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AUTOMATIC CREATION OF A CODE GENERATOR
FROM A MACHINE DESCRIPTION*

Abstract

This paper studies some of the problems involved in
attaining machine independence for a code generator, simitar
to the language independence and the token independence at-
tained by automatic parsing and automatic lexical systems.
In particular, the paper examines the logic involved in two
areas of code generation: computation and data reference.
It presents models embodying the logic of each area and
demonstrates how the models can be filled out by descrip-
tive information about a particular machine. The paper
also describes how the models can be incorporated into a
descriptive macro code generating system (DMACS) to be
used as a tool by a language implementer in creating a
machine independent code generator, which can be made
machine-directed by a suitable description of a particu-
lar machine.

*This report reproduces a thesis of the same title submitted
to the Department of Electrical Engineering, Massachusetts
Institute of Technology, in partial fulfillment of the re-
quirements for the degree of Electrical Engineer, March 1971,
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CHAPTER |
1.1 INTRODUCTION

The process of translating a high level language into
machine instructions is traditionally divided into three
distinct problems: lexical analysis, syntactic analysis, and
code generation, The flow of data in such a translator is

outlined in Figure 1.1,

Source
Program
LEXICAL SYNTACTIC CODE
ANALYSIS | ANALYSIS > GENERATION
¥
Machine
Code

Figure 1.1: Simple Diagram of a Compiler

The lexical analyzer accepts a string of characters and
groups these into identifiers and operators, etc., thus
creating a string of lexical 'tokens', The parser analyzes
the underlying syntactic structure of this string of

tokens, outputting either a sequence of macro operations or
a parse tree., The code generator then translates the macros

(or the parse tree structure) into machine instructions for




a particular target machine.

Both lexical analysis and syntactfc analysis have
been intensively studied. Johnson et al, (4) describe a
system which allows a lexical analyzer to be automatically

created from a series of regular expressions describing

possible input lexical tokens. Similarly, numerous parsing
schemes (1,2,3) have been developed which allow parsers of
varying power to be created automatically from a

context-free BMF description of a language. Very little

work, however, has been done to similarly formalize and
automate code generation, The present research represents
an attempt to isolate some of the problems involved in code
generation and to show how a code generator can be
automatically created from a description of the computer

upon which the code is to bhe run,

The research does not attack all the problems that
such an automatic code generating system would bave to
handle. Rather, it deals with two subprohlems corresponding
to two common types of macro, namely:

1. computational macros, such as ADD, MULTIPLY, OR,
etc.?;

2. data reference, such as subscripting and structure




reference,
In this paper, we examine both types of macro iIn turn and
develop a model for the logic of such a macro. We then show
how a system can be set up to perform the machlne dependent
part of such macro logic from machine descriptive

information,

The two models developed for the operation of the two
types of macro are different. As a result, the paper can be
considered to contain two relatively independent topics:
the first dealing with computational macros, and the second

dealing with data reference macros.

1.2 PREVIOUS WORK

Although 1ittle work has been done to formalize code
generation, a great deal of work has been done on the
related problem of language transferability. One approach
to this problem is that of the '"mobile progsramming system'
of Orgass and Waite. (5,6) 1In their system, the source
language Is translated into a series of simple macros. Then
a user-written set of macro definitions translates the
macros into machine code. The problem of generating code

for a new machine reduces to the problem of recoding the




macro definitlons.

A second approach to language transferability iIs that
of the UNCOL macro language (7,8). UNCOL (UNiversal
Computer Oriented Language) was developed in an attempt to
create a universal macro language into which all high-level
languages could be translated and which itself could be
translated Into any machine code, If sucessful, the UMNCOL
system would have solved the problem of language
transferability, since only one translator would ever have
to be written for a language, and only one code generator
for a machine. The Orgass and Waite system differs from the
UNCOL approach in that their macro language wés specifically
tajilored to their source language. In practice, the
restriction Imposed by havirg only one intermediate language
for all source languages and all machines has proven too

confining for a practical solution,

The two systems just described are similar in that
both attempted to solve the problem of language
transferability by letting the user specify information
about his machine in procedural form, Most of the
information about machine structure is buried implicitly in

the coding of the macros. Such a procedural approach has




been used in all major published work on code generation.
In contrast, the present work uses information about machine

structure given in explicit, descriptive form,

1.3 BRIEF HISTORY OF CODE GENERATIOM

Early languages had very few data types. Fortran, for
example, had only two data types., Similarly, early machines
tended to have a small number of special-purpose registers.
For such language-machine pairs, the process of generating
code tended to be straight forward. A macro generally
consisted of a short, independent section of logic which
performed a few simple tests and then output code. Thus a
very simple procedural language could let the user define
these macros (12),

