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COMPUTER ANALYSIS OF VISUAL PROPERTIES OF CURVED OBJECTS#

Abstract

A method is presented for the visual analysis of
objects by computer. It is particularly well suited
for opaque objects with smoothly curved surfaces. The
method extracts information about the object's surface
properties, including measures of its specularity,
texture, and regularity. It also aids in determining
the object's shape.

The application of this method to a simple recog-
nition task -- the recognition of fruit -- is discussed.
The results on a more complex smoothly curved object, a
human face, are also considered.

*This report reproduces a thesis of the same title submitted
to the Department of Electrical Engineering, Massachusetts
Institute of Technology, in partial fulfillment of the re-
quirements for the degree of Doctor of Philosophy, June 1§70.
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Chapter | The Probiem

Consider the problem of programming a computer to
recognize objects with smoothiy curved surfaces, such as
the object in the photograph of figure I.l. Images such
as these can be digitized by an image-dissector camera,
so that the picture is represented by a raster of
intensities at closely spaced sample points, represented
numerically in figure 1.2. We will consider 2 method of
processing such input with the ultimate goal of
recognizing the object In the image.

There are numerous more or less adeguate known
techniques for classifying an image once significant
features have been extracted from it, but the problem of
extracting such features from the basic optical data is
less well understood. The methods which will be
discussed here are "low=-level", in that they manipulate
actual picture points and try to extract salient
features, rather than working with high=~level
descriptions and attempting to produce an identification.

I+ must be recognized, however, that the so-
called high- and low-level aspects of vision cannot

really be cleanly separated. There Is no foolproof




Figure 1.1:

A Simple Smoothly Curved Object




Figure 1.2: Sampled Light Intensities from the Apple
of figure 1.1

The intensities in this array have been scaled to be between
0 and 99
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completely local way to find features, as there will
always be ambiguities which can only be resolved throuah
the use of context. For example, one must know the |ight
intensity (at least roughly) in order to determine
whether an object is white or black, as a white object in
very dim |light can easily reflect less light than a black
object in sunlight. A plum cannot be easlily
distinguished from an isolated grape, unless the size is
known, Highlights on a smooth surface cannot be
understood unless the form of the Illumination is known.
The context can of course be determined partly
from the scene itself. For example, a real scene will
generally contain surfaces with a wide range of
reflectivities, This establ ishes a light intensity
frame of reference In which the tlighter objects will
appear white and the darker ones black, One cannot tell
the slize of a white sphere alone in a photograph, but if

it is shown next to a tennis ball, Iits size is known by

comparison, (It is possible, but unlikely, that the
tennis ball is actually a scaled-up mode! three feet in
diameter., This usually happens only on movie sets.,) In

a similar manner, the highlight on a known object gives
information about the lighting which can be used to

interpret the highlights on other objects in the image.




So far, the use of context has been considered
only on the level of object identification. Actually,
context is even more necessary at the level of finding
visual parts of objects, such as edges. A line-finding
program can be saved an enormous amount of work If it is
told approximately where to look, If a program thinks it
is seeing an apple, it can know that a good way to verify
this hypothesis is to look on top for a stem,

A program can only make use of these cues,
however, 1f it can pass information resulting from a
partial ldentification back to the low~level feature-
finding routines. This sort of system shall be referred
to as "vertical", in the sense that control passes
frequently between high~ and low-~level routines, The
term "horizontal" refers to a system which works In
stages, each of which produces a more abstract
representation of the scene. Much of the previous work
in vision has been of this sort. A typical sequence
might be to remove noise, enhance features, extract
features, group them, and then identify objects., Since
no provision Is made in a horizontal system for passing
information back down this chain, the system cannot make

use of context Information obtained from the image

itself,



The methods which will be presented here are
intended to fit intfo a vertical system in two ways.
First, they can be used to start off a vertical system
with information good enough *o get it going. Second,
they extract features which are useful for object
identification. These features will be extracted in
such a manner as to allow easy advantage to be derived

from context information,

This work is Intended to be a step towards making

computers see, This goal is interesting for a number of

reasons, Computers with vision would be useful for

applications in automation, and would be able to interact

better with humans. Computer vision may well provide

instructive models for the understanding of human vision.

The problem is also very interesting In Its own right,

an aspect of the study of Artificial Intell igence.

as




Chapter 2 Previous Work

Techniques have been investigated which could be
applled to smoothly curved objects as a step towards

recognition.

2.1 Shape from Shading

It is possible to find a great deal about the
shape of a smoothly curved object from a single monocular
fmage, given a knowledge of its surface reflection
properties and the position and nature of the light
sources, Horn [ 10] generates curves lying on the
surface of the object by an Iiterative solution of a set
of differential equations relating shape to the intensity
of image points. Similar methods have been applied to
the analysis of lunar topography from Lunar Orbiter
photographs [14,5],

This method requires a uniform object surface.
Its reflectance must be a smooth function of the angle
the surface makes with the incident and exit rays, Any
marks on the surface will disrupt the solutions to the

differential equations, although very small marks can be







2.2 Detection of Optical Edges

Much research has gone into the detection and
tracing of contrast edges in an image. These edges can
be emphasized by differentiation preprocessing

operations, such as the gradient or Laplacian.

2,2,1 Plane-surfaced Objects

Edge detection is particularly attractive for
plane surfaced objects., Since the edges are straight
lines (the intersection of two planes), a determination
of the position of the edges completely speclifies the
position of the plane surface which they enclose, and an
edge itself can be located in terms of just a few of its
points,

A program by L. G. Roberts recognizes white plane
surfaced objects on a dark background [15]., He considers
objects which can be put together out of a set of given
sub-shapes, such as rectangular parallelopipeds and
wedges. The image is first differentiated., Lines are
then found in the resulting picture by a multiple~step
procedure, first fitting short lines to local areas,

eliminating tiny ltoops, then fitting longer and longer




lines to the shorter ones, and finally generating a
least-mean-square line which is taken to represent the
originai edge.

The next phase is recognition of polygons in the
line drawing, followed by the matching of sets of
polygons against the possible models. The matching is
first done on a straight topographical basis. The two-
dimensional projection of a brick, for instance,
generally contains three quadrilaterals with one corner
point in common. No such point exists on a wedge.
Assuming, then, that this point corresponds to the corner
of a brick, the program can match the other lines and
points in the quadrilaterals to what must then be the
corresponding lines and points of the model., A least-
mean-square error matrix procedure is then used to find
the best brick (in 3-space) which generates the given
two-dimensional line drawing. I+ the least-mean~sauare
error Is small enough, the fit is accepted as correct.

