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Abstract

We describe the notion of a physical unknown function. We argue that a complex integrated cir-
cuit can be viewed as a silicon physical unknown function and describe a technique to identify and
authenticate integrated circuits (ICs).

We describe several possible circuit realizations of different physical unknown functions. These
circuits have been implemented in commodity Field Programmable Gate Arrays (FPGAs). We present
experiments which indicate that reliable authentication of individual FPGAs can be performed even in
the presence of significant environmental variations.

We describe how secure smart cards can be built, and also briefly describe how physical unknown
functions can be applied to licensing and certification applications.

1 Introduction

We describe the notion of physical unknown functions (PUFs) and argue that PUFs can be implemented
using conventional integrated circuit (IC) design techniques. This leads us to a method of identifying and
authenticating individual ICs and a means of building secure smartcards. A host of other applications
are also possible.

Many methods are already available to identify and authenticate ICs. One can embed a unique
identifier in an IC to give it a unique identity. This approach can identify the IC, but cannot authenticate
it. To enable authentication, one needs to embed a secret key onto the IC. Of course, for the system
to work, this key needs to remain secret, which means that the packaged IC has to be made resistant
to attacks that attempt to discover the key. Numerous attacks are described in the literature. These
attacks may be invasive, e.g., removal of the package and layers of the IC, or non-invasive, e.g., differential
power analysis that attempts to determine the key by stimulating the IC and observing the power and
ground rails. Making an IC tamper-resistant to all forms of attacks is a challenging problem and
is receiving some attention [And01]. IBM’s PCI Cryptographic Coprocessor encapsulates a 486-class
processing subsystem within a tamper-sensing and tamper-responding environment where one can run
security-sensitive processes [SW99]. However, providing high-grade tamper resistance, which makes it
impossible for an attacker to access or modify the secrets held inside a device, is expensive and difficult
[AK96, AK98].

We propose a completely different approach to IC authentication in this paper. Our thesis is that
there is enough manufacturing process variations across ICs with identical masks to uniquely character-
ize each IC, and this characterization can be performed with a large signal-to-noise ratio (SNR). The
characterization of an IC involves the generation of a set of challenge-response pairs. To authenticate ICs
we require the set of challenge-response pairs to be characteristic of each IC. For reliable authentication,
we require that environmental variations and measurement errors do not produce so much noise that
they hide inter-IC variations. We will show in this paper, using experiments and analysis, that we can
perform reliable authentication using the techniques that we now introduce.

How can we produce a unique set of challenge-response pairs for each IC, even if the digital IC
functionality or masks of the ICs are exactly the same? We rely on there being enough statistical delay



variation for equivalent wires and devices across different ICs. Sources of statistical variation in manu-
facturing are well documented in the literature (e.g., [BN0O] [Ber98]) and statistical variation has been
exploited to create IC identification circuits that generate a single unique response for each manufactured
IC [LDTO00]. The transient response of the IC to a challenge, i.e., input stimulus, is dependent on the
delays of wires and devices within each IC. Qur contribution is to show that by exploiting statistical de-
lay variation and measuring transient response, one can generate multiple challenge-response pairs' that
can be used to identify and authenticate an IC. The transient response only gives indirect information
about the delays of wires and devices in the IC on the paths that are stimulated by the challenge. Since
only indirect information is provided, it is possible to securely authenticate the IC.

To break the authentication methodology, the adversary can fabricate a “counterfeit” IC that pro-
duces exactly the same responses as the original IC for all challenges. Given the statistical variation
inherent in any manufacturing process, we argue that the probability of this happening for a newly
fabricated IC is very low, implying that the adversary will have to fabricate a huge number of ICs, and
make comprehensive measurements on each one, in order to create and discover a counterfeit.

Alternately, the adversary can create a timing-accurate model of the original IC and simulate the
model to respond to challenges, in effect creating a “virtual counterfeit.” However, this model has to
be extremely accurate since it has to incorporate near-exact delays of all devices and wires within the
original IC, with errors of no more than 0.01%. Moreover, the transient response is a non-linear and
non-monotonic function of the delays of wires and devices in the IC. The adversary has to invert this
function to get the parameters of his model. We argue that this is very hard to do, even given complete
mask information of the IC and unrestricted physical access to the IC. Further, we can make this even
harder by restricting the challenges that can be presented to the IC and/or obfuscating the responses.

