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Abstract

This thesis presents a specification-based technique for generating, augmenting, and minimizing
test suites. The technique is automatic but assumes the existence of a test case generator. The
technique dynamically induces specifications from test suite executions. Test suites can be generated
by adding cases until the induced specification stops changing. The resulting test suites have better
fault detection than suites of the same size with 100% branch coverage. Augmenting an existing test
suite, such as a code-covering suite, also increases its fault detection. Minimizing test suites while
holding the generated specification constant compares favorably to previously-known techniques.

These positive results can be explained by two insights, which the thesis also justifies experi-
mentally. First, given an a priori specification (an oracle), the specification coverage of a test suite
compares the suite’s induced specification with the oracle. Experiments show that specification
coverage is correlated with fault detection, even when test suite size and code coverage are held
constant. Second, when tests are added at random to a suite, specification coverage increases
rapidly, then levels off at a high value. Even without knowing the ideal specification that would be
induced by all possible tests, it is possible to produce a specification very near that one.

The thesis’s test suite generation and augmentation technique increases the specification coverage
of the test suite, but without knowing the oracle specification and without examining the code. In
addition to improving fault detection, the technique generates a specification close to the oracle,
which has many benefits in itself.

This technical report is a reformatted version of the author’s Masters thesis of the same title, published by MIT in
May, 2002. He was advised by Michael Ernst, Assistant Professor of Electrical Engineering and Computer Science.
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Chapter 1

Introduction

Program specifications are useful in many aspects of
program development, including design, coding, formal
verification, optimization, and maintenance. Specifica-
tions serve these purposes largely by documenting pro-
gram behavior; this documentation is used by humans
and, when formalized, by other programs.

Specifications also play a valuable role in dynamic anal-
yses such as software testing [GG75b, ROT89, CRS96,
OL99]. Previous research on specification-based testing
has required software testers to provide a specification.
The research is limited by the fact that very few pro-
grams are formally specified —most lack even assert
statements and comments—and the desire of software
engineers to improve existing test suites or to use other
tools for selecting test cases.

This thesis proposes and evaluates new specification-
based testing techniques that do not require a specifica-
tion to be provided a priori, that automatically provide
users with a specification for the program under test, and
that enable augmentation, minimization, or generation of
test suites in cooperation with any existing technique for
test case generation. The generated specification provides
the benefits of an a priori specification, such as revealing
removed functionality and checking test results, for future
testing.

The key ideas behind the research are automatic dy-
namic generation of specifications from program execu-
tions, and comparison of specifications to one another.
The remainder of this thesis provides additional details
and evaluation, showing how these ideas can be used to
improve test suites.

1.1 Motivation

This thesis investigates a new technique for improving the
fault detection of test suites. An ideal test suite detects
every possible fault in a program. Such a test suite can
be created by mapping every possible input to the desired
output. However, this is infeasible for even small pro-
grams. A program taking two 32-bit integer arguments
requires over 18 million billion test cases.

In practice, test suites only cover a small fraction of the
input space. Test suite size is constrained by two factors:

execution time and creation effort. The execution time
dictates how convenient it is to run a test suite, and how
frequently it can be run. For example, if a test suite needs
to run once per day, its execution time cannot exceed
24 hours. Test suites also require considerable effort to
create — most testing requires humans to generate the
expected output for each test case.

There is a tradeoff between test suite size and fault
detection. Adding test cases increases size, but only some
test cases increase fault detection. The tester’s goal is
to select the test cases with the highest probability of
detecting faults.

However, it is impossible to directly measure the fault
detection of a test suite in the field. We don’t know what
faults exist in our program right now, and we can’t know
what faults we may introduce in the future. Instead, we
create test suites using techniques we believe are good
predictors of fault detection. Previous techniques include
human intuition, code coverage based techniques, and
specification based techniques.

A common method for generating test suites is human
intuition. A tester studies the program’s source code or
specification, and writes test cases he believes will do a
good job of detecting faults in the program. Special at-
tention may be paid to boundary values in the program
or specification, and test cases for reported bugs may be
added to a regression test suite. The tester’s job is com-
plete when he “feels” he has thoroughly tested the code.

Using this method alone is undesirable for many rea-
sons. It is time-consuming, error-prone, and inconsis-
tent. It is very easy for a tester to miss an important
test case, and different testers may produce very different
test suites.

A more formal technique for generating test suites uses
code coverage metrics. The code coverage of a test suite
measures how many source code constructs are exercised.
Popular code coverage metrics include statement coverage
and branch coverage. Statement coverage is defined as the
number of program statements executed at least once,
divided by the total number of reachable statements.
Branch coverage is similar, except it counts branches
taken instead of statements executed. To improve a test
suite using a code coverage metric, test cases are added



until the metric reaches a certain level, usually 100%.

Code coverage techniques are well-known, well-studied,
and have good tool support. However, they also have
weaknesses. First, the technique does not guarantee 100%
fault detection. In our experiments, test suites with 100%
code coverage had fault detection rates varying from 16%
to 96% (Section 4.4). Second, there is the problem of
identifying which features in the program are reachable.
Static analyses can identify some, but not all, unreach-
able program fragments. Third, it is unclear what the
technique recommends for test suites that already have
100% code coverage. Possibilities include combining in-
dependent test suites with 100% coverage, or requiring
that each code feature be covered multiple times.

The code coverage techniques are also displeasing philo-
sophically. What we really care about is a program’s
behavior, not its source code. Measuring properties of
the source code seems one step removed from our true
concern. A more promising technique may be to mea-
sure properties of a program’s behavior, as captured by a
specification.

Several techniques have been proposed for using speci-
fications in testing. Most of the techniques generate test
cases, or test case specifications, from a program specifica-
tion. Other techniques select test cases using a notion of
specification coverage similar to code coverage; each prop-
erty of the program specification must be covered at least
once. Previous specification-based techniques require the
programmer to provide an a priori program specification.
This prevents the tools from being widely used, since most
programs are not formally specified.

This thesis introduces and evaluates the specification
difference (SD) technique. The SD technique attempts
to address the weaknesses of the previous techniques. It
is fully automatic, presuming the existence of a test case
generator. It is specification based, but requires no a pri-
ori specification. All specifications are automatically gen-
erated from program executions. And it is complimentary
to code coverage techniques, because it can improve test
suites with 100% code coverage.

1.2 Approach

The specification difference technique (SD) is based on
comparing specifications automatically generated from
test suite executions. The technique relies on the fol-
lowing assumption. If two test suites produce different
specifications, and one suite is a subset of the other, we
assume the specification generated from the larger test
suite is closer to the oracle specification. The oracle spec-
ification contains all true statements in the specification
grammar.

We feel this is a valid assumption, based on the prop-
erties of dynamically analyses. Dynamically analyses are
necessarily unsound, since they can only reason based on
program executions they have seen thus far. Given more

information, a dynamic analysis will generally produce a
result no worse than its previous result.

Our current implementation of the SD technique uses
the Daikon invariant detector [ECGNO1, Ern00] to dy-
namically generate specifications from execution traces,
but a different dynamic specification generator could eas-
ily be used instead. Daikon generates a likely specification
by observing program executions. It reports invariants
that were true for all executions and deemed unlikely to
happen by chance.

The specification difference technique generates test
suites by adding test cases until the specification stops
changing. At this point, the generated specification will
be close to the oracle specification (Section 6.3). It turns
out that these test suites have good fault detection (Chap-
ter 4). This makes intuitive sense — if the program spec-
ification can be recovered from the test suite, the suite
must be exercising the program well.

1.3 Contributions

The thesis of this research is that specifications gener-
ated from program executions can be leveraged for testing
tasks.

The first contribution of this research is the proposal of
the specification difference (SD) technique for generating,
augmenting, and minimizing test suites. The technique
is fully automatic (assuming the existence of a test case
generator), and no a priori specification is required. This
makes the technique more likely to be used in practice,
since the barrier to entry is quite low. The SD technique
can be combined with code coverage techniques by aug-
menting an existing suite with 100% code coverage. As
an additional benefit, the SD technique generates an ac-
curate specification for the program under test.

The second contribution of this research is the experi-
mental evaluation of the SD technique. We compare the
average size and fault detection of suites generated at
random, by the SD technique, and by code coverage tech-
niques. The SD technique produces suites of comparable
size and fault detection to those produced by branch cov-
erage techniques. We also determine what types of faults
are best detected by the SD technique. The SD technique
is better than the branch coverage technique at detecting
faults that do not involve a change to the control-flow
graph of the program. SD-augmenting a suite with 100%
branch coverage yields test suites with better fault detec-
tion than either technique alone.

The third contribution of this research is a new notion
of specification coverage. A related contribution is a tech-
nique for determining whether two formal specifications
are different, and how much they differ. Prior notions of
specification coverage assumed a specification clause was
covered if it was satisfied at least once [CR99]. Our spec-
ification generator uses statistical tests to determine the
most likely specification. Thus, it may require several test



cases to cover a clause in the specification. We believe a
statistical method gives a more accurate evaluation of test
suite quality. If a specification asserts that two variables
are equal, we should not consider the assertion covered
until we have seen many executions where the assertion
is true.

1.4 Outline

The remainder of this work is organized as follows.

Chapter 2 provides the relevant background for this
work. It defines what we mean by “specification” and
how we generate specifications from program executions.

Chapter 3 describes the specification difference tech-
nique in more detail, and presents an example showing
how a test suite is generated.

Chapter 4 experimentally evaluates the specification
difference (SD) technique. The results show that the SD
technique compares favorably to previous code coverage
based techniques.

Chapter 5 describes and evaluates enhancements we
made to improve the SD technique.

Chapter 6 describes our notion of specification cover-
age and explains how we compare specifications to one
another. It presents insights that justify the results of
Chapter 4 — specification coverage is correlated with
fault detection, and if it is poor, it increases rapidly as
cases are added to a test suite.