With the Introduction of more complicated machines
and of languages with more data types, some of which (such
as bit-strings) may be more complicated, code generation has
become a harder task (9,13). Separate modules have become
desirable to handle register manipulation and to handle
data~-dependent logic for the various data types. Such a
modular approach allows a macro to be written fairly
compactly, calling these modules as subroutines to locate

free registers and to return usable representations of

- 10 -




operands (such as a displacement and registers containing a

base and an index),

In a traditional macro system, all of these modules
and macros must be written by the user using a procedural
language provided for the purpose. Due to the complexity of
modern languages and machines, such a macro language can no
longer be a very simple one. Similarly, the job of writing

a code generator is much more complex.

1.4 DMACS: A DESCRIPTIVE MACRO SYSTEM

This paper describes an automatic code generating
system named DMACS. There are two steps In creating a
code-generator using DMACS. The first step is to define a
set of procedural macros in a machine independent, somewhat
skeletal form. The second step fis to supply information
describing the computer for which code is to be generated.
DMACS uses this Information to flesh out the maéro
definitions., The two steps are quite independent, so that
once the first step is done for a language, the second step
can then be done for a variety of object machines,
Similarly, once a machine has been described, implementing a

second language requires little change to the machine

- 11 -




description,

The first step can be thought of as defining the
semantics of the language using machine independent
primitives. The second step can be thought of as defining
the structure of the target machine. Examples of the two
steps are discussed iIn Chapters 3 and 4., To facilitate
these two steps, DMACS provides two languares:

1. MIML- a procedural pachine independent macro

language, and

2. OMML- a declarative ohject machine macro languarge,
Programs written in the two languages are hound togsether by

the DMACS system,

Figure 1.2 outlines how the DMACS system is used. As
can be seen, the traditional compile-time vs. run-time
distinction has proliferated into four separate 'times' in

viewing DMACS as a whole.

1. Macro definition time~ when a language implementer

presents his machine independent macros to DMACS,

2. Machine description time- whken a machine specifier
inputs a description of his machine to fill out the

machine independent macros.

- 12 -




Macro Definition Time:

(language implementer) Machine
independent
MIML program —_— DMACS |-> |Code
Generator
V4
V4
V4
Machine Description Time: L’
(machine specifier) Machine Machine
Independenq.Oriented
OMML machine description— [Code Code
Generator Generator
4
/
Language Compilation Time: ,/
. /
(programmer) i
Source program —» | PARSER /
Machine ,’
Oriented Machine
Code _> Code
Generator Program
_
”~
Program Execution Time: P

Machinel”
input —> |Code ——p output
Program

Using DMACS: &4 Users and 4 'Times'

Figure 1.2
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3. Language compilation time- when a programmer inputs

his source program to the compiler as a whole.

bk, Program execution time- when that compiled program is

actually executed,

1.5 OVERVIFW

The present research develops models of two types of
macros: computation and data reference macros. At the same
time, the paper illustrates how these models can be built
into DMACS as tools. These tools can be used by a language
implementer to create machine independent macros defining
the semantics of his language which can be filled out from a

machine description.

Chapter 2 gives the reader an overall introduction to
code generation and to the DMACS system. It also discusses
some of the restrictions as to possihle machkine structure

which are assumed in the following chapters.

Chapter 3 presents a model of the logic of
computational macros. The model pictures a code generator
as a state machine whose state is determined by the location

of the values wused in generating code, In the model, each




computational macro has 'permitted' states for its operands,
from which code can be emitted. For the IRM-360, for
instance, the permitted states for integer addition would
allow both operands in registers or one operand in a
register and the other in a word of core memory. To
generate code for such a macro, the code generator must make
a transition into a permitted state and then emit an

appropriate instruction sequence from that state.

