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Abstract
Accuratecameracalibrationis crucial to thereconstructionof three-dimensionalgeometryandthe
recovery of photometric sceneproperties.Calibration involves the determinationof intrinsic
parameters(e.g. focal length,principal point, andradial lensdistortion)andextrinsic parameters
(orientation and position).

In urbanscenesandotherenvironmentscontainingsufficientgeometricstructure,it is possible
to decoupleextrinsic calibrationinto rotationaland translationalcomponentsthat canbe treated
separately, simplifying theregistrationproblem.Herewepresentsuchadecoupledformulationand
describemethodsfor automaticallyrecoveringthepositionsof a largesetof camerasgivenintrinsic
calibration, relative rotations, and approximate positions.

Our algorithm first estimatesthe directionsof translation(up to an unknown scalefactor)
betweenadjacentcamerapairsusingpoint featuresbut without requiringexplicit correspondence
betweenthem.This techniquecombinesthe robustnessandsimplicity of a Houghtransformwith
theaccuracy of MonteCarloexpectationmaximization.Wethenfind asetof distancesbetweenthe
pairsthatproducesglobally-consistentcamerapositions.Novel uncertaintyformulationsandmatch
plausibility criteria improve reliability and accuracy.

Weassessoursystem’sperformanceusingbothsyntheticdataanda largesetof realpanoramic
imagery. Thesystemproducescamerapositionsaccurateto within 5 centimetersin imagenetworks
extending over hundreds of meters.

1 Intr oduction

A long-standingproblemin machinevision is that of externalor extrinsic cameraposeregistra-
tion—i.e., determinationof the rigid six-degree-of-freedom(6-DOF) Euclideantransformation
thatdescribesthescene-relative positionandorientationof eachcamera.Accurateregistrationis
vital to the recovery of geometry, texture, and other 3-D scene properties.

In scenessuchasurbanlandscapeswhich containparallelline sets,it is possibleto decouple
the rotationalcomponentof extrinsic posefrom the translationalcomponentby usingposition-
invariant features(vanishing points). Here we assumethat cameraorientationsare known
(obtainedusingthemethodof [1]) andfocuson robustestimationof thecamerapositions.In this
section,we provide a morepreciseproblemformulation,presenta high-level descriptionof our
technique, and discuss some relevant past work in the area of camera registration.
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1.1 Moti vation

Thegoalof theMIT City ScanningProject[22] is to obtainaccuratethree-dimensionalmodelsof
urbanlandscapes.To this end,a platformequippedwith variousinstrumentationacquiresimage
datain hemisphericalconfigurations(nodes) andannotateseachimagewith approximateabsolute
pose(orientationandposition)estimatedby on-boardsensorssuchasGPS,accelerometers,and
odometry[7]. Nodesmay be separatedby largedistances,andareacquiredat differenttimesof
day and in different weather and lighting conditions.

Figure 1: P ose Mosaic Data Set
An example configuration of a set of acquired data. Hemispherical nodes, each of which
consists of roughly forty 1.5 Mpixel images, are shown overlaid on a campus map.

Intrinsic cameraparametersare estimatedautomatically, and the setsof planarimagesthat
compriseeachnodearerotationallyregisteredto form hemisphericalmosaics[11]. A poserefine-
mentstageestimatesthescene-relativepositionandorientationof eachnodeusingimagefeatures
that areautomaticallydetectedandmanuallycorrelatedacrossmosaics.Finally, registeredcam-
eras and various image features are used to reconstruct 3-D geometry.

Currently, extrinsiccameraposerefinementis theonly systemcomponentthatrequireshuman
input. Manual featurecorrespondencebecomesimpractical,and indeedvirtually impossible,as
thenumberof acquirednodesincreases.We thuswish to developfully automated,scalabletech-
niques for accurate and robust extrinsic camera registration.

1.2 Overview

Themaingoalof this work is to determinerelative translationsamonganarbitrarily largesetof
cameraswithout requiringhumaninput or explicit featurecorrespondence.Our systemrelieson
several assumptions:

• Intrinsic camera parameters are known. Theseareestimatedin advanceby a separatealgo-
rithm [11].

• Camerasare rotationally registered.Rotationsrelative to a fixedcoordinateframearealso
estimatedby a separatetechnique[1], describedbriefly in Section3. This techniquealso
providesa classificationof observed imagefeaturesthat is usedto constraintranslational
geometry.
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• Approximatetranslationsare known. We requirea roughnotion of cameraadjacency and
motion,both to determinewhich camerasarelikely to view overlappinggeometryandto
disambiguatepotentialsolutions.The acquisitionplatform suppliesinitial poseestimates
accurate to within a few meters and a few degrees [7].

• Imagesare omnidirectional. Althoughnot strictly requiredby our techniques,this assump-
tion helps to resolve motion ambiguity and provides data redundancy for robustness.

