On the Cost of Fault-Tolerant Consensus
When There Are No Faults — A Tutorial*

Idit Keidar' Sergio Rajsbaum?

May 24, 2001

Abstract

We consider the consensus problem in asynchronous models enriched with unreliable failure
detectors or partial synchrony, where processes can crash or links may fail by losing messages.
We study the number of communication steps performed by deterministic consensus algorithms
for these models in failure-free executions. We show a tight lower bound of two communication
steps. In the process of showing this bound, we give a simple unified proof of a number of
different impossibility and lower bound results. Thus, we shed light on the relationship among
different lower bounds, and at the same time, illustrate a general technique for obtaining simple
and elegant lower bound and impossibility proofs. We illustrate the matching upper bound by
describing previously published algorithms that achieve the lower bound.

1 Introduction

Consensus is a fundamental problem in distributed computing theory and practice alike. A consen-
sus service allows a collection of processes to agree upon a common value. More specifically, each
process has an input, and each correct process must decide on an output, such that all correct pro-
cesses decide on the same output, and furthermore, this output is the input of one of the processes.
Consensus is an important building block for fault-tolerant distributed systems [Lam96]: to achieve
fault-tolerance data is replicated, and consensus can be used to guarantee replica consistency using
the state machine approach [Lam78, Sch90).

Consensus is not solvable in pure asynchronous models where even one process can crash [FLP85]'.
However, real systems are not completely asynchronous. Some partially synchronous models [DLS88,
CF99] better model real systems. We consider a particularly realistic kind of model [DLS88] which
allows the system to be asynchronous for an unbounded but finite period of time, as long as it
eventually becomes synchronous, and less than a majority of the processes can crash. Consensus
is solvable in this model. Similarly, consensus is solvable in an asynchronous model enriched with
certain oracle failure detectors [CT96], including unreliable failure detectors that can provide arbi-
trary output for an arbitrary period of time, but eventually provide some useful semantics. In this
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paper, we study consensus algorithms in the partial synchrony model and in asynchronous models
with unreliable failure detectors. We call these models non-synchronous.

What can we say about the running time of consensus algorithms for non-synchronous models?
Unfortunately, even in the absence of failures, consensus algorithms in these models are bound
to have unbounded running times. This is because, by [FLP85], in an asynchronous system, a
consensus algorithm can have an infinite run in which no failures occur, and non-synchronous
systems can be asynchronous for an unbounded period of time. In practice however, there are often
extensive periods during which communication is timely. That is, many executions are actually
synchronous. In such executions, failure detectors based on time-outs can be accurate. In this
paper, we study the running time of consensus algorithms for non-synchronous models under such
benign circumstances. We focus on executions in which, from the very beginning, the network is
synchronous or the failure detector is accurate. We will call such executions well-behaved if they are
also failure-free?. Since well-behaved executions are common in practice, algorithm performance
under such circumstances is significant. Note, however, that an algorithm cannot know a priori
that an execution is going to be well-behaved, and thus cannot rely upon it.

There are several algorithms for non-synchronous models that decide in two communication
steps in well-behaved executions (e.g., [Sch97, HR99, MR99, KD96]). Distributed systems folklore
suggests that every fault tolerant algorithm in non-synchronous models must take at least two
communication steps before all the processes decide, even in well-behaved executions. In this paper
we formalize this folklore theorem. Specifically, we show that any consensus algorithm for non-
synchronous models where at least two processes can crash will have at least one well-behaved
execution in which it takes two communication steps for all the processes to decide.

We start by illustrating the upper bound. We present a simple and intuitive algorithm due to
Mostefaoui and Raynal [MR99], which solves consensus in the asynchronous crash failure model
with an unreliable failure detector. The failure detector can be implemented in the partial synchrony
model in a way that preserves the well-behaved nature of executions. Therefore, the upper bound
also applies to the partial synchrony model.

Before deriving the lower bound for non-synchronous models, let us first recall what is known
about the running time of consensus algorithms in the synchronous crash failure model: in this
model, there are consensus algorithms that, in failure-free executions, decide within one com-
munication step. More generally, early stopping algorithms have all the processes decide within
f + 1 communication steps in every execution involving f crash failures [LF82]. This is opti-
mal: it has been shown that every consensus algorithm for the synchronous crash failure model
will have executions with f failures that take f 4+ 1 communication steps before all the processes
decide [LF82, DM90, Lyn96, MR98, AT99]. (We re-prove this lower bound in Section 4).

Why then do consensus algorithms for non-synchronous models require two communication
steps even in synchronous executions? We show that the need for an additional communication step
(over what is needed in the synchronous model) stems from the fact that, in the non-synchronous
models, a correct process can be mistaken for a faulty one. This requires consensus algorithms
for these models to avoid disagreement with processes that seem faulty. In contrast, consensus
in the synchronous model requires only that correct processes agree upon the same value, and
allows for disagreement with faulty ones. The uniform consensus problem strengthens consensus
to require that every two processes (correct or faulty) that decide must decide on the same value.
Interestingly, uniform consensus requires two communication steps in the absence of failures even in
the synchronous model, as long as two or more processes can crash, as we prove in Section 4. The

2Qur notion of well-behaved behaved executions is similar to the notion of stable periods, e.g., in the timed-
asynchronous model [CF99] and in self-stabilizing systems.



two communication step lower bound for consensus in non-synchronous models stems from the fact
that any algorithm that solves consensus in these models, also solves uniform consensus [Gue95],
as we prove in Section 5.

In order to prove more general lower bound results, we study a weaker version of consensus,
called weak consensus. Recall that consensus requires that the decision (output value) be the input
of one of the processes; this is the wvalidity property of consensus. To define weak consensus, we
replace validity with the following weak validity property: there exist two failure-free executions in
which processes decide on two different values. In [FLP85], it was observed that an even weaker
version of validity is sufficient to prove consensus impossibility in an asynchronous model: [FLP85]
requires only that there exist two executions, not necessarily failure-free ones, in which processes
decide on two different values. Interestingly, this property is too weak to imply the two step lower
bound for synchronous uniform consensus in failure-free executions, as we show in Section 4.5.

In addition to crash failures, we consider message omission failures where links can fail by
losing messages, including messages sent between correct processes. Consensus is not solvable in
the message omission model, even in a synchronous system, unless some restrictions are placed on
possible message loss patterns. In particular, consensus is not solvable in this model even with a
single mobile failure, where the environment (the adversary) can choose a single process in each
communication step of the algorithm, and lose some of the messages sent in this step by this
process [SW89]. We re-prove this impossibility result in Section 4 using the same technique that
we use for showing lower bounds in the synchronous crash failure model. The impossibility result
relies on the adversary’s ability to choose any process from which to lose messages in every step.
In Section 3, we discuss certain restrictions that can be placed on the adversary’s ability to choose
message loss patterns so as to make consensus solvable, although by more complicated algorithms
than those that tolerate only crash failures (e.g., [Lam98]).

