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Abstract

Accuratecamereacalibrationis crucialto the reconstructiorof three-dimensionajeometryandthe
recovery of photometric sceneproperties.Calibration involves the determinationof intrinsic
parameterge.g.focal length, principal point, andradial lens distortion) and extrinsic parameters
(orientation and position).

In urbanscenesandotherervironmentscontainingsufficient geometricstructurejt is possible
to decoupleextrinsic calibrationinto rotationaland translationalcomponentghat can be treated
separatelysimplifying theregistrationproblem.Herewe presensucha decoupledormulationand
describenethodgor automaticallyrecoveringthe positionsof alarge setof cameragjivenintrinsic
calibration, relatie rotations, and approximate positions.

Our algorithm first estimatesthe directionsof translation(up to an unknavn scalefactor)
betweenadjacenttamerapairs using point featuresbut without requiringexplicit correspondence
betweenthem. This techniguecombinesthe robustnessand simplicity of a Houghtransformwith
theaccurag of Monte Carloexpectatiormaximization We thenfind a setof distancedbetweerthe
pairsthatproducegylobally-consistentamergpositions Novel uncertaintyformulationsandmatch
plausibility criteria imprwoe reliability and accurac

We assessur systems performanceusingbothsyntheticdataandalarge setof realpanoramic
imagery Thesystemproducesamergositionsaccurateo within 5 centimetersn imagenetworks
extending @er hundreds of meters.

1 Intr oduction

A long-standingproblemin machinevision is that of externalor extrinsic cameraposeregistra-
tion—i.e., determinationof the rigid six-degree-of-freedom(6-DOF) Euclideantransformation
thatdescribeghe scene-relatie positionandorientationof eachcameraAccurateregistrationis
vital to the recweery of geometrytexture, and other 3-D scene properties.

In scenesuchasurbanlandscapesvhich containparallelline sets,it is possibleto decouple
the rotationalcomponenbf extrinsic posefrom the translationalcomponenty using position-
invariant features (vanishing points). Here we assumethat cameraorientationsare known
(obtaineadusingthe methodof [1]) andfocuson robustestimationof the camergpositions.In this
section,we provide a more preciseproblemformulation, presenta high-level descriptionof our
technique, and discuss some valg past wrk in the area of cameragistration.



1.1 Motivation

Thegoalof theMIT City ScanningProject[22] is to obtainaccuratehree-dimensionahodelsof

urbanlandscapesTo this end,a platform equippedwith variousinstrumentatioracquiresmage
datain hemisphericatonfigurationgnode$ andannotategachimagewith approximateabsolute
pose(orientationand position) estimatedoy on-boardsensorsuchas GPS,accelerometergnd
odometry[7]. Nodesmay be separatedby large distancesandare acquiredat differenttimesof

day and in diierent weather and lighting conditions.

Figure 1: P ose Mosaic Data Set
An example configuration of a set of acquired data. Hemispherical nodes, each of which
consists of roughly forty 1.5 Mpixel images, are shown overlaid on a campus map.

Intrinsic cameraparametersare estimatedautomatically and the setsof planarimagesthat
compriseeachnodearerotationallyregisteredto form hemisphericaimosaicq11]. A poserefine-
mentstageestimateshe scene-relatie positionandorientationof eachnodeusingimagefeatures
that are automaticallydetectedand manuallycorrelatedacrossmosaics Finally, registeredcam-
eras and arious image features are used to reconstruct 3-D geometry

Currently extrinsic camergoserefinements theonly systemcomponenthatrequireshuman
input. Manual featurecorrespondencbecomedmpractical,andindeedvirtually impossible,as
the numberof acquirednodesincreasesWe thuswish to develop fully automatedscalableech-
nigues for accurate and nadi extrinsic camera igstration.

1.2 Overview

The main goal of this work is to determinerelative translationsamongan arbitrarily large setof
camerasvithout requiringhumaninput or explicit featurecorrespondencéur systemrelieson
several assumptions:

* Intrinsic camern parametes are known Theseareestimatedn advanceby a separatealgo-
rithm [11].

» Cameamsare rotationally registeled. Rotationsrelative to a fixed coordinateframearealso
estimatedby a separatdechnique[l], describedbriefly in Section3. This techniquealso
providesa classificationof obsened imagefeaturesthatis usedto constraintranslational
geometry



» Approximatetranslationsare known We requirea roughnotion of cameraadjaceng and
motion, both to determinewhich camerasarelikely to view overlappinggeometryandto
disambiguatgootential solutions.The acquisitionplatform suppliesinitial poseestimates
accurate to within a e meters and a vedegrees [7].

» Imagesare omnidirectional Although not strictly requiredby our techniquesthis assump-
tion helps to resoly motion ambiguity and pvades data redundapndor rolustness.