Chapter 7 summarizes related work. Previous research
in specification-based testing has primarily focused on
test case generation, and has required an a priori specifi-
cation.

Chapter 8 outlines future work, which contains ideas
about the specification difference technique and addi-
tional applications of generated specifications.

Chapter 9 concludes.



Chapter 2

Background

This chapter first provides some background about
specifications. Then it briefly overviews our dynamic
(runtime) technique for automatically inducing specifi-
cations from program executions— equivalently, from a
program plus a test suite. The specific details are not
germane to the present thesis, which uses the specifica-
tion generator as a black box, and which could equally
well use any other technique for generating specifications
from a test suite. Last, this chapter explains what we
mean by “specification”, since it is a rather vague term
in software engineering.

2.1 Formal specifications

A formal specification is a precise mathematical abstrac-
tion of program behavior [LG01, Som96, Pre92]. Specifi-
cations often state properties of data structures, such as
object invariants, or relate variable values in the pre-state
(before a procedure call) to their post-state values (after
a procedure call). In this thesis, we focus on code speci-
fications rather than high-level specifications that assert
properties about an abstraction represented by program
structures. Some definitions require that the specification
be an a priori description of intended or desired behav-
ior that is used in prescribed ways; we do not adopt that
definition here.

A specification for a procedure that records its maxi-
mum argument in variable maz might include

if arg > maz then max’ = arg else maxr’ = mazx

where maz represents the value at the time the proce-
dure is invoked and max’ represents the value of the vari-
able when the procedure returns. A typical specification
contains many clauses, some of them simple mathemat-
ical statements and others involving post-state values or
implications. The clauses are conjoined to produce the
full specification. These specification clauses are often
called invariants. There is no single best specification for
a program,; different specifications include more or fewer
clauses and assist in different tasks. Likewise, there is
no single correct specification for a program; correctness
must be measured relative to some standard, such as the
designer’s intent, or task, such as program verification.

2.2 Automatic dynamic genera-
tion of specifications

Our technique for inducing specifications uses dynamic in-
variant detection [ECGNO1, Ern00] to extract likely pro-
gram invariants from program executions, then combines
the reported invariants into a specification. An invari-
ant is a property that is true at some point or points in
the program, such as a method precondition or postcon-
dition, an object invariant, or the condition of an assert
statement. Our experiments use the Daikon invariant de-
tector, whose output includes conditionals, pre- and post-
state variables, and properties over a variety of data struc-
tures [EGKN99]. Thus, the output is often a high-quality
specification that matches human-written formal specifi-
cations or can be proved correct [NEO1b, NEOla]. Even
lesser-quality output forms a partial specification that is
nonetheless useful [KEGNO1]. The specifications are un-
sound: the properties are likely, but not guaranteed, to
hold.

Full details on dynamic invariant detection appear else-
where [ECGNO1, Ern00], but those details are not rel-
evant to the present thesis. Briefly, a dynamic invari-
ant detector discovers likely invariants from program ex-
ecutions by running the program, examining the values
that it computes, and detecting patterns and relation-
ships among those values. The detection step uses an ef-
ficient generate-and-check algorithm that reports proper-
ties that hold over execution of an entire test suite (which
is provided by the user). The output is improved by sup-
pressing invariants that are not statistically justified and
by other techniques [ECGNO00]. (The statistical tests use
a user-settable confidence parameter. The results in this
thesis use the default value, which is .01. We repeated the
experiments with values between .0001 and .99, and the
differences were negligible. Therefore, we conclude that
our results are not sensitive to that parameter.)

As with other dynamic approaches such as testing and
profiling, the accuracy of the inferred invariants depends
in part on the quality and completeness of the test suite.
When a reported invariant is not universally true for all
possible executions, then it indicates a property of the
program’s context or environment or a deficiency of the



test suite. In many cases, a human or an automated tool
can examine the output and enhance the test suite.

The Daikon invariant detector is language independent,
and currently includes instrumenters for the C [KR88],
IOA [GL00], and Java [AGHO00] languages. Daikon is
available from http://pag.lcs.mit.edu/daikon/. While
our experiments rely on the Daikon tool, the ideas gen-
eralize beyond any particular implementation of speci-
fication generation. Our experiments used a version of
Daikon that instruments source code, but both a previ-
ous and a more recent version of Daikon work directly on
binaries. The dynamic invariant detection technique does
not require source and does not depend on any internal
structure of the program component being analyzed; in
that sense, the technique is black-box.

2.3 Types of specifications

Specifications are used in many different stages of devel-
opment, from requirements engineering to maintenance.
Furthermore, specifications take on a variety of forms,
from a verbal description of customer requirements to
a set of test cases or an executable prototype. In fact,
there is no consensus regarding the definition of “specifi-
cation” [Lam88, GJMI1].

Our research uses formal specifications, as defined in
Section 2.1. This definition is standard, but our use of
specifications is novel. Our specifications are generated
automatically, after an executable implementation exists
(Section 2.2). Typically, software engineers are directed
to write specifications before implementation, then to use
them as implementation guides — or simply to obtain the
benefit of having analyzed requirements at an early design
stage [Som96].

Despite the benefits of having a specification before
implementation, in practice few programmers write (for-
mal or informal) specifications before coding. Nonethe-
less, it is useful to produce such documentation after the
fact [PC86]. Obtaining a specification at any point dur-
ing the development cycle is better than never having a
specification at all. Post hoc specifications are also used in
other fields of engineering. As one example, speed binning
is a process whereby, after fabrication, microprocessors
are tested to determine how fast they can run [Sem94].
Chips from a single batch may be sold with a variety of
specified clock speeds.

Some authors define a specification as an a priori de-
scription of intended or desired behavior that is used in
prescribed ways [Lam88, GJM91]. For our purposes, it
is not useful to categorize whether a particular logical
formula is a specification based on who wrote it, when,
and in what mental state. (The latter is unknowable in
any event.) Readers who prefer the alternative definition
may replace the term “specification” by “description of
program behavior” (and “invariant” by “program prop-
erty”) in the text of this thesis.

We believe that there is great promise in extending
specifications beyond their traditional genesis as pre-
implementation expressions of requirements. One of the
contributions of our research is the insight that this is
both possible and desirable, along with evidence to back
up this claim.



Chapter 3

Technique

This chapter describes the specification difference (SD)
technique for generating, augmenting, and minimizing
test suites. The SD technique compares the specifica-
tions induced by different test suites in order to decide
which test suite is superior. (Sections 6.3 and 6.4 justify
the technique.)

The specification difference technique is fully auto-
matic, but for test suite generation and augmentation,
it assumes the existence of a test case generator that pro-
vides candidate test cases. In other words, our technique
selects, but does not generate, test cases. Test cases may
be generated at random or from a grammar, created by
a human, selected from a test pool, or produced in any
other fashion.

3.1 Generation

This section describes the most basic specification dif-
ference generation technique, which will be referred to
as SD-base for the remainder of this thesis. Start with
an empty test suite, which generates an empty specifi-
cation. Generate a new specification from the test suite
augmented by a candidate test case. If the new speci-
fication differs from the previous specification, add the
candidate test case to the suite. Repeat this process until
some number n of candidate cases have been consecu-
tively considered and rejected. A pseudocode implemen-
tation of the technique is presented in Figure 3.1.

This is similar to a previous technique for generating
suites with 100% branch coverage [RH98]. Starting with
an empty test suite, add candidate test cases as long as
they increase the branch coverage of the suite. Repeat
until the suite contains at least one case that would exer-
cise each executable branch in the program.

There are two key differences between the SD-base
technique and the branch coverage technique. First,
adding a test case can only improve the branch cover-
age of a suite, but it may either improve or worsen the
generated specification of a suite. We don’t know the goal
specification, so we don’t know if a changed specification
is closer to or farther from the goal. Second, the branch
coverage technique is finished when the suite covers all

procedure SD-GENERATE (program P, int n)
testsuite T «— {}
inti:—0
while i < n do
testcase ¢ «— NEWCASE()
if SPEC(P, T') # SPEC(P, T U{c}) then
T —TU{c}
i —0
else
t—1t+1
end if
end while
return 7'

Figure 3.1: Pseudocode implementation of the SD-base
test suite generation technique. NEWCASE is a user-
specified procedure that generates a candidate test case;
our experiments randomly select test cases from a pool.
SPEC is a procedure that generates a specification from a
program and a test suite; our experiments use the Daikon
invariant detector (Section 2.2).

executable branches. However, the SD-base technique is
finished when the specification stops changing. Again, we
don’t know the goal specification, so we can never know
with certainty when to stop adding test cases. This issue
is discussed in Section 8.1.5.

3.1.1 Enhancements

We made two enhancements to the SD-base technique to
improve the quality of the generated test suites. First,
we selected candidate test cases using the choosed algo-
rithm (Section 5.1), which evaluates four candidate cases
simultaneously and selects the case that changes the spec-
ification most. Second, after generating a test suite we
minimized it using the SD minimization technique (Sec-
tion 3.3). For the remainder of this thesis, when we refer
to the SD generation technique, we mean the SD-base
technique plus these two enhancements.

In Chapter 5, we explain the choose4 algorithm, present
evidence showing that these enhancements improve the



procedure SD-MINIMIZE (program P, testsuite T)

specification S = Spec(P, T)
for all testcase c € T' do

if SPEC(P, T — {c}) = S then

T—T-—{c}

end if
end for
return T

Figure 3.2: Pseudocode implementation of the specifica-
tion difference test suite minimization technique. SPEC
is a procedure that generates a specification from a pro-
gram and a test suite; our experiments use the Daikon
invariant detector (Section 2.2).

SD-base generation technique, and provide intuition for
why the enhancements work.

3.2 Augmentation

The specification difference augmentation technique is
identical to the SD-base generation technique, except the
process is started with an existing test suite rather than
an empty test suite. We did not make any enhancements
to the SD augmentation technique, although we plan to
evaluate the choose4 enhancement in the future.