As in non-synchronous models, in a synchronous message omission model where any number
of messages from a correct process may be lost, any algorithm for consensus also solves uniform
consensus. Thus, if at least two processes can fail, then the two communication step bound holds. In
the omission model, we say that a process fails if, from some point on, all of its messages are lost. A
two step bound for the synchronous omission model was previously observed by Lamport [Lam00].

The primary goal of this paper is to provide intuition for the lower and upper bounds. We
especially strive to make the lower bound proofs as simple and easy-to-follow as possible: we
extract the simplest arguments from known techniques (based on [MR98]), and use these simple
techniques to derive new proofs (the uniform consensus lower bound). Moreover, we give a unified
proof of three different results, thus illustrating a general technique for obtaining simple and elegant
lower bound and impossibility proofs.

The rest of this paper is organized as follows: In Section 2, we define the models and problems,
as well as a formal notion of well-behaved executions for non-synchronous models, which we use
to state and prove the bounds. In Section 3, we illustrate the upper bound by describing known
algorithms that decide within two communication steps in well-behaved executions. In Section 4,
we prove the lower bounds for consensus and uniform consensus in the synchronous crash failure
model, as well as an impossibility result for consensus in the message omission model with a single
mobile failure. Then, in Section 5, we derive the lower bounds for consensus in non-synchronous
models. In Section 6 we discusses optimistic alternatives to consensus as a way to circumvent the
lower bound. Finally, Section 7 concludes the paper.



2 Definitions

2.1 Models

The universe consists of n processes, p1,... ,p,. Processes communicate by message-passing. We
consider deterministic algorithms. An execution of an algorithm is an alternating sequence of
global states and actions. Global states reflect the local states of all the processes, and of the
communication channels (with messages in transit). Actions are steps taken by distinct processes,
and by the environment. In an action, a process can send messages to any number of other processes
and change its local state; the environment decides what subset of the messages in transit to deliver
to their destinations. Given a deterministic algorithm, there is a single execution of the algorithm
for every assignment of initial values to processes and sequence of environment actions.

In this paper we consider several distributed computing models. Each one is defined in terms
of the type of failures that can occur, and the timing assumptions. We proceed to describe these
two aspects of a model.

2.1.1 Failure types

We consider two types of failures: crash failures and message omission. We do not consider Byzan-
tine failures.

Crash failures

In a crash failure model, processes fail by stopping to execute any actions from some point on in an
execution. A parameter ¢ bounds the number of processes that can crash. A process that crashes in
an execution is faulty in that execution, a process that does not crash is correct. A process that fails
before state z in an execution is failed at xz. In a model with only crash failures, communication is
reliable: if a process p; sends a message to a correct process p; in a given step, and p; does not fail
in this step, then the message eventually reaches p;. If a process does fail in a given step, then any
subset of the messages it sends in this step can be lost.

Omission failures

In a message omission model, any subset of the messages sent by correct processes can be lost in
any communication step. A process is faulty in this model if there is a point in the execution after
which all the messages from this process are lost. Since the fact that a process is faulty is defined
only by examining an infinite execution, in every state of an execution, no process is failed. The
mobile failure model [SW89] is a restriction of the message omission model, where in each step
messages from at most one process can be lost. We show that consensus is unsolvable even in this
very restricted omission model.

2.1.2 Timing assumptions

Our focus in this paper is on models of partial synchrony, and on asynchronous models with
unreliable failure detectors. In order to derive lower bounds for these models, we consider the more
restricted synchronous model. We now describe these three timing models.



Synchronous

In the synchronous model, processes execute in synchronous steps®. In each step, every processes
can send messages to any number of other processes. Unless a failure occurs, each message reaches
its destination in the following step.

Partially synchronous

There are several partially synchronous models in the literature. We consider one of the models
defined in [DLS88], where there is no a priori bound on message latency. However, there is a time,
called global stabilization time (GST) after which there is a bound on message latency, but this
bound is not known to the processes. For simplicity, we assume that local computation time is zero
and that processes can measure time accurately?.

In addition, we assume that there exist a pre-defined constant § that is known to the processes
and reflects the typical message latency in the system. A well-behaved execution in the partial
synchrony model is an execution in which there are no failures and every message reaches its
destination within at most ¢ time. Thus, a well-behaved execution is essentially synchronous.

Asynchronous with failure detectors

In the asynchronous model with unreliable failure detectors [CT96], there is no bound on message
latency, and every process p is equipped with a failure detector oracle. At every step of the
algorithm’s execution, p can query its failure detector for some information. We focus here on
failure detectors that can provide arbitrary outputs during an unbounded period of time, but
eventually have to provide some meaningful semantics.

Chandra and Toueg [CT96] define several classes of failure detectors whose output is a list of
suspected processes. We say that process p suspects process g at a certain point in the execution,
if ¢ is included in p’s failure detector’s output list at this point. To illustrate the upper bound, we
focus on a failure detector of class ¢&, which has been shown to be the weakest failure detector for
solving consensus [CHT92]. A failure detector of this class guarantees two properties:

1. strong completeness: there is a time after which every correct process permanently suspects
every crashed process; and

2. eventually weak accuracy: there is a correct process p such that there is a time after which p
is not suspected by any correct process.

A well-behaved execution in this model is an execution in which there are no failures and no
suspicions, that is, all the processes have empty suspicion lists.

Another example of a failure detector class is the leader election service &Q [CHT92]. The
output of a failure detector of class <€ is the identifier of one process, presumed to be the leader.
Initially, a failure detector of this class can be unreliable: it can name a faulty process as the leader,
and can name different leaders at different processes. However, eventually, it must elect a single
correct leader, that is, give all the processes the same output, which must be a correct process.
In [CHT92], it is shown that OQ is equivalent to ©S. In a well-behaved execution, a < failure
detector announces the same correct leader at all the processes from the beginning of the execution.

3Communication steps are sometimes called rounds.
4Consensus can be solved even if these assumptions are weakened, as in the timed asynchronous model [CF99],
where clock skew is possible but bounded, and different processing times are possible but their ratio is bounded.



2.2 Problem definitions

We now define several variants of the consensus problem. In all of these problems, every process
p; participating in the algorithm gets an input value v;, and the algorithm’s output is a decision
value dec;. For simplicity, we consider binary consensus, where the input values are in {0,1}.

An algorithm solves consensus if it satisfies the following properties:

e Agreement: If some correct process p; decides dec; and another correct process p; decides
dec;, then dec; = decj. That is, no two correct processes decide upon different values.

e Validity: If a correct process p; decides dec;, then there is a process p; so that v; = dec;, that
is, the decision value is the input value of some process.

e Termination: Every correct process eventually decides on some value®.

The agreement property requires correct processes to agree on the same value, but does not
require agreement with faulty processes. Uniform consensus strengthens consensus by also requiring
agreement with faulty processes, in case they decide before they fail. An algorithm solves uniform
consensus if it satisfies validity and termination as defined above, along with the following property:

e Uniform agreement: If some process p; decides dec; and another process p; decides dec;, then
dec; = dec;. That is, no two processes decide on different values.

For the sake of the lower bound, we look at a weaker version of consensus, called weak consensus.
An algorithm solves weak consensus (weak uniform consensus) if it satisfies agreement (uniform
agreement) and termination, along with the following property:

e Weak wvalidity: For every value v € {0,1} there is a failure-free execution in which some
process decides v.