When a set of lines are matched by a model, the
model can then be projected back onto the line drawing,
but now with all of the hidden |ines present. The model
Is now "removed" from the line drawing, which may entail
the deletion of some |lines, but also may entall the

addition of some others. The procedure is now iterated




until all of the ltines of the input figure have been
accounted for. Thus objects are recognized as being
compounded of a number of the basic building blocks,

Roberts depends on a high deqree of precision of
measurement of the position of the edges, since he uses
perspective in an essential way. Unfortunately, his
procedure is useless for objects lacking straight line
edges. One particularly interesting aspect of Roberts'
work is his use of a powerful internal model of the
potential object in the image. A similar approach might
be useful for scenes consisting of regular smoothly
curved objects such as spheres and cylinders, but it is
difficult to envision successful results using more
amorphous forms,

A program by R, W. Gosper visually locates white
rectangular parallelepipeds on a black table. Due to the
high reflectance difference between the objects and the
background, the outer edges are very clearly defined,
(The program also finds interior edges of the object
where the contrast between adjacent faces is high
enough.) The edges are found by an algorithm which scans
in a line perpendicular to the edge, and moves this line
along the edge from one end to the other. From the

position of the edges in the Image, and the knowledge
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his use of second~order perspective effects, The use of
stereo distance determination would also require such
high precision. Gosper requires only medium precision.,
His goal is to actually pick up the block, which only
requires locating it to within a centimeter or so. No
perspective, stereo, or other second-order effects are
used, so the calculated position is not as sensitive to
small errors in the line position. The programs of
Guzman and Griffith require only low precision, except In
a few parts which make use of the parallelism of two

lines,

2.2.2 Curved Edges

There has been much study of recognition of
alphanumeric characters, Black characters on a white
background provide high-contrast edges, and some
character-recognition programs work by tracing around the
character's edge. There has been little edge-oriented
research on images derived from three-dimensiona!
objects, and the results of the two-dimensional work has
little relevance to this problem,

It Is considerably easier to find a stralght edge

than a curved one, since only two points determine a
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straight line, and additional points can then be verified
by very sensitive tests. |f many tests are positive
along a straight line, the existence of the edge can then
be asserted with a high statistical confidence, as by
Griffith's programs. These techniques can be used only

over a short interval for a curved edge,

2.3 The "Regions" Approach

Instead of looking for high-contrast edges, some
pattern recognition methods look for homogeneous areas of
low contrast., Analysis then proceeds from the shape and
Interelations between these "reglons". There are a
number of techniques for characterizing the shape of a
region, such as various moments [2], or more complicated
shape descriptors [3]. Kirsch [I1] analyzes
photomicrographs of cells by building a tree structure of
image regions with various levels of homogeneity., His
methods are the closest in the literature to those which

are developed in this thesis.
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2,4 Textural Information

The optical behavior of an object depends very
much on the texture of its surface. The word "texture"
may refer to either markings or departures from a smooth
surface, but in either case they must be small compared
with the size of the object In order to be considered
texture., Texure analysis may be done by a wide variety
of methods, such as Fourler analyslis or cross-
correlation, Texture has been used to advantage in a
range of studies, in such areas asrecognition of terrain
types [ 16] or cell images [13]. Different types of

texture will be discussed further In section 3.9.
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Figure 3.1: The Intensity-region Tree
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Chapter 3 Representing an lImage as an Intensity=-region

Tree

3.1 The Basic Method Used

Consider an Image, I, defined on a rectangular
raster of points, so that I(p) is the light intensity at
the point p. For any given light intensity threshold *,
define a set of points S(t) = <b|I(p)2T}, the set of
points of intensity t or greater, Each of the eight
pictures in figure 3.1 (previous page) shows such a set
of points, for some threshold, For any t, the set S(t)
can be partitioned into disjoint connected subsets R, (+),
which will henceforth be called "reglions". Thus:

s(t) = R, (DR (D= - -URrp(),

where RiﬂRjz @ it i#j, and each R; is a connected set
of points. Note that S(+,)0C_S(t,) if t,>% , so each
region at threshold t, must be a subset of some region at
t,. The reglons thus fall naturally into a tree
structure based on this subset relation, as shown in
figure 3.1,

Another particularly graphic way of looking at

the tree is to visualize the intensity function plotted
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In the form z=f(x,y). Slicing this function with a
horizontal plane at several threshoid levels, the tree
can be pictured as in figure 3,2, An iIntensity contour
map of the pear is shown in figure 3,3 in order to show

how the regions are actually nested.
3.2 Quantization

Choosing a2 set of thresho!d levels {}i} is
equivalent to quantizing the tight intensities in the
image, in terms ot the information retalned in the tree.
The more threshold levels in the set, the greater the
depth of the tree generated using these levels, We will
generally consider threshold sets which are evenly spaced
in the log of the light Intensity, although a tree could
be generated from any arbitrary set of levels, Usling the
ldg of the light intensity generates a tree whose
structure remains basically the same 1f the Illumination

is scaled up or down by a constant factor.
3.3 Geometry of the Tree

In the | Iimit of a continuous tree (in which the

spacing between threshold levels approaches zero), the
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Figure 3.2: The Region Planes Shown as Slices of the Intensity
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tips of the branches represent local maxima in the image.
Beginning at a branch tip and moving along it in the
direction of lower intensity, the region expands from the
max imum point to include other nearby points, assuming
the intensity function Is continuous in that area. Each
tree branch can thus be thought of as a growing region,

A fork in the tree occurs whenever two or more of these
regions combine, forming one new larger region, In this
case, the branch associated with the sub-region of
largest area shall be considered the "main branch", and
the other branches shall be called "sub-branches". |If
the original image is slightly noisy, then as a reglon
"expands" (moving along a tree branch from high to low
intensity), it will engulf large numbers of smaller
regions which appear ahead of its advancing edge,
resulting in many short sub-branches on the tree. When
two regions of substantial area are combined, it is not
really Important which is considered the sub-branch.

The highest region on the tree represents the
brightest point in the image. If the threshold is
lowered far enough, all of the regions will eventually
merge into one region containing all of the image points.

This shall be referred to as the "root" of the tree.
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3,4 Trees with Incomplete Region Information

in the preceeding discussion, the regions
themselves have been considered to be the elements of the
tree., Let us now consider an abstract tree structure in
which the elements of the tree are not the regions
themse lves, but nodes containing information about these
regions., Such a tree shall be called an "lImage Tree",
If each node contains a complete description of the
region to which it corresponds (that is, if Ri(TJ) is
given for all { and fJ), then the tree contains enough
data to be able to re-construct the image exactly, to
within the limits imposed by the quantlization.

If each node contains only statistics of the
corresponding reglion, rather than a complete description
of the region, then the tree contains less information
than the original image. These are the interesting
trees, despite the fact that the image cannot be
reconstructed from them, The problem of pattern
recognition can be viewed as one of throwing away
information in a selective way. To go from a picture of
an apple to the word "apple" represents an enormous
reduction in Information ("a picture is worth a thousand

words™),
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In general, the nodes may contain any arbitrary
set of functions of the corresponding region, in
particular, the ones which will be used are the position
of the region's center of mass (x.,y.), the area A of the
region (i.e. the number of points in it), and a measure
of the second moment about the center of mass, called the
eccentricity e,

The eccentricity is defined by

2 2
e = %%1 (xp=xc) + (yp-yc)
all pts p
in region

e is 1.0 for a8 perfectly circular region, and is larger
for a more elongated region.
The eccentricity is a dimensioniess quantity,

which remains the same If the region size is scaled up or

down. It represents a normalized moment of Inertia about
@ line thru the region center of mass perpendicular to
the region plane. It can be shown that no region can

have an eccentricity less than 1.0, and that any shape
other than a circle has a higher eccentricity. This is
because a circle has the smal lest moment of inertia for a

given area,

For a | by f rectangle, the eccentricity is
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e =t + |
6 ],

which is 1,047 for a square, 1.3l for a 2 by | rectangle,
and 2,23 for a 4 by | rectangle. For a high elongation
f, e & wF/6.