3.3 Minimization

The specification difference minimization technique oper-
ates analogously to the SD generation and augmentation
techniques. Starting with a test suite, generate a spec-
ification. For each test case in the suite, consider the
specification generated by the test suite with that case
removed. If the specification does not differ, then remove
the test case from the suite. The resulting suite generates
the same specification as the original, but is smaller. A
pseudocode implementation of the technique is presented
in Figure 3.2.

As with many minimization techniques, the SD tech-
nique does not guarantee that the minimized suite is the
absolute minimum set of cases that can generate the orig-
inal specification. To do so could have a worst-case run-
time of 2°, where s is the size of the original suite, since
it could require examining every subsuite of the original
suite. (A technique like Delta Debugging [ZH02] may be
able to reduce the cost.) Generated specifications are a
multiple-entity criterion in that no one test case alone
guarantees that a particular invariant is reported; rather,
several cases may be required, and adding cases may even
reduce the size of the generated specification.

3.4 Example

This section presents an example of generating a test suite
using the SD-base technique (Section 3.1). Assume we are
using n = 3, meaning the generation process will termi-
nate once 3 test cases have been consecutively considered
and rejected. Also assume we have a specification genera-
tor that reports the following properties at function entry
and exit points:

e var = constant

e var > constant

e var < constant

e var = var

e property = property

The last item is a way to express conditional properties
— when the first property is true, the second property
must also be true.

We will apply the SD-base technique to a function that
computes the absolute value of an integer:

int abs(int x) {
if (x >= 0)
return x;
else

return -x;

3

We start with an empty test suite and empty specifica-
tion. Next, we select a candidate test case from our test
case generator. We select the test case “5”, so we gen-
erate a specification from our program and the test suite

{5}:

abs:ENTER
x ==
abs:EXIT
x == orig(x)
return == Xx

The first property states that x equals 5 at the func-
tion entrance. The second property states that the value
of x at the procedure exit equals the value of x at the
procedure entry. The third property states that the re-
turn value of the function is equal to x. This isn’t a very
good specification of the absolute value function, but it
is accurate for the one test case we have seen.

The specification generated for the test suite {5} is dif-
ferent from the specification for the empty test suite, so
the test case “5” is accepted. The results of adding sub-
sequent test cases are summarized in Figure 3.3.

The process is terminated after test case “4”, since
3 test cases have been consecutively considered and re-
jected. The final test suite generated by the SD-base
technique is {5,1,—1,—6,0}.



Test case Specification
(if different from previous)
abs:ENTER abs:EXIT

) X == x == orig(x)
X == return

1 x >= 1 x == orig(x)
X == return

4

-1 (x >= 1) => (x == return)
(x == -1) => (x == -return)
return >= 1

—6 (x >= 1) => (x == return)
(x <= -1) => (x == -return)
return >= 1

-3

0 (x >= 0) => (x == return)
(x <= -1) => (x == -return)
return >= 0

7

-8

4

Figure 3.3: Example of generating a test suite via the SD-base technique. The test cases are considered in order
from top to bottom, and added to the suite if the specification changes. The process terminates when 3 test cases
have been consecutively considered and rejected.

10



Chapter 4
Evaluation

This chapter evaluates the SD generation, augmenta-
tion, and minimization techniques by comparing them to
previous code coverage based techniques.

4.1 Subject programs

Our experiments analyze eight C programs. Each pro-
gram comes with a pool of test cases and faulty versions.
Figure 4.1 lists the subjects.

The first seven programs in Figure 4.1 were created
by Siemens Research [HFGO94], and subsequently mod-
ified by Rothermel and Harrold [RH98]. The Siemens
researchers generated tests automatically from test spec-
ification scripts, then augmented those with manually-
constructed white-box tests such that each feasible state-
ment, branch, and def-use pair was covered by at least 30
test cases. The Siemens researchers created faulty ver-
sions of the programs by introducing errors they consid-
ered realistic. Each faulty version differs from the canon-
ical version by 1 to 5 lines of code. They discarded faulty
versions that were detected by more than 350 or fewer
than 3 test cases; they considered the discarded faults too
easy or too hard to detect. (A test suite detects a fault if
the output of the faulty and correct versions differ.)

The space program interprets Array Definition Lan-
guage inputs and has been used as a subject in a number
of testing studies. The test pool for space contains 13585
cases. 10000 were generated randomly by Vokolos and
Frankl [VF98], and the remainder were added by Graves
et al. [GHK™01] until every edge was covered by at least
30 cases. Each time an error was detected during the
program’s development or later by Graves et al., a new
faulty version of the program (containing only that error)
was created.

Some of our experiments use test suites randomly gen-
erated by selecting cases from the test pool. Other exper-
iments use statement, branch, and def-use coverage suites
generated by Rothermel and Harrold [RH98]. These
suites were generated by picking tests from the pool at
random and adding them to the suite if they added any
coverage, until all the coverage conditions were satisfied.
There are 1000 test suites for each type of coverage, ex-
cept there are no statement or def-use covering suites for

11

space.

For the SD generation and augmentation techniques,
we generated candidate test cases by selecting randomly
from the test pool.

4.2 Measurement details

This section describes how various measurements were
performed. Others, such as code size, are standard.

Test suite size. We measured test suite size in terms of
test cases and function calls. Our primary motivation for
measuring these quantities is to control for them to avoid
conflating them with other effects.

Each test case is an invocation of the program under
test. This measure of size is most readily apparent to the
tester: in our case, it is the number of lines in the script
that runs the suite.

The number of test cases is an incomplete measure of
test suite size, because a single case might execute only a
few machine instructions or might run for hours. There-
fore, we also measured the number of non-library function
calls performed during execution of the test suite. This
is a more accurate measure of how much the test suite
exercises the program, and it is an approximation of the
runtime required to execute the test suite.

Code coverage. For simplicity of presentation, we use
the term “code coverage” for any structural code cover-
age criterion. We measured statement coverage using the
GCC gcov tool and branch coverage using Bullseye Test-
ing Technology’s C-Cover tool. Unreachable code and un-
realizable paths in the programs prevent the tools from
reporting 100% coverage. We normalized all code cover-
age measurements by dividing by the fraction of state-
ments or branches covered by the pool of test cases. The
fraction of reachable statements ranged from 93% to 98%,
and the fraction of reachable branches ranged from 87%
to 97%.

Fault Detection. A test suite detects a fault (actually,
detects a faulty version of a program) if the output of
the faulty version differs from the output of the correct
version, when both are run over the test suite. The fault



Program size Faulty Test pool Description
Program Functions [LOC[NCNB | versions | cases [ calls [spec. size | of program
print_tokens 18 703 452 7 4130 | 619424 97 lexical analyzer
print_tokens2 19 549 379 10 4115 | 723937 173 lexical analyzer
replace 21 506 456 30 5542 | 1149891 252 pattern replacement
schedule 18 394 276 9 2650 | 442179 283 priority scheduler
schedule2 16 369 280 9 2710 | 954468 161 priority scheduler
tcas 9 178 136 41 1608 12613 328 altitude separation
tot_info 7 556 334 23 1052 13208 156 information measure
space 136 9568 | 6201 34 13585 | 8714958 2144 ADL interpreter

Figure 4.1: Subject programs used in experiments.

“LOC” is the total lines of code; “NCNB” is the number of

non-comment, non-blank lines of code. Test suite size is measured in number of test cases (invocations of the subject
program) and number of non-library function calls at runtime. Specification size is the number of invariants generated
by the Daikon invariant detector when run over the program and the full test pool.

detection rate of a test suite is the ratio of the number of
faulty versions detected to the number of faulty program
versions. Section 4.1 describes how faulty versions were
selected.

4.3 Comparing techniques

This section describes how we compared the SD technique
to code coverage techniques. The techniques generate test
suites of different sizes, and thus it is impossible to di-
rectly compare them. Instead, we create stacked suites
by combining suites of one technique until they reach the
size of the other technique. Since the sizes are equal, we
can compare the techniques using just their fault detec-
tion.

Random selection can create a test suite of any size —
the desired size is an input to the random selection pro-
cess. In contrast, the SD and code-coverage techniques
produce test suites of a specific size. For a certain pro-
gram and test case generator, the SD technique may pro-
duce suites averaging 20 cases, while the branch coverage
technique may produce suites averaging 10 cases. We call
this the natural size of a technique for a given program
and test case generator. There is no direct way to use the
technique to produce test suites with different average
size.

We are primarily interested in two properties of a test
suite improvement technique: the average size and aver-
age fault detection of test suites created by the technique
(Section 1.1). Smaller size is better, and higher fault de-
tection is better. When comparing two techniques, there
are three combinations of these two variables. Consider
the four techniques shown in Figure 4.2.

Technique A is better than B because it produces suites
that are smaller but have the same fault detection. Tech-
niques C is better than B because it produces suites with
the same size but higher fault detection. However, it isn’t
possible to directly compare A to C. Technique A pro-
duces smaller suites, but C produces suites with higher
fault detection. Either technique may be better depend-

fault detection

size

Figure 4.2: Average size and average fault detection of
test suites generated by three different techniques. Tech-
nique A is better than B, and C is better than B, but A
and C cannot be directly compared because they differ in
both size and fault detection.
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ing on one’s needs.

One way to compare A to C is to determine which
would have higher fault detection if the suites were the
same size. Assume technique A could be used to generate
suites of any size. Then point A in Figure 4.2 would
be just one point on the size to fault detection curve of
technique A. If we could construct this curve, we could
determine whether point C lies above, below, or on the
curve, as shown in Figure 4.3.

If point C lies above the curve, then technique C is bet-
ter than technique A, since technique C produces suites
with higher fault detection at its natural size point. Sim-
ilarly, if point C lies below the curve, then technique C
is worse than technique A. Finally, if point C lies on the
curve, the techniques are about equal. We could perform
a similar comparison by examining the size to fault de-
tection curve of technique C and point A.

