MIT-LCS-TR-817

PRACTICAL BYZANTINE FAULT
TOLERANCE

Miguel Castro

01/31/2001

Practical Byzantine Fault Tolerance
Miguel Castro

January 31, 2001

(©Massachusetts Institute of Technology 2001

Thisresearch was supportedin part by DARPA under contract DABT63-95-C-005, monitored by
Army Fort Huachuca, and under contract F30602-98-1-0237 monitored by the Air Force Research
Laboratory. The author was supported by a fellowship from the Portuguese Ministry for Science
and Technology, and by a fellowship from the Calouste Gulbenkian Foundation.

Massachusetts Ingtitute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts, USA

Practical Byzantine Fault Tolerance

by
Miguel Castro

Abstract

Our growing reliance on online servicesaccessible onthe I nternet demands highly-avail able systems
that provide correct service without interruptions. Byzantine faults such as software bugs, operator
mistakes, and malicious attacks are the major cause of service interruptions. This thesis describes
a new replication algorithm, BFT, that can be used to build highly-available systems that tolerate
Byzantine faults. It shows, for the first time, how to build Byzantine-fault-tolerant systemsthat can
be used in practice to implement real services because they do not rely on unrealistic assumptions
and they perform well. BFT works in asynchronous environments like the Internet, it incorporates
mechanisms to defend against Byzantine-faulty clients, and it recovers replicas proactively. The
recovery mechanism allows the algorithm to tolerate any number of faults over the lifetime of the
system provided fewer than 1/3 of the replicasbecomefaulty within asmall window of vulnerability.
Thewindow may increase under a denial-of-service attack but the algorithm can detect and respond
to such attacks and it can also detect when the state of areplicais corrupted by an attacker.

BFT has been implemented as a generic program library with a simple interface. The BFT
library provides a complete solution to the problem of building real servicesthat tolerate Byzantine
faults. We used thelibrary toimplement thefirst Byzantine-fault-tolerant NFSfile system, BFS. The
BFT library and BFS perform well becausethelibrary incorporates several important optimizations.
The most important optimization is the use of symmetric cryptography to authenticate messages.
Public-key cryptography, which was the major bottleneck in previous systems, is used only to
exchange the symmetric keys. The performance results show that BFS performs 2% faster to 24%
slower than production implementations of the NFS protocol that are not replicated. Therefore, we
believe that the BFT library can be used to build practical systemsthat tolerate Byzantine faults.

Keywords: agorithms, analytic modelling, asynchronous systems, Byzantine faults, correct-
ness proofs, fault tolerance, high availability, integrity, performance, proactive security, replication,
and security.

Thisreport isaminor revision of the dissertation of the sametitle submitted to the Department
of Electrical Engineering and Computer Science on November 30, 2000, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in that department. The thesis was supervised
by Professor Barbara Liskov.

Acknowledgments

First, | must thank my thesis supervisor, Barbara Liskov, for her constant support and wise advice.
| feel very fortunate for having had the chance to work closely with her.

The other members of my thesis committee, Frans Kaashoek, Butler Lampson, and Nancy
Lynch suggested many important improvements to this thesis and interesting directions for future
work. | greatly appreciate their suggestions.

It has been a pleasure to be a graduate student in the Programming Methodology Group. | want
to thank all the group members: Atul Adya, Sarah Ahmed, Sameer Ajmani, Ron Bodkin, Philip
Bogle, Chandrasekhar Boyapati, Dorothy Curtis, Sanjay Ghemawat, Robert Gruber, Kyle Jamieson,
Paul Jonhson, Umesh Maheshwari, Andrew Myers, Tony Ng, Rodrigo Rodrigues, Liuba Shrira,
Zigiang Tang, Zheng Yang, Yan Zhang, and Quinton Zondervan. Andrew and Atul deserve specia
thanks for the many stimulating discussions we had. | also want to thank Rodrigo for reading my
formal proof, and for his help in handling the details of the thesis submission process.

| am grateful to my parents for their support over the years. My mother was always willing to
drop everything and cross the ocean to help us, and my father is largely responsible for my interest
in computers and programming.

Aboveall, | want to thank my wife, Inés, and my children, Madalena, and Gongalo. They made
my lifeat MIT great. | felt so miserable without them during my last two monthsat MIT that | had
to finish my thesisand |leave.

Contents

1 Introduction
1.1 Contributions.
1.2 ThesisOutline

2 BFT-PK: An Algorithm With Signatures
21 SystemModel
22 SewviceProperties L e
23 TheAlgorithm o
2.3.1 QuorumsandCertificates
232 TheClient
233 Norma-CaseOperation
234 GarbageCollection L
235 ViewChanges e
24 Formal Model
241 1/OAutomata
242 SystemModd
243 ModifiedLinearizability oL
2.4.4 Algorithm Specification

3 BFT: An Algorithm Without Signatures
3.1 WhyitisHardto Replace Signaturesby MACs
3.2 TheNewAlgorithm
321 Authenticators
322 Norma-CaseOperation
323 GabageCollection
324 ViewChanges
325 View ChangesWithBoundedSpace

4 BFT-PR: BFT With Proactive Recovery
41 OVEIVIeW
4.2 Additional ASSUMpPLIONS
4.3 Madified Algorithm
431 KeyExchanges
432 ReCOVEIY
433 Improved ServiceProperties Lo

5 Implementation Techniques
51 Optimizations e e

511 DigestReplies e
51.2 TentativeExecution Lo
513 Read-onlyOperations
514 RequestBatching
515 Separate Request Transmission
52 MessageRetransmission
53 CheckpointManagement. Lo
531 DaaStructures
532 StateTransfer
533 StateChecking.
54 Non-Determinism L
55 DefensesAgainst Denid-Of-ServiceAttacks

TheBFT Library

6.1 Implementation
6.2 Interface
6.3 BFS: A Byzantine-Fault-tolerant FileSystem

Performance M odel

7.1 ComponentModels
7.1.1 DigestComputation
712 MACComputation
7.1.3 Communication

7.2 Protocol Constants

7.3 Latency
731 Read-OnlyOperations,
7.3.2 Read-WriteOperations

7.4 Throughput
741 Read-OnlyRequests e
742 Read-WriteRequests

7.5 DISCUSSION e

Performance Evaluation

81 Experimental Setup

8.2 PeformanceModel Parameters
821 DigestComputation
822 MACComputation
8.2.3 Communication

83 Nomal Case e
831 Latency
83.2 Throughput
8.3.3 Impactof Optimizations
8.34 ConfigurationsWith MoreReplicas
8.3.5 Senditivity to Variationsin Model Parameters

84 CheckpointManagement.
84.1 CheckpointCreation,
84.2 StateTransfer

85 ViewChanges e

10

86 BFS . . . e
86.1 Experimental Setup
8.6.2 PerformanceWithoutRecovery
8.6.3 PeformanceWithRecovery

87 SUMMAY e e e
8.7.1 Micro-Benchmarks
872 BFS e

Related Work

9.1 ReplicationWithBenignFaults
9.2 ReplicationWithByzantineFaults
9.3 OtherRelatedWork

Conclusions
101 Summary e e e e e
10.2 FutureWork

Formal Safety Proof for BFT-PK
A.1 Algorithm Without Garbage Collection
A.2 Algorithm With Garbage Collection

Chapter 1

| ntroduction

We are increasingly dependent on services provided by computer systems and our vulnerability to
computer failuresis growing asaresult. We would like these systemsto be highly-available: they
should work correctly and they should provide service without interruptions.

There is a large body of research on replication techniques to implement highly-available
systems. Theideaissimple: instead of using asingle server toimplement aservice, thesetechniques
replicate the server and use an algorithm to coordinate the replicas. The algorithm provides the
abstraction of a single service to the clients but the replicated server continues to provide correct
service even when afraction of thereplicasfail. Therefore, the system is highly available provided
thereplicas are not likely to fail all at the sametime.

The problem is that research on replication has focused on techniques that tolerate benign
faults (e.g., [AD76, Gif79, OL88, Lam89, LGG"91]): these techniques assume components fail
by stopping or by omitting some steps and may not provide correct service if a single faulty
component violates this assumption. Unfortunately, this assumption is no longer valid because
malicious attacks, operator mistakes, and software errors can cause faulty nodesto exhibit arbitrary
behavior and they are increasingly common causes of failure. The growing reliance of industry
and government on computer systems provides the motif for malicious attacks and the increased
connectivity to the Internet exposesthese systemsto more attacks. Operator mistakes are also cited
asoneof themain causesof failure[MLOQ]. Inaddition, the number of software errorsisincreasing
dueto the growth in size and complexity of software.

Techniques that tolerate Byzantine faults [PSL80, LSP82] provide a potential solution to this
problem because they make no assumptions about the behavior of faulty components. There
is a significant body of work on agreement and replication techniques that tolerate Byzantine
faults. However, most earlier work (e.g., [CR92, Rei96, MR96a, MR96b, GM 98, KMM S98]) either
concerns techniques designed to demonstrate theoretical feasibility that are too inefficient to be
used in practice, or relies on unrealistic assumptions that can be invalidated easily by an attacker.
For example, it is dangerousto rely on synchrony for correctness, i.e., to rely on known bounds on

11

message delays and process speeds. An attacker may compromise the correctness of a service by
delaying non-faulty nodes or the communication between them until they are tagged as faulty and
excluded from the replica group. Such a denial-of-service attack is generally easier than gaining
control over anon-faulty node.

This thesis describes a new algorithm and implementation techniques to build highly-available
systems that tolerate Byzantine faults. These systems can be used in practice because they perform
well and do not rely on unrealistic assumptions. The next section describes our contributions in
more detail.

1.1 Contributions

ThisthesispresentsBFT, anew algorithm for state machinereplication [Lam78, Sch90] that tolerates
Byzantine faults. BFT offers both liveness and safety provided at most L"T‘lj out of atotal of n
replicas are faulty. This means that clients eventually receive replies to their requests and those
replies are correct according to linearizability [HW87, CL99a]. We used formal methods to specify
the algorithm and prove its safety. Formal reasoning is an important step towards correctness
because algorithms that tol erate Byzantine faults are subtle.

BFT isthefirst Byzantine-fault-tolerant, state-machinereplication algorithm that works correctly
in asynchronous systems like the Internet: it doesnot rely on any synchrony assumption to provide
safety. In particular, it never returns bad replies even in the presence of denial-of-service attacks.
Additionally, it guarantees liveness provided message delays are bounded eventually. The service
may be unableto return replies when a denial of service attack is active but clients are guaranteed
to receive replies when the attack ends.

Safety is provided regardless of how many faulty clients are using the service (even if they
collude with faulty replicas): all operations performed by faulty clients are observed in a consistent
way by non-faulty clients. Since BFT is a state-machine replication algorithm, it has the ability to
replicate services with complex operations. Thisis an important defense against Byzantine-faulty
clients: operations can be designed to preserve invariants on the service state, to offer narrow
interfaces, and to perform access control. The safety property ensures faulty clients are unable
to break these invariants or bypass access controls. Algorithms that restrict service operations to
simple reads and blind writes (e.g., [MR98b]) are more vulnerable to Byzantine-faulty clients; they
rely ontheclientsto order and group these simple operationscorrectly in order to enforceinvariants.

BFT isalsothefirst Byzantine-fault-tolerant replication algorithm to recover replicas proactively
in an asynchronous system; replicas are recovered periodically even if thereis no reason to suspect
that they are faulty. This allows the replicated system to tolerate any number of faults over the
lifetime of the system provided fewer than 1/3 of the replicas become faulty within a window of
vulnerability. The best that could be guaranteed previously was correct behavior if fewer than 1/3

12

of the replicas failed during the lifetime of a system. Limiting the number of failures that can
occur in afinite window is a synchrony assumption but such an assumption is unavoidable: since
Byzantine-faulty replicas can discard the service state, we must bound the number of failures that
can occur before recovery completes. To tolerate lessthan 1/3 faults over thelifetime of the system,
we require no synchrony assumptionsfor safety.

The window of vulnerability can be made very small (e.g., a few minutes) under normal
conditions with a low impact on performance. Our agorithm provides detection of denial-of-
service attacks aimed at increasing the window; replicas can time how long a recovery takes and
alert their administrator if it exceeds some pre-established bound. Therefore, integrity can be
preserved even when there is a denial-of-service attack. Additionally, the algorithm detects when
the state of areplicais corrupted by an attacker.

Unlike prior research in Byzantinefault tolerancein asynchronous systems, thisthesis describes
a complete solution to the problem of building real services that tolerate Byzantine faults. For
example, it describes efficient techniques to garbage collect information, to transfer state to bring
replicas up-to-date, to retransmit messages, and to handl e services with non-deterministic behavior.

Additionally, BFT incorporates a number of important optimizations that allow the algorithm
to perform well so that it can be used in practice. The most important optimization is the use of
symmetric cryptography to authenticate messages. Public-key cryptography, which was cited as
the major latency [Rei94] and throughput [MR96a] bottleneck in previous systems, is used only
to exchange the symmetric keys. Other optimizations reduce the communication overhead: the
algorithm uses only one message round trip to execute read-only operations and two to execute
read-write operations, and it uses batching under load to amortize the protocol overhead for read-
write operations over many requests. The agorithm aso uses optimizations to reduce protocol
overhead as the operation argument and return sizesincrease.

BFT has been implemented as a generic program library with a simple interface. The BFT
library can be used to provide Byzantine-fault-tolerant versions of different services. The thesis
describes the BFT library and explains how it was used to implement a real service: the first
Byzantine-fault-tolerant distributed file system, BFS, which supports the NFS protocol.

Thethesis presents a thorough performance analysis of the BFT library and BFS. Thisanalysis
includes a detailed analytic performance model. The experimental results show that BFS performs
2% faster to 24% sl ower than production implementati ons of the NFS protacol that arenot replicated.
These results support our claim that the BFT library can be used to implement practical Byzantine-
fault-tolerant systems.

There is one problem that deserves further attention: the BFT library (or any other replication
technique) provides little benefit when there is a strong positive correlation between the failure
probabilities of the different replicas. Our library is effective at masking several important types
of faults, e.g., it can mask non-deterministic software errors and faults due to resource leaks.

13

Additionally, it can mask other types of faultsif some simple steps are taken to increase diversity in
the execution environment. For example, the library can mask administrator attacks or mistakes if
replicas are administered by different people.

However, it is important to develop affordable and effective techniques to further reduce the
probability of 1/3 or more faults within the same window of vulnerability. In the future, we plan to
explore existing independent implementations of important services like databases or file systems
to mask additional types of faults. Chapter 10 discussesthese issuesin more detail.

1.2 ThesisOutline

Therest of thethesisisorganized asfollows. Chapter 2 describesBFT-PK, whichisaversion of BFT
that usespublic-key signaturesto authenticate all messages. We start by describing BFT-PK because
itissimpler than BFT but capturesthe key ideas. This chapter presents aformalization of BFT-PK
and Appendix A presentsaformal safety proof. Chapter 3 describesBFT: it explains how to modify
BFT-PK to use symmetric cryptography to authenticate all messages. The proactive recovery
mechanism is presented in Chapter 4. Chapter 5 describes optimizations and implementation
techniques that are important to implement a complete, practical solution for replication in the
presence of Byzantine faults. The implementation of the BFT library and BFS is presented in
Chapter 6. The analytic performance model is described in Chapter 7 and Chapter 8 presents
a detailed performance analysis for the BFT library and BFS. Chapter 9 discusses related work.
Finally, our conclusions and some directions for future work appear on Chapter 10.

14

Chapter 2

BFT-PK: An Algorithm With Signatures

Thischapter describesBFT-PK, whichisan algorithm that uses public-key signaturesto authenticate
all messages and does not support recovery. We start by explaining BFT-PK because it is simple
and it captures the key ideas behind our more complex algorithms. The next chapters explain how
to eliminate public-key signatures and perform recovery, and Chapter 5 describes several important
optimizations.

We begin by describing our system model and assumptions. Section 2.2 describes the problem
solved by the algorithm and states correctness conditions. The algorithm is described informally
in Section 2.3 and Section 2.4 presents a formalization of the system model, the problem, and the
algorithm. BFT-PK wasfirst presented in [CL99c] and the formalization appeared in [CL994].

2.1 System Mod€

Section 2.4.2 presents a formal definition of the system model. This section describes the model
informally. BFT-PK is a form of state machine replication [Lam78, Sch90]: it can be used to
replicate any service that can be modeled as a deterministic state machine. These services can
have operationsthat perform arbitrary computations provided they are deterministic: the result and
new state produced when an operation is executed must be completely determined by the current
state and the operation arguments. We can handle some common forms of non-determinism as
explained in Section 5.4. The idea is to modify the services to remove computations that make
non-deterministic choices and to pass the results of those choices as operation arguments.

The algorithm does not require al replicas to run the same service code. It is sufficient for
them to run implementations with the same observable behavior, that is, implementations that
produce the same sequence of results for any sequence of operations they execute. A consequence
of this observation is that service implementations are allowed to have non-deterministic behavior
provided it is not observable. The ability to run different implementations or implementations with
non-deterministic behavior is important to reduce the probability of simultaneous failures due to
software errors.

15

The replicated service is implemented by n replicas. Clients issue requests to the replicated
service to invoke operations and wait for replies. Clients and replicas are correct if they follow
the algorithm in Section 2.3. The clients and replicas run in different nodes in an asynchronous
distributed system. These nodes are connected by an unreliable network. The network may fail to
deliver messages, delay them, duplicate them, or deliver them out of order.

BFT-PK usesdigital signatures. Any non-faulty client or replica, z, can authenticate messages
it sends on the multicast channel by signing them. We denote a message m signed by z as (m),, .
The algorithm also uses a cryptographic hash function D to compute message digests.

We use aByzantine failure moddl, i.e., faulty nodes may behave arbitrarily. We alow for avery
strong adversary that can coordinate faulty nodes, delay communication, or delay correct nodes
in order to cause the most damage to the replicated service. But we assume that the adversary is
computationally bound so that (with very high probability) it is unable to subvert the cryptographic
techniques mentioned above.

We assume the signature scheme is non-existentially forgeable even with an adaptive chosen
message attack [GMR88]: if anode z is not faulty and it did not sign message m, the adversary is
unable to generate a valid signature (m),, for any m. We also assume that the cryptographic hash
functioniscollision resistant [Dam89]: the adversary is unableto find two distinct messagesm and
m' such that D(m) = D(m'). These assumptions are probabilistic but they are believed to hold
with high probability for the cryptographic primitives we use [BR96, Riv92]. Therefore, we will
assume that they hold with probahility onein the rest of the text.

If we were only concerned with non-malicious faults (e.g., software errors), it would be pos-
sible to relax the assumptions about the cryptographic primitives and use weaker, more efficient
constructions.

2.2 ServiceProperties

BFT-PK providesboth safety and liveness properties [Lyn96] assuming no morethan L"T*lj replicas
arefaulty over the lifetime of the system. The safety property is aform of linearizability [HW87]:
the replicated service behaveslike acentralized implementation that executes operationsatomically
one at atime. We modified the original definition of linearizability because it does not work with
Byzantine-faulty clients. Section 2.4.3 presents our modified definition formally.

In afail-stop [SS83] model, it is possibleto provide safety even when all replicasfail. But, ina
Byzantine failure model, safety requires abound on the number of faulty replicas because they can
behave arbitrarily (for example, they can destroy their state).

The resilience of BFT-PK isoptimal: 3f + 1 is the minimum number of replicas that allow
an asynchronous system to provide the safety and liveness properties when up to f replicas are
faulty. To understand the bound on the number of faulty replicas, consider a replicated service that

16

implements a mutable variable with read and write operations. To provide liveness, the replicated
service may have to return areply to arequest before the request is received by all replicas. Since
f replicas might be faulty and not responding, the service may have to return areply before the
request is received by morethann — f replicas. Therefore, the service may reply to awrite request
after the new value is written only to aset W with n — f replicas. If later a client issues a read
request, it may receive areply based on the state of aset R withn — f replicas. R and W may have
only n — 2f replicasin common. Additionally, it is possiblethat the f replicasthat did not respond
are not faulty and, therefore, f of those that responded might be faulty. Asaresult, the intersection
between R and W may contain only n — 3f non-faulty replicas. It isimpossible to ensure that
the read returns the correct value unless R and W have at least one non-faulty replicain common;
thereforen > 3f.

Safety isprovided regardlessof how many faulty clientsareusing the service (evenif they collude
with faulty replicas): all operations performed by faulty clients are observed in a consistent way by
non-faulty clients. In particular, if the service operations are designed to preserve some invariants
onthe service state, faulty clients cannot break thoseinvariants. Thisisanimportant defense against
Byzantine-faulty clientsthat is enabled by BFT-PK’s ability to implement an arbitrary abstract data
type [LZ75] with complex operations.

Algorithms that restrict service operations to simple reads and blind writes (e.g., [MR98h])
are more vulnerable to Byzantine-faulty clients; they rely on the clients to order and group these
simple operations correctly in order to enforce invariants. For example, creating a file requires
updates to meta-datainformation. In BFT-PK, this operation can be implemented to enforce meta-
data invariants such as ensuring the file is assigned a new inode. In algorithms that restrict the
complexity of service operations, a faulty client will be able to write meta-data information and
violate important invariants, e.g., it could assign the inode of another file to the newly created file.

The modified linearizability property may be insufficient to guard against faulty clients, e.g., in
afile system afaulty client can write garbage data to some shared file. However, we further limit
the amount of damage a faulty client can do by providing access control: we authenticate clients
and deny accessif the client issuing arequest does not have the right to invoke the operation. Also,
services may provide operations to change the access permissions for aclient. Since the algorithm
ensures that the effects of access revocation operations are observed consistently by all clients, this
provides a powerful mechanism to recover from attacks by faulty clients.

BFT-PK does not rely on synchrony to provide safety. Therefore, it must rely on synchrony to
provide liveness; otherwise it could be used to implement consensus in an asynchronous system,
which is not possible [FLP85]. We guarantee liveness, i.e., clients eventually receive replies to
their requests, provided at most L"T‘lj replicas are faulty and delay(¢) does not grow faster than ¢
indefinitely. Here, delay(t) is the time between the moment ¢ when a message is sent for the first
time and the moment whenit isreceived by its destination (assuming the sender keepsretransmitting

17

the message until it is received). Thisis a rather weak synchrony assumption that is likely to be
truein any real system provided network faults are eventually repaired and denial -of -service attacks
eventually stop, yet it enables usto circumvent the impossibility result in [FLP85].

There are randomized algorithmsto solve consensuswith Byzantinefaultsthat do not rely onany
synchrony assumption but provide probabilistic liveness guarantees, e.g.,[BT85, CR92, CKS0(Q].
The algorithm in [BT85] assumes there is some round in which messages from correct replicas
are delivered before the ones from faulty replicas; this is less likely to be true in practice than
our synchrony assumption. The algorithms in [CR92, CKS00] do not rely on this assumption
but, like BFT-PK, they are not going to be able to make progress in the presence of a network
failure or denial-of-service attack that prevents communication among a majority of the replicas.
Furthermore, they rely on expensive cryptography whereas we explain how to modify BFT-PK to
use only inexpensive symmetric cryptography in Chapter 4.

Our agorithms do not address the problem of fault-tolerant privacy: afaulty replica may leak
information to an attacker. It isnot feasibleto offer fault-tolerant privacy in the general case because
service operations may perform arbitrary computations using their arguments and the service state;
replicas need thisinformation in the clear to execute such operations efficiently. Itispossibleto use
secret sharing schemes [Shar9] to obtain privacy even in the presence of athreshold of malicious
replicas [HT88] for the arguments and portions of the state that are opague to the service operations.
We plan to investigate these techniquesin the future.

2.3 TheAlgorithm

Our agorithm builds on previous work on state machine replication [Lam78, Sch90]. The service
is modeled as a state machine that is replicated across different nodesin a distributed system. Each
replica maintains the service state and implements the service operations. We denote the set of
replicas by R and identify each replica using an integer in {0, ...,|R| — 1}. For simplicity, we
assume |R| = 3f + 1 where f is the maximum number of replicas that may be faulty; although
there could be more than 3f + 1 replicas, the additional replicas degrade performance (since more
and bigger messages are being exchanged) without providing improved resilience.

BFT-PK works roughly as follows. Clients send requests to execute operations to the replicas
and all non-faulty replicas execute the same operations in the same order. Since replicas are
deterministic and start in the same state, all non-faulty replicas send replies with identical results
for each operation. The client waits for f + 1 replies from different replicas with the same result.
Since at least one of these replicasis not faulty, thisisthe correct result of the operation.

The hard problem in state machine replication is ensuring non-faulty replicas execute the
same requests in the same order. Like Viewstamped Replication [OL88] and Paxos [Lam89], our
algorithm usesacombination of primary-backup [AD76] and quorumreplication [Gif79] techniques

18

to order requests. But it tolerates Byzantine faults whereas Paxosand Viewstamped replication only
tolerate benign faults.

In a primary-backup mechanism, replicas move through a succession of configurations called
views. In aview one replicaisthe primary and the others are backups. We choose the primary of a
view to bereplicap suchthat p = v mod |R|, where v is the view number and views are numbered
consecutively. Thisisimportant with Byzantine faults to ensure that the primary of aview is not
faulty for morethan f consecutive views. The mechanism used to select the new primary in Paxos
and Viewstamped replication does not have this property.

The primary picks the ordering for execution of operations requested by clients. It doesthis by
assigning a sequence number to each request and sending this assignment to the backups. But the
primary may be faulty: it may assign the same sequence number to different requests, it may stop
assigning sequence numbers, or it may leave gaps between request sequence numbers. Therefore,
the backups check the sequence numbers assigned by the primary and trigger view changesto select
anew primary when it appears that the current one has failed.

Theremainder of thissection describesasimplified version of thea gorithminformally. We omit
details related to message retransmissions and some important optimizations. These are explained
in Chapter 5. We present aformal specification of the algorithm in Section 2.4.4.

2.3.1 Quorumsand Certificates

Toorder requestscorrectly despitefailures, werely on quorums[Gif79]. Wecould useany Byzantine
dissemination quorum system construction [MR97] but currently our quorums are just sets with at
least 2f + 1replicas. Sincethereare 3f + 1 replicas, quorums have two important properties:

e Intersection property: any two quorums have at least one correct replicain common.
e Availability property: thereis alwaysaquorum available with no faulty replicas.

These properties enable the use of quorums as areliable memory for protocol information. The
information is written to quorums and replicas collect quorum certificates, which are sets with one
message from each element in a quorum saying that it stored the information. We also use weak
certificates, which are setswith at least f + 1 messages from different replicas. Weak certificates
provethat at least one correct replica stored the information. Every step in the protocol isjustified
by a certificate.

2.3.2 TheClient

A client ¢ requests the execution of state machine operation o by sending a (REQUEST, o, ¢, ¢),
message to the primary. Timestamp ¢ is used to ensure exactly-once semantics for the execution of
client requests. Timestampsfor ¢'s requests are totally ordered such that |ater requests have higher

19

timestamps than earlier ones. For example, the timestamp could be the value of the client’s local
clock when the request is issued to ensure ordering even across client reboots.

Each reply message sent by the replicasto the client includes the current view number, allowing
the client to track the view and hence the current primary. A client sends a request to what it
believesis the current primary using a point-to-point message. The primary atomically multicasts
the request to all the backups using the protocol described in the next section.

A replica sends the reply to the request directly to the client. The reply has the form
(REPLY,v,t,¢c,1,7), Where v is the current view number, ¢ is the timestamp of the correspond-
ing request, 7 isthe replica number, and r is the result of executing the requested operation.

The client waits for a weak certificate with f + 1 replies with valid signatures from different
replicas, and with the same ¢ and r, before accepting the result . Since at most f replicas can be
faulty, this ensuresthat the result isvalid. We call this certificate the reply certificate.

If the client does not receive a reply certificate soon enough, it broadcasts the request to al
replicas. If the request has already been processed, the replicas simply re-send the reply; replicas
remember the last reply messagethey sent to each client. Otherwise, if thereplicaisnot the primary,
it relaysthe request to the primary. If the primary does not multicast the request to the group, it will
eventually be suspected to be faulty by enough replicas to cause aview change.

We assume that the client waits for one request to complete before sending the next one but it
is not hard to change the protocol to allow a client to make asynchronous requests, yet preserve
ordering constraints on them.

2.3.3 Normal-Case Operation

We use a three-phase protocol to atomically multicast requests to the replicas. The three phases
are pre-prepare, prepare, and commit. The pre-prepare and prepare phases are used to totally order
reguests sent in the same view even when the primary, which proposes the ordering of requests,
is faulty. The prepare and commit phases are used to ensure that requests that commit are totally
ordered across views. Figure 2-1 shows the operation of the algorithm in the normal case of no
primary faults. Replica O isthe primary and replica 3 is faulty.

The state of each replica includes the state of the service, a message log containing messages
the replica has accepted or sent, and an integer denoting the replica’s current view. We describe
how to truncate the log in Section 2.3.4. The state can be kept in volatile memory; it does not need
to be stable.

When the primary p receives a request m from a client, it assigns a sequence number n to
m. Then it multicasts a pre-prepare message with the assignment to the backups and inserts this
messagein itslog. The message hasthe form (PRE-PREPARE, v, n, m),,,, Where v indicates the view
in which the message is being sent.

Like pre-prepares, the prepare and commit messages sent in the other phases also contain n

20

request gpre—preparé prepareé commit reply

replica O ; //
replica 1 /
replica 2

replica 3 X

Figure 2-1: Normal Case Operation

and v. A replica only accepts one of these messages provided it is in view v; it can verify the
authenticity of the message; and n is between a low water mark, h, and a high water mark, H.
The last condition is necessary to enable garbage collection and to prevent a faulty primary from
exhausting the space of sequence numbers by selecting avery large one. We discuss how H and h
advancein Section 2.3.4.

A backup i accepts the pre-prepare message provided (in addition to the conditions above) it
has not accepted a pre-prepare for view v and sequence number n containing a different request.
If ¢ accepts the pre-prepare, it enters the prepare phase by multicasting a (PREPARE, v, n, d, %) o,
messagewith m’sdigest d to all other replicas; in addition, it adds both the pre-prepare and prepare
messagestoitslog. Otherwise, it doesnothing. The prepare message signalsthat the backup agreed
to assign sequence number n to m in view v. We say that arequest is pre-prepared at a particular
replicaif the replica sent a pre-prepare or prepare message for the request.

Then, each replicacollectsmessagesuntil it hasaquorum certificate with the pre-prepareand 2 f
matching prepare messages for sequence number n, view v, and request m. We call this certificate
the prepared certificate and we say that the replica prepared the request. After this point, replicas
agree on an order for requests in the same view. The protocol guarantees that it is not possible to
obtain prepared certificates for the same view and sequence number and different requests.

It is interesting to reason why this is true because it illustrates one use of quorum certificates.
Assumethat it were fal se and there existed two distinct requests m and m/' with prepared certificates
for the same view v and sequence number n. Then, the quorumsfor these certificateswould have at
least one non-faulty replicain common. This replicawould have sent prepare messages agreeing to
assign the same sequence number to both m and m'’ in the same view. Therefore, m and m' would
not be distinct, which contradicts our assumption.

Thisis not sufficient to ensure atotal order for requests across view changes however. Replicas
may collect prepared certificates in different views with the same sequence number and different
requests. The following example illustrates the problem. A replica collects a prepared certificate

21

in view v for m with sequence number n. The primary for v is faulty and there is a view change.
The new primary may not have the prepared certificate. It may even have accepted a pre-prepare
message in v for a distinct request with the same sequence number. The new primary may try to
prevent conflicting sequence number assignments by reading ordering information from a quorum.
It is guaranteed to obtain one reply from a correct replica that assigned n to m in v but it may
also receive conflicting replies or replies from replicas that never assigned sequence number n.
Unfortunately, there is no way to ensureit will choose the correct one.

Thecommit phase solvesthis problemasfollows. Eachreplicai multicasts (COMMIT, v, n, d, @),
saying it has the prepared certificate and adds this message to itslog. Then each replica collects
messages until it has a quorum certificate with 2f + 1 commit messages for the same sequence
number n and digest d from different replicas (including itself). We call this certificate the com-
mitted certificate and say that the request is committed by the replicawhen it has both the prepared
and committed certificates.

After the request is committed, the protocol guaranteesthat the request has been prepared by a
guorum. New primaries ensureinformation about committed requestsis propagated to new viewsas
follows: they read prepared certificates from aquorum and sel ect the sequence number assignments
in the certificates for the latest views. Since prepared certificates for the same view never conflict
and cannot be forged, this ensures replicas agree on sequence numbers assigned to requests that
committed across views.

Each replica: executesthe operation requested by the client whenm iscommitted with sequence
number n and the replica has executed all requests with lower sequence numbers. This ensures
that all non-faulty replicas execute requests in the same order as required to provide safety. After
executing the requested operation, replicas send a reply to the client. Replicas discard requests
whose timestamp is lower than the timestamp in the last reply they sent to the client to guarantee
exactly-once semantics.

We do nat rely on ordered message delivery, and thereforeiit is possible for areplicato commit
requests out of order. This does not matter since it keeps the pre-prepare, prepare, and commit
messages |ogged until the corresponding request can be executed.

2.3.4 Garbage Collection

This section discusses the garbage collection mechanism that prevents message |ogs from growing
without bound. Replicas must discard information about requests that have already been executed
from their logs. But areplica cannot simply discard messages when it executes the corresponding
requests because it could discard a prepared certificate that will later be necessary to ensure safety.
Instead, the replica must first obtain a proof that its state is correct. Then, it can discard messages
corresponding to requests whose execution is reflected in the state.

Generating these proofs after executing every operation would be expensive. Instead, they are

22

generated periodically, when arequest with a sequence number divisible by the checkpoint period,
K, isexecuted. Wewill refer to the states produced by the execution of these requests as checkpoints
and we will say that a checkpoint with a proof is a stable checkpoint.

When replica: produces a checkpoint, it multicasts a (CHECKPOINT, v, n, d, i), Mmessage to the
other replicas, where n is the sequence number of the last request whose execution is reflected in
the state and d is the digest of the state. A replica maintains several logical copies of the service
state: the last stable checkpoint, zero or more checkpointsthat are not stable, and the current state.
Thisis necessary to ensure that the replica has both the state and the matching proof for its stable
checkpoint. Section 5.3 describes how we manage checkpoints and transfer state between replicas
efficiently.

Each replica collects messages until it has aweak certificate with f + 1 checkpoint messages
(including its own) signed by different replicas with the same sequence number n and digest d.
This certificate is the proof of correctness for the checkpoint: it proves that at least one correct
replica obtained a checkpoint with sequence number . and digest d. We call this certificate the
stable certificate. At this point, the checkpoint with sequence number n is stable and the replica
discards all entries in its log with sequence numbers less than or equal to n; it also discards all
earlier checkpoints.

The checkpoint protocol is used to advance the low and high water marks (which limit what
messages will be added to the log). The low-water mark h is equal to the sequence number of the
last stable checkpoint and the high water mark is H = h+ L, where L isthelog size. Thelogsizeis
the maximum number of consecutive sequence numbersfor which the replicawill log information.
It is obtained by multiplying K by a small constant factor (e.g., 2) that is big enough so that it is
unlikely for replicasto stall waiting for a checkpoint to become stable.

2.3.5 View Changes

The view change protocol provides liveness by allowing the system to make progress when the
current primary fails. The protocol must also preserve safety: it must ensurethat non-faulty replicas
agree on the sequence numbers of committed requests across views.

View changes are triggered by timeouts that prevent backups from waiting indefinitely for
regquests to execute. A backup is waiting for a request if it received a valid request and has not
executed it. A backup starts atimer when it receives arequest and the timer is not already running.
It stops the timer when it is no longer waiting to execute the request, but restartsit if at that point it
iswaiting to execute some other request.

If the timer of backup i expiresin view v, the backup starts a view change to move the system
to view v + 1. It stops accepting messages (other than checkpoint, view-change, and new-view
messages) and multicasts a (VIEW-CHANGE, v + 1,n,s,C, P,),, messageto al replicas. Heren
is the sequence number of the last stable checkpoint s known to i, C is the stable certificate for

23

that checkpoint, and P is a set with a prepared certificate for each request that prepared at ¢ with a
seguence number greater than n. Figure 2-2 depicts an instance of the view change protocol.

view—change : new-view

Replica 0 = primary v /V/"
Replica 1= primary v+1 M’

Replica 3 B

2

Figure 2-2: View Change Protocol

The new primary p for view v + 1 collects a quorum certificate with 2f + 1 valid view-change
messages for view v + 1 signed by different replicas (possibly including its own message). We
call this certificate the new-view certificate. It is guaranteed to contain messages with prepared
certificates for all requests that committed in previous views and also for some requests that only
prepared. The new primary uses thisinformation to compute a set of pre-prepare messagesto send
inv + 1. Thisensuresthat sequence numbers assigned to committed requestsin previous views do
not get reassigned to a different requestin v + 1.

After obtaining anew-view certificate, p multicastsa (NEW-VIEW, v +1,V, O,)., messageto
all other replicas. Here V isthe new-view certificate, and O U N isthe set of pre-prepare messages
that propagate sequence number assignments from previous views. O and N are computed as
follows:

1. The primary determines the sequence number h of the latest stable checkpoint in V and the

highest sequence number H in aprepared certificate in amessagein V.

2. The primary creates a new pre-prepare message for view v + 1 for each sequence number n
suchthat h < n < H. There are two cases. (1) thereis a prepared certificate in a message
in ¥V with sequence number n, or (2) there is no prepared certificate. In the first case, the
primary adds a new message (PRE-PREPARE, v + 1,n,m)4, 10 O, where m istherequestin a
prepared certificate with sequence number . and with the highest view number in a message
in}. Inthe second case, it adds anew pre-prepare message (PRE-PREPARE, v + 1, n, null) ., to
N. Here, null isthe digest of a special null request; anull request goes through the protocol
like other requests, but its execution is ano-op. (Paxos[Lam89] used a similar technique to
fill in gaps.)

Next the primary appendsthe messagesin O and NV toitslog. If h is greater than the sequence
number of its latest stable checkpoint, the primary a so adds the stable certificate for the checkpoint
with sequence number h toitslog and discardsinformation from thelog asdiscussedin Section 2.3.4.
If h is greater than the primary’s current state, it also updates its current state to be equal to the

24

checkpoint with sequence number k. Then it enters view v + 1. at this point it is able to accept
messages for view v + 1.

A backup acceptsanew-view messagefor view v+ 1if itissigned properly, if it containsavalid
new-view certificatefor view v + 1, and if the sets © and A/ are correct: it verifiesthe correctness of
these sets by performing acomputation similar to the one used by the primary to createthem. These
checks prevent backups from accepting sequence number assignments that conflict with requests
that committed in previousviews. Then the backup addsthe new information to itslog as described
for the primary, multicasts a prepare for each messagein O U N to al the other replicas, addsthese
preparesto itslog, and entersview v + 1.

Thereafter, the protocol proceeds as described in Section 2.3.3. Replicas redo the protocol
for messages between h and H but they avoid re-executing client requests by using their stored
information about the last reply sent to each client.

Liveness

To provide liveness, replicas must moveto anew view if they are unable to executearequest. But it
isimportant to maximize the period of time when at least 2f + 1 non-faulty replicas are in the same
view, and to ensure that this period of time increases exponentially until some operation executes.
We achieve these goals by three means.

First, to avoid starting aview change too soon, areplicathat multicasts a view-change message
for view v + 1 waits for 2f + 1 view-change messages for view v + 1 before starting its timer.
Then, it starts its timer to expire after sometime T'. If the timer expires before it receives a valid
new-view messagefor v + 1 or before it executesarequest in the new view that it had not executed
previoudly, it starts the view change for view v + 2 but this time it will wait 27" before starting a
view change for view v + 3.

Second, if areplicareceivesaset of f + 1 valid view-change messages from other replicas for
views greater than its current view, it sends a view-change message for the smallest view in the set,
evenif itstimer has not expired; this preventsit from starting the next view change too | ate.

Third, faulty replicas are unable to impede progress by forcing frequent view changes. A faulty
replica cannot cause aview change by sending a view-change message, because aview change will
happen only if at least f + 1 replicas send view-change messages. But it can cause a view change
when it is the primary (by not sending messages or sending bad messages). However, because the
primary of view v isthe replicap such that p = v mod |R|, the primary cannot be faulty for more
than f consecutive views.

These three techniques guarantee liveness unless message delays grow faster than the timeout
period indefinitely, which isunlikely in areal system.

Our implementation guarantees fairness. it ensures clients get replies to their requests even

25

when there are other clients accessing the service. A non-faulty primary assigns sequence numbers
using a FIFO discipline. Backups maintain the requests in a FIFO queue and they only stop the
view change timer when the first request in their queue is executed; this prevents faulty primaries
from giving preference to some clients while not processing requests from others.

2.4 Formal Mode€

This section presents a formalization of BFT-PK using 1/O automata [Lyn96]. It starts with a
brief introduction to 1/0 automata. Then, it presents aformal description of the system model and
assumptions behind BFT-PK. Section 2.4.3 provides a specification for the modified linearizability
condition implemented by BFT-PK and Section 2.4.4 contains the specification for the algorithm
ran by clients and replicas. We present aformal safety proof for BFT-PK in Appendix A.

24.1 |/O Automata

An 1/O automaton is an automaton with (possibly infinite) state and with an action labeling each
transition. These actions have a pre-condition, which determines whether they are enabled, and
they have effects, which determine how the state is modified when they execute. The actions of an
I/0 automaton are classified as input, output and internal actions, where input actions are required
to be always enabled. Automata execute by repeating the following two steps: first, an enabled
action is selected non-deterministically, and then it is executed. Several automata can be composed
by combining input and output actions. Lynch's book [Lyn96] provides a good description of 1/0
automata.

24.2 System Model

The algorithm can replicate any service that can be modeled by a deterministic state machine as
defined in Definition 2.4.1. The requirement that the state machine's transition function g be total
meansthat the service behavior must bewell defined for all possible operationsand arguments. This
isimportant to ensure non-faulty replicas produce the same results even when they are requested to
execute invalid operations. The client identifier is included explicitly as an argument to g because
the algorithm authenticates the client that requests an operation and provides the service with its
identity. This enablesthe service to enforce access control.

Definition 2.4.1 A deterministic state machineisatuple (S,C,0,0', g,s,). It hasa statein a set
S (initially equal to s,) and its behavior is defined by a transition function:

g:CxOx8—=0'x8

26

The argumentsto the function are a client identifier in C, an operationin a set O, which encodesan
operation identifier and any argumentsto that operation, and an initial state. These argumentsare
mapped by g to the result of the operationin O’ and a new state; g must be total.

client-failure
node ¢ /
request(o) . (

C\C replica-failure i

reply () ¢

request(o) 4

Q replic&failurej

reply(r) 4

noded \

client-failure

Figure 2-3: System Model

Thedistributed systemthat implementsareplicated statemachine (S, C, O, O', g, s,) ismodeled
asaset of 1/0 automata[Lyn96]. Each client hasauniqueidentifier ¢ in C andismodeled by aclient
automaton C.. The composition of al clientsis denoted by C. The replicated service is modeled
as an automaton A that is the composition of three types of automata: proxy, multicast channel,
and replica. Figure 2-3 shows the architecture of the system and Figure 2-4 presents the external
interface of A.

Input: REQUEST(0)c, 0 € O,c € C
CLIENT-FAILURE,, ¢ € C
REPLICA-FAILURE;, 2 € R

Output: REPLY(r)c, 7 € O',c€C

Figure 2-4: External Signature of the Replicated Service Automaton, A

There is a proxy automaton P, for each client C.. P, provides an input action for client ¢ to
invoke an operation o on the state machine, REQUEST (o)., and an output action for ¢ to learn the

27

result » of an operation it requested, REPLY (7). The communication between C.. and P, does not
involve any network; they are assumed to execute in the same node in the distributed system. P,
communicates with a set of state machine replicas to implement the interface it offersto the client.
Each replica has a unique identifier ¢ in aset R and is modeled by an automaton R;.

Replicas and proxies execute in different nodes in the distributed system. Automata have no
access to the state components of automata running on other nodesin the distributed system. They
communicate through an unreliable network.

Signature:

Input: SEND(m, X))
Internal: MISBEHAVE(m, X, X')
Output: RECEIVE(m)

Here me M, X, X' C X, andz € X
State:
wire € M x 2%, initialy {}

Transitions:
SEND(m, X), MISBEHAVE(m, X, X')
Eff: wire:=wireU {(m, X)} Pre: (m, X) € wire
Eff: wire := wire — {(m, X)} U {(m, X")}
RECEIVE(T™) 2

Pre: 3(m, X) e wire: (z € X
Eff: wire := wire— {(m, X)}U {(m, X — {z})})

Figure 2-5: Network specification: multicast channel automaton.

The network between replicas and proxiesis model ed as the multicast channel automaton, M C,
defined in Figure 2-5. Thereis a single multicast automaton in the system with SEND and RECEIVE
actions for each proxy and replica. These actions allow automata to send messages in a universa
message set M to any subset of automatawith identifiersin X = CUR. Theautomaton hasasingle
state component wire that stores pairs with a message and a destination set. It does not provide
authenticated communication; the RECEIVE actions do not identify the sender of the message.

The SEND actions simply add the argument message and its destination set to wire and the
RECEIVE actions deliver a message to one of the elements in its destination set (and remove this
element from the set). The MISBEHAVE actions allow the channel to lose messages or duplicate
them and the RECEIVE actions are defined such that messages may be reordered. Additionally, the
automaton is defined such that every message that was ever sent on the channel is remembered
in wire. This allows the MISBEHAVE actions to simulate replays of any of these messages by an
attacker. We do not assume synchrony. The nodes are part of an asynchronous distributed system
with no known bounds on message delays or on the time for automata to take enabled actions.