We usethe above information,aswell as2-D point featuresobserved in the variousimages,as
input to thesystem.A high-level block diagramis shown in Figure2. First,a setof adjacentnode
pairs is establishedusingapproximatecameraadjacency. The directionof translation(up to an
unknown scalefactor)is thenestimatedfor eachpair in thesetvia a hybrid Houghtransformand
Monte Carlo expectationmaximization(MCEM) techniquewhich neitherrequiresnor produces
explicit featurecorrespondence.Finally, all translationdirectionestimatesare incorporatedinto
an optimization that determines a globally consistent set of camera positions.

Figure 2: T ranslation Estimation
Pairs of adjacent cameras are determined using initial camera position estimates. The direc-
tion of translation is found for each pair, and these directions are subsequently incorporated
into a simultaneous rectification of all cameras.

Hemisphericalimagerydisambiguatessimilar cameramotions,and knowledgeof approxi-
mateposeprovidesgoodalgorithminitialization; consequently, thesystemis ableto handlewide
baselines(5–10 meters).In addition, since we use gradient-basedimage featuresrather than
imagetexture,thesystemis largely insensitive to varyinglighting conditions.Globaloptimization
over all nodesdrasticallyreducesbiasanderrorpropagationeffectsinherentin purely local tech-
niques. The system has proven to work well even with significant error in initial pose estimates.

1.3 Related Work

Thereis a largebodyof work in theareaof extrinsiccameracalibration.Interactivemethods(e.g.
[3, 12,20]) requirea humanoperatorto specifystronggeometricconstraintsin 2-D imagespace
or 3-D objectspace(e.g.point correspondence,parallelism,objectprimitives,etc.)which facili-
tatesubsequentestimationof scenestructureandcamerapose.Suchmethodsbypassmany diffi-
culties inherentin 3-D vision, suchasthe tight couplingbetweenvariousunknown parameters;
however, sincetheoperatortendsto investminimaleffort, thesebenefitscomeat thepriceof scal-
ability, robustness, and stability.
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Automatedtechniques(e.g.[2, 17,18]) typically useimagetextureandgeometricconstraints
to trackimagefeaturesover time in a densely-sampledimagesequencesuchasvideo.This dense
temporalsamplingensuresthat lighting conditionsandfeaturecharacteristicsdo not vary drasti-
cally from imageto image.Onelimitation of suchtechniquesis that they assumea singleimage
streamfrom asinglesensor, andthuscannotmergedataacquiredby differentsensorsor atdiffer-
enttimes.Also, sinceonly two or threeimagesaretypically consideredata time,thesetechniques
suffer from localizationartifacts(e.g.bas-reliefambiguity[4]), errorpropagation,andasymptoti-
cally highrunningtimes.Finally, mostfeaturetrackingalgorithmsandopticalflow techniquesfail
wheninter-camerabaselinesor rotationsarelarge,or whenthereis significantvariationin illumi-
nation from one image to the next.

Another importantclassof techniquesattemptsto circumvent the tracking/correspondence
problemby estimatingstructureandmotionusingprobabilisticcorrespondence—thatis, without
relying on explicit one-to-onefeaturecorrespondence.Wells [23] formulatesan objectrecogni-
tion algorithm that matchesnew imagesto a templatevia probabilisticone-way classification.
Rangarajanet al [19, 9] extend this algorithm to handletwo-way image-to-imagematching,
thoughtheir formulationinfersa somewhatad-hocprobabilitydistribution over correspondences.
Dellaertet al [13] presenta probabilisticstructurefrom motion algorithmfor multiple cameras
thatsamplesfrom thedistributionoverall correspondencesetsusingaMarkov chainMonteCarlo
algorithm;the techniqueassumesthat thenumberof 3-D featuresis known andthatall features
are available in all images, and thus does not treat outliers or occlusion.

2 Image Features

Sinceposeimagesmaybeacquiredat differenttimesof dayandunderdifferentviewing condi-
tions(e.g.varyingilluminationandviewpoint),ourmethodsrely onderivedimagefeaturesrather
thandirectlyon imagetexture.Sub-pixel edgefeaturesobtainedfrom theimagegradientandsub-
pixel point featuresderivedfrom line intersectionsareinsensitive enoughto changesin view and
acquisition time to allow for reliable registration.

2.1 Lines and Points

Straightlinesandpointsserve astheprimary featuresfor poserecovery. Suchfeaturesarelinear
subspacespreserved by perspective projection;in addition,they satisfymany elegant geometric
relationships(e.g. projective duality), and lend themselves to a wide variety of sophisticated
mathematicaltools.Sincecameraintrinsicsareknown, we representthesefeaturesasprojective
3-D ray directions on the unit sphere rather than as points on the image plane.
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Figure 3: Pr ojective Features
In (a), projections of a 3-D line are shown on the Euclidean image plane and on the sphere.
The dual of the line is the projective direction orthogonal to all points on the line. In (b), pro-
jections of a 3-D point are shown; a point can be represented as the intersection of a pencil
of lines either in the planar image or on the sphere.