We usethe above information,aswell as2-D point featuresobsened in the variousimages,as
inputto thesystemA high-level block diagramis shavn in Figure2. First, a setof adjacennode
pairsis establishedising approximatecameraadjaceng. The direction of translation(up to an

unknawvn scalefactor)is thenestimatedor eachpairin the setvia a hybrid Houghtransformand
Monte Carlo expectationmaximization(MCEM) techniquewhich neitherrequiresnor produces
explicit featurecorrespondenced=inally, all translationdirection estimatesare incorporatednto

an optimization that determines a globally consistent set of camera positions.
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Figure 2: T ranslation Estimation
Pairs of adjacent cameras are determined using initial camera position estimates. The direc-
tion of translation is found for each pair, and these directions are subsequently incorporated
into a simultaneous rectification of all cameras.

Hemisphericaimagery disambiguatesimilar cameramotions, and knowledge of approxi-
mateposeprovidesgoodalgorithminitialization; consequentlythe systemis ableto handlewide
baselines(5—-10 meters).In addition, since we use gradient-basedmage featuresrather than
imagetexture,thesystemis largely insensitve to varyinglighting conditions.Global optimization
over all nodesdrasticallyreducesiasanderror propagtion effectsinherentin purelylocal tech-
niques. The system has pem to work well ezen with significant error in initial pose estimates.

1.3 Related Work

Thereis alargebodyof work in the areaof extrinsic cameracalibration.Interactve methodge.g.
[3, 12, 20]) requirea humanoperatorto specifystronggeometricconstraintsn 2-D imagespace
or 3-D objectspace(e.g.point correspondencegarallelism,objectprimitives, etc.) which facili-
tate subsequengstimationof scenestructureandcamergpose.Suchmethodsbypassmary diffi-
cultiesinherentin 3-D vision, suchasthe tight coupling betweenvariousunknavn parameters;
however, sincethe operatoitendsto investminimal effort, thesebenefitscomeat the price of scal-
ability, robustness, and stability



Automatediechniquege.g.[2, 17, 18]) typically useimagetexture andgeometricconstraints
to trackimagefeaturesovertime in a densely-sampleonagesequencesuchasvideo. Thisdense
temporalsamplingensureghatlighting conditionsandfeaturecharacteristicglo not vary drasti-
cally from imageto image.Onelimitation of suchtechniquess thatthey assumea singleimage
streamfrom a singlesensorandthuscannotmemge dataacquiredoy differentsensorsr at differ-
enttimes.Also, sinceonly two or threeimagesaretypically considereatatime, thesetechniques
suffer from localizationartifacts(e.g.bas-reliefambiguity[4]), error propagtion,andasymptoti-
cally highrunningtimes.Finally, mostfeaturetrackingalgorithmsandopticalflow techniquegail
wheninter-camerabaseline®r rotationsarelarge, or whenthereis significantvariationin illumi-
nation from one image to thexie

Anotherimportantclassof techniquesattemptsto circumwent the tracking/correspondence
problemby estimatingstructureandmotion usingprobabilisticcorrespondence—thé, without
relying on explicit one-to-onefeaturecorrespondencalells [23] formulatesan objectrecogni-
tion algorithm that matchesnew imagesto a templatevia probabilisticone-way classification.
Ranarajanet al [19, 9] extend this algorithm to handletwo-way image-to-imagematching,
thoughtheir formulationinfersa somevhatad-hocprobability distribution over correspondences.
Dellaertet al [13] presenta probabilisticstructurefrom motion algorithmfor multiple cameras
thatsampledrom thedistribution over all correspondencgetsusinga Markov chainMonte Carlo
algorithm;the techniqgueassumeshat the numberof 3-D featuress known andthatall features
are ¥ailable in all images, and thus does not treat outliers or occlusion.

2 Image Features

Sinceposeimagesmay be acquiredat differenttimesof day andunderdifferentviewing condi-
tions(e.g.varyingillumination andviewpoint), our methodgsely on dervedimagefeaturegather
thandirectly onimagetexture.Sub-pixel edgefeaturesobtainedrom theimagegradientandsub-
pixel point featuresderived from line intersectionsareinsensitve enoughto changesn view and
acquisition time to all for reliable rgistration.

2.1 Lines and Points

Straightlines andpointssere asthe primary featuresdor poserecovery. Suchfeaturesarelinear
subspacegpresered by perspectie projection;in addition,they satisfy mary elegantgeometric
relationships(e.g. projectve duality), and lend themseles to a wide variety of sophisticated
mathematicatools. Sincecamerantrinsicsareknown, we representhesefeaturesas projectve
3-D ray directions on the unit sphere rather than as points on the image plane.
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Figure 3: Pr ojective Features
In (a), projections of a 3-D line are shown on the Euclidean image plane and on the sphere.
The dual of the line is the projective direction orthogonal to all points on the line. In (b), pro-
jections of a 3-D point are shown; a point can be represented as the intersection of a pencil
of lines either in the planar image or on the sphere.

Featurearedetectedn eachimagebeforeary higherlevel processings performed A Canry
edgedetector[8] producesa binaryimageof edgepixels,which arechainedandgroupedusinga
connectedomponentsnethod Least-squaregptimizationis thenperformedo find straightlines
throughthe chains,and point featuresare obtainedby the actualor extrapolatedsub-pixel inter-
sectionof two or moreadjacentines. Althoughdirectdetectionof cornersfrom imagepixelscan
also be used, we a found &perimentally that ggment intersections are more reliable.