This leaves the question of how to generate the size
to fault detection curves for the SD and code coverage
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fault detection

size

Figure 4.3: Different potential size vs. fault detection
curves for technique A.

techniques. We use a simple algorithm we call stacking.
Assume we have a pool of test suites generated by a tech-
nique. To generate a stacked suite of size s, we first select
a random suite from the pool. We add its test cases to
the stacked suite, then select another suite and add its
cases. This is repeated until the stacked suite reaches
size s. To reach exactly size s, it is likely we will add only
part of the last suite selected from the pool. We select the
cases randomly to avoid any bias in the natural ordering
of the cases within the suite. The stacking algorithm can
generate test suites of any size from any technique.

To compare techniques A and C in our example, gener-
ate suites using the stacked-A technique with size equal to
the suites of technique C. If the suites of technique C have
higher fault detection, then C is the better technique. If
the suites of technique C have lower fault detection, then
A is the better technique. Similarly, one could generate
suites using the stacked-C technique with size equal to
the suites of technique A.

These two comparisons may disagree: technique A
could be better than stacked-C, while C could be bet-
ter than stacked-A. In this case, the stacking algorithm
would be unable to determine which technique is better.

We use the stacking algorithm to compare the SD and
branch coverage techniques in Sections 4.4 and 4.5, and
to evaluate enhancements to the SD-base technique in
Chapter 5.

Instead of stacking, one could compare test suites by
their so-called efficiency, or fault detection to size ratio.
However, we believe this measurement is not meaningful,
because its judgments may contradict our more reason-
able ones.

4.4 Generation

To evaluate the SD generation technique, we automat-
ically generated test suites for each of the subject pro-
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grams. We compared these to other automatic generation
techniques, including random selection, statement cover-
age, branch coverage, and def-use coverage.

We used n = 50 when generating test suites, meaning
the process is terminated when 50 consecutive test cases
have been considered without changing the specification.
The value chosen for n is a tradeoff between the run-
ning time of the generation process and the quality of the
generated suite. For our subject programs, n = 50 gave
a high level of fault detection and moderate generation
time.

For each subject program, we generated 50 test suites
using the SD technique and measured their average size
and fault detection. Figure 4.4 compares them to other
automatically generated suites. First, we compare SD
suites to code coverage suites (statement, branch, and def-
use) at their natural sizes (Section 4.3). The SD suites
have better fault detection, and are larger, than the state-
ment and branch covering suites. The SD suites have
worse fault detection, but are smaller, than the def-use
covering suites.

The SD suites are closest in size and fault detection
to the branch covering suites, so we created suites by
stacking (Section 4.3) the branch covering suites to equal
the size of the SD suites, and vice-versa. We also created
random suites to equal the size of the SD and branch
covering suites.

The SD and branch coverage suites have much higher
fault detection than randomly generated suites of the
same size. In other words, both the SD and branch cov-
erage techniques capture some important aspect related
to fault detection.

When the SD and branch coverage techniques are com-
pared via stacking, the result is inconclusive. At the nat-
ural size of SD suites, the SD technique performs 8% bet-
ter than branch coverage. However, at the natural size
of branch coverage suites, the SD technique performs 1%
worse than branch coverage.

4.4.1 Detecting specific faults

Depending on the desired size of the test suites, the
SD technique performs from somewhat better to slightly
worse than branch coverage. This may not provide a
compelling reason to use the SD technique. However,
Figure 4.4 shows that the SD technique is superior for
detecting faults in certain programs, and it may be bet-
ter at detecting certain types of faults.

We compared the individual fault detection rates for
the SD technique and the stacked branch coverage tech-
nique. For each fault in each program, we measured the
proportion of times the fault was detected by each tech-
nique. We then used a nonparametric P1 = P2 test to
determine if there was a statistically significant difference
between the two proportions, at the p = .05 level.

For example, fault 7 in print_tokens was detected 14



SD Statement Branch Def-use
fault | size || fault| size fault | size || fault | size
print_tokens 366 | 9.3 || 409 | 14.6 457 | 16.1] .774 | 38.6
print_tokens2 506 | 6.4 || 778 | 11.7 738 | 12.0] .966 | 35.0
replace 451 | 18.1 || .347 | 18.5 361 | 18.7 | .787 | 64.9
schedule .329 | 10.2 || .209 5.8 442 8.6 || .762 |23.9
schedule2 .304 | 13.1 || .209 6.9 242 7.7 .522 | 25.6
tcas 547 | 25.6 || .180 5.2 176 5.8 .163 | 5.5
tot_info 7191 9.4 || .530 6.8 .560 7.4 .704 | 15.0
Average 1460 | 13.2 || .380 9.9 425 | 10.9 || .670 | 29.8
space 795 | 62.5 * * 1909 | 155.2 * *
Grand Average || .502 | 19.3 * * 486 | 289 * *
SD Stack Branch || Random
fault | size || fault| size fault | size
print_tokens .366 9.3 || .329 9.3 151 9.3
print_tokens2 506 | 6.4 || .446 6.4 378 | 64
replace 451 | 18.1 || .357 | 18.1 .264 | 18.1
schedule 329 | 10.2 || .449 | 10.2 251 | 10.2
schedule2 304 | 13.1 || .367 | 13.1 153 | 13.1
tcas 547 | 25.6 || 422 | 25.6 400 | 25.6
tot_info 719 | 9.4 || .553 9.4 420 9.4
space 795 | 62.5 || 778 | 62.5 701 | 62.5
Average 502 | 19.3 || .463 | 19.3 340 | 19.3
Branch Stack SD Random
fault | size || fault| size fault | size
print_tokens 457 | 16.11| .457 16.1 || .186 | 16.1
print_tokens2 738 | 12.0| .658 12.0 || .466 | 12.0
replace 361 | 18.7]| .458 18.7 || .285 | 18.7
schedule 442 8.6 .322 8.6 || .209 8.6
schedule2 .242 7.7 .191 7.7 || .078 7.7
tcas 176 5.8 .214 5.8 || .116 5.8
tot_info .560 741 .665 7.4 || .424 7.4
space .909 | 155.2|| .884 | 155.2 || .811 | 155.2
Average 486 | 28.9| .481 28.9 || .322 | 28.9

Figure 4.4: Test suites created via automatic generation techniques. Fault is the fraction of faults detected. Size

is the number of test cases in the suite. All numbers are

averaged across 50 suites of each type for each program.

Statement and def-use coverage suites were not available for space.

out of 50 times by the SD technique, and 6 out of 50 times
by the stacked branch coverage technique. According to
the statistical test, these proportions are significantly dif-
ferent. We conclude that the SD technique is better than
the stacked branch coverage technique for detecting this
fault.

There are a total of 163 faults in the 8 programs we
examined. The SD technique is better at detecting 65
faults, stacked branch coverage is better at detecting 33
faults, and the difference is not statistically significant for
65 faults.

We examined each fault by hand, to determine if there
was a qualitative difference between the faults detected
best by the SD technique, and the faults detected best
by the stacked branch coverage technique. We deter-
mined whether each fault changed the control flow graph
(CFG) of the program. We treated basic blocks as nodes
of the CFG, so adding a statement to a basic block would
not change the CFG. Examples of CFG changes include:
adding or removing an if statement, adding or removing
a case from a switch statement, and adding or remov-

ing a return statement. Examples of non-CFG changes
include: adding or removing a statement from a basic
block, changing a variable name, changing an operator,
and modifying the expression in the condition of an if
statement. If a fault is not a CFG change, it must be a
change to the value of an expression in the program. Our
results are presented in the following table.

SD Better | Same | Branch Better | Total
CFG 9 11 9 29
Non-CFG 56 54 24 134
Total 65 65 33 163

For detecting CFG changes, the SD technique performs
as well as stacked branch coverage. For detecting non-
CFG changes (changes to values), the SD technique per-
forms over 2 times better than stacked branch coverage.
This makes intuitive sense, because our specifications con-
tain assertions about the values of variables at different
points in the program. Finally, the value changes out-
number the CFG changes by a factor of 4. These faults
were created by people who considered them realistic, so
we can assume the distribution of faults will be similar in

14



Branch SD Aug Stack Branch Stack SD

fault size fault size fault size fault size
print_tokens 457 16.1 .514 19.1 446 19.1 411 19.1
print_tokens2 738 12.0 762 14.8 764 14.8 .588 14.8
replace .361 18.7 .559 30.5 471 30.5 .534 30.5
schedule 442 8.6 .553 18.3 .629 18.3 436 18.3
schedule2 242 7.7 .396 22.9 .460 22.9 .389 22.9
tcas 176 5.8 .645 49.2 .538 49.2 .638 49.2
tot_info .560 7.4 748 15.6 .691 15.6 .730 15.6
space 909 | 155.2 921 | 161.6 .908 161.6 .876 | 161.6
Average .486 28.9 637 41.5 .613 41.5 575 41.5

Figure 4.5: Test suites created using the SD technique to augment branch coverage suites. Fault is the fraction of
faults detected. Size is the number of test cases in the suite. All numbers are averaged across 50 suites of each type

for each program.

Orig SD Random Branch-Min

fault | size || fault | size fault | size fault | size

print_tokens .651 100 .549 48.2 443 48.2 314 7.3
print_tokens2 1920 100 .616 14.4 .540 14.4 .740 6.1
replace .657 | 100 443 | 19.8 281 | 19.8 289 | 10.5
schedule .647 100 449 30.6 .391 30.6 .240 4.8
schedule2 .649 | 100 451 | 39.9 .331 | 39.9 231 4.8
tcas 709 | 100 505 | 26.2 A17 | 26.2 177 4.9
tot_info .887 | 100 .683 | 18.0 .539 | 18.0 .501 5.2
space 754 | 100 736 | 59.4 .685 | 59.4 740 | 48.0
Average 734 | 100 554 | 32.1 453 | 32.1 404 | 11.5

Figure 4.6: Test suites minimized via automatic techniques. Fault is the fraction of faults detected. Size is the
number of test cases in the suite. All numbers are averaged across 50 suites of each type for each program.

practice.