Featuresaredetectedin eachimagebeforeany higher-level processingis performed.A Canny
edgedetector[8] producesa binaryimageof edgepixels,which arechainedandgroupedusinga
connectedcomponentsmethod.Least-squaresoptimizationis thenperformedto find straightlines
throughthechains,andpoint featuresareobtainedby theactualor extrapolatedsub-pixel inter-
sectionof two or moreadjacentlines.Althoughdirectdetectionof cornersfrom imagepixelscan
also be used, we have found experimentally that segment intersections are more reliable.

2.2 Uncertainty

In thiswork, all geometricentitiesandinferencetasksarerepresentedon theunit sphere,which is
a closed,compact,symmetricspace.Thus,althoughfeaturesaredetectedin theEuclideanspace
of a planarimage,they are treatedas projective quantitiesdeterminedsolely by their 3-D ray
directions.A Euclideanuncertaintymodelsuchasa Gaussiandistribution cannotbe appliedto
suchquantities,sowe utilize Bingham’s distribution [5, 10], which exhibits antipodalsymmetry
and can describe a wide variety of shapes on the sphere (e.g. uniform, bipolar, and equatorial).

Bingham’s distribution is given by

(1)

where is arealsymmetric parametermatrix, is anormalizingcoefficient,and is
a3-D vectorwith . Many analogiescanbedrawn betweenthisdistributionandtheGaus-
siandistribution; themathematicalformsarenearlyidentical,andin fact(1) is obtainedby condi-
tioninganordinarytrivariateGaussianrandomvariableto haveunit length.Theparametermatrix

 can be further decomposed into

, (2)

where is aunitarymatrixdescribingtheorientationof thedistributionand is asingulardiag-
onal matrix whose entries describe the shape of the distribution.
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Figure 4: Feature Uncer tainty
Uncertain projective lines and points can be represented by equatorial and bipolar Bingham
distributions, respectively. Dual distributions are obtained by simple transformations of the
parameter matrix.

We representuncertainprojective lines as equatorialBinghamrandomvariables,with dual
distributiondefinedby theparametermatrix . Werepresentuncertainprojectivepoints
as bipolar Binghamvariables.Uncertaintyin line intersections,crossproducts,and fusion of
uncertainmeasurementscanalsobeeasilyobtainedusingthis distribution, which is closedwith
respect to Bayesian inference.

3 Rotational Alignment

Oneof themainassumptionsmadein this work is thatrotationalposeis known a priori—thatis,
the orientationsof all camerasareexpressedrelative to the sameglobal coordinatesystem.If a
scenecontainssufficient geometricstructure(namelya minimumof two parallelline setsviewed
in per image),thenthe rotationalcomponentof extrinsic registrationcanbeperformedindepen-
dentlyof thecameras’positions.An existing technique[1] correlatestranslationallyinvariantfea-
tures among a set of cameras, then registers them in a globally-consistent optimization.

3.1 Method

Rotationalregistrationrelieson the detection,refinement,andcorrelationof 3-D line directions
(or vanishingpoints).Thesedirectionsareinvariantto camerapositionand,if correlatedacross
multiple cameras,canbeusedto determinerelative orientations.In essence,scene-relative struc-
ture in thevicinity of eachcameraservesasa fixed referenceto which thecamerascanbe rota-
tionally aligned.

Vanishingpoints(VPs)arederivedperhemisphericalimageusingprojective representations
of 2-D imagelines.The approximatenumberandlocationsof VPs in eachnodearefirst deter-
minedusinga Houghtransformtechniquethatfindsstatisticallysignificantpeaksin a discretiza-
tion of the spaceof all line featuresin a given node.Theseapproximationsare then usedto
initialize anexpectationmaximization(EM) algorithmwhich refinestheVP directionsaccording
to a probabilistic mixture-model formulation.

Whenaccuratevanishingpoint estimateshave beendeterminedfor every node,a matching
processfinds correspondencesbetweenVPs in neighboringnodes;neighborsare determined
usinganadjacency graphof all approximatenodepositions.Finally, aniterative techniqueincor-
poratesall vanishingpoint directionsandcorrespondences,alternatelysolving for optimal rota-
tions and optimal global vanishing points.
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Figure 5: Rotational Registration
Vanishing points, or 3-D line directions, are detected and estimated for each hemispherical
image. They are then matched across images, and finally rotationally registered.

Figure 6: Real Rotational Data
An example of line features and VP cluster bands for a single node is shown in (a). VPs from
41 different nodes are shown before and after alignment in (b) and (c).