2.2 Uncertainty

In thiswork, all geometricentitiesandinferencetasksarerepresentedntheunit spherewhichis

a closed,compactsymmetricspace Thus,althoughfeaturesaredetectedn the Euclideanspace

of a planarimage, they are treatedas projectve quantitiesdeterminedsolely by their 3-D ray

directions.A Euclideanuncertaintymodelsuchasa Gaussiardistribution cannotbe appliedto

suchquantities,sowe utilize Binghams distribution [5, 10], which exhibits antipodalsymmetry

and can describe a widanety of shapes on the sphere (e.g. uniform, bipatat equatorial).
Binghams distrikution is gven by

p(x) = c(M)exp(x' Mx) &)
whereM is arealsymmetric3 x 3 parametematrix, c(M) is anormalizingcoeficient,andx is
a3-D vectorwith |x]| = 1.Many analogiexanbedravn betweerthis distribution andthe Gaus-
siandistribution; the mathematicalormsarenearlyidentical,andin fact(1) is obtainedby condi-
tioning anordinarytrivariateGaussiamandomvariableto have unit length. The parametematrix
M can be further decomposed into

M = UKU', )

whereU is aunitarymatrix describinghe orientationof thedistributionandK is asingulardiag-
onal matrix whose entries describe the shape of the ditsbnib
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Figure 4: Feature Uncer tainty
Uncertain projective lines and points can be represented by equatorial and bipolar Bingham
distributions, respectively. Dual distributions are obtained by simple transformations of the
parameter matrix.

We represenuncertainprojectie lines as equatorialBinghamrandomvariables,with dual
distribution definedby theparametematrix M ; = —M . We representincertainprojectie points
as bipolar Bingham variables.Uncertaintyin line intersectionscrossproducts,and fusion of
uncertainmeasurementsanalso be easily obtainedusingthis distribution, which is closedwith
respect to Bayesian inference.

3  Rotational Alignment

Oneof the mainassumptionsnadein this work is thatrotationalposeis known a priori—thatis,

the orientationsof all camerasare expressedelative to the sameglobal coordinatesystem.If a
scenecontainssufficient geometricstructure(namelya minimum of two parallelline setsviewed

in perimage),thenthe rotationalcomponenof extrinsic registrationcanbe performedindepen-
dentlyof thecameraspositions. An existing techniqud1] correlatedranslationallyinvariantfea-
tures among a set of cameras, theyisters them in a globally-consistent optimization.

3.1 Method

Rotationalregistrationrelieson the detection refinementand correlationof 3-D line directions
(or vanishingpoints). Thesedirectionsare invariantto camerapositionand, if correlatedacross
multiple camerasg¢anbe usedto determinerelative orientationsln essencescene-relatie struc-
turein thevicinity of eachcamerasenesasa fixed referenceto which the camerasanbe rota-
tionally aligned.

Vanishingpoints (VPs) arederived per hemisphericalmageusing projective representations
of 2-D imagelines. The approximatenumberandlocationsof VPs in eachnodearefirst deter-
minedusinga Houghtransformtechniquethatfinds statisticallysignificantpeaksin a discretiza-
tion of the spaceof all line featuresin a given node. Theseapproximationsare then usedto
initialize an expectationmaximization(EM) algorithmwhich refinesthe VP directionsaccording
to a probabilistic mixture-model formulation.

When accuratevanishingpoint estimateshave beendeterminedor every node,a matching
processfinds correspondencebetweenVPs in neighboringnodes;neighborsare determined
usinganadjaceng graphof all approximatenodepositions.Finally, aniterative techniquencor-
poratesall vanishingpoint directionsand correspondences]ternatelysolving for optimal rota-
tions and optimal globalanishing points.
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Figure 5: Rotational Registration
Vanishing points, or 3-D line directions, are detected and estimated for each hemispherical
image. They are then matched across images, and finally rotationally registered.
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Figure 6: Real Rotational Data
An example of line features and VP cluster bands for a single node is shown in (a). VPs from
41 different nodes are shown before and after alignment in (b) and (c).

3.2 Recovered Information

The systemdescribedabove producegylobally-consistenbrientationsacrossa large setof cam-
eras typically to within about0.1° (2 milliradians);asaresult,only 3 of the6 DOF (namely3-D

position)pernoderemainunknavn. A by-productof rotationalregistrationis a classificatiorof 2-

D line featuresthe mixture modelandoutlier rejectionmethodsassigneachline featurea proba-
bility of belongingto each3-D direction.Thus,mostof the 2-D line featureshave anaccurately-
known 3-D direction;the remaindercanbe classifiedasoutliersanddiscardedAlthough one-to-
one correspondencbetweenlines in differentcamerags not known or required,this technique
producescorrespondencelsetweenclassesof lines, which can be usedto imposeconstraints
when estimating the node positions (Section 4.2).