The rest of this paper will be structured as follows: In Section 2, we define physical unknown functions
(PUFs). This is followed by an overview of our approach to creating silicon PUFs in Section 3. We
describe various challenges in creating a silicon PUF in Section 4, and present an architecture for such a
device. Then, we describe applications of silicon PUFs in Section 5. In Section 6 we describe preliminary
experiments we have conducted using commodity FPGAs that indicate that there is enough statistical
variation for authentication to be viable, and that give an idea of the difficulty of modeling or cloning
silicon PUFs. Finally, we briefly discuss ongoing work in Section 7.

2 Definitions

Definition 1 A Physical Unknown Function (PUF) is a function that maps challenges to responses,
that is embodied by a physical device, and that verifies the following properties:

1. FEasy to evaluate: The physical device is easily capable of evaluating the function in a short amount
of time.

2. Hard to characterize: From a polynomial number of plausible physical measurements (in particular,
determination of chosen challenge-response pairs), an attacker who no longer has the device, and
who can only use a polynomial amount of resources (time, matter, etc...) can only extract a
negligible amount of information about the response to a randomly-chosen challenge.

In the above definition, the terms short and polynomial are relative the size of the device, which is
the security parameter. In particular, short means linear or low degree polynomial. The term plausible
is relative to the current state of the art in measurement techniques and is likely to change as improved
methods are devised.

In previous literature [Rav01l] PUFs were referred to as Physical One Way Functions, and realized
using 3-dimensional microstructures and coherent radiation. We believe this terminology to be confusing
because PUFs do not match the standard meaning of one way functions.

The focus of this paper is the silicon realization of PUFs, which we shall term silicon PUFs (SPUFs).

n fact, the number of potential challenge-response pairs grows exponentially with the number of inputs to the IC, since
the response to each distinct challenge typically depends on a different set of device and wire delays within the IC. Of course
these challenges are not all independent as a given circuit element will influence the response to many different challenges.



Definition 2 A type of PUF is said to be Manufacturer Resistant if it is technically impossible to
produce two identical PUF's of this type given only a polynomial amount of resources.

The silicon PUFs that we will describe in the sequel are manufacturer resistant, as they use circuit
characteristics that are beyond the control of the fabrication process. When a PUF is manufacturer
resistant, the amount of trust that must be placed in the manufacturer of the PUF is significantly
reduced.

Definition 3 A PUF is said to be Controlled if it can only be accessed via an algorithm that is physically
linked to the PUF in an inseparable way. In particular this algorithm can restrict the challenges that are
presented to the PUF and can limit the information about responses that is given to the outside world.

Silicon PUFs are ideally suited to being controlled PUFs. The PUF circuit can be intertwined with
a circuit that controls access to the PUF in a very fine grained way. In [GCvDDO02], we go more into
the details of controlled PUFs, how to use them, and the types of applications that they can support.

3 Overview of Approach

We wish to implement a physical unknown function in silicon so we can identify and authenticate a given
integrated circuit (IC). By exploiting statistical variations in the delays of devices and wires within the
IC, we create a manufacturer resistant PUF.

3.1 Manufacturing Variation

Manufactured ICs, from either the same lot or wafer have inherent delay variations. Across a die, device
delays vary due to mask variations — this is sometimes called the system component of delay variation.
There are also random variations in dies across a wafer, and from wafer to wafer due to, for instance,
process temperature and pressure variations, during the various manufacturing steps. The magnitude
of delay variation due to this random component can be 5% or more for metal wires, and is higher for
devices. Delay variations of the same wire or device in different dies have been modeled using Gaussian
distributions and other probabilistic distributions (e.g., [BN0O]).

On-chip measurement of delays can be carried out with very high accuracy, and therefore the signal-
to-noise ratio when delays of corresponding wires across two or more ICs are compared is quite high.

3.2 Environmental Variations

The most significant environmental condition that affects chip operation is ambient temperature. The
delay of gates and wires depends on the junction temperature [WE85] which is dependent on the ambient
temperature. Therefore, significant variations in the ambient temperature, e.g., +25 degrees, can cause
appreciable variations in the delays. The main problem posed by this variation is the incorrect rejection
of an authentic IC. However, relative measurement of delays, essentially using delay ratios, provides
robustness against environmental variations, such as varying ambient temperature, and power supply
variations. The impact of varying junction temperature can be reduced by using all the elements in the
PUF in a uniform way. Our experiments in Section 6.1 validate the robustness of relative measurement.