Note that this definition of eccentricity is not
the standard eccentricity of second order curves. The

eccentricity of an elliptical region of semi-axes a and b

e =1fa+ D
2\b a] ,

which ranges from | to oo, The normal definition of the

is

eccentricity of an ellipse is

2
|- (b
(a) ’ (bSa),

which ranges from 0 to |,

More complex region statistlics could be stored on
the tree. If the x and y second moments are stored
separately, then the "dominent axis" thru the region
center of mass can be easily computed. This is a line in
the plane of the region points through which the region
has minimum moment of inertia., Higher moments could also
be computed, although their interpretation in terms of
high-level shape descriptors is less clear. More
complete shape descriptors, such as the results of a

Med lal Axis Transform [41] could also be used.
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The choice of more complex shape descriptors
depends on the particular recognition tasks being
performed. The simple statistics of area, center of
mass, and eccentricity can yleld much useful Information,
however, and attention will be focused on them, I+ will
be seen that they are quite useful for the analysis of

surface properties and simple shapes.

2.5 Sub-programs of the Image Tree System

Programs have been written to obtain the image
tree of a given scene, Measurements from a laboratory
scene are read into an array by an image-dissector
camera, and a |ist-structure tree Is generated. The tree
can be printed out, showing the parameters associated
with each node., Programs also can graph agalinst the
threshold any region statistic stored on the nodes, along
some path on the tree from a branch tip fo the root, The
original Image can be displayed, and any arbitrary region
can be shown super imposed upon it. For more detail about

these programs, see the appendix.
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3.6 The Tree of a Matte Sphere

Let us consider the tree resulting from an image
of a sphere with a matte surface. A matte surface
exhibits a reflectance which Is fairly uniform in all
directions regardless of the angle of the incident light,
The image of a sphere is a circle, If we assume the
reflectance to be completely uniform, and consider a
sphere | it from the camera position, then the intensity
as a function of radius r over this circle is

2 1/2
Itr) =[1 - (r/R) ],

where R is the radius of the projected circle, and the
intensity is normalized to | at the centra! point. This
tormula simply expresses the fact that the projection of
a surface seen by a viewer is proportional to the cosine
of the angle of the viewer from the normal to the surface
(see figure 3.4). Thus, assuming uniform scattering, the
intensity of the light Is proportional to the cosine of
the incident (and viewing) angle. The Intensity value
actually read from the vidisector is + = C + 32Log(I),
where C is the reading at the central point, | is the
intensity, and the Log is base 2, Solving for the region

area as a function of the threshold t, we get




Figure 3.4: TFormula for the Reflcctaance of a Sphere

The sphere is 1it from the camera position.
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(t-C)l/l6
A =8B! -2 1,

where B is the area of the full circle. Its image tree
should have only a single straight branch, whose tip
corresponds to the central point, Each of the nodes on
this branch represents a circular region centered about
this point,

A picture of a white sphere on 2 black backaground
was actually read into the computer from the vidisector,
and a tree was generated by the procedure previously
described. The tree had essentially one main branch,

3 lthough there were a few very short sub-branches
representing regions of very small area, which were
neglected, The measured region area and the theoretical
curve are plotted together in figure 3.5,

Note that the measured curve rises considerably
above the theoretical curve in the central region. This
implies that the intensity is not |inear In cosine of the
incident angle, but is somewhat convex, as in figure 3.6.
The sphere used for these studies had an extremely matte
surface, and hence a negligible highlight, The sudden
rise at the end of the curve is due to the threshold
lowering to below the intensity of points in the black

background,
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Region Growth for a Sphere

Figure 3.5:
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Figure 3.6: Actual and Assumed Surface Reflectance
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3,7 Effect of the Specular Component

As was discussed in chapter 2, the reflectance of
a surface can be considered to be a superposition of &
specular and a matte component, A mirrored sphere would
give rise to a pure specular reflection, which would
clearly be an image of the |ight source, plus a
reflection of anything else in the room., If the surface
is not highly mirrored, this specular component will be
great!ly attenuated, so that it can be neglected, excepf?
for the image of the bright light source, which will be
significant despite the attenuation, This reflection of
the |ight source is called a "highlight", and will
general ly be considerably brighter than the surrounding
points. The magnitude of this highl ight relative to the
matte component Is a measure of the specularity of the
surface.

Consider the effect of this highlight on the
image tfree, assuming the |ight to come from a small
(nearly point) source. This will produce a small, bright
spot on top of the local maximum in the matte component.
As a result, a long section of the tip of the tree will
represent a small region of fairly constant area. This

is @ result of the "spike" in the light intensity
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function resulting from the small, bright highlight,
Consider the set of spheres shown in figure 3.7,
They were all painted with a matte white paint, and then
coated with zero through seven coats of clear enamel,
giving them varying degrees of specularity., A graph of
the region area vs. threshold (figure 3.,8) shows the
small flat section of the curve representing the
highlight, for one of the spheres., Figure 3.9 gives this
highlight depth h as a function of the number of coats of
laquer, illustrating how the surface specularity can be
measured In a simple manner., The lIrregularities In this
curve are probably due to the difficulty In applying the

coats of laquer uniformly.

3.8 The Surface Convolution

Locally, consider a curved surface to be a part
of a sphere of the same radius of curvature. According
to classical optics, a spherical mirror has a focal
length of one half its radius R, and will form a virtual
image of the light source as shown in figure 3,10, If a
light of diameter d and distance L from the object is not
too far off the camera-object axis, then the diameter of

its image Is about




Figure 3.7: Specularity Test
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Figure 3.8: TIllustration of Highli¢ht Depth

Graph is for sphere 7 of figure 3.7
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Figure 3.9: Highlight Depth vs. Number of Laquer Coats
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d' = 4 ! )
I + 2L/R

(As R—+» oo, d'— d, as is indeed the case for a flat
mirror,) Thus if the size of the |ight source and the
approximate distance of the object from the camera are
known, the curvature of the surface can be determined
near a highlight, Even if the size of the Iight source
is not known, this method gives the relative curvatures
if there are several different high! ights In the scene.
A good way to determine the size of the source Is to take
advantage of verticality by knowing the approximate
curvature of some object in the Image.

Many surfaces will "smear out" the image of the
I ight, resulting in a broader hightight than would be
gotten from a mirrored surface of equivalent curvature.
The highlight seen can be considered to be the
convolution of the image of the light source and the
"impulse response" of the surface reflectance. |f the
light source is a sufficiently small point, then Iits
image can be considered to be an impulse, and the surface
"smear" function can be read directly from the region

area vs., threshold curve.
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3.9 Texture

"Texture" refers to variations in the | ight
intensity which are very small in size compared to the
objects being recognized. It has two basic causes.