4 Pair-wise Translation

Accurateknowledgeof cameraorientationsimplifiesthe problemof translationakegistrationby
decouplinghighly nonlinearconstraintequationsWe now considerthe translationakegistration
of nodepairs,i.e. determinationof the two parametergtranslationup to unknovn scale)that
describethe positionof an offsetnoderelative to a referencenode.We usepoint featurederived
from imageline intersectiongo determingheseparametersvithoutassumingexplicit correspon-
dencealthoughprobabilisticcorrespondencis aby-productof ourtechniqueAll estimatedgair
wise translations are then incorporated into a glolgadtration step, described in Section 5.
We first discusghe geometricrelationshipghatform the basisof our techniquethenpresent

amethodwhich exploitstheserelationshipgo find thetranslationdirectionrelatinga givenpair of
cameras.

4.1 Geometry

For ary givencamergpair, translationcanonly bedeterminedip to ascalefactor asshavn in
Figure7. Theuseof 2-D featureobsenationsintroducesaninherentambiguitythat forcesusto
arbitrarily fix the global scale,sayto unity. Therearethusonly 2 DOF to be determinedwhich

canberepresentetdy a 3-D unit vectorin the directionof motionfrom the referencenodeto the
offset node.

Cameras

Figure 7: Scale Ambiguity
If observations consist only of 2-D point features (e.g. ray directions a and b), only the trans-
lation direction d can be recovered; the distance between the cameras along d is arbitrary
and simply imposes an isotropic scaling on the entire configuration.

We now examinethe processy which pointfeatureobsenationsaregeneratedn rotationally
registeredhemisphericalmages.Considera referencecameraat ¢, andan offsetcameraat ¢,
separatedy a purerigid translation.A given 3-D point p producesprojectionraysr, andr,
with respecto thetwo cameragFigure8a). Two projectiongakenalone,if they correspondo the
same3-D point, definean epipolar plane on which that 3-D point mustlie; the normalto this
planeis m = r, xr,. Forary puretranslatiorbetweerthetwo camerasndsetof 3-D points,the
setof all suchepipolarplanesforms a pencil whoseintersectionis coincidentwith the camera
baselingFigure8b). Thedualrepresentationonstrainzll unit planenormalsto lie onagreatcir-
cle whosenormal, in turn, is parallelto the baseline.Thus the translationdirection d canbe
deducedsolelyfrom two or morecorrespondindeatureray pairsusingtheconstraintm [d = 0,
for example by minimizing an error function of the form



E = IZmi[bI ©)

or by projecte fusion of may uncertain Bingham randonasiablesm, .
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Figure 8: Epipolar Geometr y
Geometry of the projection of a 3-D point onto two hemispherical images is shown in (a);
projections of several points form a pencil of planes and a set of coplanar unit normals,

depicted in (b).

(b)

Figure 9: Ar cs and Cr oss Pr oducts
The epipolar planes of true feature matches form a set of great circular arcs on the Gaussian
sphere, shown in (a). Their duals form a coplanar set of vectors, shown in (b), whose normal

is the direction of translation.

4.2 Match Constraints

The above formulationallows the motiondirectionto be estimatednly if one-to-onecorrespon-
dencebetweerfeatureraysis available.If F representshe numberof point featuresdetectedn

eachimage,thenthereshouldbe a single valid correspondenceet containing O(F) matches.
However, in reality correspondences unknavn; thereare O(FZ) possiblematchesand more



importantly O(F!) valid correspondencsets a prohibitively large number We thereforewish to
reducethe numberof matchesconsideredwhile preservinga significant portion of the true
matches.

A pre-processingtepcanalsobe performedwhich, thoughtaking O(Fz) time itself, reduces
all subsequentomputationgo O(F) andreduceghe valueof F itself. We utilize several geo-
metricconstraintghatexploit threefacts:first, thatpointfeaturesaregeneratedy theintersection
of two or more constituentmagelines; secondthat we have available a classificationof image
linesinto parallelsets;andthird, thatwe know theapproximatecameraconfiguratiorandcanthus
boundthe uncertaintyin the baselinedirection.We canreduceF by rejectingary pointfeaturer
that was formed by ary obsenred imageline with unclassified3-D orientationor with length
smaller than a threshold.afthen gamine all possible matches, and rejectvamgimatch if:

» The3-D orientationsof the point features’associatedines do not match,e.g.r, is formed

by x andz lines, andr, is formed byy andz lines.

» The“parities” of the point features’associatedines do not match.Eachline is assigneda

parity which is eitherO (meaningthe line represents dark-to-lighttransitionin texture) or
1 (meaning the line represents a light-to-dark transition).

* 1, is closerto the translationdirectionthan r, i.e. this matchwould imply “backward”

motion.

» Thecrossproductr, x r,; doesnot lie in the uncertaintybandaroundthe equator Sucha

match would imply motion in a direction outside the cone of uncertainty (see Section 4.4).
» Theanglebetweenr, andr, is greaterthana specifiedthreshold.This implies 3-D scene
points that are unreasonably close to the cameras.
This pre-processingesultsin a roughly constaninumberof plausiblematcheger obsened fea-
ture point. The majority of falsematchesareellmlnatedfrom considerationanddeterminatiorof
the bestmatchess reducedfrom O(F ) to O(F) compleity, which greatly improves perfor-
mance.