3.2 Recovered Information

Thesystemdescribedabove producesglobally-consistentorientationsacrossa largesetof cam-
eras,typically to within about (2 milliradians);asa result,only 3 of the6 DOF(namely3-D
position)pernoderemainunknown. A by-productof rotationalregistrationis aclassificationof 2-
D line features:themixturemodelandoutlier rejectionmethodsassigneachline featurea proba-
bility of belongingto each3-D direction.Thus,mostof the2-D line featureshave anaccurately-
known 3-D direction;theremaindercanbeclassifiedasoutliersanddiscarded.Althoughone-to-
onecorrespondencebetweenlines in differentcamerasis not known or required,this technique
producescorrespondencesbetweenclassesof lines, which can be usedto imposeconstraints
when estimating the node positions (Section 4.2).
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4 Pair-wise Translation

Accurateknowledgeof cameraorientationsimplifiestheproblemof translationalregistrationby
decouplinghighly nonlinearconstraintequations.We now considerthe translationalregistration
of nodepairs, i.e. determinationof the two parameters(translationup to unknown scale)that
describethepositionof anoffsetnoderelative to a referencenode.We usepoint featuresderived
from imageline intersectionsto determinetheseparameterswithoutassumingexplicit correspon-
dence,althoughprobabilisticcorrespondenceis aby-productof our technique.All estimatedpair-
wise translations are then incorporated into a global registration step, described in Section 5.

We first discussthegeometricrelationshipsthat form thebasisof our technique,thenpresent
amethodwhichexploits theserelationshipsto find thetranslationdirectionrelatingagivenpairof
cameras.

4.1 Geometry

For any givencamerapair, translationcanonly bedeterminedup to ascalefactor, asshown in
Figure7. Theuseof 2-D featureobservationsintroducesan inherentambiguitythat forcesus to
arbitrarily fix theglobal scale,sayto unity. Therearethusonly 2 DOF to bedetermined,which
canberepresentedby a 3-D unit vectorin thedirectionof motionfrom thereferencenodeto the
offset node.

Figure 7: Scale Ambiguity
If observations consist only of 2-D point features (e.g. ray directions a and b), only the trans-
lation direction d can be recovered; the distance between the cameras along d is arbitrary
and simply imposes an isotropic scaling on the entire configuration.

Wenow examinetheprocessby whichpoint featureobservationsaregeneratedin rotationally
registeredhemisphericalimages.Considera referencecameraat andan offset cameraat
separatedby a purerigid translation.A given 3-D point producesprojectionrays and
with respectto thetwo cameras(Figure8a).Two projectionstakenalone,if they correspondto the
same3-D point, definean epipolar planeon which that 3-D point must lie; the normal to this
planeis . For any puretranslationbetweenthetwo camerasandsetof 3-D points,the
setof all suchepipolarplanesforms a pencil whoseintersectionis coincidentwith the camera
baseline(Figure8b).Thedualrepresentationconstrainsall unit planenormalsto lie onagreatcir-
cle whosenormal, in turn, is parallel to the baseline.Thus the translationdirection can be
deducedsolelyfrom two or morecorrespondingfeatureraypairsusingtheconstraint ,
for example by minimizing an error function of the form
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(3)

or by projective fusion of many uncertain Bingham random variables .

Figure 8: Epipolar Geometr y
Geometry of the projection of a 3-D point onto two hemispherical images is shown in (a);
projections of several points form a pencil of planes and a set of coplanar unit normals,
depicted in (b).

Figure 9: Ar cs and Cr oss Pr oducts
The epipolar planes of true feature matches form a set of great circular arcs on the Gaussian
sphere, shown in (a). Their duals form a coplanar set of vectors, shown in (b), whose normal
is the direction of translation.

4.2 Match Constraints

Theabove formulationallows themotiondirectionto beestimatedonly if one-to-onecorrespon-
dencebetweenfeatureraysis available.If representsthenumberof point featuresdetectedin
eachimage,then thereshouldbe a singlevalid correspondenceset containing matches.
However, in reality correspondenceis unknown; thereare possiblematches,and more
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importantly valid correspondencesets, a prohibitively largenumber. We thereforewish to
reducethe numberof matchesconsideredwhile preservinga significant portion of the true
matches.

A pre-processingstepcanalsobeperformedwhich, thoughtaking time itself, reduces
all subsequentcomputationsto andreducesthe valueof itself. We utilize several geo-
metricconstraintsthatexploit threefacts:first, thatpoint featuresaregeneratedby theintersection
of two or moreconstituentimagelines; second,that we have availablea classificationof image
linesinto parallelsets;andthird, thatweknow theapproximatecameraconfigurationandcanthus
boundtheuncertaintyin thebaselinedirection.We canreduce by rejectingany point feature
that was formed by any observed image line with unclassified3-D orientationor with length
smaller than a threshold. We then examine all possible matches, and reject a given match if:

• The3-D orientationsof thepoint features’associatedlinesdo not match,e.g. is formed
by  and  lines, and  is formed by  and  lines.

• The “parities” of thepoint features’associatedlinesdo not match.Eachline is assigneda
parity which is either0 (meaningtheline representsa dark-to-lighttransitionin texture)or
1 (meaning the line represents a light-to-dark transition).

• is closerto the translationdirection than , i.e. this matchwould imply “backward”
motion.

• The crossproduct doesnot lie in the uncertaintybandaroundthe equator. Sucha
match would imply motion in a direction outside the cone of uncertainty (see Section 4.4).