"yisual texture" is due to variations In the reflectance
of the surface, and "tactile texture" is due to minute
protrusions or depressions superimposed upon a basically
smooth surface (the sort of texture one can feel with a
finger). If the size of the texture is smaller than the
resolution with which the image has been sampled, the
intensity variations will average out, and the texture
will have little effect on the tree, aside from affecting
the surface "smear" function. |f the texture Is large
enough to be discernable, however, 1t will produce a
distinctive effect on the tree,

Texture is a multi-dimensional feature, and there
are a correspondinly large number of textural properties
which could be measured. We are not concerned here with
producing a complete description of texture, but rather
with detecting features which might be useful in making
an object identification. Although such features can
help discriminate between objects, they do not give

enough information to re-construct the texture exactly.
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3.9,1 Visual Texture

Consider the two spheres shown in figure 3,11,
The spheres were painted with a matte white paint, then
marked with red ink to produce visual texture. The same
two spheres are shown in red, white, and areen !ight,
Since the red Ink is highly reflective In the red, and
very absorptive in the green, these |ighting conditions
produce light, medium, and heavy texture contrast
respectively, with all other factors being held constant,

There are two kinds of texture, with respect to
effect on the image tree. The right sphere shows small
disconnected light patches on a connected dark
bac kground, and the left sphere shows d isconnected dark
speckles on a connected |ight background., A l'ight spot,
being a local maximum in the [ight intensity, will
produce a tree branch, The nodes on this branch will
represent regions the size of the spot, and so will have
very small area, The length of the branch will depend on
the relative brightness of the spot compared to its
neighbors, since when the threshold reaches the Iintensity
of the neighbors, the region corresponding to the spot

will be swallowed up by the larger region surrounding it.




Figure 3.11:

Texture Test Spheres

High contrast
(green light)

Medium contrast
(white light)

Low contrast
(red light)
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Light speckles will thus produce a large number of sub-
branches whose length represents the Intensity of the
speckle, and whose "size" (the size of the corresponding
regions) represents the size of the speckles. The tree
corresponding to the light-speckled sphere p hotographed
in the green 1ight (deepest texture) Is shown in

figure 3.12. Note the many branches produced by the
speckles,

The number and length of the sub-branches
provides a measure of the degree of contrast of the
texture., These quantities are shown in figure 3.13 for
the light-speckled sphere under the three lighting
conditions, Note how these quantities thus provide an
index of texture contrast, just as the highlight depth
and surface smear function provide an index of
specu larity. Information about the details of the
texture can alsoc be obtained, up to the !imits imposed by

the particular shape descriptors used on the nodes of the

tree. Round speckles will produce regions of low
eccentricity, whereas streaks will produce regions of
very high eccentricity., If the direction of the dominent

axis of the region were recorded (corresponding to
recording the second moments in the x and y directions

separately), the dominent axis of the streaked texture




Figure 3.12: Tree of the Light-speckled Texture Test Sphere
(green light)

All sub-branch nodes represent regions of small area,
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Figure 3.13: Nunber and Average Depth of Sub-branches for the
Light-speckled Texture Test Spheres
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could be determined as well,

Dark speckles will have a different effect,
however, Since they are local minima in the Intensity
function, rather than local maxima, they will not produce
branches on the tree, but rather will produce holes In

regions, This is shown by the tree of the dark-speckled
sphere, shown in figure 3,14, The only effect of these
small holes is to raise the eccentricity of the growing
region, as shown in figure 3.15, which shows the main
branch eccentricity vs., region area for the dark-speckled
sphere in the three different colored lights. Since the
eccentricity change is so small, these three curves can
be compared in this way only because all factors except
the degree of texture were held absoluTtely constant - the
same sphere was viewed from exactlv the same camera
position and with exactly The same |ight source. Nothing
was moved; only the filter over the l1ght was changed.
The difference between the trees for the dark
speckled and the light speckled spheres (figures 3.12 and
3.14) exposes a basic asymmetry in the Image tree with
respect to light and dark., This asymmetry is not just
confined to texture, of course. Locally bright areas
will always produce regions and hence tree nodes, while

locally dark areas will always produce holes In reglons,
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Figure 3.15:

Eccentricity vs. Region Area for the
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altering the statistics of nodes that would otherwise
ex ist anyway.

The tree could easily be extended to find dark
speckles by generating an "inverted" tree for the area
inside each region. An inverted tree Is a tree in which
the regions represent image areas less than threshold,
instead of greater than or equal! to., This will be

further discussed in section 5.4.2.

3.9.2 Tactile Texture

Small bumps on the surface of an object

essentially produce many tiny "micro-objects" with the

same surface properties. If the size of these is below
the resolution of the Iimage sampling, the effect will be
only on the surface smear function., |f the texture Is

larger than that, and the surface is fairly specutar, the

result will be many tiny highlights, producing the
equivalent of a |ight-specklied visual texture,
3.10 Shape

The image tree carries shape Iinformation in two

ways: in its form, and in the behavior of the region
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statistics stored along its branches. The Interpretation
in terms of object shape of the simple region statistics
discussed so far depends upon the object being simply
shaped, since the eccentricity does not give enough
information to distinguish between different complex~
shaped regions, Nevertheless, much useful shape
information can be obtained even with very simple
statistics, particularly in a recognitlon~oriented
application in which there can be restrictions on the

shapes considered,

3.10.1 The Main Branch

Consider the object shown in figure 3,16. |Its
tree is a single main branch, just as In the case of a
sphere (a2 crude contour map Is shown In figure 3,17).
The simplest indicator of its shape Is the eccentricity
of the entire object, which is about | .4, clearly
indicating it to be quite elongated. The entire curve of
eccentricity vs, threshold is shown in figure 3,18. The
flatness of this curve Indicates that the region probably
doesn't change its shape very much as It grows, and that
it has a smooth surface with no significant

irregularities, This Is not a unique interpretation of




Figure 3.16:

A Matte-white Painted Squash
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Figure 3.17:
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Figure 3.18: Fccentricity Curve of the Squash
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the curve, but is a reasonable inference given the
assumption that the object is not highly irreguliar. The

bump in the eccentricity curve at the bright end is

typical of a small newly developing region, Since the
slope of the |ight intensity function is very small near
a lecal maximum, a small region about that point will

tend to have jagged edges, and hence a high eccentricity.
As the region expands, the intensity gradient at the edge
increases, so the edge becomes straighter, and the
eccentricity is reduced,

Consider the plot of added region area, shown in
tigure 3,19, This quantity shows the excess area added
to a region above the sum of the areas of its sub-
regions, Since the intensity measured is a monotonic
function of the angle of the surface to the camera, the
added region area is the projected area ot that part of
the surface on the object with a particular slope. A
bump in this curve represents a large area of relatively
low curvature. The only one in this case is near the
highlight,

Figure 3,20 shows what the area added to a region
looks like - it is the area of a region minus the area of
all its sub-regions. Note that the statistics used are

such that from the statistics of a region A and those of




Figure 3.19: Added Region Area Curve of the Squash
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a sub-region B, the statistics of the difference A-B can
be computed. (To compute the eccentricity of region A-B,
the eccentricity, region area, and center of mass
position of regions A and B must all be known.)