We use aByzantinefailure model, i.e., faulty clients and replicas may behave arbitrarily (except
for the restrictions discussed next). The CLIENT-FAILURE and REPLICA-FAILURE actions are used to

28

model client and replicafailures. Once such afailure action occurs the corresponding automaton is
replaced by an arbitrary automaton with the same external interface and it remainsfaulty for therest
of the execution. We assume however that this arbitrary automaton has a state component called
faulty that is set to true. It isimportant to understand that the failure actions and the faulty variables
are used only to model failures formally for the correctness proof; our algorithm does not know
whether aclient or replicais faulty or not.

Asdiscussed in Section 2.1, the algorithm uses digital signatures and cryptographic hash func-
tions. We assume the signature scheme is non-existentially forgeabl e even with an adaptive chosen
message attack [GMR88] and that the cryptographic hash function is collision resistant [Dam89].
These assumptions amount to restrictions on the computational power of the adversary and the
Byzantine-faulty replicas and clientsit may control.

24.3 Modified Linearizability

The safety property offered by BFT-PK is aform of linearizability [HW87]: the replicated service
behaveslike a centralized implementation that executes operations atomically one at atime.

We modified the definition of linearizability because the original definition does not work with
Byzantine-faulty clients. The problem is that these clients are not restricted to use the REQUEST
and RePLY interface provided by the replicated service automaton. For example, they can make the
replicated service executetheir requests by injecting appropriate messagesdirectly into the network.
Therefore, the modified linearizability property treats faulty and non-faulty clients differently.

A similar modificationto linearizability was proposed concurrently in[MRL98]. Their proposal
uses conditions on execution traces to specify the modified linearizability property. We specify the
property using an I/O automaton, S, with the same external signature as the replicated service
automaton, A. Our approach has several advantages. it produces a simpler specification and it
enables the use of state-based proof techniques like invariant assertions and simulation relations to
reason about linearizability. These proof techniques are better than those that reason directly about
execution traces because they are more stylized and better suited to produce automatic proofs.

The specification of modified linearizability, S, isasimple, abstract, centralized implementation
of the state machine (S,C, 0, 0’, g, s,) that is defined in Figure 2-6. We say that A satisfies the
safety property if it implements S.

The state of S includesthe following components: val isthe current value of the state machine,
in records requests to execute operations, and out records replies with operation results. Each
last-req, component is used to timestamp requests by client c to totally order them, and last-rep-t,
remembers the value of last-req, that was associated with the last operation executed for c. The
faulty-client, and faulty-replica; indicate which clients and replicas are faulty.

The CLIENT-FAILURE and REPLICA-FAILURE actions are used to model failures; they set the
faulty-client, or the faulty-replica; variables to true. The REQUEST(0), actionsincrement last-req,

29

Signature:

Input: REQUEST (o).
CLIENT-FAILURE,
REPLICA-FAILURE;

Internal: EXECUTE(o, t, c)
FAULTY-REQUEST (o, ¢, ¢)
Output: REPLY (7).

Here,o€ O,teN,ceC,ie R,andr € O’

State:

val € §, initialy s,

in C OxNx C,initidly {}

out € O x N x C,initidly {}

Ve € C, last-req, € N, initially last-req, = 0

Ve € C, last-rep-t, € N, initialy last-rep-t, = 0

Ve € C, faulty-client, € Bool, initialy faulty-client, = false
Vi € R, faulty-replica, € Booal, initialy faulty-replica, = false
n-faulty = |{ ¢ | faulty-replica, = true}|

Transitions (if n-faulty < L‘R‘T_lj):
REQUEST(0). FAULTY-REQUEST (0, t, ¢)
Eff: last-req, := last-reg, + 1 Pre: faulty-client, = true
in:=inuU {(o,last-req,, c)} Eff: in:=inU{{o,t,¢)}
CLIENT-FAILURE, EXECUTE(o, t, ¢)
Eff: faulty-client, := true Pre: {o,t,c) €in
Eff: in:=in— {{(o,t,c)}
REPLICA-FAILURE; if t > last-rep-t, then
Eff: faulty-replica; := true (r,val) := g(c,o0,val)
out := out U {(r,¢,c)}
REPLY (1), last-rep-t, ;=1

Pre: faulty-client, = truev 3¢ : ((r,t,c) € out
Eff: out:=out — {(r,t,c)})

Figure 2-6: Specification of Safe Behavior, S

to obtain a new timestamp for the request, and add a triple to in with the requested operation, o,
the timestamp value, last-req,, and the client identifier. The FAULTY-REQUEST actions are similar.
They model execution of requests by faulty clients that bypassthe external signature of A, e.g., by
injecting the appropriate messages into the multicast channel.

The EXECUTE(o, ¢, ¢) actions pick arequest with atriple (o, ¢, ¢) inin for execution and remove
the triple from in. They execute the request only if the timestamp ¢ is greater than the timestamp
of the last request executed on ¢’s behalf. This models awell-formedness condition on non-faulty
clients: they are expected to wait for the reply to the last requested operation before they issue the
next request. Otherwise, one of the requests may not even execute and the client may be unable to
match the replies with the requests. When arequest is executed, the transition function of the state
machine, g, is used to compute a new value for the state and aresult, r, for operation o. The client
identifier is passed as an argument to ¢ to allow the service to enforce access control. Then, the

30

actions add atriple with the result r, the request timestamp, and the client identifier to out.

The REPLY(r),. actions return an operation result with a triple in out to client ¢ and remove
the triple from out. The REPLY precondition is weaker for faulty clients to allow arbitrary replies
for such clients. The algorithm cannot guarantee safety if more than UR'T’lJ replicas are faulty.

Therefore, the behavior of S isleft unspecifiedin this case.

244 Algorithm Specification

Proxy. Each client C. interacts with the replicated service through a proxy automaton P,, whichis
defined in Figure 2-7.

Signature:

Input: REQUEST (o).
RECEIVE((REPLY, v,t,¢,%,T)o;)c
CLIENT-FAILURE,

Output: REPLY (7).

SEND(m, X)

Here, 0o € O,v,t eN,ceC,ieR,re O, me M,and X C X
State:

view, € N,initialy 0

in. € M, initidly {}

out: C M, initialy {}
last-req, € N, initialy O
retrans. € Bool, initidly false
faulty, € Bool, initialy false

Transitions:
REQUEST(0). CLIENT-FAILURE,
Eff: last-req, := last-req, + 1 Eff: faulty, := true
out. := {(REQUEST, o, last-req,, c)o. }
in. :={} SEND(m, {view. mod |R|}).
retrans, := false Pre: m € out. A —retrans,

Eff: retrans, := true
RECEIVE((REPLY, v,t,¢,%,T)0;)c

Eff: if (out. # {} A last-req, = ¢) then SEND(m, R).
in. :=in. U {(REPLY, v, t,c,i,T)0, } Pre: m € out; A retrans,
Eff: none
REPLY (7).

Pre: oute # {} AJR: (|R| > f AVi€ R: (Fv: ((REPLY, v, last-req,, c,i,7)5; €iN:)))
Eff: view, := maz({v|(REPLY, v, last-req,, ¢,,7)s; € iNc})
out. :={}

Figure 2-7: Proxy automaton

The proxy remembersthelast request sent to thereplicasin out, and it collectsrepliesthat match
this request inin,. It useslast-reg, to generate timestamps for requests, view, to track the current
view of the replicated system, and retrans, to indicate whether arequest is being retransmitted.

The REQUEST actions add a request for the argument operation to out.. This request is sent on

31

the multicast channel when one of the SEND actions execute: requests are sent first to the primary
of view, and are retransmitted to all replicas. The RECEIVE actions collect repliesin in, that match
the request in out.. Once there are more than f repliesin in., the REPLY action becomes enabled
and returns the result of the requested operation to the client.

Replica. The signature and state of replica automata are described in Figure 2-8.

Signature:

Input: RECEIVE((REQUEST, 0, t, €})i
RECEIVE((PRE-PREPARE, v, 1, M),)
RECEIVE({PREPARE, v, n,d, j) o,)i

RECEIVE({COMMIT, v,n,d, j)o;)i
RECEIVE({CHECKPOINT, v, n, d, j)o;)i
RECEIVE({VIEW-CHANGE, v, 7, 5, C, P, j)o ;)
RECEIVE({NEW-VIEW, v, V,0, N)5,)i
REPLICA-FAILURE;

Internal: SEND-PRE-PREPARE(m, v, 1);
SEND-COMMIT(m, v, 1);
EXECUTE(m,v,n);
VIEW-CHANGE(v);
SEND-NEW-VIEW (v, V);
COLLECT-GARBAGE;

Output: SEND(m, X)e

(«
«
(« :
«
(«
(«

Here t,v,n € N,ceC,i,jeR,me M,se€V V,O,N,C,PC M, X CX,andd € D'
where)V' =V x (C—= 0) x (C—N)adD' ={d|3s € V' : (d = D(s))}

State:
val; € &, initidly s,

last-rep-t; : C — N, initidlyVe € C: last-rept;(c) = 0

chkpts, € N x V', initialy {(0, (vo, null-rep, 0)) }

in; € M, initialy {(CHECKPOINT, O, D({vo, null-rep,0)),k)s, | Vk € R}
out; C M, initidly {}

view; € N, initialy O

last-exec; € N, initialy O

segqno; € N, initialy O

faulty, € Bool, initialy false

hi = min({n | (n,v) € chkpts;})

stable-chkpt, = v | (hi,v) € chkpts,

Figure 2-8: Signature and State of Replica Automaton ¢

The state variables of the automaton for replicas include the current value of the replica’s copy
of the state machine, val;, the last reply last-rep; sent to each client, and the timestamps in those
replies last-rep-t;. Thereis also a set of checkpoints, chkpts;, whose elements contain not only a
snapshot of val; but also a snapshot of last-rep; and last-rep-t;. The log with messages received or
sent by thereplicaisstored in in; and out; buffers messagesthat are about to be sent on the multicast

32

channel. Replica's also maintain the current view number, view;, the sequence number of the last
request executed, last-exec;, and, if they are the primary, the sequence number assigned to the last

request, seqno;.

tag(m,u) = m = (u,...)

primary(v) = v mod | R|

primary(z) = view; mod | R|

inv(v,i) = view; = v

inw(n,i) = 0 < n—h; < L, whereL € N
inrw(v,n,1) = in-w(n,7) A in-v(v,1)

prepared(m,v,n, M) = (PRE-PREPARE,v,n,m)gprimary(v) € MA
3R : (|R| > 2f A primary(v) ¢ R A Vk € R : ({PREPARE,v,n,D(m), k)., € M))

prepared(m,v,n,i) = prepared(m,v,n,in;)
last-prepared(m, v, n, M) = prepared(m,v,n, M) A

Zm',v" 1 ((prepared(m’,v',n, M) A v' > v) V (prepared(m’,v,n, M) A m # m'))
last-prepared(m, v, n,i) = last-prepared(m, v, n,in;)
committed(m,v,n,1) = (3o : ((PRE-PREPARE,v',n,m)aprimry(v,) € in) Vm € in)A

AR : (|R| > 2f+1 AVEk € R : ((cCOMMIT,v,n,D(m),k)s, € in;))

correct-view-change(m, v, j) = 3n,s,C,P: (m = (VIEW-CHANGE,v,n,s,C, P, j)s; A
AR : (|R| > f AVE € R: (3v" < v : ({(CHECKPOINT,v",n, D(s), k), € C)) A
V(PRE-PREPARE,U',n',m')aprimary(v,) € P

(lagt-prepared(m/,v',n',P) Av' < v A0 < n'—n <L)
merge-P(V) = { m |3 (VIEW-CHANGE, v, n,s,C, P,k),, € V : (m € P)}
max-n(M) = max({ n | (PRE-PREPARE, v,n,m),; € M V (VIEW-CHANGE,v,n,s,C, P, i),
correct-new-view(m, v) =
iV,O,N,R: (m = (NEW-VIEW,v,V,O,N)Uprimy(v) AN|V] = |R| = 2f+1A

Vk € R: (3m' € V: (correct-view-change(m’, v, k))) A

O = { (PRE-PREPARE, v, n, m'>aprimary(v) |n > max-n(V) A 3o : last-prepared(m’, v’, n, merge-P(V))} A

N = { (PRE-PREPARE, v, 1, null)gprimry(v) | max-n(V) < n < max-n(0) A

Av',m',n : last-prepared(m’,v’, n, merge-P(V)))

€ M})

i

update-state-nv(i, v, V,m) =
if max-n(V) > h; then
in; ;= in; U (pick C : 3 (VIEW-CHANGE, v, max-n(V), s, C, P, k), € V)
if (CHECKPOINT, v, max-n(V'), D(s), i), & in; then
in; = in; U {(CHECKPOINT, v, max-n(V'), D(s), %)s; }
out; = out; U {(CHECKPOINT, v, max-n(V'), D(s), %), }
chkpts, := chkpts, — {p = (n',s') |p € chkpts, A n' < max-n(V)}
if max-n(V') > last-exec; then
chkpts, = chkpts, U {{max-n(V), s) | 3 (VIEW-CHANGE, v, max-n(V), s, C, P, k), € V'}
(val;, last-rep;, last-rep-t;) = stable-chkpt,
last-exec; = max-n(V)
has-new-view(v,7) = v = 0V Im : (m € in; A correct-new-view(m,v))
take-chkpt(n) = (n mod chkpt-int) = O, wherechkpt-int € N A chkpt-int < L

Figure 2-9: Auxiliary Functions

Figure 2-9 defines several auxiliary functions that are used in the specification of replicas
actions. The tag(m,u) predicate is true if and only if the tag of message m is u. The function
primary(v) returns the identifier of the primary replica for view v and primary(s) returns the
identifier of the primary for the view with number view;.

The next three predicates are used by replicas to decide which messages to log: in-v(v,?) is

33

true if and only if v equalsi’s current view; in-w(n, %) istrue if and only if sequence number n is
between the low and high water marksin i’slog; and in-wv(v, n, 7) isthe conjunction of the two.

The prepared(m, v, n, M) predicate is true if and only if there is a prepared certificate in M
for request m with sequence number n and view v. last-prepared(m, v, n, M) istrue if and only
if the certificate with view v is the one with the greatest view number for sequence number n.
The predicate committed(m, v, n, %) is true provided the request is committed at replica i: there
is a committed certificate in in; for request m with sequence number n and view v, and m (or a
pre-prepare message containing m) isalsoinin;.

The correct-view-change(m, v, j) and correct-new-view(m, v) predicates check the correctness
of view-change and new-view messages, respectively. The function update-state-nv updates the
replica’s checkpoints and current state after receiving (or sending) a new-view message. Sec-
tion 2.3.5 explains how correct view-change and new-view messages are built and how the state is
updated. Finally, has-new-view(v, i) returns true if replica i isin view 0 or has a valid new-view
message for view v, and take-chkpt(n) returnstrueif n is the sequence number of a checkpoint (as
explained in Section 2.3.4).

SEND(m, R — {i})i
Pre: m € out; A —tag(m, REQUEST) A —tag(m, REPLY)
Eff: out; := out; — {m}

SEND(mn, {primary(¢)});
Pre: m € out; A tag(m, REQUEST)
Eff: out; := out; — {m}

SEND({REPLY, v, t,¢,4,7)0s;,{C})i
Pre: (REPLY,v,t,¢,%,T)s, € OUL;
Eff: out; := out; — {(REPLY, v,t,¢,1%,)0, }

Figure 2-10: Output Actions

The replica’s output actions are defined in Figure 2-10. They are very simple: actions of the
first type multicast messages to the other replicas, the others are used to forward requests to the
primary and to send repliesto the clients, respectively. Figure 2-11 presents the garbage collection
actions, which are also simple. The RECEIVE actions collect checkpoint messages in the log and
the COLLECT-GARBAGE actions discard old messages and checkpoints when the replica has a stable
certificate logged.

Figure 2-12 presentsthe actions associ ated with the normal -case protocol. Theactionsmatchthe
descriptionin Section 2.3.3 closely but there are some details that were omitted in that description.
For example, pre-prepare messages are sent by the primary or accepted by the backups only if the
replica has a new-view message logged for its current view; thisis important to ensure the replica
has enough information to prevent conflicting sequence number assignments.

34

The execute action is the most complex. To ensure exactly-once semantics, a replicaexecutesa
regquest only if its timestamp is greater than the timestamp in the last reply sent to the client. When
it executes a request, the replica uses the state machine's transition function g to compute a new
value for the state and a reply to send to the client. Then, if take-chkpt is true, the replica takes a
checkpoint by adding a snapshot of of val;, last-rep;, and last-rep-t; to the checkpoint set and puts
amatching checkpoint message in out; to be multicast to the other replicas.

RECEIVE({CHECKPOINT, v, n,d, j)s;)i (j # 7)

Eff: if view; > v A in-w(n,) then
in; := in; U {{CHECKPOINT, v, n, d, j)s, }

COLLECT-GARBAGE;
Pre 3R,n,d: (|R| > fAi€ R AVk € R: (Jv: ((CHECKPOINT, v, n,d, k)0, iN;)
Eff: in; ;= in; — {m = (PRE-PREPARE, v', n’, m/),,|m € in; An' <n}

in; :=in; — {m = (PREPARE, v', 0/, d’, j)5;|m € in; An' < n}

in; ==in; — {m = (comMMmIT,v",n’,d’, j),;|m € in; An' < n}

in; :=in; — {m = (CHECKPOINT,v', 7', d’, j)»;|m € in; An' < n}
chkpts, := chkpts;, — {p = (n', s)|p € chkpts, A n' < n})

Figure 2-11: Garbage Collection Actions

Thelast set of actionsispresentedin Figure2-13. Theseactionsdefinethebehavior of thereplica
automata during view changes and are more complex. The SEND-VIEW-CHANGE action increments
the view number and builds anew view-changemessagethat isput in out; to be multicast to the other
replicas. This view-change message contains the replica’s stable checkpoint sequence number, h;,
the stable checkpoint, stable-chkpt;, a copy of the stable certificate in the replicas log, C, and a
copy of the prepared certificatesin the log with the highest view number for each sequence number.
The replicas collect view-change messagesthat are correct and have a view number greater than or
equal to their current view.

The SEND-NEW-VIEW(v, V'); action is enabled when the new primary has anew-view certificate,
V, in the log for view v. When this action executes, the primary picks the checkpoint with the
highest sequence number, h = max-n(V'), to be the start state for request processing in the new
view. Then it computesthe sets O and N with pre-prepare messages for view v: O has a message
for each request with a prepared certificate in some message in V' with sequence number greater
than h; and N has a pre-prepare for the null request for every sequence number between max-n(V")
and max-n(O) without a message in O. The new-view message includes V', N, and O. The new
primary updates seqno; to be max-n(O) to ensure it will not assign sequence numbers that are
aready assigned in O. If needed, the update-state-nv function updates the replica’s checkpoint set
and val; to reflect the informationin V.

When the backups receive the new-view message, they check if it iscorrect. If itis, they update
their state like the primary and they add prepare messagesfor each messagein O U N to out; to be
multicast to the other replicas.

35

RECEIVE((REQUEST, 0, t,).)i
Eff: let m = (REQUEST, o, t, ¢)o.
if t = last-rep-t; (c) then
out; := out; U {(REPLY, View;, ¢, c, 3, last-rep;(c))., }
elseif ¢ > last-rep-t;(c) then
in; :=in; U{m}
if primary(s) # 4 then
out; := out; U {m}

SEND-PRE-PREPARE(m, v, 1);
Pre: primary(i) = ¢ A seqno, = n — 1 A in-wv(v, n, %) A has-new-view(v, 1) A
Jo,t,c: (m = (REQUEST, 0,t,¢c),, A m € in;)A A(PRE-PREPARE, v,n’, m),, € in;
Eff: segno, := seqno; + 1
let p = (PRE-PREPARE, v, 11, M),
out; := out; U {p}
in; ==in; U {p}

RECEIVE(PRE-PREPARE, v, 1, M),)i (§ 7 1)
Eff: if 7 = primary(z) A in-wv(v, n, i) A has-new-view(v, 2)A
Ad : (d # D(m) A {PREPARE, v, n,d, 1),; € in;) then
let p = (PREPARE, v, n, D(m), 1)s;
in; ;= in; U {(PRE-PREPARE, v, n, M), ;, P}
out; := out; U {p}

RECEIVE({PREPARE, v, n, d, j)o;)i (j # %)
Eff: if 5 # primary(z) A in-wv(v, n, 7) then
in; := in; U {(PREPARE, v, n,d, 5o, }

SEND-COMMIT(m, v, n);
Pre: prepared(m, v, n,i) A (COMMIT, v,n, D(m),i)s, & in;
Eff: letc = (COMMIT, v, n, D(m), i),
out; := out; U {c}
in; :=in; U{c}

RECEIVE({COMMIT, v, n,d, j)o;)i (j # 1)
Eff: if view; > v A in-w(n, 1) then
in; :=in; U {{COMMIT, v, n,d, j)o, }

EXECUTE(m,v,n);
Pre: n = last-exec; + 1 A committed(m, v, n, %)
Eff: last-exec; :=n
if (m # null) then
if Jo,t,c: (m = (REQUEST, o, t, c)». then
if t > last-rep-t; (c) then
if t > last-rep-t;(c) then
last-rep-t;(c) =1
(laSt_repi(C)’ vall) = g(c, 0, vall)
out; := out; U {(REPLY, View;, ¢, c, 3, last-rep;(c)), })
in; :=in; — {m}
if take-chkpt(n) then
let m' = (CHECKPOINT, view;, n, D({val;, last-rep,, last-rep-t,}), i),
out; := out; U {m'}
in; :==in; U{m'}
chkpts; := chkpts; U {(n, (val;, last-rep;, last-rep-t,)) }

Figure 2-12: Normal Case Actions

36

We omitted some details in order to simplify the definitions. For example, we omitted the au-
tomatacodeto ensurefairness, the safe guardsto ensurethelog sizeisbounded, and retransmissions.
This was done after careful reasoning that adding these details would not affect safety. The other
thing we omitted was the automata code to manipulate view-change timers and ensure liveness.
Adding this code would not affect safety because it simply adds restrictions to the pre-condition of
SEND-VIEW-CHANGE.

37

REPLICA-FAILURE;
Eff: faulty, := true

SEND-VIEW-CHANGE(v);
Pre. v =view; +1
Eff: view; :=wv
let P' = {{m,v,n)|last-prepared(m, v, n, i)},
P= U<m7v7n>ep,({p = (PREPARE, v, n, D(m), k)s, |p € ins} U {(PRE-PREPARE, v, 1, m>aprimary(v)})‘
C = {m' = (cHECKPOINT, v", h;, D(stable-chkpt,), k), |m' € in;},
m = (VIEW-CHANGE, v, h;, stable-chkpt,, C, P, i),
out; := out; U {m}
in; :=in; U {m}

RECEIVE((VIEW-CHANGE, v, 1, 5, C, P, §)o;)i (j # 1)
Eff: let m = (VIEW-CHANGE, v,n, s,C, P, j)o;
if v > view; A correct-view-change(m, v, j) then
in; :=in; U {m}

SEND-NEW-VIEW(v, V);
Pre: primary(v) =i Av > view; Av>0AV Cin; A V| = 2f + 1 A ~has-new-view(v, i) A
AR : (|R| =2f + 1AVk € R: (3n,s,C, P : ({(VIEW-CHANGE, v,n, s,C, P, k)o, € V)))
Eff: view; (= v
let O = {(PRE-PREPARE, v, 1, M)y, |n > max-n(V') A 3v' : last-prepared(m, v', n, merge-P(V))},
N = {(PRE-PREPARE, v, n, null),, |max-n(V) < n < max-n(O)A
Av', m,n : last-prepared(m, v', n, merge-P(V))},
m = (NEW-VIEW, v, V, O, N),,
segno; = max-n(0)
in :=in; UOUN U {m}
out; == {m}
update-state-nv(i, v, V, m)
in; :=in; — {(REQUEST, 0,t,c)s. € ins|t < last-rep-t;(c)}

RECEIVE((NEW-VIEW, v, V, O, N),.)i (§ # 1)
Eff: let m = (NEW-VIEW,v,V, O, N),,;
if v > 0Awv > view; A correct-new-view(m, v) A —has-new-view(v, 7) then

view; = v
out; := {}
ing:=in; UOUN U {m}
for al (PRE-PREPARE, v, n',m'),; € (OU N) do

out; := out; U {{PREPARE, v,n', D(m’),1)s, }

if n’ > h; then

in; ;= in; U {(PREPARE, v, n, D(m'),1)s, }

update-state-nv(i, v, V, m)
in; := in; — {{REQUEST, 0, t,¢)o. € iNi|t < last-rep-t,(c)}

Figure 2-13: View Change Actions

38

Chapter 3

BFT: An Algorithm Without Signatures

Theagorithminthe previouschapter, BFT-PK, issimplebut it isslow becauseit relieson public-key
cryptography to sign all messages. Public-key cryptography is the main performance bottleneck
in previous Byzantine-fault-tolerant state machine replication systems [Rei94, MR96a, KMM S98].
This chapter describes BFT, a new algorithm that uses message authentication codes (MACS) to
authenticate all messages. MACs are based on symmetric cryptography and they can be computed
three orders of magnitude faster than signatures. Therefore, the modified algorithm is significantly
faster. Additionally, asexplainedin Chapter 4, the new a gorithm eliminates afundamental problem
that prevents BFT-PK from supporting recovery of faulty replicas.

The new algorithm is also interesting from atheoretical perspective becauseit can be modified
to work without relying on cryptography. This can be done by using authenticated point-to-point
channels between nodes and by replacing message digests by the message values. With this
maodification, the algorithm is secure against computationally unbounded adversaries.

Thefirst section in this chapter explainswhy it is hard to modify BFT-PK to replace signatures
by message authentication codes. Section 3.2 presents a description of BFT. An earlier version
of this algorithm appeared in [CL99b] and the algorithm in its current form was first presented
in [CLOO].

3.1 WhyitisHard to Replace Signaturesby MACs

Replacing signatures by MACs seems like atrivial optimization but it is not. The problem is that
MACs are not as powerful as public-key signatures. For example, in a synchronous system, it is
possible to solve the Byzantine consensus problem with any number of faulty participants when
using signatures [PSL80]. However, it is necessary to have fewer than one third faulty participants
to solve this problem with symmetric authentication [PSL8Q].

Digital signatures are computed using public-key cryptography. The sender of a message
computes a signature, which is afunction of the message and the sender’s private key, and appends
the signature to the message. The receiver can verify the signature using the public key of the

39

sender. Since only the sender knows the signing key and the verification key is public, the receiver
can also convince athird party that the message is authentic. It can prove the message was sent by
the original sender by simply forwarding the signed message to that third party.

MACs use symmetric cryptography to authenti cate the communication between two parties that
share a secret session key. The sender of a message computes a MAC, which is a small bit string
that is a function of the message and the key it shares with the receiver, and appends the MAC to
the message. Thereceiver can check the authenticity of the message by computing the MAC in the
same way and comparing it to the one appended to the message.

MACs are not as powerful as signatures: the receiver may be unable to convince a third party
that the message is authentic. This is a fundamental limitation due to the symmetry of MAC
computation. The third party is unable to verify the MAC because it does not know the key used
to generateit. Revealing the key to the third party does not remove this limitation because a faulty
receiver could send messages pretending to be the sender. The other possibility would be for the
sender to compute an extra MAC (using a different key shared with the third party) and to append
both thisMAC and the MAC for the receiver to the message. But this does not work either because
afaulty sender could compute avalid MAC for the receiver and an invalid MAC for the third party;
since the receiver is unable to check the validity of the second MAC, it could accept the message
and not be able to proveits authenticity to the third party.

MACs are sufficient to authenticate messages in many protocols but BFT-PK and previous
Byzantine-fault-tolerant algorithms [Rei96, KMMS98] for state machine replication rely on the
extra power of digital signatures. BFT-PK is based on the notion of quorum certificates and weak
certificates, which are sets with messages from different replicas. Its correctness relies on the
exchange during view changes of certificates collected by the replicas. This works only if the
messages in these sets are signed. If messages are authenticated with MACs, areplica can collect a
certificate but may be unableto proveto othersthat it has the certificate.

3.2 TheNew Algorithm

BFT usesthe same system model asBFT-PK and it providesthe same service properties. Thesystem
model and properties are defined informally in Sections 2.1 and 2.2, and formally in Section 2.4.
But BFT uses MACsto authenticate all messagesincluding client requests and replies. Therefore,
it can no longer rely on the exchange of prepared, stable and new-view certificates during view
changes. We were able to retain the same communication structure during normal case operation
and garbage collection at the expense of significant and subtle changesto the view change protocol.

The basicideabehind the new view change protocol isthe following: if some non-faulty replica
i collectsaquorum certificate for some piece of information z, the non-faulty replicasin the quorum
can cooperateto send aweak certificatefor = to any replicaj during view changes. Thiscan be done

40

by having the replicas in the quorum retransmit to 7 the messagesin the certificate they originally
sent to 7. Since a quorum certificate has at least 2f + 1 messages and at most f replicas can be
faulty, 7 will eventually receive a weak certificate for the same information = with at least f + 1
messages. But weak certificates are not as powerful as quorum certificates. For example, weak
prepared certificates can conflict: they can assign the same sequence number to different requests
in the same view. The new view change protocol uses invariants that are enforced during normal
case operation to decide correctly between conflicting weak certificates.

The use of MACs to authenticate client requests raises additional problems. It is possible for
some replicas to be able to authenticate a request while others are unable to do it. This can lead
both to safety violations and liveness problems.

Section 3.2.1 explains how messages are authenticated in BFT. Section 3.2.2 describes how
the algorithm works when there are no view changes and how it handles authentication of client
requests. The new view change protocol is discussedin Section 3.2.4.

3.2.1 Authenticators

The new algorithm uses MACs to authenticate all messages including client requests. Thereisa
pair of session keys for each pair of replicas: and j: k; ; is used to compute MACs for messages
sent from ¢ to j, and k;; is used for messages sent from j to 7. Each replica also shares asingle
secret key with each client; this key is used for to authenticate communication in both directions.
These session keys can be established and refreshed dynamically using the mechanism described in
Section 4.3.1 or any other key exchange protocol.

Messagesthat are sent point-to-point to asingle recipient contain asingle MAC; we denote such
amessage as (m),,,;, where i isthe sender, j is the receiver, and the MAC is computed using k; ;.
Messages that are multicast to all the replicas contain authenticators; we denote such a message as
(m)q,, Wherei isthe sender. An authenticator isavector of MACs, oneper replicaj (j # ¢), where
the MAC in entry j is computed using &; ;. The receiver of a message verifies its authenticity by
checking the corresponding MAC in the authenticator.

The time to generate and verify signatures isindependent of the number of replicas. The time
to verify an authenticator is constant but the time to generate one grows linearly with the number
of replicas. Thisis not a problem because we do not expect to have alarge number of replicas and
there is a large performance gap between MAC and digital signature computation. For example,
BFT isexpected to perform better than BFT-PK with up to 280 replicasin the experiment described
in Section 8.3.3. The size of authenticators also grows linearly with the number of replicas but
it grows slowly: it is equal to 8n bytes in the current implementation (where n is the number of
replicas). For example, an authenticator is smaller than an RSA signature with a 1024-bit modulus
for n < 16 (i.e., systemsthat can tolerate up to 5 simultaneous faults).

41

3.2.2 Normal-Case Operation

The behaviors of BFT and BFT-PK are aimost identical during normal case operation. The only
differencesarethe following. BFT uses authenticatorsin request, pre-prepare, prepare, and commit
messages and uses a MAC to authenticate replies. The modified protocol continues to ensure the
invariant that non-faulty replicas never prepare different requests with the same view and sequence
number.

Another difference concerns request authentication. In BFT-PK, backups checked the authen-
ticity of arequest when it was about to be executed. Since requests were signed, all replicas would
agree either on the client that sent the request or that the request was aforgery. This does not work
in BFT because some replicas may be able to authenticate arequest while others are unableto do it.

We integrated request authentication into BFT to solve this problem: the primary checks the
authenticity of requests it receives from clients and only assigns sequence numbers to authentic
requests; and backups accept a pre-prepare message only if they can authenticate the request it
contains. A request (REQUEST, o, t,¢),, in @ pre-prepare message is considered authentic by a
backup i in one of the following conditions:

1. the MAC for i in the request’s authenticator is correct or
2. i hasaccepted f prepare messages with the request’s digest or

3. 1 has received a request from client ¢ with the same operation and timestamp and with a
correct MAC for ¢ in its authenticator

Condition 1 isusually sufficient for the backups to authenticate requests. But it is possible for
the primary to include a request with a corrupt authenticator in a pre-prepare message. This can
happen becausethe client isfaulty, the primary isfaulty, or the request was corrupted in the network.

A request with anincorrect authenticator may commit providedit hasat least f +1 correct MACs.
Without condition 2, the system could deadlock permanently when this happens. This condition
ensures that if arequest commits, all backups are eventually able to authenticate it. The condition
is safe because the request is not considered authentic unless at least one correct replica was able
to verify its MAC in the request’s authenticator. It is important for correct replicas to remember
requests they pre-prepared across view changes because it may be necessary for them to convince
othersthat requests, which are propagated from previousviews, areauthentic. Section 3.2.4 explains
how this problemis solved.

It is also possible for a request with a corrupt authenticator to force a view change. This may
happen when a sequence number is assigned to a request whose authenticator haslessthan f + 1
correct MACs, or when a request is sent to at least one correct backup and the primary is unable
to authenticate the request. These view changes are desirable when the cause of the problem is a
faulty primary. But they can also be used to mount denial-of-service attacks by replacing correct

42

primaries frequently. Condition 3 alows correct clients to fix the problem by retransmitting the
request with a correct authenticator to all the replicas.

However, faulty clients can till force view changes. Our current implementation does not deal
with this problem but view changes are sufficiently fast (see Section 8.5) that it is not very serious.
We could force suspected clients to sign their requests and replicas could process these requests at
lower priority to bound the rate of these view changes.

3.2.3 Garbage Collection

The garbage collection mechanismin BFT issimilar to the onein BFT-PK. Replicas collect astable
certificate with checkpoint messages for some sequence number n and then they discard all entries
in their log with sequence numbers less than or equal to n and all earlier checkpoints. But since
checkpoint messages have authenticatorsinstead of signatures, aweak certificate is insufficient for
replicas to prove the correctness of the stable checkpoint during view changes. BFT solves this
problem by requiring the stable certificate to be a quorum certificate; this ensures other replicas
will be able to obtain aweak certificate proving that the stable checkpoint is correct during view
changes.

3.24 View Changes

The view change protocol is significantly different in BFT because of the inability to exchange
certificates between the replicas. The new protocol is depicted in Figure 3-1. It has the same
communication pattern except that backups send acknowledgments to the new primary for each
view-change message they receive from another backup. These acknowledgmentsare used to prove
the authenticity of the view-change messagesin the new-view certificate.

view-change :view-change-ack i new-view

Replica 0 = primary v

Repl.lcal—prlmaryv+l % // \

Replica 3

Figure 3-1: View Change Protocol

The basic idea behind the protocol is for non-faulty replicas to cooperate to reconstruct weak
certificates corresponding to any prepared or stable certificate that might have been collected by
some non-faulty replicain apreviousview. Thisisdone by having replicasinclude in view-change
messages information about pre-prepare, prepare, and checkpoint messages that they sent in the
past.

43

We start by describing a simplified view change protocol that may require unbounded space.

Section 3.2.5 presents a modification to the protocol that eliminates the problem.
Data structures. Replicasrecord information about what happened in earlier views. Thisinforma-
tionismaintained intwo sets, the PSet and the QSet. A replicaal so storestherequestscorresponding
to the entriesin these sets. These sets only contain information for sequence numbers between the
current low and high water marks in the log. The sets allow the view change protocol to work
properly even when more than one view change occurs before the system is able to continue normal
operation; the sets are usually empty while the system is running normally.

ThePSet at replicai storesinformation about requeststhat have prepared at i in previousviews.
Itsentriesaretuples (n, d, v) meaning that ¢ collected a prepared certificate for arequest with digest
d with number n in view v and no request prepared at 7 in alater view.

The QSet stores information about requests that have pre-prepared at 7 in previous views
(i.e., requests for which ¢ has sent a pre-prepare or prepare message). Its entries are tuples
(n,{..., (dx,vg),...}) meaning for each & that vy, isthe latest view in which arequest pre-prepared
with sequence number n and digest dj, at i. Thisinformation is used to construct weak certificates
for prepared certificates proposed in the view-change messages of non-faulty replicas.

let v be the view before the view change, L be the size of the log, and h be the log's low water mark

fordlnsuchthath < n < h+ Ldo
if request number n with digest d is prepared or committed in view v then
add (n,d,v) to P
eseif 3 (n,d',v') € PSetthen
add (n,d',v') to P
if request number n with digest d is pre-prepared, prepared or committed in view v then
if =3 (n, D) € QSetthen
add (n, {(d,v)})to Q
elseif 3 (d,v') € D then
add (n, D U {(d,v)} — {(d,v")})to Q
ese
add (n,D U {{(d,v)}) to Q
elseif 3(n, D) € QSetthen
add (n, D) to Q

Figure 3-2: Computing P and Q@

View-change messages. When a backup ¢ suspects the primary for view v is faulty, it enters view
v + 1 and multicasts a (VIEW-CHANGE, v + 1, h,C, P, Q, i), Mmessageto al replicas. Here h isthe
sequence number of the latest stable checkpoint known to 7; C is a set of pairs with the sequence
number and digest of each checkpoint stored at 7; and P and Q are sets containing a tuple for
every request that is prepared or pre-prepared, respectively, at 7. These sets are computed using the
information in the log, the PSet, and the QSet, as explained in Figure 3-2. Once the view-change

44

message has been sent, 7 stores P in PSet, Q in QSet, and clearsitslog. The QSet may grow without
bound if the algorithm changes views repeatedly without making progress. Section 3.2.5 describes
asolution to this problem. (It isinteresting to note that this problem did not arise in BFT-PK; since
prepared certificates contained signed messages, there was no need to maintain information about
pre-prepared requests.)
View-change-ack messages. Replicas collect view-change messagesfor v + 1 and send acknowl-
edgments for them to v + 1's primary, p. Replicas only accept these view-change messagesiif all
the information in their P and @ components is for view numbers less than or equa to v. The
acknowledgments have the form (VIEW-CHANGE-ACK, v + 1,4, j, d) . where i is the identifier of
the sender, d isthe digest of the view-change message being acknowledged, and j isthe replicathat
sent that view-change message. These acknowledgmentsallow the primary to prove authenticity of
view-change messages sent by faulty replicas.
New-view message construction. The new primary p collects view-change and view-change-ack
messages (including messages from itself). It stores view-change messagesin aset S. It adds a
view-change message received from replicai to S after receiving 2f — 1 view-change-acksfor i's
view-change message from other replicas. These view-change-ack messagestogether with the view
change message it received and the view-change-ack it could have sent form a quorum certificate.
We call it the view-change certificate. Each entry in S isfor adifferent replica.

The new primary uses the information in § and the decision procedure sketched in Figure 3-3
to choose a checkpoint and a set of requests. This procedure runs each time the primary receives
new information, e.g., when it adds a new messageto S.

let D ={(n,d)|32f +1messagesm € S: m.h < n A I f+1messagesm € S:(n,d) € m.C}
if3(h,dy € D: ¥(n',d') € D: n' < hthen

select checkpoint with digest d and number h

else exit

foralnsuchthath < n < h+ L do
A.if 3m € Swith(n,d,v) € m. P that verifies:
Al 32f + 1 messagesm’ € S:
m'h < nAVndv)em. P:dv <ovov (@ =vAd =d
A2.3 f + 1 messagesm’ € S:
In, {.,(d,V),.})em. . Q:v >vAd =d
A3. the primary has the request with digest d
then select the request with digest d for number n

B.elseif 32f + 1 messagesm € S suchthatm.h < n A m. P hasnoentry forn
then select the null request for number n,

Figure 3-3: Decision procedure at the primary.

The primary starts by selecting the checkpoint that is going to be the starting state for request

45

processing in the new view. It picks the checkpoint with the highest number A from the set of
checkpoints that are known to be correct (because they have a weak certificate) and that have
numbers higher than the low water mark in the log of at least f + 1 non-faulty replicas. The last
conditionisnecessary for safety; it ensuresthat the ordering information for requeststhat committed
with numbers higher than A is still available.

Next, the primary selects a request to pre-prepare in the new view for each sequence number
between h and h + L (where L isthe size of thelog). For each number n that was assigned to some
regquest m that committed in a previous view, the decision procedure selects m to pre-preparein the
new view with the same number; this ensures safety because no distinct request can commit with
that number in the new view. For other numbers, the primary may pre-prepare arequest that wasin
progress but had not yet committed, or it might select a special null request that goes through the
protocol as aregular request but whose execution is a no-op.

The decision procedure ends when the primary has selected a request for each number. After

deciding, the primary multicasts a new-view message to the other replicas with its decision. The
new-view message hasthe form (NEw-VIEW, v +1,V, X),,. Here, V containsapair for each entry
in S consisting of theidentifier of the sending replicaand the digest of its view-change message, and
X identifies the checkpoint and request values selected. The view-changesin V are the new-view
certificate.
New-view message processing. The primary updates its state to reflect the information in the
new-view message. It recordsall requestsin X" as pre-prepared in view v + linitslog. If it does
not have the checkpoint with sequence number 4, it also initiates the protocol to fetch the missing
state (see Section 5.3.2). In any case the primary does not accept any prepare or commit messages
with sequence number lessthan or equal to ~ and does not send any pre-prepare message with such
a sequence number.

The backupsin view v 4+ 1 collect messagesfor view v 4+ 1 until they have a correct new-view
message and a correct matching view-change messagefor each pair in V. If abackup did not receive
one of the view-change messagesfor somereplicawith apair in V, the primary alone may be unable
to prove that the message it received is authentic becauseit is not signed. The use of view-change-
ack messages solves this problem. Since the primary only includes a view-change message in S
after obtaining a matching view-change certificate, at least f + 1 non-faulty replicas can vouch for
the authenticity of every view-change messagewhosedigestisinV. Therefore, if the original sender
of aview-change is uncooperative the primary retransmits that sender’s view-change message and
the non-faulty backups retransmit their view-change-acks. A backup can accept a view-change
message whose authenticator is incorrect if it receives f view-change-acks that match the digest
and identifier in V.

After obtaining the new-view message and the matching view-change messages, the backups
check if these messages support the decisions reported by the primary by carrying out the decision

46

procedure in Figure 3-3. If they do not, the replicas move immediately to view v + 2. Otherwise,
they modify their state to account for the new information in a way similar to the primary. The
only difference is that they multicast a prepare message for v + 1 for each request they mark as
pre-prepared. Thereafter, normal case operation resumes.

The replicas use the status mechanism in Section 5.2 to request retransmission of missing
requests as well as missing view-change, view-change acknowledgment, and new-view messages.

Correctness

We now argue informally that the view change protocol preserves safety and that it islive. We will
start by sketching a proof of Theorem 3.2.1. This theorem implies that after a request commitsin
view v with sequence number n no distinct request can pre-prepare at any correct replica with the
same sequence number for views later than v. Therefore, correct replicas agree on atotal order for
reguests because they never commit distinct requests with the same sequence number.

Theorem 3.2.1 If arequest m commits with sequence number n at some correct replica in view v
then the decision procedurein Figure 3-3 will not choose a distinct request for sequence number n
inany viewv' > v

Proof sketch:The proof is by induction on the number of views between v and v'. If m
committed at some correct replica ¢, ¢ received commit messages from a quorum of replicas, @,
saying that they prepared the request with sequence number n and view v.

In the base case, assume by contradiction that the decision procedure choosesarequest m’ # m
for sequence number n in v’ = v + 1. Thisimplies that either condition A1 or condition B must
betrue. By the quorum intersection property, there must be at least one view-change message from
acorrect replicaj € @ with A < n in any quorum certificate used to satisfy conditions A1 or B.
But since this replica did not garbage collect information for sequence number n, its view-change
message must include (n, D(m),v) in its P component. Therefore, condition B cannot be true.
Similarly, condition A1 cannot be true for (n, D(m'),vs) because D(m') # D(m) (with high
probability) and vy < v (because view-change messagesfor v’ are not accepted if thereisany tuple
with view number greater than v’ — 1 in their P component).

The reasoning is similar for the inductive step: v' > v + 1. There must be at least one view-
change message from a correct replicaj € @ with A < n in any quorum certificate used to satisfy
conditions A1 or B. From the inductive hypothesis and the procedure to compute P described in
Figure 3-2, j's view-change message for v' must include (n, D(m),v.) in its P component with
v, > v. Therefore, condition B cannot be true. But condition A1 can be true if a view-change
message from afaulty replicaincludes (n, D(m'), vs) inits P component with vz > v,; condition
A2 prevents this problem. Condition A2 is true only if there is a view-change message from
a correct replica with (n, {..., (D(m/),v,),...}) in its Q@ component such that v, > vs. Since

47

D(m') # D(m) (with high probability), the inductive hypothesisimplies that v, < v. Therefore,
vy < v and conditions A1 and A2 cannot both be true, which finishes the proof of the theorem.