4.3 Probabilistic Correspondence

Imposingthe constraintslescribedabove drasticallyreduceghe numberof potentialmatchesbut
one-to-onecorrespondencis still unknawvn. Ideally, we wish to find d soasto minimize (3), but
including only the true matchesin factif the true matcheswvere known, we could equialently
estimated by minimizing the error criterion

E Zbij(xi xy;) ™
]

(4)

Zbij(mij [d)

over all plausiblematcheswhere x; and y arefeatureraysfrom the two camerasand b
binary \ariable taking &lue 1 ifx; matchesy; and O otherwise.

If thereare M point featuresn thefirstimageand N featuresn the secondmage,thenthe
setof binaryweightsbij canberepresentetdy abinary M x N matrix B containingat mostone
nonzeroentry perrow andpercolumn(because singlefeaturecannothave morethanonedeter-
ministic match).To accountfor featureswhich do not matchary others,we augmentB with an
extra rav and column to fornB (Figure 10).
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Figure 10: A ugmented Matc h Matrix
In (a), a “degenerate” correspondence matrix containing outliers is shown. In (b), the aug-
mented correspondence matrix treats outliers as correspondences and preserves the prop-
erty that all rows and columns contain exactly one nonzero entry.

Variousfactorssuchasambiguityof correspondencanduncertaintyof featurelocalizationin
theimageplanemake binary correspondencb;; {0, 1} difficult to obtain,evenfor accurately
known baselinedirections.The notion of proba iIisticcorrespondencwij [0, 1] is thereforea
sensiblealternatve. A new matchmatrix W canbe constructedwvith structuresimilar to that of
B, but nov each feature; can match seral featuresyj , and vice ersa. V& require only that

dwy = ywy =1 adi, j). (5)
I ]
I.e. thatthe matrix is doubly stochasticA givenweight w; T if computedcorrectly is anexpres-
sionof the probabilitythatfeaturex; matchesfeatureyj . In this newly weightedformulation,the
error to be minimized becomes

4.4 Discretization

As depictedin Figure8, our obsenationsconsistonly of 2-D point featureqrays)in eachnode;
true correspondencelletweenthem are unknavn, as are the locationsof their associate-D
points.However, any point featurecorrespondenceyhethercorrector not, canberepresentetly
aplanepassinghroughbothprojectionrays,or by the normalto this plane.The specialsubsebf
all potentialcorrespondencebatincludesall true matchesormsa pencilof planesor, in thedual
sensea setof coplanamoints(Figure9b). This suggests methodfor determiningthe direction
of motion: we can superimposeepipolar planesformed by all plausiblefeature matchesand
search the projeete space for the point of highest incidence.

This spaceis two-dimensionabndcanberepresentedsa discretizationof the surfaceof the
unit sphereThe planeformedby eachpotentialmatch,whenintersectedvith the spherecontrib-
utesa greatcircle. The point at which O(F) intersectionsoccur is the translationdirection,
approximated to the accusaof the discretization.

In practice,we have initial translationestimatedrom the acquisitionplatform and a rough
boundon the baselinedirection,so it is not necessaryo discretizethe entire sphere Insteadwe
usea Houghtransform(HT) confinedto thesolid angleon the spherecorrespondingo this bound

11



(Figurella).In orderto simplify theimplementatiorandimprove performancethediscretization
is planar;epipolarplaneghenintersecthe spaceaslinesratherthanarcs.The coneof uncertainty
inducesa bandaroundthe equatorof the sphereinsidewhich the epipolarplanenormals m;; of
candidate matches are constrained to lie.

Baseline
Uncertainty
Transform ‘
--» Space
Normal
Uncertainty

@ (b)

Figure 11: Hough T ransform and Uncer tainty
The translation direction lies somewhere in a cone of uncertainty that in turn induces an
equatorial band on which epipolar plane normals of candidate matches must lie (a). The
Hough space is a discretized planar surface corresponding to the intersection of the cone
with the unit sphere (b). Each line (in black) arises from a plausible pairing of point features;
the dark spot indicates the most likely translation direction.

Eachepipolarplaneis weightedby the approximatdik elihoodof its constituenipoint corre-
spondenceln particular the entriesof avalid (M + 1) x (N + 1) matchmatrix W weighteach
line’s contributionto theHT. Thematrixis formedasfollows. First, it is initialized to 0. Seconda
1 is placedin the matrix for eachplausiblematch(usingthe criteriaof Section4.2). Third,alis
placedin every outlier row andcolumn.Finally, the matrix is reducedo doubly stochastidorm,
so that all rows and columnssum to unity, by applicationof Sinkhorns algorithm [21, 19].
Weighting eachline by its approximatdik elihood dramaticallyimproves the coherenceof HT
peaks.

After all epipolarlineshave beendravn in theHT, a setof candidatgoeakss foundby search-
ing theHoughimageh(u, v) for relatve maxima,i.e. pointswhosevalueexceedsall othersin a
square neighborhood withvgin sizer :

h(u,v)2h(u+m,v+n) —-r<(mn)<r. (7
All such peaks are sorted by their magnitg¢ie, v) , defined as

s(u,v) = Z h(u+m,v+n) —-r<(mn)<r 8)
m, n

andthe peakwith highestmagnitudeis chosenasthe most probabledirection of motion. This
direction initializes a refinement method, described in thesextion.