Weak validity may not be a useful property for a consensus algorithm to satisfy, but it is use-
ful for proving lower bounds, as it makes the results more general and thus applicable to more
problems. For example, one instance of weak uniform consensus is non-blocking atomic com-
mit [Ske81, BHG87]. Atomic commit [Gra78] is used in distributed database systems to have
multiple database sites agree whether to commit a transaction or to abort it. The decision 1 rep-
resents a commit decision, and 0 — abort. Likewise, the input value 1 represents a vote in favor
of committing the transaction, the input value 0 represents a vote for aborting it. A commit de-
cision cannot be reached unless all the processes vote in favor of committing the transaction. The
non-blocking atomic commit problem [Ske81, BHG87] is a special case of weak uniform consensus.
An algorithm solves non-blocking atomic commit if it satisfies uniform agreement and termination,
along with the following two properties:

o Commit-Validity: The decision value can only be 1 if all processes voted 1.

e Non- Triviality: If there are no failures and all processes vote 1, then the decision will be 1.

SIn this paper we are interested in when the processes can decide. In some circumstances the time needed to halt
can be larger.



3 The Upper Bound

There exist various consensus algorithms for non-synchronous models that have all the processes
decide within two communication steps in well-behaved executions, e.g., [Sch97, HR99, MR99,
KD96]. We illustrate this, in Section 3.1, with a simple and elegant consensus algorithm due to
Mostefaoui and Raynal [MR99]. The algorithm works with &S in the crash failure model, and in
well-behaved executions, all processes decide within two communication steps.

Omission failures are harder to overcome; as we show in Section 4, consensus is not solvable even
in a synchronous model with a single mobile omission failure. However consensus can be solved if
certain restrictions are placed on message loss patterns. We discuss this in Section 3.2.

A failure detector of class ¢S can be implemented in the partial synchrony model using time-
outs by increasing the time-out value every time a false suspicion occurs (see [CT96]). With this
implementation, if the time-out value is initially chosen to be ¢, the maximum latency in well-
behaved executions of the partial synchrony model, then in any well-behaved execution of the
partial synchrony model, the failure detector generates no suspicions. Therefore, a well-behaved
execution of the partial synchrony model can simulate a well-behaved execution of the failure
detector model. Thus, the upper bound also applies to the partial synchrony model.

3.1 Consensus with ©S and crash failures

Several ©S-based algorithms that decide within two communication steps have been suggested [Sch97,
HR99, MR99]. These algorithms tolerate crash failures as long as a majority of the processes are
correct, that is, for ¢ > n/2. They use the rotating coordinator approach [CM84, DLS88]. With this
approach, the algorithm iterates through a sequence of rounds, at each round, a different coordina-
tor leads the consensus algorithm in order to try and reach a decision. In round i, the coordinator
is process p, where ¢ = (i mod n) + 1. The iteration through multiple rounds is needed in order to
account for possible coordinator failures. Once there is a round in which the coordinator is correct
and also not suspected by any process, all the processes decide.

For illustration, we present the algorithm of [MR99] in Figure 1. In this algorithm, each process
p; keeps track of the round number in a variable r;, initially zero, and of the estimated consensus
value in a variable est;, initially the process’ input value. A round of this algorithm is conducted
as follows: the coordinator sends its own estimate to the other processes. Every other process
waits until it either receives the estimate from the coordinator, or suspects the current coordinator.
Next, all the processes send messages to each other: if a process received the estimate from the
coordinator, it sends this estimate; otherwise, it sends a null value. Finally, each process waits to
receive messages from a majority of the processes and then acts as follows:

1. A process that receives only null values proceeds directly to the next round.

2. A process that receives the same non-null value (the coordinator’s estimate) from a majority,
broadcasts a DECIDE message with this value to all, and decides on this value. That is, the
process returns this value.

3. A process that receives both null and non-null values sets its estimate est; to the received
non-null value, and proceeds to the next round.

In addition, once a process receives a DECIDE message, it forwards the DECIDE message to all
the processes (to account for the case that the coordinator who sent it failed after sending it), and
then decides on the value in the DECIDE message.



Function Consensus(v;)
cobegin
(1) task T1: r; + O est; vi; v #1L %
(2) while true do
(3) ¢« (r; mod n) + 1; est_fromc; + L;r; < r;+1; % round r; %
(4) case (i = ¢) then est_from_c; < est;
(5) (i # ¢) then wait until ( (EST(r;,v) is received from p.) V (¢ € suspected;) );
(6) if (EsT(7,v) has been received) then est_from_c; < v endif
(7) endcase; % est_from_c; =est. or L %
(8) Vj do send EST(r;, est_from_c;) to p; enddo;
9) wait until (EST(r;, est_from_c) has been received from [(n + 1)/2] processes);
(10) let rec; = {est_from_c such that EST(r;, est_from_c) has been received at line 5 or 9};
% est_from_c = L or v with v = est. %
% rec; = {L} or {v}or {v,1} %
(11) case (rec; = {1}) then skip
(12) (rec; = {v}) then Vj # i do send DECIDE(v) to p; enddo; return(v)
(13) (rec; = {v, L}) then est; + v
(14) endcase
(15) enddo
(16) task T'2: upon reception of DECIDE(v): Vj # ¢ do send DECIDE(v) to p; enddo; return(v)
coend

Figure 1: A ©S-based consensus algorithm.

We now informally argue that the algorithm is correct. For a rigorous proof, see [MR99].
Validity is ensured because the first coordinator suggests its own initial value, and every other
coordinator either suggests its own value or a value that was previously sent by another coordinator.
Thus, by induction, only processes’ initial values are possible decision values.

To see that agreement is ensured, notice that if some process decides v in round r, then a
majority of processes must have sent v in round r. Since every process waits to hear from a
majority before proceeding to the next round, every process receives at least one message with v in
round r. Thus, every process that proceeds to round r + 1 sets its own estimate to v beforehand.
Clearly, from round r 4+ 1 onward, v is the only possible decision value.

A decision is made once there is a round in which the coordinator does not fail and is also not
suspected by any process. The properties of the ©S failure detector, together with the fact that
the algorithm continuously iterates over all possible coordinators until some process decides, ensure
that eventually there is such a round. In addition, once some process decides, every process that
decides broadcasts a DECIDE message to all the other processes. This guarantees that if a correct
process stops participating in the iterations because it has already decided, all correct processes
get its DECIDE message and also decide.

Now, let us consider a well-behaved execution. If the first coordinator does not fail and is also
not suspected by any process, then every correct process receives the coordinator’s estimate and
sends it to the other processes, and no process sends a null value. Thus, all the processes decide
after receiving messages from a majority in the first round, that is, after two communication steps.

3.2 Consensus with messages omissions

Omission failures are harder to overcome. As we will see in the next section, consensus is not always
solvable in the message omission model. However, as we now discuss, it is possible to overcome
certain restricted message omission patterns.