For huge changes in environmental conditions, e.g., 100 degrees in ambient temperature, when even
relative measurements break down, authentication can be carried out taking into account the existing
environmental conditions. For example, the response of a particular IC to a particular challenge can be
made a function of the ambient temperature.

Finally, circuit aging can also change delays, but its effects are significantly smaller than temperature
and power supply effects.

3.3 Challenge-Response Pairs

As we mentioned in the introduction, manufacturing variations have been exploited to identify individual
ICs. However, the identification circuits used generate a static digital response (which is different for



each IC). We propose the generation of many challenge-response pairs for each IC, where the challenge
can be a digital input stimulus, and the response depends on the transient behavior of the IC, and can
be a precise delay measure, or a digital response based on measured delay.

The transient behavior of the IC depends on the the network of logic devices as well as the delays of
the devices and interconnecting wires. Assuming the IC is combinational logic, an input pair {vy, vs)
produces a transient response at the outputs. Each input pair stimulates a potentially different set of
paths in the IC. If we think of each input pair as being a challenge, the transient response of the IC will
typically be different for each challenge.

The number of potential challenges grows with the size and number of inputs to the IC. Therefore,
while two ICs may have a high probability of having the same response to a particular challenge, if we
apply many challenges, then we can distinguish between the two ICs. More precisely, if the standard
deviation of the measurement error is d, and the standard deviation of inter-FPGA variation is o, then
for Gaussian distributions, the number of bits that can be extracted for one challenge is:

1
Eln(l +0/d)

By using multiple independent challenges, we can extract a huge number of identification bits from an IC.
Actually producing a large number of bits is difficult to do in practice with multiple challenges because
the responses to challenges are not independent. However, it is much easier to extract the information
from the measurements in the case where § << 0.

Upon every successful authentication of a given IC, a set of challenge-response pairs is potentially
revealed to an adversary. This means that the same challenge-response pair cannot be used again. If
the adversary can learn the entire set of challenge-response pairs, he can create a model of a counterfeit
IC. To implement this method, a database of challenge-response pairs has to be maintained by the
entity that wishes to identify the IC. This database need only cover a small subset of all the possible
challenge-response pairs. However it has to be kept secret as the security of the system only relies on
the attacker not being able to predict which challenges will be made. If the database ever runs out of
challenge-response pairs, it can be necessary to “recharge” it, by turning in the IC to the authority that
performs the authentication.

With Controlled PUFs many of these limitations can be lifted. In particular, reuse of a challenge-
response pair can be considered, and “recharging” of a PUF can be done over an untrusted network.
These improvements are detailed in [GCvDD02].

3.4 Attacks

There are many possible attacks on PUFs — here, we look at three different types of attacks.

The adversary can attempt to duplicate a PUF by fabricating a counterfeit IC containing an identical
PUF. However, even if the adversary has access to the masks of the IC, and unless the PUF is very
simple, statistical variation will force the adversary to fabricate a huge number of ICs and precisely
characterize each one, in order to create and discover a counterfeit. This is a very expensive proposition,
both economically and computationally speaking.

Now assume that the adversary has unrestricted access to the IC containing the PUF. The adversary
can attempt to create a model of the IC by measuring or otherwise determining very precisely the delays
of each device and wire within the IC. Techniques like differential power analysis do not help much
in determining precise delays of individual devices. Direct measurement of device delays requires the
adversary to open the package of the IC, and remove several layers, such as field oxide and metal. Fach
of these layers has some effect on the delays of the underlying devices, and during this process, the delays
of the devices will change. One can also create a package which has a significant effect on the delays of
each device within the IC, and the removal of the package will immediately destroy the PUF, since the
delays will change appreciably.

The adversary could try to build a model of the PUF by measuring the response of the PUF to a
polynomial number of adaptively-chosen challenges.2 We believe this to be the most plausible form of

2(Clearly, a model can be built by exhaustively enumerating all possible challenges, but this is intractable.



attack. However, we argue that there is a significant barrier to this form of attack as well (cf. Section
4.1 and Section 6.2). An important direction of research is to find a circuit that is provably hard to
break by this method.

4 Architecture and Implementation

This section covers some of the many challenges involved in creating a silicon PUF (SPUF). The archi-
tecture that is described here is a preliminary attempt to address the issues that are involved. We first
describe characteristics required of a circuit so it can be used as a PUF taking into account security. We
then present circuit implementations with varying complexity.