Computing information about the shape of such a
difference region gives information about bulges
developing in a reglion, direction of motlion of the center
of mass, and other properties of all those points on the
surface within some given range of Inclination to the
camera,

The added area curve would have two peaks for the
hypothetical object shown in figure 3.21, due to the low
curvature of the annular region indicated. In this case
the eccentricity would be constant at 1.0 and the center
of mass position would be sfa*lonary, since the regions
would all be concentric circles due to the rotational
symmetry, For the pear-like object In figure 3.22, the
protrusion would also increase the added area curve, but
in this case, the eccentriclty would increase as well,

and the center of mass would shift,
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Figure 3.21: A Symmetrical Object with Two Added Area Peaks

—

Camera
Annular area of
low curvature

Object
(rotationally symmetric)
Added area AA

A

Threshold
> t




Figure 3.22;:

A Contour Map of a Hypothetical Object with a
Protrusion

"Protrusion
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3.10.2 Sub=-branches

Protrusions of the sort illustrated in
tigure 3.22 will often produce significant sub-branches
on the tree, The meaning of a sub-branch must be
interpreted in conjunction with the information stored on
it, and on the main branch to which it attaches. The
attachment of a protrusion region, for example, will
generally produce a rise in the eccentricity of the main
region, and a shift in its center of mass., The possible
interpretations of a sub=-branch depend very heavily on
the particular identification for which the tree is be ing
used, A discussion of the interpretation of shape
information for a particular set of test objects will be

given in section 4,2,

3.10.3 Non-interference of Texture with Shape

Figure 3.23 shows graphs of the region area for
the speckled spheres of figure 3.11, normalized to the
light intensity. These graphs illustrate that the basic
shape-describing parameters are not affected by object
texture in a2 significant way, This Is basically due to

the averaging nature of the reglon descriptors used,
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Figure 3.23: Region Area Curves for the Light-speckled
Texture Test Spheres
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This insensitivity *o Texturai interference is a qreat
improvement over most provious methods used on curved
obiecTs, such as torn's analytical methcd, which is
corpletely useless in The presence of texture. tdgye-
finding methcods are alcsce confusec by sharp texture. This

adventage is very important in the recoanition of real

cbjects, 2s will be seen in the next chapter,
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Chapter 4 Use on Real Objects

4,1 Pruning

Regions generated by smooth objects with smooth

surfaces should in theory always have smooth boundaries,

In an actual image, however, minute surface fluctuations
and noise will cause the edge of the region to be highly
irregular., If the irregularities are great enough, small
sections of the region will be detached; that is, they
will actually form separate small regions, Since the
area separating these sma!l regions from the edge of the

nearby large region is only slightly dimmer than the
region points, these small reglions will join the main
region at a threshold only stightly lower than that at
which they started., They will thus produce very short
branches on the image tree, whose regions are of small
area, These regions are essentlially artifacts of the
particular levels at which the threshold is placed, and
thus have no particular significance, In order to avoid
the waste of space and time needed to store and analyze
these branches, they can be "pruned" away as the tree is

generated, This Is done simply by removing branches







Figure 4.1:

Apple
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Figure

4.2: Region Area of the Apple
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Figure 4.3:

Region Center of Mass of the Apple
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Figure 4.4: Eccentricity of the Apple
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Figure 4.5: Tree of the Apple
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level recognition routines could take advantage of this
fact *o help find stem areas.

Now consider the pear shown in figure 4,6, I ts
tree, shown in figure 4.7, is topologically similar to
the ftree of the apple, including a small sub-branch with
significant area, The graphs of the various parameters,
however, shown in figures 4,8, 4,9, and 4,10, reveal that
this sub-branch has a different interpretation than in
the case of the apple. First, Its center of mass shows
It to be positioned to the left of the main region,
rather than directly above I1t. Second, at the point at
which the two branches join, there is a rise In the
eccentricity in the case of the pear, whereas there is
not in the case of the apple. Finally, the eccentricity
of the apple just before breakthrough into the background
was near !.0, whereas the eccentricity of the pear is
about 1.2, which is significantly higher, Information is
also available concerning the surface properties of the
pear., The pear's highlight shows a wider "impulse
response”, which indicates that its surface, although

somewhat shiny, is not as highly specular as the apple.
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Figure 4.6: Pear
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Figure 4.8:

Center of Mass of the Pear
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Figure 4.9: Eccentricity of the Pear
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Figure 4.10: Recgion Area of the Pear
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4.3 Useful Features for Fruit Recognition

We will now attempt to |ist some features which
can be easily extracted from the image tree, so that the
classification of fruit may be systematized. This |ist
is not intended to be exhaustive. In fact, quite to the
contrary; it is Intended to show that recognition of

fruit Is possible with only a few very simple features.

4.3,1 A Sample Set of Fruit

In the course of studying the Image tree method,
a large number of fruit were processed to study the
effects on real images. 1In addition, a large number of
fruit were given identical processing under Identical
conditions one day in order to gather some statistics on
the various features which can be extracted. Photographs
of the fruit in this sample set are shown in figure 4.11,
The fruit used were Bartlett pears, Macintosh apples,
sweet pears, and oranges. The test Images include five
views each of the Bartlett pears for a total of 25, two
views each of the apples (total 10), three of the sweet
pears (total 15), and one each of the oranges. Three

taped Images of peaches are also included In the sample
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set, although they were recorded under different
circumstances, Peaches were unavailable at the time the

sample set was run,

4,3,2 Specularity

As was discussed in Section 3.7, the "impulse
response" of the surface can be approximately obtained
from the region area vs, +Threshold curve at a branch tip.
We would |ike to characterize this curve In order to
extract some significant features that are useful for
recognition purposes. One way to do this is shown in
figure 4,12, At the branch tip, the second derivative of
the region area curve is positive due to the specular
component, but negative due to the matte component, A
straight line fitted to the curve at the inflection point
is shown, extended to Intersect the axis., The
intersection point is called the "matte intercept". The
value of the curve above this intercept is used as a
measure of the width of the surface function, as shown on
the figure. It is called s, for the highl ight "smear"
width,

Another measure of the surface function is the

amp | itude of the highl ight, also marked in the figure,




Figure 4.12: Characterizing the Region Area Curve
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This can be measured in various ways, but is here
measured as the ampliitude of the highl ight above the
matte intercept.

A scatter diagram of the smear width s vs, the
highlight amplitude h is shown in figure 4.13. Note that
the peaches, apples, and orange are separated very well
by their highlight properties, but that the two types of
pears not only have similar properties, but also show a
very high degree of variation in these parameters. This
is partly because their surfaces are rather lumpy and
uneven, which disrupts the high! ight region. As will be
seen later, this unevenness can be used to help identify

them,

4,3.3 Simple Global Properties

Two very simple properties of a fruit are its

brightness and its size. These are both properties which

are useful only relative to some additional information
not contained in the image alone; specifically, the light
intensity and the object's distance from the camera. |f

this information Is available, these two features can
contribute recognition information. These quantities can

be obtained, in many cases, from other known objects in




Figure 4,13: Smear Width vs. Highlight Amplitude
for the Sample Set
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the image. In the experiment described next, the sample
fruit were all viewed with the same light intensity and
at the same distance from the camera, so that their
intensity and size are comparable.