Consider, for example, the case that all the communication links among correct processes are
fair [ACT99], in the sense that if a message is sent on a link an infinite number of times it
eventually reaches its destination. In this case, a reliable transport protocol, similar to TCP, can
be implemented atop the fair-lossy links by repeatedly retransmitting each message until it is known
that the message reached all processes [ACT99]. Thus, one can simulate a crash failure model with
fair-lossy links, and any algorithm for solving consensus with crash failures, e.g., the one in the
previous section, works in this model as well, as long as there is a majority of correct processes.

Next, consider the case that communication among correct processes is eventually reliable, but
before that, there are network partitions that last a substantial amount of time. In this case,
continuously sending messages infinitely many times as described above is not practical; practical
transport protocols like TCP “give up” and terminate the session during long-lasting partitions.
Practical algorithms for this model therefore need to be able to reach a decision once communication
is re-established, without retransmitting the entire message history. The first and best-known such
algorithm is Paxos [Lam98]; other similar algorithms appear in [KD96, KD98, DFKM96]. These
algorithms are quite subtle, and we do not describe them in detail here.

Lamport’s Paxos algorithm [Lam98, DPLL97] solves consensus in the asynchronous message
omission model, with the following restriction on message loss patterns: there is a time after which
there is a process p so that p’s messages to correct processes are not lost, and moreover, there is a
majority of correct processes that can communicate reliably with p. Paxos uses a leader election
service, which is, in essence, a failure detector of class ¢Q. The E3PC algorithm [KD98] solves
atomic commit with similar assumptions. The consensus algorithm of [DFKM96] uses a S failure
detector. The Corel algorithm [KD96] uses a group communication service, which is equivalent to
an eventually perfect failure detector [CKV], which is stronger than ©8 or Q.

Let us examine the running time of Paxos in well-behaved executions, that is, in executions in
which there are no failures, and the leader election service elects a single leader at all the processes
from the beginning of the execution. In such executions, Paxos, as presented in [Lam98], requires
five communication steps before all processes decide. The first two steps are needed for recovery
from past failures, and they do not involve sending actual consensus input values. When a sequence
of Paxos consensus algorithms are ran, these two steps have to occur only at the beginning and
when the leader changes. In a given instance of consensus that is invoked after these two steps,
only three communication steps are executed. These three steps work in a manner very similar to
a round of the ©S-based consensus algorithm presented above.

In the first of these steps, the leader sends its own initial value to all the processes. In the
second, all the processes that receive this value record it and send acknowledgments to the leader.
Once a majority of the processes has recorded a value, the value is locked and no other decision
value is possible. Upon receiving acknowledgments from a majority, the leader decides. In the third
step, the leader sends the decision value to all the processes and they also decide.

A simple variation on Paxos can merge these two steps, by having all the processes send acknowl-
edgments to each other. In this case, every process that receives acknowledgments from a majority
can decide directly. (This approach was taken in [KD96]). However, this requires strengthening
the restriction on message loss patterns, to require that a majority of processes all communicate
reliably with each other, not just with the leader.

4 Synchronous Lower Bounds

In this section, we consider a synchronous system where at most ¢ processes can fail, ¢ < n. We
denote by f the actual number of failures in an execution. We give a unified proof for three different



results: First, we show consensus impossibility for the mobile failure model (in this model, ¢t = 1).
Next, we consider the crash failure model. We show lower bounds of f+1 and f+2, (for f <t—2)
communication steps for consensus and uniform consensus, respectively. Most of these results are
known; in Section 4.1 we discuss related work.

We prove the three results jointly: In Section 4.2 we present the technique, notation, and defini-
tions. In particular, we define notions of similarity of a pair of states, and similarity connectivity of
a set of states. In Section 4.3 we show that a uniform consensus algorithm cannot reach a decision
in one communication step from some states in a similarity connected set. By showing that the
set of initial states for consensus (uniform consensus) is similarity connected, we obtain the lower
bound for uniform consensus for the failure-free case, that is, when f = 0. Then, in Section 4.4, we
prove that states of longer executions are also connected, from which all three results follow — the
impossibility result for consensus in the mobile failure model, and the general bounds for consensus
and uniform consensus in the crash failure model.

For the sake of proving the lower bounds and the impossibility result, it suffices to assume
the weak validity property, that is, we prove the bounds for weak consensus and weak uniform
consensus. Thus, the result for weak uniform consensus also applies to non-blocking atomic commit
(as discussed in Section 2.2). In Section 4.5, we show that the result for uniform consensus does
not hold with a weaker validity property as defined in [FLP85].

4.1 Related work

The impossibility of consensus in the mobile failure model was first shown by Santoro and Wid-
mayer [SW89]. It was reproved by Moses and Rajsbaum [MR98] using the layering technique
described here.

It has been previously shown that f + 1 steps are necessary and sufficient for consensus [LF82,
Lyn96]. Charron-Bost and Schiper [CBS00] show a tight bound of f + 2 steps for uniform consensus
when f <t—2,and f+ 1 steps for f =t—1or f =¢. However, their lower bound proof does not
cover the case of f = 0.

Dwork and Skeen [DS83] give a related result for the non-blocking atomic commit problem,
which is an instance of weak uniform consensus. They consider only the failure-free case, that is,
when f = 0. Their complexity analysis uses a different measure than the one we use here: they
model the sending of k messages in a single communication step as costing O(k) time. Clearly,
the time bounds obtained this way are higher. However, the bound of two communication steps in
failure-free executions implicitly appears in their paper.

Lamport [Lam00] shows a two communication steps bound for uniform consensus in the message
omission model where processes do not crash, assuming the adversary is restricted so that consensus
is solvable.

Dolev et al. [DRS90] show that a consensus algorithm that can tolerate up to ¢ < n — 1 crash
failures will have executions with f failures involving a sequence of min(f +2,¢+ 1) communication
steps before all the processes halt. In contrast, we analyze here the time until all processes decide,
which may be earlier than the time until all processes halt.

The traditional proofs of the f 4+ 1 lower bound for consensus (e.g., [LF82, DM90, Lyn96]) and
of the f + 2 lower bound (for f > 0) for uniform consensus [CBS00] are based on an involved
backward induction argument. Recently, simpler proofs of the f 4+ 1 lower bound for consensus
based on forward induction were presented by Moses and Rajsbaum [MR98] and by Aguilera and
Toueg [AT99]. Bar-Joseph and Ben-Or [BJBOYS8] used a similar technique to show a lower bound
for randomized synchronous consensus. Moses and Rajsbaum [MR98] used the same technique to
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also show lower bounds and impossibility results for different asynchronous message passing and
shared memory models. Similar forward arguments that apply to higher dimensional notions of
connectivity and to problems other than consensus appear in [HRT98, HRTO01].