• Theanglebetween and is greaterthana specifiedthreshold.This implies3-D scene
points that are unreasonably close to the cameras.

This pre-processingresultsin a roughlyconstantnumberof plausiblematchesperobserved fea-
turepoint.Themajority of falsematchesareeliminatedfrom consideration,anddeterminationof
the bestmatchesis reducedfrom to complexity, which greatly improvesperfor-
mance.

4.3 Probabilistic Correspondence

Imposingtheconstraintsdescribedabovedrasticallyreducesthenumberof potentialmatches,but
one-to-onecorrespondenceis still unknown. Ideally, we wish to find soasto minimize(3), but
including only the true matches.In fact if the true matcheswereknown, we could equivalently
estimate  by minimizing the error criterion

(4)

over all plausiblematches,where and arefeatureraysfrom the two camerasand is a
binary variable taking value 1 if  matches  and 0 otherwise.

If thereare point featuresin thefirst imageand featuresin thesecondimage,thenthe
setof binaryweights canberepresentedby a binary matrix containingat mostone
nonzeroentryperrow andpercolumn(becauseasinglefeaturecannothave morethanonedeter-
ministic match).To accountfor featureswhich do not matchany others,we augment with an
extra row and column to form  (Figure 10).
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Figure 10: A ugmented Matc h Matrix
In (a), a “degenerate” correspondence matrix containing outliers is shown. In (b), the aug-
mented correspondence matrix treats outliers as correspondences and preserves the prop-
erty that all rows and columns contain exactly one nonzero entry.

Variousfactorssuchasambiguityof correspondenceanduncertaintyof featurelocalizationin
theimageplanemake binarycorrespondence difficult to obtain,evenfor accurately
known baselinedirections.Thenotionof probabilisticcorrespondence is thereforea
sensiblealternative. A new matchmatrix canbe constructedwith structuresimilar to that of

, but now each feature  can match several features , and vice versa. We require only that

, (5)

i.e. that thematrix is doublystochastic.A givenweight , if computedcorrectly, is anexpres-
sionof theprobabilitythatfeature matchesfeature . In thisnewly weightedformulation,the
error to be minimized becomes

. (6)

4.4 Discretization

As depictedin Figure8, our observationsconsistonly of 2-D point features(rays)in eachnode;
true correspondencesbetweenthem are unknown, as are the locationsof their associated3-D
points.However, anypoint featurecorrespondence,whethercorrector not,canberepresentedby
a planepassingthroughbothprojectionrays,or by thenormalto this plane.Thespecialsubsetof
all potentialcorrespondencesthatincludesall truematchesformsapencilof planesor, in thedual
sense,a setof coplanarpoints(Figure9b). This suggestsa methodfor determiningthedirection
of motion: we can superimposeepipolar planesformed by all plausiblefeaturematchesand
search the projective space for the point of highest incidence.

This spaceis two-dimensionalandcanberepresentedasa discretizationof thesurfaceof the
unit sphere.Theplaneformedby eachpotentialmatch,whenintersectedwith thesphere,contrib-
utes a great circle. The point at which intersectionsoccur is the translationdirection,
approximated to the accuracy of the discretization.

In practice,we have initial translationestimatesfrom the acquisitionplatform and a rough
boundon thebaselinedirection,so it is not necessaryto discretizetheentiresphere.Insteadwe
useaHoughtransform(HT) confinedto thesolidangleon thespherecorrespondingto thisbound
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(Figure11a).In orderto simplify theimplementationandimproveperformance,thediscretization
is planar;epipolarplanesthenintersectthespaceaslinesratherthanarcs.Theconeof uncertainty
inducesa bandaroundtheequatorof thesphereinsidewhich theepipolarplanenormals of
candidate matches are constrained to lie.

Figure 11: Hough T ransf orm and Uncer tainty
The translation direction lies somewhere in a cone of uncertainty that in turn induces an
equatorial band on which epipolar plane normals of candidate matches must lie (a). The
Hough space is a discretized planar surface corresponding to the intersection of the cone
with the unit sphere (b). Each line (in black) arises from a plausible pairing of point features;
the dark spot indicates the most likely translation direction.

Eachepipolarplaneis weightedby theapproximatelikelihoodof its constituentpoint corre-
spondence.In particular, the entriesof a valid matchmatrix weight each
line’scontribution to theHT. Thematrix is formedasfollows.First, it is initialized to 0. Second,a
1 is placedin thematrix for eachplausiblematch(usingthecriteriaof Section4.2).Third, a 1 is
placedin every outlier row andcolumn.Finally, thematrix is reducedto doublystochasticform,
so that all rows and columnssum to unity, by applicationof Sinkhorn’s algorithm [21, 19].
Weighting eachline by its approximatelikelihood dramaticallyimproves the coherenceof HT
peaks.

After all epipolarlineshavebeendrawn in theHT, asetof candidatepeaksis foundby search-
ing theHoughimage for relative maxima,i.e. pointswhosevalueexceedsall othersin a
square neighborhood with given size :

. (7)

All such peaks are sorted by their magnitude , defined as

(8)

and the peakwith highestmagnitudeis chosenas the mostprobabledirectionof motion. This
direction initializes a refinement method, described in the next section.