4.1 Security

Can the adversary, given the PUF f, implemented as a circuit Cy, find the delays of all internal wires
and gates within Cy by applying a polynomial number of input challenges to Cy and measuring delays
of Cy’s paths? We will assume that he has detailed knowledge of the internal structure of Cy, and a
good estimate of the delays of the gates and wires in Cy. The adversary can get this information from
the mask layout of Cy, which is assumed to be public.

We will refer to both a gate or wire as a device in the sequel.

We first note that creating accurate timing models is an intensive area of research. Even the most
detailed circuit models have a resolution that is significantly coarser than the resolution of reliable delay
measurement. If an adversary is able to find a general method to attack silicon PUFs by determining
polynomial-sized timing models that are accurate to within measurement errors, this would represent a
breakthrough.

4.1.1 Linear Delay Models

If there exists an input vector pair such that under arbitrary delays in the circuit, an event propagates
along a path P, then the path P is said to be single event sensitizable [DGK94]. One way that the
adversary can determine internal delays is if there is a set of paths in Cy that cover all the devices such
that each path in the set is single event sensitizable. By assuming that the device delays that make up a
path add up to the total path delay, the adversary can apply input stimuli and obtain an affine system
of equations, relating measured path delays to device delays. These equations are such that a path delay
is only dependent on the delays of devices that comprise the path. The number of equations is equal to
the number of delay variables, which is linear in the size of C;. Solving a linear system of equations in
the continuous domain is easy, provided the determinant is non-singular®.

However, this attack makes at least two assumptions, which are not necessarily true, as we show in
Section 6.2. First, it assumes that the delays are additive, i.e., path delay is an exact sum of device
delays. Second, it assumes that the delay of the path is only dependent on the delays of devices on the
path. In reality the path delay may be dependent on the state of neighboring devices, which in turn
depends on the challenge.

In order to confront the adversary with a greater barrier, we should ensure that that a set of single
event sensitizable paths as described above does not exist in the circuit implementation C of the PUF.
Fortunately, most paths are not single event sensitizable — in fact, a careful structuring of logic is required
to produce single event sensitizability [DGK94].

4.1.2 Nonlinear Delay Models

What happens if multiple paths are actuated when an input stimulus is applied to C¢? Then, a much
more complex set of equations will result. Even if we assume device delays are additive, this system is

3The determinant is singular if the paths that were chosen are not independent. Choosing new paths that are independent
should give new equations that will remove the singularity. If this does not help, then there are device delays in the circuit
that never appear independently. These delays should be amalgamated into a single delay, as the attacker only needs the
amalgamated delay for his model.



not a linear system because:

e If two transitions of the same polarity (0 — 1 or 1 — 0) arrive at a gate then the faster or slower
one will go through depending on the type of gate. This means that the path delay is related to
the maximum or minimum of two or more gate delays. For example, we may have:

D(P) = MAX (g1, MIN(g2 +w1,95 + w2))

where g; is the gate delay of gate ¢ and w; is the wire delay of wire . D(P;) is monotonic in the
g;’s and the w;’s, but the set of equations is not necessarily separable, i.e., the adversary will not
be able to write it in the form:

9i = Fi(g1, --+,9i—1, Git1, "5 Gks W1+, Wy)

in order to easily solve it. (Note that some types of systems of nonlinear equations where the F;
are monotone can be solved in polynomial time.)

e If two transitions of opposite polarity converge at a gate at different times, then the path delay
can become a non-monotonic function of the gate delays. As a simple example, consider an AND
gate where a rising transition arrives after a falling transition. In this case, the output of the AND
gate is a constant 0, implying a path delay of 0. If the rising transition is sped up to arrive before
the falling transition, the AND gate will glitch 0 — 1 — 0, and the delay of the paths through the
gate will become non-zero. Then, the relationships that the adversary has to write between the
measured path delays and the device delays will become more complex.

Thus, to characterize a PUF the adversary has to solve a system of equations that are highly non-
linear and non-separable. In the continuous domain, there is no direct way of solving these systems, and
the adversary will have to guess at a close enough solution in order to obtain convergence using iterative
methods.

4.1.3 Summary

Determining device delays by applying challenges to C; requires the adversary to perform tasks enu-
merated below.

1. Search for a challenge to propagate transitions down paths that cover all the devices in the PUF.
This may require worst-case exponential time.

2. Solve a non-linear, possibly non-separable and non-monotonic, system of equations that grows with
the size of the PUF.

3. For sequential logic systems, solve a state justification problem that may in the worst-case require
exponential time, to apply the chosen input stimuli derived in Step 1. It is possible that for the
chosen input stimuli, a justification sequence does not exist.