The proofs of [MRY98, AT99, BJBO98, SW89] use a notion of bivalency; a state of an algorithm
is bivalent if it can lead to two different decision values in different executions. The proofs show,
by forward induction, how to construct executions in which the algorithm remains in a bivalent
state for a sequence of f steps, thus precluding decision. This notion of bivalency, however, is not
strong enough to prove the f 4 2 lower bound for uniform consensus. We show, in Section 4.5, that
merely having an initial bivalent state does not preclude decision in one communication step in
failure-free executions. Therefore, instead of basing the proof on the existence of a bivalent state as
in [MRY8, AT99, BJBO98], we base our proof on the existence of two states that lead to different
decision values in failure-free executions. Using this new notion, we give, for the first time, a proof
by forward induction for the uniform consensus lower bound, which is also the first proof covering
the case f = 0. We further show how to use the same forward induction argument, based on the
layering approach of Moses and Rajsbaum [MR98], to prove lower bounds for both consensus and
uniform consensus, as well as the impossibility of consensus in the mobile failure model.

4.2 The technique: layering, connectivity, coloring

Proving lower bound and impossibility results can be thought of as showing that, for any given
algorithm, an adversary always has a strategy that can guarantee a desired bad behavior. In
the case of the synchronous model, an adversary can choose which processes fail in each step,
and what subsets of their messages are delivered. We say that such a decision is an action of
the environment. Assume a (deterministic) consensus algorithm is given. For any initial state of
the system, the environment actions completely define an execution: the environment defines the
messages that a process receives in each step, and the algorithm of the process defines its new local
state and the messages it sends next. Thus, we can describe an execution by specifying an initial
state and a sequence of environment actions.

Given an execution R (consisting of one or more states), let us denote by R - € the final state
of the execution that results from extending R by having the environment perform the action e.
Thus, every execution state can be represented in the form: x-€;-€---- where z is an initial state
of the algorithm and ¢; is an environment action, for every integer 7 > 1.

Layering

To obtain an impossibility result, it is often sufficient to consider only a subset of all possible
executions of the model. We consider the set of executions generated from a set of initial states
by a layering [MR98], where a layering is a set of environment actions that can be performed at
a state of the system. If the layering is chosen appropriately, these executions can have structural
properties that will simplify their analysis®.

For the sake of proving the results in this paper, we use layerings in which at most one process
fails in every step. We use [k] to denote the set {p1,... ,px}, with [0] denoting the empty set.
The layering consists of nondeterministically choosing a process p; € {p1,... ,pn} and a set [k] and
performing the action (4, [k]), meaning that any messages sent from p; to members of [k] will be
lost, and only these messages will be lost. The action (%, [0]), for any i, models a step in which no

5In asynchronous models this is more significant: various layering structures can be defined to show that consensus
is impossible even in executions with very little asynchrony[MR98].
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failure occurs. More precisely, the layering for the mobile failure model is:
L, ={(,[k]): 1 <i<mnand 0 <k <mn}.

In the crash failure model, the action (i, [k]) for k& > 0 causes process p; to permanently crash.
Since we assume that at most ¢ processes can crash, ¢ < n, care must be taken not to crash more
than ¢ processes in an execution. Thus, the action (layer) (j, [k]) for £ > 0 is applicable to a state z
only if fewer than ¢ processes are failed at x, and process p; is not failed at x. We denote the
layering consisting of all actions of these types by L.. Notice that the number of processes that fail
in an execution of this system is at most £: once ¢ processes are failed at a state, all the subsequent
layers have k = 0.

Given a layering L, we denote: L(z) = {z - £|¢ € L}. We generalize this definition for a set of
states X, as follows: L(X) = UzexL(z). We define L to be the application of L k times. Formally,
L* is defined recursively as follows:

LO(X) X
LX) = LX)

The layering we consider for the mobile failure model has the property that in every state, there
are no failed processes. In other words, for any state z, the system contains an execution extending
z in which no process fails.

Connectivity and coloring

Lower bound and impossibility proofs for distributed algorithms are typically based on a notion of
similarity that captures the case that different executions look the same to some processes. In this
paper, we define similarity as follows:

Definition 4.1 States x and y are similar, denoted by x ~ y, if there is a process p; that is non-
failed in these states, such that (a) the states x and y are identical except in the local state of pj,
and (b) there ezists p; # p; that is non-failed in both = and y. (In the mobile failure model, (b)
always holds). A set X of states is similarity connected if for every x,y € X there is a sequence of
states x = g, T1, -+ , Ty =Y S0 that T; ~ ziy1 for all 0 < i < n.

The significance of similarity is that if two states are similar, there is at least one correct process
p; that cannot distinguish between them. In particular, process p; will have to act the same way
in both states, so, for example, p; cannot decide 1 in one of these states and 0 in another.

To obtain the lower bounds, we will first show that the set of initial states for a consensus
algorithm is similarity connected. We will then construct additional layers — corresponding to end
states of longer executions — that are also similarity connected. This connectivity is a characteristic
of the model, not of a particular algorithm or problem. To prove lower bounds for consensus, we
observe that in a similarity connected set there must be states in which no decision has been made.
For uniform consensus, we observe that in a similarity connected set there must be states from
which no decision can be been made within one step. To derive these results, we view a similarity
connected set as a connected graph, and use a coloring function to assign future decision values to
nodes in the graph. Specifically, we use the following new coloring function.

Given a state z, consider the execution extending z in which no failures occur after state z,
that is, the layer (j,[0]) is repeatedly executed in all steps after . Note that if an algorithm solves
weak consensus, then all correct processes must decide upon the same value in this execution. We
denote this decision value by val(x); this is our coloring function.
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4.3 The uniform consensus failure-free lower bound

We denote by Cong the set of initial states in which no process is failed. Such an initial state is
determined by the inputs of the processes: for each combination of 0’s and 1’s there is an initial
state in Cong. The following well-known lemma shows that Cony is similarity connected.

Lemma 4.1 Cong is similarity connected.

Proof: Given a state z we denote by z; the local state of process p; in the state z. Let y,y’ be
two states in Cong. For every 0 < m < n, define ™ by setting T =y; for all § > m and Tl = y;-
for all j < m. We get: 2% =y and 2" = 3. Note that z™ ! and 2™ differ exactly in the local state
of process p,,. Since all the processes are non-failed in every state in Cong, these states are similar,
that is, ™! ~ z™. [ |

We now use the coloring function, val, to show that a uniform consensus algorithm cannot reach
decision in one communication step from some states in a similarity connected set.

Lemma 4.2 Let X be a similarity connected set of states of a uniform consensus algorithm for
the crash failure model. Assume that there are states z,z' € X so that val(z) # val(z'). Assume
further that in every state in X there are at least three correct processes, of which two can fail.
Then, there is a state y € X, and a failure-free extension of y in which it takes two additional
communication steps for all processes to decide.

Proof: Since X is similarity connected, there are two similar states y,3’ € X so that val(y) #
val(y'). Assume, without loss of generality, that val(y) = 1. The states y and y' are identical
except in the local state of one process p; and there are at least two other non-failed processes in
y and y'. Let py, be the non-failed process, other than p;, with the highest identifier in y and ¢’
(that is, for all k > m, k # 7, py is failed at y,y').

Assume by way of contradiction that every correct process decides after one step in every
failure-free extension of y and vy/'.