4.5 Refinement

TheHoughtransformquickly andefficiently providesa strongprior on themostlikely direction
candidate,but two problemsremain.Thefirst is accuracy, which is limited by thediscreterepre-
sentationof thetransformspace,andthesecondis uncertainty, aboutwhich thetransformreveals
little. To addresstheseproblems,the selecteddirectionmustbe further refinedby a continuous-
space optimization.
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Several authors(e.g.[23, 19, 13]) have proposedthe useof EM algorithmsfor optimization
with probabilistic correspondence.Such algorithmsalternatebetweenfinding expectedmatch
likelihoods andestimatingparameters(in this case,the baselinedirection ). Wells’ tech-
nique[23] is not applicablein our context becauseit utilizesanasymmetricmatchfunction (i.e.
matchesimagesto a known template).Themethodsof Rangarajan[19] do not sampleappropri-
ately from thespaceof correspondencesets,insteadrelying exclusively on Sinkhorn’s algorithm
to provide the “correct” distribution on . Dellaert’s method[13] samplescorrectlybut makes
thelimiting assumptionsthatthenumberof 3-D featuresis known andthatall featuresareviewed
in all images.

Herewe presentanEM formulationthatsamplescorrectlyfrom thedistribution of all corre-
spondencesetsandhandlesocclusionandoutlier featuressymmetricallyfor thetwo-cameracase.
TheM-stepconsistsof estimating giventhecurrentweights accordingto (6). TheE-step,in
which theweightsaredeterminedgiventhecurrentdirectionestimate,is performedusingMonte
Carlosamplingratherthananexplicit analyticdistribution, thusmakingthealgorithma so-called
MCEM algorithm.

Samplingmustbeperformedover thespaceof valid correspondencesets(i.e. valid matri-
ces)ratherthanindividualcorrespondences,becauseof theinherentconstraintsmentionedin Sec-
tion 4.3. Although this spaceis combinatoriallylarge, nearlyall correspondencesetshave very
low probability, suggestingthatweneedsampleonly in high-likelihoodregionsof thespace.Del-
laertproposesaMarkov chainMonteCarlo(MCMC) samplerthatdefinesastateasavalid binary
correspondence set. The method proceeds as follows:

• Start in any valid state, represented by the matrix.
• Compute the likelihood of this state .
• Randomly perturb the system to a new valid state .
• Compute the likelihood ratio .
• If the likelihood has increased (i.e. ), then keep the new state.
• Otherwise, keep the new state with probability .

Thisprocessrepeatsfor iterations,until “steadystate”is reached(typically is ontheorderof
10,000to 100,000).Theaverageover states keptat eachiterationproducesa valid probabilis-
tic correspondence matrix :

(9)

In orderto reachthecorrectlimiting probabilities,thestateperturbationsmustsatisfydetailed
balance, meaningeffectively thateveryvalid stateis reachablefrom everyothervalid state[6]. In
thecasewhereall featuresareavailablein all imagesandthenumberof valid featuresis known,
row andcolumnswapsof thecurrentstate suffice, andthe likelihoodratios canbecom-
puted efficiently due to the Gaussian error model assumed in [13].

However, in thecasewhereoutliersarepresent,weneedatechniquefor introducingnew valid
matchesanddiscardingcurrentvalid matches,aswell asanefficientmeansof computingthe .
We thus proposetwo additional complementarystateperturbationson the augmentedmatch
matrix describedin Section4.3: the split operationconvertsa valid matchinto two outliers,
while themerge operationjoins two outliersinto a valid match(Figure12).Theadditionof these
perturbationsallows all possiblestatesto be visited, and thusproducesthe correctsteadystate
probabilities.
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Running the MCEM algorithm on eachadjacentcamerapair producesa set of accurate
motiondirections,representedasunit vectors.As mentionedabove, thesedirectionsspecifyonly
two of the threeDOF in cameraposition.Aggregation of thesevectorsinto a setof global con-
straints is thus necessary for determination of a consistent pose configuration.

Figure 12: Split and Mer ge Perturbations
Besides row and column swaps, state perturbations consist of splits (a), in which a valid
matrix entry is separated into two outliers, and merges (b), in which two outliers are joined
into a valid entry.

Figure 13: MCEM Con vergence
Match matrices from selected iterations of MCEM run on synthetic data are shown above.
(a) depicts the initially-estimated match probabilities, while (b) and (c) show intermediate
results. The final deterministic matches are found at convergence and shown in (d).

5 Global Rectification

Assigningunit lengthto thetranslationvectorssufficesfor registrationof isolatedpairs,sincethe
inherentscaleambiguityprecludesdeterminationof metricdistances.However, a setof nodes
( ) requirestruerelative distances(up to global isotropicscale)betweenall relevantcamera
pairsfor a unique,consistentsolution.Thefollowing sectionsdescribea methodfor determining
these distances, and also for expressing the resulting camera configuration in metric coordinates.