4.5 Augmentation

To evaluate the SD augmentation technique, we automat-
ically augmented 50 branch coverage suites for each of
the programs. Figure 4.5 compares these to the original
suites, to suites augmented by stacking branch coverage
suites, and to suites of the same size created by stacking
SD-generated suites. As with generation, we used n = 50.

On average, suites augmented using the SD technique
have 4% higher fault detection than stacked branch suites
of the same size. Furthermore, the SD-augmented suites
have 11% higher fault detection than stacked SD suites
of the same size. There are two conclusions to draw from
this data. First, the SD technique can be used to im-
prove the fault detection of suites with 100% branch cov-
erage. Second, combining the SD and branch coverage
techniques yields test suites with higher fault detection
than either technique alone.

4.6 Minimization

For each program, we generated 50 random test suites
with 100 cases each. We minimized these by the SD min-
imization technique, by random sampling, and by main-
taining branch coverage. Figure 4.6 shows the results.
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Suites minimized by the SD technique are much smaller
than the original randomly generated suite, but also have
less fault detection. The SD technique has better fault
detection than random minimization. It results in better
fault detection, but also larger test suites, than minimiz-
ing while maintaining branch coverage.



Chapter 5

Enhancements

This chapter describes and evaluates several enhance-
ments to the basic specification difference generation
technique (Section 3.1).

5.1 Choose4

Choosed4 is an alternate algorithm for selecting test cases.
In the SD-base technique, candidate test cases are con-
sidered one at a time. If the test case causes the specifica-
tion to change, the test case is added. In the SD-choose4
technique, four candidate test cases are considered simul-
taneously. The test case that causes the specification to
change most is added, and the other three cases are dis-
carded. If none of the cases cause the specification to
change, all of the cases are discarded. The SD-base and
SD-choosed techniques are otherwise identical. The SD-
choose4 technique is terminated when n consecutive test
cases fail to change the spec (as opposed to n consecutive
iterations of 4 test cases each).

The intuition behind the choose4 algorithm is as fol-
lows. The candidate test case that changes the specifica-
tion most is somehow the most “different” from the test
cases already in the suite. Since the candidate is the most
different, it should be the most likely to detect a fault not
already detected by the suite.

We performed an experiment to determine the efficacy
of this enhancement. For each subject program, we gen-
erated 50 test suites using the SD-choose4 and SD-base
techniques. To compare the two techniques, we stacked
SD-base suites to equal the size of SD-choose4 suites, and
vice-versa (Section 4.3). The results are presented in Fig-
ure 5.1. Size for size, the SD-choose4 technique generates
test suites with higher fault detection than the SD-base
technique.

5.2 SD minimization

The SD minimization technique (Section 3.3) can be ap-
plied to suites generated by the SD-base technique. We
believe this will improve the SD-base technique, since it
will remove the test cases not necessary to generate the
specification. The intuition is that these test cases are
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similar to other cases in the suite, and thus will add little
to fault detection. In particular, the cases added at the
beginning of the SD-base generation technique are essen-
tially chosen at random, since any test case will change
the specification early on.

We performed an experiment to determine the efficacy
of this enhancement. For each subject program, we gener-
ated 50 test suites using the SD-base technique, then ap-
plied the SD minimization technique. To compare the two
techniques, we stacked SD-base suites to equal the size
of SD-minimized suites, and vice-versa. The results are
presented in Figure 5.2. Size for size, the SD-minimized
technique generates test suites with higher fault detection
than the SD-base technique.

5.3 Choose4 with SD minimiza-
tion

The choose4 and SD minimization enhancements can
both be applied to the SD-base technique. This is re-
ferred to as simply the SD technique (Section 3.1.1). For
each subject program, we generated 50 test suites using
the SD, SD-choose4, and SD-minimized techniques. To
compare the three techniques, we stacked the SD-choose4
and SD-minimized techniques to equal the size of the SD
technique, and vice-versa. The results are presented in
Figure 5.3. Size for size, the SD technique generates suites
with the highest fault detection.



Stacked Stacked
SD-choosed SD-base SD-base SD-choose4

fault | size fault | size fault | size fault | size
print_tokens 369 | 11.6 308 | 11.6 394 | 15.6 431 | 15.6
print_tokens2 .526 8.1 .436 8.1 558 | 11.6 .604 11.6
replace 513 | 25.5 472 | 25.5 517 | 29.7 563 | 29.7
schedule .384 14.2 .351 14.2 .387 17.1 .404 17.1
schedule2 411 23.3 .382 23.3 418 23.8 444 23.8
tcas .638 43.7 610 43.7 .644 49.2 .651 49.2
tot_info 732 11.8 .680 11.8 .739 14.2 735 14.2
space 814 | 79.1 .800 | 79.1 821 | 914 821 | 914
Average .548 27.2 505 27.2 .560 31.6 .582 31.6

Figure 5.1: Test suites created by the SD-choose4 and SD-base generation techniques. Fault is the fraction of faults
detected. Size is the number of test cases in the suite. All numbers are averaged across 50 suites of each type for
each program.

Stacked Stacked

SD-minimized SD-base SD-base SD-minimized

fault size fault | size fault | size fault size
print_tokens 377 11.3 294 | 11.3 394 | 11.6 414 11.6
print_tokens2 .528 9.7 .486 9.7 .558 8.1 574 8.1
replace .446 18.5 387 | 18.5 517 | 25.5 .530 25.5
schedule .340 11.9 331 11.9 387 14.2 .404 14.2
schedule2 327 13.6 307 | 13.6 418 | 23.3 422 23.3
tcas .539 26.0 470 26.0 .644 43.7 .651 43.7
tot_info 715 10.7 649 | 10.7 739 | 11.8 719 11.8
space .795 64.9 761 64.9 .821 79.1 .825 79.1
Average 508 20.8 461 20.8 .560 27.2 567 27.2

Figure 5.2: Test suites created by the SD-minimized and SD-base generation techniques. Fault is the fraction of
faults detected. Size is the number of test cases in the suite. All numbers are averaged across 50 suites of each type
for each program.

Stacked Stacked Stacked Stacked
SD SD-ch4 SD-min SD-ch4 SD SD-min SD

fault | size || fault | size || fault | size || fault | size || fault | size || fault | size || fault | size
print_tokens 366 | 9.3 .309 | 9.3 .337 | 9.3 .369 |11.6 .369 |11.6 | .377 |11.3 ]| .406 | 11.3
print_tokens2 || .506 | 6.4 .404 | 6.4|| .382 | 6.4 || .526 | 8.1|| .574 | 8.1|| .528 | 9.7 .604 | 9.7
replace 451 | 18.1 | .440 |18.1| .439 |18.1 || .513 [ 25.5 || .543 | 25.5 || .446 | 18.5| .459 | 18.5
schedule .329 | 10.2 || .336 |10.2 || .320 | 10.2 || .384 | 14.2|| .391 | 14.2 || .340 | 11.9]| .320 | 11.9
schedule2 304 | 13.1 ] .238 |13.1 || .307 |13.1 || .411 |23.3 || .411 |23.3 || .327 | 13.6 || .262 | 13.6
tcas 547 | 25.6 || .520 |25.6 || .547 | 25.6 || .638 | 43.7 || .644 | 43.7 || .539 | 26.0 || .543 | 26.0
tot_info 719 | 9.4 .634 | 9.4 .661 | 9.4 .732 [11.8 .722 |11.8|| .715 | 10.7|| .710 | 10.7
space 795 | 62.5 || .778 |62.5 || .785 |62.5 || .814 | 79.1 || .823 | 79.1 || .795 | 64.9 || .798 | 64.9
Average 502 [ 19.3 || .457 |19.3|| .472 | 19.3 || .548 [ 27.2 || .560 | 27.2 || .508 | 20.8 || .513 | 20.8

Figure 5.3: Test suites created by the SD, SD-choose4, and SD-minimized generation techniques. Fault is the fraction
of faults detected. Size is the number of test cases in the suite. All numbers are averaged across 50 suites of each
type for each program.
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Chapter 6

Why it works

The following two sections explain and justify the in-
sights that led to the specification difference test suite
improvement techniques. First, when tests are added at
random to a suite, the suite’s specification coverage in-
creases rapidly, then levels off at a high value. This sec-
tion defines specification coverage and provides experi-
mental evidence for this claim. Second, Section 6.4 shows
that specification coverage is correlated with fault detec-
tion, even when test suite size and code coverage are held
constant.

6.1 Specification coverage

As discussed in Section 2.1, a specification is a set of as-
sertions about a program, chosen from some grammar.
Assume there exists an oracle specification O, containing
all true assertions in the grammar. Given a test suite,
a specification S can be generated. S contains the as-
sertions that are likely true, based on observations made
while running the program over the test suite.

Define ¢t = |S N O|, the number of true assertions in
S. The precision p of S is the fraction of assertions in
S that are true, so p = t/|S|. The recall r of S is the
fraction of assertions in O that are also in S, so r
t/|O|. Precision and recall are standard measures from
information retrieval [vR79].

We define the specification coverage c¢ of S as the
weighted average of precision and recall, giving ¢ =
ap + (1 — a)r. For simplicity, we choose a = .5, giving
¢ = (p+r)/2. For example, suppose the oracle con-
tains 10 assertions, and the generated specification con-
tains 12 assertions: 9 true and 3 false. The precision is
9/12 and the recall is 9/10, so the specification coverage
is (9/12+49/10)/2 = .825.