Theprimary will also be ableto make a correct decision eventually (unlessthereis asubsequent
view change). Assume by contradiction that the primary isunableto do this. Let k. bethe sequence
number of the latest checkpoint that is stable at some correct replica. Sincethis checkpointisstable,
it has been reached by f + 1 correct replicas and therefore the primary will be able to choose the
value h, for h. For every sequence number between h and h + L, there are two cases: (1) some
correct replica prepared a request with sequence number n; or (2) thereis no such replica

In case (1), condition A1 will be verified because there are 2f + 1 non-faulty replicas and
non-faulty replicas never prepare different requests for the same view and sequence number; A2
will also be satisfied since arequest that prepares at anon-faulty replicapre-preparesat at least f + 1
non-faulty replicas. Condition A3 may not be satisfied initially, but the primary will eventually
receivetherequest in aresponseto its status messages (discussed in Section 5.2) and thiswill trigger
the decision procedure to run. Furthermore, since condition A2 istrue every replicawill be ableto
authenticate the request that is chosen.

In case (2), condition B will eventually be satisfied because there are 2f + 1 correct replicas
that by assumption did not prepare any request with sequence number 7.

3.25 View Changes With Bounded Space

The protocol in the previous section may require an unbounded amount of memory. It boundsthe
number of tuplesin the QSet by L but each tuple may grow without bound if thereis an unbounded
number of view changes before a request with the corresponding sequence number is prepared by
aquorum.

This section describes a modified view change protocol that solves this problem. The new
protocol boundsthe size of each tuple in QSet; it retains only pairs corresponding to the M distinct
requests that pre-prepared in the latest views where M isasmall constant greater than 1 (e.g., 2).

The idea behind the new protocoal isthe following. When areplica pre-prepares a request with
sequence number n in view v, it knows that no distinct request committed in a view earlier than
v. But it cannot discard any of the corresponding pairs from the tuple for n in the QSet until it
can prove thisto the other replicas. To abtain these proofs, each replica records this not-committed
information. Additionally, the protocol delays pre-preparing arequest (if that would cause an entry
to be discarded from the QSet) until the replica obtains messages from a quorum stating that they
have matching not-committed information. The not-committed information is sent in view-change
messages; if a replica claims that a request prepared for sequence number n but f + 1 replicas
say that it did not commit, the new primary can choose a null request for n. The next paragraphs
describe the new protocol in more detail.

The new protocol computes the view-change messages as before except that it bounds the size

48

of @ andthe QSet asshownin Figure 3-4: if the number of pairsin atuple exceedsan upper bound,
M, the pair with the lowest view number is discarded.

let v be the view before the view change, L be the size of the log, and h be the log's low water mark

fordlnsuchthath < n < h+ Ldo
if request number n with digest d is prepared or committed in view v then
add (n,d,v) to P
eseif 3 (n,d',v') € PSetthen
add (n,d',v') to P
if request number n with digest d is pre-prepared, prepared or committed in view v then
if =3 (n, D) € QSetthen
add (n, {(d,v)})to Q
eseif 3 (d,v') € D then
add (n, D U {(d,v)} — {(d,v")})to Q
ese
add (n,D U {{(d,v)})to Q
if |[D| > M then
remove entry with lowest view number from D
elseif 3 (n,D) € QSetthen
add (n,D) to Q

Figure 3-4: Computing P and Q (with bounded space).

The new protocol has an additional data struture — the NCset. Like the others, this set only
contains information for sequence numbers between the current low and high water marks in the
log. The NCset at replica ¢ stores information to prove that certain requests did not commit. Its
entries are tuples (n, d, v, u) meaning that: d was the digest of request number n proposed in the
new-view message with the latest view number v received by 4; and no request committed in aview
v' < u with sequence number n. The view-change messages have an extra field, N'C, with the
current value of the NCset. Replicas only accept a view-change message for view v’ provided all
tuples (n, d, v, u) inits N'C component havev < v' and u < v.

Replicas collect view-change and view-change-ack messages as before but the decision pro-
cedure used to compute and check the new-view message, which is described in Figure 3-5, is
different. It has an extra option, C, that enables the new primary to choose a null request for a
sequence number if at least one correct replicaclaimsthat none of the requests proposed as prepared
with that number in 2f + 1 view-change messages could have committed.

The decision procedure takes O(L x |R|? x M) local stepsin the worst case and the normal
case is much faster because most view-change messages propose identical values, they contain
information for lessthan L requests, and their @ components contain tupleswith lessthan M pairs.

The NCSet is updated when the primary creates a new-view message or a backup accepts a
new-view message. Thisisdescribedin Figure 3-6.

Before sending any prepare message for the requests proposed in a new-view message, each

49

let D ={(n,d)|32f +1messagesm € S: m.h < n A I f+1messagesm € S:(n,d) € m.C}
if3(h,dy € D: ¥(n',d') € D: n' < hthen

select checkpoint with digest d and number h

else exit

foraln suchthath < n < h+ Ldo
A.if3m € Swith(n,d,v) € m. P that verifies.
Al 32f + 1 messagesm’ € S:
m'h < nAVndv)em. P:dv <ovov (@ =vAd =d
A2.3 f + 1messagesm’' € S:
In, {.,(d,V),.}) em. . Q:v >vAd =d
A3. the primary has the request with digest d
then select the request with digest d for number n
B.elseif 32f + 1 messagesm € S suchthatm.h < n A m. P hasnoentry forn
then select the null request for number n,

C.eseif2f+1messagesm € S: m.h < n
AV (n,d,v) € m.P: 3 f+1messagesm’ € S:
A(n,d,v,u) e M NC: (d#£d AV >v)Vu>v
then select the null request for number n,

Figure 3-5: Decision procedure at the primary (with bounded space).

backup i checksif that would cause an entry to be discarded from the QSet. Inthiscase, + multicasts
amessage (NOT-COMMITTED, v + 1, d, i) o, t0 all the other replicaswhered = D(V, X) isthedigest
of the contents of the new-view message. The other replicasreply by multicasting asimilar message
if they accepted the same new-view message and they have updated their NCset according to that
message. Backup ¢ waits for not-committed messages from a quorum before sending the prepare
messagesin v+ 1. Thisensuresthat the not-committed information to justify discarding information
from the QSet is stored by aquorum and, therefore, will be available in subsequent view changes.

let (NEW-VIEW, v + 1, V, &), bethe new-view message

foral (n,d) € X do
if =3 (n,d’,v',u) € NCSetthen
add (n,d,v + 1,0) to NCSet
elseif 3 (n,d',v’,u) € NCSetthen

if d = dthen
NCSet := NCSet — {(n,d',v',u)} U {(n,d,v+ L u)}
else

NCSet := NCSet — {(n,d,v',u)} U {(n,d,v+ 1,0")}

Figure 3-6: Computing not-committed information.

Sending a new-view message implicitly pre-prepares a set of requests. Therefore, the new
primary p also checksif pre-preparing any of those requests would cause an entry to be discarded

50

from the QSet. In this case, p multicasts a message (NOT-COMMITTED-PRIMARY, v + 1,V, X) 4, 1O
all the backups where V and X are the values it intends to send in the new-view message. The
backups check the correctness of this message and update their not-committed information as if
they were processing a new-view message. Then, they reply by multicasting (NOT-COMMITTED, v +
1,D(V, X),1),, todl other replicas. Oncethe primary has not-committed messagesfrom aquorum
it sends the new-view message.

Processing not-committed messages does not introduce a significant overhead and these mes-
sages are sent rarely even for small values of M.

Correctness

The modified view change protocol preserves safety and it is live. We will first argue that Theo-
rem 3.2.1 istrue by reusing the proof that was presented at the end of the previous section. For the
modified protocol to make the theorem false, condition C must be true for a sequence number n in
view v’ after arequest commitswith sequencenumber n inaview v < v'. The proof isby induction
on the number of views between v and v’. Inthe base case (v’ = v + 1), condition C' cannot be true
because replicas do not accept view-change messagesfor view v + 1 unlessall tuples (n, d, v",) in
their N'C component have u < v"” < v. For the inductive step, condition C cannot be true because
the inductive hypothesis and the procedure to update the NCSet imply that no correct replica can
send a view-change message with (n,d’, v",u) withu > v or d’ # D(m) Av" > v.

The modified protocol aso enables the primary to eventually make the correct decision. Dis-
carding information from the QSet could potentially prevent progress. a correct replica could
prepare a request with sequence number n and another correct replica could discard information
that the request had pre-prepared. This could prevent the primary from making a decision because
neither condition A2 nor condition B would ever be true. The new protocol prevents the problem
because when a correct replica drops information for sequence number n from its QSet there is
not-committed information justifying its action in the NCSet of all correct replicas in a quorum.
Therefore, condition C will betrue for sequence number n if neither condition A nor B can betrue.

51

Chapter 4

BFT-PR: BFT With Proactive Recovery

BFT provides safety and liveness if fewer than 1/3 of the replicas fail during the lifetime of the
system. These guarantees are insufficient for long-lived systems because the bound is likely to be
exceeded in this case. We developed a recovery mechanism for BFT that makes faulty replicas
behave correctly again. BFT with recovery, BFT-PR, can tolerate any humber of faults provided
fewer than 1/3 of the replicas become faulty within awindow of vulnerability.

Limiting the number of faults that can occur in a finite window is a synchrony assumption but
such an assumption is unavoidable: since Byzantine-faulty replicas can discard the service state, it
is necessary to bound the number of failures that can occur before recovery completes. To tolerate
f faults over the lifetime of the system, BFT-PR requires no synchrony assumptions.

By making recoveries automatic, the window of vulnerability can be made very small (e.g., a
few minutes) with low impact on performance. Additionally, our algorithm provides detection of
denia-of-service attacks aimed at increasing the window; replicas can time how long a recovery
takes and alert their administrator if it exceeds some pre-established bound. The administrator can
then take steps to allow recovery to complete. Therefore, integrity can be preserved even when
thereis adenial-of-service attack. Furthermore, the algorithm detects when the state of areplicais
corrupted by an attacker and can log the differences between the corrupt state and the state of non-
faulty replicas. Thisinformation can be valuable to analyze the attack and patch the vulnerability
it exploited.

Section 4.1 presents an overview of the problems that arise when providing recovery from
Byzantine faults. Section 4.2 describes the additional assumptions required to provide automatic
recoveries and the modifications to the algorithm are described in Section 4.3.

41 Overview

The recovery mechanism embodies several new technigques needed to solve the problems that arise
when providing recovery from Byzantine faults:
Proactiverecovery. A Byzantine-faulty replica may appear to behave properly even when broken;

52

therefore recovery must be proactive to prevent an attacker from compromising the service by
corrupting 1/3 of the replicas without being detected. Our algorithm recoversreplicas periodically
independent of any failure detection mechanism. However, a recovering replica may not be faulty
and recovery must not cause it to become faulty, since otherwise the number of faulty replicas
could exceed the bound required to provide correctness. In fact, we need to alow the replica
to continue participating in the request processing protocol while it is recovering, since this is
sometimes required for it to complete the recovery.

Fresh messages. An attacker must be prevented from impersonating areplicathat was faulty after
it recovers. Impersonation can happenif the attacker learns the keys used to authenticate messages.
But even if messages are sighed using a secure cryptographic co-processor, an attacker will be able
to sign bad messageswhile it controls afaulty replica. These bad messages could be replayed later
to compromise safety. To solve this problem, we define a notion of authentication freshness and
replicas reject messagesthat are not fresh. As a consequence, replicas may be unableto proveto a
third party that some messagethey received is authentic becauseit may no longer befresh. BFT can
support recovery becauseit does not rely on such proofs but BFT-PK and all previous state-machine
replication algorithms [Rei 95, KMMS98] relied on them.

Efficient statetransfer. State transfer is harder in the presence of Byzantine faults and efficiency
is crucial to enable frequent recovery with low degradation of service performance. To bring a
recovering replica up to date, the state transfer mechanism must check the local copy of the state
to determine which portions are both up-to-date and not corrupt. Then, it must ensure that any
missing state it obtains from other replicasis correct. We have developed an efficient hierarchical
statetransfer mechanism based on Merkle trees[Mer87] and incremental cryptography [BM97]; the
mechanism tolerates Byzantine-faults and modifications to the state while transfers are in progress.
It is described in Section 5.3.2.

4.2 Additional Assumptions

To implement recovery, we must mutually authenticate a faulty replica that recovers to the other
replicas, and we need a reliable mechanism to trigger periodic recoveries. This can be achieved by
involving system administrators in the recovery process, but such an approach isimpractical given
our goal of recovering replicas frequently. To implement automatic recoveries we need additional
assumptions:

Secure Cryptography. Each replica has a secure cryptographic co-processor, e.g., a Dallas Semi-
conductorsiButton or the security chip in the motherboard of the IBM PC 300PL. The co-processor
stores the replica’s private key, and can sign and decrypt messages without exposing this key. It
also containsatrue random number generator, e.g., based on thermal noise, and acounter that never
goes backwards. This enablesit to append random numbers or the counter to messagesit signs.

53

Read-Only Memory. Each replica stores the public keys for other replicas in some memory that
survivesfailures without being corrupted (provided the attacker does not have physical accessto the
machine). Thismemory could be aportion of the flash BIOS. Most motherboards can be configured
such that it is necessary to have physical accessto the machine to modify the BIOS.

Watchdog Timer. Each replica has a watchdog timer that periodically interrupts processing and
hands control to arecovery monitor, which is stored in the read-only memory. For this mechanism
to be effective, an attacker should be unable to change the rate of watchdog interrupts without
physical accessto the machine. Some motherboards and extension cards offer the watchdog timer
functionality but allow the timer to be reset without physical accessto the machine. However, this
is easy to fix by preventing write accessto control registers unless some jumper switch is closed.

These assumptions are likely to hold when the attacker does not have physical access to the
replicas, which we expect to be the common case. When they fail we can fall back on the system
administrators to perform recovery.

Notethat all previousproactive security algorithms[OY 91, HIK'Y 95, HJJ" 97, CHH97, GGJR99]
assume the entire program run by areplicaisin read-only memory so that it cannot be modified
by an attacker, and most also assume that there are authenticated channel s between the replicas that
continue to work even after a replica recovers from a compromise. These assumptions would be
sufficient to implement our algorithm but they are lesslikely to hold in practice. We only require a
small monitor in read-only memory and use the secure co-processors to establish new session keys
between the replicas after arecovery.

The only work on proactive security that does not assume authenticated channelsis [CHH97],
but the best that a replica can do when its private key is compromised is alert an administrator.
Our secure cryptography assumption enables automatic recovery from most failures, and secure
co-processors with the properties we require are now readily available, e.g., IBM is selling PCs
with a cryptographic co-processor in the motherboard at essentially no added cost. We also assume
clients have a secure co-processor; this simplifies the key exchange protocol between clients and
replicas but it could be avoided by adding an extraround to this protocol.

4.3 Modified Algorithm

Recall that in BFT replicas collect certificates. Correctness requiresthat certificates contain at most
f messagesthat were sent by replicas when they were faulty. Recovery complicates the collection
of certificates. If areplicacollects messagesfor a certificate over asufficiently long period of time,
it can end up with more than f messages from faulty replicas. We avoid this problem by changing
keys periodically and by having replicas reject messages that are authenticated with old keys. This
isexplained in Section 4.3.1 and the recovery mechanismis discussed in Section 4.3.2.

4.3.1 Key Exchanges

Replicas and clients refresh the session keys used to send messages to them by sending new-key
messages periodicaly (e.g., every minute). The same mechanism is used to establish the initial
session keys. The message has the form (NEW-KEY, 4, ..., {kj i }¢;, -, 1), The messageis signed
by the secure co-processor (using the replica’s private key) and ¢ is the value of its counter; the
counter isincremented by the co-processor and appended to the message every time it generates a
signature. (This prevents suppress-replay attacks [Gon92].) Each k;; is the key replica j should
use to authenticate messages it sends to 4 in the future; k; ; is encrypted by ;s public key, so that
only j canread it. Replicas usetimestamp ¢ to detect spurious new-key messages: ¢ must be larger
than the timestamp of the last new-key message received from i.

Each replica shares a single secret key with each client; this key is used for communication in
both directions. The key is refreshed by the client periodically, using the new-key message. If a
client neglects to do this within some system-defined period, a replica discards its current key for
that client, which forces the client to refresh the key.

When areplicaor client sendsanew-key message, it discardsall messagesin itslog that are not
part of a complete certificate (with the exception of pre-prepare and prepare messagesit sent) and
it regjects any messages it receives in the future that are authenticated with old keys. This ensures
that correct nodes only accept certificates with equally fresh messages, i.e., messages authenticated
with keys created in the same refreshment epoch.

43.2 Recovery

The recovery protocol makes faulty replicas behave correctly again to allow the system to tolerate
morethan f faultsover itslifetime. To achievethis, the protocol ensuresthat after areplicarecovers:
it is running correct code, it cannot be impersonated by an attacker, and it has correct state that is
up to date.
Reboot. Recovery is proactive — it starts periodically when the watchdog timer goes off. The
recovery monitor savesthereplica s state (thelog, the service state, and checkpoints) todisk. Thenit
rebootsthe system with correct code and restarts the replicafrom the saved state. The correctness of
the operating system and service code can be ensured by storing their digest in theread-only memory
and by having the recovery monitor check this digest. If the copy of the code stored by the replica
is corrupt, the recovery monitor can fetch the correct code from the other replicas. Alternatively,
the entire code can be stored in aread-only medium; thisis feasible because there are several disks
that can be write protected by physically closing ajumper switch (e.g., the Seagate Cheetah 18LP).
Rebooting restores the operating system data structures to a correct state and removes any Trojan
horses | eft by an attacker.

If the recovering replica believes it isin aview v for which it is the primary, it multicasts a

55

view-change message for v + 1 just before saving its state and rebooting; any correct replica that
receivesthismessageand isin view v changesto view v + 1immediately. Thisimprovesavailability
because the backups do not haveto wait for their timersto expire before changingto v + 1. A faulty
primary could send such amessage and force aview change but this is not a problem becauseit is
always good to replace afaulty primary.

After this point, the recovering replica's code is correct and it did not lose its state. Thereplica
must retain its state and use it to process requests even whileit is recovering. Thisisvital to ensure
both safety and liveness in the common case when the recovering replicais not faulty; otherwise,
recovery could cause the f+1st fault. But if the recovering replica was faulty, the state may be
corrupt and the attacker may forge messages because it knows the MAC keys used to authenticate
both incoming and outgoing messages. The rest of the recovery protocol solves these problems.

The recovering replica i starts by discarding the keys it shares with clients and it multicasts a
new-key message to change the keys it uses to authenticate messages sent by the other replicas.
Thisisimportant if 7 was faulty because otherwise the attacker could prevent a successful recovery
by impersonating any client or replica
Run estimation protocol. Next, 7 runs a simple protocol to estimate an upper bound, Hj;, on the
high-water mark that it would have in its log if it were not faulty; it discards any log entries or
checkpoints with greater sequence numbers to bound the sequence number of corrupt information
inits state. Estimation works as follows: 7 multicasts a (QUERY-STABLE, i),, message to the other
replicas. When replica j receives this message, it replies (REPLY-STABLE, ¢, p, 7) ,;;,» Where ¢ and
p are the sequence numbers of the last checkpoint and the last request prepared at j respectively.
Replica i keeps retransmitting the query message and processing replies; it keeps the minimum
value of ¢ and the maximum value of p it received from each replica. It also keepsits own values
of ¢ and p. During estimation ¢ does not handle any other protocol messages except new-key,
guery-stable, and status messages (see Section 5.2).

The recovering replica uses the responsesto select H)y, asfollows. Hy; = L + cpy where L is
thelog sizeand c;s isavalue c received from onereplicaj that satisfiestwo conditions. 2f replicas
other than j reported values for ¢ less than or equal to cjs, and f replicas other than j reported
values of p greater than or equal to cy,.

For safety, cpr must be greater than the sequence number of any stable checkpoint ¢ may have
when it is not faulty so that it will not discard log entriesin this case. Thisisinsured becauseif a
checkpoint is stable, it will have been created by at least f + 1 non-faulty replicasand it will havea
seguence number less than or equal to any value of ¢ that they propose. The test against p ensures
that ¢y is close to a checkpoint at some non-faulty replica since at least one non-faulty replica
reports a p not less than cy,; thisisimportant because it prevents a faulty replica from prolonging
i'srecovery. Estimation is live because there are 2f + 1 non-faulty replicas and they only propose
avalue of c if the corresponding request committed; thisimplies that it prepared at at least f + 1

56

correct replicas. Therefore, 7 can alwaysbaseits choice of ¢y, onthe set of messages sent by correct
replicas.

After this point 7 participatesin the protocol asif it were not recovering but it will not send any

messages above H y; until it has a correct stable checkpoint with sequence number greater than or
equal to Hp,. Thisensures abound Hj; on the sequence number of any bad messages ¢ may send
based on corrupt state.
Send recovery request. Next ¢ multicasts a recovery request to the other replicas with the form:
(REQUEST, (RECOVERY, Hyr),t,1),,. This messageis produced by the cryptographic co-processor
and ¢ isthe co-processor’s counter to prevent replays. The other replicas reject therequest if itisa
replay or if they accepted arecovery request from i recently (where recently can be defined as half
of the watchdog period). Thisisimportant to prevent a denial-of-service attack where non-faulty
replicas are kept busy executing recovery requests.

The recovery request istreated like any other request: it is assigned a sequence number n g and
it goes through the usual three phases. But when another replica executes the recovery request, it
sends its own new-key message. Replicas also send a new-key message when they fetch missing
state (see Section 5.3.2) and determine that it reflects the execution of a new recovery request. This
is important because these keys may be known to the attacker if the recovering replica was faulty.
By changing these keys, we bound the sequence number of messages forged by the attacker that
may be accepted by the other replicas — they are guaranteed not to accept forged messages with
seguence numbers greater than the maximum high water mark in the log when the recovery request
executes, i.e, Hg = |ng/K| x K + L.

The reply to the recovery request includes the sequence number nr. Replica i uses the same
protocol asthe client to collect the correct reply to its recovery request but waitsfor 2f + 1 replies.
Then it computesits recovery point, H = max(H s, Hg). Thereplicaalso computesavalid view:
it retains its current view, v,., if there are f + 1 replies to the recovery request with views greater
than or equal to v, elseit changesto the median of the viewsin thereplies. Thereplicaalso retains
its view if it changed to that view after recovery started.

The mechanism to compute avalid view ensuresthat non-faulty replicas never changeto aview
with a number smaller than their last active view. If the recovering replicais correct and has an
active view with number v,., there is a quorum of replicas with view numbers greater than or equal
to v,. Therefore, the recovery request will not prepare at any correct replica with a view number
smaller than v,.. Additionally, the median of the view numbers in replies to the recovery request
will be greater than or equal to the view number in areply from a correct replica. Therefore, it will
be greater than or equal to v,.. Changing to the median, v,,, of the view numbersin the repliesis
also safe because at |east one correct replica executed the recovery request at aview number greater
than or equal to v,,,. Sincethe recovery point is greater than or equal to Hg, it will be greater than
the sequence number of any request that propagated to v, from an earlier view.

57

Check and fetch state. While i is recovering, it uses the state transfer mechanism discussed in
Section 5.3.3 to determine what pages of the state are corrupt and to fetch pagesthat are out-of-date
or corrupt.

Replicas isrecovered when the checkpoint with sequence number H isstable. Thisensuresthat
any state other replicasrelied on i to haveis actually held by f + 1 non-faulty replicas. Therefore
if some other replicafails now, we can be sure the state of the system will not be lost. Thisistrue
because the estimation procedure run at the beginning of recovery ensures that while recovering
7 never sends bad messages for sequence numbers above the recovery point. Furthermore, the
recovery request ensuresthat other replicaswill not accept forged messages with sequence numbers
greater than H.

If clients aren’'t using the system this could delay recovery, since request number H needsto
execute for recovery to complete. However, thisis easy to fix. While arecovery is occurring, the
primary sends pre-prepares for null requests.

Our protocol hasthe nice property that any replicaknowsthat 7 has completed its recovery when
checkpoint H isstable. Thisallowsreplicasto estimate the duration of i'srecovery, which is useful
to detect denial-of-service attacks that slow down recovery with low false positives.

4.3.3 Improved Service Properties

Our system ensures safety and liveness (as defined in Section 2.2) for an execution = provided
a most f replicas become faulty within a window of vulnerability of size T,, = 2Ty + T,. The
values of T}, and T, are characteristic of each execution 7 and unknown to the algorithm. T}, isthe
maximum key refreshment period in 7 for a non-faulty node, and T, is the maximum time between
when areplicafails and when it recoversfrom that fault in .

The session key refreshment mechanism from Section 4.3.1 ensures non-faulty nodes only
accept certificates with messages generated within an interval of size at most 27;.1 The bound
on the number of faults within 7;, ensures there are never more than f faulty replicas within any
interval of size at most 27},. Therefore, safety and liveness are provided because non-faulty nodes
never accept certificates with more than f bad messages.

Because replicas discard messages in incomplete certificates when they change keys, BFT-
PR requires a stronger synchrony assumption in order to provide liveness. It assumes there is
some unknown point in the execution after which all messages are delivered (possibly after being
retransmitted) within some constant time d or all non-faulty clients have received replies to their
requests; here, d is a constant that depends on the timeout values used by the algorithm to refresh
keys, and trigger view-changes and recoveries.

11t would be T}, except that during view changes replicas may accept messages that are claimed authentic by f + 1
replicas without directly checking their authentication token.

58

We have little control over the value of T}, because T, may be increased by a denial-of-service
attack. But we have good control over T, and the maximum time between watchdog timeouts, 7y,
because their values are determined by timer rates, which are quite stable. Setting these timeout
values involves a tradeoff between security and performance: small values improve security by
reducing the window of vulnerability but degrade performance by causing more frequent recoveries
and key changes. Section 8.6.3 analyzes this tradeoff and shows that these timeouts can be quite
small with low performance degradation.

The period between key changes, T, can be small without impacting performance significantly
(e.g., 15 seconds). But T}, should be substantially larger than 3 message delays under normal load
conditionsto provide liveness.

The value of T, should be set based on R,,, the time it takes to recover a non-faulty replica
under normal load conditions. Thereis no point in recovering areplicawhen its previous recovery
has not yet finished; and we stagger the recoveries so that no more than f replicas are recovering
at once, since otherwise service could be interrupted even without an attack. Therefore, we set
Ty = 4 x s X R,,. Here, the factor 4 accountsfor the staggered recovery of 3f + 1 replicas f at a
time, and s is asafety factor to account for benign overload conditions (i.e., no attack).

The results in Section 8.6.3 indicate that R,, is dominated by the time to reboot and check the
correctness of the replica’s copy of the service state. Since areplicathat is not faulty checks its
state without placing much load on the network or any other replica, we expect the time to recover
f replicasin parallel and the time to recover areplica under benign overload conditionsto be close
to R,,; thuswe can set s closeto 1.

We cannot guarantee any bound on T, under a denial-of-service attack but it is possible for
replicas to time recoveries and aert an administrator if they take longer than some constant times
R,. The administrator can then take action to alow the recovery to terminate. For example, if
replicas are connected by a private network, they may stop processing incoming requests and use
the private network to complete recovery. Thiswill interrupt service until recovery completesbut it
does not give any advantage to the attacker; if the attacker can prevent recovery from completing,
it can also prevent requests from executing. 1t may be possible to automate this response.

Replicas should also log information about recoveries, including whether there was afault at a
recovering node, and how long the recovery took, since this information is useful to strengthen the
system against future attacks.

59

Chapter 5

| mplementation Techniques

We developed several important techniques to implement BFT efficiently. This chapter describes
these techniques. They range from protocol optimizations to protocol extensionsthat enable repli-
cation of some non-deterministic services. The protocol optimizations are described in Section 5.1.
Section 5.2 explains a message retransmission mechanism that is well-suited for BFT and Sec-
tion 5.3 explains how to manage checkpoints efficiently. The last two sections describe how to
handle non-deterministic services and how to defend against denial of service attacks.

5.1 Optimizations

This section describes severa optimizations that improve the performance during normal case
operationwhile preserving the saf ety and livenessproperties. The optimizationscanall be combined
and they can be applied to BFT-PK aswell as BFT (with or without recovery).

511 Digest Replies

The first optimization reduces network bandwidth consumption and CPU overhead significantly
when operations have large results. A client request designates a replica to send the result. This
replicamay be chosen randomly or using some other load balancing scheme. After the designated
replica executesthe request, it sendsback areply containing theresult. The other replicas send back
replies containing only the digest of the result. The client collects at least f + 1 replies (including
the one with the result) and uses the digests to check the correctness of the result. If the client
does not receive a correct result from the designated replica, it retransmits the request (as usual)
requesting al replicas to send replies with the result. This optimization is not used for very small
replies; the threshold in the current implementation is set to 32 bytes.

This optimization is very effective when combined with request batching (see Section 5.1.4). It
enables several clients to receive large replies in parallel from different replicas. As aresult, the
aggregate throughput from the service to the clients can be several times above the maximum link
bandwidth. The optimization is aso important at reducing protocol overhead when the number of

60

replicas increases. it makes the overhead due to additional replicas independent of the size of the
operation result.

5.1.2 Tentative Execution

The second optimization reduces the number of message delays for an operation invocation from 5
to 4. Replicasexecuterequeststentatively. A request isexecuted as soon asthefollowing conditions
are satisfied: the replicas have aprepared certificate for the request; their state reflectsthe execution
of al requests with lower sequence number; and these requests are all known to have committed.
After executing the request, the replicas send tentative replies to the client.

Since replies are tentative, the client must wait for a quorum certificate with replies with the
same result before it acceptsthat result. Thisensuresthat the request is prepared by a quorum and,
therefore, it is guaranteed to commit eventually at non-faulty replicas. If the client’s retransmission
timer expires before it receives these replies, the client retransmits the request and waits for aweak
certificate with non-tentative replies. Figure 5-1 presents an exampl e tentative execution.

: 5 : reply &
request ipre-prepare; prepare ; commit

client //’/“
primary : : TS,
=\ >§</ 2
backup 2 ‘ ’

X N \ \
backup 3

Figure 5-1: Tentative execution

A request that has executed tentatively may abort if thereisaview changeand it isreplaced by
anull request. In this case, the replica reverts its state to the checkpoint in the new-view message
or to its last checkpointed state (depending on which one has the higher sequence number).

Replicas checkpoint their state immediately after executing a request, whose sequence number
is divisible by the checkpoint interval, tentatively. But they only send a checkpoint message after
the request commits.

It is possible to take advantage of tentative execution to eliminate commit messages; they can
be piggybacked in the next pre-prepare or prepare message sent by areplica. Since clients receive
replies after a request prepares, piggybacking commits does not increase latency and it reduces
both load on the network and on the replicas’ CPUs. However, it has alow impact on the latency

61

of the service because, with tentative execution, the commit phase is aready overlapped with the
sending of new requests to the service. Itsimpact on throughput is also low because the batching
optimization described in Section 5.1.4 amortizes the cost of the commit phase over many requests.

5.1.3 Read-only Operations

The next optimization improves the performance of read-only operations, which do not modify the
servicestate. A client multicastsaread-only request to al replicas. Thereplicas executethe request
immediately after checking that it is properly authenticated, that the client has access, and that the
request is in fact read-only. The last two checks are performed by a service specific upcall. The
last check is important because a faulty client could mark as read-only a request that modifies the
service state.

A replica sends back areply only after al requests reflected in the state in which it executed
the read-only request have committed; this is necessary to prevent the client from observing un-
committed state that may berolled back. The client waits for a quorum certificate with replies with
the same result. 1t may be unable to collect this certificate if there are concurrent writes to data
that affect the result. In this case, it retransmits the request as a regular read-write request after its
retransmission timer expires. This optimization reduces latency to asingle round-trip for read-only
reguests as depicted in Figure 5-2.

primary \\

backup 1 \\‘
backup 2 \

backup 3

X

Figure 5-2: Read-only operations

The read-only optimization preserves the modified linearizability condition. To show this, we
will argue that any read-only operation o can be serialized after any operation that ends before o
starts and before any operation that starts after o ends. (An operation starts when the request to
executeit is sent for thefirst time and ends when the client obtains the result.)

Let be the quorum certificate containing the replicas that send the replies with o’s result.
When any read-write operation, p, that precedes o ends, it has been tentatively executed by a
guorum Q'. Therefore, any write performed by p will bereflected in o’ sresult because Q' intersects
Q in at least one correct replica. Similarly, any operation that starts after o endswill return aresult

62

that reflects all the writes observed by o and maybe later writes. This is true because o's results
do not reflect uncommitted state and Q' intersectsin at least one correct replica the quorum that
tentatively executes any later read-write operation or the quorum that sends replies to any later
read-only operation.

Note that for the read-only optimization to work correctly, it is required that the client obtain
a quorum certificate with replies not only for read-only operations but also for any read-write
operation. Thisis the case when replies are tentative but the algorithm must be modified for this
to happen with non-tentative replies (before it was sufficient to obtain a weak certificate). Thisis
generally agood tradeoff; the only exception are environments with a high message lossrate.

5.14 Request Batching

The agorithm can process many requests in parallel. The primary can send a pre-prepare with a
sequence number assignment for a request as soon as it receives the request; it does not need to
wait for previous requeststo execute. Thisisimportant for networks with alarge bandwidth-delay
product but, when the service is overloaded, it is better to process requestsin batches.

request ipre-prepare; prepare ‘: reply & commit

T —
AN W
cnentnN W

backup 1 ; \\\ >§<'///

backup 3

client 1

Figure 5-3: Request batching

Batching reduces protocol overhead under load by assigning a single sequence number to a
batch of requests and by starting a single instance of the normal case protocol for the batch; this
optimization is similar to a group commit in transactional systems[GK85]. Figure 5-3 depicts the
processing of a batch of requests.

We use a dliding-window mechanism to bound the number of protocol instancesthat can runin
parallel. Let e be the sequence number of the last batch of requests executed by the primary and let
p be the sequence number of the last pre-prepare sent by the primary. When the primary receives
areguest, it starts the protocol immediately unlessp > e + w, where w is the window size. In the

63

latter case, it queuesthe request.

When requests execute, the window slides forward allowing queued requests to be processed.
The primary picks the first requests from the queue such that the sum of their sizesis below a
constant bound; it assigns them a sequence number; and it sends them in a single pre-prepare
message. The protocol proceeds exactly asit did for a single request except that replicas execute
the batch of requests (in the order in which they were added to the pre-prepare message) and they
send back separate replies for each request.

Our batching mechani sm reducesboth CPU and network overhead under |oad without increasing
the latency to process requests in an unloaded system. Previous state machine replication systems
that tolerate Byzantinefaults[MR96a, KM M S98] have used batching techniquesthat impact latency
significantly.

5.1.5 Separate Request Transmission

The algorithm we described inlines requests in pre-prepare messages. This simplifies request
handling but it leads to higher latency for large requests because they go over the network twice:
the client sendsthe request to the primary and then the primary sendsthe request to the backupsin a
pre-prepare message. Additionally, it does not allow request authentication and digest computation
to be performed in paralel by the primary and the backups: the primary authenticates requests
before it sends the pre-prepare message and the backups authenticate requests when they receive
this message.

We modified the algorithm not to inline requestswhose sizeis greater than athreshold (currently
255 bytes), in pre-prepare messages. Instead, the clients multicast these requests to al replicas;
replicas authenticate the requests in parallel; and they buffer those that are authentic. The primary
selects abatch of requeststo includein a pre-prepare message (as described in the previous section)
but it only includes their digests in the message. This reduces latency for operations with large
arguments and it also improves throughput because it increases the number of large requests that
can be batched in a single pre-prepare message.

5.2 Message Retransmission

BFT isimplemented using low-level, unreliable communication protocols, which may duplicate or
lose messagesor deliver them out of order. The algorithm tolerates out-of-order delivery and rejects
duplicates. This Section describes atechnique to recover from lost messages.

It islegitimate to ask why BFT does not use an existing reliable communication protocol. There
are many protocols in the literature to implement reliable point-to-point (e.g., TCP [Pos81]) and
multicast communication channels(e.g., XTP[SDW92]). Theseprotocolsensurethat messagessent
between correct processes are eventually delivered but they areill-suited for algorithmsthat tolerate

64

faults in asynchronous systems. The problem is that any reliable channgl implementation requires
messages to be buffered until they are known to have been received. Since a faulty receiver cannot
be distinguished from a slow one in an asynchronous system, any reliable channel implementation
requires either an unbounded amount of buffer space or requires the algorithm to stop when buffer
gpace runs out due to afaulty receiver.

BFT uses a receiver-based mechanism inspired by the SRM [FJL195] framework to recover
from lost messages in the communication between replicas. a replica i« multicasts small status
messages that summarize its state; when other replicas receive a status message they retransmit
messages they have sent in the past that 7 is missing using unicast. Status messages are sent
periodically and when the replica detects that it is missing information (i.e., they also function as
negative acknowledgments).

This receiver-based mechanism works better than a sender-based one because it eliminates
unnecessary retransmissions. The sender can use the summary of the receiver’s state to avoid
retransmitting messages that are no longer required for the receiver to make progress. For exam-
ple, assume replica j sent a prepare message p to 4, which was lost, but 7 prepared the request
corresponding to p using messages received from other replicas. In this case, i's status message
will indicate that the request is prepared and j will not retransmit p. Additionally, this mechanism
eliminates retransmissions to faulty replicas.

The next paragraphs describe the mechanism BFT uses to recover from lost messages in
more detail. A replica ¢ whose current view v is active multicasts messages with the format
(STATUS-ACTIVE, v, h, le, i, P,C),,. Here, h is the sequence number of the last stable checkpoint,
le is the sequence number of the last request 7 has executed, P contains a bit for every sequence
number between le and H (the high water mark in the log) indicating whether that request prepared
at 7, and C issimilar but indicates whether the request committed at s.

If the replica’s current view is pending, it multicasts a status message with a different format to
trigger retransmission of view-change protocol messages. (STATUS-PENDING, v, h,le,i,m,V, R),, .
Here, the componentswith the same name have the same meaning, . isaflag that indicates whether
i has the new-view message, V is a set with a bit for each replica that indicates whether ¢ has
accepted a view-change message for v from that replica, and R isaset with tuples (n, u) indicating
that 7 is missing arequest that prepared in view « with sequence number n.

If areplica j is unable to validate the status message, it sends its last new-key message to .
Otherwise, 7 sends messagesit sent in the past that 7 may require in order to make progress. For
example, if 7 isin aview less than j's, j sends i its latest view-change message. In all cases, j
authenticates messages it retransmits with the latest keys it received in a new-key message from .
Thisisimportant to ensure liveness with frequent key changes.

BFT uses a different mechanism to handle communication between clients and replicas. The
receiver-based mechanism does not scale well to alarge number of clients because the information

65

about the last requests received from each client grows linearly with the number of clients. Instead,
BFT uses an adaptive retransmission scheme [KP91] similar to the one used in TCP. Clients
retransmit requests to replicas until they receive enough replies. They measure response times to
computethe retransmission timeout and use arandomized exponential back off if they fail to receive
areply within the computed timeout. If areplicareceivesarequest that has already been executed,
it retransmits the corresponding reply to the client.

5.3 Checkpoint Management

BFT’s garbage collection mechanism (see Section 2.3.4) takeslogical snapshots of the service state
called checkpoints. These snapshots are used to replace messages that have been garbage collected
from the log. This section describes a technique to manage checkpoints. It starts by describing
checkpoint creation, computation of checkpoint digests, and the data structures used to record
checkpoint information. Then, it describes a state transfer mechanism that is used to bring replicas
up to date when some of the messages they are missing were garbage collected. It ends with an
explanation of the mechanism used to check the correctness of areplica’s state during recovery.

5.3.1 Data Structures

We use hierarchical state partitions to reduce the cost of computing checkpoint digests and the
amount of information transferred to bring replicas up-to-date. The root partition corresponds to
the entire service state and each non-leaf partition is divided into s equal-sized, contiguous sub-
partitions. Figure 5-4 depicts a partition tree with threelevels. We call the leaf partitions pages and
the interior ones meta-data. For example, the experiments described in Chapter 8 were run with a
hierarchy with four levels, s equal to 256, and 4KB pages.

Each replica maintains one logical copy of the partition tree for each checkpoint. The copy is
created when the checkpoint is taken and it is discarded when a later checkpoint becomes stable.
Checkpointsaretakenimmediately after tentatively executing arequest batch with sequencenumber
divisible by the checkpoint period K (but the corresponding checkpoint messagesare sent only after
the batch commits).

Thetreefor acheckpoint storesatuple (Im, d) for each meta-datapartition and atuple (Im, d, p)
for each page. Here, Im is the sequence number of the checkpoint at the end of the last checkpoint
epoch where the partition was modified, d is the digest of the partition, and p is the value of the
page.

Partition digestsareimportant. Replicas usethe digest of the root partition during view changes
to agree on a start state for request processing in the new view without transferring a large amount
of data. They are also used to reduce the amount of data sent during state transfer.

The digests are computed efficiently as follows. A page digest is abtained by applying a

66

state pages

Figure 5-4: Partition tree.

cryptographic hash function (currently MD5 [Riv92]) to the string obtained by concatenating the
index of the page within the state, its valudef, andp. A meta-data digest is obtained by applying
the hash function to the string obtained by concatenating the index of the partition within its level,
its value ofim, and the sum modulo a large integer of the digests of its sub-partitions. Thus, we
apply AdHash [BM97] at each meta-data level. This construction has the advantage that the digests
for a checkpoint can be obtainediefently by updating the digests from the previous checkpoint
incrementally. It is inspired by Merkle trees [Mer87].

The copies of the partition tree are logical because we use copy-on-write so that only copies
of the tuples modied since the checkpoint was taken are stored. This reduces the space and time
overheads for maintaining these checkpoints sigantly.

5.3.2 State Transfer

A replica initiates a state transfer when it learns about a stable checkpoint with sequence number
greater than the high water mark inits log. It uses the state transfer mechanism to fettbatiods

to the service state that it is missing. The replica may learn about such a checkpoint by receiving
checkpoint messages or as the result of a view change.

It is important for the state transfer mechanism to ecieint because it is used to bring a
replica up to date during recovery and we perform proactive recoveries frequently. The key issues
to achieving diciency are reducing the amount of information transferred and reducing the burden
imposed on other replicas. The strategy to fetch stdieiefitly is to recurse down the partition
hierarchy to determine which partitions are out of date. This reduces the amount of information
about (both non-leaf and leaf) partitions that needs to be fetched.

The state transfer mechanism must also ensure that the transferred state is correct even when
some replicas are faulty. The idea is that the digest of a partition commits the values of all its

67

sub-partitions. A replica starts a state transfer by obtaining a wealki catei with the digest of

the root partition at some checkpoinit Then it uses this digest to verify the correctness of the
sub-partitions it fetches. The replica does not need a wealicaté for the sub-partitions unless
the value of a sub-partition at checkpoinhas been discarded. The next paragraphs describe the
state transfer mechanism in more detail.

A replicai multicasts(FETCH, [, z, lc, c, k, 7)o, tO all other replicas to obtain information for the
partition with indexz in levell of the tree. Herdc is the sequence number of the last checkpioint
knows for the partition, andis either -1 or it spefies that is seeking the value of the partition at
sequence numberfrom replicak.

When a replica determines that it needs to initiate a state transfer, it multicasts a fetch message
for the root partition witlc equal to its last checkpoint. The valuecd$ not negative whehknows
the correct digest of the partition information at checkpeojré.g., after a view change completes
1 knows the digest of the checkpoint that propagated to the new view but might not haadsib.
creates a new (logical) copy of the tree to store the state it fetches and initializes &dabMhich
it stores the number of the latest checkpoiritegted in the state of each partition in the new tree.
Initially each entry in the table will contaite.

If (FETCH,z,lc,c, k,1)q, iS received by the designated replier,and it has a checkpoint for
sequence numberit sends backMETA-DATA, ¢, [, z, P, k), whereP is a set with a tupléz’, Im, d)
for each sub-partition ofl,) with indexz’, digestd, andlm > lc. Since: knows the correct
digest for the partition value at checkpointit can verify the correctness of the reply without the
need for a cerficate or even authentication. This reduces the burden imposed on other replicas and
it is important to provide liveness in view changes when the start state for request processing in the
new view is held by a single correct replica.

Replicas other than the designated replier only reply to the fetch message if they have a stable
checkpoint greater thale andc. Their replies are similar t&’s except that is replaced by the
sequence number of their stable checkpoint and the message contains a MAC. These replies are
necessary to guarantee progress when replicas have discardedia sheckpoint requested hy

Replicai retransmits the fetch message (choosing a difféseaich time) until it receives a valid
reply from somek or a weak cerficate with equally fresh responses with the same sub-partition
values for the same sequence numbefgreater tharic andc). Then, it compares its digests for
each sub-partition off, z) with those in the fetched information; it multicasts a fetch message for
sub-partitions where there is a difference, and sets the val(i€ to c (or ¢p) for the sub-partitions
that are up to date. Singdearns the correct digest of each sub-partition at checkpdmtcp), it
can use the optimized protocol to fetch them using the digests to ensure their correctness.

The protocol recurses down the tree unsiends fetch messages for out-of-date pages. Pages are
fetched like other partitions except that meta-data replies contain the digest and lafstatiodi
sequence number for the page rather than sub-partitions, and the designated replier sends back

68

(DATA, z, p). Here,z is the page index anglis the page value. The protocol imposes little overhead
on other replicas; only one replica replies with the full page and it does not even need to compute a
MAC for the message sindecan verify the reply using the digest it already knows.