Using a procedural macro system, the user specifies
how such state transitions are to be made. In a descriptive
system such as DMACS, the transitions must be performed
automatically from a description of the register and memory
structure of a machine, and of the paths (load, store,
register-register transfers) between core memory and

reglsters.

Chapter 4 turns to the problem of achieving the same
machine independence for data reference macros. To achieve
this goal, a data definition facility is built into DMACS,
The language implementer writes his data reference logic in
terms of the primitives of the facility. A machine
specifier then describes his machine memory and how source

data items are mapped into that memory. DMAFS can then




characterize these source data ftems in terms of the
primitives of the data definition facllity., As a result,

the macro logic is able to operate upon them.

In summary, the research is a step towards creating
models of two aspects of the code generation process, and
towards ahstracting code generation from any particular
machine. In this paper we show how these models can be
implemented as tools to be used by a language implementer to
create a machine independent code generator which can be
filled out from a machine description, Furthermore, it is
seen that this approach to code generation, as a natural
by-product, leads to a clean separation of the semanticns of
a source language from the structure of a particular target
machine, a separation which is often hard to isolate in a
compiler with a code generator oriented towards a particular

machine,




CHAPTER 11

A DESCRIPTION OF A CODE GENERATOR
2.1 INTRODUCTIOM TO CODE GENERATIOM

Code generation is the last major task in the
translation of a high-level language into machine language.
A code generator receives its input from the syntactic
analyzer (the parser). Although in some compilers the input
is in the form of a parse tree, In this paper it Is assumed
that the input is in the form of a linear sequence of macro
operations.

A =B+ C* D;

/7 '\
A +
AN
B * 1 MUL c,D
/. 2 ADD 1,B
C D 3 ASSG A,2
Parse Tree Macros

This assumption is not a restriction, however, since a parse
tree can readily be converted into such a sequence of
macros. The task of the code generator is to convert the

macros into machine instructions.

- 17 =




In a compiler for a complex language with many data
types, the code generator is often allowed direct access to
the symbol table constructed by the parser. The information
in the symbol table can then be used directly to generate
the correct code to access the different data items. The
data flow in such a system is illustrated below,

Source
Program-> [ PARSER | —> Macros

v

Symbol CODE Machine
Table > GENERATOR| ™ Code

The parser converts the source program into macros, while
simul taneously building the symhol table. The code
generator then accepts both the macros and the symbol table

as input for generating machine instructions,

A macro line consists of a 1line number, an
operation, and that operation's operands: ie. 1 ADD X,Y. In
an actual compiler, the line number is usually implicit, and
the operation and the operands can be thought of as
pointers. The operation is a pointer into a table of macro
definitions. The operands are either pointers to the symbol

table entries describing the values to be operated upon, or

- 18 -




pointers to previous macro lines indicating the results of

previous macro operations,

The paper discusses two particular kinds of macros:
computational macros and data reference macros., The

following example illustrates both types of macros.

AC1)=B+C(J)=*D

i SS c,J

i+l MUL i,D

i+2 ADD i+1,8
i+3 SS ALl

i+h ASSG i+3,1+2

In this example, SS (subscript) is a data reference macro,

and MUL and ADD are computational macros,

As an example of computational macro logic, consider
integer addition on the IBM 360, The 360 has two Add
instructions for integers: 'A!' which adds a word of memory
to a register, and 'AR' which adds two registers. In
generating code for an ADD macro, the code generator must
check the location of the values to be added to see if
elther of the instructions can be emitted directly. |If not,
the code generator must emit instructions to load one (or
both) Into registers, |If, in the process of finding a

register to load into, the code generator must cause the




previous contents of a register to be stored, the new
location of the stored value must be recorded. Furthermore,
if one of the values to be added is not directly accessable,