45 Refinement

The Houghtransformquickly andefficiently providesa strongprior on the mostlikely direction
candidateput two problemsremain.Thefirst is accurag, whichis limited by the discreterepre-
sentatiorof thetransformspaceandthe seconds uncertaintyaboutwhich the transformreveals
little. To addresgheseproblems the selecteddirectionmustbe further refinedby a continuous-
space optimization.

12



Severalauthors(e.g.[23, 19, 13]) have proposedhe useof EM algorithmsfor optimization
with probabilistic correspondenceSuch algorithmsalternatebetweenfinding expectedmatch
Iikelihoodswij and estimatingparametergin this case,the baselinedirection d). Wells’ tech-
nigque[23] is not applicablein our context becauset utilizes an asymmetriomatchfunction (i.e.
matchesmagesto a known template).The methodsof Rangarajan[19] do not sampleappropri-
ately from the spaceof correspondencsets,insteadrelying exclusively on Sinkhorns algorithm
to provide the “correct” distribution on w;; . Dellaerts method[13] samplescorrectly but makes
thelimiting assumptionmatthenumbero{‘ 3-D featuress known andthatall featuresareviewed
in all images.

Herewe presenian EM formulationthat samplescorrectlyfrom the distribution of all corre-
spondencsetsandhandlesocclusionandoutlier featuressymmetricallyfor thetwo-cameracase.
TheM-stepconsistf estimatingd giventhecurrentweightsw; j accordingo (6). TheE-step,jn
which theweightsaredeterminedjiventhe currentdirectionestimatejs performedusingMonte
Carlosamplingratherthanan explicit analyticdistribution, thusmakingthe algorithma so-called
MCEM algorithm.

Samplingmustbe performedover the spaceof valid correspondencsets(i.e. valid B matri-
ces)ratherthanindividual correspondencebgecaus®f theinherentconstraintsnentionedn Sec-
tion 4.3. Although this spaceis combinatoriallylarge, nearly all correspondenceetshave very
low probability suggestinghatwe needsampleonly in high-likelihoodregionsof the spaceDel-
laertproposes Markov chainMonte Carlo(MCMC) sampletthatdefinesa stateasavalid binary
correspondence set. The method proceeds asvéollo
Start in ay valid state, represented by the maix
Compute the liglihood of this state; .

Randomly perturb the system to awealid stateB; | ;.
Compute the liklihood ratioB = L, , ,/L;.
If the likelihood has increased (i.2> 1), then lkeep the ne state.

* Otherwise, kep the ne state with probability .

Thisprocessepeatdor N iterations,until “steadystate”is reachedtypically N is ontheorderof
10,000to 100,000).The averageover statesB; keptateachiterationproducesavalid probabilis-
tic correspondence matriv :

N
=538 ®
i=1

In orderto reachthe correctlimiting probabilities the stateperturbationsnustsatisfydetailed
balance meaningeffectively thatevery valid stateis reachabldrom every othervalid state[6]. In
the casewhereall featuresareavailablein all imagesandthe numberof valid featureds known,
row andcolumnswapsof the currentstateB; suffice, andthe likelihoodratios 3; canbe com-
puted eficiently due to the Gaussian error model assumed in [13].

However, in the casewhereoutliersarepresentye needatechniqueor introducingnew valid
matchesanddiscardingcurrentvalid matchesaswell asanefficient meansof computingthe [3”- .
We thus proposetwo additional complementarystate perturbationson the augmentedmatch
matrix B describedn Section4.3: the split operationcorverts a valid matchinto two outliers,
while the meige operationjoins two outliersinto a valid match(Figure12). The additionof these
perturbationsallows all possiblestatesto be visited, and thus produceshe correctsteadystate
probabilities.
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Running the MCEM algorithm on each adjacentcamerapair producesa set of accurate
motiondirections representedsunit vectors.As mentionedabove, thesedirectionsspecifyonly
two of the threeDOF in cameraposition. Aggregation of thesevectorsinto a setof global con-
straints is thus necessary for determination of a consistent pose configuration.

@ (b)

Figure 12: Split and Mer ge Perturbations
Besides row and column swaps, state perturbations consist of splits (a), in which a valid
matrix entry is separated into two outliers, and merges (b), in which two outliers are joined
into a valid entry.

@) (b) (© (d)

Figure 13: MCEM Con vergence
Match matrices from selected iterations of MCEM run on synthetic data are shown above.
(a) depicts the initially-estimated match probabilities, while (b) and (c) show intermediate
results. The final deterministic matches are found at convergence and shown in (d).