Whens obtains the new value for a page, it updates the state of the page, its digest, the value of
the last modication sequence number, and the value corresponding to the pdgde ifhen, the
protocol goes up to its parent and fetches another missing sibling. After fetching all the siblings,
it checks if the parent partition nsistent. A partition is consistent up to sequence numbef
c is the minimum of all the sequence number<ih for its sub-partitions, andis greater than or
eqgual to the maximum of the last mfidation sequence numbers in its sub-partitions. If the parent
partition is not consistent, the protocol sends another fetch for the partition. Otherwise, the protocol
goes up again to its parent and fetches missing siblings.

The protocol ends when it visits the root partition and determines that it is consistent for some
sequence number Then the replica can start processing requests with sequence numbers greater
thanc.

Since state transfer happens concurrently with request execution at other replicas and other
replicas are free to garbage collect checkpoints, it may take some time for a replica to complete
the protocol, e.g., each time it fetches a missing patrtition, it receives information about yet a later
modification. If the service operations change data faster than it can be transfered, an out-of-date
replica may never catch up. The state transfer mechanism described can transfer data fast enough that
this is unlikely to be a problem for most services. The transfer rate could be improved by fetching
pages in parallel from different replicas but this is not currently implemented. Furthermore, if the
replica fetching the state ever is actually needed (because others have failed), the system will wait
for it to catch up.

5.3.3 State Checking

It is necessary to ensure that a reglicstate is both correct and up-to-date after recovery. This is
done by using the state transfer mechanism to fetch out-of-date pages and to obtain the digests of
up-to-date partitions; the recovering replica uses these digests to check if its copies of the partitions
are correct.

The recovering replica starts by computing the partition digests for all meta-data assuming that
the digests for the pages match the values it stores. Then, it initiates a state transfer as described
above except that the valuelefin thefirst fetch message for each meta-data partition is seflto
This ensures that the meta-data replies include digests for all sub-partitions.

The replica processes replies to fetch messages as described before but, rather than ignoring
up-to-date partitions, it checks if the partition digests match the ones it has recorded in the partition
tree. If they do not, the partition is queued for fetching as if it was out-of-date; otherwise, the
partition is queued for checking.

69

Partition checking is overlapped with the time spent waiting for fetch replies. A replica checks
a partition by computing the digests for each of the partisgrages and by comparing those digests
with the ones in the partition tree. Those pages whose digests do not match are queued for fetching.

5.4 Non-Determinism

State machine replicas must be deterministic but many services involve some form of non-
determinism. For example, the time-last-nfoetil in a distributedile system is set by reading

the servéss local clock; if this were done independently at each replica, the states of non-faulty

replicas would diverge. This section explains how to extend the algorithm to allow replication of

such services.

The idea is to modify the service code to remove the computations that make non-deterministic
choices. Replicas run a protocol to agree on the value of these choices for each operation and this
value is passed as an argument to the operation. In general, the client cannot select the value because
it does not have enough information; for example, it does not know how its request will be ordered
relative to concurrent requests by other clients. Instead the primary selects the value independently
or based on values provided by the backups.

If the primary selects the non-deterministic value independently, it concatenates the value with
the associated request batch and sends the value and the batch in a pre-prepare message. Then, it
runs the three phase protocol to ensure that non-faulty replicas agree on a sequence number for the
request batch and the value. This prevents a faulty primary from causing replica state to diverge
by sending different values to different backups. However, a faulty primary might send the same,
incorrect, value to all backups. Therefore, when the backups are about to execute the request,
they check the value proposed by the primary. If this value is correct, they execute the request;
otherwise, they can choose an alternative or reject the request. But they must be able to decide
deterministically whether the value is correct (and what to do if it is not); their decision must be
completely determined by the service state and operation arguments.

This protocol is adequate for most services (including the NFS service in Section 6.3) but
occasionally backups must participate in selecting the values to satisfy a serpedication,

e.g., in services that generate a timestamp that must be close to real time. This can be accomplished
by adding an extra phase to the protocol: the primary obtains authenticated values proposed by the
backups, concatenateg 2 1 of them with the associated request batch, and starts the three phase
protocol for the concatenated message. Replicas choose the value by a deterministic computation
onthe Z¥ + 1 values and their state, e.g., taking the median ensures that the chosen value is between
the values proposed by two non-faulty replicas.

It may be possible to optimize away the extra phase in the common case. For example, if
replicas need a time value that“islose enoughto that of their local clock, the extra phase can

70

be avoided when their clocks are synchronized within some delta. Replicas can check the value
proposed by the primary in the pre-prepare message and reject this message if the value is not close
to their local clock. A primary that proposes bad values is replaced as usual by the view change
mechanism.

5.5 Defenses Against Denial-Of-Service Attacks

The most important defense against denial-of-service attacks is to avoid making synchrony as-
sumptions. BFT does not rely on any synchrony assumption to provide safety. Therefore, a
denial-of-service attack cannot cause a replicated service to return incorrect replies. But it can
prevent the service from returning replies by exhausting resources at the replicas or the network.

We implemented several defenses to make denial-of-service attacks harder and to ensure that
systems can continue to provide correct service after an attack ends. The ideais to manage resources
carefully to prevent individual clients or replicas from monopolizing any resource. The defenses
include using inexpensive message authentication, bounding the rate of execution of expensive
operations, bounding the amount of memory used, and scheduling client requests fairly.

Replicas only accept messages that are authenticated by a known client or another replica; other
messages are immediately rejected. This can be ddicéeeafly because most message types use
MACSs that are inexpensive to compute. The only exception are new-key messages and recovery
requests, which are signed using public-key cryptography. Since correct replicas and clients only
send these messages periodically, replicas can discard these messages without even checking their
signatures if the last message from the same principal was processed less than a threshold time
before. This bounds the rate of signature freation and the rate at which authentic messages from
faulty principals are processed, which is important because they they are expensive to process.

The amount of memory used by the algorithm is bounded: it retains information only about
sequence numbers between the low and high water mark in the log, and it bounds the amount of
information per sequence number. Additionally, it bounds the fraction of memory used on behalf of
any single client or replica. For example, it retains information about a single pre-prepare, prepare,
or commit message from any replica for the same view and sequence number. This ensures that the
algorithm always has enough memory space to provide service after an attack ends.

To ensure that client requests are scheduled fairly, the algorithm maintains a FIFO queue for
requests waiting to be processed and it retains in the queue only the request with the highest
timestamp from each client. If the current primary does not schedule requests fairly, the backups
trigger a view change. The algorithm defends against attacks that replay authentic requests by
caching the last reply sent to each client and the timestampf the corresponding request.
Requests with timestamp lower thaare immediately discarded and replicas use the cached reply
to handle requests with timestampfficiently.

71

Chapter 6

TheBFT Library

The algorithm has been implemented as a generic program library with a simple interface. The
library can be used to provide Byzantine-fault-tolerant versions of different services. Section 6.1
describes the libratg implementation and Section 6.2 presents its interface. We used the library to

implement a Byzantine-fault-tolerant NFi& system, which is described in Section 6.3.

6.1 Implementation

The library uses a connectionless model of communication: point-to-point communication between
nodes is implemented using UDP [Pos80], and multicast to the group of replicas is implemented
using UDP over IP multicast [DC90]. There is a single IP multicast group for each service, which
contains all the replicas. Clients are not members of this multicast group (unless they are also
replicas).

The library is implemented in C++. We use an event-driven implementation with a structure
very similar to the I/O automaton code in the formalization of the algorithm in Section 2.4. Replicas
and clients are single threaded and their code is structured as a set of event handlers. This set
contains a handler for each message type and a handler for each timer. Each handler corresponds
to an input action in the formalization and there are also methods that correspond to the internal
actions. The similarity between the code and the formalization is intentional and it was important:
it helped identify several errors in the code and omissions in the formalization.

The event handling loop works as follows. Replicas and clients waitselaect call for a
message to arrive or for a timer deadline to be reached and then they call the appropriate handler.
The handler performs computations similar to the corresponding action in the formalization and
then it invokes any methods corresponding to internal actions whose pre-conditions become true.
The handlers never block waiting for messages.

We use the SFS [MKKW99] implementation of a Rabin-Williams public-key cryptosystem
with a 1024-bit modulus to establish 128-bit session keys. All messages are then authenticated
using message authentication codes computed using these keys and UMAC3298HKlessage

72

digests are computed using MD5 [Riv92].

The implementation of public-key cryptography signs and encrypts messages as described

in [BR96] and [BR95], respectively. These techniques are provably secure raritlem oracle

model [BR95]. In particular, signatures are non-existentially forgeable even with an adaptive chosen

message attack. UMACS32 is also provably secure in the random oracle model. MD5 should still

provide adequate security and it can be replaced easily by a more secure hash function (for example,

SHA-1 [SHA94]) at the expense of some performance degradation.

We have described our protocol messages at a logical level without specifying the size or layout

of the differentfields. We believe that it is premature to specify the detailed format of protocol

messages without further experimentation. But to understand the performance results in the next

two chapters, it is important to describe the format of request, reply, pre-prepare, and prepare

messages in detail. Figure 6-1 shows these formats in our current implementation.

0

32

request

Reg | flags | size

MD5(cid #rid # op)

cid

replier| opsz |
rid

op
(opsz byteslong)

auth(request header)

0

32

pre—prepare

PPrep | flags | size

view

sequence number

M D5(pr e—prepar e payload)

iregsz

ireqs
(iregsz byteslong)

sregs
(sreqno M D5 digests)

(ndetsz byteslong)

|sregno| ndetsz | :

1

1

|
ndet I
|
auth(pre—prepare header) !
1

‘ request
: header

: pre—prepare
: header

pre—prepare
payload

reply

0
prepar e prep [flags|

63.,

0 32
Rep | flags | size
view
rid
MD5(res)
replica | ressz

X res
! (ressz byteslong)

UMAC32(reply header)

32

size

view

seguence humber

M D5(pre—prepar e payload)

0 padding

replica |

, auth(prepar e header)

Figure 6-1: Message formats.

: reply
: header

: prepare
: header

All protocol messages have a generic 64-bit header, which contains a tag that identifies the

message type, a set of flags that are type specific, and the total size of the message. The generic

header is part of a type-specific header, which has a fixed size for each type.

73

The request header includes an MD5 digest of the string obtained by concatenating the client
identifier, the request identifier (timestamp), and the operation being requested. The header also
includes the identifier of the designated replier (that is the replica chosen to return the result in the
digest-replies optimization), the size of the operation in bytpsz, the client identifiercid, and
the request identifierid. The flags in the request header indicate whether to use the read-only
optimization and whether the request contains a signature or an authenticator. In the normal case, all
requests contain authenticators. In addition to the header, the request message includes a variable
size payload with the operation being requested and an authenticator. The authenticator is composed
of a 64-bit nonce, and 64-bit UMAC32 tags that authenticate the request header (whier¢he
number of replicas). When a replica receives a request, it checks if the corresponding MAC in the
authenticator and the digest in the header are correct.

The primary assigns a sequence number to a batch of requests and sends a pre-prepare message.
The pre-prepare header includes the primary’s view number, the sequence number, an MD5 digest of
the pre-prepare payload, the number of bytes in requests inlined in the méssgmgethe number
of digests of requests that are not inlinegigno, and the number of bytes in the non-deterministic
value associated with the batalidetsz The variable size payload includes the requests that are
inlined, iregs, the digests in the headers of the remaining requests in the saécl, and the
non-deterministic choiceadet. Additionally, the message includes an authenticator with a nonce,
andn — 1 UMACS32 tags that authenticate the pre-prepare header.

The current implementation limits the total size of pre-prepare messages to 9000 bytes (to fit in
a UDP message in most kernel configurations) and the number of request digests to 16 (to limit the
amount of storage used up by the log). This limits the batch size.

When the backups receive a pre-prepare message they check if the corresponding MAC in the
authenticator and the digest in the header are correct. They also check the requests that are inlined
in the message. The requests that are transmitted separately are usually checked in parallel by the
primary and the backups.

If the backups accept the pre-prepare message and they have already accepted the requests in
the batch that are transmitted separately, they send a prepare message. The prepare header includes
the view number, the sequence number, an MD5 digest of the pre-prepare payload, the identifier of
the backup, and it is padded with O’s to a 64-bit boundary. The message has an authenticator with a
nonce, and» — 1 UMAC32 tags that authenticate the prepare header. When the replicas receive a
prepare message, they check the corresponding MAC in the authenticator.

Once the replicas have the pre-prepare and at Iggstebare messages with the same digest in
the header, they execute all operations in the batch tentatively and send a reply for each of them. The
reply header includes the view number, the request identifattran MD5 digest of the operation
result, the identifier of the replica, and the size of the result in by#ssz. Additionally, the reply
message contains the operation result if the replica is the designated replier. The other replicas omit

74

the result from the reply message and set the result size in the header to -1. Reply messages contain
a single UMAC32 nonce and tag that authenticates the reply header. The client checks the MAC in
the replies it receives and it also checks the result digest in the reply with the result.

Note that the MACs are computed only over the fixed-size header. This has the advantage of
making the cost of authenticator computation, which grows linearly with the number of replicas,
independent of the payload size (e.g., independent of the operation argument size in requests and
the size of the batch in pre-prepares).

6.2 Interface

We implemented the algorithm as a library with a very simple interface (see Figure 6-2). Some

components of the library run on clients and others at the replicas.

Client:
int Byz_.init_client(char *conf);
int Byz.invoke(Byzreq *req, Byzrep *rep, bool ro);

Server:
int Byz.init_replica(char *conf, char *mem int size, proc exec, proc nondet);
void Byz_nodi fy(char *nod, int size);

Server upcalls:
int execute(Byzreq *req, Byzrep *rep, Byz_buffer *ndet, int cid, bool ro);

i nt nondet (Seqno seqno, Byz.req *req, Byz_buffer *ndet);

Figure 6-2: The replication library API.

On the client side, the library provides a procedure to initialize the client using a configuration
file, which contains the public keys and IP addresses of the replicas. The library also provides a
procedureinvoke, that is called to cause an operation to be executed. This procedure carries out the
client side of the protocol and returns the result when enough replicas have responded. The library
also provides a split interface with separate send and receive calls to invoke requests.

Onthe server side, we provide aninitialization procedure that takes as arguments: a configuration
file with the public keys and IP addresses of replicas and clients, the region of memory where the
service state is stored, a procedure to execute requests, and a procedure to compute non-deterministic
choices. When our system needs to execute an operation, it does an upcadkttteprocedure.
The arguments to this procedure include a buffer with the requested operation and its arguments,
req, and a buffer to fill with the operation resuttep. The execute procedure carries out the
operation as specified for the service, using the service state. As the service performs the operation,
each time it is about to modify the service state, it callatbdify procedure to inform the library of
the locations about to be modified. This call allows us to maintain checkpoints and compute digests
efficiently as described in Section 5.3.2.

Additionally, theexecute procedure takes as arguments the identifier of the client who requested

75

the operation and a boolean flag indicating whether the request was processed with the read-only
optimization. The service code uses this information to perform access control and to reject
operations that modify the state but were flagged read-only by faulty clients. When the primary
receives a request, it selects a non-deterministic value for the request by making an upcall to the
nondet procedure. The non-deterministic choice associated with a request is also passed as an
argument to thexecute upcall.

6.3 BFS. A Byzantine-Fault-tolerant File System

We implemented BFS, a Byzantine-fault-tolerant NFS§5] service, using the replication library.

BFS implements version 2 of the NFS protocol. Figure 6-3 shows the architecture of BFS. A
file system exported by the fault-tolerant NFS service is mounted on the client machine like any
regular NFS file system. Application processes run unmodified and interact with the mounted file
system through the NFS client in the kernel. We rely on user letal processes to mediate
communication between the standard NFS client and the replicas. A relay receives NFS protocol
requests, calls thiewoke procedure of our replication library, and sends the result back to the NFS
client.

replica0

snfsd

replication
library

client

v

kernel VM

relay
Andrew

benchmark replication
library _
replican

\ kernel NFSclient snfsd

replication
library

\ kerne VM "’

Figure 6-3: BFS: Replicated File System Architecture.

Each replica runs a user-level process with the replication library and our NFS V2 daemon,
which we will refer to asnfsd (for simplenfsd). The replication library receives requests from the
relay, interacts wittenfsd by making upcalls, and packages NFS replies into replication protocol
replies that it sends to the relay.

We implementednfsd using a fixed-size memory-mapped file. All the file system data struc-
tures, e.g., inodes, blocks and their free lists, are in the mapped file. We rely on the operating
system to manage the cache of memory-mapped file pages and to write modified pages to disk

76

asynchronously. The current implementation uses 4KB blocks and inodes contain the NFS status
information plus 256 bytes of data, which is used to store directory entries in directories, pointers
to blocks in files, and text in symbolic links. Directories and files may also use indirect blocks in a
way similar to Unix.

Our implementation ensures that all state machine replicas start in the same initial state and are
deterministic, which are necessary conditions for the correctness of a service implemented using
our protocol. The primary proposes the values for time-last-modified and time-last-accessed, and
replicas select the larger of the proposed value and one greater than the maximum of all values
selected for earlier requests. The primary selects these values by executing the upcall to compute
non-deterministic choices, which simply returns the resugjetft i meof day in this case.

We do not require synchronous writes to implement NFS V2 protocol semantics because BFS
achieves stability of modified data and meta-data through replication as was done in HarffLIGG
If power failures are likely to affect all replicas, each replica should have an Uninterruptible Power
Supply (UPS). The UPS will allow enough time for a replica to write its state to disk in the event of
a power failure as was done in Harp [LG@&1].

77

Chapter 7

Perfor mance M odel

Analytic models are invaluable to explain the results of experiments and to predict performance
in experimental conditions for which no measurements are performed. But care must be taken to
ensure that they match reality. This chapter develops an analytic model for the performance of
replicated services implemented using the BFT library. We validate the model by showing that it
predicts the experimental results in the next chapter with accuracy. The model ignores the cost of
checkpoint management, view changes, key refreshment, and recovery; these costs are analyzed in
the next chapter.

7.1 Component Models

The experimental results show that the time to execute operations on a replicated service has three
major components: digest computation, MAC computation, and communication.

7.1.1 Digest Computation

The model for the time to compute digests is simple. It has only two parameters: a fixe® gost,
and a cost per bytd),,. The time to compute the digest of a string withytes is modeled as:

TD(l) = Dy + D, x 1

This model is accurate for the MD5 [Riv92] cryptographic hash function, which is used in the
current implementation of the BFT library. Another model parameter related to digest computation
is the size of digests in byteSD.

7.1.2 MAC Computation

We intended to use a similar model for the time to compute MACs but our experimental results
showed that such a model would be extremely inaccurate for small input strings. Instead, we
measured the time to compute a MAC in microsecomti¥/), for each string size dfbytes. This

was feasible because our current implementation only computes MACs on strings with one of two
constant sizes (40 or 48 bytes).

78

The size of MACs in bytes iSM = SMN + SMT, whereSMN is the size of the MAC nonce and
SMT is the size of the MAC tag (both 8 bytes in UMAC32 [BHRY]).

Replies contain a single MAC but other messages contain authenticators. Authenticators have
a MAC for each replica except that when the sender is a replica they do not have a MAC for the
sender. Thus, the time to generate an authenti@@avin microseconds is modeled as:

TGA.(I,n) = n x TM(l), for a client or

TGA.(I,n) = (n — 1) x TM(I), for a replica.
Herel is the size of the string the MAC is computed on anid the number of replicas. The time
to verify an authenticator is modeled as:

TVA(l) = TM(I), for a client or a replica.

Since the library uses a single nonce for all the MACs in an authenticator, the size of an
authenticator in bytes is given by the formula:

SA.(n) = n x SMT + SMN, for a client or

SA,(n) = (n — 1) x SMT + SMN, for a replica.

7.1.3 Communication

The performance model for communication assumes that each client and each replica is connected
by a dedicated full-duplex link to a store-and-forward switch. All the links have the same bandwidth
and the switch can forward both unicast and multicast traffic at link speed. The model assumes that
the propagation delay on the cables connecting the hosts to the switch is negligible. The switch
does not flood multicast traffic on all links; instead multicast traffic addressed to a group is only
forwarded on the links of hosts that are group members. The model also assumes that messages
are not lost; this is reasonable when the loss rate (due to congestion or other causes) is sufficiently
low not to affect performance. These assumptions match our experimental environment, which is
described in Section 8.1.

The first attempt to model the communication time used a fixed €gsand a cost per byté€;,:
the time to send a message withytes between two hosts was modeled&s(l) = Cy + C, x .
Unfortunately, this simple model does not separate the time spent at the hosts from the time spent
in the switch. Therefore, it cannot predict the communication time with accuracy when multiple
messages are sent in parallel or when a message is fragmented. To avoid this problem, we broke
communication time into time spent in the switch, and time spent computing at each of the hosts.

The model for the time spent in the switch has two parameters: a fixed cost in microseconds,
S, and a variable cost in microseconds per byte, The fixed cost is the switch latency and the
variable cost is the inverse of the link bandwidth.

The actual time spent in the switch by a frame sent between hosts depends on the load on the
switch. It always takes the switc$i, x I microseconds to receive all the bits in the frame. Since
the switch is store-and-forward, it waits until it receives all the bits before forwarding the frame

79

on an output link. Then, it takes an additiortgd microseconds before forwarding the frame. If
the output links are free, it take®, x [microseconds to forward the frame. Otherwise, there is an
additional delay while other frames are forwarded.

The model for the computation time at the hosts also has two paraméfters:a fixed cost in
microseconds an#f, is the cost per byte. The computation tiriél(/), to send a frame dfbytes
is modeled as:

TH(l) = Hy + H, x |
The computation time to receive a frameldfytes is assumed to be identical for simplicity. The
accuracy of the model suggests that this is reasonable in our experimental environment.

Combining the two models yields the following total communication time for a franh&@ytes
without congestion:

TC(l) = Sy + 25, x 1 + 2TH(1)
When several messages are sent in parallel, it is necessary to reason how the computation times at
the hosts and the switch overlap in order to compute the total communication time. For example,
Figure 7-1 shows a time diagram for the case whehests send frames obytes in parallel to the
same host. The communication time in this case is:

TCpar(l,n) = 2TH(I) + S¢ + 25, x I + (n — L)maz (S, x I, TH(I))
It is necessary to take the maximum because the receiver can process frames only after it receives
them but it may take longer for the receiver to process a frame than its transmission time.

sender 1 TH® |

link 1 | Sf+5\/xl_

sender 2 TH() | .

link 2 | Sf+5\IX|A
: o
: 5 o

sender n TH(I) :

link n Sf+Svxl

: n-1

: AN —

; Y
receiver link i Svxl | Svxl L J svxl
receiver TH() | | TH() o o0 TH()

— g
g

Figure 7-1: Performance model: time to senftames withl bytes in parallel.

The model uses frames rather than messages to compute the communication time. To complete
the model, it is necessary to define a mapping between the messages sent by the library and the

80

frames actually sent on the wire. These differ because messages may be fragmented into several
frames and frames include additional protocol headers and trailers. For example, IP fragments UDP
messages sent over Ethernet when their size is greater than 1472 bytes. Wé\Béfjrees the

number of fragments for a messagé bfjtes. The message hdB(/) — 1 fragments whose frames

have the maximum siz&dJFS and one fragment that contains the remaining bytes. The function
RFS() returns the frame size of the fragment that contains the remaining bytes. The mapping
between messages and frames is used next to derive an expression for the communication time of
fragmented messages.

[7oy]
sender
[St+svxRFS()] SVXMFS | s [svxMmFs |

sender link

[svxRFS() | [SvxMFs | co e [SyxMFs |
receiver link

TH(RFS(1)) [THMFS) | cee [THMES) |
receiver /
—
NF(1)-2

Figure 7-2: Performancemodel: timeto send amessagewith [/ bytesthat isfragmented. I’ isthesize
of the message plus the number of bytes of protocol overhead (I" = RFS(!) + (NF(I) — 1) x MFS).

Figure 7-2 shows a time diagram for the case where a host sends a message of [bytes that is
fragmented. Thisfigure assumesthat the small fragment is sent first asit isdonein the Linux kernel
in our experimental setup. The figure aso reflects the fact that in Linux the sender performs almost
al the computation before the first fragment is sent on the wire. The communication time in this
caseis:

TCrag(l) = TH(RFS(D) + (NF(I) — 1) x MFS) + S + 25, x RFS()

+maz(S, x (2MFS— RFS(1)), TH(RFS(1)))
+(NF(1) — 2) x maz(S, x MFS TH(MFS)) + TH(MFS)

7.2 Protocol Constants

Table 7.1 describes several constantsthat are characteristic of the protocol used by the BFT library
and independent of the experimental environment. These constants appear in the analytic models
for latency and throughput presented in the following sections.

7.3 Latency

We will now derive amodel for the latency of the replicated service using the component models
presented in the previous section. We will start with read-only operations because they are simpler.

81

name

value description

RID
REQH
REPH
PPH
PH

12 bytes | sum of the sizes of the client and request identifiers
40 bytes | size of request message header

48 bytes | size of reply message header

48 bytes | size of pre-prepare message header

48 bytes | size of prepare message header

Table 7.1: Protocol Constants

7.3.1 Read-Only Operations

Figure 7-3 shows a timing diagram for a read-only operation. The client starts by digesting the

operation argument, the client identifier, and the request identifier. Then, it places the resulting

digest in the request header and computes an authenticator for the header that is appended to the

request message. Next, the request is sent to all the replicas. The replicas check the authenticator

and the digest. |f the message passes these checks, the replicas execute the operation. The reply

message includes a digest of the operation result in its header and a MAC of the header. After

building the reply messages, the replicas send them to the client.

~ Tro g
Tfeq Trep
: <_Cr§r -— Cr?
TSR S L .
+ TGAC(REQH,n)
client
I'%(\fe/'\'()gg)%) TE | TD(r)+TM(REPH)
primary : é : :
\ IQ(\',?/L'(DQS)QH) TE | TD(r)+TM(REPH) /
backup 1 : i ;
° °
PY : : : [J
° I'%(\fe/'\'()gg)%) TE | TD(r)+TM(REPH))
backup 3f

Figure 7-3: Performance model: read-only requests. Here, a is the size of the argument to the
regquested operation, r isthe size of the operation result, and n isequal to 3f + 1.

The total time to execute a request is the sum of the time 7;.., until a request is ready for

execution at the replicas, the execution time TE, and the time 7., from the execution of the request

till the client receives enough replies.

Tro(a,r,n) = Treg(a,n) + TE+ Trep(r, n)

82

Treq(a,n) = 2TD(RID + a) + TGA.(REQH, n) + TVA(REQH) + Cy¢q4(a, n)

Trep(r,n) = TD(r) + TM(REPH) 4 Cpep(r, 1)

Here, a isthe size of the operation argument, r is the size of the operation result, n isthe number of
replicas, and Cy, and C,., are the communication time for the request and the replies, respectively.

The communication time for the request depends on whether the request is fragmented or not.
It isgiven by the formula:

Creq(a,n) = TC(RFS(REQS(a, n))), if NF(REQS(a,n)) =1

TCtrqg(REQS(a, n)), otherwise.

with REQS(a,n) = REQH + a + SA.(n) (i.e, the request size).

The communication time for replies also depends on the size, r, of the operation result. There
are three cases. Figure 7-4 depicts the first case where r is sufficiently large that digest replies
are used but small enough that the reply with the operation result is not fragmented. The Figure
assumes that the reply with the result is scheduled last on the client link. This overestimates the
communication cost; latency may be lower if thisreply is one of thefirst 2f + 1 to be scheduled.

TH(REPW)

replica0
[Sf + Sv X REPW
link O
TH(REPDW)
replical
S + Sv x REPDW
R . link 1
° []
TH(REPDW) * *
replica 3f
S + Sv x REPDW
3f link 3f
L
| syxREPDW | ® @ @ [syxREPDW | Sv x REPW |
client link
{TH(REPDW)+TM(REPH)| @ ® @ [TH(REPDW) | [THREPw) [TD(r)+TM(REPH)]
client 7
3f

Figure 7-4: Communication time for repliesthat are not fragmented. REPW is the size of the reply
frame with the result of the operation and REPDW isthe size of aframe with adigest reply.

The communication time in this caseis:
Ci(r,n) = max(TH(REPW(r)) + Sy + S, x REPW(r), TH(REPDW) + S + (3f + 1)S, x REPDW)
Cy(r,n) = max(Ci(r,n) + S, x REPW(r),

TH(REPDW) + S; + 25, x REPDW + 3fTH(REPDW) + 2fTM(REPH))
Crep(r,n) = Co(r,n) + TH(REPW(r)) + TD(r) + TM(REPH)
REPW(r) = RFS(REPH + r + SM) isthe size of the reply frame with the result of the operation,
REPDW = RFS(REPH + SM) is the size of aframe with a digest reply, C; is the time when the
frame with the result starts being forwarded on the client link, and C5 is the time when the client
starts processing this frame. These formulas account for the overlap between the time to verify the

83

MACsin replies and communication.

In the second case, the reply message with the result is fragmented. To derive the formula
for Cr.p inthis case, we combine the last formula with the formula for TCy,,,. We assume that
the time between the instants the first bit of the first fragment and the last bit of the last fragment
are forwarded on the client link is S, x NF(REPH + » + SM) x MFS This was always true in
Figure 7-2 but here the time may be smaller if congestion dueto the other replies delays forwarding
for sufficiently long (this only happensfor f > 6 in our experimental setup).

Thevalue of C;, with fragmentation is given by the following formulas:

Cs(r,n) = max(TH(RFS(REPS(r)) + (NF(REPS(r)) — 1)MFS) + S; + S, x RFSREPS(r)),
TH(REPDW) + Sy + (3f + 1)S, x REPDW)
Cy(r,n) = max(Cs(r,n) + S, x RFS(REPS(r)),
TH(REPDW) + Sy + 25, x REPDW + 3f TH(REPDW) + 2fTM(REPH))
Cs(r,n) = max(Cy(r,n) + THRFSREPS(r))) + (NF(REPS(r)) — 2)TH(MFS),
Cs(r,n) + S, x NF(REPS(r)) x MFS))
Crep(r,n) = Cs(r,n) + THMFS) + TD(r) + TM(REPH)
Here, REPS(r) = REPH + r + SM, C3 isthe time when thefirst fragment startsto be forwarded on
the client link, Cj isthe time when the client starts to processthe first fragment, and Cs isthe time
when the client starts to processthe last fragment.

The third case occurs when r is less than a threshold (currently 33 bytes). In this case, all
replicas send replies with the operation result instead of using the digest replies optimization. Since
al replies have the same size and are not fragmented, we use the formula for 7°C,,, modified to
account for the overlap between MAC computation and communication. The value of C.p, is:

Chrep(ryn) = 2TH(REPW(r)) + Sy + 25, x REPW(r)

+2f x maz(S, x REPW(r), TH(REPW) + TM(REPH)) + TD(r)

7.3.2 Read-Write Operations

Next, we derive amodel for read-write operations. There are two cases depending on the size of the
operation argument. If the size of the argument is less than a threshold (currently 256 bytes), the
client sends the request only to the primary and the request is inlined in the pre-prepare message.
Otherwise, the client multicasts the request to al replicas and the pre-prepare message includes
only the digest of the request. Figure 7-5 shows atime diagram for the second case.

Thefirst part of the read-write algorithm is identical to the read-only case. Thus, 7., can be
computed using the same formula. After checking the request, the primary computes the digest of
the digest in the request header. Then, it constructs a pre-prepare message with the resulting digest
in its header and an authenticator for the header. The backups check the pre-prepare message by
verifying the authenticator and recomputing the digest. If they accept the pre-prepare and aready
have a matching request, they build a prepare message with an authenticator and send it to all other

84

req prep Trep
= Cop~ ~— Cy—= '

FFGATERT] g o
+ TDEéD) " : TE l
1\4’3((';5')*) | TGA(PH,n) TE
_ : _ e
° F—— | TVA(PPH) | ey [""""" B .
° 4 +7D(SD) | TCAPH.N) TE o
backup 3f

Figure 7-5: Performance model: read-write requests.

replicas. After replicas have prepared the request, they execute it and the algorithm proceeds asin
the read-only case; T}, is given by the same formulas.

The total time to execute the read-write request in the figure is the sum of 7;..,, the time Ty,
from the moment the primary starts to build the prepare message till the request is prepared, the
executiontime TE, and T.p:

Trw(a,r,n) = Treg(a,n) + Tprep(a,n) + TE + Trep(r, n)

Tprep(a,n) = 2TD(SD) + TGA,.(PPH,n) + TVA(PPH, n)

+TGAr(PH,n) 4 Cpp(a,n) 4 Cp(n)

The communication time for the pre-prepare message, Cp,(a,), is computed using aformula
similar to Crgq; itis:

Cpp(a,n) = TC(RFS(PPY(a,n))), if NF(PPS(a,n)) = 1

TCfrag(PPS(a, n)), otherwise.

with PPS(a,n) = PPH + SD + SA,.(n) (i.e, the pre-prepare size).

The communication time for prepare messagesis similar in structure to T'Cy,, but it accounts
for the overlap between authenticator verification and computation:

Cp(n) = 2TH(PW(n)) + Sf + 25, x PW(n)

+maz((3f — 1)(S, x PW(n)), (3f — 1)TH(PW(n)) + (2f — 1)TVA(PH)) + TVA(PH)
with PW(n) = RFS(PH + SA.(n)) (i.e., the prepare size on the wire).

The case when requests are inlined in the pre-prepare message is similar. The differences are
that Cy,, increases becausethe pre-prepare messageisbigger and that backupsonly check the request
when they receive the pre-prepare message. The resulting formulas are:

Tprep(a,n) = 2TD(SD) + TGA,.(PPH, n) + TVA(PPH, n) + TD(RID + a) + TVA(REQH)

+TGAr(PH,n) 4 Cpp(a,n) + Cp(n)

85

Cpp(a,n) = TC(RFS(PPS(a,n))), if NF(PPS(a,n)) =1
TCfrag(PPS(a, n)), otherwise.
with PPS(a, n) = PPH + REQS(a, n) + SA.(n)

7.4 Throughput

We obtain a model for the throughput of a replicated system by developing a model for the time
to process a batch of requests. This model is based on the latency models in the previous section
but it has two additional parameters: the batch size b and the number of client machines m. Each
client sendsb/m of the requestsin the batch. For simplicity, we assumethat all the clients send the
reguests at the sametime.

7.4.1 Read-Only Requests

We start with read-only requests again because they are simpler. The strategy is to split the total
time, T°

ro’

into the sum of two components: the time to get the requests ready to execute at the
replicas, T,f’eq, and the time to execute the requests and get the repliesto the clients, Te”rep. Thevalue
of each of these componentsis obtained by taking the maximum of the computation times over all
the nodes and the communication times over all the links. An accurate model for latency requires
careful reasoning about scheduling of communication and computation at the different components
but taking the maximum is a good approximation for large request batches.

We use Figure 7-3 and the formulas for 7., in the previous section to derive the following
formulasfor T2,

req*

T},,.(a,n,b,m) = b x (TD(RID + a) + TGA.(REQH, n) + TH(REQW(a, 1)) /m

T}, (a,n,b,m) = b x (TD(RID + a) + TVA(REQH) + TH(RFS(REQS(a, n)))
+(NF(REQS(a,n)) — 1) TH(MFS))

TTbeqcl (a,n,b,m) =b xS, x REQW(a,n)/m

TP, (a,n,b,m)=">bx S, x REQW(a,n)

T€qdr;

Tb (a?n7B7m) = I'TE'>((:Z—‘I) (a7 n’ b7 m) Tb (a’n7 b? m) Tb (a7 n’ b7 m) Tb (a’n7 b? m))

req req, 'L req,. 1T reqy 'L req,,

with REQW(a, n) = RFSREQS(a, n)) + (NF(REQS(a,n)) — 1) x MFS,

Here, REQW is the number of bytes in frames that contain the request. T,!’eqc is the computation
time at each client; it is equal to the corresponding client computation time for a single request
multiplied by b/m (because each client sendsonly b/m requests). Replicasreceive all the requests
in the batch so their computation time is multiplied by b; this is reflected in the formula for the
computation time at each replica, T7I')eqr' Similarly only b/m requests flow over each client link
whereas b requests go through each replica’s link. Thisis accounted for in the formulas for T,!’eqcl :
which is the communication time at each client link, and T,f’equ, which is the communication time

at each replicalink.

86

T® . can be computed using the following formulas (ignoring the case without digest repliesto

erep

simplify the model):

T! . (r,n,b,m) = b x (TD(r) + (2f + 1)TM(REPH) + 3f x TH(REPDW)
‘ +TH(RFS(REPS(r))) + (NF(REPS(r)) — 1)TH(MFS))/m
T, (r,,b,m) = b x (TE+ TD(r) + TM(REPH)) + TH(REPW(r))b/n + TH(REPDW)(b — b/n)

TP . (r,n,b,m)=0bx S, x (REPW(r) + 3f x REPDW)/m

erep,;

1., (r,n,b,m) =S, x (REPW(r) x b/n+ REPDW x (b—b/n))

erep,;
Tebrep(r, n,B,m) = maX(TebTepC (r,n,b,m), Té’repr (r,n,b,m), Té’repd (r,n,b,m), Té’mp” (r,n,b,m))

REPW(r) and REPDW were defined previously; they are the number of bytesin frames with the
operation result and the number of bytes in frames with digest replies, respectively. Te”repc is the
computationtime at each client; it accountsfor receiving 31 + 1 replies, computing the result digest,
and authenticating 2 + 1 repliesfor each of the b/m requestssent by aclient. Each replicaexecutes
b requests and computes aresult digest and aMAC for thereply to each of them. But areplicaonly
sendsb/n replieswith the operation result; the other replies contain only digests. Thisisreflectedin
the formulafor 7

erep,.’

time at each client’slink, and 7%

erep,;

Using these formulas, we can now compute the time to execute the batch of read-only requests:

T? (a,7r,m,b,m) = T,f’eq(a, n,b,m) + Tebrep(r, n,b, m)

which is the computation time at each replica. Te”repcl is the communication
is the communication time at each replica’slink.

The throughput in operations per microsecond isb/T?,(a, r,n, b, m).

7.4.2 Read-Write Requests

The time to execute a batch of read-write requestsis split into the sum of three components: T,!’eq,
b ; b b b :
T¢yepr @nd thetimefor the batch of requeststo prepare, 75,,..,,- T}, and T,..,, can be computed using
the formulas derived for read-only requests. The formula for T,?rep isidentical to the formula for
Tprep €XCEpt that it accounts for the fact that the pre-prepare messageis sent for abatch of requests.

In the case where, requests are inlined in the pre-prepare message T,?rep is:
b _
T}..p(a,m,b) = b x (TD(RID + a) + 2TD(SD) + TVA(REQH))
+TGA,.(PPH, n) + TVA(PPH, n) + TGA,.(PH, n) + C’Il,’p(a, n,b) + Cp(n)
b _ i _
Ct,(a,n,b) = TC(RFSPPS(a, n,b))), if NF(PPS(a,n)) = 1
TCfrag(PPS (a,m, b)), otherwise.
PPS (a,n,b) = PPH + b x REQS(a,n) + SA.(n)

Here, PP (a, n, b) is the size of a pre-prepare message with b copies of requests for an operation
with argument size a; and C}, is the communication time for the message, which isidentical to Cp,,

except that the pre-prepare messageis larger.

87

There are two differenceswhen the requests are not inlined in the pre-prepare message: the size
of this message decreases because it includes only digests of the requests rather than copies; and
the backups check the requestsin parallel with the primary, which eliminatesb x (TD(RID + a) +
TVA(REQH))us. Thisisreflected in thefollowing formulasfor Tzﬁ’rep when requestsare not inlined:

T},ep(a,n,b) = 2b x TD(SD)
+TGA, (PPH, n) + TVA(PPH, n) + TGA,(PH, n) + C},(a, n,b) + Cp(n)
PPS(a,n,b) = PPH + b x SD + SA,(n)

These formulas alow us to compute the time to execute the batch of read-write requests:

wa(aa r,n,b, m) = Tﬁeq(aa n,b, m) + T]?rep(aa n, b) + Tebrep

The throughput in operations per microsecond isb/T?,(a, r, n, b, m).

(717 n) b7 m)

7.5 Discussion

The analytic model for latency has some properties that are worth highlighting:

e T,cq grows linearly with the number of replicas because of authenticator generation and
increased communication cost due to growth in the size of request authenticators. 7}, grows
linearly with the argument size due to increased communication and digest computation time
for regquests.

e T,.p, grows linearly with the number of replicas because each replica sends a reply to the
client. T,., aso grows linearly with the result size due to increased communication and
digest computation time for replies.

e T,rep is(Mostly) independent of argument and result sizes. However, it growswith the square
of the number of replicas because of the prepare messages that are sent in parallel by the
backups and contain authenticators whose size grows linearly with the number of replicas.

e The overhead introduced by adding additional replicas is (mostly) independent of operation
argument and result sizes.

The same observations are valid for the corresponding components in the throughput model.
According to thismodel, the only cost that grows with the square of the number of replicas, T;rep, is
amortized over thebatch size. Additionally, thecomputation timeat areplicaand the communication

timeinitslink decreaselinearly with the number of replicas (if there are more clientsthan replicas).

88

Chapter 8

Per for mance Evaluation

The BFT library can be used to implement Byzantine-fault-tolerant systems but these systems will
not be used in practice unless they perform well. This chapter presents results of experiments to
evaluate the performance of these systems. The results show that they perform well — systems
implemented with the BFT library have performance that is competitive with unreplicated systems.

We ran several benchmarks to measure the performance of BFS, our Byzantine-fault-tolerant
NFS. Theresults show that BFS performs 2% faster to 24% sl ower than productionimplementations
of the NFS protocol, which are used daily by many usersand are not replicated. Additionally, weran
micro-benchmarks to evaluate the performance of the replication library in a service-independent
way and to determine theimpact of each of our optimizations. We also measured performancewhen
the number of replicasincreases and we used the analytic model to study sensitivity to variationsin
the model parameters.

The experiments were performed using the setup in Section 8.1. We describe experiments
to measure the value of the analytic model parameters in Section 8.2. Section 8.3 uses micro-
benchmarks to evaluate the performance during the normal case without checkpoint management,
view changes, key refreshment, or recovery. Sections 8.4 and 8.5 present results of experimentsto
evaluate the performance of checkpoint management, and view changes, respectively. Section 8.6
studies the performance of the BFS file system with and without proactive recoveries.

The main resultsin this chapter are summarized in Section 8.7.

8.1 Experimental Setup

The experiments ran on nine Dell Precision 410 workstations with a single Pentium |11 processor,
512 MB of memory, and a Quantum Atlas 10K 18WLS disk. All machinesran Linux 2.2.16-3
compiled without SMP support. The processor clock speed was 600 MHz in seven machines and
700 MHz in the other two. All experimentsran on the slower machines except where noted.
Themachineswere connected by a100 M b/s switched Ethernet and had 3Com 3C905B interface
cards. Each machinewas connected by asingle Category 5 cableto afull-duplex port in an Extreme

89

Networks Summit48 V4.1 switch. Thisis a store-and-forward switch that can forward 1P unicast
and multicast traffic at link speed. Additionally, it performs IGMP snooping such that multicast
traffic isforwarded only to the members of the destination group. All experimentsran on anisolated
network and we used the Pentium cycle counter to measure time accurately.

The library was configured as follows. The checkpoint period, K, was 128 sequence numbers,
which causes garbage collection to occur several times in each experiment. The size of the log,
L, was 256 sequence numbers. The state partition tree had 4 levels, each internal node had 256
children, and theleaveshad 4 KB. Requestsfor operationswith argument size greater than 255 bytes
were transmitted separately; the otherswereinlined in pre-prepares. The digest replies optimization
was not applied when the size of the operation result was lessthan or equal to 32 bytes. Thewindow
size for request batching was set to 1.

8.2 Performance Modd Parameters

In order to use the analytic model to explain the experimental results in the next sections, it is
necessary to measure the value of each parameter in the model in our experimental setup. This
section describes experiments to measure these values.

8.21 Digest Computation

The BFT library uses the MD5 [Riv92] cryptographic hash function to compute digests. We ran
an experiment to measure the time to compute M D5 digests as a function of the input string. The
experiment was designed such that the input string was not in any of the processor caches before
being digested. Figure 8-1 presentsthe results.

50

w
°
c
g 40
o
S =
E
m
g 20 —e— measured
hand .
-g —s=— predicted
S
)
0 | RN [rrrTTTTTTT T T T T T T
0 1000 2000 3000 4000

input size (bytes)

Figure 8-1: Timeto compute MD5 digests as a function of theinput size.
We used a linear regression (least squares method) to compute the parameters Dy and D, in

90

the digest computation model. Table 8.1 showsthe valueswe obtained and Figure 8-1 shows digest
computation times predicted with TD(l) = Dy 4 D, x l. The predicted and measured values are
almost indistinguishable as evidenced by a high coefficient of determination (0.999).

parameter | value description
Dy 2.034 us time to digest O bytes
D, 0.012 us/byte | additional cost per byte
D 16 bytes digest size

Table 8.1: Digest computation model: parameter values

8.2.2 MAC Computation

The BFT library only computes MACs of message headers that have a constant size of either
40 or 48 bytes. We ran an experiment to measure the time to compute these MACs using the
UMAC32 [BHKT99] agorithm. The parameter values for the model are listed in Table 8.2.

parameter | value | description

TM(40) | 965ns | timeto MAC 40 bytes

TM(48) | 958ns | timeto MAC 48 bytes
SMT 8 bytes | sizeof MAC tag
SMN | 8bytes | sizeof MAC nonce

Table 8.2: MAC computation model: parameter values

8.2.3 Communication

The communication model is split into two components. time spent at the switch and time spent
a the hosts. To separate out these two components, we measured round-trip latency for different
frame sizeswith and without the switch. In the configuration without the switch, the two hostswere
connected directly by a crossover Category 5 cable.