(ie. a bit string value), the code generator must emit load
and shift Instructions to isolate that value In a reglster,
Finally, after emitting the appropriate add instruction, the
code generator must record the location of the macro's

result,

Similar examples of data reference lorsic are given in

Chapter &,

2.2 INTERNAL TABLES

The symbol table contains information about all the
values (variables) declared by the prograrmer., At some
point before code generation core locations must be
allocated for these variables. The core location
information can be stored in the symbol table entry for each
item. Exactly how core allocation might be dore is
discussed in Chapter 4., In addition to the values declared
by the programmer, the code generator must also record the
location of values which have been computed by previous

macro lines, but not yet used, In most machines, a




computation leaves Its result in some register, Since the
result can often later be used unmoved, it is desirable to
leave It in the register if possible, [I|f, however, an
intervening macro requires that register for its
computations, it s necessary to store its contents ir a
'temporary' In core and to rememher that this has been

done,

To keep track of the location of such previous macro
results, three tables are built Into the code generator: a
macro result table (MRT), a reglster state tahle (RST), and

a temporary table (TT).

MRT: The macro result tabhle records the location of a
macro's result(s) if any. The MRT has one entry for

each macro line, Fach value recorded in the entry

consists of a pointer to the register or temporary where

the value is located.

RST: The register state tahle contains one entry for
each register. Fach entry indicates whether that

register contains a computed value, or if it is free,

Each entry recording a computed value contains a pointer

to the MRT record representing that value, Thus, when a

register must be stored, the MRT entry can be easily

- 921 -




Macros

L [
3 3 MRT
2 (Macro Result
1 1 Table)
RST
(Register State
Table)
MACRO /
LOGIC TT
(Temporary
' Table)
l CODE GENERATOR
An Implementation
of a Code Generator
Machine
Code
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changed to point to the temporary location where the
value is to be stored. FEach RST entry also contains
fields which are used to flag a register with

information to be used in selecting a register to be

stored,

TT: A temporary table can be implemented in various
ways. For the purpose of this discussion, any
implementation is acceptable. One strategy is to
allocate a new temporary each time one is needed, in
which case all that need be remembered outside the MRT
1s the number of the last temnorary allocated. A more
efficient strategy is to reuse temporaries after the
results they hold are used, in which case the TT must

have an entry for each temporary allocated.

2.3 THE 'GETREG' ROUTIME

The internal tables descrihed in the preceding
section allow computed values to be left in the registers
where they are computed. 1f such tables are not used, every
computed value must be immediately stored in a temporary,
which Is clearly undesirable. If values are to be left in

registers, however, a routine must be provided which locates




free registers avallable for use. The paper refers to that

routine as the GETREG routine.

The GETREG routine Is passed the name of a register
class as an argument, It cycles through that class looking
for a free register. |If none are found, the routine picks
one of the registers and stores its current contents in a
temporary, updatings the MRT entry pointing to that value,
The priorities used in selecting which register to store, If

there is a choice, are discussed In Chapter 3,

2.4 SOME OUESTIONS TO BF ANSVERFD

The previous sections give a brief introduction to
code generation in general, The remainder of the chapter
attempts to use the introduction as a framework within which
to outline exactly what aspects of code generation are to be
dealt with in Chapters 3 and 4. Among the aquestions to bhe

clarified are these:

1. What different types of machine structure do the models
presented deal with? Clearly there ére many different types
of machines, ranging from machines 1ike the 7090 with
special purpose registers, to machines 1lile the PDP-10 with

general purpose registers, to stack machines, and to

- 4 -




microprogrammed machines capable of complicated runtime
checks. Similafly, machines have differing addressing
mechanisms: byte-addressing, word-addressing, indexed or
unindexed, based or not based, directly addressable or paged
addressable (as in many small machines), etc. The models
presented are not capable of handling all possihle machine

structures,

2. What kind of yalues do the models presented deal with?

Possible values in a computer are integers of different
precision, booleans, bitstrings, floatirg point numbers of
different precision, decimal numbers, character strings,
addresses, etc, The present research is not concerned with

all of these possible types of values.

3., How are values allowed to map into the machine
structure? For instance, are bitstring values to be allowed
to cross word boundaries? How are different values assumed

to be accessed?

