introduced; a compound principal is an expression sudBoasas manager, whereBob is

an ordinary principal, anthanager is a role. The decentralized label model does not provide this much
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structure; however, a compound principal can be modeled as a third principal for Batictts, and which
acts formanager.

Some work omole-based access contrbhs also introduced notions ofae hierarchybased on various
kinds of dominance relations among principals and roles [FK92, SCFY96]. This structure is used to model
the assignment of users to groups and to roles, similarly to the decentralized label model. Roles have also
been used as security classes in an information flow model [San96]. However, because this model does
not distinguish between roles and information flow labels, information can flow only upward in the role
hierarchy.

6.6 Cryptography

In the minds of many people, computer security is associated with encryption. It is reasonable to ask how
cryptographic techniques are related to this work. Encryption can be used to achieve some important security
goals that are subsidiary to protecting privacy and integrity, and much recent computer security research has
focused on this use. One such goaaighentication the reliable identification ofvhois requesting that

an action be performed [Lam71, LABW91, ABLP93]. Many computer systems use password checking to
authenticate their users. However, in a distributed system, some form of encryption is generally needed to
perform authentication securely. Reliable authentication is a prerequisite for protecting privacy and integrity.
For example, any access control mechanism requires an underlying authentication mechanism so that one
can be sure that a process does possess the granted authority that claims to.

Another important feature of a secure system is reliable information channels that cannot be subverted
by unrelated third parties. Encryption protects privacy by preventing these channels from having their
information extracted; digital signatures protect integrity by preventing new material from being inserted
onto the channel by a third party to fool the receiver.

The encryption technology for reliable authentication and secure channels has been researched heavily
and also is widely available, in systems like Kerberos [SNS88] and ssh [Yl096]. Encryption provides a
rather elemental protection for privacy and integrity. The work presented herein makes the assumption that
these technologies are available as a standard component, and builds on them.

6.7 Covert channels

This work has ignored covert channels arising from time measurement and thread communication. These
channels have long been recognized as very difficult to control [Lam73]. A scheme for statically analyzing
thread communication has been proposed [Rei79, AR80]; essentially, a sgcmddded with different
propagation rules. A locaglc handles information flow within a thread; the glolpal restricts operations

that communicate with other threads. Stoughton’s model [Sto81] also uses this local/global approach. The
same technique can be used to control timing channels. This approach could be applied to JFlow and even
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checked statically, similarly to static side-effect and region analysis [JG91], which aims to infer all possible
side-effects caused by a piece of code. However, it is not clear how well this scheme works in practice;
it seems likely to restrict timing and communication quite severely, particularly if applied directly to a
programming model in which objects are shared between threads. In such a programming model, all object
modifications are potentially asynchronous communications with other threads, and will be highly restricted
if limited by a pc that is shared across all threads. Smith and Volpano have developed rules recently for
checking information flow in a multithreaded functional language [SV98]. As might be expected, the rules
they define prevent the run time of a program from depending in any way on non-public data, which is
arguably impractical.
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Chapter 7

Conclusions

Protecting privacy and secrecy of data has long been known to be a very difficult problem. The increasing use
of untrusted programs in decentralized environments with mutual distrust makes a solution to this problem
both more important and more difficult to solve. Existing security techniques do not provide satisfactory
solutions to this problem.

The goal of this work is to make information flow control a viable technique for providing privacy in a
complex, decentralized world with mutually distrusting principals. Information flow control is an attractive
approach to protecting the privacy (and integrity) of data because it allows security requirements to be
extended transitively towards or away from the principals whose security is being protected. However,
it has not been a widely accepted technique because of the excessive restrictiveness it imposes and the
computational overhead.

To address these limitations of conventional information flow techniques, this work focuses on two areas.
First, a new model of decentralized information flow labels provides the ability to express privacy policies for
multiple, mutually distrusting principals, and to enforce all of their security requirements simultaneously.
Second, the new language JFlow permits static checking of decentralized information flow annotations.
JFlow seems to be the most practical programming language yet that allows this checking.

7.1 Decentralized label model

The decentralized label model described in Chapter 2 makes information flow more practical by removing
some of the unnecessary restrictiveness of earlier models. It provides considerable flexibility by allowing
individual principals to attach flow policies to individual values manipulated by a program. It also incorpo-
rates a notion of principal hierarchy that allows these policies to be expressed in terms of and on behalf of
more complex authority entities such as groups and roles.

Practical information flow systems require some ability to declassify or downgrade data. Since the
policies in decentralized labels have a notion of ownership, the owner can be allowed to declassify policies
that it owns. This declassification is safe because it does not affect the secrecy guarantees to other principals
who have an interest in the secrecy of the data. The owner may use reasoning processes such as information
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theory techniques or inference controls to determine that the information leaked through declassification is
acceptably small, but other principals in the system do not need to trust these reasoning processes. This
support for decentralized declassification makes the label model ideal for a system containing mutually
distrusting principals.