According to our model, thetotal (one-way) communication time through the switch for aframe
of I byteswithout congestioniis:

TC(l) = S§+ 25, x 1 +2TH(l)
The same communication time without the switch is:

TC™(l) =S, x 1+ 2TH(I)
Therefore, the difference between the measured round-trip timesis:

(1) =2(rc(l) —TC™(1)) = 2(S5 + Sy x 1)

91

Thereasoning assumesthat the propagation delay onthe network cablesisnegligible. Thisisagood
assumption in our experimental environment; we use only Category 5 cables that add a maximum
delay of 0.011us per meter [Spu00] and our cables are significantly shorter than 10 meters.

We ran alinear regression with the values §(1) /2 obtained by dividing the difference between
the measured round-trip times by two. It yielded the values Sy = 9.79us and S, = 0.08us/B with
a coefficient of determination of 0.999. The high coefficient of determination showsthat the model
matches the experimental data and S, = 0.08us/B aso matches the nominal bandwidth of Fast
Ethernet.

With the value of S,, we computed TH (I) by subtracting S, x [from the round-trip time
measured without the switch and dividing the result by two. Finaly, we performed a linear
regression analysis on these values and obtained H; = 20.83us and H, = 0.011xs/B with a
coefficient of determination of 0.996. Table 8.3 shows the values of the parameters associated with
the communication model.

parameter | value description
Sy 9.79us switch latency
Sy 0.08us/byte | inverse of link bandwidth
Hy 20.83us host time to send O byte frame
H, 0.011us/byte | host time to send each additional byte
MFS 1514 bytes maximum size of frame with fragment

Table 8.3: Communication model: parameter values

To complete the communication model, it is necessary to define the functions that map between
messages and frames. These functions have the following valuesin UDP/IP over Ethernet:

NF(l) =1,if 1 < 1472

1+ [(I — 1472)/1480], otherwise
RFS(I) =1+ 42,if | < 1472
(I — 1472) mod 1480 + 34, otherwise

ThelP, UDP, and Ethernet headersand the Ethernet trailer sum 42 bytesin length. Themaximum
size for aframe is 1514 bytes. The fragment with the first bytes in the message has both IP and
UDP headers so it can hold 1472 message bytes. The other fragments do not have the UDP header
so they can hold up to 1480 message bytes.

We validated the communication model by comparing predicted and measured communication
times for various message sizes. Figure 8-2 shows both absolute times and the relative error of the
predicted values. The predicted values were obtained using: T'C(RF S(l)) for messages that are
not fragmented and T'C'y,q4(1) with fragmentation (these formulas are defined in Section 7.1.3).
The model is very accurate; it deviates at most 3.6% from the measured values and all the points

92

except the first have an error with absolute val ue less than 1%.

—~ 4+
. 1000 — O\o >
2 N -+~ predicted
g S L4 —=— measured
T |
o =
© © NS .
é .§ O b/ - -~ = " b ~ ~ " "
Q RN
: B .
.: Q_
o -2
2 >
g g [}
D = 4
0 | T T T T T T T T T T T T T T T T
0 2000 4000 6000 8000 0 2000 4000 6000 8000
message size (bytes) message size (bytes)

Figure 8-2: Communication time: measured and predicted val ues.

8.3 Normal Case

This section evaluates the performance during the normal case: there are no view changes or
recoveries, and MAC keys are not refreshed. It compares the performance of two implementations
of asimple service: one implementation, BFT, is replicated using the BFT library and the other,
NO-RERP, is not replicated and uses UDP directly for communication between the clients and the
server.

The simple service is really the skeleton of areal service: it has no state and the service
operations receive arguments from the clients and return (zero-filled) results but they perform no
computation. We performed experiments with different argument and result sizes for both read-
only and read-write operations. These experiments provide a service-independent eval uation of the
performance of the replication library.

Sections8.3.1 and 8.3.2 describe experimentsto eval uate thelatency and throughput of thesimple
replicated service, respectively. Section 8.3.3 evaluates the impact of the various optimizations on
performance. All these experiments use four replicas. In Section 8.3.4, we investigate the impact
on performance as the number of replicas increases. Finaly, Section 8.3.5 uses the analytic model
to predict performancein aWAN environment and in avery fast LAN.

8.3.1 Latency

We measured the latency to invoke an operation when the service is accessed by a single client.
All experiments ran with four replicas. Four replicas can tolerate one Byzantine fault; we expect
this reliability level to suffice for most applications. The results were obtained by timing a large

93

number of invocationsin three separate runs. We report the average of the three runs. The standard
deviations were aways below 3% of the reported values.

Varying Argument Size

Figure 8-3 shows the latency to invoke the replicated service as the size of the operation argument
increases while keeping the result size fixed at 8 bytes. It has one graph with elapsed times and
another with the slowdown of BFT relative to NO-REP. The graphs have results for both read-write
and read-only operations.

1500

—e— BFT read-write
-a- BFT read-only

w
'g] 3 --+-- NO-REP
c
1000 —
[&]
E 5
NG v
% 500
8
0 T T T T T T " T 0 T T T T T T T T
0 2000 4000 6000 8000 0 2000 4000 6000 8000
argument size (bytes) argument size (bytes)

Figure8-3: Latency with varying argument sizes: absolutetimesand slowdownrelativeto NO-REP.

The results show that the BFT library introduces a significant overhead relative to NO-REP
in this benchmark. It is important to note that this is a worst-case comparison; in real services,
computation or 1/O at the clients and serverswould reduce the slowdown (as shown in Section 8.6).
The two major sources of overhead are digest computation and the additional communication due
to the replication protocol. The cost of MAC computation is almost negligible (less than 3%).

The results show two major trends. the read-only optimization is very effective at reducing the
slowdown introduced by the BFT library; and the slowdown decreases significantly as the size of
the operation argument increases.

The read-only optimization improves performance by eliminating the time to prepare the re-
guests. The analytic model predicts that this time does not change as the argument size increases
(for argumentsgreater than 255 bytes). Thisisconfirmed by the experimental results: the difference
between the latency of read-only and read-write operations for the same argument size is approxi-
mately constant and equal to 225us. Therefore, the speed up afforded by the read-only optimization
decreasesto zero asthe argument sizeincreases: it reduceslatency by 52% with 8 B arguments but
only by 15% for 8 KB arguments.

94

The sowdown for the read-write operation decreases from 4.07 with 8 B arguments to 1.52
with 8 KB arguments and it decreases from 1.93 to 1.29 with the read-only optimization. The
decreased slowdown is also explained by the analytic model. The only component that changes as
the argument sizeincreasesis T4, whichisthetimeto get therequest to thereplicas. T;., increases
because the communication time and the time to digest the request grow with the argument size.
In our experimental setup, the communication time increases faster than the digest computation
time: communication increases0.011 + 0.08 = 0.091us per byte (the sum accountsfor the variable
cost at the sender and at the switch); and the digest computation time increases 2 x 0.012us
per byte (which accounts for the variable cost of computing the request digest at both the client
and the replicas). Since the communication cost of NO-REP also increases 0.091u5/byte, the
model predicts that the slowdown will decrease as the argument size increasestill an asymptote of
(0.091 + 2 x 0.012)/0.091 = 1.26, which is close to the experimenta results for the read-only
operation.

The performance model can predict theresultsin Figure 8-3 with very high accuracy. Figure 8-4
shows the error of the latency values predicted by the model relative to the values measured. The
absolute value of the error is always below 2.3%.

4

—e— predicted read-write
- =- predicted read-only

relative prediction error (%)

T T T T T T T T
0 2000 4000 6000 8000
argument size (bytes)

Figure 8-4: Latency model: relative prediction error for varying argument sizes.

Varying Result Sizes

Figure 8-5 shows the latency to invoke the replicated service as the size of the operation result
increases while keeping the argument size fixed at 8 B. The graphsin thisfigure are very similar to
the ones for varying argument size: they also show that the read-only optimization is effective at
reducing the slowdown introduced by the BFT library; and that the s owdown decreasessignificantly
as the size of the operation result increases. The major sources of overhead are again additional

95

communication and digest computation (this time for replies).

] 4

1500 —e— BFT read-write
] -a--BFT read-only
§ 3 --+-- NO-REP
g 1000—- _8
2 % 2
g %)
o]

0 ' ZOIOO ' 4OIOO ' 6OIOO ' 8000 0 ' ZOIOO ' 40IOO ' GOIOO ' 80IOO
result size (bytes) result size (bytes)
Figure 8-5: Latency with varying result sizes. absolute times and slowdown relative to NO-REP,

The impact of the read-only optimization can be explained exactly as before. In this case, the
difference between the latency of read-only and read-write operations for the same result size is
approximately constant and equal to 215us. The optimization also speeds up latency by 52% with
8 byte results but only by 15% for 8 KB results.

The dowdown for the read-write operation decreases from 4.08 with 8 B results to 1.47 with
8 KB resultsand it decreasesfrom 1.95 to 1.25 with the read-only optimization. The argument why
the slowdown decreasesis similar to the one presented for varying arguments. But, in this case, the
only component that changes as the result size increasesis 7., Which is the time to get the replies
to the client. 7}, grows as the result size increases due to the increased communication cost to
send the reply with the result to the client and due to the increased cost to compute the digest of
the result at the replicas and the client. Since the communication cost in NO-REP increases at the
same rate, the model predicts that the slowdown will decrease as the result size increases towards
the same asymptote as before (1.26); this prediction is close to the experimental results.

The performance model can also predict latency with varying result sizesaccurately. Figure 8-4
shows the error of the latency values predicted by the model relative to the values measured. The
absolute value of the error is always below 2.7% for all result sizes except for 64 and 128 bytes,
where it is as high as 11.5%. It is not clear why the model overestimates the latency for these
result sizes but it may be due to our pessimistic assumption that the reply with the complete result
is always scheduled last for forwarding on the client’s link.

96

1 —e— predicted read-write
I - =- predicted read-only
I --+-- measured

relative prediction error (%)

T T T T T T T T T
0 2000 4000 6000 8000
result size (bytes)

Figure 8-6: Latency model: relative prediction error for varying result sizes.

8.3.2 Throughput

This section reports the result of experiments to measure the throughput of BFT and NO-REP as
afunction of the number of clients accessing the simple service. The client processes were evenly
distributed over 5 client machines! and each client processinvoked operations synchronously, i.e.,
it waited for areply before invoking a new operation. We measured throughput for operations with
different argument and result sizes. Each operation type is denoted by a/b, where a and b are the
sizes of the argument and result in KB.

The experiment ran as follows: all client processes started invoking operations almost simulta-
neoudly; each client process executed 3K operations (where K was alarge number) and measured
thetime to executethe middle K operations. The throughput was computed as K multiplied by the
number of client processes and divided by the maximum time (taken over all clients) to complete
the K operations. This methodology provides a conservative throughput measurement: it accounts
for cases where clients are not treated fairly and take longer to complete the K iterations. Each
throughput value reported is the average of at |east three independent runs.

Figure 8-7 showsthroughput resultsfor operation 0/0. The standard deviation was always below
2% of the reported values. The bottleneck in operation 0/0 is the server's CPU. BFT has lower
throughput than NO-REP due to extra messages and cryptographic operations that increase the
CPU load. BFT's throughput is 52% lower for read-write operations and 35% lower for read-only
operations.

The read-only optimization improves throughput by eliminating the cost of preparing the batch
of requests. The throughput of the read-write operation improves as the number of clientsincreases

Two client machines had 700 MHz Pl11s but were otherwise identical to the other machines.

97

30000{‘%._.
o
c
O 4
§ 20000‘_!"l-iu—n—l——.—-.__.___.__-__.__'
g
= I NEPUIIDUIPUREE St S
5 :' ‘,,0""‘ *
g o —+— NO-REP
& 17 -=- BFT read-only
i --+-- BFT read-write

0 5|O' o '1(|)0' o '1EI'>O' o '2(|)0
number of clients

Figure 8-7: Throughput for operation 0/0 (with 8 byte argument and result).

because the cost of preparing the batch of requests is amortized over the size of the batch. In the
current implementation, the size of the batch is limited by how many requests can be inlined in
a pre-prepare message; this limit is equal to 101 requests for this operation. The average batch
size in this experiment is approximately equal to the total number of clients divided by two (with
the constraint that it is not greater than 101 requests). Therefore, the throughput of the read-write
operation increases as the client population grows up to 200 and then it saturates.

Figure 8-8 shows throughput results for operation 0/4. Each point is an average of fiveindepen-
dent runs for the read-write operation and ten for the read-only operation. The standard deviation
was below 4% of the reported values for the read-write operation but was as high as 18% for the

read-only operation.

8000 —
©
cC
o
§ 6000 |
O
o
(%))
€ 4000
o
=
g '#00«4-«w-«---0---«---«---0---‘---0---0
S 2000 —e— BFT read-only
- - BFT read-write
1 --+-- NO-REP
o""I""I""I""I
0 50 100 150 200

number of clients

Figure 8-8: Throughput for operation 0/4 (with 8 byte argument and 4 KByte result).

98

BFT hasbetter throughput than NO-REP. The bottleneck for NO-REP in operation 0/4 isthelink
bandwidth; NO-REP executes approximately 3000 operations per second, which saturates the link
bandwidth of 12 MB/s. BFT achieves better throughput because of the digest-replies optimization:
each client choosesonereplicarandomly; thisreplica sreply includesthe 4 KB result but thereplies
of the other replicas only contain small digests. Asaresult, clientsobtain thelargerepliesin parallel
from different replicas. BFT achievesamaximum throughput of 6625 operations per second for the
read-write operation and 8698 operations per second with the read-only operation; this corresponds
to an aggregate throughput of 26MB/s and 34 MB/s. The bottleneck for BFT isthereplicas CPU.

The throughput of the read-write operation increases with the number of clients because the
cost of preparing the batch of requests is amortized over the batch size. The throughput with the
read-only optimization isvery unstable. Theinstability occurs becausethe system isnot awaysfair
to al clients; this results in a large variance in the maximum time to complete the K operations,
which is the time we use to compute the throughput. The average time for the clients to compute
the K operations remains stable. Figure 8-9 compares the throughput for this operation computed
both using the maximum time and the average time to complete the K operations at al clients.

'_.-0-0.._..-..._ e -e-.. g .

N 4

2
7

o

c

Q

§ 6000 -

o)

o

2

5 4000

B

o)

8‘2000—
) ----- read-only avg
] —=— read-only

L N W B

0 50 100 150 200

number of clients

Figure 8-9: Throughput for read-only operation 0/4. The results labeled avg are based on the
average time to complete the middle K operations rather than the maximum.

Figure 8-10 shows throughput results for operation 0/4. The standard deviation was below 7%
of the reported value. There are no points with more than 15 clients for NO-REP operation 4/0
because of 1ost request messages; NO-REP uses UDP directly and does not retransmit regquests.

Thebottleneck in operation 4/0 for both NO-REP and BFT isthetimeto get the requeststhrough
the network. Since the link bandwidth is 12 MB/s, the maximum throughput achievable is 3000
operations per second. NO-REP achieves a maximum throughput of 2921 operations per second
while BFT achieves 2591 for read-write operations (11% less than NO-REP) and 2865 with the
read-only optimization (2% less than NO-REP).

99

3000
1 -B-—-—-&_ - -F-—-nm
-
PR ...
e .
E
o}
§ 2000 |
o} ;
o ek
@ 11 —— NO-REP
o o
F ol -=- BFT read-only
8 T --+-- BFT read-write
o
0 y T y T y 1
0 20 0 60

number of clients

Figure 8-10: Throughput for operation 4/0 (with 4 KByte argument and 8 byte result).

Batching is once more responsible for increasing the throughput of the read-write operation
as the number of clients increases. The requests for operation 4/0 are not inlined in pre-prepare
messages and the current implementation imposes a limit of 16 such requests per batch. We
measured an average batch size equal to the number of clients divided by two (up to the 16 request
maximum). This explains why the throughput stops growing with approximately 30 clients. The
throughput drops and its variance increases for more clients due to an increase in lost messages
and retransmissions. This variance also disappears if we use the average time to complete the K
operations to compute throughput rather than the maximum.

configuration 0/0 0/4 4/0
read-only 19707 (-0.4%) | 8132 (-7%) | 2717 (-5%)
read-write 14298 (-9%) | 7034 (+6%) | 2590 (0%)

Table 8.4: Throughput model: predicted values and errors relative to measured val ues.

The throughput performance model is accurate. Table 8.4 shows the maximum throughput
values predicted by the model and the error relative to the values measured. The values for
operations 0/0 and 0/4 were computed with a batch size of 101 and the values for operation 4/0
were computed with a batch size of 16. The absolute value of the error is always below 10%.

8.3.3 Impact of Optimizations

Theexperimentsin the previoussections show that the read-only optimizationiseffectiveat reducing
latency and improving throughput of services replicated using the BFT library. The read-only
optimization is special because it can only be applied to operations that satisfy a specific semantic

100

constraint (namely not modifying the state). This section analyses the performance impact of the
other optimizationsthat are applied to operationsregardless of their semantics. It starts by studying
the impact of the most important optimization: the elimination of public-key cryptography. Then,
it analyzesthe impact of the optimizations described in Section 5.1.

Elimination of Public-Key Cryptography

To evaluate the benefit of using MACs instead of public key signatures, we implemented a version
of the library that uses the BFT-PK algorithm. The version of BFT-PK described in Chapter 2
relies on the extra power of digital signatures to authenticate pre-prepare, prepare, checkpoint, and
view-change messages but it can be modified easily to use MACSs to authenticate other messages.
Our implementation of BFT-PK isidentical to the BFT library but it uses public-key signatures to
authenticate these four types of messages. Thisallowed usto measure the impact of the more subtle
part of this optimization.

The experiments compared the latency and throughput of two implementations of the simple
service: the one labeled BFT used the BFT library and the one labeled BFT-PK used the BFT-PK
library. We only compared performance of read-write operations because both libraries have the
same performance with the read-only optimization.

Table 8.5 reports the latency to invoke an operation when the simple service is accessed by a
single client. The results were obtained by timing a large number of invocations in three separate
runs. We report the average of the three runs. The standard deviations were aways below 0.5% of
the reported value.

System 0/0 0/4 4/0
BFT-PK | 59368 | 59761 | 59805
BFT 431 999 | 1046

Table 8.5: Cost of public-key cryptography: operation latency in microseconds.

BFT-PK hastwo signaturesin the critical path and each of them takes 29.4 msto compute. BFT
eliminatesthe need for these signatures and achieves a speedup between 57 and 138 relative to BFT-
PK. We use the SFS [MKKW99] implementation of a Rabin-Williams public-key cryptosystem
with a 1024-bit modulus to sign messages and verify signatures. There are other public-key
cryptosystems that generate signatures faster, e.g., eliptic curve public-key cryptosystems, but
signature verification is slower [Wie98] and in our algorithm each signatureis verified many times.

Theoretically, BFT-PK scales better than BFT as the number of replicas increases because the
latency in BFT-PK grows linearly with the number of replicas rather than with the square of this
number. But in practice BFT-PK only outperforms BFT for an unreasonably large number of

101

replicas. For example, the performance model predicts that BFT's latency for operation 0/0 with
280 replicasis still lower than BFT-PK’s latency with 4 replicas.

Figure 8-11 compares the throughput of the two implementations of the simple service for
operationswith different argument and result sizes. It usesthe experimental setup and methodol ogy
described in Section 8.3.2: there are 5 client machines and 4 replicas. Each point in the graphis
the average of at least three independent runs and the standard deviation for all points was below
4% of the reported value (except that it was as high as 17% for the last four pointsin the graph for
BFT-PK operation 4/0).

8000+ 30004
15000
5 2 2
5 o
§ §§ 6000
2000+
10000 g g
@ 2 4000 2
5 S S
% ko ® —— BFT
1000
T 5000 o o .
g S 2000- g BFT-PK
o = o
S S S
0 "‘"""‘f“”“‘”“\”” T T O—paast '\ T T T 0 L s T T T
0 50 100 150 200 0 50 100 150 200 0 20 40 60
number of clients number of clients number of clients

Figure 8-11: Cost of public-key cryptography: throughput in operations per second.

Thethroughput of both implementationsincreaseswith the number of concurrent clientsbecause
of request batching. Batching amortizes the signature generation overhead in BFT-PK over the size
of the batch. Since this overhead is independent of the batch size, the throughput of the two
implementations grows closer as the batch size increases. The current implementation limits batch
size to 101 requests in operations 0/0 and 0/4 and 16 requests in operation 4/0; the throughput of
both implementations saturates once the batch size reachesits maximum. The maximum throughput
achieved by BFT-PK is 5 to 11 times worse than the one achieved by BFT.

If there were no limits on batch size, the two implementations would theoretically reach sim-
ilar throughput values. However, this could only happen with an unreasonably large number of
concurrent clients.

Digest Replies

To evaluate the impact of the digest replies optimization described in Section 5.1.1, we modified
the BFT library not to use this optimization. This section compares the performance of two
implementations of the simple service: BFT, which uses the regular BFT library, and BFT-NDR,
which usesthe version of the library without the digest replies optimization.

Figure 8-12 compares the latency to invoke the two implementations of the simple service as
the size of the operation result increases. The standard deviations were always below 3% of the
reported value. The digest replies optimization reduces the latency to invoke operations with large

102

---- read-write NDR Pt
a0 = read-only NDR : ’
@ - <+--read-only o
g —— read-write e
R |
O 20004 o
@]] o
2 ar
3
g
<

0 ' ZOIOO ' 40|OO ' 60|00 ' 80IOO
result size (bytes)

Figure 8-12: Latency with varying result sizes with and without the digest replies optimization.
Thelines labeled NDR correspond to the configuration without the optimization.

results significantly: it speeds up execution by up to afactor of 2.6.

The performance benefit of the digest replies optimization increases linearly with the number
of replicas. In BFT-NDR, all replicas send back replies with the operation result to the client;
whereasin BFT only onereplicasendsback areply with the result and the others send small digests.
Therefore, the speedup afforded by the optimization is approximately equal to 2f + 1 with large
result sizes.

8000

6000

—e— read-only
-a- read-write
--+-- read-only NDR
----- read-write NDR

4000 —

oper ations per second

0 ' 2|0 ' 4|0 ' 6|0 ' 80 ' 100
number of clients
Figure 8-13: Throughput for operation 0/4 with and without the digest replies optimization. The
lines labeled NDR correspond to the configuration without the optimization.

Figure 8-13 shows throughput results for operation 0/4. The values in the figure for BFT are
the same that appeared in Figure 8-8. The standard deviation for the BFT-NDR values was always
below 2% of the reported value.

103

BFT achievesathroughput up to 3 times better than BFT-NDR. The bottleneck for BFT-NDRis
the link bandwidth: it islimited to a maximum of at most 3000 operations per-second regardless of
the number of replicas. Thedigest replies optimization enables the available bandwidth for sending
repliesto the clientsto scalelinearly with the number of replicasandit al so reducesload on replicas
CPUs.

Request Batching

Thethroughput results have shown theimportance of batching requestsand running asingleinstance
of the protocol to prepare the batch. However, we did not present a direct comparison between the
performance of the service with and without request batching; Figure 8-14 offers this comparison
for the throughput of operation 0/0. Without batching, the throughput does not grow beyond 3848
operations per second and starts to decrease with more than 20 clients. The experiments in the
previous section show that throughput reaches 15740 operations per second with batching.

15000

10000

—e— with batching
- - no batching

5000 —

operations per second

PR e
-

0 10 20 30 40
number of clients

Figure 8-14: Throughput for operation 0/0 with and without request batching.

Since the replication algorithm can process many requests in parallel, the throughput without
batching grows with the number of clients up to a maximum that is 66% better than the throughput
with a single client. But processing each of these requests requires a full instance of the prepare
protocol; and the replica’s CPUs saturate for asmall number of clients hindering throughpui.

For our experimental environment, the best configuration uses a batching window of 1: the
primary waits until the requests in a batch execute before sending a pre-prepare message for the
next batch. In WAN environments where the latency is higher, the window should be set to alarger
valueto allow several batchesto be processed in parallel.

104

Separ ate Request Transmission

The BFT library sends small requests inlined in pre-prepare messages but requests with argument
size greater than 255 bytes are not inlined. These requests are multicast by the client to al replicas
and the primary only includes their digests in pre-prepare messages. We measured the impact on
latency and throughput of separating request transmission.

3000—_
~+-NO-SRT
—=— SRT _®

2000 -

1000

latency (microseconds)

0 ' ZOIOO ' 40|00 ' GOIOO ' 8000
argument size (bytes)

Figure 8-15: Latency for varying argument sizes with separate request transmission, SRT, and
without, NO-SRT.

Figure 8-15 compares the latency to invoke the simple service for varying argument sizes with
and without separate request transmission. Separating request transmission reduces latency by up
to 40% becausethe request is sent only once and the primary and the backups compute the request’s
digest in parallel. The performance model predicts that the reduction will increase towards an
asymptote of 53% as the argument size increases.

The other benefit of separate request transmission is improved throughput for large requests.
Figure 8-16 compares the throughput for operation 4/0 with and without separate request transmis-
sion. It showsthat the optimization improves throughput by up to 91%. This happens because the
reguests go over the network twice when they are inlined in pre-prepare messages. once from the
client to the primary and then from the primary to the backups. Additionaly, inlining the requests
resultsin a maximum batch size of 2 (due to the limit on the size of pre-prepares).

Other Optimizations

The tentative execution optimization eliminates one round of the protocol: it allows replicas to
execute requests and send replies to clients as soon as requests prepare. We implemented one
version of the smple service, BFT-NTE, that usesthe BFT library modified not to execute requests
tentatively.

105

3000

oper ations per second

/’-—I——l—l———l———l———l————l
100044/
j/’ —e— SRT
:Ii - a--NO-SRT
0 . T " T ' '
; 20 40 60

number of clients

Figure 8-16: Throughput for operation 4/0 with separate request transmission, SRT, and without,
NO-SRT.

We measured the latency of the BFT-NTE service asthe argument and result sizesvary between
8 B and 8 KB. The tentative execution of requests reduces latency by a value that does not depend
on the size of argument and result values. Therefore, the impact of this optimization decreases
as the argument or result size increases. For example, the optimization improves performance by
27% with 8 B argument and result sizes but only by 5% when the argument size increasesto 8 KB.
We also measured the throughput of operations 0/0, 0/4, and 4/0 without tentative execution. The
results show that this optimization has an insignificant impact on throughpui.

We conclude that tentative execution of requests does not improve performance as significantly
as the previous optimizations did (in our experimental setup). Even in WAN environments where
communication latency is higher, this optimization should not improve service latency by more
than 20% (because it eliminates one message delay from a total of 5). Since the throughput in
these environments is also lower, the performance gain should be significantly smaller than this
maximum.

A potential benefit of tentative execution of requests is that it enables the piggybacking of
commit messages on pre-prepare and prepare messages. We implemented a version of the simple
service with piggybacked commits and measured its latency and throughput. This optimization is
not part of the BFT library; we only wrote code for it to work in the normal case.

Piggybacking commits has a negligible impact on latency because the commit phase of the
protocol is performed in the background thanks to tentative execution of requests. It also has a
small impact on throughput except when the number of concurrent clients accessing the service
issmall. For example, Figure 8-17 compares the throughput for operation 0/0 with and without
this optimization. Piggybacking commits improves throughput by 33% with 5 clients and by 27%

106

with 10 but only by 3% with 200 clients. The benefit decreaseswith the number of clients because
batching amortizes the cost of processing the commit messages over the batch size.

15000

o
c
Q
§ 10000
]]
o
2
2 1f --+-- NO piggybacking
g 5000 [—=— with piggybacking
2 1
O 771 1 1
0 50 100 150 200

number of clients

Figure 8-17: Throughput for operation 0/0 with and without piggybacked commits.

8.3.4 Configurations With More Replicas

Theexperimentsin the previous sectionsran in aconfiguration with four replicas, which cantolerate
one fault. We believe this level of reliability will be sufficient for most applications. But some
applicationswill have more stringent reliability requirements and will need to run in configurations
with more replicas. Therefore, it is important to understand how the performance of a service
implemented with the BFT library is affected when the number of replicas increases. This section
describesexperimentsto measurethe latency and throughput of asystemwith sevenreplicas(f = 2)
and uses the analytic performance model to predict performance with more replicas.

L atency

We ran experiments to measure the latency with varying argument and result sizes with 7 replicas
and compared these results with the ones obtained with 4 replicas. In both configurations, all the
replicas had a600 MHz Pentium |11 processor and the client had a 700 MHz Pentium |11 processor.

Varying argument size. Figure 8-18 compares the latency to invoke the replicated service with
f =1 (4replicas) and f = 2 (7 replicas) as the size of the operation argument increases while
keeping the result size fixed at 8 bytes. The figure has two graphs: the first one shows elapsed
times and the second shows the percentage slowdown of the configuration with f = 2 relative to
the configuration with f = 1. The standard deviation was always below 2% of the reported value.
It is not clear why the slowdown drops for argument sizes of 5 KB and 6 KB with the read-only
optimization.

107

30

1500 +

w
© — 204
c AN .
%] 5’; —e— read-write f=2
@ 1000 = \ - a--read-only f=2
5 31
S , s]
; - //‘/ . _005 10 4
S e —e— read-write f=2 1
e .
% /:/ - a--read-write f=1] -
- --=-- read-only f=2] N
—+—read-only f=1] " A .
0 " T " 7 " T " T 0] J ' ! ' \"/ ' !
0 2000 4000 6000 8000 0 2000 4000 6000 8000

argument size (bytes)

Figure 8-18: Latency with varying argument sizes with f
relativeto f = 1.

argument size (bytes)

= 2. absolute times and slowdown

Theresults show that the slowdown caused by increasing the number of replicasto 7islow. The
maximum slowdown for the read-write operation is 30% and it is 26% for the read-only operation.
Theresults also show that the slowdown decreases as the argument sizeincreases: with an argument
size of 8 KB, the slowdown is only 7% for the read-write operation and 2% with the read-only
optimization. According to the performance model, increasing the number of replicasintroducesan
overhead that isindependent of the size of the operation argument; this explainswhy the slowdown

decreases as the argument size increases.

10

)

relative prediction error (%)

—e— predicted read-write
6 - a-- predicted read-only

argument size (bytes)

I T T T T T T T T
0 2000 4000 6000 8000

Figure 8-19: Latency moddl: relative prediction error for varying argument sizeswith f = 2.

The latency model can predict these experimental results accurately. Figure 8-19 shows the

108

error of the latency values predicted by the model for f = 2 relative to the values measured. The
error is aways below 8% and it is significantly lower for most argument sizes.

Since the model proved to be quite accurate, we used it to predict latency for configurations
with more replicas. Figure 8-20 shows the predicted slowdown relative to the configuration with
f = 1 for configurations with increasing values of f. The slowdown increases linearly with the
number of replicas for read-only operations. For read-write operations, the slowdown increases
with the square of the number of replicas but with a small constant. Since the overhead due to
adding more replicasis independent of the argument size, the dowdown decreases as the argument
size increases. for example, the slowdown for the read-write operation with f = 10is4.2 with 8
byte arguments, 2.3 with 4 KB, and only 1.9 with 8 KB.

—e— read-write
-=--read-only

operation 0/0: slowdown
operation 4/0: slowdown

operation 8/0: slowdown
T

Figure 8-20: Predicted owdown relative to the configuration with f = 1 for increasing f and
argument size.

Varying result size. We also measured the latency for varying result sizeswith f = 2; Figure 8-
21 compares these results with those obtained with f = 1. The figure has two graphs: the first
one shows elapsed times and the second shows the percentage slowdown of the configuration with
f = 2relative to the configuration with f = 1. The values are averages of 5 independent runs and
the standard deviation was always below 2% of the reported averages.

Like in the case of varying argument sizes, the results show that the slowdown caused by
increasing the number of replicas to 7 is small: the maximum slowdown for both read-only and
read-write operations is 26%. The digest-replies optimization makes the overhead introduced by
increasing the number of replicas independent of the result size. Therefore, the slowdown also
decreases as the result size increases. the slowdown with 8 KB results is 5% for the read-write
operation and only 1% with the read-only optimization.

The digest-replies optimization has another interesting effect: the communication time for the
large reply with the result hides the time to process the small replies with the digests. Because of
this effect, the slowdown drops faster as the result size increases than it does when the argument
sizeincreases. This effect is clear with the slowdown for the read-only operation.

Figure 8-22 shows that the performance model is less accurate at predicting the latency for

109

30—_
1500 T
T :
'8 |
o] S 2 _
8 1. < —e— read-write
o s - -a--read-only
8 S 7
E] s 0
. . 11
D e ¥ --e-- read-write f=2 » 107,
500 / . |
o N —=— read-writef=1 !
3 & - +--read-only f=1
—=— read-only f=2
1 .- E--E--8-_ g _ _m__g
0 | T T T T T T T T 0 T T T T T T T T
0 2000 4000 6000 8000 0 2000 4000 6000 8000

result size (bytes) result size (bytes)

Figure 8-21: Latency with varying result sizeswith f = 2: absolute times and slowdown relative
tof =1

25
. 20
S
< .
o \
o i
e
(=} \
B \
T |
s 07\ —e— predicted read-write
4 .
£ 1\ -= predicted read-only
<]
— - _
1 ‘ e - -
0 = | ' | ' T
0 2000 4000 6000 8000

result size (bytes)

Figure 8-22: Latency model: relative prediction error for varying result sizeswith f = 2.

110

f = 2 astheresult size increases. The error is as high as 23% for small result sizes but it is less
than 3% for result sizes greater than 512 bytes. This experimental configuration uses a client that
is faster than the machines where the parameters for the model were measured; this can explain
the large error for small result sizes (for larger result sizes this error is hidden because the cost of
processing digest replies is overlapped with the communication time for the reply with the result).

Theperformance model issufficiently accurateto makeinteresting predictionsfor configurations
with more replicas. Figure 8-23 shows the predicted slowdown relative to the configuration with
f = 1 for operations 0/0, 0/4, and 0/8. The results for operation 0/4 and 0/8 are similar to those
presented for operations 4/0 and 8/0. The difference is that the slowdown grows slower as the
number of replicas increases. This happens because the time to process the small repliesis hidden
by the communication time for the reply with the result for large result sizes.

—e— read-write
- =--read-only

operation 0/0: slowdown
operation 0/4: slowdown
operation 0/8: slowdown

Figure 8-23: Predicted dowdown relative to the configuration with f = 1 for increasing f and
result size.

Throughput

Wetried to measurethethroughput of the system configuredwith f = 2. But sincethisconfiguration
requires7 replicas, the experimentswere limited to use 2 machinesto run the processesthat simulate
the client population. This prevented us from obtaining meaningful results because the CPU of the
client machines and their links to the switch became bottlenecks.

The performance model was able to predict the maximum throughput for f = 1 and the latency
for f = 2 with good accuracy. Therefore, we are confident that it provides a good prediction for
the maximum throughput in configurations with more replicas; Figure 8-24 shows this prediction
for operations 0/0, 0/4, and 4/0. The prediction was obtained for 100 client machines with a batch
size of 100 for operations 0/0 and 0/4, and with a batch size of 16 for operation 4/0.

The figure suggests that increasing the value of f up to 10 does not cause a severe throughput
degradation. To explain this, it is necessary to look at the components of the model in more detail.
Themodel breaksthetimeto executethe requestsinto three components: thetimeto get the requests
in the batch to the replicas, T,?eq, the time to prepare the batch, Tzﬂ’rep, and the time to execute the

111

000 o0 o o 10000
- Te-e-e-9o o _ m--m-a--R-2--2
/'/‘,,l - - - . a——.——.>_.__,;_‘_‘.>_'__.
2 2 s = < .\‘\'\‘\-__\‘\-\-
% = % ./._.‘N\‘\‘\‘\‘\‘ g
20001
T T oo g
g T 6000 S
g 10000 g S
g 2 4000 ®
o) -+~ read-only o) g 1000
=% ; =%
O 5000 —s— read-write o g
o AN -
3 5 ™ 5
0 T T T T T 0 T T T T T 0 T T T T T

Figure 8-24: Predicted throughput for increasing f for operations 0/0, 0/4 and 4/0.

requestsin the batch and get the repliesto the clients 77, ..

For our experimental setup and the valuesin thisfigure, the last component is equal to the CPU
time spent by the replicas executing the requests and sending the replies. Therefore, Te”,,ep does
not increase with the number of replicas. T,f’eq is either equal to the communication time in each
replica’slink (in operation 4/0) or to the CPU timereceiving and checking therequestsat thereplicas
(in operations 0/0 and 0/4). In either case, T,f’eq grows slowly with the number of replicas; it grows
only because of increased communication cost due to larger authenticators. T;’rep grows quickly as
the number of replicasincreases because both the number and size of pre-prepare/prepare messages
processed by the replicasgrow linearly with f. But the growing overheadin T]?rep isamortized over
the size of the batch.

The Tgrep component is O for read-only requests, which explains why the throughput decreases
more slowly with the read-only optimization for operations 0/0 and 4/0. Additionally, Te”rep actually
decreases with the number of replicas for operation 0/4, which explains why throughput improves
dightly asthe number of replicasincreases.

For read-write operations 0/0 and 0/4, the current implementation might not do as well as the
model predicts because the requests in these operations are inlined in the pre-prepare message and
the maximum batch sizewould decreasedownto 27 for f = 10. But thisisnot anintrinsic problem;

the library could use separate request transmission for all request sizes.

8.3.5 Senditivity to Variationsin Model Parameters

We used the analytic model to predict the performance of the BFT library in two different experi-
mental setups. aWAN environment, and a LAN with 1Gb/s Ethernet and 1.2GHz processors. The
WAN environment isinteresting because placing the replicasin different geographic locationsis an
important technique to increase their failure independence. The LAN environment represents the
fastest LAN available today.

112

WAN

We assumed that the only parameters that varied when switching between our current experimental
setup and the WAN environment were the network latency, Sy, and the network cost per byte, S,
(i.e., the inverse of the throughput). We also assumed that these parameters were the same for
communication between all pairs of nodes.

We measured the val ue of these parameters between ahost at MIT and ahost at the University of
Cdiforniaat Berkeley. We obtained around-trip latency of 75msand athroughput of approximately
150K B/s. Based on these values, we set Sy = 37500usand S, = 6.61us/byte.

We are not modeling message losses. We measured a loss rate of less than 0.5%; this should
not impact performance very significantly. Furthermore, the algorithm can tolerate some message
loss without requiring retransmissions. We are also assuming that multicast works in the WAN
environment; thisis not truein the entire Internet today but there are already several important | SPs
that provide multicast services (e.g. UUNET).

Figure 8-25 shows the predicted slowdown in the latency to invoke the replicated service, BFT,
relative to the service without replication, NO-REP, in aWAN. It presentsresults for operations 0/0,
0/8, and 8/0 with and without the read-only optimization. The number of replicas was four.

Il read-write
] read-only
1
0-
0/0 0/8 8/0

Figure 8-25: Latency: predicted slowdown dueto BFT library in aWAN environment.

slowdown

In the LAN, we measured a slowdown of approximately 4 for operation 0/0 without the read-
only optimization and 2 with the optimization. The slowdown decreases in the WAN because
the CPU costs are dwarfed by the network costs. The slowdown is approximately 2 for read-write
operation 0/0 becausethe protocol introducesan extraround-trip delay relativeto the system without
replication. The read-only optimization €iminates the extra round-trip and virtually eliminates the
slowdown.

The slowdown for read-write operations 0/8 and 8/0 is actually slightly larger than the value we
measured in our experimental setup. This is because the ratio between a round-trip delay and the

113

timeto transmit an 8 KB messageis higher inthe WAN environment. However, thelowdownin the
WAN should virtually vanishfor larger result and argument sizeswhereasit tendsto an asymptote of
1.26in our LAN. In many configurations, communication between the replicasis likely to be faster
than communication between clients and replicas. Thiswould decrease slowdown even further.

The throughput in the WAN environment is bound by the low network throughput in our mode!.
The extra round-trip latency introduced by the protocol is amortized over the batch size and we
can run the protocol in parallel for several batches. Thus, the limit is the network throughput in
the server links not the extra computation and communication introduced by the protocol. For
example, the server link bandwidth limits the throughput in NO-REP to 18 operations per secondin
operation 0/8. The predicted throughput for BFT is 59 operations per second without the read-only
optimization and 65 operations per second with the optimization.

Fast LAN

To model the LAN with 1Gb/s Ethernet and 1.2GHz processors, we divided the switch parameters
we measured by 10 and the processor parameters by 2. Figure 8-26 shows the predicted slowdown
in the latency to invoke the replicated service, BFT, relative to the service without replication,
NO-REP, inthefast LAN environment. It presents results for operations 0/0, 0/8, and 8/0 with and
without the read-only optimization. The number of replicaswas four.

4

mm read-write

2 read-only
| I
0

0/0 0/8 8/0

Figure 8-26: Latency: predicted slowdown dueto BFT library in afast LAN environment.

sowdown

The predictions for the slowdown in operation 0/0 in the fast LAN environment are almost
identical to those in our experimental environment. But the slowdown for operations 0/8 and 8/0
is higher. Thisis explained by a higher ratio between the cost per byte of digest computation and
the cost per byte of communication. The model predicts an asymptote of 1.65 for the slowdown as
the argument and result sizes increase whereas it predicts an asymptote of 1.26 in our experimental

environment.

114

Figure 8-27 shows the predicted throughput for BFT in our experimental environment and in
the fast LAN. The throughput is normalized to allow a comparison: it is divided by the predicted
throughput for NO-REP in the same configuration.

3 3
5 5
s s
S] = slow LAN >] = slow LAN
O 5] fast LAN O 5] fast LAN
IS IS
B] B
N N
I B]
g 1 g 1
o}] S]
e] c]

O;l 0

0/0 0/8 8/0 0/0 0/8 8/0
read-write read-only

Figure 8-27: Predicted throughput for BFT in slow and fast LANs normalized to NO-REP's
throughput.

The normalized throughputsfor operation 0/0 in the two configurationsare very similar because
the server CPU is the bottleneck for both BFT and NO-REP in the two configurations. But the
normalized throughput for operations 0/8 and 8/0 is lower in the fast LAN. This happens because
the network speed increases by afactor of 10 but the CPU speed only increases by afactor of 2 and
BFT places a heavier load on the CPUs than NO-REP.

8.4 Checkpoint Management

The experimentsin the previous section used asimple servicethat had no state. Theonly checkpoint
management overhead in those experiments was due to storing the last replies to read-write opera-
tions sent to each client. This section analyzes the performance overhead introduced by checkpoint
management using a modified version of the ssimple service that adds state. The state in the new
service is a persistent array of contiguous pages that is implemented by the replicas using a large
memory-mapped file. The service operations can read or write these pages.

The section presents results of experimentsto measure both the time to create checkpoints and
the time for state transfer to bring replicas up-to-date.

8.4.1 Checkpoint Creation

The BFT library creates a checkpoint whenever the requests in a batch with sequence number
divisible by the checkpoint period are executed. The requeststhat execute between two checkpoints

115

are said to be in the same checkpoint epoch. The checkpoints are created using the technique
described in Section 5.3. In our experimental setup, the checkpoint period, K, isequal to 128. The
state partition tree has 4 levels, each internal node has 256 children, and the pages (i.e. the leaves
of thetree) have 4 KB.

We ran a benchmark to measure the cost of checkpoint creation using the simple service with
state. The benchmark used a state with 256 MB, 4 replicas, and 1 client. The client invoked
operations that received an offset into the state and a stride as arguments; and then wrote eight
4-byte words to the state starting at the offset and separated by the stride. The offset argument for
an operation was made equal to the offset of the last word written by the previous operation plusthe
stride value. This allowed us to measure the cost of checkpointing in a controlled way: by running
experiments with different stride values, we were able to vary the number of modified pages per
checkpoint epoch without changing the cost to run the protocol and execute the operations.

The cost of checkpoint creation hastwo components: thetimeto perform copy-on-write (COW)
and the time to compute the checkpoint digest. Figure 8-28 showsthe valueswe measured for these
timeswith avarying number of modified pages per checkpoint epoch. Thetimeto create checkpoints
increases dightly when the modified pages are selected at random (for example, it increases 4% for
128 pages).

80+ - e- tota checkpoint -
—=— digest L,
-+- COW

60 —

20

elapsed time per checkpoint (ms)

T T T T T T T T T T
0 200 400 600 800 1000

modified pages per checkpoint epoch

Figure 8-28: Checkpoint cost with a varying number of modified pages per checkpoint epoch.

The results show that both the time to perform copy-on-write and the time to compute digests
grow linearly with the number m of distinct pages modified during a checkpoint epoch. We ran a
linear regression on the digest and copy-on-write results. The coefficient of determination was 1
for the digest results and 0.996 for the copy-on-write results. We obtained the following model for
the checkpoint time in microseconds:

Tehept(m) = Tgigest(m) + Teow(m)

116

Tdigest(m) = 248+ 72 x m

Teow(m) =767+ 29 x m

Taigest includesthetime to iterate over abitmap that indicates which pages have been modified
and the time to clear this bitmap; this accounts for the 248us latency. The cost to digest each page
is 72us, which is 39% higher than the time to digest a page using MD5. The additional overhead
is due to the cost of updating the incremental checkpoint for the parent using the AdHash [BM97]
algorithm.