The brightness of an object is taken to be the
intercept of the straight line approximation to the matte
componehf with the line of zero region area, thus
estimating the brightness of the surface I1f there were no
highlight. The overa!l area Is estimated by scanning up
from the root of the tree until the first local minimum
in the slope of the region area curve is found. The
region area of this node is taken as the object's
projected area (see figure 4.,12),

A scatter dlagram of these two guantities is
shown in figure 4,14 for the sample fruit, They are
clearly not very useful for distinguishing between the
fruit in the sample set. They would be very helpful if
very large objects such as watermelons were included,
however.

Another optical feature which could be used is
color, which would be very powerful for fruit. This
feature was not studied in our experiments, because the
processing of different color images of the same objéc+

would have added complexities and delays without much
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Figure 4.14: Brightness vs. Overall Area for the Sample Set
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added understanding of the Image tree.

4,3,4 Overall Shape

Our simplest shape descriptor Is just the
eccentricity of the entire fruit outline region, which 1is
shown plotted with the highl ight depth in figure 4,15,
This parameter alone will identify a banana, which has
not been included in the sample set, Note That oranges

and apples are extremely round.

4,3,5 Sub-branch Types

So far, we have used only information extracted
from the main branch. Many properties of an object
produce sub-branches, In understand ing an image we must
figure out what these sub-branches represent, Some types
of sub-branches will now be discussed, and a simple sub-

branch classification algorithm presented.

4,3.5.1 Tactile Texture

The oranges in the sample set supply good

examples of tactile texture, A close examination shows




Figure 4.15: Object Eccentricity wvs. Highlight Depth
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their surface to be covered by small bumps and valleys,
Since the surface is also highly specular, this
graininess produces myriad small highlights, as discussed
in section 3,9,2, These produce small short branches on
the tree. Textural branches represent regions of small
area, and are near the tip end of the tree. The number
of sub-branches on a tree identified as textural by the
classification algorithm shall be denoted by the

variable T,

4,3,5,2 Stems

The Bartlett pears show large, long, light=-

colored stems, The branches produced by these stems are

easily identified by their small size and large
eccentricity. The number of stem branches Is denoted
by S.

4,3,5,3 Protrusions

A pear is basically a spherical shape with a
protruding bump. These protrusions will frequently
produce a major sub-branch on the tree, as In the case of

the pear discussed In section 4,2, Such protrusions




92

generally have a large area, and usually produce a
significant jump in the eccentricity of the main branch
at the point where they join it. The number of
protrusions will be denoted by the letter P (usually

0 or 1).

4,3,5,4 Stem Hollows

An apple has a somewhat conical depression on top
in the spot the stem is attached., The stem itself is
smal ler and darker than in the case of the pear., This
stem hollow will often produce a separate branch on the
tree, as the light reflected from the back of the hol low
is surrounded by darker polints on the rim of the hollow.
Furthermore, the dark stem will often bisect this region,
produc ing two sub-branches., Thus a significant sub~-
branch which causes a drop In the main branch
eccentricity when It joins Is |lkely to be a stem hollow,
and this is reinforced if there Is another similar reglion
nearby. The number of stem hollow regions is denoted by

the letter H (usually 0, | or 2).




93

4,3.5.5 Surface Irregularities

There are frequently a number of branches which
do not fall into any of the above catagories. These
often are due to irregularities in the surface of the
object. These irregularities are larger than what is
called tactile texture, but smaller than those large
enough to be called protrusions., The number of such

branches shall be denoted by the letter I,

4,3.6 Sub-branch Classification

A very simple algorithm was written to classify
sub-branches, It is shown In flow chart form in figure
4.16. The parameter A represents the area of the sub-
branch just before it joins the main branch. The
parameter Ae is the change in the eccentricity of the
main branch at the point where the sub-branch joins. Ae
is positive if the sub-branch produces an increase in the
eccentricity, and negative if it produces a decrease,

The parameter j tells where on the main branch the sub-
branch is attached, on a scale from 0.0 (matte intercept)
to 1.0 (full object), If the sub-branch joins the main

branch in the high!light region (above the matte
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Figure 4.16: Sub-branch Classification Algorithm

A = sub-branch area

Ae = main branch eccentricity
change at join

j = point of join as a fraction
between 0.0 (matt intercept)
and 1.0 (full object)

Classi- . .
. . Decision
fication <<::>>

>0.005

<0.5

P = protrusion H = stem hollow T = texture I = irregularity
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Figure 4.17: Object Identification Algorithm

enter

= object eccentricity
= highlight depth
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having lots of texture branches and belng very round,.
Apples show stem hollows and are very round, A stem area
identifies a Bartlett pear immediately. The two types of
pears are sorted out on the basis of their eccentricity,
the number of protrusion branches, and the number of
irregularities. Round objects with essentially no

highl ights are peaches.

The flow=chart shown correct!ly identified all of
the fruit with the exception of one Bartlett pear (BPII)
which was identified as a sweet pear. The pertinant data
for each of the sample fruit are shown in figure 4,18,

Our conclusion is that recognition of Images of
single fruits is relatively easy, using the Image tree,
The Image tree allows the easy extraction of enough
information about surface properties, shape
irregularities, and general shape, as well as helping to
spot specific characteristics such as stem hollows and
stems, and the procedures which extract this information
are reasonably simple, More complex routines which take
the trouble to look more closely at the tree's statistics
should be even more reliable,

The recognition procedures described would be
disrupted (as would many others) by occlusions, shadows,

missing stems, and object positions which hide
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Figure 4.18: Eccentricity and Sub-branch Types for the
Sample Set
P> BP11l incorrectly identified

obj.l e |9HAIT | obs.] e [9HAI | obi.] e [ddHilr

BPO1{1.06 |4 |1 BP21[1.09 [U~44 $1{1.00 7

BPO2{1.04 |1 {1 |2 BP22(1.14 {1-{-- S$2(1.00 115

BP03]1.16 |1 ﬁ BP23{ 1,11 {}j4-- S311.00(|1}1I9

BPOLI1,05 (1 [1 BP24] 1,18 L Su{1.01 3

BPOS{1.,01 (1 [1f2 BP25]1.15 |1~~~ S5(1,00 9

BP0OG|{1.16 12 SP011.04 1 $6{1.00 6

BP0O7(1.10 SP02{1.08 11 MO1[ 1,00

BPO8[1.,06 |1 1} |1 SP03|1.04 021 1,01 |12

BPOO{1.04 1} | |21 SPO4{ 1,05 M0311.00} {1

BP10/1.,16 1 SP0511.09 1 MOLI 1,001 (2
P»BP11[1.09 2 SPOE| 1,07 1051 1,00 {3

BP1211.13 {1 1 SP07|1.,07 MOG[1.01 1

BP13|1.10 |4=4~- SP08|1,05 1 MO7|1.05 (|2

BP1L4|1.04 3L SP09|1.06 M08 1,011 (1

BP15(1.13 |1 - SP10]1,09 2 M09] 1,00 |1 {2

BP16]1.17 |Y=~{={-} SP11|1.0%4 M10{1.,00] |2

BP17(1,07 112 SP12}1,03 P1;1.,03

BP18[1.,06 2 SP13|1.01 1 P2(1,02

BP19}1.06 1 SP14{1.,03 1 P311,03 1

BP20}{1,11 1 SP15i1,01 1

BP: Bartlett Pear S: Stem

S: Sunkist Orange H: Stem Hollow

Sp: Sweet Pear P: Protrusion

Ms Mac Intosh Apple I: lrregularity

P: Peach T: Texture
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significant features., Many of these problems could be
eased by a suitable vertical system, which could use
other knowledge to explain and correct changes in the
image tree, Other problems can be solved without higher-
level aid, simply by making the recognition routines more
clever, For example, occlusions can generally be
detected by the way in which two regions connect. Once
an object is known to be partially occluded, corrections
can be made to its region statistics which give an idea
of its form, under the assumption that the visible and
the hidden parts are similar,

Even in the presence of severe occlusion
problems, the tree still gives valuabie local information
about highlights and texture., Although the stems gave
significant aid in identifying Bartlett pears, the stems
were not seen in ten of the test cases, yet nine of these

were correctiy identified.