An important feature of the decentralized label model is the formal semantics that are defined for the
model, and the relabeling rule that was shown to be both sound and complete with respect to this formal
semantics. The relabeling rule precisely captures all the legal relabelings that are allowed when knowledge
about the principal hierarchy is available statically, and has the necessary lattice properties to support static
checking and automatic label inference. Because the complete relabeling rule is as permissive as possible
without being unsafe, it is easier to model common security paradigms, allowing control of information
flow in a system with group or role principals. Examples in Chapter 2 showed that the expressive power of
the complete relabeling rule was helpful in modeling reasonable application scenarios without resorting to
declassification.

Extensions to the basic model discussed in Chapter 2 also show that integrity [Bib77] constraints have
a natural lattice structure, and decentralized integrity policies can also be expressed conveniently in the
same framework, with rules precisely dual to those of decentralized privacy policies. In addition, labels that
combine integrity and privacy constraints can be expressed, with straightforward rules. Finally, extensions
to the principal hierarchy model allow more expressive modeling of group and role principals.

7.2 Static analysis of information flow

Information flow control is usually enforced dynamically, causing substantial loss of performance and also
difficulty in handling implicit information flows. Static program checking appears to be the only enforce-
ment technique that can control information flows with reasonable efficiency and precision, although it
cannot identify certain covert channels. However, previous static analysis techniques have not been shown
to be practical.

Chapters 3-5 describe the new language JFlow, which extends the Java language to permit simple static
checking of flow annotations. The goal of this work is to add enough power to the static checking framework
to allow reasonable programs to be written in a natural manner. JFlow addresses many of the limitations of
previous work in this area. It supports many language features that previously have not been integrated with
static flow checking, including mutable objects (which subsume function values), subclassing, dynamic type
tests, dynamic access control, and exceptions.

Avoiding unnecessary restrictiveness while supporting a complex language has required the addition
of sophisticated language mechanisms: implicit and explicit polymorphism, so that code can be written
in a generic fashion; dependent types, to allow dynamic label checking when static label checking would
be too restrictive; static reasoning about access control; statically-checked declassification. Making the
programming language convenient has also involved automatic label inference, as described in Chapter 5.
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This list of mechanisms suggests that one reason why static flow checking has not been accepted widely
as a security technique, despite having been invented over two decades ago, is that programming language
techniques and type theory were not then sophisticated enough to support a sound, practical programming
model. By adapting these techniques, JFlow makes a useful step towards usable static flow checking.

7.3 Future work

There are several directions for extending this work. One obviously important direction is to continue to
make it a more practical system for writing applications. JFlow addresses many of the limitations of earlier
information flow systems that have prevented their use for the development of reasonable applications;
however, more experience is needed to better understand the practical applications of this approach.

One direction for exploration is the development of secure run-time libraries written in JFlow that sup-
port JFlow applications. Features of JFlow such as polymorphism and hybrid static/dynamic checking
should make it possible to write such libraries in a generic and reusable fashion. One interesting possibility
is the development of a secure user interface library that provides event distribution and rendering capa-
bilities available in user interface toolkits. This library should include user interface widgets that support
information flow control directly; for example, a type-in that reliably naotifies the user of what security policy
is applied to data entered into it.

It should also be possible to augment the Java Virtual Machine [LY96] with annotations similar to those
used in JFlow source code. The bytecode verifier would check both types and labels at the time that code
is downloaded into the system. Other recent work [LY96, Nec97, MWCG98] has shown that type checking
performed at compile time can be transformed into machine-code or bytecode annotations. The code can
then be transmitted along with the annotations, and the two checked by their receiver to ensure that the
machine code obeys the constraints established at compile time. This approach also should be applicable to
information flow annotations that are expressible as a kind of type system.

The JFlow language contains relatively complex features such as objects, inheritance and dependent
types, and these features have made it difficult thus far to use theoretical programming-language techniques
to show that the static checking rules of Chapter 4 are sound. However, this demonstration is important for
widespread acceptance of a language for secure computation.

This work has assumed an entirely trusted execution environment. The model described here does not
work well in large, networked systems in which different principals may have different levels of trust in the
various hosts in the network. One simple technique for dealing with distrusted nodes is to transmit opaque
receipts or tokens for the data. Another approach is for a third party to provide a trusted host to get around
the impasse of mutually distrusted hosts. It would be interesting to investigate a distributed computational
environment in which secure computation is made transparent through the automatic application of these
techniques.

This work shows how to control several kinds of information flow channels better, including channels
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through storage, implicit flows, and run-time security checks. However, covert channels that arise from
timing channels and from the timing of asynchronous communication between threads are not treated in
this thesis, by ruling out timing and multi-threaded code. Supporting multi-threaded applications would
make this work more widely applicable. Although there has been work on analyzing these channels through
static analysis [SV98, HR98], the current techniques are restrictive. One central difficulty is the need to
distinguish between locally and globally visible operations within a multi-threaded program. Current multi-
threaded programming environments have tended to minimize this distinction, but without it, static analysis
will not be a reasonably precise tool for controlling information flow. An altered programming model may
be possible in which enough information is available about inter-thread communication to permit precise
analysis.

This thesis has provided new models and techniques for protecting privacy. Providing better protection
of privacy is a challenging and important problem for future computing environments. These environments
are likely to be large and distributed, and to contain distrusted users, programs, and hosts. This problem has
not received as much attention recently as it merits, and | hope that the contributions of this thesis will serve
as a fresh impetus to its further consideration.
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