T.. includes the time to allocate memory to hold a copy of the page and the time to copy
the page. The model for T, is not as good because the cost per page actually increases with the
number of pages modified; this accounts for the high latency of 767usin spite of an experimental
result of 52uswith m = 3. We ran some micro-benchmarksthat showed that the increased cost per
page was due to a growing cost to allocate memory to hold the copy of the page.

In these experiments, the service state fit in main memory. We do not expect checkpointing
to increase the number of disk accesses significantly when the state does not fit in main memory.
A page is copied just before it is accessed and digests are computed on the pages that have been
maodified in the preceding checkpoint epoch; these pages arelikely to bein main memory. The only
case where checkpointing can increase the number of disk accesses significantly is when the space
overhead to keep the checkpoints represents a significant fraction of the memory available; this case
isunlikely in practice.

The cost of checkpoint creation can represent a substantial fraction of the average cost to run an
operation when the rate of changeis high. For example, the cost of checkpoint creation represents
approximately 65% of thetotal cost to run the experiment with astride of 1024. Thisisaworst-case
example because each operation modifies 8 pages without performing any computation and with
little communication overhead (because it has small argument and result sizes). Nevertheless, it is
not hard to imagine real applicationswhere the current implementation of checkpoint management
will be the bottleneck.

It is possible to improve checkpoint performance with sparse writes by using smaller pagesin
the partition hierarchy. But decreasing the size of these pages increases the space overhead due to
additional meta-data. A more interesting alternative would be to compute checkpoint digestslazily.
It is possible to modify the protocol not to send checkpoint digests in checkpoint messages. Thus,
checkpoint digests would need to be computed only before aview change or a state transfer. This
has the potential of substantially reducing the overhead during the normal case at the expense of
potentially slower view changes and state transfers.

8.4.2 State Transfer

We also ran experiments to measure the time to complete a state transfer. The experiments used
the simple service with 256 MB of state and 4 replicas. In the first experiment, a client invoked

117

operations that modified a certain number of pagesm. Then, the client was stopped and one of the
backups was restarted from its initial state. WWe measured the time to complete the state transfer to
bring that backup up-to-date in anidle system. The experiment wasrun for several values of m both
with randomly chosen pages and pages chosen sequentially. Figure 8-29 showsthe elapsed time to
compl ete the state transfer and its throughput.

50

IN

w
T 4w @
o] foa)
o =
N—r ~ 3
o 30 *5‘ .
= 2 --e-- sequential
bt o, —s— random
g 20 3
o

g =
E R d

10 1

0 " T " T " T Uy T " T y T

0 20000 40000 60000 20000 40000 60000
number of pages number of pages

Figure 8-29: State transfer latency and throughput.

The results show that the time to complete the state transfer is proportional to the number
of pages that are out-of-date. The throughput is approximately equal to 5 MB/s except that it is
4.5 MB/s when fetching 1000 random pages. The throughput is lower with random pages because
it is necessary to fetch more meta-data information but this additional overhead is dwarfed by the
time to fetch alarge number of pages.

The time to complete the state transfer is dominated by the time to fetch data pages and the
time to compute their digests to check their correctness. We measured an average time to digest
each page of 56us and our communication model predicts 651us to send the fetch message and
receivethedata. This predictsathroughput of 5.5 MB/s, which is close to the maximum throughput
observed (5.1MB/s).

The second experiment ran 5 clients. Each client invoked an operation that took a4 KB page
as an argument and wrote its value to a random page in the state. We ran this experiment with 3
replicas and measured an aggregate throughput of 6.7 MB/s from the clients to the service. Then,
we reran the experiment with 4 replicas but one of the replicas was started 25 seconds after the
beginning of the experiment. The results show that the replica was unable to get up-to-date; it
started a state transfer that never ended because the state was modified faster than it could fetch
the modifications. This happened because the maximum state transfer throughout is approximately
5 MB/s and the current implementation does not give priority to fetch messages (it uses a single

118

gueue for all messages). On the positive side, the state transfer did not delay request processing
significantly and the clients achieved an aggregate throughput of 6.5 MB/s.

The prablem in the previous paragraph may decrease availability: if thereisafault, the system
will stop processing client requestsuntil the out-of -date replicacan completethe statetransfer. There
are several ways to ameliorate this problem. First, the throughput of the state transfer mechanism
can be improved by fetching pagesin paralel from all replicas; this should improve throughput to
the link bandwidth (12MB/s). Second, the replicas can give priority to handling of fetch requests:
thiswill reducethe degradationin the state transfer throughput in the presence of request processing.
Additionally, it will slow down request processing thereby increasing the chances that the replica
will be able to complete the state transfer. A more drastic step would be to artificially restrict the
rate of change.

8.5 View Changes

The experiments described so far analyze the performance of the system when there are no failures.
This section studies the performance of the view change protocol. It measures the time from the
moment a replica sends a view-change message until it is ready to start processing requests in the
new view. Thistime includes not only the time to receive and process the new-view message but
also the time to obtain any missing requests and, if necessary, the checkpoint chosen as the starting
point for request processing in the new view.

We measured the time to complete the view change protocol using the simple service with
256 MB of state and 4 replicas. There was a single client that invoked two types of operations: a
read-only operation that returned the value of a page; and a write operation that took a 4KB page
value as an argument and wrote it to the state. The client chose the operation type and the page
randomly. View changes were triggered by a separate process that multicast special messages that
caused al replicas to moveto the next view at approximately the sametime.

Table 8.6 shows the time to complete a view change for an idle system, and when the client
executes write operations with 10% and 50% probability. For each experiment, wetimed 128 view
changes at each replica and present the average value taken over all replicas.

idle | 10% | 50%
view-changetime (us) | 575 | 4162 | 7005

Table 8.6: Average view change time with varying write percentage.

Replicas never pre-prepare any request in the idle system. Therefore, this case represents the
minimum time to complete a view change. Thistimeis small; it is only 34% greater than the time
to execute operation 0/0 on the smple service.

119

The view change time increases when the replicas process client requests because view-change
messages include information about requests that are prepared or pre-prepared by the replicas.
Table 8.7 shows that the average size of view changes increases: they contain information about
an average of 56 requests for 10% writes and 71 requests for 50% writes. The increase in the
view change time from 10% to 50% writes is partly explained by the 27% increase in the number
of requestsin view change messages but most of it is due to one view change that took 607ms to
complete. Thisview changewas much slower becausethe replicawas out-of-date and had to fetch a
missing checkpoint beforeit could start processing requestsin the new view. Thetime to complete
view changes also increases when it is necessary to fetch missing requests or when the replica has
to rollback its state because it executed a request tentatively that did not commit. But these are
relatively uncommon occurrences.

idle | 10% | 50%
view-change size (bytes) | 160 | 1954 | 2418
new-view size (bytes) | 136 | 189 | 203

Table 8.7: Average size of view-change and new-view messages with varying write percentage.

The time to complete a view change when the primary fails has an additional component: the
timeout replicas wait for an outstanding request to execute before suspecting that the primary is
faulty. The cost of the view change protocol in our library issmall; this enablesthe timeout to be set
to asmall value (e.g., one second or less) to improve availability without risking poor performance
due to false failure suspicions.

86 BFS

We measured the performance of the BFT library using simple, service-independent benchmarks.
Next, we present the results of a set of experimentsto evaluate the performance of areal service—
BFS, which isaByzantine-fault-tolerant NFS service built using the BFT library that was described
in Section 6.3.

The experiments compared the performance of BFS with two other implementations of NFS:
NO-REP, which is identical to BFS except that it is not replicated, and NFS-STD, which is the
NFS V2 implementation in Linux with Ext2fs at the server. The first comparison allows us to
evaluate the overhead of the BFT library accurately within an implementation of areal service. The
second comparison shows that BFS is practical: its performance is similar to the performance of
NFS-STD, which is used daily by many users. Since the implementation of NFS in Linux does
not ensure stability of modified data and meta-data before replying to the client (as required by the
NFS protocol [S™85]), we also compare BFS with NFS-DEC, which isthe NFS implementation in

120

Digital Unix and providesthe correct semantics.

The section starts with a description of the experimental setup. Then, it evaluates the perfor-
mance of BFS without view-changes or proactive recovery and it endswith an analysis of the cost
of proactive recovery.

8.6.1 Experimental Setup

The experiments to evaluate BFS used the setup described in Section 8.1. They ran two well-
known file system benchmarks: the modified Andrew benchmark [Ous90, HKM *88] and Post-
Mark [Kat97].

Themodified Andrew benchmark emul atesa software devel opment workload. 1t hasfive phases:
(1) creates subdirectories recursively; (2) copies a source tree; (3) examines the status of all the
filesin the tree without examining their data; (4) examinesevery byte of datain all thefiles; and (5)
compiles and links the files.

Unfortunately, Andrew is so small for today’s systemsthat it does not exercisethe NFS service.
So weincreased the size of the benchmark by afactor of n asfollows. phase 1 and 2 createn copies
of the source tree, and the other phases operate in all these copies. We ran a version of Andrew
with n equal to 100, Andrew100, and another with n equal to 500, Andrew500. BFS builds afile
system inside a memory mapped file. We ran Andrew100 in a file system file with 205 MB and
Andrew500 in afile system file with 1 GB; both benchmarks fill 90% of theses files. Andrew100
fitsin memory at both the client and the replicas but Andrew500 does not.

PostMark [Kat97] models the load on Internet Service Providers. It emulates the workload
generated by a combination of electronic mail, netnews, and web-based commerce transactions.
The benchmark starts by creating a large pool of files with random sizes within a configurable
range. Then, it runs a large number of transactions on these files. Each transaction consists of
a pair of sub-transactions: the first one creates or deletes a file, and the other one reads a file or
appends data to a file. The operation types for each sub-transaction are selected randomly with
uniform probability distribution. The create operation creates a file with arandom size within the
configurable range. The delete operation deletes a random file from the pool. The read operation
reads arandom file in its entirety. The append operation opens a random file, seeksto its end, and
appends a random amount of data. After completing all the transactions, the remaining files are
deleted.

We configured PostMark with an initial pool of 10000 files with sizes between 512 bytes and
16 Kbytes. The files were uniformly distributed over 130 directories. The benchmark ran 100000
transactions.

For al benchmarks and NFS implementations, the actual benchmark code ran at the client
workstation using the standard NFS client implementation in the Linux kernel with the same
nount options. The most relevant of these options for the benchmark are: UDP transport, 4096-

121

byte read and write buffers, allowing write-back client caching, and allowing attribute caching.
Both NO-REP and BFS used two relay processesat the client (see Section 6.3).

Out of the 18 operationsin the NFS V2 protocol only get at t r isread-only because the time-
last-accessed attribute of filesand directoriesis set by operationsthat would otherwise be read-only,
e.g.,r ead andl ookup. We modified BFS not to maintain the time-last-accessed attribute in order
to apply the read-only optimization tor ead and | ookup operations. This modification violates
strict Unix file system semantics but is unlikely to have adverse effectsin practice.

8.6.2 Performance Without Recovery

We will now analyze the performance of BFS without view-changes or proactive recovery. We will
start by presenting results of experimentsthat ran with four replicas and later we will present results
obtained with seven replicas. We also evaluate the impact of the most important optimization in
BFT, the elimination of public-key cryptography, on the performance of BFS.

Four Replicas

Figures8-30and 8-31 present resultsfor Andrew100 and Andrew500, respectively, inaconfiguration
with four replicas and one client machine. We report the mean of 3 runs of the benchmark. The
standard deviation was always below 1% of the reported averages except for phase 1 where it was
as high as 33%.

400

phase 1
= phase 2
200 phase 3
mmm phase 4
= phase 5
100
0

NO-REP NFS-STD

w
Q
o

elapsed time (seconds)

Figure 8-30: Andrew100: elapsed time in seconds.

The comparison between BFS and NO-REP showsthat the overhead of Byzantinefault tolerance
islow for thisservice— BFStakesonly 14% moretimeto run Andrew100 and 22% moretimeto run
Andrew500. Thissowdownissmaller than what wasobserved with thelatency of thesimpleservice
because the client spends a significant fraction of the elapsed time computing between operations
(i.e., between receiving the reply to an operation and issuing the next request) and operations at the

122

server perform some computation. Additionally, there are a significant number of disk writes at the
server in Andrew500.

The overhead is not uniform across the benchmark phases: it is 40% and 45% for the first two
phases and approximately 11% for the last three. The main reason for this is a variation in the
amount of time the client spends computing between operations.

The comparison with NFS-STD shows that BFS can be used in practice — it takes only
15% longer to complete Andrew100 and 24% longer to complete Andrew500. The performance
difference would be smaller if Linux implemented NFS correctly. For example, the results in
Table8.8 show that BFSis2%faster thanthe NFSimplementationin Digital Unix, whichimplements
the correct semantics. The implementation of NFS on Linux does not ensure stability of modified
data and meta-data before replying to the client as required by the NFS protocol, whereas BFS
ensures stability through replication.

|
g E
g 1500 phase 1
R2)] = phase 2
£] phase 3
= 1000+ mmm phase 4
-g 1 = phase 5
g]
@ 500—-
o
BFS

NO-REP NFS-STD

Figure 8-31: Andrew500: elapsed time in seconds.

Table 8.8 shows a comparison between BFS, NO-REP, and the NFS V2 implementation in
Digital Unix, NFS-DEC. These experiments ran the Andrew benchmark with one client and four
replicas on DEC 3000/400 Alpha workstations connected by a switched 10Mb/s Ethernet. The
complete experimental setup is described in [CL99c].

The results show that BFSis 2% faster than NFS-DEC. Thisis because during phases 1, 2, and
5 alarge fraction (between 21% and 40%) of the operations issued by the client are synchronous,
i.e., operationsthat require the NFS implementation to ensure stability of modified file system state
before replying to the client. NFS-DEC achieves stability by writing modified state to disk whereas
BFS achieves stability with lower latency using replication (asin Harp [LGG191]). NFS-DEC is
faster than BFSin phases 3 and 4 because the client does not issue synchronous operations.

Figure 8-32 presents the throughput measured using PostMark. Theresultsare averagesof three
runs and the standard deviation was below 2% of the reported value. The overhead of Byzantine
fault tolerance is higher in this benchmark: BFS's throughput is 47% lower than NO-REP's. This

123

phase | BFS | NO-REP | NFS-DEC

1 0.47 0.35 1.75
2 7.91 5.08 9.46
3 6.45 6.11 5.36
4 7.87 741 6.60

5 38.3 32.12 39.35
total | 61.07 | 51.07 62.52

Table 8.8: Andrew: BFS vs NFS-DEC elapsed timesin seconds.

N w IN
3 3 5]

transactions per second

8

0 I I
BFS

NFS-STD NO-REP

Figure 8-32: PostMark: throughput in transactions per second.

124

is explained by a reduction on the computation time at the client relative to Andrew. What is
interesting is that BFS's throughput is only 13% lower than NFS-STD’s. The higher overhead is
offset by an increase in the number of disk accesses performed by NFS-STD in this workload.

Seven Replicas

Figure 8-33 shows a comparison between the time to complete Andrew100 with four replicas
(f = 1) andwith sevenreplicas (f = 2). All replicas had a 600 MHz Pentium 111 processor and the
client had a 700 MHz Pentium |11 processor. We report the average of three runs of the benchmark.
The standard deviation was always below 1% of the reported value.

400

”] L
G 300
gs phase 1
L = phase 2
£ 200 phase 3
= s phase 4
-§ = phase 5
& 100
T

0

BFS (f=1) BFS (f=2)

Figure 8-33: Andrew100: elapsed time with f=1 and f=2.

Theresultsshow that improving theresilience of the system by increasing the number of replicas
from four to seven does not degrade performance significantly. Thisoutcomewas predictable given
the micro-benchmark results in the previous sections. Since there is a significant amount of
computation at the client in Andrew100, BFS with f = 2 isonly 3% slower than with f = 1.

Elimination of Public-Key Cryptography

The micro-benchmarksin Section 8.3.3 showed that the replacement of digital signaturesby MACs
improved performance dramatically. To evaluatetheimpact of this optimization on the performance
of areal service, we implemented BFS-PK using the BFT-PK library (that was described in that
section). Tables 8.9 and 8.10 present results comparing the time to complete Andrew100 and
Andrew500 (respectively) in BFS and BFS-PK.

The results show that BFS-PK takes 12 times longer than BFS to run Andrew100 and 15
times longer to run Andrew500. The slowdown is smaller than the one observed with the micro-
benchmarks because the client performs a significant amount of computation in this benchmark.
Additionally, both BFS and BFS-PK use the read-only optimization for getattr, r ead and

125

phase | BFSPK | BFS

1 254 0.7
2 15286 | 39.8
3 80.1 34.1
4 875 41.3

5 2935.1 | 265.4
total | 4656.7 | 381.3

Table 8.9: Andrew100: elapsed time in secondsfor BFS and BFS-PK.

I ookup; this reduces the performance difference between BFS and BFS-PK during phases 3 and
4 where most operations are read-only.

phase | BFS-PK | BFS

1 122.0 4.2

2 8080.4 | 204.5

3 387.5 170.2

4 496.0 262.8

5 23201.3 | 1561.2

total | 32287.2 | 2202.9
Table 8.10: Andrew500: elapsed time in secondsfor BFS and BFS-PK.

8.6.3 Performance With Recovery

Frequent proactive recoveries and key changesimprove resilience to faults by reducing the window
of vulnerability, but they also degrade performance. We ran Andrew to determine the minimum
window of vulnerability that can be achieved without overlapping recoveries. Then, we configured
thereplicated file system to achievethiswindow, and measured the performance degradationrel ative
to a system without recoveries.

The implementation of the proactive recovery mechanism is complete except that we are sim-
ulating the secure co-processor, the read-only memory, and the watchdog timer in software. We
are also simulating fast reboots. The LinuxBIOS project [Min00] has been experimenting with
replacing the BIOS by Linux. They claim to be able to reboot Linux in 35 s (0.1 s to get the
kernel running and 34.9 to execute scriptsin/ et ¢/ r c. d) [Min0Q]. This meansthat in a suitably
configured machinewe should be ableto reboot in lessthan asecond. Replicassimulate areboot by
sleeping either 1 or 30 seconds and calling nsync to invalidate the service-state pages (this forces
reads from disk the next time they are accessed).

126

Recovery Time

Thetimeto completerecovery determinesthe minimum window of vulnerability that can be achieved
without overlaps. We measured the recovery time for Andrew100 and Andrew500 with 30s reboots
and with the period between key changes, T}, set to 15s.

Table 8.11 presents a breakdown of the maximum time to recover areplicain both benchmarks.
Since the processes of checking the state for correctness and fetching missing updates over the
network to bring the recovering replica up to date are executed in parallel, Table 8.11 presents a
single line for both of them. The line labeled restore state only accounts for reading the log from
disk; the service state pages are read from disk on demand when they are checked.

Andrew100 | Andrew500
save state 2.84 6.3
reboot 30.05 30.05
restore state 0.09 0.30
estimation 0.21 0.15
send new-key 0.03 0.04
send request 0.03 0.03
fetch and check 9.34 106.81
total 42.59 143.68

Table 8.11: Andrew: maximum recovery time in seconds.

The most significant components of the recovery time are the time to save the replica’'s log and
service state to disk, thetimeto reboot, and the time to check and fetch state. The other components
are insignificant. Thetime to reboot is the dominant component for Andrew100 and checking and
fetching state account for most of the recovery time in Andrew500 because the state is bigger.

Given these times, we set the period between watchdog timeouts, T, to 3.5 minutes in An-
drew100 and to 10 minutes in Andrew500. These settings correspond to a minimum window of
vulnerability of 4 and 10.5 minutes, respectively. We al so ran the experiments for Andrew100 with
a 1s reboot and the maximum time to complete recovery in this case was 13.3s. This enables a
window of vulnerability of 1.5 minuteswith T, set to 1 minute.

Recovery must be fast to achieve a small window of vulnerability. While the current recovery
times are low, it is possible to reduce them further. For example, the time to check the state can
be reduced by periodically backing up the state onto a disk that is normally write-protected and
by using copy-on-write to create copies of modified pages on a writable disk. This way only the
maodified pages need to be checked. If theread-only copy of the stateisbrought up to date frequently
(e.g., daily), it will be possible to scale to very large states while achieving even lower recovery
times.

127

Recovery Overhead

We also evaluated the impact of recovery on performancein the experimental setup describedin the
previous section; Figure 8-34 shows the elapsed time to complete Andrew100 and Andrew500 as
the window of vulnerability increases. BFS-PR is BFS with proactive recoveries. The number in
square bracketsis the minimum window of vulnerability in minutes.

500 .
400 2000
)]
£ 300 £ 1500
& 200 g 1000
Ko '§-]
100 500
0 0-

BFS-PR[15] BFS-PR[4] BFS BFS-PR[10.5] BFS

Andrew100 Andrew500
Figure 8-34: Andrew: elapsed time in seconds with and without proactive recoveries.

The results show that adding frequent proactive recoveries to BFS has alow impact on perfor-
mance: BFS-PR[4] is 16% dower than BFS in Andrew100 and BFS-PR[1.5] is only 27% slower
(even though every 15s one replica starts a recovery). The overhead of proactive recovery in
Andrew500 is even lower: BFS-PR[10.5] is only 2% slower than BFS.

There are several reasonswhy recoverieshave alow impact on performance. The most obvious
isthat recoveriesare staggered such that there is never more than onereplicarecovering; this alows
the remaining replicas to continue processing client requests. But it is necessary to perform aview
change whenever recovery is applied to the current primary and the clients cannot obtain further
service until the view change completes. These view changes are inexpensive because a primary
multicasts a view-change message just before its recovery starts and this causes the other replicas
to moveto the next view immediately.

Theresults also show that the period between key changes, T}, can be small without impacting
performance significantly. 7} could be smaller than 15s but it should be substantially larger than
3 message delays under normal 1oad conditions to provide liveness. The problem is that changing
keys frequently does not scale well with the number of clients. Active clients need to refresh their
keys to ensure that the reply certificates contain only messages generated by the replicas within
an interval of size at most 2 x Tj,. This means that, with 200 active clients and T}, = 15s, each
replica would spend 20% of the time processing new-key messages from clients. This processing

128

is performed by the secure co-processor, which allows the replicas to use the CPUs to execute the
protocol. Nevertheless, it may be a problem with alarge number of active clients.

8.7 Summary

Theresultsin this chapter show that servicesimplemented with the BFT library perform well even
when compared with unreplicated implementations. Section 8.7.1 summarizes the experimental
results obtained with the micro-benchmarks, which were designed to evaluate the performance of
the BFT library in a service-independent way, and the performance results for BFS are summarized
in Section 8.7.2.

8.7.1 Micro-Benchmarks

Recall that the micro-benchmarks comparetwoimplementations of asimpleservicewith no stateand
whose operations perform no computation. The two implementations are BFT, which is replicated
using the BFT library, and NO-REP, which is not replicated. The micro-benchmarks overestimate
the overhead introduced by the BFT library because, in real services, computation or 1/O at clients
and servers reduces the overhead relative to unreplicated implementations.

The experimental results show that our analytic performance model is accurate: the absolute
value of therelative prediction error for latency and throughput was below 10% of the experimental
results for ailmost all experiments.

L atency

When the operation argument and result sizes are very small, the latency to invoke the replicated
service is much higher than without replication. The maximum slowdown relative to NO-REP
occurs when the operation argument and result size are both equal to 8 B and it is equal to 4.07 for
read-write operations and 1.93 with the read-only optimization.

However, the slowdown decreases quickly as the argument and result sizes increase. For
example, the slowdown with an 8 KB result size is 1.47 for read-write operations and 1.25 with
the read-only optimization. The model predicts an asymptote of 1.26 for the slowdown with very
large arguments or results for both read-write and read-only operations. The read-only optimization
reduces slowdown significantly with small argument and result sizes but its benefit decreases to
zero asthese sizesincrease.

The model predicts similar trendsin a WAN environment. However, the maximum predicted
slowdown relative to NO-REP is approximately 2 for read-write operations because the communi-
cation latency in the WAN dwarfs CPU costs and BFT only adds an extraround-trip. The read-only
optimization removes this round-trip and virtually eliminates the overhead.

129

Increasing the number of replicas from 4 to 7 does not cause a severe increase in the latency
to invoke the replicated service. In our experimental setup, the maximum overhead relative to
the configuration with 4 replicas is 30% with very small argument and result sizes. Furthermore,
the overhead decreases as the argument or result sizes increase: it is at most 7% for read-write
operations and 2% with the read-only optimization with an argument or result size of 8 KB.

The model predicts asimilar behavior in configurations with up to 31 replicas (f = 10): there
isalarge overhead for operationswith small argument and result sizesbut it decreasesasthese sizes
increase. For example, BFT with f = 10is 4.2 times slower than with f = 1 with 8 B arguments
and results but only 1.9 with 8 KB arguments and 1.7 with 8 KB results. The slowdown is lower
with the read-only optimization: BFT with f = 10isat most 3.3 times slower with 8 B arguments
and results but only 1.35 with 8 KB arguments and 1.13 with 8 KB results.

Throughput

The results show that BFT has significantly lower throughput than NO-REP for operations with
small argument and result sizes. The bottleneck in this caseisthe replica (or server) CPU and BFT
generates more CPU load than NO-REP. For example, when both the argument and the result size
are equal to 8 B, BFT achieves a throughput that is 52% lower than NO-REP's with read-write
operations and 35% lower with the read-only optimization.

However, the throughput degradation is less significant with large argument sizes: BFT's
throughput is only 11% lower than NO-REP s with 4 KB arguments. The bottleneck inthiscaseis
the network link to each replica (or to the server). Furthermore, with large result sizesBFT achieves
better throughput than NO-REP because different clients can obtain large results in parallel from
different replicas. BFT's throughput with 4 KB results is 2.3 times higher than NO-REP's for
read-write operations and up to 3 times higher with the read-only optimization. The bottleneck in
NO-REP is the network link to the client and in BFT it is the CPU at the replicas.

According to our model, increasing the resilience of the system to f = 10 does not cause a
severethroughput degradation relativeto the configurationwith f = 1: the maximum degradationis
31% for read-write operations with very small argument and result sizes. Furthermore, it decreases
as these sizes increase. The degradation is even lower for read-only operations:. the maximum
degradation is 5% and throughput actually improves as the number of replicas increases for large
result sizes.

Impact Of Optimizations

BFT performs well because of several important optimizations. The most important is the elimi-
nation of public-key cryptography. This optimization improves latency dramatically in our exper-
imental setup; it achieves a speedup between 57 and 138 depending on argument and result sizes.

130

The optimization also increases throughput by afactor of 5to 11.

Batching requests, digest replies, and separate request transmission are also very important
optimizations. Batching requestsis very effective at improving throughput of read-write operations.
For example, it improvesthe throughput of an operation with argument and result size equal to 8 B
by afactor of 4.1. The digest replies optimization has a significant impact with large result sizes.
Our results show that it reduces latency by up to afactor of 2.6 and improves throughput by up to a
factor of 3. Similarly, separate request transmission improves latency and throughput significantly
for operations with large argument sizes: it reduces latency by 40% and improves throughput by
91%.

Tentative execution of requestsis not as effective: it improves latency by at most 27% and has
no significant impact on throughput.

8.7.2 BFS

The performance results for BFS show that the relative overhead introduced by the BFT library is
even lower for areal service. BFStakes 14% to 22% more time than an unreplicated service (which
uses the samefile system code) to complete scaled up versions of the Andrew benchmark.

The comparison with NFSimplementationsin production operating systems (Linux and Digital
Unix) shows that BFS can be used in practice: its performs similarly to these systems, which are
used daily by many users. BFS' performance ranges from 2% faster to 21% slower depending on
the NFS implementation and the amount of data used in the scaled up Andrew benchmark. BFSis
2% faster than the NFS implementation in Digital Unix, which implements correct NFS semantics,
and up to 21% slower than the NFSimplementation in Linux with Ext2fs, which does not implement
the correct semantics.

Finally, the experiments with proactive recovery show that the overhead is low even with very
frequent recoveries: it ranges from 27% with aminimum window of vulnerability of 1.5 minutesto
2% with awindow of vulnerability of 10.5 minutes. Therefore, it is possible to improve resilience
by decreasing the window of vulnerability with alow impact on performance.

131

Chapter 9

Related Wor k

There is alarge body of research on replication but the earlier work did not provide an adequate
solution for building systems that tolerate software bugs, operator mistakes, or malicious attacks.
Most of thiswork relied on assumptionsthat are not realistic in the presence of these types of faullts,
and the work that did not rely on unrealistic assumptions performed poorly and did not provide a
complete solution to build replicated systems.

Sections 9.1 and Section 9.2 discuss replication techniques that assume benign faults and
replication techniques that tolerate Byzantine faults, respectively. Section 9.3 discusses other
related work.

9.1 Replication With Benign Faults

Most research on replication has focused on techniques that tolerate benign faults (e.g., [AD76,
Lam78, Gif79, OL88, Lam89, LGG91]): they assumereplicasfail by stopping or by omitting some
steps. This assumption is not valid with software bugs, operator mistakes, or malicious attacks.
For example, an attacker can replace the code of a faulty replica to make it behave arbitrarily.
Furthermore, services with mutable state may return incorrect replies when a single replica fails
becausethisreplicamay propagate corrupt information to the others. Consequently, replication may
decrease resilience to these types of faults: the probability of incorrect system behavior increases
with the number of replicas.

Viewstamped replication [OL88] and Paxos [Lam89] use a combination of primary-backup
[AD76] and quorum [Gif79] techniquesto tolerate benign faults in an asynchronous system. They
use a primary to assign sequence numbers to requests and they replace primaries that appear to
be faulty using a view change protocol. Both agorithms use quorums to ensure that request
ordering information is propagated to the new view. BFT borrows these ideas from the two
algorithms. But tolerating Byzantine faults requires a protocol that is significantly more complex:
BFT usescryptographic authenti cation, quorum certificates, an extrapre-prepare phase, and different
techniquesto perform view changes, select primaries, and garbage collect information.

132

We are the first to provide a replicated file system that tolerates Byzantine faults but there are
several replicated file systems that tolerate benign faults, e.g. Ficus [GHM™90], Coda [Sat90],
Echo [HBJ™90], and Harp [LGG191]. Our system is most similar to Harp, which also implements
the NFS pratocol. Like Harp, we take advantage of replication to ensure stability of modified data
and meta-data before replying to clients (as required by the NFS protocol) without synchronous
disk writes.

9.2 Replication With Byzantine Faults

Techniquesthat tolerate Byzantine faults [PSL 80, L SP82] make no assumptions about the behavior
of faulty componentsand, therefore, can tolerate even maliciousattacks. However, most earlier work
(e.g., [PSL80, LSP82, Sch90, CASD85, Rei96, MR96a, GM 98, KMMS98]) assumes synchrony,
which is not a good assumption in real systems because of bursty load in both the processors and
the network. This assumption is particularly dangerous with malicious attackers that can launch
denial-of-service attacks to flood the processors or the network with spurious requests.

Agreement and Consensus

Some agreement and consensus algorithms tolerate Byzantine faults in asynchronous systems (e.g,
[BT85, CR92, MR96b, DGGS99, CKS00]). However, they do not provide a complete solution for
state machine replication, and furthermore, most of them were designed to demonstrate theoretical
feasibility and are too slow to be used in practice.

BFT’s protocol during normal-case operation is similar to the Byzantine agreement algorithm
in [BT85]. However, this algorithm is insufficient to implement state-machine replication: it
guaranteesthat non-faulty processes agree on amessage sent by aprimary but it isunableto survive
primary failures. Their algorithm also uses symmetric cryptography but since it does not provide
view changes, garbage collection, or client authentication, it does not solve the problems that make
eliminating public-key cryptography hard.

The algorithm in [CKS00] solves consensus more efficiently than previous agorithms. It is
possible to use this algorithm as a building block to implement state machine replication but the
performance would be poor: it would require 7 message delays to process client requests and it
would perform at least three public-key signaturesin the critical path. The algorithm in [CKSO00]
uses a signature sharing scheme to generate the equivalent of our quorum certificates. This is
interesting: it could be combined with proactive signature sharing [HJJ*97] to produce certificates
that could be exchanged among replicas even with recoveries.

133

State Machine Replication

Our work isinspired by Rampart [Rei94, Rei 95, Rei 96, MR96a] and SecureRing [KMM S98], which
also implement state machine replication. However, these systems rely on synchrony assumptions
for safety.

Both Rampart and SecureRing use group communication techniques [BSS91] with dynamic
group membership. They must exclude faulty replicas from the group to make progress (e.g., to
remove a faulty primary and elect a new one), and to perform garbage collection. For example, a
replicais required to know that a message was received by all the replicasin the group beforeit can
discard the message. So it may be necessary to exclude faulty nodesto discard messages.

These systemsrely on failure detectorsto determine which replicas are faulty. However, failure
detectors cannot be accurate in an asynchronous system [Lyn96], i.e., they may misclassify a
replica as faulty. Since correctness requires that fewer than 1/3 of group members be faulty, a
misclassification can compromise correctness by removing a non-faulty replica from the group.
This opens an avenue of attack: an attacker gains control over asingle replica but does not change
its behavior in any detectable way; then it slows correct replicas or the communication between
them until enough are excluded from the group. It is even possible for these system to behave
incorrectly without any compromised replicas. This can happenif all the replicas that send areply
to aclient are removed from the group and the remaining replicas never processthe client’s request.

To reduce the probability of misclassification, failure detectors can be calibrated to delay
classifying areplica as faulty. However, for the probahility to be negligible the delay must be very
large, which isundesirable. For example, if the primary has actually failed, the group will be unable
to process client requests until the delay has expired, which reduces availability. Our agorithm
is not vulnerable to this problem because it only regquires communication between quorums of
replicas. Since there is aways a quorum available with no faulty replicas, BFT never needs to
exclude replicas from the group.

Public-key cryptography was the major performance bottleneck in Rampart and SecureRing
despite the fact that these systems include sophisticated techniquesto reduce the cost of public-key
cryptography at the expense of security or latency. These systemsrely on public-key signaturesto
work correctly and cannot use symmetric cryptography to authenticate messages. BFT uses MACs
to authenticate all messages and public-key cryptography is used only to exchange the symmetric
keysto computethe MACs. This approach improves performance by up to two orders of magnitude
without loosing security.

Rampart and SecureRing can guarantee safety only if fewer than 1/3 of the replicas are faulty
during the lifetime of the system. This guarantee is too weak for long-lived systems. Our system
improvesthisguarantee by recoveringreplicasproactively and frequently; it can tolerate any number
of faults if fewer than 1/3 of the replicas become faulty within a window of vulnerability, which

134

can be made small under normal load conditions with low impact on performance.

Rampart and SecureRing provide group membership protocols that can be used to implement
recovery, but only in the presence of benign faults. These approaches cannot be guaranteed to work
inthe presenceof Byzantinefaultsfor tworeasons. First, the system may be unableto provide saf ety
if areplicathat isnot faulty isremoved from the group to be recovered. Second, the algorithmsrely
on messages signed by replicas even after they are removed from the group and there is no way to
prevent attackers from impersonating removed replicas that they controlled.

Quorum Replication

Phalanx [MR97, MR98a, MR98b] and its successor Fleet [MR0OQ] apply quorum replication tech-
niques [Gif79] to achieve Byzantine fault-tolerance in asynchronous systems. This work does not
provide generic state machine replication. Instead, it offers a data repository with operations to
read or write individual variables and to acquire locks. We can implement arbitrary operations that
access any humber of variables and can both read and write to those variables, whereasin Fleet it
would be necessary to acquire and release locks to execute such operations. This makes Fleet more
vulnerableto malicious clients becauseit relies on clients to group and order reads and blind writes
to preserve any invariants over the service state.

Fleet provides an agorithm with optimal resilience (n > 3f + 1 replicas to tolerate f faults)
but malicious clients can make the state of correct replicas diverge when this algorithm isused. To
prevent this, Fleet requiresn > 4f + 1 replicas.

Fleet does not provide a recovery mechanism for faulty replicas. However, it includes amecha-
nism to estimate the number of faulty replicasin the system [APMR99] and a mechanism to adapt
the threshold f on the number of faults tolerated by the system based on this estimate [AMP*00].
Thisisinteresting but it is not clear whether it will work in practice: a clever attacker can make
compromised replicas appear to behave correctly until it controls more than f and then it istoo late
to adapt or respond in any other way.

There are no published performance numbersfor Fleet or Phalanx but we believe our systemis
faster becauseit hasfewer message delaysin the critical path and because of our use of MACsrather
than public key cryptography. In Fleet, writes require three message round-tripsto executeand reads
reguire one or two round-trips. Our algorithm executes read-write operations in two round-trips
and most read-only operations in one. Furthermore, all communication in Fleet is between the
client and the replicas. This reduces opportunities for request batching and may result in increased
latency since we expect that in most configurations communication between replicas will be faster
than communication with the client.

The approach in Fleet offers the potential for improved scalability: each operation is processed
by only a subset of replicas. However, the load on each replica decreases slowly with n (it is

135

Q(1/4/n)). Therefore, we believethat partitioning the state by several state machine replicagroups
is a better approach to achieve scalability for most applications. Furthermore, it is possible to
combine our algorithm with quorum systems that tolerate benign faults to improve on Fleet's
scalability but thisis future work.

9.3 Other Related Work

The problem of efficient state transfer has not been addressed by previous work on Byzantine-fault-
tolerant replication. We present an efficient state transfer mechanism that enablesfrequent proactive
recoveries with low performance degradation. The state transfer algorithm is aso unusual because
it is highly asynchronous. In replication algorithms for benign faults, e.g.,[LGG"91], replicas
typically retain a checkpoint of the state and messages in their log until the recovering replicais
brought up-to-date. This could open an avenue for a denial-of-service attack in the presence of
Byzantine faults. Instead, in our algorithm, replicas are free to garbage collect information and are
minimally delayed by the recovery.

The SFS read-only file system [FKMOQ] can tolerate Byzantine faults. Thisfile system usesa
techniqueto transfer data between replicas and clientsthat is similar to our state transfer technique.
They are both based on Merkle trees [Mer87] but the read-only SFS uses data structures that are
optimized for afile system service. Another differenceisthat our statetransfer handles modifications
to the state while the transfer is in progress. Our technique to check the integrity of the replica's
state during recovery is similar to those in [BEG™94] and [MV S00] except that we obtain the tree
with correct digests from the other replicas rather than from a secure co-processor.

The concept of a system that can tolerate more than f faults provided no more than f nodes
in the system become faulty in some time window was introduced in [OY91]. This concept has
previously been applied in synchronous systems to secret-sharing schemes [HIKY 95], threshold
cryptography [HJJ"97], and more recently secure information storage and retrieval [GGJR99]
(which providessingle-writer single-reader replicated variables). But our algorithmismore general;
it allows a group of nodesin an asynchronous system to implement an arbitrary state machine.

136

Chapter 10

Conclusions

The growing reliance of our society on computers demands highly-available systems that provide
correct service without interruptions. Byzantine faults such as software bugs, operator mistakes,
and malicious attacks are the major cause of service interruptions. This thesis describes a new
replication algorithm and implementation techniques to build highly-available systemsthat tolerate
Byzantine faults. It shows, for the first time, how to build Byzantine-fault-tolerant systemsthat can
be used in practice to implement real services because they do not rely on unrealistic assumptions
and they perform well.

This chapter presents a summary of the main resultsin the thesis and directions for future work.

10.1 Summary

This thesis describes BFT, a state-machine replication algorithm that tolerates Byzantine faults
provided fewer than 1/3 of the replicas are faulty.

BFT does not rely on unrealistic assumptions. For example, it is bad to assume synchrony
because a denial-of-service attack can cause the service to return incorrect replies. BFT isthe first
state-machine replication algorithm that works correctly in asynchronous systems with Byzantine
faults: it provideslinearizability, whichisastrong safety property, without relying on any synchrony
assumption. Additionally, it guarantees liveness provided message delays are bounded eventually.
A servicemay beunableto return replieswhen adenial of serviceattack isactive but it never returns
incorrect replies and clients are guaranteed to receive replies when the attack ends.

It is adso bad to assume that client faults are benign because clients are usually easier to
compromisethanreplicas. BFT providessafety and livenessregardless of the number of Byzantine-
faulty clients. Additionally, it can be used to replicate services with complex operations, which
is important to limit the damage Byzantine-faulty clients can cause. Service operations can be
designed to preserve invariants on the service state and to perform access control; BFT ensures
faulty clients are unable to break these invariants or bypass the access control checks. Algorithms
that restrict service operations to simple reads and blind writes are more vulnerable to Byzantine-

137

faulty clients because they rely on the clients to order and group these simple operations correctly
in order to enforce invariants.

It isnot realistic to assumethat fewer than 1/3 of thereplicasfail over thelifetime of the system.
This thesis describes a proactive recovery mechanism that allows the replicated system to tolerate
any number of faults over the lifetime of the system provided fewer than 1/3 of the replicas become
faulty within a window of vulnerability. This mechanism recovers replicas periodically even if
there is no reason to suspect that they are faulty. Replicas can be recovered frequently to shrink
the window of vulnerability to afew minutes with alow impact on performance. Additionally, the
proactive recovery mechanism provides detection of denial-of-service attacks aimed at increasing
the window and it also detects when the state of areplicais corrupted by an attacker.

BFT has been implemented as a generic program library with a ssimple interface. The BFT
library provides a complete solution to the problem of building real servicesthat tolerate Byzantine
faults. For example, it includes efficient techniquesto garbage collect information, to transfer state
to bring replicas up-to-date, to retransmit messages, and to handle services with non-deterministic
behavior. The thesis describes areal service that was implemented using the BFT library: the first
Byzantine-fault-tolerant NFSfile system, BFS.

The BFT library and BFS perform well. For example, BFS performs 2% faster to 24% slower
than production implementations of the NFS protocol that are not replicated. This good perfor-
mance is due to several optimizations. The most important optimization is the use of symmetric
cryptography to authenticate messages. Public-key cryptography, which was the major bottleneck
in previous systems, is used only to exchange the symmetric keys. Other optimizations reduce the
communication overhead: the algorithm uses only one message round trip to execute read-only
operations and two to execute read-write operations, and it uses batching under load to amortize the
protocol overhead over many requests. The algorithm also uses optimizations to reduce protocol
overhead as the operation argument and return sizesincrease.

There is little benefit in using the BFT library or any other replication technique when there
is a strong positive correlation between the failure probabilities of the replicas. For example, our
approach cannot mask a software error that occurs at all replicas at the same time. But the BFT
library can mask nondeterministic software errors, which seem to be the most persistent [Gra00]
since they are the hardest to detect. In fact, we encountered such a software bug while running our
system, and our algorithm was able to continue running correctly in spite of it. The BFT library can
also mask software errors dueto aging (e.g., resource leaks). It improves on the usual technique of
rebooting the system becauseit refreshes state automatically and staggersrecovery so that individual
replicas are highly unlikely to fail smultaneously. Additionally, systems replicated with the BFT
library can tolerate attacks that take longer than the window of vulnerability to succeed.

One can increase the benefit of replication further by taking steps to increase diversity. One
possibility is to have diversity in the execution environment: the replicas can be administered by

138

different people; they can bein different geographic locations; and they can have different config-
urations (e.g., run different combinations of services, or run schedulerswith different parameters).
This improves resilience to several types of faults, for example, administrator attacks or mistakes,
attacks involving physical accessto the replicas, attacks that exploit weaknessesin other services,
and software bugs due to race conditions.

An agent from Europol reported in a recent news article [Sul0Q] that a bank lost millions of
dollars through a scheme implemented by one of its own system administrators who added a few
lines of code to the bank’s software. The BFT library could have prevented this problem.

10.2 FutureWork

We want to explore the use of software diversity to improve resilience to software bugs and
attacks that exploit software bugs because these faults are the most common. N-version program-
ming [CAT78] is expensive but since there are severa independent implementations available of
operating systems and important services (e.g., file systems, data bases, and WEB servers), replicas
can run different operating systems and different implementations of the code for these services.
For this to work, it is necessary to implement a small software layer to ensure that the different
replicas have the same observable behavior. This is simplified by the existence of standardized
protocols to access important services (e.g., NFS[S85] and ODBC [Gei95]) but there are some
interesting issues on how to implement this layer efficiently.

Additionally, for checkpoint management and state transfer to work with software diversity, it
is necessary to define a common observable service state and to implement efficient trandation
functions between the state in each implementation and this observable state. Since the observable
state abstracts away implementation details, this technique will also improve resilience to resource
leaksin the service code; our state transfer technique can be used to restart a replica from a correct
checkpoint of the observable state that is obtained from the others.

It ispossibleto improve security further by exploiting software diversity acrossrecoveries. One
possibility isto restrict the serviceinterface at areplicaafter its stateisfound to be corrupt. Another
potential approach is to use obfuscation and randomization techniques [CT00, F+97] to produce a
new version of the software each time areplicaisrecovered. Thesetechniquesare not very resilient
to attacks but they can be very effective when combined with proactive recovery becausethe attacker
has a bounded time to break them.

The algorithm described in this thesis uses a fixed group of replicas. We would like to extend
it to alow dynamic configuration changes. This is hard with Byzantine faults: an attacker that
controls a quorum of the replicas in some old configuration may fool clients into believing that
the current configuration is an arbitrary set of replicas under its control. We believeit is possible
to use proactive signature sharing [HJJT97] to solve this problem. The ideais that the members

139

of the group would be able to generate a shared signature that could be verified with a constant,
well-known public key. Such a signature could be used to convince the clients of the current group
membership. To prevent an attacker from learning how to generate a valid signature, the shares
used to generate it would be refreshed on every configuration change. For thisto work, it would be
necessary to develop arefreshment protocol for the sharesthat worked both correctly and efficiently
in asynchronous systems.