4,4 Faces

This section illustrates the behavior of the
image tree produced from a more complex smoothly curved
object: a human face. It is included to show another

example of a real recognition task for which the image
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tree is potentially useful., A tftree was generated from an
image of a face, seen full face and 1it trom the front,
This tree is shown in figure 4,19, Branches of the tree
have been labeled with the local maxima on the face to
which they correspond, and the shapes and positions of
these regions is shown in figure 4,20, These regions
might be useful for face recognition, at least for the
simpie angle of view and lighting considered here.
Contour maps at a single level of the tree are
showh in figure 4.21, for each of two levels (marked in
figure 4.19), At level 313, most of the major regions
seen in the photo appear, with the exception of the lower
lip highl ight, which is considerably dimmer, The contour
map at level 268 Is rather interesting. Consider not the
region included within the contour, but the area
excluded, This includes most of the mouth, the eyebrows,
the eyelids (the eyes are closed), the nostrils, and a
shadow area on either side of the nose. These are
locally dark areas in the Image. These could be isolated
by making an inverted tree ~ that is, by making a tree
with the Image negated. These locally dark areas are
probably better places to begin face location, since
there are fewer of them than there are locally bright

areas, and they are more prominent, Indeed, there are




Figure 4.19: Tree of a Face
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Figure 4.,20: Some of the Regions of the Face Tree
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Figure 4.21:
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ex per iments which indicate that as babies learn to see
faces, they first fixate on the pair of eyes [!,6]. Once
a face is roughly located, higher level routines can make
sense of the locally bright areas with less difficulty.
Figure 4.22 shows a contour map with both levels

super imposed, with the dark regions shaded.

Note that the Iimage tree can easlly be used to
isolate facial features and determine theilr approximate
position. In order to better characterize their shapes,
more complex shape descriptors would probably be needed
than those which have been used so far, The image tree
can be used to characterize the shapes of objects, such
as noses, which have no "hard edge'" boundary. This will

be further dliscussed in section 5.2.4.
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Figure 4.22: The Two Contour Maps Superimposed
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Chapter 5 Discussion

5.1 Comparison with Previous Work

The Image tree can now be situated among the
pattern recognition methods discussed In chapter 2, It
is a "regions" method, rather than an edge detection
scheme, and does no differentiation or other pre-
processing of the image. It extracts information about
both the surface properties of an object and about its
s ha pe. It does not require any high degree of precision
of measurement with regard to the exact location of
specific points In the image, and does not make any
essential use of perspective information. It does not
attack problems of the "parsing"” of an image into its
component parts directly, although it may aid this

process by the way it organizes the image information,

5.2 Advantages

The image tree has a number of advantages for

pattern recognitlion over many previously used methods,
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will represent the entire scene, and various sub=-branches
witl represent sub=-parts, and then sub-parts of the sub=-
parts. The tree can thus be thought of as providing a
range of measurements of differing degrees of aculity,
These notions of pattern recognition as a sort of

"measuring" problem are due to Kirsch,

5.2.4 Objects Without Boundaries

The image tree Is easy to apply to the
recognition of objects without real edges or well-defined
boundaries, such as a nose, or an object |it so that one
side fades off gradually into shadow. Assuming the
object produces a separate tree branch, it can be
analyzed from the data at the tip of the branch, working
down towards the base until the parameters indicate that
the region Is taking In too much extraneous area fo be
useful, Thus some information about a nose can be
extracted even though it has no well-defined upper
boundary, because it has well~defined lower and side
boundaries. This simple task can be rather complicated
for edge~-oriented procedures, or for programs which are
regions oriented but which do not make a serles of

related measurements at different levels, as Iin the tree.




109

By the same arguments, the tree wil! contain Information
about a smoothly curved object even if It is partially
obscured, provided it contains a local brightness

max imum, The procedures which analyze the tree must be
able to detect the occlusion and to try to compensate for

’*.

5.3 Problems

The separation of coarse and fine information Is
not always maintained by the tree, unfortunately, When
branches representing two different objects merge,
information about those parts of the object not yet
filled out by the region may be lost. If a small
highlight area is swallowed up by a larger reglfon before
achieving much depth in its own right, the information
that would have been obtained about the local surface
properties of that area are swamped out. When a region
representing some object in a scene joins with a larger
region representing the background, the information about
the smaller object is lost., One case in which this can
occur is when a dark object Is on a light background, or
near a |ighter object. Or, alternatively, a region may

extend beyond the boundaries of an object on one side
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before reaching the boundary on the other side, possibly
due to an overall gradient in the tight iIntensity. This
shall be referred to as a "breakthrough", Although it
can usually be easlily detected by its effect on the
region parameters (sharp rise in the region area and
eccentricity, and sudden shift in the center of mass), it
still means a loss of information about the side of the

object which the region has not "filled",

5.4 Further Considerations

5.4,1 Other Statistics

So far region shape has been characterized by the
region area, eccentricity, and center of mass position.
There are many other region statistics which could be
used to characterize the regions, depending upon the
particutar recognition task at hand,

One very simple addition which could be made
would be to compute the x and y second moments
separately, so that the major axis of the region could be
found., This is the axis about which the region has a

minimal moment of inertla. This would allow the tree
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predicate, there is always the possibility that a high
eccentricity may be due to a perfectly round region, but
with a large hole in the middle.

In general, any sort of shape-descriptor
algorithm can be applied to the regions, such as the Blum
algorithm (Medial Axis Transform) [3]. | belleve,
however, that one of the strengths of the image tree as a
method is to allow easy recognition with relatively
simple region shape descriptors. Using very complicated
descriptors not only will consume a great dea! of
computer time, but will also complicate the analysis
required of the higher-level programs. A more detalled
shape analysis should probably be reserved for cases in

which problems arise in the simpler procedures,

5.4.2 Reglon=hole Duality

The tree procedures are not symmetric with
respect to |ight and dark, as has been pointed out
earlier., Thus a black spot on a light object is not
percelved as an object, but as a hole in a region,
Furthermore, these holes are not detected by the
programs, and insufficient information is stored on the

tree to tell that they are there. Thus the effect of a
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hole Is to decrease the region area, and increase the
region eccentricity, but it is not detected as a hole per
se, In the detection of texture, black speckles have a
completely different effect than white speckles. An
object is harder to recognize on a white background than
on a dark one.