Specification coverage measures the difference between
a specification and the oracle. Because it is an average
of precision and recall, it accounts for false assertions
present in the specification, as well as true assertions miss-
ing from the specification. Like other coverage measures,
specification coverage is a value between 0 and 1 inclu-
sive, is 0 for an empty test suite, and is 1 for an ideal test
suite.
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For the purpose of measuring specification coverage, we
used Daikon to generate the oracle specifications. The or-
acle specification is the set of all invariants in Daikon’s
grammar that are true. This is exactly the specification
Daikon would generate, given a good enough test suite.
In the extreme, the test suite containing all valid inputs
to the program would surely be good enough. We didn’t
have such test suites, so we used the pool of test cases for
each program as an approximation. We believe that the
pools are sufficiently large and diverse that adding addi-
tional test cases would not change the generated specifi-
cation.

6.2 Comparing specifications

To calculate specification coverage (Section 6.1), we must
first determine the degree of difference between two spec-
ifications. This is complicated by invariant justification,
filtering of redundant invariants, and invariants of the
same type whose constants are filled in differently. This
issue is also relevant to the specification difference tech-
nique, but less so because we need only determine if two
specifications differ, not by how much.

As stated in Section 2.2, our specifications are a set of
program invariants. FEach invariant has several compo-
nents: its program point, its template, the variables and
constants in the template slots, and its probability.

e The program point identifies where in the program
the invariant holds. Program points include function
entries, function exits, and other locations depending
upon the source language of the program.

The template determines what relationship the in-
variant can express. Daikon currently includes 35
invariant templates. Examples include NonZero (ex-
presses that a variable is never equal to zero) and
LinearBinary (expresses that one variable is always
a linear transformation of another variable).

Each template has a fixed number of variable and
constant slots. An invariant is instantiated by fill-
ing the variable and constant slots of its template.
For example, the NonZero template has one variable



slot and no constant slots, while the LinearBinary
template has two variable and two constant slots (for
y=ax+Db).

The probability is Daikon’s estimate of how likely the
invariant is to happen by chance. It is a number rang-
ing from 0 to 1, with 0 meaning the invariant almost
certainly did not happen by chance. If the proba-
bility is less that some limit (.01 by default), we say
the invariant is justified. Otherwise, the invariant is
unjustified. By default, Daikon only prints justified
invariants. But for the purpose of comparing speci-
fications, Daikon outputs all invariants regardless of
justification.

We determine the difference between two specifications
as follows. First, we attempt to pair each invariant in the
first specification with the corresponding invariant in the
second. Invariants are paired together if they have the
same program point, the same template, and the same
variables in the template slots. Daikon guarantees that
a specification contains at most one invariant for a given
program point, template, and set of variables.

If an invariant has no partner in the other specifica-
tion, and is justified, it counts as a difference of 1. If the
invariant is unjustified, it counts as no difference.

Next, we examine each pair of invariants. Since the in-
variants are paired together, we know they have the same
template and variables. The only possible differences are
the template constants and the probability. The prob-
ability determines whether each invariant is justified or
unjustified. There are several possibilities to consider:

e Same constants, same justification. The invari-
ants are exactly the same, and either both justified
or both unjustified. This counts as no difference.

Same constants, different justification. The in-
variants are the same, but one is justified and the
other is not. This is counted as a difference, but
there are two ways to measure the magnitude. It
may be counted as a difference of 1, or it can be
counted with a magnitude equal to the difference in
probabilities. This is further explained later in this
section.

Different constants, both justified. The invari-
ants are different, and both are justified. This counts
as a difference of 2, since each specification contains
an invariant not present in the other specification.

Different constants, exactly one justified. The
invariants are different, but only one is justified. This
counts as a difference of 1.

Different constants, neither justified. The in-
variants are different, but neither is justified. This
counts as no difference.
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This completes the comparison of the specifications,
since each invariant has been examined.

We mentioned earlier that if two invariants are the
same, but one is justified and the other is not, there are
two ways to count the difference. Either count it as a con-
stant difference of 1, or count it with magnitude equal to
the difference in probabilities. Accounting for the proba-
bilities is important for some tools that compare specifica-
tions. The reason is that many cases may add confidence
to an invariant, but no one case may alone justify the
invariant. Thus, a tool may need to know when the prob-
ability of an invariant changes, even though it remains
unjustified.

However, this method is too sensitive for the specifi-
cation difference technique. Nearly every candidate test
case improves the test suite a little bit, so the generated
suites are very large. For the SD technique, we ignore
specific probabilities, and only consider whether invari-
ants were justified or unjustified.

Another issue is the filtering of redundant invariants.
By default, Daikon filters some invariants that are im-
plied by others. For instance, assume Daikon detected
the following three invariants: x == y, y == z, x == z.
Daikon would not print the last invariant, since it is obvi-
ously implied by the first two. This is normally a desirable
feature, since the specification is more succinct and easier
for people to read. However, this feature is undesirable
when comparing specifications. Assume we are compar-
ing the previous specification to a different specification,
where x == z but the other two invariants are false.

If Daikon filters the redundant invariant, there will be
three differences between the specifications, as illustrated
in the following table. The second specification is missing
two invariants, and has one extra invariant.

Specification 1
X y
y z

Specification 2

X == 2z

If Daikon doesn’t filter the redundant invariant, there
will be only two differences between the specifications.

Specification 1 | Specification 2

X == y
y == gz
X == Z X == Z

Clearly, there are only two “real” differences between
the two specs. If an invariant in one specification is
implied by invariants in the other specification, this
shouldn’t count as a difference. For each invariant, check
if it is logically implied by all the invariants in the other
specification. If it is implied, then it doesn’t count as a
difference. However, checking logical implication of in-
variants is difficult, so in practice, we handle this issue by
disabling Daikon’s filtering of redundant invariants. As
long as the filtering is disabled for both specifications, the
computed difference should be accurate.
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Figure 6.1: Effect of test suite size (measured in cases) on
branch coverage, specification coverage, and fault detec-
tion of randomly-generated test suites, for the tot_info
program.

cases knee calls knee
cases | value calls value
stmt. cov. 10 0.96 2971 0.90
spec. cov. 15 0.81 3243 0.80
branch cov. 20 0.94 3409 0.87
fault detection 53 0.74 11796 0.73

Figure 6.2: Table of knee locations, averaged across seven
programs. These numbers indicate where plots of state-
ment coverage, specification coverage, fault detection,
and branch coverage against time switch from one nearly-
linear component to another; they indicate average posi-
tions of the knees plotted for one program in Figure 6.1.
The first two columns show the x and y coordinates (the
number of cases and the height on the graph) of the knee
on the cases graph, and last two columns show these val-
ues for the calls graph.

6.3 Test suite size

When tests are added at random to a suite, the specifi-
cation coverage increases rapidly, then levels off at a high
value. In other words, there are two distinct types of
test suites. Suites inducing relatively poor specifications
are measurably improved by almost any augmentation.
Suites inducing good specifications are little affected by
augmentation, and the specifications are already so close
to ideal that they can never be substantially improved.

Figure 6.1 plots average branch coverage, specifica-
tion coverage, and fault detection against suite size for
the tot_info program, for 1500 randomly generated test
suites of case sizes 1-500. Figure 6.1 does not plot state-
ment coverage because it lies almost exactly under branch
coverage.

These data are for the tot_info program, but plots for
the other programs had similar shapes. In the plots for all
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eight programs, all measured values rise sharply as suite
size increases, then level off to a nearly linear approach
towards the asymptote.

Figure 6.1 also plots the knee of each curve. We com-
puted the knee by finding the point that minimizes the
summed mean square error of two lines regressed to the
sets of points to its left and right. The knee is the inter-
section of the pair of lines that fit best.

Figure 6.2 gives the average positions of all the knees
across all programs. For these programs, statement cov-
erage grows quickest, reaching nearly complete coverage
after an average of only 10 tests. Specification coverage
levels off only slightly later, but at a lower coverage value.
Branch coverage reaches its knee yet later, but at a level
closer to that of statement coverage. Fault detection takes
the longest to reach its knee, and thereafter continues to
rise appreciably even as test suites are made very large.

The coverage curves indicate that good specification
coverage is achievable in general, even with random suites
of modest size. The knees in the curves support our claim
that iterative augmentation results in suites scoring well
on the coverage criteria (in particular, specification cov-
erage). The relative locations of the knees indicate the
approximate sizes of random suites that one can expect
to achieve good specification coverage, compared to those
that achieve good code coverage.

Finally, the relatively low height of the specification
coverage knee demonstrates that although the inflection
point is reached early, there is still room for improvement.
Incremental improvements in specification coverage can
still be attained, even when statement and branch cover-
age have reached their maxima.

6.4 Fault detection

Section 6.3 demonstrated that high absolute levels of
specification coverage are achievable. This section shows
that increasing specification coverage (that is, improving
induced specifications) results in greater fault detection.
Section 6.4.1 demonstrates the result for arbitrary test
suites, and Section 6.4.2 demonstrates that even when a
test suite achieves 100% code coverage, increasing speci-
fication coverage improves fault detection.

6.4.1 Random suites

We analyzed 1000 randomly generated test suites for each
of the eight programs. The suite sizes, in cases, were
uniformly distributed between 1 and the number of cases
at the fault detection knee (Section 6.3). We did not
consider larger suites, because augmenting a large test
suite has little effect.

For each test suite, we calculated its size (in cases and
calls), statement coverage, branch coverage, specification
coverage, and fault detection. Then, we performed six



Independent Dependent variable

variable spec. cov. [ stmt. cov. [ fault detect.
cases .285 .037 .250
calls .068 —.005 .337
spec. cov. - 741 .130
stmt. cov. .593 - 167
Independent Dependent variable

variable spec. cov. | branch cov. | fault detect.
cases .169 162 229
calls .075 —.005 337
spec. cov. - 723 .095
branch cov. .676 - 234

Figure 6.3: Standardized multiple regression coefficients,
averaged across eight programs. Standardized coefficients
are the coefficients that would be produced if the data
analyzed were in standard score form. “Standard score”
form means that the variables have been standardized so
that each has a mean of zero and a standard deviation of
1. Thus, standardized coefficients reflect the relative im-
portance of the predictor variables. Each column presents
the results from a separate multiple regression.

multiple regressions for each program. This regression in-
dicates how each predictor affects each result, while hold-
ing all other factors constant; for example, it avoids con-
flating the effect of size and coverage, even though larger
suites tend to have more coverage.