Consider the state y-(7, [0]) (where nobody fails in the next step). In this state, all processes must
decide 1. Since two more processes can fail at states in X, we can add the layers (j, [m —1]) - (m, [n])
to z, that is, we can extend = by crashing two more processes, p; and p;,. Consider the state
y - (4,[m — 1]). Process p,, has exactly the same local state in y - (4,[m — 1]) as in y - (4, [0]).
Thus, p,, decides 1 in y - (j,[m — 1]). By the uniform agreement property, in every extension of
y - (j,[m — 1]) all the correct processes have to decide 1.

By a symmetric argument for y', p,, decides 0 in y' - (j,[m — 1]), and in every extension of
y'- (4, [m—1]) all the correct processes have to decide 0. In particular, in any extension of y- (7, [m —
1])- (m, [n]) all the correct processes have to decide 1, and in any extension of y/'- (4, [m —1]) - (m, [n])
all the correct processes have to decide 0.

But no correct process other than py, hears from p;, so in y- (j,[m —1])- (m,[n]) and ¢/’ - (j, [m —
1]) - (m, [n]) all the correct processes have the same state. A contradiction. |

By plugging in Cong for X in the above lemma, we get the following theorem:

Theorem 4.3 Let 2 < t < n. FEvery t-resilient weak uniform consensus algorithm must perform
two communication steps in some failure-free execution before all the processes decide.
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Proof: By Lemma 4.1, Cong is similarity connected. By the weak validity property, there are two
states z,z' € Cong so that val(z) # val(z'). Since 2 < t < m, in every state in Cong there are at
least three correct processes, of which two can fail. Therefore, by Lemma 4.2, there is a failure-free
execution in which it takes two communication steps for all processes to decide. [ |

We have seen that the lower bound for the case f = 0 follows from the fact that Cong is
similarity connected. In order to prove the general case, we will prove below that L¥(Cong) is
similarity connected for all k& < ¢.

4.4 The general bounds: A connectivity-based unified proof

The following lemma, applies to algorithms for solving any problem in the synchronous crash and
mobile failure models, not just consensus or uniform consensus. The lemma shows that in these
models, if we begin from a set of similarity connected states where at least one process can fail,
and apply all possible layers from L,, or L. to this state, we get another similarity connected set.
When beginning in a set of states, X, in the crash failure model, we can add such layers as long
as the number of failures does not exceed ¢; in the mobile failure model, we can add such layers
indefinitely.

Lemma 4.4 Let X be a similarity connected set of states, and let L be either L, or L.. Assume
that for every state x € X, the number of processes that are failed in x is smaller than t. (In the
mobile failure model, this assumption always holds since no process is failed). Then, L(X) is also
similarity connected.

Proof: We first show that for every z € X, L(x) is similarity connected. Recall that for every
pair of processes p;,p; that are non-failed at z, the states z - (4,[0]) and z - (4, [0]) are the same,
since there are no failures in either extension of . In addition, for every k& > 0, the states xj_1
and zy are either similar (because they differ only in the state of py), or are identical (in case py is
faulty or in case p; did not send a message to py in this step).

It is left to show that if z ~ z’, then there are states y € L(z), 3y’ € L(z), so that y ~ ¢, and
the lemma will follow. To see this, recall that the states = and z’ are identical except in the local
state of one process p;, and there exists another process that is non-failed in both states. Since
the number of processes that are failed in z and z’ is smaller than ¢, it is possible for p; to crash.
Consider the states y = z - (i,[n]) and y' = 2’ - (3,[n]). All the non-failed processes other than p;
have the same local states in ¢ and 9/, and since t < n, there is at least one such process. Therefore,

y~1y. ]

In order to apply the topological result above to consensus, we replace X with Cong. The
following lemma will allow us to base impossibility results on L¥(Cony):

Lemma 4.5 1. L¥ (Cong) is similarity connected for all k; L¥(Cong) is similarity connected for
all k <t.

2. For every k > 0, there exist y,y' € L¥(Cong) so that val(y) # val(y'), where L is L,, or L.

Proof: 1. The proof is by induction on k. Base: By Lemma 4.1, Cong is similarity connected.
Moreover, in every state in Cong, no processes are failed. Inductive step: Assume that
L¥=1(Conyg) is similarity connected (where L is either Ly, or L.). By construction of L, in
every state in L¥~1(Cong), at most k£ — 1 < ¢ processes are failed. By Lemma 4.4, L*(Cony) is
also similarity connected.
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2. By weak validity, there exist two states z,z’ € Cong so that val(z) # val(z'). Let y,y’ be
the states obtained by applying the layer (i, [0]) k times to z,2’, respectively. Since y,y’ are
failure-free extensions of z,z’, we get that val(y) # val(y'), and they are both in L*(Cony).

|

We now use the coloring function, val, to show that in a similarity connected set, there are
states in which no process decides.

Lemma 4.6 Let X be a similarity connected set of states of a consensus algorithm for the crash
or mobile failure model. Assume that there are states z,z' € X so that val(z) # val(z'), then there
is some state in X in which some correct process has not decided yet.

Proof: Since X is similarity connected, there are two similar states y,3’ € X so that val(y) #
val(y'). The states y and y' are identical except in the local state of one process p; and there exists
another correct process p; # pj. The local state of p; is the same at y and 3/, thus, if p; has already
decided upon some value v at y, p; must have decided upon the same value at y'. But if p; does
not fail, by val(y) # val(y'), we get that p; cannot have decided upon the same value at y and v/'.
A contradiction. [

We are now ready to prove the impossibility and general lower bound results.
Theorem 4.7 There is no 1-resilient weak consensus algorithm in the mobile failures model.

Proof: By Lemma 4.5, there exist y,3’ € LF (Cong) so that val(y) # wal(y'), and Lk, (Conyg) is
similarity connected, so by Lemma 4.6, there is a correct process that has not decided in y and y/'.
Thus, for each k, there is an execution with k steps in which some correct process does not decide.
By Koénig’s Lemma [K6n36], using the fact that the layering is finite, there exists an infinite
execution in which some correct process does not decide, violating the termination requirement.
|

Theorem 4.8 Consider an algorithm for weak consensus in the synchronous crash model with up
to t failures, where t < n. For every 0 < f < t, there exists an ezecution of the algorithm with
f failures, in which at the end of step f, some correct process does not decide. That is, decision
requires f + 1 steps.

Proof: Fix f,0 < f < t. By Lemma 4.5, there exist 3,3 € L{(Cong) so that val(y) # val(y') and
L£ (Conyg) is similarity connected, so by Lemma 4.6, there is a correct process that has not decided
in y and g'. Thus, there is an execution with f steps and at most f failures, in which some correct
process does not decide. [ |

We showed that f+1 steps is a lower bound for consensus in the crash failure model in executions
with f failures. As mentioned above, this bound is tight [LF82]. For uniform consensus, in case
f<t—2(sot>1), an extra step is needed:

Theorem 4.9 Consider an algorithm for weak uniform consensus in the synchronous crash model
with up to t failures, where t < n. For every 0 < f < t — 2, there exists an execution of the
algorithm with f failures, in which at the end of step f + 1, some correct process does not decide.
That is, decision requires f + 2 steps.