Another problem of special interest is reducing the amount of resources required to implement
areplicated service. The number of replicas can be reduced by using f replicas aswitnesses [Par86,
LGG™91] that are involved in the protocol only when some full replicafails. It is also possible to
reduce the number of copies of the stateto f + 1 but the details remain to be worked out.

We have shown how to implement a Byzantine-fault-tolerant file system. It would beinteresting
to usethe BFT library to implement other services, for example, arelational databaseor anht t pd.
The library has already been used to replicate the Thor [LACT96, CALM97] object-oriented
database [Rod00] and a Domain Name Service (DNS) [TPRZ84] with dynamic updates [AhmO00,
Yan99]. DNS is interesting because it uses hierarchical state partitioning and caching to achieve
scalability. To implement a Byzantine-fault-tolerant DNS, we had to develop an efficient protocol
for replicated clients that allows the replicas in agroup to request operations from another group of
replicas.

Thisthesishasfocused on the performance of the BFT library in the normal case. It isimportant
to perform an experimental evaluation of the reliability and performance of the library with faults
by using fault-injection techniques. The challenge is that attacks are hard to model. For example,
attacks can involve cooperation between faulty clients and replicas, and can combine denial-of-
service with penetration. Ultimately, we would like to make a replicated service available on the
Internet and launch a challenge to break it.

Source Code Availability

We made the source code for the BFT library, BFS, and the benchmarks used in their performance
evaluation available to allow others to reproduce our results and improve on this work. It can be
obtained from:

http://ww. png.lcs.nit.edu/“castro/byz. htm

140

Appendix A

Formal Safety Proof for BFT-PK

This appendix presents aformal safety proof for the BFT-PK algorithm. The proof is based on in-
variant assertionsand simulationrelations. It showsthat thea gorithm A, formalizedin Section 2.4
implementsthe automaton S, which specifies safe behavior and was defined in Section 2.4.3. Weuse
the following strategy to show this. We start by proving that a smplified version of the algorithm,
A, which does not have garbage collection, implements S. Then, we provethat A,4. implements A.

A.1 Algorithm Without Garbage Collection

This section specifies the simplified algorithm A, which does not have garbage collection. The
proxy and multicast channel automatain A areidentical to the ones defined for A, in Section 2.4.
The difference is in the specification of the replica automata. Each replica automaton R; in A is
defined asfollows.

RECEIVE((VIEW-CHANGE, v, P, j)s,)i
RECEIVE((NEW-VIEW, v, V, O, N),,)i
REPLICA-FAILURE;

Internal: SEND-PRE-PREPARE(1m, v, 11);
SEND-COMMIT(m, v, n);
EXECUTE(m,v,n);
VIEW-CHANGE(v);
SEND-NEW-VIEW(v, V');

Output: SEND(m, X).

Signature:
Input: RECEIVE((REQUEST, 0, t, ¢)o.)i
RECEIVE((PRE-PREPARE, v, 1, M) ;)i
RECEIVE({PREPARE, v, n, d, j)s;)i
RECEIVE((COMMIT, v, n, d, §)o;)i
(«
(

Here, t,v,n € N,c e (C, 4,7 € R, me M,V,O00N C M, X C X, and
deD={d|3Ime M:(d=D(m))}

141

State:

val; € S, initidly s,

view; € N, initialy O

in; € M, initialy {}

out; C M, initialy {}

last-rep;, : ¢ — O',initidlyVe € C: last-rep,(c) = null-rep
last-rept, : C — N, initidlyVe € C: last-rep-t,(c) = 0
segqno; € N, initialy O

last-exec; € N, initialy O

faulty, € Bool, initialy false

Auxiliary functions:

tag(m,u) = m = (u,...)
primary(v) = v mod | R|
primary(z) = view; mod | R|
in-v(v,7) = view; = v
prepared(m,v,n, M) = (PRE-PREPARE,v,n,m)gprinﬁry(v) € MA
AR : (|R| > 2f A primary(v) ¢ R A Vk € R : ({PREPARE,v,n,D(m), k)., € M))

prepared(m,v,n,i) = prepared(m,v,n,in;)
last-prepared(m, v,n, M) = prepared(m,v,n, M) A

Zm',v" . ((prepared(m’,v',n, M) A v' > v) V (prepared(m’,v,n, M) A m # m'))
last-prepared(m, v, n,i) = last-prepared(m, v, n,in;)
committed(m, v, n,4) = (3" : ((PRE-PREPARE,v',n,m)gprinﬁry(v,) € in) V.m € in) A

AR : (|R| > 2f+1 AVEk € R : ((COMMIT,v,n,D(m),k)s, € in;))

correct-view-change(m, v, j) = 3 P . (m = (VIEW-CHANGE, v, P, j);; A
V(PRE-PREPARE,U',n,m')Uprimy(v,) € P : (last-prepared(m/,v',n, P) A v' < v)
merge-P(V) = { m |3 (VIEW-CHANGE, v, P,k)s, € V : m € P}
max-n(M) = max({ n | (PRE-PREPARE, v,n, m),, € M})
correct-new-view(m, v) =

AV,O,N,R: (m = (NEW—VIEW,U,V,O,N)aprimry(v) A|V| = |R| = 2f+1A

Vk € R: (3m' € V : (correct-view-change(m’, v, k))) A

O = { (PRE-PREPARE, v, n, m'>6primary<v) | 30" : last-prepared(m’, v’, n, merge-P(V))} A

N = { (PRE-PREPARE, v, 11, null)oprimary,) | 7 < mMax-n(0) A

Av',m',n : last-prepared(m’,v’, n, merge-P(V)))

has-new-view(v,7) = v = 0V Im : (m € in; A correct-new-view(m,v))

i

Output Transitions:

SEND(m, R — {i})i
Pre: m € out; A —~tag(m, REQUEST) A —tag(m, REPLY)
Eff: out; := out; — {m}

SEND(mn, {primary(¢)});
Pre: m € out; A tag(m, REQUEST)
Eff: out; := out; — {m}

SEND({REPLY, v, t,¢,%,T)0;, {C})i

Pre: (REPLY,v,t,¢,%,T)s, € OUL;
Eff: out; := out; — {(REPLY, v,t,¢,%,7)0s; }

142

Input Transitions:

RECEIVE((REQUEST, 0, t,).)i
Eff: let m = (REQUEST, o, t, ¢)o.
if t = last-rep-t;(c) then
out; := out; U {(REPLY, View;, ¢, c, 3, last-rep; (c))., }
else
in; :==in; U {m}
if primary(s) # 4 then
out; := out; U {m}

RECEIVE({PRE-PREPARE, v, 1, M),)i (j # 1)
Eff: if 7 = primary(z) A in-v(v, %) A has-new-view(v, z)A

Ad : (d # D(m) A {PREPARE, v, n,d, 1),; € in;) then

let p = (PREPARE, v, n, D(m), i)o,
in; ;= in; U {(PRE-PREPARE, v, n, M), ;, P}
out; := out; U {p}

elseif do,t,c: (m = (REQUEST, o, t, ¢)s.) then
in; :=in; U{m}

RECEIVE({PREPARE, v, 7, d, j)o;)i (j # %)
Eff: if 5 # primary(z) A in-v(v,) then
in; := in; U {(PREPARE, v, n,d, 5o, }

RECEIVE((COMMIT, v,n,d, j)5;)i (j # 1)
Eff: if view; > v then
in; :=in; U {{COMMIT, v, n,d, j)o, }

RECEIVE({VIEW-CHANGE, v, P, j)s,)i (j # 1)
Eff: let m = (VIEW-CHANGE, v, P, j)o;
if v > view; A correct-view-change(m, v, j) then
in; :=in; U{m}

RECEIVE((NEW-VIEW, v, X, O, N),,)i (§ # 1)
Eff: letm = (NEW-VIEW, v, X, 0, N),,,
P = {(PREPARE, v,n/, D(m'), i), |(PRE-PREPARE, v, n',m"),; € (O U N)}
if v > 0A v > view; A correct-new-view(m, v) A —has-new-view(v, i) then

view; ;= v
inj:=in UOUNU{m}UP
out; .= P

REPLICA-FAILURE;
Eff: faulty, := true

Internal Transitions:

SEND-PRE-PREPARE(m, v, 10);
Pre: primary(z) = ¢ A seqno; = n — 1 A in-v(v, i) A has-new-view(v, i) A
Jo,t,c: (m = (REQUEST, 0,t,¢c),, A m € in;)A A(PRE-PREPARE, v,n’, m),, € in;
Eff: segno; := seqno; + 1
let p = (PRE-PREPARE, v, 11, M),
out; := out; U {p}
in; :=in; U {p}

SEND-COMMIT(m, v, n);
Pre: prepared(m, v, n,i) A (COMMIT,v,n, D(m),i)s, & in;
Eff: letc = (COMMIT, v, n, D(m), i),
out; := out; U {c}
in; :=in; U {c}

143

EXECUTE(m,v,n);
Pre: n = last-exec; + 1 A committed(m, v, n, 1)
Eff: last-exec; :=n
if (m # null) then
let (REQUEST, o, t,c)y. = m
if ¢ > last-rep-t;(c) then
if ¢ > last-rep-t;(c) then
last-rep-t;(c) :==¢
(laSt_repi(c)avali) = g(c, O,Vali)
out; := out; U {(REPLY, view;, t, c, 3, last-rep;(c)), }
in; :=in; — {m}

SEND-VIEW-CHANGE(v);
Pre: v = view; +1
Eff: view; (= v
let P' = {{m,v,n)|last-prepared(m, v, n, i)},

pP= U<m7u7n>ep, ({p = (PREPARE, v, n, D(m), k), |p € in;} U {(PRE-PREPARE, v, ni, m)gprimry(v) b,
m = (VIEW-CHANGE, v, P, i),
out; := out; U {m}
in; :=in; U {m}

SEND-NEW-VIEW(v, V');
Pre: primary(v) =i Av > view; Av>0AV Cin A V] = 2f + 1 A —has-new-view(v, i)A
JR: (|R| =2f +1AVk € R: (3P : ((VIEW-CHANGE, v, P, k)., € V)))
Eff: view; :=wv
let O = {(PRE-PREPARE, v, n, m),, |3V : last-prepared(m, v', n, merge-P(V))},
N = {(PRE-PREPARE, v, n, null),, |n < max-n(O)A Zv',m,n : last-prepared(m, v', n, merge-P(V))},
m = (NEW-VIEW, v, V, O, N),,
segno; := max-n(O)
inj :=in; UOUN U{m}
out; := {m}

Safety Proof

Next, we provethat A implements S. We start by proving some invariants. Thefirst invariant says
that messages, which are signed by a non-faulty replica, arein the replicaslog. Thisinvariant is
important because its proof is the only place where it is necessary to reason about the security of
signaturesand it enables most of the other invariantsto reason only about thelocal state of areplica

The key results are Invariant A.1.4, which says that correct replicas never prepare distinct
reguests with the same view and sequence number, and Invariant A.1.11, which says that correct
replicas never commit distinct requests with the same sequence number. We use these invariants
and asimulation relation to provethat A implements S.

Invariant A.1.1 Thefollowing istrue of any reachable state in an execution of A,

Vi,j € R, m € M : ((-faulty; A —faulty; A —tag(m,REPLY)) =
(({mYo; € in; V Im' = (VIEW-CHANGE, v, P,k)s, : (m' € in;j A (m),, € P)V
Am' = (NEW-VIEW,v,V,0,N)s, : (m' € inj A ((m)o, € V V (m)s, € merge-P(V))))
= (m)s, € i)

The sameisalso trueif onereplacesin; by {m | 3X : (m, X) € wire} or by out;

144

Proof: For any reachable state z of A and message value m that is not areply message, if replica:
is not faulty in state z, (m),, € out; = (m),, € in;. Additionaly, if (m),, € in; istrue for some
state in an execution, it remains true in all subsequent states in that execution or until becomes
faulty. By inspection of the code for automaton R;, these two conditions are true because every
action of R; that inserts a message (m),, in out; also insertsit in in; and no action ever removes a
message signed by i fromin;.

Our assumption on the strength of authentication guaranteesthat no automaton can impersonate
anon-faulty replica R; by sending (m),, (for all values of m) on the multicast channel. Therefore,
for a signed message (m),, to be in some state component of a non-faulty automaton other than
R;, itisnecessary for SEND((m),,, X); to have executed for some value of X at some earlier point
in that execution. The precondition for the execution of such a send action requires (m),, € out;.
The latter and the two former conditions prove the invariant. 0

The next batch of invariants states self-consistency conditionsfor the state of individual replicas.
For example, it states that replicas never log conflicting pre-prepare or prepare messages for the
same view and sequence number.

Invariant A.1.2 The following istrue of any reachable state in an execution of A, for any replica
1 such that faulty; isfalse:

1. V(PREPARE,v,n,d, i), € iN;: (Ad' # d: ((PREPARE, v,n,d ,%)s, € iN;))

2. Yv,n,m: ((« = primary(v) A (PRE-PREPARE, v, n, m),; € iN;) =
Am' : (m' # m A (PRE-PREPARE, v,n,m'),; € iN;))

3. V(PRE-PREPARE,v,n, m)s; € in; : (i = primary(v) = n < seqno;)

»

V(PRE-PREPARE, v, 71, m>0primary<v) €in; :
(v > 0= 3Im' = (NEW-VIEW, v, X, O, N>vprimary(1,) : (m' € in; A correct-new-view(m’, v)))

vm' = (NEW-VIEW, v, X, O, N)oprimary(.) € 1M : correct-new-view(m', v)
Vm' = (VIEW-CHANGE, v, P, j)»; € in; : correct-view-change(m’, v, j)
V(PREPARE, v, n, D(m), i)s; € in; : ({(PRE-PREPARE, v, 1, m)gprimary(v) € iny)

V(PRE-PREPARE, v, 1, m)gprimary(v) € in; : (¢ # primary(v) = (PREPARE, v, n, D(m),i)s; € in;)

© © N o Ou

V(PRE-PREPARE, v, 71, m>0primary<v) ein; i v < view;

Proof: The proof is by induction on the length of the execution. The initializations ensure that
in; = {} and, therefore, all conditions are vacuously true in the base case. For the inductive step,
assume that the invariant holds for every state of any execution « of length at most 1. We will show
that the invariant also holdsfor any one step extension a3 of a.

Condition (1) can beviolated in a3 only if an action that may insert a prepare message signed
by i inin; executes. These are actions of the form:

1. RECEIVE((PRE-PREPARE, v,n,m')s):
2. RECEIVE((PREPARE, v, n,d, j)s,)i
3. RECEIVE((NEW-VIEW, v,V, 0, N),)i

145

Thefirst type of action cannot violate condition (1) because the condition in theif statement en-
suresthat (PREPARE, v, n, D(m'), i), isnotinsertedinin; whenthereexistsa(PREPARE, v, n, d, i), €
in; suchthat D(m') # d. Similarly, the second type of action cannot violate condition (1) because
it only inserts the argument prepare messagein in; if it is signed by areplica other than R;.

For the case v = 0, actions of type 3 never have effects on the state of R;. For the casev > 0,
we can apply the inductive hypothesis of conditions (7) and (4) to conclude that if there existed a
(PREPARE, v,m, D(m),i),, € in; inthelast state in «, there would also exist a new-view message
for view v in in; in that state. Therefore, the precondition of actions of type 3 would prevent
them from executing in such a state. Since actions of type 3 may insert multiple prepare messages
signed by R; into in;, there is still a chance they can violate condition (1). However, this cannot
happen because these actions are enabled only if the argument new-view messageis correct and the
definition of correct-new-view ensures that there is at most one pre-prepare message with a given
sequence number in O U N.

Condition (2) can be violated in o1 only by the execution of an action of one of the following
types:

1. RECEIVE((PRE-PREPARE, v,n, ™),)i,

2. RECEIVE((NEW-VIEW, v,V, 0, N)o,)i,

3. SEND-PRE-PREPARE(m, v, n);, O

4. SEND-NEW-VIEW(v, V);

Actions of the first two types cannot violate condition (2) because they only insert pre-prepare
messages in in; that are not signed by R;. Actions of the third type cannot violate condition (2)
because the inductive hypothesis for condition (3) and the precondition for the send-pre-prepare
action ensure that the pre-prepare message inserted in in; has a sequence number that is one higher
than the sequence number of any pre-prepare messagefor the sameview signedby R; inin;. Finally,
actions of the fourth type cannot violate condition (2). For v = 0, they are not enabled. For v > 0,
the inductive hypothesis of condition (4) and the precondition for the send-new-view action ensure
that no pre-preparefor view v can be in in; when the action executes, and the definition of O and N
ensuresthat there is at most one pre-prepare message with a given sequence number in O U N.

Condition (3) can potentially be violated by actions that insert pre-prepares in in; or modify
segno;. These are exactly the actions of the types listed for condition (2). As before, actions of
the first two types cannot violate condition (3) because they only insert pre-prepare messagesin in;
that are not signed by R; and they do not modify seqno;. The send-pre-prepare action preserves
condition (3) because it increments seqno; such that it becomes equal to the sequence number of
the pre-prepare message it inserts in in;. The send-new-view actions also preserve condition (3):
(as shown before) actions of this type only executeif there is no pre-prepare for view v inin; and,
when they execute, they set segno; := max-n(O), which is equal to the sequence number of the
pre-prepare for view v with the highest sequence number inin;.

146

To violate condition (4), an action must either insert a pre-prepare message in in; or remove a
new-view message fromin;. No action ever removes new-view messagesfrom in;. The actionsthat
may insert pre-prepare messagesinin; areexactly theactionsof thetypeslisted for condition (2). The
first typeof actionin thislist cannot violate condition (4) becausetheif statement in its body ensures
that the argument pre-prepare message is inserted in in; only when has-new-view(v, 7) istrue. The
second type of action only inserts pre-prepare messages for view v inin; if the argument new-view
messageis correct and in this caseit also insertsthe argument new-view messagein in;. Therefore,
the second type of action also preservescondition (4). The precondition of send-pre-prepare actions
ensures that send-pre-prepare actions preserve condition (4). Finally, the send-new-view actions
also preserve condition (4) becausetheir effectsand theinductive hypothesisfor condition (6) ensure
that a correct new-view message for view v isinserted in in; whenever a pre-prepare for view v is
insertedinin;.

Conditions (5) and (6) are never violated. First, received new-view and view-change messages
are always checked for correctness before being inserted in in;. Second, the effects of send-view-
change actions together with the inductive hypothesis of condition (9) and the precondition of
send-view-change actions ensure that only correct view-change messagesareinserted inin;. Third,
the inductive hypothesis of condition (6) and the effects of send-new-view actions ensure that only
correct new-view messagesare inserted inin;.

Condition (7) is never violated because no action ever removes a pre-prepare from in; and the
actionsthat insert a (PREPARE, v, n, D(m), 1), inin; (namely RECEIVE((PRE-PREPARE, v, 1, m'),);
and RECEIVE((NEW-VIEW, v, V, O, N),); actions) aso insert a (PRE-PREPARE, v, , m>0primary(v>
inin;.

Condition (8) can only be violated by actions that insert pre-prepare messages in in; because
prepare messages are never removed from in;. These are exactly the actions listed for condition
(2). Thefirst two types of actions preserve condition (8) because whenever they insert apre-prepare
message in in; they always insert a matching prepare message. The last two types of actions can
not violate condition (8) because they never insert pre-prepare messages for views v such that
primary(v) # 4 inin;.

The only actions that can violate condition (9) are actions that insert pre-prepare messagesin
in; or make view; smaller. Since no actions ever make view; smaller, the actions that may violate
condition (9) are exactly those listed for condition (2). The if statement in the first type of action
ensures that it only inserts pre-prepare messages in in; when their view number is equal to view;.
Theif statement in the second type of action ensuresthat it only inserts pre-prepare messagesin in;
when their view number is greater than or equal to view;. Therefore, both types of actions preserve
theinvariant. The precondition for thethird type of action and the effects of the fourth type of action
ensure that only pre-prepare messages with view number equal to view; are inserted in in;. Thus,
these two types of actions also preserve the invariant. 0

147

Definition A.1.3 n-faulty = |{i € R|faulty; = true}|

The next two invariants are important. They state that replicas agree on an order for requests
within asingle view, i.e,, it isimpossible to produce prepared certificates with the same view and
seguence number and with distinct requests. The intuition behind the proof is that correct replicas
do not accept conflicting pre-prepare messages with the same view and sequence number, and that
the quorums corresponding to any two certificates intersect in at least one correct replica.

Invariant A.1.4 Thefollowing istrue of any reachable state in an execution of A,
Vi,j € R, n,v € N, m,m' € M: ((—-faulty; A —faulty; A nfaty < f) =
(prepared(m,v,n, i) A prepared(m’,v,n,j) = D(m) = D(m')))

Proof: By contradiction, assume the invariant does not hold. Then prepared(m, v, n,¢) = trueand
prepared(m’, v, n,j) = true for some values of m, m’, v, n,, j suchthat D(m') # D(m). Since
thereare 3f + 1 replicas, this condition and the definition of the prepared predicate imply:
@3R:(|R| > fAVEER:
((((PRE-PREPARE, v, n, m),, € iN; Ak = primary(v)) V (PREPARE, v, n, D(m), k),, € in;) A
(((PRE-PREPARE, v, n,m') 4, € iN; Ak = primary(v)) V (PREPARE, v, n, D(m'), k),, € in;)))
Since there are at most f faulty replicasand R hassize at least f + 1, condition (a) implies:
(b) 3k € R : (faulty, = falsen
((((PRE-PREPARE, v, m, m)s, € iN; Ak = primary(v)) V (PREPARE, v, n, D(m), k)s, € iN;) A
(((PRE-PREPARE, v, n, M)y, € IN; Ak = primary(v)) V (PREPARE, v, n, D(m'), k),, € in;)))
Invariant A.1.1 and (b) imply:
(c) 3k € R : (faulty, = falsen
((({(PRE-PREPARE, v, n,m),, € i Ak = primary(v)) V (PREPARE,v,n, D(m), k),, € ing) A
(({(PRE-PREPARE, v,n,m')s, € ing Ak = primary(v)) V (PREPARE, v, n, D(m’), k)s, € iNg)))
Condition (c) contradicts Invariant A.1.2 (conditions 1, 7 and 2.) 0

Invariant A.1.5 Thefollowing istrue of any reachable state in an execution of A,

Vi e R : ((—faulty, A nfaulty < f) =
(V (NEW-VIEW, v, V, O, N),, € in;, n,v' € N :
(prepared(m, v', n, merge-P(V)) A prepared(m’,v’,n, merge-P(V)) = D(m) = D(m'))))

Proof: Since Invariant A.1.2 (condition 5) ensures any new-view messagein in; for a non-faulty i
satisfies correct-new-view, the proof for Invariant A.1.4 can also be used here with minor modifica-
tions. 0

Invariants A.1.6 to A.1.10 show that ordering information in prepared certificates stored by a
guorum is propagated to subsequent views. The intuition is that new-view messages are built by
collecting prepared certificates from a quorum and any two quorumsintersect in at |east one correct
replica. Theseinvariants allow usto prove Invariant A.1.11, which showsthat replicas agree on the
sequence numbers of committed requests.

148

Invariant A.1.6 Thefollowing istrue of any reachable state in an execution of A,

Vi € R : (—faulty, = V(COMMIT, v, n,d, i)s; € in; : (3m : (D(m) = d A prepared(m, v, n, i) = true))

Proof: The proof is by induction on the length of the execution. The initializations ensure that
in; = {} and, therefore, the condition is vacuously true in the base case. For the inductive step,
the only actions that can violate the condition are those that insert commit messagesin in;, i.e.,
actions of the form RECEIVE((COMMIT, v,n,d, j)o;); OF SEND-COMMIT(m, v,n);. Actions of the
first type never violate the lemma because they only insert commit messages signed by replicas
other than R; in in;. The precondition for send-commit actions ensures that they only insert
(COMMIT, v, n, D(m),),, inin; if prepared(m, v, n, 7) istrue. 0

Invariant A.1.7 Thefollowing istrue of any reachable state in an execution of A,

Vi € R,n,v € N,m € M: ((=faulty; A committed(m,v,n,i)) =
(3R : (|R| > 2f —nfaulty A VE € R : (faulty, = false A prepared(m,v,n,k)))))

Proof: From the definition of the committed predicate committed(m, v, n,:) = trueimplies
@3R: (|R| > 2f+1AVEk € R: ({(coMMIT,v,n,D(m), k)s, €in;)).

Invariant A.1.1implies

(0) AR : (|R| > 2f — n-faulty AVk € R : (faulty, = false A (COMMIT,v,n, D(m), k),, € iNg)).
Invariant A.1.6 and (b) provethe invariant. 0

Invariant A.1.8 Thefollowing aretrue of any reachable state in an execution of A, for any replica
7 such that faulty; isfalse:

1. Vm,v,n, P ((VIEW-CHANGE, v, P,i),, € in; =
Yo' < v : (last-prepared-b(m,v', n,i,v) < last-prepared(m, v', n, P)))

2. Ym = (NEW—VIEW,U,V,O,N)Uprimary(v) €in; 1 ((OUN) Ciny)

Where last-prepared-b is defined as follows:
last-prepared-b(m, v, n,1,b) = v < b A prepared(m, v, n, in;)A
Am’,v" : ((prepared(m’, v', n,in;) Av < v’ < b) V (prepared(m’, v, n,in;) Am # m')).

Proof: The proof is by induction on the length of the execution. The initializations ensure that
in; = {} and, therefore, the condition is vacuoudly true in the base case.

For the inductive step, the only actions that can violate condition (1) are those that insert view-
change messagesin in; and those that insert pre-prepare or prepare messagesin in; (no pre-prepare
or prepare messageis ever removed from in;.)

These actions have one of the following schemas:

1. RECEIVE((VIEW-CHANGE, v, P, §)s,)i

N

VIEW-CHANGE(v);

w

RECEIVE((PRE-PREPARE, v, 1,)5 ;)i,

s

RECEIVE((PREPARE, v, 7, d, j)o;)is

149

5. RECEIVE((NEW-VIEW, v, V, O, N)s,)i,

6. SEND-PRE-PREPARE(m, v, n);, OF

7. SEND-NEW-VIEW(v,V);

Actions of thefirst type never violate the lemma becausethey only insert view-change messages
signed by replicas other than R; inin;. The effects of actions of the second type ensure that when a
view-change message (VIEW-CHANGE, v, P, i), isinserted in in; the following condition is true:
(@ W' < v : (last-prepared(m, v',n, i) < last-prepared(m,v’,n,P)). Condition (a) and Invari-
ant A.1.2 (condition 9) imply condition 1 of the invariant.

For the other types of actions, assumethere existsat least aview change messagefor v signed by
R; inin; before one of the other types of actions executes (otherwise the lemmawould be vacuously
true) and pick any m’ = (VIEW-CHANGE, v, P, i),, € in;. Theinductive hypothesis ensuresthat the
following condition holds before the actions execute:

Vm,n,v' < v : (last-prepared-b(m, v, n,i,v) < last-prepared(m, v, n, P))

Therefore, it is sufficient to prove that the actions preserve this condition. The logical value of
last-prepared(m, v', n, P)) doesnot change(for al m’, m, n, v") becausethe view-change messages
inin; areimmutable.

To prove that the value of last-prepared-b(m, v', n, i, v) isaso preserved (for al m’, m,n,v'),
we will first prove the following invariant (b): For any reachable state in an execution of A, any
non-faulty replica R;, and any view-change message m' = (VIEW-CHANGE, v, P,),,, m' € in; =
view; > v.

The proof for (b) is by induction on the length of the execution. It is vacuously truein the base
case. For the inductive step, the only actionsthat can violate (b) are actionsthat insert view-change
messagessigned by R; inin; or actionsthat makeview; smaller. Sincethere are no actionsthat make
view; smaller, these actions have the form vIEW-CHANGE(v);. The effects of actions of this form
ensure the invariant is preserved by setting view; to the view number in the view-change message.

Given (b) it is easy to see that the other types of actions do not violate condition 1 of the
lemma. They only insert pre-prepare or prepare messages in in; whose view number is equal to
view; after the action executes. Invariant (b) guarantees that view; is greater than or equal to the
view number v of any view-change messageinin;. Therefore, these actions cannot changethe value
of last-prepared-b(m, v', n, i, v) for any m',m, n,v'.

Condition (2) of the lemma can only be violated by actions that insert new-view messagesin
in; or remove pre-prepare messages from in;. Since no action ever removes pre-prepare messages
from in;, the only actions that can violate condition (2) are: RECEIVE((NEW-VIEW, v,V, 0, N), .);
and SEND-NEW-VIEW(v, V');. Thefirst type of action preserves condition (2) because it inserts all
the pre-preparesin O U N in in; whenever it inserts the argument new-view message in in;. The
second type of action preserves condition (2) in asimilar way. 0

Invariant A.1.9 Thefollowing istrue of any reachable state in an execution of A,

150

iR : (|R > v (—faulty, A prepared(m,v,n,k))) =

Vo' > v € !

Vie R, m e M,v,n € N: ((-faulty, A nfaulty < fA
f R :
N, m" € M: ((PRE-PREPARE,U',n,m')aprimary(v,) € in; = m' = m))

Proof: Rather than proving the invariant directly, we will prove the following condition istrue:

Vie R, m € M,v,n € N: ((-faulty, A nfaulty < fA
AR : (|R| > f ANVEk € R : (—faulty, A prepared(m,v,n,k))) =
Vo' > v e N, (NEW-VIEW,v',V,O,N)aprimary(v,) € in; :
({(PRE-PREPARE, v', m, m>aprimary(ur> € 0))

Condition (a) implies the invariant. Invariant A.1.2 (condition 4) states that there is never a
pre-prepare messageinin; for aview v’ > 0 without acorrect new-view messagein in; for the same
view. But if there is a correct new-view message (NEW-VIEW, ”'aVa07N>0prirr1ary(vf) € in; then
Invariant A.1.8 (condition 2) impliesthat (O U N) C in;. Thisand condition (a) imply that thereis
a (PRE-PREPARE, v', n, m>aprimary(vf> € in; and Invariant A.1.2 (conditions 1,2 and 8) implies that
no different pre-prepare message for sequence number n and view v’ iseverinin;.

The proof is by induction on the number of views between v and v'. For the base case,
v = v/, condition (a) is vacuously true. For the inductive step, assume condition (a) holds for
v"” such that v < v" < v'. We will show that it also holds for v". Assume there exists a new-
view message m1 = (NEW-VIEW,v', V3, Ol’N1>0primary(vf) in in; (otherwise (@) is vacuously
true.) From Invariant A.1.2 (condition 5), this message must verify correct-new-view(ms, v'). This
impliesthat it must contain 2f + 1 correct view-change messagesfor view v’ from replicasin some
set R1.

Assume that the following condition istrue (b) 3R : (|R| > f AVk € R : (faulty, = false A
prepared(m, v, n, k) = true)) (otherwise (@) isvacuously true.) Sincethereareonly 3f + 1 replicas,
R and R; intersect in at least one replica and this replicais not faulty; call thisreplica k. Let k's
view-change message in m1 be my = (VIEW-CHANGE, v', P2, k)4, -

Invariant A.1.4 implies last-prepared-b(m, v, n, k,v + 1) is true because k is non-faulty and
prepared(m, v, n, k) = true. Therefore, one of the following conditionsistrue:

1. last-prepared-b(m,v,n, k,v")
2. " m': (v <v" <v' Alast-prepared-b(m/, v, n, k,v"))

Since condition (a) implies the invariant, the inductive hypothesis implies that m = m' in the
second case. Therefore, InvariantsA.1.1and A.1.8imply that (c) v, > v : last-prepared(m, vz, n, P»)

Condition (c), Invariant A.1.5, and the fact that correct-new-view(my, v') istrueimply that one
of the following conditionsistrue:

1. last-prepared(m, v2, n, merge-P(11))

2. ", m': (v2 < v" < v Alast-prepared(m/, v, n, merge-P(V1)))

151

Incase(l), (a) isobvioudly true. If case(2) holds, InvariantsA.1.1and A.1.2 (condition 7) imply
that there exists at least one non-faulty replica j with (PRE-PREPARE, v"', n, m'>0pri maryq € in;.
Since condition (a) impliestheinvariant, theinductive hypothesisimpliesthat m = m/ inthe second
case. 0

Invariant A.1.10 Thefollowing istrue of any reachable state in an execution of A,

Vn,v,v" € N,mym' € M: (nfaulty < f =
AR CR:(Rl > f ANVEk € R : (-fadty, A prepared(m,v,n,k))) A
AR CR:(R| > f AVk € R : (—falty, A prepared(m’,v’,n,k)))) = D(m) = D(m’'))

Proof: Assume without loss of generality that v < +'. For the case v = ¢', the negation of this
invariantimpliesthat thereexist two requestsm andm’ (D(m') # D(m)), asequence number n, and
two non-faulty replicas R;, R;, such that prepared(m, v, n,i) = true and prepared(m’, v, n, j) =
true; this contradicts Invariant A.1.4.

For v > v, assumethisinvariant isfalse. The negation of the invariant and the definition of the
prepared predicate imply:

In,v,v € Nymym' € M: (v > v Anfaulty < fA
(3R CR: (Rl > f AVEk € R : (~faullty, A prepared(m,v,n,k))) A
3i € R : (-faulty; A (PRE-PREPARE,v',n, m)oprimary.ry € iMi) A D(m) # D(m'))

But thiscontradicts|nvariant A.1.9 aslong asthe probability that m # m’ while D(m) = D(m/)
isnegligible. 0

Invariant A.1.11 Thefollowing istrue of any reachable state in an execution of A,

Vi,j € R, n,v,v" € N, mym' € M: ((-faulty, A —faulty; A nfaulty < f) =
(committed(m, v, n,4) A committed(m’,v’,n,j) = D(m) = D(m')))

Invariant A.1.12 Thefollowing istrue of any reachable state in an execution of A,

Vi € R, n,v,v" € N, mym’ € M: ((=faulty; A nfaulty < f) = (committed(m,v,n,s) A
AR CR:(|R| > f AVk € R : (—fadty, A prepared(m’,v',n,k)))) = D(m) = D(m'))

Proof: Both Invariant A.1.11 and A.1.12 areimplied by Invariants A.1.10 and A.1.7. 0

Rather than proving that A implements S directly, we will prove that A implements S’, which
replacesthe value of the state machinein S by the history of all the operations executed. S’ is better
suited for the proof and we will use a simple simulation relation to prove that it implements S. We
start by defining a set of auxiliary functions that will be useful in the proof.

152

Definition A.1.13 We define the following functions inductively:

val: Nx OxNx) - S
last-rep : (Nx OxNx C)* —» (C— 0O
last-rept ©: (Nx OxNx C)* - (C—=N)

va(A\) = s,
Ve i (last-rep(A)(c) = null-rep)
Ve : (last-rep-t(\)(c) = 0)

val(u.(n,o0,t,c)) = s
IaSt-rep(/L.(TL, 0,t, C>) (C)

last-rep-t(u.(n, 0,, &) (¢) =
Ve # e (lastrep(<rz St)(E) — lastrep(u)()

w.
V' # ¢t (last-rep-t(p.(n,0,t,0))(c") = last-rep-t(u)(c))
where (r,s) = g(c,o,val(p))

Automaton S’ hasthe samesignature as S except for the addition of aninternal action execute-
nuLL. It also hasthe same state components except that the val component is replaced by asequence
of operations:

hist e (N x O x N x C)*, initidly X;
and thereis anew segno component:
segno € N, initialy 0.

Similarly to S, the transitions for S’ are only defined when n-faulty < f. Also, the transitions

for S’ areidentical to S’s except for those defined bellow.

EXECUTE(o, t, c) EXECUTE-NULL
Pre: {o,t,c) €in Eff: segno :=segno+ 1
Eff: segno := segno + 1
in:=in—{(o,t,¢)}

if t > last-rep-t(hist)(c) then
hist := hist.{segno, o, ¢, ¢)
out := out U {(last-rep(c), t,c)}

The EXECUTE-NULL actions allow the seqno component to be incremented without removing
any tuple fromin. Thisis useful to model execution of null requests.

Theorem A.1.14 S’ implements S

Proof: The proof usesaforward simulation F from S’ to S. F is defined asfollows:

Definition A.1.15 F is a subset of states(S’) x states(.S); (z,y) is an element of F (also written
asy € F[z]) if and only if all the following conditions are satisfied:

1. All state componentswith the same name are equal in z and y.

2. z.val = val(y.hist)

3. z.last-rep-t, = last-rep(y.hist)(c), Ve € C

153

To prove that F isin fact a forward smulation from S’ to S one most prove that both of the
following are true [Lyn96].

1. Foradl z € start(S"), Flz] N start(S) # {}

2. Fordl (z,m, ") € trans(S”), where z is areachable state of S’, and for all y € F[z], where
y isreachablein S, there exists an execution fragment « of S starting with y and ending with
somey' € F[z'] suchthat trace(a) = trace(w).

It is clear that F verifies the first condition because all variables with the same namein S and
S’ areinitialized to the same values and, since hist isinitially equal to \, z.val = s, = val(\) and
z.last-rep-t, = 0 = last-rep(A)(c).

We use case analysis to show that the second condition holds for each = € acts(S’). For
all actions = except EXECUTE-NULL, let o consist of a single = step. For m = EXECUTE-NULL,
let o be X. It is clear that this satisfies the second condition for all actions but EXECUTE. For
T = EXECUTE(o, t, ¢), definition A.1.13 and the inductive hypothesis (i.e., z.val = val(y.hist) and
z.last-rep-t, = last-rep(y.hist)(c)) ensurethat y' € F[z']. 0

Definition A.1.16 Wedefinethefunction prefix: (Nx O xNxC)* — (Nx O x N xC)* asfollows:
prefix(u, n) is the subsequence obtained from p by removing all tuples whose first component is

greater than n.
Invariant A.1.17 Thefollowing istrue of any reachable state in an execution of S,

V{n,o0,t,c) € hist : (t > last-rep-t(prefix(hist, n — 1))(c))

Proof: The proof is by induction on the length of the execution. The initial states of S’ verify the
condition vacuously because hist is initially A. For the inductive step, the only actions that can
violate the invariant are those that modify hist, i.e., EXECUTE(o, t, ¢). But these actions only modify
histif ¢ > last-rep-t(hist)(c). 0

Invariant A.1.18 The following are true of any reachable state in an execution of S:
1. Y(n,o0,t,c) € hist : (=faulty, = ¢ < last-req,)
2. Y{o,t,c) € in: (~faulty, = ¢ < last-req,)

Proof: The proof is by induction on the length of the execution. The initial states of S’ verify the
condition vacuoudly becausehistisinitially A and inisempty. For theinductive step, since no action
ever decrements last-reg, or changes faulty, from true to false, the only actions that can violate
the invariant are those that append tuples from anon-faulty client c to hist, i.e., EXECUTE(o, t, ¢) or
to in, REQUEST(o, ¢). The EXECUTE actions only append atuple (n, o, t, c) to hist if (o, t,c) € in;
therefore, the inductive hypothesis for condition 2 implies that they preserve the invariant. The
REQUEST actions also preserve the invariant because the tuple (o, ¢, ¢) inserted in in has ¢ equal to
the value of last-reg, after the action executes. 0

154

We are now ready to prove the main theorem in this section.
Theorem A.1.19 A implements S

Proof: We provethat A implements S, whichimpliesthat A implements.S (TheoremA.1.14.) The
proof uses aforward simulation G from A’ to S’ (A’ isequal to A but with al output actions not in
the external signature of S hidden.) G is defined asfollows.
Definition A.1.20 G is a subset of states(A’) x states(S’); (z,y) isan element of G if and only if
the following are satisfied:

1. Vi e R : (z.faulty, = y.faulty-replica;)

2. Ve € C: (z.faulty, = y.faulty-client,)

and the following are satisfied when n-faulty < f
3. Ve € C: (—z.faulty, = z.last-req, = y.last-req,)
VieR:
VieR:

-z .faulty, = z.last-exec; < y.segno)
-z faulty, = z.val; = val(prefix(y.hist, z.last-exec;)))
Vi € R: (—z.faulty, = Ve € C : (z.last-rep;(c) = last-rep(prefix(y.hist, z.last-exec;))(c)))
Vi € R : (—z.faulty; = Ve € C : (z.last-rep-t;(c) = last-rep-t(prefix(z.hist, y.last-exec;))(c)))
V0 < n < y.segno :
A(n,o0,t,c) € y.hist: (AR C R,v € N: (|R| > 2f — y.n-faulty A
Vk € R : (—z.faulty, A prepared({REQUEST,o,t,c)s.,v,n, A’ .k)))) V
(=3(n,0,t,c) € y.hist A
(3R CR,v,t €N,o€ O,c € C: (|R| > 2f — y.nfaulty At < last-rep-t(prefix(y.hist,n — 1))(c)) A
Vk € R : (—z.faulty, A prepared({REQUEST, o, t,c)s.,v,n, A’".k))))
VIRC R,veN:(|R| > 2f — y.nfaulty AVEk € R : (~z.faulty, A prepared(null,v,n, 4'.k)))))

© N o g &
—~ o~~~

9. V(REPLY,v,t,¢,1,7)s; € (z.0ut; U {m|3X : (m,X) € z.wire} U z.in.) :
(—z faulty, = 3(n,0,t,c) € y.hist: (r = last-rep(prefix(y.hist, n))(c)))

10. V(n,o,y.last-req,,c) € y.hist:
((—zfaulty, A z.oute # {}) = J(last-rep(prefix(y.hist,n))(c), y.last-req,, c) € y.out)

11. Let M. = z.out. U {m|Fi € R : (—z.faulty; A m € z.in; U z.out;} U {m|3X : (m, X) € z.wire},
and M} = merge-P({m = (VIEW-CHANGE, v, P, j),,|m € M, V
I(NEW-VIEW, v, V, O, N)o; € M. : (m € V)}),
Ve € C: (—z.faulty, = Yo € O,t € N : ((m = (REQUEST, 0, t,¢)s. € M.V
3(PRE-PREPARE, v, n, m)o,; € M, U M) = ({o0,t,c) € y.inV 3In: ({n,o0,t,c) € y.hist))))

The intuition behind the definition of G is the following. The first two conditions say that the
same replicas and clients are faulty in related A’ and S’ states. The next condition requires the
last request timestamp for all non-faulty clients to be equal in related states. Condition 4 says that
automaton A’ cannot execute requests with sequence numbers that have not yet been executed in
S'. Conditions 5 to 7 state that z.val;, z.last-rep;, and z.last-rep-t; can be obtained by executing
the prefix of y’s history up to the sequence number of the last request executed by replicai in x.

Condition 8 is the most interesting because it relates the commit point for requestsin A’ with
the execution of regular and null requestsin S’. All sequence numbers in y that correspond to a
reguest in y's history must be prepared by at least f + 1 correct replicasin z. The other sequence

155

numbers must correspond to a request with an old timestamp or anull request that is prepared by at
least f + 1 correct replicasin z. Condition 9 says that replies from non-faulty replicasin A" must
correspond to repliesreturned in .S’. The next condition requires every request from a correct client
in y's history to have a reply in y.out if that reply was not received by the client in z. The final
condition states that all requestsin x must be either in y’s history or in y.in.

Note that most of the conditionsin the definition of G only need to hold when n-faulty < f, for
n-faulty > f any relation will do because the behavior of S’ is unspecified.

To prove that G isin fact a forward simulation from A’ to S’ one most prove that both of the
following are true.

1. Foral z € start(4’), G[z] N start(S’) # {}

2. Fordl (z,m,2") € trans(A’), where z is areachable state of A’, and for al y € G[z], where
y isreachablein S’, there exists an execution fragment « of S’ starting with y and ending
with somey' € G[z'] such that trace(«) = trace(r).

It is easy to see that the first condition holds. We use case analysis to show that the second
condition 2 holds for each 7 € acts(A’)

Non-faulty proxy actions. If 7 = REQUEST(0)., m = CLIENT-FAILURE,, Of ™ = REPLY (7)., let
a consist of asingle step. G ispreserved in atrivial way if misaCLIENT-FAILURE action. If risa
REQUEST action, neither = nor a modify the variablesinvolved in al conditions in the definition of
G except 3, and 10 and 11. Condition 3 is preserved because both = and « increment y.last-req,.
Condition 10 is also preserved because Invariant A.1.18 implies that there are no tuples in y.hist
with timestamp y'.last-reg,. and o does not add any tuple to y.hist. Even though 7 inserts a new
request in z.out,., condition 11 is preserved because « inserts (o, t, ¢) in y.in.

If misaREPLY(r). action that is enabled in z, the REPLY (7). action in « is also enabled. Since
therearelessthan f faulty replicas, the precondition of 7 ensuresthat thereis at least one non-faulty
replica ¢ and a view v such that (REPLY, v, z.last-req,,c,i,r),, € z.in. and that z.out, # {}.
Therefore, the inductive hypothesis (conditions 9 and 10) implies that (r,t,¢) € y.out and thus
REPLY (7). isenabled. G is preserved because = ensuresthat z’.out. = {}.

If 7 = RECEIVE(m),, Or m = SEND(m, X),, let o be \. This preserves G becausey € G[z| and
the preconditions require that the reply message being received is in some tuple in z.wire and the
request message being sent isin xz.out..

Internal channel actions. If 7 is a MISBEHAVE(m, X, X') action, let o be \. G is preserved
because 7 does not add new messagesto z.wire and retains atuple with m on z’.wire.