Each column of Figure 6.3 presents results of one mul-
tiple regression. For instance, the upper-left regression
uses size and statement coverage as the independent vari-
ables, and uses specification coverage as the dependent
variable. (We performed two sets of three multiple regres-
sions, rather than one set involving all five variables, be-
cause statement coverage and branch coverage are highly
correlated; they fail a test of non-collinearity and bias
the results. Separating the variables avoids this problem.
There is no significant interaction effect among any other
predictor variables at the p = .10 level.)

The coefficients indicate the direction and relative mag-
nitude of correlation between the independent and de-
pendent variables. For example, statement coverage has
a slightly greater standardized effect on fault detection
(.167) than does specification coverage (.130). Branch
coverage has almost 2.5 times more effect on fault de-
tection (.234) than specification coverage (.095). State-
ment and branch coverage are too highly correlated to
be used in the same regression, so their coefficients were
calculated in separate regressions. This means the co-
efficients for statement and branch coverage cannot be
directly compared.

We also computed, but do not show here, raw corre-
lation coefficients. For example, when specification cov-
erage is used to predict fault detection, the coefficient
is .340. This means that if specification coverage is in-
creased by 1 percent, and all other predictors are held
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constant, fault detection increases by .340 percent.

We analyzed the results by examining each dependent
variable (column of the tables) separately.

Specification coverage. Code coverage has a large effect
on specification coverage. If a statement in the program
is never executed, there is no way to see its effect on
the specification. Cases and, less significantly, calls have
small positive effects on statement coverage.

Statement and branch coverage. Specification coverage
has a substantial effect on code coverage. If a specification
is covered well, every statement or path that contributes
to the specification must be covered. Number of cases has
a small effect on statement coverage, and number of calls
has almost no effect.

Fault detection. Specification coverage and statement
coverage have approximately the same effect on fault de-
tection. Holding all other predictors constant, an in-
crease in statement coverage has about the same effect
as an identical increase in specification coverage. Branch
coverage has 2.5 times as great an effect as specification
coverage, so branch coverage is the better predictor of
fault detection. However, cases is as good a predictor as
branch coverage, and calls is even more significant: both
size measures dwarf statement and specification coverage.
Furthermore, whereas cases better predicts specification,
statement, and branch coverage, calls is better for fault
detection, the measure testers really care about.

There are two important conclusions to draw from this
experiment. First, specification coverage is a good predic-
tor of fault detection. Test suites with more specification
coverage detect faults better. Second, specification cover-
age is as good a predictor of fault detection as statement
coverage.

6.4.2 Effect of 100% code coverage

A final experiment further demonstrates the value of spec-
ification coverage as a test suite quality metric that is
independent of code coverage metrics.

For each of the subject programs except space, we an-
alyzed 1000 suites with statement coverage, 1000 suites
with branch coverage, and 1000 suites with def-use cov-
erage. For space, we only analyzed 1000 suites with
branch coverage. (We obtained the suites from Rothermel
and Harrold [RH98]; there were no statement or def-use
covering suites for space, nor were we able to generate
them.) Section 4.1 describes these test suites, and Figure
4.4 presents their average sizes in cases. The statement
and branch coverage suites have about the same number
of cases, while the def-use coverage suites are three times
as large.

We calculated the size, specification coverage, and fault
detection rate of each test suite. For each type of coverage
and each program, we performed a multiple regression,
with size and specification coverage as the independent
variables and fault detection as the dependent variable.



Coverage |Spec. cov.| Mean Mean 7 stat. || # not
type coefficient | spec. cov. | fault detect | sig. sig.
statement 483 877 .396 5 2
branch .308 .866 461 6 2
def-use .507 .950 .763 2 5

Figure 6.4: Multiple regression coefficient for specification
coverage, when regressed against fault detection. The co-
efficient for size was not statistically significant for any
of the programs, and has been omitted from the table.
The coefficient for specification coverage was only sta-
tistically significant for some of the programs. The “#
stat. sig.” column contains this number, and the “# not
sig.” column contains the number of programs for which
the coefficient was not statistically significant. Each value
was averaged across all programs for which the specifica-
tion coverage coeflicient was statistically significant.

We performed 21 multiple regressions in total (7 programs
x 3 coverage criteria). Figure 6.4 summarizes the results.

The coefficient describes the relationship between spec-
ification coverage and fault detection. For example, the
coeflicient of .48 for statement coverage suites suggests
that if the specification coverage of a suite were increased
by 1 percent, and all other factors held constant, the fault
detection rate would increase by approximately .48 per-
cent.

The mean specification coverage and fault detection
indicate how much improvement is possible, since their
maximum values are 1.

These results show that, for test suites with branch
or statement coverage, increasing specification coverage
does increase fault detection. However, for suites with
def-use coverage, fault detection is often independent of
specification coverage (only 2 programs had statistically
significant coefficients). This might be because specifica-
tion coverage is already near perfect for those test suites.

Further, these results show that specification coverage
is complementary to code coverage for detecting faults.
Even when statement or branch coverage is 100%, increas-
ing specification coverage can increase the fault detection
of a test suite without increasing test suite size. Stated
another way, specification coverage indicates which of
otherwise indistinguishable (with respect to code cover-
age) test suites is best.
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Chapter 7

Related work

This work builds on research in specification-based test-
ing. For the most part, that research has focused on sys-
tematic generation, not evaluation, of test suites, and has
required users to provide a specification a priori.

7.1 Specifications for test suite
generation

Goodenough and Gerhart [GG75b, GGT75a] suggest parti-
tioning the input domain into equivalence classes and se-
lecting test data from each class. Specification-based test-
ing was formalized by Richardson et al. [ROT89], who ex-
tended implementation-based test generation techniques
to formal specification languages. They derive test cases
(each of which is a precondition—postcondition pair) from
specifications. The test cases can be used as test ad-
equacy metrics. Even this early work emphasizes that
specification-based techniques should complement rather
than supplement structural techniques, for each is more
effective in certain circumstances.

The category-partition method [OB88] calls for writ-
ing a series of formal test specifications, then using a test
generator tool to produce tests. The formal test specifi-
cations consist of direct inputs or environmental proper-
ties, plus a list of categories or partitions for each input,
derived by hand from a high-level specification. Balcer
et al. [BHOS89] automate the category-partition method
for writing test scripts from which tests can be generated,
obeying certain constraints. These specifications describe
tests, not the code, and are really declarative program-
ming languages rather than specifications. While their
syntax may be the same, they do not characterize the
program, but the tests, and so serve a different purpose
than program specifications.

Donat [Don97] distinguishes specifications from test
classes and test frames and gives a procedure for convert-
ing the former into each of the latter (a goal proposed
in earlier work [TDJ96]), but leaves converting the test
frames into test cases to a human or another tool. Dick
and Faivre [DF93], building on the work of Bernot et
al. [BGM91], use VDM to generate test cases from precon-
ditions, postconditions, and invariants. Meudec [Meu98|
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also uses a variety of VDM called VDM-SL to generate
test sets from a high-level specification of intended be-
havior. Offutt et al. generate tests from constraints that
describe path conditions and erroneous state [Off91] and
from SOFL specifications [OL99].

All of this work assumes an a priori specification in
some form, and most generate both test cases and test
suites composed of those test cases. By contrast, the
specification difference technique assumes the existence
of a test case generator (any of the above could serve),
then generates both a test suite and a specification.

7.2 Specifications for test suite
evaluation

Chang and Richardson’s structural specification-based
testing (SST) technique [CR99] uses formal specifications
provided by a test engineer for test selection and test cov-
erage measurement. Their ADLscope tool converts spec-
ifications written in ADL [HS94] into a series of checks
in the code called coverage condition functions [CRS96].
Once the specification (which is about as large as the
original program) is converted into code, statement cover-
age techniques can be applied directly: run the test suite
and count how many of the checks are covered. An un-
covered test indicates an aspect of the specification that
was inadequately exercised during testing. The technique
is validated by discovery of (exhaustively, automatically
generated) program mutants.

This work is similar to ours in that both assume a
test case generation strategy, then evaluate test suites
or test cases for inclusion in a test suite. However, SST
requires the existence of an a priori specification, whereas
the specification difference technique does not, but pro-
vides a specification.

7.3 Related coverage criteria

Several researchers have proposed notions of coverage
that are similar to our definition of specification cover-
age (Section 6.1). In each case, a test suite is evaluated
with respect to a goal specification. The related work



extends structural coverage to specifications, computing
how much of the specification is covered by execution
of the test suite. By contrast, our definition compares
a generated specification to the goal specification. Our
specification coverage is generally harder to satisfy, be-
cause the specification generator’s statistical tests usually
require multiple executions before outputting a specifica-
tion clause, whereas structural coverage requires only one
satisfying execution.

Burton [Bur99] uses the term “specification coverage”
to refer to coverage of statements in a specification by an
execution; this concept was introduced, but not named,
by Chang and Richardson [CR99]. Burton further sug-
gests applying boolean operand effectiveness (modified
condition/decision coverage or MC/DC) to reified specifi-
cations; this coverage criterion requires that each boolean
subterm of a branch condition take on each possible value.
Other extensions of structural coverage criteria to spec-
ification checks are possible [Don97] but have not been
evaluated.