4. Model path delays accurately as non-additive functions of device delays. In general, the circuit
analysis performed by tools such as SPICE [AMS88] may be required to relate path delays to device
delays.

5. Model device delays as functions of challenges, which implies that the number of equations in Step
2 can grow significantly larger than the number of devices in the PUF.

4.2 Circuit Implementation

Here we describe a straw-man implementation of a silicon PUF. In this implementation, we will measure
the frequencies of parameterized self-oscillating circuits to characterize the IC that is being measured. In
order to ensure robustness, we will measure delays through glitch-free circuits in which the total delay is
a continuous function of the elementary device delays that make it up. Further, we will compensate for
environmental variations by taking delay ratios. To improve security we will select circuits that exhibit
non-monotonic behavior, i.e., for which the total delay is not a monotonic function in the elementary
device and wire delays.
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Figure 1: Self-Oscillating Loop Circuit.

4.2.1 Structure of the self-oscillating circuit

Figure 1 is a simplified circuit that can be used to measure delays*. The delay circuit that is to be
measured is placed in a self-oscillating circuit, the frequency of which is a function of the delay of the
circuit. The resulting waveform is synchronized and its rising edges are counted by a counter. The counter
is activated for a predefined number of clock cycles, after which the frequency of the self-oscillating loop
can be read out of the counter. By placing many such loops on a chip, it is possible to measure many
delays simultaneously. As we will see later, this plays an important part in compensating for variation
of the measured frequency due to environmental variations.

For making an SPUF, the key is to find a circuit, the delay of which is a complicated function of the
SPUF’s input challenge, and that can be inserted in the self-oscillating loop.

4.2.2 A candidate delay circuit

Figure 2 shows a delay circuit with a number of attributes that are desirable for an SPUF delay circuit.
The circuit is made up of n — 1 stages, where n is the number of bits in the challenge. Each stage
is made up of two multiplexers (the trapezoids), and a few buffers (the triangles). If we ignore the
buffers for now, what we have is a circuit with a top path and a bottom path. At the input to the
delay circuit, a rising or falling edge gets sent into both the upper and lower path. At each stage of the
circuit, depending on the value of the stage’s challenge bit, the edges may cross, that is, the edge from
the lower path goes to the higher path and vice versa. One of the two edges is then selected by the
output multiplexer to be looped back to the input of the circuit in order for self-oscillations to occur.

The number of paths that can be measured this way is exponential in the number of stages in the
delay circuit. However, the delays are clearly not independent, as there is a lot of sharing between paths.
Worse, the path is sufficiently simple that an adversary could calculate the delays of the various parts
of this circuit with only a linear number of measurements.

There isn’t much that can be done about the dependence that exists between the paths, as the
amount of variation that the delay function can exploit is only proportional to the size of the circuit.
However, we can use strategies that make the dependence a lot more difficult to exploit than they are
in this circuit ignoring the buffers.

That is what the buffers are used for in Figure 2. The buffers come in pairs, one of them is always
on, while the other is only activated when the other path is low. This adds a complicated non-monotonic
(if an elementary delay becomes longer, it is possible that the total delay will get shorter) interaction
between the two edges that are racing through the circuit. Which prevents the attacker from simply
writing a linear equation to get the delays of individual delay elements.

“In order for the self-oscillating loop to function correctly, a more complicated circuit is often necessary to avoid problems
with glitches in the delay circuit.
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Figure 2: Non-Monotonic Delay Circuit.

4.2.3 Compensated Measurement

Each of the circuits presented has a frequency counter that measures delays of paths. Since these delays
are going to vary due to environmental conditions, it is crucial to compensate for these variations if we
are to perform reliable identification or authentication. Compensation is carried out independent of the
measurement, during post-processing, simply by taking ratios of delays for different loops, or for different
challenges on the same loop.

5 Applications

What are the benefits of having a unique hardware chip? We believe there are many, and we describe a
few applications here. Other applications can be imagined by studying the literature on secure copro-
cessors. In particular, [Yee94] describes many applications that this work should be applicable to. The
authenticated identification application that is listed applies to PUF's in general. The other applications
require SPUF's in order to be possible, the relevant theory can be found in [GCvDDO02].

5.1 Authenticated identification

The easiest application to implement is identification. One widespread application is smartcards. We
can create a smartcard with a PUF, and each time the PUF-smartcard is used, the card reader can
ask the card for responses to a specific set of challenges to identify the PUF. In this case each time the
PUF-smartcard is used, a new set of challenges has to be used, else the PUF-smartcard is subject to
replay attacks. This does not pose a problem, since the card manufacturer can create a large number of
challenge-response pairs before the PUF-smartcard is given to a user.