(a) (b)

(a) (b) (c) (d)

N
N 2>
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5.1 Adjacency

First, thesetof all nodesof interestmustbeexaminedto obtaina setof pairsto beregisteredby
thetechniquein Section4. We usedistancesbetweennodepositionsestimatedby thedataacqui-
sition platformto determinenodepairsthatareproximalenoughto view commonscenegeome-
try. We thenselectthe nearestneighborsof eachcamera(in practice is 3–5), resultingin a
new adjacency graphwhosesitesarethecamerapositionsandwhosearcsrepresentthepair-wise
translation directions to be estimated.

5.2 Formulation

Let be the 3-D positionof node , and let be the unit directionof motion from
node to node . Further, let representthedistancealong betweennodes and .
Givenestimatesof andassociated covariancematrices (determinedfrom theBing-
hamdistributionsof theseestimates),wewishto determineasetof positions anddistances
consistent with the .

We thus formulate a set of linear vector equations of the form
(10)

for all adjacentnodepairswhosetranslationdirectionshave beenestimated.Theabove equation
simply statesthatthepositionof node is obtainedby startingat node andtraveling a distance

in the direction . The covariancematrix canbe usedto weight the constraintswhile
preserving their linearity:

. (11)

Thereare suchvectorequations(onefor eachnodepair registered),producing scalar
equationsbut introducing additionalunknowns for a total of unknowns. From
DOF counting alone, it would seem that a unique solution to this system requires that

. (12)

However, the entirenodeconfigurationcanbe arbitrarily translatedandscaledwithout altering
theconstraints.Therearethus4 inherentdegreesof freedomin thesystem,regardlessof thenum-
ber of constraints of the form in (11).

In addition,evenif anarbitraryglobaltransformationis imposedonthesystem,determination
of the minimal set of distinct pairs neededfor a non-degeneratesolution is significantly more
complicatedanddependsentirely on the topologyof the adjacency graph(i.e. which pairs are
chosenandin what configurationthey lie). A sufficient conditionfor uniquesolutionis that the
graphis fully triangulated;this ensuresthat the imposedisotropicscaleconstraintis propagated
throughoutthegraph.This is not,however, a necessarycondition,which is in generalmuchmore
difficult to characterize.

In typical real-world datasets,the topologyof thecameraconfigurationis underconstrained.
Oneway to ameliorateboth the global transformationambiguityandthe degeneraciesin graph
topologyis to utilize thecamerapositionsinitially estimatedby theacquisitionplatformasweak
constraints.Thiscanbeaccomplishedby appendinganadditionalsetof linearvectorequations
of the form

, (13)
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where is a constantdenotingtheinitial positionof node , and is a very smallscalarweight
(say ), and a single scalar equation of the form

. (14)

The number of unknowns remains , but the number of constraints rises to
. Addition of the equations(13) providesconstrainton singularor nearlysingular

modesof the equationsystem,but leaves the remainingmodesunaffected;this effectively sets
nodepositionsto their initially estimatedvaluesin regionswherethesepositionsareotherwise
indeterminate.Theconstraintin (14) preventstrivial zerosolutionsandalsoimposesanapproxi-
mateglobalscaleaccordingto theinitial configuration.Thesystemcanbesolvedby ordinarylin-
ear least-squares techniques.

5.3 Metric Registration

The configurationthat resultsfrom the above formulation is expressedrelative to a somewhat
arbitrarycoordinateframe.In fact any rigid Euclideantransformation(translation,rotation,and
scale)appliedto all cameraspreservesself-consistency andthusalsoyieldsa valid poseconfigu-
ration.The City Projectrequiresthat camerasbe expressedin Earth-relative coordinatesso that
metric reconstruction(i.e. in the correctunits andworld positions)is possible;we thuswish to
find the best rigid transformation to accomplish this task.

Assumingthattheinitial poseasestimatedby theacquisitionplatformis unbiased,this prob-
lem amountsto anoptimal3-D to 3-D registrationof thenew configurationwith theold configu-
ration. One-to-onecorrespondencebetweenthe two setsof camerasis known, and the optimal
transformationcanbefoundusingthetechniqueof absoluteorientation[16]. First, thenew cam-
erasetis translatedsothat its centerof massis coincidentwith thatof theoriginal set.Next, the
optimalrotationof thenew setaboutits centerof massis computedandapplied.Finally, theglo-
bal isotropicscalefactorthatbestrectifiesdistancesfrom thecentersof massis estimated.Each
step consistsof simple algebraicoperations;the result is a consistentcameraconfiguration
expressed in world coordinates.

6 Results

Severalexperimentsweredesignedandrun in orderto assessthesystem’sperformance.Synthetic
datawith controllablelevelsof variousnoisesourceswasusedfor quantitative testing.Qualitative
testson a setof realhemisphericalimagescomparetheoutputof this systemwith thatof thepre-
viously used semi-automated photogrammetric method.