Non-faulty replica actions. For al actions = except @ = REPLICA-FAILURE; and 7 =
EXECUTE(m,v,n);, let o be X. It is clear that this could only violate conditions 8, 9 and 11
because these actions do not maodify the state components involved in the other conditions. They
can not violate condition 8; since no messagesare ever removed fromin, (where k£ isany non-faulty

156

replica), if prepared(m,v,n, k) = true, it remains true for the entire execution or until replica &
becomes faulty. And these actions do not violate conditions 9 and 11 because any request or reply
messages they add to z.in;, z.out;, or z.wire (either directly or as part of other messages) was
already in z.wire, .in;, or z.out;.

For m = REPLICA-FAILURE;, let consist of asingle « step. Thisdoesnot violate the conditions
in the definition of G. For conditions other than 1 and 8, it either doesnot change variablesinvolved
in these conditions (2 and 3), or makesthem vacuously true. Condition 1issatisfied in atrivial way
because « aso sets y.faulty-replica; to true. And condition 8 is not violated because the size of the
sets R in the condition is alowed to decrease when additional replicas become faulty.

Non-faulty replica execute (non-null request.)

For m = EXECUTE({REQUEST, o, t, ¢),,, v, n);, there are two cases: if z.last-exec; < y.segno,
let o be \; otherwise, let o consist of the execution of asingle EXECUTE(o, ¢, ¢) action preceded by
FAULTY-REQUEST(o, t,) in the case where z.faulty, = true. In any of these cases, it is clear that
only conditions 4 to 11 can be violated.

For the casewherea = A, conditions 4, 8, 10 and 11 are also preserved in atrivial way. For the
other conditions we consider two cases (a) ¢ > last-rep-t;(c) and (b) otherwise. The precondition
of 7 ensures that z.committed((REQUEST, o, t, ¢),.,v,n, 1) iStrue. In case (), this precondition,
Invariant A.1.12, and the definition of G (condition 8) imply that there is a tuple in y.hist with
sequence number n and that it is equal to (n,o,t,c). Therefore, conditions 5to 7 and 9 are
preserved. In case (b), the precondition of 7, Invariant A.1.12, the definition of G (condition 8),
and Invariant A.1.17 imply that there is no tuple with sequence number n in y.hist. Therefore,
conditions5to 9 are preserved in this case.

For the casewhere a # A, when 7 isenabled in z the actionsin « are also enabled in y. Inthe
casewherecisfaulty, FAULTY-REQUEST(o, t, ¢) isenabled and itsexecution enabl eSEXECUTE(o, t, ¢).
Otherwise, sincey € G|z], condition 11 in Definition A.1.20 and the precondition of 7 imply that
EXECUTE(o, t, c) isenabled in y.

It is easy to see that conditions 4 to 7 and 9 to 11 are preserved. For condition 8, we consider
two cases (a) t > last-rep-t;(c) and (b) otherwise. In both cases, the precondition of = ensures that
z.committed((REQUEST, o, t, ¢),.,v,n,%) iS true. This precondition, Invariant A.1.7 and the fact
that o appends a tuple (y’.seqno, o, t, ¢) to y.hist, ensure that condition 8 is preserved in this case.
In case (b), the precondition Invariant A.1.7 and the assumption that ¢ < last-rep-t;(c), ensure that
condition 8 is preserved also in this case.

Non-faulty replica execute (null request.)

For m = EXECUTE(null,v,n);, if z.last-exec; < y.segno, let o be A; otherwise, let o consist
of the execution of a single EXECUTE-NULL action. Execution of a null regquest only increments
x.last-exec; and « can at most increment y.segno. Therefore, only conditions 4 to 8 can beviolated.
Condition 4 is not violated because o increments y.segno in the case where z.last-exec; = y.segno.

157

For the case where, a = A, conditions 5 to 7 are also not violated because o does not append
any new tuple to y.hist and all tuplesin y.hist have sequence number less than y'.seqno; therefore,
prefix(y.hist, z.last-exec;) = prefix(y'.hist, z’.last-exec;). Sincethe precondition of = impliesthat
z.committed(null, v, n,) istrue, Invariant A.1.7 ensures condition 8 is also preserved in this case.

For the casewhere o consistsof aEXECUTE-NULL step, z.committed(null, v, n,), n-faulty < f,
Invariant A.1.12, and the definition of G (condition 8) imply that thereisno tuplein ¢/.hist with se-
quence number z'.last-exec;; therefore, prefix(y.hist, z.last-exec;) = prefix(y’.hist, z'.|ast-exec;).

Faulty replica actions. If 7 is an action of afaulty replicai (i.e., z.faulty; = true), let o be
A. Since 7 can not modify faulty; and a faulty replica cannot forge the signature of a non-faulty
automaton this preserves G in atrivial way.

Faulty proxy actions. If 7 isan action of afaulty proxy c (i.e., z.faulty, = true), let o consist
of asingle = step for REQUEST, REPLY and CLIENT-FAILURE actions and \ for the other actions.
Since = can not modify faulty, and faulty clients cannot forge signatures of non-faulty automata
this preserves G in atrivial way. Additionally, if 7 isaREPLY action enabledin z, 7 isalso enabled
iny. 0

A.2 Algorithm With Garbage Collection

We are now ready to prove that A, (the algorithm specified in Section 2.4) implements S. We
start by introducing some definitions and proving a couple of invariants. Then, we use asimulation
relation to prove A,4. implements A.

Definition A.2.1 We define the following functions inductively:

Let RM = {(REQUEST,0,t,c)o. |0 € O At € N A c € C} U {null},
rva : RM* —» S

r-last-rep : RM* — (C— O)

r-last-rep-t : RM* — (C = N)

r-val(\) = s,
Ve e C: (r-last-rep(A)(c) = null-rep)
Ve e C : (r-last-rep-t(A)(c) = 0)

Yu € RMT,

r-val(u.null) = r-val(p)
r-last-rep(p.null) = r-last-rep(u)
r-last-rep-t(p.null) = r-last-rep-t(u)

V (REQUEST, 0,t,¢)s, € RM, p € RMT,
V' # c: (r-last-rep(u.(REQUEST, 0, t,c)s.)(c') = r-last-rep(u)(c’))
V' # ¢ (r-last-rep-t(p.(REQUEST, 0, t, c)o.) (c') = r-last-rep-t(u)(c’))
ift > r-last-rep-t(p)(c) then
let (r,s) = g(c,o0,r-val(n))
r-val(u.(REQUEST, 0,t,¢)s.) = $
r-last-rep(p.(REQUEST, o, t, ¢)+.) (c) r
r-last-rep-t(u.(REQUEST, 0, t,c)o.)(c) = ¢t

158

ese
r-val(p.(REQUEST, 0, ¢, C)o.) = I-
r-last-rep(u.(REQUEST, 0, t, c)o.)(c) = r-last-rep(u)(c)

Definition A.2.2 We define the following subsets of M and predicate:

Wre = {m | 3X : ((m,X) € wire) }

Wreto = Wre U {m|3j € R : (-faulty; A m € out;) }

Wretio = Wireto U {m|3j € R : (—faulty, A m € in;)}

committed-Wire(s,l,t,n,v,u) =

Amy.my = p € RM* (s = rva(u) ANl = rlast-rep(p) At = r-last-rep-t(u) A

VO< k<n:(3v <wv,R: (R > 2fA
Vg € R : ((commIT,v', k, D(mg), q)o,
AN@EV <o ((PRE—PREPARE,U',k,mk>aprimary(v,) € Wireto)

vV my € Wireto)))

€ Wireto))

Thefunctionsin Definition A.2.1 compute the val ue of the various checkpoint components after
executing a sequence of requests. The predicate committed-Wre relates the value of the checkpoint
components with a sequence of committed requests in Wire+ o that can be executed to obtain those
values(whereWret oisthe set of messagesin the multicast channel or in the out variablesof correct
replicas). The following invariant states that committed-Wire is true for the state components of
correct replicas and the checkpoint messages they send.

Invariant A.2.3 Thefollowing is true of any reachable state in an execution of A

LVie R : ((—faulty, A nfaulty < f) =
Jp € RM*: committed-Wre(val;, last-rep;, last-rep-t;, last-exec;, view;, 1))

2.Vi € R : (~faulty, A nfaulty < f) =

Y (CHECKPOINT, v,m, D((s,1,t)),%)s, € N : (3u € RM" : committed-Wire(s, [, t,n,v,u))
where:
N = {m | m € Wre+tio vV 3 (VIEW-CHANGE,v,n,s,C, P,j),; € Wre+tio: (m € C)V

I (NEW-VIEW, v, V,0, N),. € Wretio : (3 (VIEW-CHANGE,v,n,s,C, P,q),, € V : (m € C))},

Proof: The proof is by induction on the length of the execution. For the base case, theinitializations
ensure that val; = r-val()), last-rep; = r-last-rep(\), and last-rep-t; = r-last-rep-t(\). There-
fore, 1 is obvioudly true in the base case and 2 is also true because all the checkpoint messages
(CHECKPOINT, v, n, D((s,l,t)),i)s, € N haves = val;,l = last-rep;, t = last-rep-t;.

For theinductive step, assumethat theinvariant holdsfor every state of any execution « of length
at most I. We will show that the lemma also holds for any one step extension a; of «. The only
actions that can violate 1 are actions that change val;, last-rep;, last-rep-t;, last-exec;, decrement
view;, or remove messages from Wire+o. But no actions ever decrement view;. Similarly, no

159

actions ever remove messages from Wre+ o because wire remembers all messages that were ever
sent over the multicast channel and messagesare only removed from out; (for any non-faulty replica
7) when they are sent over the multicast channel. Therefore, the only actionsthat can violate 1 are:

1. RECEIVE((NEW-VIEW,v,V, 0, N),,)i
2. EXECUTE(m,v,n);
3. SEND-NEW-VIEW(v, V);

The inductive hypothesis of condition 2 ensures that actions of the first and third type do not
violate condition 1 because they set val;, last-rep;, last-rep-t; and last-exec; to the corresponding
valuesin a checkpoint message from a non-faulty replica.

Actionsof the second type also do not violate 1 because of theinductive hypothesis, and because
the executed request, m.,, verifies committed(m,,, v, n,) for v < view; and n = last-exec; + 1.
Since committed(m,,, v, n,%) is true, the 2f + 1 commits and the pre-prepare (or m,,) necessary
for committed-Wire to hold arein in;. These messages were either received by i over the multicast
channel or they are messages from 7, in which case they are in out; or have already been sent over
the multicast channel.

Theonly actions that can violate condition 2 are those that insert checkpoint messagesin NV:
RECEIVE({CHECKPOINT, v, 1, d,)o;)

RECEIVE({VIEW-CHANGE, v,n, 5, C, P, q),);
RECEIVE({NEW-VIEW, v, V, O, N)s,);
SEND(m, R);

EXECUTE(m, v, n);

SEND-VIEW-CHANGE(v);

N o g~ w DN E

SEND-NEW-VIEW(v, V');

where 7 isany non-faulty replica. Actionsof types1, 2, 4, and 6 preserve 2 because the checkpoints
they insertinto IV areaready in N beforethe action executesand because of theinductivehypothesis.
Actionsof types 3 and 7 may insert anew checkpoint messagefrom j into /V; but they also preserve
condition 2 because this message has the same sequence number and checkpoint digest as some
checkpoint message from a non-faulty replicathat is aready in N before the action executes and
because of the inductive hypothesis. Finaly, the argument to show that actions of the fifth type
preserve 1 also shows that they preserve condition 2. 0

Invariant A.2.4 Thefollowing istrue of any reachable state in an execution of A:

nfaulty < f = Vu, u € RM* : ((3s,l,t,0,8,0',t',v" : (committed-Wire(s,l,t,n,v,u) A
committed-Wire(s',I',t',n',v", u')) A wp.length < p'length) = I u” € RM™ @ (W' = p.u'))

Proof: (By contradiction) Suppose that theinvariant isfalse. Then, there may exist some sequence
number k£ (0 < £ < p.length) and two different requests my, and my, such that:

160

dvi, Ry @ (|R1] > 2f AVq € Ry : ((COMMIT, v, k, D(my,),q)s, € Wre+o)) and
dwvy, Ry : (|R2| > 2f AVq € Ry @ ((COMMIT, v, k, D(my,),q)s, € Wre+o))

This, Invariant A.1.1 and Invariant A.1.6 contradict Invariant A.1.10. 0

Invariant A.2.4 states that if committed-Wire istrue for two sequences of messagesin A (which
is the algorithm without garbage collection) then one sequence must be a prefix of the other. Now
we can prove our main result: A, implements S.

Theorem A.25 A, implements S

Proof: We prove that A,. implements A, which implies that it implements S (Theorems A.1.19
and A.1.14.) The proof uses aforward simulation # from A;, to A’ (A, isequal to A, but with
al output actions not in the external signature of S hidden.)

Definition A.2.6 # isa subset of states(Ay,) x states(A’); (x,y) isan element of # if and only if
all the following conditions are satisfied for any replica ¢ such that z.faulty, = fase, and for any
replica j:

1. Thevaluesof the state variablesin y are equal to the corresponding valuesin z except for y.wire, y.in and y.out;.

2. yin; — {m = (PRE-PREPARE,v,n,m),; V m = (PREPARE,v,n,d,j)s; V
m = (COMMIT,v,n,d, j)s; | m € y.im A n < z.h}
—{m|m € y.in; A (tag(m,VIEW-CHANGE) V tag(m, NEW-VIEW))}
= z.in; — {m = (PRE-PREPARE,v,n,m),; V m = (PREPARE,v,n,d,j)s; V
m = (COMMIT,v,n,d, j)s; | m € z.in; A n < z.h;}
—{m|m € z.in; A (tag(m,CHECKPOINT) V tag(m,VIEW-CHANGE) V tag(m, NEW-VIEW))}

3. Let consistent-ve(m?, m?) =
Jv,m,s,1,t,C,P,P',j : (m' = (VIEW-CHANGE, v, m, (s,1,t),C, P, j)o; A
m? = (VIEW-CHANGE, v, P, j)o; A
A!..correct-view-change(m', v, j) < (A’.correct-view-change(m?, v, j) A
P = P'— {m = (PRE-PREPARE,v',n’,m'),, Vm = (PREPARE,v',n’,d’,k)s, |m € P'An < n})))
consistent-ve-set(M*, M?) =
vm* € M* . (3m? € M? : consistent-vc(m?, m?)) A
Vm? € M?: (3m' € M* : consistent-ve(m?, m?)),
and lety.vc; = {(VIEW-CHANGE, v, P, j),;, € y.in; },
z.V¢; = {(VIEW-CHANGE, v, n,(s,l,t),C, P, j)s; € x.in;}
then consistent-vc-set(z.vc;, y.vc;) istrue

4. Let consistent-nv-set(My, M) =
M, = {m® = (NEW-VIEW, v, V', 0', N'), |
Im' = (NEW-VIEW,v,V,0,N),, € M, : (consistent-vc-set(V, V') A
Al,...correct-new-view(m',v) < (A’.correct-new-view(m?,v) A
O = 0" — {m = (PRE-PREPARE,v,n,m')s; |m € O' A n <
N = N' — {m = (PRE-PREPARE,v,n,m'),; |m € N' A n < max-n(V)}))},
andlety.nv; = {(NEW-VIEW,v,V,0,N),, € y.in; },
z.v; = {(NEW-VIEW,v,V,0,N);; € =z.in; }
then consistent-nv-set(z.nv;, y.nv;) istrue.

5. Let consistent-all(M*, M?) =
Vm € M*: 3m' € M? : (tag(m,VIEW-CHANGE) A consistent-vc(m,m’)) V
(tag(m, NEW-VIEW) A consistent-nv-set({m},{m'})) Vv
(—tag(m, VIEW-CHANGE) A —tag(m,NEW-VIEW) A m = m')),
X; = z.out; U {(m)s; | (m)o; € z.Wre} — {m | tag(m, CHECKPOINT)},
andY; = y.out; U {(m),; | (m)s; € y.Wre},
then consistent-all (X;. Y;)

161

6. Let Xfauity = {{(m)o, |z faulty; A (m),; € z.Wire},
Yiaulty = {{m)o; | yfaulty; A (m)o; € y.Wre},
consistent-all (Xfayity: Yfaulty)

7. V{r)e. € z.Wre : (3(r),. € y.Wre)

Additionally, we assume faulty automata in = are also faulty and identical in #H[z] (i.e., they
have the same actions and the same state.) Note that the conditionsin the definition of only need
to hold when n-faulty < f, for n-faulty > f the behavior of S is unspecified.

States related by ‘H have the same values for variables with the same name with the exception
of wire, and the in and out variables of non-faulty replicas. The second condition says that the in
variables of non-faulty replicas have the same messagesin related states with the exception of those
messages that were garbage collected in z and view-change, new-view, and checkpoint messages.

Conditions 3 and 4 specify that view-change and new-view messagesin z.in; and y.in; are
consistent. These conditions define the notion of consistency precisely but the intuition is the
following. A view-change message m in z is consistent with a view-change message m' in y
if m contains exactly the pre-prepare and prepare messages in m’ with sequence number greater
than the checkpoint in m. Similarly, new-view messages are consistent if they contain consistent
view-change messages and they propagate the same pre-prepares for the new-view with sequence
number greater than the checkpoint that is propagated to the new view in A .

Condition 5 says that messages in the wire or out variables of non-faulty replicas in z have
identical or consistent messagesin the wire or out variablesin y. The next condition requires the
same of messages in the wire that are signed by faulty replicas. The final condition says that al
requestsin thewirein z are alsointhewireiny.

To prove that # isin fact aforward simulation from A to A" one most prove that both of the
following are true:

1. Foradl z € start(Ag,), H[z] N start(A") # {}

2. For al (z,m,2') € trans(Aj.), where z is areachable state of Aj., and for al y € H]z],
where y is reachable in A’, there exists an execution fragment o of A’ starting with y and

ending with somey’ € H|[z'] such that trace(«) = trace(n).

Condition 1 holds because (z,y) € # for any initid state = of A}, and y of A’. Itis clear
that z and y satisfy the first clause in the definition of # because the initial value of the variables
mentioned in this clauseis the samein Ay, and A’. Clauses 2 to 7 are satisfied because z.in; only
contains checkpoint messages, and y.in;, z.out;, y.out;, z.wire, and y.wire are empty.

We prove condition 2 by showing it holds for every action of Ay.. We start by defining
an auxiliary function 8(y, m,a) to compute a sequence of actions of A’ starting from state y to
simulate areceive of message m by an automaton a (where a is either aclient or replicaidentifier):

162

if3X :((m,X) € y.wire) then
m,X) € ywire A a € X)then

MISBEHAVE(m, X, X U {a}). RECEIVE(m), | (m,X) € y.wire
else

if 3¢ : (y.faulty, = false A m € y.out;) then

SEND(m, {a});. RECEIVE(m)q

else

L

If RECEIVE(m), is enabled in a state z, thereis an m’ such that 8(y, m’, a) is defined and the
actionsin 8(y, m',a) areenabled for al y € H|[z], and:

e m = m/, if m isnot acheckpoint, view-change, or new-view message
e consistent-vc(m, m'), if m isaview-change message
e consistent-nv-set({m}, {m'}), if m isanew-view message

Thisis guaranteed by clauses5, 6, and 7 in the definition of .

Now, we proceed by cases proving condition 2 holds for each € acts(Aj,.)

Non-faulty proxy actions. If « is an action of a non-faulty proxy automaton P, other than
RECEIVE(m = (REPLY,v,t,¢,%,7)4,), |60 @ cOnsSist of asingle 7 step. For the receive actions, let
a = B(y, m,c). In either case, when 7 isenabled in z all the actionsin « are also enabled starting
from y and an inspection of the code shows that the state relation defined by # is preserved in all
these cases.

Internal channel actions. If 7 isaMISBEHAVE(m, X, X') action, there are two cases:. if 7 is
not enabled in y, let o be A; otherwise, let o contain asingle = step. In either case, # is preserved.
because = does not add new messagesto z.Wire.

Receive of request, pre-prepare, prepare, or commit. For actions m = RECEIVE(m); where
m isasyntactically valid request, pre-prepare, prepare, or commit message, let « = B(y, m,1); «
transformsy intoy’ € H[2']:

e 7 and o modify wirein away that preserves clauses 5, 6, and 7.

e For receives of request messages, o and = add the same messages to out; and in; thereby
preserving the state correspondence defined by .

e For the other message types, the definition of £ and the definition of in-wv ensure that when
thefirstif conditionistruein z, itisalsotruein y (becausethe conditionismorerestrictivein
A’gc, and z.in; and y.in; have the same prepare and commit messageswith sequence numbers
higher than z.h;.) Thus, in this case, the state correspondence defined by H is preserved. But

it is possible for the i f condition to be truein y and false in z; this will cause a message to

163

be added to y.in; and (possibly) y.out; that is not added to .in; or z.out;. Sincethis happens
only if the sequence number of the message received is lower than or equal to z.h;, the state
correspondenceis also preserved in this case.

Garbagecollection. If 7 = RECEIVE({CHECKPOINT, v, 1, d, j)4;)i, Of T = COLLECT-GARBAGE;,
the condition holds when « is A. It is clear that the condition holds for the first type of action.
For the second type, the condition is satisfied because all the messages removed from z.in; have
seguence number lower than or equal to n and the action sets z.h; to n. The action sets z.h; to
n because it removes al triples with sequence number lower than n from z.chkpts; and there is
atriple with sequence number n in z.chkpts;. The existence of this triple is guaranteed because
the precondition for the collect-garbage; action requires that there is a checkpoint message from
i with sequence number n in z.in; and ¢ only inserts checkpoint messages in in; when it inserts a
corresponding checkpoint in chkpts;.

Receive view-change. If m# = RECEIVE(m = (VIEW-CHANGE, v,n,s,C, P, j)s,)i, |&t a =
B(y,m’', i) such that consistent-vc(m, m'). The definition of consistent-vc ensures that either both
messages are incorrect or both are correct. In thefirst case, = and o only modify the destination set
of the messagesin wire; otherwise, they both insert the view change messagein in;. In either case,
the state correspondence defined by H is preserved.

Receive new-view. When 7 = RECEIVE(m = (NEW-VIEW,v,V,0, N),,);, we consider
two cases. Firstly, if the condition in the outer if is not satisfied, let « = B(y,m’,4), where
consistent-nv-set({m}, {m’}). It is clear that this ensures y' € H[z'] under the assumption that
y € H[z]. Secondly, if the condition in the outer i f is satisfied when 7 executesin z, let o be the
execution of the following sequence of actionsof A’:

1. Theactionsin 3(y, m' = (NEW-VIEW, v, V', 0", N'),,, i), where consistent-nv-set({m}, {m'})

2. Let C be asequence of tuples (v,, R, m») fromN x 2% x RM such that the following conditions are true:
i) Vn : (z.last-exec; < n < max-n(V))

i)V (vn, Rn,mpn) : (vn < v A |Ry| > 2f ANVEk € R, : ({COMMIT, v, n, D(my), k)o, € z.Wreto)
A (30" 1 ({PRE-PREPARE, v', n, mn>aprimary(ur) € z.Wreto) V m, € z.Wret+o)

for each (vn, Rn,m»n) € C inorder of increasing n execute:

a) B(y, cn,, = (COMMIT, vy, n, D(my), kYo, ,1), foreachk € R,

b) if enabled 8(y, pr, = (PRE-PREPARE, v', n, mn)ffprirmry@wi) else B(y, mn,1)
C) EXECUTE(mp, Un,n);
The definition of H (clauses 1, 4, 5 and 6) ensures that, when the receive of the new-view
message executesin y, the condition in the outer i f is true exactly when it is satisfied in z. Let y;

be the state after B(y, m', i) executes; we show that when C isempty (i.e., max-n(V') < last-exec;),
y' = y1 € H[z']. Thisistrue because:

164

e Both = and B(y, m', i) set view; to v, add al the pre-preparesin O U N to in;, and add
consistent new-view messagesto in;.

e ((y,m', 1) also addsthe pre-preparesin (O’ U N') — (O U N) toin; but this does not violate
‘H because w ensures that z'.h; is greater than or equal to the sequence numbers in these
pre-prepares.

e Both 7 and B(y, m’,) add preparesto in; and out;; 5(y, m', i) addsall the prepares added by
7 and some extra prepares whose sequence numbers are less than or equal to z’.h;.

When C isnot empty (i.e., max-n(V') > last-exec;), it ispossiblethat y; ¢ H[z'] because some
of the requests whose execution is reflected in the last checkpoint in 2z’ may not have executed in
y1. Theextraactionsin o ensurethat y' € H[z'].

We will first show that C is well-defined, i.e., there exists a sequence with one tuple for each n
between z.last-exec; and max-n(V') that satisfies conditionsi) and ii).

Let m" = (VIEW-CHANGE, v, max-n(V), (s, 1,t), C', P, k), bethe view-change messagein V'
whose checkpoint value, (s,[,t), is assigned to (val;, last-rep;, last-rep-t;). Since m” is correct,
C'’ contains at least f + 1 checkpoint messages with sequence number max-n(V') and the digest of
(s,1,t). Therefore, the bound on the number of faulty replicas, and Invariant A.2.3 (condition 2)
imply there is a sequence of requests u1 such that committed-Wire(s, I, ¢, max-n(V'), v, p1).

Since by the inductive hypothesis y € #[z], al the the commit, pre-prepare and request
messages corresponding to 1 are alsoin y.Wire+o. Therefore, al the actionsin a) and at least one
of theactionsin b) are enabled starting from y, for eachn andeach k € R,,. Sincev,, < v for al the
tuplesin C, eachreceivein 5(y, cy, , i) will insert ¢,,, inin;. Similarly, thereceiveof the pre-prepare
or request will insert a matching pre-prepare or request in in;. This enables execute(m,, vy, n);.

Invariant A.2.3 (condition 1) also asserts that there exists a sequence of requests u» such
that committed-Wire(z.val;, z.last-rep,, z.last-rep-t;, z.last-exec;, z.view;, u2). Since by the inductive
hypothesisy € #[z], all the the commit, pre-prepare and request messages corresponding to 41 and
w2 aredsoin y.Wireto. Thisand Invariant A.2.4 imply that u» isaprefix of uy. Therefore, after
the execution of o, val;, last-rep;, last-rep-t;, last-exec; have the samevaluein z' and y’ asrequired
by #.

Send. If 7 = SEND(m, X);, let o be:

e A singlesend(m, X); step, if m does not have the CHECKPOINT, VIEW-CHANGE, OF NEW-VIEW
tag and thisactionisenabled in y.

e)\, if m has the CHECKPOINT tag or the action is not enabled in y (because the message is
aready in the channel.)

e A single send(m/, X); step, if m has the VIEW-CHANGE tag and this action is enabled in y
(where consistent-vc(m, m').)

165

e A singlesend(m’, X); step, if m hasthe NEW-VIEW tag and thisactionisenabled in y (where
consistent-nv-set({m}, {m’}).)

Send-pre-prepare and send-commit. |If # = SEND-PRE-PREPARE(m,v,n); OF m = SEND-
COMMIT(m, v, n);, let « contain asingle step. Thisensuresy’ € H[z'] because these actions are
only enabled in x when they are enabled in ¥, and they insert and remove the same messages from
in; and out;.

Execute. When m = EXECUTE(m, v, n);, let o contain asingle = step. The action is enabled
iny when it is enabled in z becauseit is only enabled in z for n > z.h; and z.in; and y.in; have
the same pre-prepare and commit messages with sequence numbers greater than z.h; and the same
reguests. It is easy to seethat the state correspondence defined by # is preserved by inspecting the
code.

View-change. If 7 = VIEW-CHANGE(v);, let « contain asingle 7 step. Theaction isenabledin
y when it is enabled in z because view; has the same valuein z and y. Both = and « insert view-
change messages m and m' (respectively) in in; and out;; it is clear that this ensures y' € H|[z']
provided consistent-vc(m/, m’) is true. Clause 2 in the definition of # ensures that m and m/'
contain the same messagesin the P component for sequence numbers greater than z.h;; therefore,
consistent-ve(m', m') istrue.

Send-new-view. If # = SEND-NEW-VIEW(v,V);, let a be the execution of the following
sequence of actionsof A':

1. send-new-view(v, V'), step, where consistent-ve-set(V, V').

2. Let C be asequence of tuples (v, R.., m,) fromN x 2% x RM such that the following conditions are true:
i) Vn : (z.last-exec; < n < max-n(V))

i)V (vn,Rnymn) @ (vn < v A |Ra| > 2f ANVE € Ry, @ ((COMMIT, v, n, D(my), k)s, € z.Wre+0)
A (30" 1 ({PRE-PREPARE, ', n, mn>aprimary(ur) € z.Wreto) V m, € z.Wret+o)
for each (vn, Rn,m»n) € C inorder of increasing n execute:

a) B(y, cn;, = (COMMIT, vy, n, D(my), kYo, 1), foreachk € R,
b) if enabled 3(y, pr = (PRE-PREPARE, v', n, mn)ffprimary(vr)ai) else B(y, mn, 1)
C) EXECUTE(mp, Un,n);

This simulation and the argument why it preserves H is very similar to the one presented for
receives of new-view messages.

Failure. If m = REPLICA-FAILURE; Or m = CLIENT-FAILURE;, let o contain asingle 7 step. It is
easy to seethat y' € H[z'].

Actions by faulty nodes. If 7 isan action of afaulty automaton, let o contain asingle = step.
The definition of H ensures that « is enabled in y whenever « is enabled in z. Modifications to
the internal state of the faulty automaton cannot violate 7. The only actions that could potentially
violate H are sends. But thisis not possible because a faulty automaton cannot forge the signature
of anon-faulty one. 0

166

Bibliography

[AD76]

[AhmOO]
[AMP*+00]

[APMR99]

[BEG+94]

[BHK+99]

[BM97]

[BRO5]

[BRY6]

[BSSO1]

[BT85]

[CATS]

P. A. Alsberg and J. D. Day. A principlefor resilient sharing of distributed resources.
In Proceedings of the 2nd International Conference on Software Engineering, pages
627—644, San Francisco, CA, Oct. 1976.

S. Ahmed. Private communication, 2000.

L.Alvisi, D. Malkhi, E. Pierce, M. Reiter, and R. Wright. Dynamic Byzantine Quorum
Systems. In International Conference on Dependable Systems and Networks (DSN,
FTCS-30 and DCCA-8), pages 283-292, New York, New York, June 2000.

L. Alvis, E. Pierce, D. Malkhi, and M. Reiter. Fault Detection for Byzantine Quorum
Systems. In Proceedings of the Seventh IFIP International Working Conference on
Dependable Computing for Critical Applications (DCCA-7), pages 357-371, San
Jose, Cdlifornia, Jan. 1999.

M. Blum, W. Evans, P. Gemmel, S. Kannan, and M. Naor. Checking the Correctness
of Memories. Algorithmica, 12:225-244, 1994.

J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and
Secure Message Authentication. In Advances in Cryptology - CRYPTO' 99, pages
216233, 1999.

M. Bellare and D. Micciancio. A New Paradigm for Collision-free Hashing: Incre-
mentality at Reduced Cost. In Advancesin Cryptology — EUROCRYPT' 97, 1997.

M. Bellare and P. Rogaway. Optimal asymmetric encryption - How to encrypt with
RSA. In Advances in Cryptology - EUROCRYPT 94, Lecture Notes in Computer
Science, Vol. 950. Springer-Verlag, 1995.

M. Bellare and P. Rogaway. The exact security of digital signatures- How to sign
with RSA and Rabin. In Advancesin Cryptology - EUROCRYPT 96, Lecture Notes
in Computer Science, Vol. 1070. Springer-Verlag, 1996.

K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group
multicast. In ACM Transactions on Computer Systems, volume 9(3), Aug. 1991.

G. Brachaand S. Toueg. Asynchronous Consensus and Broadcast Protocols. Journal
of the ACM, 32(4):824-240, 1985.

L. Chenand A. Avizienis. N-Version Programming: A Fault-Tolerance Approach to
Reliability of Software Operation. In Fault Tolerant Computing, FTCS-8, pages 3-9,
1978.

167

[CALMO7]

[CASDS5]

[CHHO7]

[CKS00]

[CL994]

[CL99b]

[CL99q]

[CLOO]

[CROZ]

[CTOO]

[Dam89]

[DCY0]

[DGGS99]

M. Castro, A. Adya, B. Liskov, and A. Myers. HAC: Hybrid Adaptive Caching
for Distributed Storage Systems. In Proc. 16th ACM Symp. on Operating System
Principles (SOSP), pages 102-115, St. Malo, France, Oct. 1997.

F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic Broadcast: From Simple
Message Diffusion to Byzantine Agreement. In 15th International Conference on
Fault Tolerant Computing, Ann Arbor, Mi., June 1985.

R. Canetti, S. Halevi, and A. Herzberg. Maintaining authenticated communication in
the presence of break-ins. In Proc. of the 1997 ACM Conference on Computers and
Communication Security, 1997.

C. Cachin, K. Kursawe, and V. Shoup. Random oraclesin Constantinople: Practical
asynchronous Byzantine agreement using cryptography. In Proceedings of the 19th
ACM Symposium on Principles of Distributed Computing (PODC 2000), Portland,
OR, July 2000.

M. Castroand B. Liskov. A CorrectnessProof for aPractical Byzantine-Fault-Tolerant
Replication Algorithm. Technica Memo MIT/LCS/TM-590, MIT Laboratory for
Computer Science, 1999.

M. Castroand B. Liskov. Authenticated Byzantine Fault Tolerance Without Public-K ey
Cryptography. Technical Memo MIT/LCS/TM-589, MIT Laboratory for Computer
Science, 1999.

M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation (OSDI), New
Orleans, LA, Feb. 1999.

M. Castro and B. Liskov. Proactive Recovery in a Byzantine-Fault-Tolerant Sys-
tem. In Proceedings of the Fourth Symposium on Operating Systems Design and
Implementation (OSDI), San Diego, CA, Oct. 2000.

R. Canneti and T. Rabin. Optimal Asynchronous Byzantine Agreement. Technical
Report #92-15, Computer Science Department, Hebrew University, 1992.

C. Collberg and C. Thomborson. Watermarking, Tamper-Proofing, and Obfuscation
- Tools for Software Protection. Technical Report 2000-03, University of Arizona,
2000.

|. Damgard. A Design Principle for Hash Functions. In G. Brassard, editor, Advances
in Cryptology — Crypto’ 89 Proceedings, number 435 in Lecture Notes in Computer
Science. Springer-Verlag, 1989.

S. Deering and D. Cheriton. Multicast routing in datagram internetworks and extended
LANs. ACM Transactions on Computer Systems, 8(2), May 1990.

A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper. Muteness Failure Detectors:
Specificationand Implementation. In J. Hlavicka, E. Maehle, and A. Pataricza, editors,
Proceedings of the 3rd European Dependable Computing Conference (EDCC-3),
pages 71-87. Springer-Verlag, Lecture Notes in Computer Science, Volume 1667,
1999.

168

[F97]

[FIL*95]

[FKMOOQ]

[FLPSS]

[Gei95)]
[GGJIR99]

[GHM*90]

[Gif79]

[GK85]

[GM9g]

[GMRSS]

[Gon92]

[Grao0]
[HBJ+90]

[HII*97]

[HIKY 95

S. Forrest et al. Building diverse computer systems. In Proceedings of the 6th
Workshop on Hot Topicsin Operating Systems, May 1997.

S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. H. Zhang. A Reliable Multicast
Framework for Light-weight Sessions and Application Level Framing. |[EEE/ACM
Transactions on Networking, 5(6), Aug. 1995.

K. Fu, M. F. Kaashoek, and D. Maziéres. Fast and secure distributed read-only file
system. In Proceedings of the 4th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2000), San Diego, California, Oct. 2000.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374-382, Apr. 1985.

K. Geiger. Inside ODBC. Microsoft Press, 1995.

J. Garay, R. Gennaro, C. Jutla, and T. Rabin. Secure Distributed Storage and Retrieval.
Theoretical Computer Science, 1999.

R. Guy, J. Heidemann, W. Mak, J. Page, T., G. Popek, and D. Rothneier. Implemen-
tation of the Ficus replicated file system. In USENIX Conference Proceedings, pages
6371, June 1990.

D. K. Gifford. Weighted voting for replicated data. In Proc. of the Seventh Symposium
on Operating Systems Principles, pages 150-162, Pacific Grove, CA, Dec. 1979.
ACM SIGOPS.

D. Gawlick and D. Kinkade. Varieties of concurrency control in IMS/VS fast path.
Database Engineering, 8(2):63-70, June 1985.

J. Garay and Y. Moses. Fully polynomia byzantine agreement for n) 3t processors
int+1 rounds. SAM Journal of Computing, 27(1):247—290, Feb. 1998.

S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen M essage Attacks. SSAM Journal of Computing, 17(2):281-308, Apr.
1988.

L. Gong. A security risk of depending on synchronized clocks. Operating Systems
Review, 26(1):49-53, Jan. 1992.

J. Gray. FT 101. Tak at the University of California at Berkeley, Nov. 2000.

A. Hisgen, A. Birrell, C. Jerian, T. Mann, M. Schroeder, and G. Swart. Granularity
and semantic level of replication in the Echo distributed file system. In Proceedings
of the Workshop on Management of Replicated Data, Houston, TX, Nov. 1990. |EEE.

A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive public
key and signature systems. In Proc. of the 1997 ACM Conference on Computers and
Communication Security, 1997.

A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing, or:
How to cope with perpetual leakage. In Advancesin Cryptology — CRYPTO' 95, 1995.

169

[HKM*88]

[HT8S]

[HWS7]

[Kat97]

[KMMS98]

[KP91]

[LAC*96]

[Lam78]

[Lam89)]

[LGG*91]

[LSP82]

[Lyn96]
[LZ75]

[Mer87]

[Min0Q]
[MKKW99]

J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and
M. West. Scale and performance in a distributed file system. ACM Transactions on
Computer Systems, 6(1):51-81, Feb. 1988.

M. Herlihy and J. Tygar. How to make replicated data secure. Advancesin Cryptology
(Lecture Notesin Computer Science 293), pages 379-391, 1988.

M. P. Herlihy and J. M. Wing. Axioms for Concurrent Objects. In Proceedings of
14th ACM Symposium on Principles of Programming Languages, pages 13-26, Jan.
1987.

J. Katcher. PostMark: A New File System Benhmark. Technical Report TR-3022,
Network Appliance, Oct. 1997.

K. Kihlstrom, L. Moser, and P. Melliar-Smith. The SecureRing Protocolsfor Securing
Group Communication. In Proc. of the Hawaii International Conference on System
Sciences, Hawaii, Jan. 1998.

P. Karn and C. Partridge. Improving round-trip time estimates in reliable transport
protocols. Theoretical Computer Science, 4(9):364—373, Nov. 1991.

B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Maheshwari,
A. Myers, and L. Shrira. Safe and Efficient Sharing of Persistent Objects in Thor.
In Proc. of ACM SSGMOD International Conference on Management of Data, pages
318-329, Montreal, Canada, June 1996.

L. Lamport. Time, Clocks, and the Ordering of Eventsin aDistributed System. Comm.
of the ACM, 21(7):558-565, July 1978.

L. Lamport. The Part-Time Parliament. Report Research Report 49, Digital Equipment
Corporation Systems Research Center, Palo Alto, CA, Sept. 1989.

B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams. Repli-
cation in the Harp File System. In Proc. 13th ACM Symp. on Operating System
Principles (SOSP), pages 226-238. ACM Press, 1991.

L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems, 4(3):382—401, July 1982.

N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

B. Liskov and S. Zilles. Specification techniques for data abstractions. |EEE Trans-
actions on Software Engineering, SE-1(1), Mar. 1975.

R. C. Merkle. A Digital Signature Based on a Conventional Encryption Function. In
C. Pomerance, editor, Advances in Cryptology - Crypto’ 87, number 293 in Lecture
Notesin Computer Science, pages 369-378. Springer-Verlag, 1987.

R. Minnich. The Linux BIOS Home Page. http://www.acl.lanl.gov/linuxbios, 2000.

D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key man-
agement from file system security. In Proceedings of the 17th ACM Symposium on
Operating System Principles, Kiawah Island, SC, Dec. 1999.

170

[MLOO]

[MR96d]

[MRO6b]

[MR97]

[MR984]

[MRO8b]

[MROO]

[MRL98]

[MVS00]

[OL88]

[Ous90)]

[OY91]

[Parg6]

[Pos80]

[Pos81]

[PSL80]

B. Murphy and B. Levidow. Windows 2000 dependability. In Proceedings of IEEE
International Conference on Dependable Systems and Networks, New York, NY, June
2000. |EEE.

D. Makhi and M. Reiter. A high-throughput secure reliable multicast protocol. In
Proc. of the 9th Computer Security Foundations Workshop, pages 9-17, Ireland, June
1996.

D. Malkhi and M. Reiter. Unreliable Intrusion Detection in Distributed Computations.
In Proc. of the 9th Computer Security Foundations Workshop, pages 9-17, Ireland,
June 1996.

D. Malkhi and M. Reiter. Byzantine quorum systems. In Proc. of the 29th ACM
Symposium on Theory of Computing, pages 569-578, El Paso, Texas, May 1997.

D. Makhi and M. Reiter. Byzantine Quorum Systems. Journal of Distributed Conm+
puting, 11(4):203-213, 1998.

D. Makhi and M. Reiter. Secure and scalable replication in phalanx. In Proc. of the
17th IEEE Symposium on Reliable Distributed Systems, Oct. 1998.

D. Malkhi and M. Reiter. An Architecture for Survivable Coordination in Large
Distributed Systems. |EEE Transactions on Knowledge and Data Engineering,
12(2):187-202, Apr. 2000.

D. Malkhi, M. Reiter, and N. Lynch. A Correctness Condition for Memory Shared by
Byzantine Processes. Submitted for publication., Sept. 1998.

U. Maheshwari, R. Vingralek, and B. Shapiro. How to Build a Trusted Database
System on Untrusted Storage. In Proceedings of the 4th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 2000), San Diego, California,
Oct. 2000.

B. Oki and B. Liskov. Viewstamped Replication: A New Primary Copy Method
to Support Highly-Available Distributed Systems. In Proc. of ACM Symposium on
Principles of Distributed Computing, pages 8-17, 1988.

J. Ousterhout. Why Aren't Operating Systems Getting Faster as Fast as Hardware?
In Proc. of USENIX Summer Conference, pages 247-256, Anaheim, CA, June 1990.

R. Ostrovsky and M. Yung. How to withstand mobile virus attack. In Proc. of the 19th
Symposium on Principles of Distributed Computing, pages 51-59. ACM, Oct. 1991.

J.-F. Paris. Voting with witnesses: A consistency schemefor replicated files. In Proc.
of the 6th International Conference on Distributed Computer Systems, pages606—612.
|EEE, 1986.

J. Postel. User datagram protocol. DARPA-Internet RFC-768, Aug. 1980.

J. Postel. DoD standard transmition control protocol. DARPA-Internet RFC-793,
Sept. 1981.

M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of Faults.
Journal of the ACM, 27(2):228-234, Apr. 1980.

171

[Rei94]

[Rei95]

[Rei96]

[RivO2]
[Rod00]
[S+85]

[Sat90]

[Schao]

[SDWO2]

[Sha79]

[SHA94]

[Spu0q]
[SS83]

[Sul00]
[TPRZ84]

[Wie9g]

[Yan99]

M. Reiter. Secure Agreement Protocols. In Proc. of the 2nd ACM Conference on
Computer and Communication Security, pages 68-80, Nov. 1994.

M. Reiter. The Rampart toolkit for building high-integrity services. Theory and
Practice in Distributed Systems (Lecture Notes in Computer Science 938), pages
99-110, 1995.

M. Reiter. A secure group membership protocol. IEEE Transactions on Software
Engineering, 22(1):31-42, Jan. 1996.

R. Rivest. The MD5 message-digest algorithm. Internet RFC-1321, Apr. 1992.
R. Rodrigues. Private communication, 2000.

R. Sandberg et al. Design and implementation of the sun network filesystem. In
Proceedings of the Summer 1985 USENIX Conference, pages 119-130, June 1985.

M. Satyanarayanan. Scalable, secure, and highly available distributed file access. In
|EEE Computer, May 1990.

F. Schneider. Implementing fault-tolerant services using the state machine approach:
atutorial. ACM Computing Surveys, 22(4):299-319, Dec. 1990.

W. Strayer, B. Dempsey, and A. Weaver. XTP: The Xpress Transfer Protocol. Addison-
Wesley, Reading, Massachusetts, 1992.

A. Shamir. How to share a secret. Communications of the ACM, 22(11):612-613,
1979.

National Institute of Standards and Technology (NIST). Announcement of Weakness
in Secure Hash Standard, 1994.

C. E. Spurgeon. Ethernet: The Definitive Guide. O’ Reilly and Associates, 2000.

R. D. Schlichting and F. B. Schneider. Fail-stop processors. An approach to de-
signing fault-tolerant computing systems. ACM Transactions on Computing Systems,
1(3):222-238, 1983.

B. Sullivan. Inside Europe's cyberdeuth central. MSNBC, Oct. 2000.

D. B. Terry, M. Painter, D. Riggle, and S. Zhou. The Berkeley Internet Name Domain
Server. In Proceedings USENIX Summer Conference, Salt Lake City, Utah, June
1984.

M. Wiener. Performance Comparison of Public-Key Cryptosystems. RSA Laborato-
ries CryptoBytes, 4(1), 1998.

Z.Yang. Byzantine Fault-Tolerant DNS|Infrastructure. Master’ sthesis, M assachusetts
Institute of Technology, Cambridge, MA, June 1999.

172