15



Proof: Fix f,0 < f <t—2. By Lemma 4.5, there exist y,1y’ € LZ(ConO) so that val(y) # val(y'),
and Lg(Cono) is similarity connected. Since f <t — 2, and ¢ < n, in every state of Lg(Cono) there
are at least three correct processes two of which can fail. Therefore, by Lemma, 4.2, there is a state
zell (Cong), and a failure-free extension of z in which it takes two additional communication steps
for all processes to decide. That is, there is an execution with at most f failures in which it takes
f + 2 communication steps for all processes to decide. [ |

4.5 On the weak validity property

As mentioned in Section 2.2, the weak validity property we use is stronger than the weak validity
property defined in [FLP85]. Our weak validity property requires that there be two failure-free
executions that lead to two different decision values, while the property in [FLP85] requires merely
that there exist two executions (not necessarily failure-free) that lead to two different decision values.
Is the stronger property really needed? It turns out that the weaker property, as defined in [FLP85],
is sufficient for the f + 1 lower bound for consensus and also for the impossibility of consensus in
the mobile failure model. The proof given in [MR98] for these two results actually works with the
weaker weak validity property. However, the weaker weak validity property of [FLP85] does not
suffice for the f 4+ 2 lower bound for weak uniform consensus, nor for the f 4+ 2 lower bound on
halting in consensus due to [DRS90], as we now show.

In Figure 2, we give a counter-example algorithm that satisfies uniform agreement, termination,
and weak validity as defined in [FLP85]. It decides and halts after one communication step in
every failure-free execution. The counter-example algorithm uses a uniform consensus algorithm
that satisfies (strong) validity. (We know that an algorithm for uniform consensus in this model
exists [CBS00]). The uniform consensus algorithm is invoked by calling Uniform_Consensus( v ).

Function Counter_Example( v; )

Step 0: Send a message to all the processes (including p;).

Step 1: let S; be the set of processes from which Step 0 messages have been received.
if |S1| = n then return(1) else send a message to all the processes endif

Step 2: let S, be the set of processes from which Step 1 messages have been received.
if |S2| < |Si| then init < 1 else init < 0 endif
return Uniform_Consensus( init ).

Figure 2: A counter-example algorithm for weaker weak validity.

It is easy to see that the counter-example algorithm decides and halts after one step in all
failure-free executions. We now argue that the algorithm solves weak uniform consensus with the
weakened validity property.

To show uniform agreement, we first observe that if some process p; decides 1 in Step 1, then all
the processes that run uniform consensus have 1 as their input value for uniform consensus. This
is because i does not send a Step 1 message, and thus, for any process that does execute step 2,
|S2| < |S1| because p; € S1 and p; ¢ Sa. By the (strong) validity property of uniform consensus,
the only possible decision value in this case is 1. If no process decides in Step 1, then the uniform
consensus algorithm ensures uniform agreement.

Termination is implied by termination of the uniform consensus algorithm, since all the correct
processes either decide in Step 1 or run the uniform consensus algorithm.

The algorithm satisfies the weakened weak validity property of [FLP85], that is, both 0 and 1
are possible decision values: If there is at least one failure, but all the failures are initial failures,
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that is, every process that fails does not send any messages at all, the decision is 0. If there are no
failures at all, the decision is 1.

5 Deriving Lower Bounds for Non-Synchronous Models

We now use the results of the previous section to derive lower bounds for consensus in the partial
synchrony model and in the asynchronous model with unreliable failure detectors. We do this in
two steps: first, in Section 5.1 we derive a lower bound for uniform consensus in these models;
next, in Section 5.2 we show that any algorithm that solves consensus in these models also solves
uniform consensus. The lower bound for consensus follows.

5.1 From synchronous to asynchronous bounds

In the previous section, we considered a synchronous model where up to ¢ processes may fail. In that
model, we have shown (Corollary 4.3) that any uniform consensus algorithm for the synchronous
model where at least two processes can fail must perform two communication steps in some failure-
free execution before all the processes can decide. This lower bound also applies to well-behaved
executions in the partial synchrony model and in the asynchronous model with failure detectors as
we show in the two lemmas below.

Lemma 5.1 For every algorithm that solves uniform consensus in the partial synchrony model
where at least two processes can crash, there is a well-behaved execution in which the algorithm
performs at least two communication steps before all the processes decide.

Proof: Assume the proposition is false, then there exists a uniform consensus algorithm that
tolerates two crashes and decides after at most one communication step in every well-behaved
execution, that is, in every failure-free synchronous execution. Clearly, this algorithm solves uniform
consensus in the synchronous model, and decides within one communication step in every failure-
free execution. A contradiction to Corollary 4.3. [

Lemma 5.2 For every algorithm that solves uniform consensus in the asynchronous model enriched
with failure detector OS or OS82, where at least two processes can crash, there is a well-behaved
execution in which the algorithm performs at least two communication steps before all the processes
decide.

Proof: As above, it suffices to show that we can implement ¢S and <€ failure detectors in
the synchronous model, so that their execution is well-behaved in failure-free executions of the
synchronous model.

We construct a &S failure detector using the following algorithm: The algorithm is conducted
in synchronous communication steps. In every step, every process sends a message to every other
process, and waits ¢ time until the next step. Initially, every process p has an empty suspect list.
At every subsequent communication step, p suspects processes from which it did not get messages
in this step. Clearly, in the synchronous model, this failure detector suspects a process if and only
if the process has crashed; this is the perfect failure detector defined in [CT96]. In particular, it
is also a failure detector of class ©¢S. Moreover, in failure-free executions, this failure detector
does not suspect any process. Thus, a failure-free execution of the synchronous model simulates a
well-behaved execution of the asynchronous model with a &8 failure detector.
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To implement a <2 failure detector, we modify the above algorithm to have each process output
the process with the lowest identifier among the processes it does not suspect. Since the failure
detector suspects a process if and only if the process has crashed, the failure detector at each
process outputs the first non-crashed process (in lexicographical order). Thus, after the last failure
occurs, all the processes elect the same correct leader. In failure-free executions, the leader is always
process 1, from the beginning of the execution. Thus, this is a well-behaved execution of GQ2. =

Note that the above lower bound for uniform consensus holds for any failure detector that can
be implemented in a partial synchrony model in a manner that preserves the well-behaved nature
of executions.

5.2 From consensus to uniform consensus

Guerraoui [Gue95] proves that any algorithm that solves consensus in an asynchronous model
enriched with certain classes of failure detectors, including <&, also solves uniform consensus.
Below, we adapt Guerraoui’s proof to the models we consider in this paper, namely, the partial
synchrony model, and the asynchronous model enriched with any failure detector that can give
arbitrary output for an arbitrary prefix of the execution.

Lemma 5.3 In a partial synchrony model or in an asynchronous model with o failure detector
that can give arbitrary output for an arbitrary prefiz of the execution, any algorithm that solves
consensus also solves uniform consensus.

Proof: Assume that there is an algorithm that solves consensus but not uniform consensus in one
of the aforementioned models. Then, the algorithm has an execution e in which two processes p;
and p; decide on different values, and at least one of them fails after deciding. Assume, without loss
of generality, that p; decides before p;. Let ¢; be the point in the execution e at which p; decides,
and ;, the point at which p; decides. Note that until point ¢;, neither p; nor p; fails, and until ¢,
p;j does not fail.