Hoffman et al. [HSW99, HS00] present techniques for
generating test suites that include tests with (combina-
tions of) extremal values. These suites are said to have
boundary value coverage, a variety of data coverage. The
Roast tool constructs such suites and supports depen-
dent domains, which can reduce the size of test suites
compared to full cross-product domains. Ernst [Ern00]
uses the term value coverage to refer to covering all of a
variable’s values (including boundary values); the current
research builds on that work.

Hamlet’s probable correctness theory [Ham87] calls for
uniformly sampling the possible values of all variables.
Random testing and operational testing are competitive
with or superior to partition testing, debug testing, and
other directed testing strategies, at least in terms of de-
livered reliability [DN84, HT90, FHLS98, FHLS99]. This
work makes several reasonable assumptions such as that
testers have good but not perfect intuition and that more
than a very small number of tests may be performed.
Specification coverage is likely to assist in both opera-
tional and random testing, permitting improved test cov-
erage, and better understanding of the test cases, in both
situations.

Chang and Richardson’s operator coverage [CR99] is
not a measure of test suite quality, but concerns the cre-
ation of mutant (faulty) versions of programs. Operator
coverage is achieved if every operator in the program is
changed in some mutant version. The mutants can be
used to assess test suite comprehensiveness, in terms of
fault detection over the mutants.

Amman and Black [AB01] measure test suite coverage
in terms of number of mutant specifications (in the form
of CTL formulae) killed. A mutant version of a specifica-
tion contains a specific small syntactic error, and a test
suite is said to kill the mutant if the test suite gives a dif-
ferent result over the faulty version than it does over the

correct version. Amman and Black use model checking
to check the test cases against the CTL specifications. If
every mutant is killed, then every component of the spec-
ification is covered, since every component of the specifi-
cation was mutated.
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Chapter 8

Future work

We feel there is great promise for using generated spec-
ifications for testing activities. This research focuses on
one application of specifications: the specification differ-
ence (SD) technique for generating, augmenting, and min-
imizing test suites.

The future work falls into two categories. First, there
remain many questions about the SD technique. Second,
there are many other potential applications of generated
specifications to testing.

8.1 Specification difference tech-
nique

8.1.1 Additional sample programs

Further experimental validation is required to extend the
results of Chapters 4-6, which might not generalize to
other programs or test suites. The preliminary subject
programs are quite small, and larger programs might have
different characteristics. (We have some confidence this
is not the case, since the space program was 10 times
larger than any other subject, yet had similar character-
istics.) The main reason to choose these subject programs
is their suite of tests and faulty versions. We did not have
access to other programs with human-generated tests and
faulty versions, and we suspect that our subject programs
differ from large programs less than machine-generated
tests and faults differ from real ones. The experiments
of Chapters 4-6 should be performed on additional large
programs, to increase our confidence in and the generality
of our results.

Similarly, all of our subject programs are written in the
C programming language. However, Daikon can generate
specifications for programs in many languages, including
C and Java. We believe our results will apply to Java as
well as C, and we could verify this by running experiments
on Java programs.

8.1.2 Properties of specifications

A key property of any specification is its level of detail.
A specification that is too detailed may be useless, be-
cause the important concepts are buried in trivial facts.
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Similarly, a specification with too little detail may not
provide the information you seek. There is no right or
wrong amount of detail. Different tasks require different
levels of detail. What level of detail is best for specifi-
cations used in the SD technique? Can the technique be
improved by using more or less detailed specifications?

A related question involves the specifications produced
at intermediate steps in the SD technique. Adding a test
case to a test suite can change the suite’s specification in
two ways. First, the new test can falsify a property that
was true in the rest of the suite but is not true in general.
Second, the new test can reinforce a property that is true
over the rest of the suite, increasing its statistical justifica-
tion so that it is included in the output specification. How
does the generated specification change throughout the
SD technique? Are more properties added or removed?
We plan to perform more extensive experiments to char-
acterize this phenomenon, leading to a theoretical model
and possibly to improved statistical tests or a better test
suite generation technique.

8.1.3 Improve performance

Chapter 5 described enhancements that improve the fault
detection of suites generated by the SD technique. Fu-
ture work should also consider improving the technique’s
performance. The technique requires frequent generation
of specifications, and dynamic specification generation is
computationally expensive, at least with current technol-
ogy. More efficient specification generation techniques
will surely be discovered, but the easiest way to improve
the performance of the SD technique is to reduce the num-
ber of times specifications must be generated. A possible
tactic is simultaneously adding multiple test cases, in-
stead of adding one case at a time. Experiments should
be performed to investigate the relationship between run-
time and quality of output.

8.1.4 Generate
suites

specification-covering

In Section 6.1, we showed that test suites generated by the
SD technique will have a high level of specification cover-
age. However, it should be possible to create test suites



with 100% specification coverage. We have begun prelim-
inary investigations into creating specification-covering
suites using a technique similar to specification difference.
Unfortunately, the generated suites are very large, aver-
aging 478 cases (compared to 32 cases for the original
SD suites). We hypothesize that smaller test suites can
achieve 100% specification coverage. We haven’t exam-
ined the generated suites in detail, but we speculate that
a few difficult-to-justify invariants are inflating the test
suites. We plan to tweak the statistical algorithms to
make certain invariants easier to justify.

8.1.5 Improve the evaluation

In Section 4.1, we compare the SD technique to code cov-
erage techniques in terms of size and fault detection of
generated test suites. This comparison is slightly unfair
to the SD technique — the suites generated by the code
coverage techniques have 100% code coverage, but the
suites generated by the SD technique have less than 100%
specification coverage.

Code coverage is defined as the number of executed
code features (statements, branches, or def-use pairs) di-
vided by the number of reachable code features. However,
a tester in the field doesn’t know which code features of
a program are reachable. The tester would probably take
an approach similar to the SD technique: add cases to
a suite until coverage stops increasing. How different is
such a suite from a suite with 100% code coverage?

To be fair, we should evaluate the SD technique against
these code coverage techniques. Alternatively, we could
evaluate suites with 100% specification coverage (Sec-
tion 8.1.4) against the suites with 100% code coverage.

8.1.6 Integrate with test case generator

A limitation of the SD generation and augmentation tech-
niques is the requirement of a test case generator. Our
experiments used a pool of test cases as a generator, but
test cases may be generated at random or from a gram-
mar, created by a human, or produced in any other fash-
ion. Perhaps the best approach is to build upon work in
automatic generation of test cases and code-covering test
suites. One specific approach we have begun investigat-
ing at MIT is a system called Korat that generates input
instances from a boolean method that reports whether
an instance is legal [BKMO02]. Given a check() method
that returns true or false, Korat examines the space of
all possible instances; when an instance is rejected, Korat
uses the structure of the check() method to prune the
search space. Initial results suggest that the resulting ex-
haustive set of small instances is often, but not always,
appropriate as a test suite. We expect that our work can
be integrated with other work on generating test cases as
well.
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8.2 Other applications

We believe that generated specifications can benefit many
other testing tasks. This thesis presents a technique for
generating, augmenting, and minimizing test suites. The
generation and augmentation techniques require a test
case generator, and as such are test case selection tech-
niques, not test case generation techniques.

However, we believe it may be possible to suggest new
test cases by examining properties of the specifications.
For instance, a property may be true for all executions
seen thus far, but it may not be statistically justified. A
tool could suggest test cases that would either falsify or
add confidence to this property. Or, a tool could suggest
test cases that probe the boundary values of the current
generated specification.

Generated specifications could be used as a form of
regression testing, by comparing the specifications gener-
ated from two versions of a program. If the specifications
differ in an unintended way, there is a good chance the
programs also differ in an unintended way, even if their
outputs happen to be the same. Similarly, if the specifi-
cations are the same, there is a good chance the programs
behave the same. A generated specification could never
replace a regression testing suite, but it could be a useful
complement. A specification may contain properties that
were overlooked in the test suite. Further investigation
should be performed to determine the utility of specifica-
tions as a regression testing aid.

We demonstrated that both code coverage (of various
sorts) and specification coverage are correlated to fault
detection (Section 6.4), and that improving specification
coverage tends to detect different faults than improving
code coverage does (Section 4.4.1). However, this does
not indicate how much relative effort a software tester
should invest in improving the two types of coverage. We
plan to assess how difficult it is to the programmer to in-
crease specification coverage, relative to the work it takes
to achieve a similar gain in statement coverage. Also,
the last few percent of code coverage are the hardest to
achieve; is specification coverage similar?

A final major goal of this research is to evaluate the
use of generated specifications in performing program-
ming tasks. We will investigate this question by observing
how people use our tools. This will both answer questions
about them and also point out opportunities to improve
them. We anticipate that our investigations will focus on
case studies rather than controlled experiments. Because
our goal is to support the proposition that generated spec-
ifications can be valuable, examining a broader range of
tasks and providing evidence from case studies is more
appropriate at this stage of investigation.



Chapter 9
Conclusion

We have proposed and evaluated the specification dif-
ference technique for generating, augmenting, and min-
imizing test suites. The technique selects test cases by
comparing specifications dynamically generated from test
suites. A test case is considered important to a test suite if
its addition or removal causes the specification to change.
The technique is automatic, but assumes the existence of
a test case generator that provides candidate test cases.

The specification difference (SD) generation technique
performs about as well as the branch coverage technique,
but is better at detecting certain types of faults. Combin-
ing the SD augmentation technique with branch coverage
yields better results than either technique alone. The SD
minimization technique performs better than branch cov-
erage minimization, but the suites are larger in size. The
technique also generates an accurate specification for the
program under test, which has many benefits in itself.

We have described a new form of specification coverage
that uses statistical tests to determine when a specifica-
tion clause has been covered. We justified the success of
the SD technique using additional experiments relating
specification coverage to size and fault detection. Speci-
fication coverage can be used on its own to evaluate any
existing test suite.

Finally, the work presented in this thesis is just one
application of generated specifications. We believe that
generated specifications hold similar promise for other ar-
eas of testing research.
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