This is not a desireable situation. An object
should be easy to recognize on any highly contrasting
background, regardless of whether It is darker or lighter
than the object. A possible solution would be to make
two trees, one with the image negated. Thus one would be
the tree already discussed in detall, and the other would
be a tree of dark regions on lighter backgrounds, In
which the tips of the branches would represent locally
dark areas, rather than locally light ones. For the face
considered in section 4,4, these dark branches would
represent significant locally dark areas, such as the eye
sockets, the nostrils, and the dark areas along the side
of the nose., The eye sockets and the nostrils, in
particular, are probably very Important in orienting
visually with respect to a face,

There is no reason why thils procedure should not
be carried to more than one level, Whenever a region lIs

isolated, the contiguity scan routines could be called




again, but scanning only inside the region, and with
their sense inverted, so that they would find holes.
Small holes could then be eliminated, but if there were
any large ones, they would be noted on the tree.
Furthermore, the sense could then be inverted once more,
and the contiguity scan tried once agaln to find
additional light regions Inside the dark holes,

This procedure would succeed in finding a dark
apple on a light background. The apple could be isolated
by an inverted run of the tree procedures, and then the
normal procedure could be carried out on the region thus

isolated,

5.4.3 Complex Lighting

In the above discussion, 1t was assumed that the

itiumination was coming from a single point source.

Changing the source of the illumination will change the
properties of the highlight region, but will not alter
the basic properties of the tree. If the illumination Is

from a diffuse source, specularity information is lost.
Light from several point sources will produce multiple
highl ights. If the high level parsing routines know

about the Ilght source, they can compensate for these
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effects, By making hypotheses about the objects in the
image, these routines could equally well find out about

the lighting from the image.
5.4.,4 Isolations of Regions

A by-product of the Image tree is the isolation
of regions which can be used as data for other feature
extract fon programs., One might, for example, take a
fairly large region around the highlight, subtract out
the small region containing the highl Ight itself, and
hand this difference region to a textural analysis
program, This program could use this region to extract
texture information in various ways, such as performing a
Four ier transform, autoconvolution, or similar
processing, obtaining information about surface speckles
not available directly from the tree. Us!ng a region
generated from one of the tree nodes helps assure that
the portion of the Image upon which the analysis is

performed is a suitable one.
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5.5 Summary and Conclusions

A procedure has been outlined for processing
images of three-d imensional objects with smoothly curved
surfaces, The method is able to extract some information
about the surface properties of the objects, such as the
texture, specularity, and surface lrregularity.
Information about shape is also extracted. The
procedures are Iinsensitive to noise and distortion, and
can be used to perform real recognition tasks., |t is
hoped that this work will provide a stepping-stone in the

challenging study of computer vision,.
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Append ix: Description of Algorithms

This appendix contains an outline of the
algorithms used in the tree generating program,

The image tree Is generated one threshold level
at a time, starting at the highest level (branch tips).
At each level, the image Is scanned, and the points above
the threshold are marked in a scratch array. This
scratch array is then scanned for marked points, When one
Ils found, a contiguity routine Is called, which visits
all marked points which can be reached from the start via
a connected path., The marks are erased by this routine
as it goes, and statistics are kept on the region thus
generated, such as the sums of the x and y coordinates of
the points, and the sum of the squares of the x and y
coordinates (used to compute the center of mass and the
eccentricity), A tree node is then made up for the
reglion, and the scan for marked points contlinues. A
special mark is left in the scratch array for each
region, When this mark Is encountered during the scan
at the next level, it is looked up on an association
list, This establishes the link between a region and

the regions which are a subset of it at the previous




level - i.e. between a node and its sub-nodes.

The contiguity scan is the most complex program,
It works by leaving directional pointers in the scratch
array, These are three-bit codes denoting one of the
eight possible neighboring points. The contigulity scan
is always started at a point which is on the bottom edge
of the region., |t traces along this edge to the right by
moving from one marked point to the next, but always
keeping an un-marked point to the right side. As it
goes, it erases the marks, so that for a reglon with
smooth boundaries, it will follow a spiral path to fthe
center, "eating up" the marks as 1t goes, like a lathe
with the tool continually advancing intfo the work.

As the contiguity routine scans, it lays down
back pointers in the scratch array which enable it to
retrace its path back to the start. |If a dead end Iis
reached (no more marked neighbors), it traces back along
this path, looking for marked points to the right. There
can be no marked points on the left side while
backtracking, since this was the right side on the way
out, and the outgoing scan stayed as far to the right as
possible, If a marked point Is found on the backtrace,
it is replaced with a pointer to the adjacent path

already traced out, and then a new path Is traced as If
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this were a new starting point. When the backfrace
reaches the original starting point, the contiguity scan
is completed. The effect of this algorithm is to
construct a tree of pointers in the scratch array, with
the starting point at the root. All points which can be
reached via a connected path from the starting point will
be a part of this tree, an example of which is shown Iin
figure Al,

An algorithm developed by S. Bryan [4] could
speed the contiguity scan considerably., I¥ entails
cod ing the scratch array line by line as strips, as in
figure A2, Each strip is specified by its y coordinate,
and the x coordinates of its left and right end. The
contiguity of these strips Is then checked, rather than
operating on the individual points. This algorithm not
only avoids scanning the entire scratch array, most of
which is blank, but also requires fewer operations to
find all of the contiguous points, since they are
gathered into groups. It thus takes advantage of the
fact that regions produced by real images, as opposed to
random nolise, will tend to have the points clustered info
bunches,

A number of other programs were written in the

course of this research. In order to make It convenient
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Figure Al: The Tree of Pointers Layed Down by the Contiguity
Scan Algorithm

(Shown for an arbitrary region)
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Figure A2: A Region Coded as Strips

The same region is used as in figure Al
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to study a large number of trees, programs were wrlitten
to print out the trees on the line-printer, with the
significant parameters assocliated with each node.
Furthermore, a program was produced to plot any parameter
‘vs, threshold along any set of branches of the tree.

This program was used to produce the graphs In this
paper.

Programs were also written to display an
intensity modulated picture of the image, using the seven
intensity levels of a DEC 340 display. Since our 340 has
no fast raster mode, a display compiler was written which
generates a display list in increment mode, allowing
fairly large images to be shown virtually flicker-free.
Other routines enable any arbitrary region in the image
to be shown superimposed on this plicture. The pointer
method used In the contiguity scan was actually written
for these display routines, which were developed first,
The existence of this program made the writing of the
contiguity scan very simple, which is ene reason why
taster algorithms such as the Bryan algorithm were not
sought,

A large amount of code was required to back up
the programs mentioned above, This Includes a dynamic

storage allocator for manipulating a large number of
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arrays of changing size, display and plotter routines and
other 1/0 routines, routines for manipulating |ist
structure, and routines which map arbitrary local
procedures over an array., The programs comprise over
5200 words of PDP-10 MIDAS assembly language code, not
including about 1700 words of fixed buffer and tables,
and not including the dynamically allocated array and
list structure area, which can grow to an arbitrary size.
Also used was the CNTOUR program [ 12], which
draws intensity contour maps of an image, and which was
written early in the course of this research, before the

exact area of study had been decided upon.
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