With current methods, it is possible for someone who is in possession of a smartcard to produce a
clone of it, by extracting its key information through one of many well documented attacks. If someone
loses track of her card for a while, her card can potentially have been cloned. Being in physical possession
of the smartcard is therefore not synonymous to being safe. With a PUF on the smartcard that can be
authenticated and identified, there is no longer any need for a digital key that can be easily extracted.
The smartcard hardware is itself the secret key. This key cannot be duplicated, so a person can lose
control of the PUF-smartcard, retrieve it, and continue using it. In this way it is possible to lend the
PUF-smartcard to a “friend” without causing a permanent breach of security.

5.2 Proof of Execution on a Specific Processor

At present, computation power is a commodity that undergoes massive waste. Most computer users
only use a fraction of their computer’s processing power, though they use it in a bursty way, which
justifies the constant demand for higher performance. A number of organizations, such as SETI@home
and distributed.net, are trying to tap that wasted computing power to carry out large computations in



a highly distributed way. This style of computation is unreliable, however, as the person requesting the
computation has no way of knowing that it was executed without any tampering.

With chip authentication, it would be possible for a certificate to be produced that proves that a
specific computation was carried out on a specific chip. The person requesting the computation can then
rely on the trustworthiness of the chip manufacturer who can vouch that he produced the chip, instead
of relying on the owner of the chip.

There are two ways in which the system could be used. Either the computation is done directly on
the secure chip, or it is done on a faster insecure chip that is being monitored in a highly interactive
way by supervisory code on the secure chip.

5.3 Code that Runs Only on a Specific Processor

The software industry is always looking for ways to limit the use of its products. We are exploring ways
in which a piece of code could be made to run only on a processor with a PUF. In this way, pirated
code would fail to run. One method that we are considering is to encrypt the code using the PUF’s
challenge-response pairs on an instruction per instruction basis.

6 Experiments

To date, a number of experiments have been conducted using Xilinx XC25200 Field Programmable Gate
Arrays (FPGAs). The results to date are preliminary, but provide evidence that silicon PUFs can be
used to perform reliable authentication, and that it is hard for the adversary to create a timing model
of the PUF.

6.1 Usable Process Variability is Present

FPGAs are an example of a high-volume part where the manufacturing process is tuned to produce ICs
that are as identical as possible in order to maximize yield and performance. Our experiments indicate
that even a highly-optimized manufacturing process designed for predictability has enough variability
to enable reliable identification.

In all our experiments, we compare delays across two or more FPGAs with each FPGA
being programmed by exactly the same personality matrix. This means that each FPGA has
exactly the same logic circuit, and moreover the circuit is implemented in FPGA modules in the exact
same locations. Therefore, these FPGAs can be viewed as copies of the same IC.

In our first experiment each FPGA is equipped with 8 self-oscillating loops, the circuit for which is
shown in Figure 1. Each loop is made up of 32 buffers® and an inverter. We determine the frequencies of
the loops by measuring the number of oscillations they make during a certain period of time (typically
220 cycles of an external 50 MHz oscillator). The period of the loops is on the order of 60ns.

We ran experiments to quantify measurement errors, inter-FPGA variation, variation due to ambient
temperature and variation due to power supply voltage variations. To summarize our findings, the
following standard deviations are given in parts per million (ppm). A deviation of n ppm around a
frequency fo corresponds to a deviation of %2. These deviations correspond to measurement across
several FPGAs.

1. Consecutive measurements of the same delay produce slightly different results because of measure-
ment inaccuracy inherent in the loop circuit circled in Figure 1. The standard deviation of this
measurement error with compensated measurement is 30 ppm.

2. The standard deviation in inter-FPGA delays with compensated measurements is from 5000ppm
to 30000ppm depending on the pair of loops that is used for the measurement. Figure 3 shows an
example of the relationship between measurement error and inter-FPGA variation for four different
FPGAs. Clearly identification information can be extracted from the frequencies of the loops that
we are measuring.

5In this context, a buffer is simply a logic gate that copies its input to its output with a short delay.
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Figure 3: These histograms show the relation between measurement error (width of a peak) and inter-
FPGA variation (each peak is for a different FPGA), with and without compensation. Clearly information
about the FPGA’s identity can be extracted from these measurements.