We now construct an execution €’ in which both p; and p; are correct: until point t;, e is
identical to €’. Between t; and t;, p; may send in e’ messages that it does not send in e (because it
may be crashed during part of this time in e and not in e’). We delay the receipt of such messages
by any process until after point ¢; in the execution”. In addition, we have the failure detector
oracles at all the processes give the same outputs in the prefix of e’ until ¢; as in the prefix of e
until ¢;. After time ¢;, we have the failure detector satisfy the required semantics. Since the failure
detector can give arbitrary output for an arbitrary prefix of the execution, we can delay this prefix
until time ¢;.

Observe that the prefix of ¢/ until point ¢; is indistinguishable for process p; from the prefix
of e until point ¢;, because e and e’ are identical until that point. Therefore, p; decides in €’ at
time ¢; the same value that it does in e. Observe also that for every process other than p;, €’ is
indistinguishable from e until time ¢;. Therefore, p; decides in e’ at time ¢; the same value that
it does in e. Thus p; and p; decide upon different values in €', although both are correct. A
contradiction. [

We conclude with the following theorem:

"Recall that in asynchronous or partial synchrony models, the environment can delay messages arbitrarily long
for an arbitrary prefix of the execution, that is, the global stabilization time (GST) can occur after t;.
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Theorem 5.4 Consider a model of partial synchrony or an asynchronous model enriched with a
OS or ON failure detector, where at least two processes can crash. For every algorithm that solves
consensus in these models, there is a well-behaved execution in which the algorithm performs at
least two communication steps before all the processes decide.

Note that, more generally, Theorem 5.4 holds for an asynchronous model enriched with any
failure detector that satisfies the following two conditions:

1. the failure detector can be implemented in a partial synchrony model in a manner that
preserves the well-behaved nature of executions; this is required in Lemma 5.2; and

2. the failure detector can provide arbitrary output for an arbitrary prefix of any execution, as
required in Lemma, 5.3.

6 On an Optimistic Note

We have seen that in practical models where messages may be occasionally lost or delayed, fault-
tolerant consensus algorithms require two communication steps even in well-behaved executions
with synchronous communication and no failures or false failure suspicions. This is in contrast
to algorithms for consensus in the synchronous crash failure model, which can decide in one com-
munication step in failure-free executions. The additional communication step is required in non-
synchronous models due to the fact that, in these models, correct processes may be mistaken for
faulty ones. We observe that the additional communication step is needed in order to avoid dis-
agreement with processes that are incorrectly suspected to have failed. This observation can give
insight to the possible gains of using an optimistic approach in lieu of consensus, as we explain
below.

The agreement property of consensus is conservative: it requires that two correct processes
never decide on different values. Thus, when used for state machine replication [Lam78, Sch90],
consensus never introduces inconsistencies among correct replica. In other words, consensus guar-
antees serializability, that is, in every execution, all the replica exhibit the same sequence of states.
In contrast, an optimistic approach allows replica to temporarily diverge, as long as conflicts can
later be detected and reconciled. Optimistic approaches can be used if the application can live with
temporary conflicts. These approaches are generally cost-effective if conflicts are rare.

Group communication systems [ACM96, CKV], such as Isis [BSS91], take an optimistic approach
to state machine replication: they implement algorithms for totally ordered multicast that operate
in a single communication step. For example, the algorithms of Isis [BSS91] and Amoeba [KT91]
use leader election as follows: The leader sends its own proposed value to all the processes, and
immediately decides upon this value. All the recipients of the leader’s message immediately decide
upon the suggested value. As long as the leader is not suspected by any of the processes, consistency
is preserved. When the leader is suspected, a new leader is elected, and the new leader attempts
to learn the decision value from the processes it can communicate with. As long as there are no
false suspicions, consistency is ensured. However, if the leader is correct but suspected to have
crashed, the other processes can decide upon a different value than the leader. Isis resolves such
inconsistencies by forcing the suspected leader to fail and re-incarnate itself as a new process,
whereby it adopts the state of the other replica.

In general, conflicts are inevitable when a single-communication step algorithm is used in non-
synchronous models, as implied by the lower bound proven in this paper. On the other hand,
conflicts can be detected immediately when processes that at some point suspected each other
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re-establish the communication between them. Thus, conflicts can be reconciled quickly. The cost-
effectiveness of optimism depends on the rate of conflicts. Recall the observation that the role
of the extra communication step in practical models is to avoid potential conflicts with processes
that are incorrectly suspected to have failed. This suggests that the frequency of conflicts with the
optimistic approach depends on the frequency of false suspicions. Thus, the rate of false suspicions
in a given system can be a guideline for deciding when to use optimism, and when a conservative
approach (like consensus) would be preferable.

7 Conclusions

Network environments can exhibit complex combinations of timing behaviors and failure patterns,
so in the worst case, no useful work can be successfully completed. In practice however, usually
communication is timely and failures are rare. Therefore, to be useful in practice, algorithms
should be able to tolerate some asynchrony and failures, but should also perform well under the
more common benign circumstances.

This paper was motivated by the above observation. We considered consensus algorithms that
can tolerate bounded asynchrony and failures, and we studied such algorithms’ performance under
benign circumstances. We defined the notion of well-behaved executions, capturing such benign
circumstances. We studied the number of communication steps performed by consensus algorithms
in well-behaved executions. We showed a tight lower bound of two communication steps for sys-
tems in which at least two processes can crash. In contrast, algorithms that do not tolerate any
asynchrony can decide in one communication step in all failure-free executions [LF82, Lyn96].

We have shown that the additional communication step is required due to the fact that, in non-
synchronous models, correct processes may be mistaken for faulty ones. That is, the additional
communication step is needed in order to avoid disagreement with processes that are incorrectly
suspected to have failed. This suggests that when using an optimistic approach instead of consensus,
one can use a single communication step algorithm with which inconsistencies will arise only in
case of false suspicions, as explained in Section 6.

An important goal of this paper was to provide intuition for the lower and upper bounds. We
illustrated the upper bound by discussing known algorithms that achieve the lower bound. We
aimed to give formal lower bound proofs that would be as simple and easy-to-follow as possible.

In order to derive the two communication step lower bound for non-synchronous models, we first
looked at the synchronous crash failure model. We showed that in this model, uniform consensus
algorithms need to make f + 2 communication steps in some executions with f failures before all
processes can decide, if the number of processes that can crash is at least f + 2. Although this
bound was previously shown by Charron-Bost and Schiper [CBS00], their lower bound proof did
not cover the case that f = 0 in which we are most interested here. In this paper, we gave, for the
first time, a proof by forward induction for this lower bound, which is also the first proof covering
the case f = 0. Furthermore, we gave a unified proof showing this lower bound along with two
known results: a lower bounds for consensus, and an impossibility results for consensus in the
mobile failure model. Thus, we illustrated the fact that different lower bounds stem from similar
principles, and also illustrated a general technique for obtaining simple and elegant lower bound
and impossibility proofs [MR98].
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