6.1 Synthetic Data

A setof 50 syntheticnodesviewing 500 3-D featureswasgeneratedwith camerabaselinesof
approximately10meters.Noisein initial camerapositionswasaddedwith standarddeviationof 3
meters.Featurelocationerror, relative rotationerror, andnumberof outliers(in theform of spuri-
ous2-D featuresand3-D point occlusions)werevaried,andtheresultingestimatesof translation
directions and scene-relative positions were compared to the true values.
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Several plots areshown below. For a fixed variancein point featurelocalizationerror, pose
wasestimatedin thepresenceof varyingnumbersof outliers(Figure14a).For a fixednumberof
outliers,posewasestimatedwith varying point featurelocalizationerror (Figure14b). Finally,
fixing boththenumberof outliersandfeatureerror, we estimatedthecamerapositionswith vary-
ing rotational pose error (Figure 14c).

Figure 14: Results on Sim ulation
The plot in (a) was generated by varying the number of outliers present in a sample of 500
feature points per camera; the true features were perturbed by random noise with standard
deviation of 1 pixel. In (b), the feature noise standard deviation was varied, with outlier per-
centage fixed at 10%. The plot in (c) shows position error as a function of noise in estimated
rotational pose.

Qualitatively, we have found that thesystemto bequite robustagainstoutlier point features.
Whenrelative rotationsareaccuratelyknown andpoint projectionerror is small, a 4:1 ratio of
outliersto truedatapointsonly slightly increasestheerrorin final camerapositions.Pointprojec-
tion errorstandarddeviationsof roughly5 pixels(typicalof City Projectdata)producedpositions
accurate to within 5cm.
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6.2 Real Data

Camerasfrom two real rotationally-registereddata setswere registeredusing thesetech-
niques.The first set(TechSquare)consistedof 75 nodes,which wereautomaticallyalignedand
comparedwith camerasregisteredby manualfeaturecorrespondence.Selectedepipolargeometry
was comparedfor several nodepairs. The secondset (GreenBuilding)consistedof 30 nodes.
Therewassignificanterror in the initial poseestimates(up to six metersandtwenty degreesof
relative pose misalignment), which was corrected by this technique.

7 Conclusions

We have describeda robustmethodfor globally-consistenttranslationalregistrationof a largeset
of images.Themethodassumesinternalcalibration,knowledgeof rotationalpose,andinitial esti-
matesof position.It is fully automatedandovercomessomelimitationsof traditionalfeaturecor-
respondencetechniques.Thus far, testinghasshown that our methodfinds accuratetranslation
directionsbetweencamerasandproducesconsistentglobalposeconfigurations.For realdatasets
consistingof thousandsof imagesacquiredwith 5–10meterbaselinesover regionshundredsof
metersacross,this methodachieves end-to-endaccuracy in position to within 5 centimeters.
Becauseof theHoughtransformtechnique,thesystemis virtually insensitive to point featureout-
liers, thoughasonewould expect,reliability suffers drasticallyas the error in suppliedrelative
rotation becomes significant.

Computationsfor baselineestimationare in thenumberof nodes andthenumber
of featurespernode . This is amelioratedby geometricconstraintsandmatchculling. In prac-
tice, was typically on the order of a thousand,and translationdirection estimationfor real
imagesrunningon a 250 MHz SGI O2 requiredan averageof about55 secondsof computation
per pair. Global rectificationinvolvessolving a somewhat large linear system,but sparsematrix
techniques can be used to dramatically improve performance.

Figure 15: Node Configurations
Initial configurations for two data sets are viewed from above, with lines representing adja-
cency. A set of 81 nodes is shown in (a), and a set of 30 nodes acquired near a tall building
is shown in (b).
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Figure 16: T echSquare Epipolar Geometr y I
A building corner and close-up is shown in (a). The epipolar line corresponding to this corner
as seen from a different viewpoint is shown in (b) using automatically corrected cameras,
and compared to (c) using cameras generated by manual feature correspondence.

Figure 17: T echSquare Epipolar Geometr y II
Window corners and close-ups shown from two different viewpoints. Ambiguities arising
from regular geometry can make manual correspondence difficult. A particular window cor-
ner is shown in the original view (a) and in the second view using cameras generated by (b)
automatic registration and (c) manual feature correspondence.

(a) (b) (c)

(a) (b) (c)
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Figure 18: GreenBuilding Epipolar Geometr y I
A building corner is shown in (a), and its epipolar line in another image as viewed by auto-
matically registered cameras (b) and the initially acquired pose (b).

Figure 19: GreenBuilding Epipolar Geometr y II
A distant building corner (a) and its corresponding epipolar line as viewed by automatically
registered cameras (b).

(a) (b) (c)
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Figure 20: GreenBuilding P ose Correction
Pose configurations for terrestrial imagery should be approximately planar. The camera con-
figuration is viewed from the side, before pose correction in (a) and after in (b). Cameras
were moved by an average of 2.86 meters.
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