5 Global Rectification

Assigningunit lengthto the translationvectorssufficesfor registrationof isolatedpairs,sincethe
inherentscaleambiguity precludesdeterminatiorof metric distancesHowever, asetof N nodes

(N > 2) requirestruerelative distancegup to globalisotropicscale)betweerall relevantcamera
pairsfor a unique,consistensolution. Thefollowing sectionsdescribea methodfor determining
these distances, and also fepeessing the resulting camera configuration in metric coordinates.
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5.1 Adjacency

First, the setof all nodesof interestmustbe examinedto obtaina setof pairsto be registeredoy
thetechniquen Section4. We usedistancedetweemodepositionsestimatedy the dataacqui-
sition platformto determinenodepairsthatareproximal enoughto view commonscenegeome-
try. We thenselectthe k nearesneighborsof eachcamera(in practicek is 3-5), resultingin a
new adjaceng graphwhosesitesarethe camergpositionsandwhosearcsrepresenthe pair-wise
translation directions to be estimated.

5.2 Formulation

Let p; bethe 3-D positionof nodei, andlet d;; = —d;; be the unit directionof motion from
nodei tonodej. Further let ajj = Ojj representhedistancealong d;; betweemodesi andj .
Givenestimateof d;; andassociated x 3 covariancematricesC;; (determinedrom the Bing-
hamdistributionsof tﬁeseestimates)we wishto determineasetof positionsp, anddistancesy; J-
consistent with thel,. .

We thus formulate a set of lineagctor equations of the form

P; = pi+0(ijdij (10)

for all adjacennodepairswhosetranslationdirectionshave beenestimatedThe above equation
simply stateghatthe positionof nodej is obtainedby startingat nodei andtraveling a distance
a;; in thedirection d;;. The covariancematrix C;; canbe usedto weightthe constraintswhile
preserving their linearity:
Ci_jl(pi—pj+0(ijdij) = 0. (11)
Thereare P suchvectorequationgonefor eachnodepair registered) producing3P scalar
equationsbut introducing P additionalunknavns ff for a total of 3N + P unknavns. From
DOF counting alone, it auld seem that a unique solution to this system requires that

3
P=3N. (12)
However, the entire node configurationcan be arbitrarily translatedand scaledwithout altering
theconstraintsTherearethus4 inherentdegreesof freedomin the systemyegardlesof the num-
ber of constraints of the form in (11).

In addition,evenif anarbitraryglobaltransformations imposedonthe systemdetermination
of the minimal setof distinct pairs neededfor a non-dgjeneratesolutionis significantly more
complicatedand dependsentirely on the topology of the adjaceng graph(i.e. which pairsare
chosenandin what configurationthey lie). A suficient conditionfor uniquesolutionis thatthe
graphis fully triangulatedihis ensureghatthe imposedisotropic scaleconstraintis propagted
throughoutthe graph.Thisis not, however, a necessargondition,whichis in generaimuchmore
difficult to characterize.

In typical real-world datasets,the topologyof the cameraconfigurationis underconstrained.
Oneway to ameliorateboth the global transformatiorambiguity and the degeneraciesn graph
topologyis to utilize the camergpositionsinitially estimatedy the acquisitionplatformasweak
constraintsThis canbeaccomplishedby appendinganadditionalsetof N linearvectorequations
of the form

e(p—aq) =0, (13)
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wherezﬁﬂris aconstantenotingtheinitial positionof nodei, ande is avery smallscalarweight
(say10 '), and a single scalar equation of the form

Zaii = Z||aj—ai||. (14)
l!J IlJ

The number of unknavns remains 3N + P, but the number of constraintsrises to
3P+ 3N + 1. Addition of the equationq13) provides constrainton singularor nearly singular
modesof the equationsystem,but leaves the remainingmodesunafected;this effectively sets
nodepositionsto their initially estimatedvaluesin regions wherethesepositionsare otherwise
indeterminateThe constraintn (14) preventstrivial zerosolutionsandalsoimposesan approxi-
mateglobalscaleaccordingo theinitial configuration.The systemcanbesolvedby ordinarylin-
ear least-squares techniques.

5.3 Metric Registration

The configurationthat resultsfrom the above formulationis expressedelative to a somevhat
arbitrary coordinateframe. In factary rigid Euclideantransformation(translation rotation,and
scale)appliedto all cameragpreseresself-consistencandthusalsoyields a valid poseconfigu-
ration. The City Projectrequiresthat camerade expressedn Earth-relatve coordinatesso that
metric reconstructior(i.e. in the correctunits andworld positions)is possible;we thuswish to
find the best rigid transformation to accomplish this task.

Assumingthattheinitial poseasestimatedy the acquisitionplatformis unbiasedthis prob-
lem amountdo anoptimal 3-D to 3-D registrationof the new configurationwith the old configu-
ration. One-to-onecorrespondencbetweenthe two setsof camerads known, andthe optimal
transformatiorcanbe found usingthe techniqueof absoluteorientation[16]. First, the new cam-
erasetis translatedso thatits centerof massis coincidentwith thatof the original set.Next, the
optimalrotationof the new setaboutits centerof massis computedandapplied.Finally, the glo-
bal isotropicscalefactorthat bestrectifiesdistancesrom the centersof massis estimatedEach
step consistsof simple algebraicoperations;the result is a consistentcameraconfiguration
expressed in wrld coordinates.