3. The frequency of a loop can be influenced by nearby circuitry. To try to evaluate the magnitude of
this interference we compared the frequency of one of the loops when the other loops on the FPGA
were turned on or off. The deviation we observed was 10ppm. Figure 4(a) shows the frequency
distribution for a loop when the other loops are turned on or off.

4. The variation in frequency when the ambient temperature is varied from 25 to 50 degrees Celsius
is 50000ppm for uncompensated measurements. This is sufficient to prevent FPGA identification.
Fortunately, compensation reduces this to 100ppm. Figure 5 illustrates the temperature dependence
with and without compensation.

5. Power supply voltage variations are also compensated to a large extent using our scheme. Around
the FPGA’s 2.5V operating point, the variation of the compensated measurement with voltage is
about 3000ppm/V as shown in Figure 4(b). In practice external power supply variations can be
kept to within 1%, which corresponds to 1% x 2.5V x 3000ppm/V = 75ppm. Therefore, state-
of-the-art voltage regulators will suffice to keep the supply voltage within tolerable bounds. It is
interesting to note that the compensated measurement seems to have an extremum around 2.7V.
By running the FPGAs at 2.7V instead of 2.5V this extremum could be used to further improve
the robustness of the measurements.

6. Circuit aging can create variance in measurements carried out over a long period of time. However,
the effect of circuit aging is typically significantly less than power supply or temperature variation.
Future study will have to check the impact of aging on the measurements.

To summarize the experiments in this section, compensated measurements enable reliable identifica-
tion under appreciable environmental variations.

We note that variance in a manufacturing process can be increased quite easily by making small
changes in the fabrication steps, e.g., not regulating temperature and pressure as tightly, and increased
variance will allow reliable identification under a greater amount of environmental variation. Also, with
the advent of deep submicron (e.g., 90 nm) devices, there is greater intrinsic fluctuation for minimum
width devices due to lithography tolerance and dopant fluctuation [WT93]. Finally, an IC containing a
PUF could be placed in an environment-resistant board to improve reliability.

10
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Figure 4: The two histograms presented on the left show the measurement for a loop with the other loops
on the FPGA turned on or off. The influence of the other loops is smaller than the measurement error, and
should not hinder IC identification. Variation of compensated measurement with power supply voltage.
The plot on the right shows compensated measurement dependency on power supply voltage. By running
the FPGASs near the 2.7V extremum, it might be possible to further reduce the voltage dependency.

6.2 How hard is model building?

We ran the same experiments on the demultiplexer circuit shown in Figure 6. A circuit with 12 stages
was used in our experiments.

The observed measurement error, inter-FPGA variation and dependence on environmental conditions
were compatible with the results from section 6.1.

In addition to confirming the results from the previous experiments, the new circuit was able to
show us the effect of challenges on the frequency of the self-oscillating. Figure 7 shows the compensated
response of two different FPGAs as a function of the input challenge.

There is a clear dependency of the output on the challenge. Moreover, and quite predictably, there
is a lot of structure in the challenge-dependence of the response. This structure is common to the two
FPGAs and is due to large differences between paths in given stages of the delay circuit. To actually see
a difference between the two FPGAs, one must look at the small scale differences between the two plots
(we are looking for 1% variations on a plot that covers 50% variations). These differences are present,
and appear most clearly as a difference in texture between the plots for the two chips.

The reason why such as simple circuit was chosen for this experiment is that we wanted to quantify
how well an adversary could simulate the circuit by choosing an additive delay model. Indeed, suppose
that the adversary wanted to create a model for the demultiplexer circuit of Figure 6. He reasons that
the delay of the circuit under each challenge is the delay of the actuated path for that challenge. He can
assume a linear delay model, where the delay of a path is the sum of the delays of the devices and wires
on that path. By measuring the delay of a set of paths that cover all the devices and wires in the circuit,
he can set up a linear system of equations that relate the unknown device and wire delays to known
path delays. He can then solve for the device and wire delays, thereby obtaining a model of the circuit,
which he can then simulate to guess at the response for an arbitrary challenge. The question then is:
“How accurate is the model created by the adversary?” If the model is inaccurate, then the adversary
can try to augment it by adding nonlinearities or additional variables, and continue. The effort involved
in nonlinear model building is considerably higher but also difficult to quantify. Here, we will restrict
ourselves to quantifying the complexity/error tradeoff of linear model building.