6 Results

Severalexperimentsveredesignedandrunin orderto assesghe systems performanceSynthetic
datawith controllablelevelsof variousnoisesourcesvasusedfor quantitatve testing.Qualitatve
testson a setof realhemisphericaimagescomparethe outputof this systemwith thatof the pre-
viously used semi-automated photogrammetric method.

6.1 Synthetic Data

A setof 50 syntheticnodesviewing 500 3-D featureswas generatedvith camerabaselinesof

approximatelyl0 metersNoisein initial camergoositionswasaddedwith standardieviation of 3

metersFeaturdocationerror, relative rotationerror, andnumberof outliers(in theform of spuri-

ous2-D featuresand3-D point occlusions)werevaried,andthe resultingestimateof translation
directions and scene-rekai positions were compared to the tragues.
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Several plots are shavn below. For a fixed variancein point featurelocalizationerror, pose
wasestimatedn the presencef varying numbersof outliers(Figure14a).For a fixed numberof
outliers, posewas estimatedwith varying point featurelocalizationerror (Figure 14b). Finally,
fixing boththe numberof outliersandfeatureerror, we estimatedhe camergpositionswith vary-
ing rotational pose error (Figure 14c).
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Figure 14: Results on Sim ulation
The plot in (a) was generated by varying the number of outliers present in a sample of 500
feature points per camera; the true features were perturbed by random noise with standard
deviation of 1 pixel. In (b), the feature noise standard deviation was varied, with outlier per-
centage fixed at 10%. The plot in (c) shows position error as a function of noise in estimated
rotational pose.

Qualitatively, we have found that the systemto be quite robust againstoutlier point features.
Whenrelative rotationsare accuratelyknonvn and point projectionerroris small, a 4:1 ratio of
outliersto truedatapointsonly slightly increaseshe errorin final camergpositions.Pointprojec-

tion errorstandardleviationsof roughly5 pixels (typical of City Projectdata)producedoositions
accurate to within 5cm.
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6.2 Real Data

Camerasfrom two real rotationally-rejistereddata sets were registeredusing thesetech-
niques.Thefirst set(TechSquaretonsistedof 75 nodes,which were automaticallyalignedand
comparedvith camerasegisteredoy manualfeaturecorrespondencé&electecepipolargeometry
was comparedfor several node pairs. The secondset (GreenBuilding)consistedof 30 nodes.
Therewassignificanterrorin theinitial poseestimatequp to six metersandtwenty degreesof
relatve pose misalignment), whichaw corrected by this technique.

7 Conclusions

We have describeda robustmethodfor globally-consistentranslationakegistrationof alarge set
of images.Themethodassumeternalcalibration knowledgeof rotationalpose andinitial esti-
matesof position.It is fully automatecindovercomesomelimitationsof traditionalfeaturecor-
respondencéechniquesThusfar, testinghasshavn that our methodfinds accuratetranslation
directionsbetweercamerasandproducesonsistenglobal poseconfigurationsFor realdatasets
consistingof thousandof imagesacquiredwith 5—10meterbaselinesover regions hundredsof
metersacross,this method achieves end-to-endaccurag in position to within 5 centimeters.
Becausef the Houghtransformtechniquethe systemis virtually insensitve to point featureout-
liers, thoughas onewould expect, reliability suffers drasticallyasthe errorin suppliedrelative
rotation becomes significant.

Computationgor baselineestimationrare O(M F2) in thenumberof nodesM andthenumber
of featurespernodeF . This is amelioratedoy geometricconstraintsandmatchculling. In prac-
tice, F wastypically on the order of a thousandand translationdirection estimationfor real
imagesrunningon a 250 MHz SGI O, requiredan averageof about55 secondf computation
per pair. Global rectificationinvolves solving a someavhat large linear system but sparsematrix
techniques can be used to dramatically imprperformance.

Figure 15: Node Configurations
Initial configurations for two data sets are viewed from above, with lines representing adja-
cency. A set of 81 nodes is shown in (a), and a set of 30 nodes acquired near a tall building
is shown in (b).
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Figure 16: T echSquare Epipolar Geometr y |
A building corner and close-up is shown in (a). The epipolar line corresponding to this corner
as seen from a different viewpoint is shown in (b) using automatically corrected cameras,
and compared to (c) using cameras generated by manual feature correspondence.

(@ (b) (©

Figure 17: T echSquare Epipolar Geometr y I
Window corners and close-ups shown from two different viewpoints. Ambiguities arising
from regular geometry can make manual correspondence difficult. A particular window cor-
ner is shown in the original view (a) and in the second view using cameras generated by (b)
automatic registration and (c) manual feature correspondence.
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Figure 18: GreenBuilding Epipolar Geometr y |
A building corner is shown in (a), and its epipolar line in another image as viewed by auto-
matically registered cameras (b) and the initially acquired pose (b).

P4 %
(a) (b)
Figure 19: GreenBuilding Epipolar Geometr vy Il

A distant building corner (a) and its corresponding epipolar line as viewed by automatically
registered cameras (b).
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Figure 20: GreenBuilding P ose Correction
Pose configurations for terrestrial imagery should be approximately planar. The camera con-
figuration is viewed from the side, before pose correction in (a) and after in (b). Cameras
were moved by an average of 2.86 meters.
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