To quantify the accuracy of a linear model that the adversary can build, we measured the delays

11
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Figure 5: These graphs show the results of an experiment in which two FPGAs had their ambient temper-
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Figure 7: Compensated Delay versus Input Challenges for the Demultiplexer circuit on two different
FPGAs.
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of all 2" paths in a n = 12-stage demultiplexer circuit. FEach of these paths corresponds to a different
challenge. For a pair of paths P, and P, whose challenges differ in exactly one bit, the paths share all
but one device. The adversary may assume a linear delay model which implies that the relationship
between the path delays is

Pl—szdz—dJ

The d; and d; pairs are marked on Figure 6.

Using all 2" measured delays, we determined a mean and standard deviation for each of the d; — d;
quantities. This standard deviation is characteristic of the inaccuracy of the linear model, we shall call
it ocale- In our experiments ., was between 5ppm and 30ppm, which is roughly the same as the
environmental variations that we have to deal with. Thus, the linear model might be a valid way of
breaking simple circuits such as single event sensitizable circuit of Figure 6.

Nevertheless, even if the linear delay model gives results that are within the tolerances that the
adversary has to meet, he may not be able to use it to efficiently to simulate the circuit. Indeed, when
he uses the linear delay model, the adversary is essentially starting from a challenge he knows a response
to, and adding a certain number of modifications to the corresponding delay to account for differences
between the known challenge, and the one he is trying to calculate the response for. The modeling error,
Ocqlc 18 present for each one of the additions that the adversary performs. It is likely that the error that
is committed when the model is applied multiple times will be greater than the best-case error that we
have evaluated.

For example, if we assume that the errors that the adversary commits at each step of his computation
are Gaussian and independently distributed between steps, then for a k step computation, the adversary
in fact commits an error of vVkoeqe. The number of measurements that the adversary would have
to make to be able to predict the response to a randomly selected response in fewer than & steps is
exponential in 2, so for big enough n, the linear delay model attack will not be sufficient even for simple
circuits.

The use of circuits such as the variable delay buffer circuit of Figure 2 precludes a linear model based
attack, since the delays are nonlinear functions of the challenge.

7 Ongoing and Future Work

There is still much to be studied about silicon physical unknown functions (PUFs).

First of all, it would be very satisfying to base the security of a silicon PUF on some previously known
hard problem. One approach that we are considering, is to use a known one-way function (OWF), used
out of its normal operating conditions as the PUF circuit. In that case, it might be possible to relate
the security of the PUF to the security of the OWF.

It would also be good to find better ways of measuring physical characteristics of the chip. Measuring
delays directly instead of using self-oscillating circuits would allow the silicon PUF to operate much faster,
allowing it to be used in protocols that require large numbers of uses. Improved measurement techniques
might also make it possible to use circuits with glitches to reliably extract information about the chip.
These circuits would be harder to simulate, making the adversary’s problem harder. Moreover, in the
case of Controlled PUFs, it is possible that differential power analysis techniques could be used on self-
oscillating circuits to read challenges off the PUF against its will. The use of direct delay measurement
should greatly reduce the signature of the delay measurement on the IC’s power supply.

Finally, a detailed study of the physical attacks that the adversary can carry out is necessary. In
particular it is important to know if probing the PUF circuitry using advanced non-invasive techniques
can help build a simulation model of the PUF, and if so the physical barriers that can be placed against
such probing must be considered.

8 Conclusion

We have described the notion of a physical unknown function (PUF) and shown that a silicon PUF can
be created.
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The obvious application of a silicon PUF is authentication. Authentication has be carried out reliably,
minimizing the likelihood of false positives or false negatives. In order to perform reliable authentication,
we proposed a circuit architecture for a PUF where delays are measured relative to other delays. This
lends robustness to our scheme, and preliminary experiments indicate that authentication can be carried
out reliably under significant variations in environmental conditions. To be robust against more signif-
icant environmental variations, careful circuit and package design is required. Fortunately, the VLSI
design community is already addressing these problems in the realm of high-performance circuit design.
In addition, a manufacturing process that produces high variations in device delays will result in higher
signal-to-noise ratios and enable improved reliability.

The most plausible attack on a PUF is the model-building attack, where an adversary has access
to the packaged IC containing the PUF, and can apply arbitrary challenges and monitor the resulting
response. We have presented a preliminary analysis of this problem and our experiments indicate model-
building is hard due to the precision requirements, but more work needs to be done in both analysis and
experimentation.

While many problems remain to make PUFs useful and practical, we believe that this is a very
promising research direction.
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