4. What is meant by 'machine description'? Intuitively, one
might expect machine description to entail somehow listing
registers, core memory units and opcodes. On the other
hand, might not a low-level code sequence, which

accomplishes some primitive function such as subhtraction or

- 25 =~




loading a value, be considered to be a reasonable part of a
'machine description'? This question is discussed in

Section 2.9,

2,5 ASSUMPTIONS AROUT MACHINE STRUCTURE

The present research makes several simplifying
assumptions about the structure of possihble target
machines, The assumptions are spelled out in more detail in

Chapters 3 and 4,

Registers: The machine is assumed to have a set of registers
for manipulating values. These may be either special
purpose or general purpose registers, The machine specifier
describes the registers by naming them, grouping them into
classes, and defining how they are used in manipulating

data. Chapter 3 describes more precisely how this is done,

Core Memory: The whole of core memory is assumed to be

directly addressahle (as opposed to the paged addressability
found on some small machines). It is assumed that the
addressing is done In a machine Instruction by either a
displacement and an index, or by a displacement, an index,
and a base. The machine specifier must indicate which

registers may be used as indices and bases. In generating

- 26 -




an address, DMACS creates an internal 'generated address'
consisting of a displacement, index, and hase (the index or
base may be nil). If both index and base are present in a
generated address, however, and the particular target
machine allows only an index, then DMACS generates code to
add the base and index together, thus transforming the

‘generated address' into a 'machine address' for that target

machine.

2.6 ASSUMPTIONS ABOUT VALUES

In a complex real-world compiler, many types of
values can he used as operands. Flson and Rake (9) discuss
some of the involved problems of writing macro definitions
for a complicated language (PL/1). The present work does
not attempt to handle the complexity of such a language;
rather, it makes certain simplifying assumptions as to the
types of values to be allowed as operands., The restrictions
allow a reasonably simple model of code generation to be
constructed which exposes some of the basic conceptual
processes and problems involved, without hecoming bogged

down in a huge ad-hoc mess.




The model of a code generator presented in this paper
Is set up to handle values which, Intuitively, are of the
integer (or integer bit-string) and floating point variety;
values which are manipulated via registers and thus are no
larger than the registers used on the particular target
machine. Character-string and decimal values are not

considered.

2,7 HOW VALUES ARE REPRESENTED OM THE MACHINE

There are three general classes of locations for
values on a machine: a value can be in a register, it can
be simply accessihle in core, or it can be in core but not
simply accessible. A value Is simply accessihle if its
address can be put directly into a computational machine
instruction, such an Add instruction. (Thus a value may be
addressable in a special load Instruction yet not simply
accessible). For instance, a byte on the IBM=360, even
though addressable, is not simply accessible for

computation, It must first be isolated in a register.

Let us examine how a value might fall into each of

these classes.
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Registers: The only values which may be in a register (at
the start of a macro expansion) are values computed by

previous macro lines.

Simply Acccessible: Simply accessible values include both
results of previous macro lines which have been stored in
temporaries (which are assumed to be simply accessibhle
locations), and values declared in the source program which
have been mapped into simply accessible core memory units.,

Chapter &4 explains exactly how this mapping is done,

Not Simply Accessible: This class is composed of values
which cannot be directly operated upon by computational
instructions. They must first be isolated in a register
before they can be used. Such values include individual
bits, and bit-strings which are not on wholely accessable

boundaries.

2.8 LOAD/UPDATE ROUTINES

The fact that not all values are simply accessible
gives rise to the concept of a load/update pair: a pair of
routines to access and to update a value, The idea of
characterizing a data item by a pair of load/update routines

was first formulated by Strachey (11)., A simple example of
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such an unaccessihble data item is a bit-string within a
word. Its location might be represented by an address
(perhaps indexed and based) and a bit displacement within
the addressed memory unit. Its load/update palr might
consist to two routines which take the 'location' and

generate code as follows:

1, Load Routine:
a. load the memory unit (ie., word) into a register
b. shift left to ellminate high-order bits
c. shift right eliminating low order bits and

right-adjusting the value in the register

2. Update Routine:
a. shift the new value to the correct target position
b. load the target word into a register
c. use a bit mask to zero out the target byte
d. OR the two words together

e, store the result

In practice such a value has two kinds of 'location'
and correspondinglyvtwo load/update pairs: one for when the
location of the string within the word is known at compile
time, and one for when it is computed at run time., The

routines are further complicated if a value extends across a
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word boundary.

The load/update problem arises from the fact that
programmers are interested in values that do not map
directly into accessible units, Generally only an address
can be put into a machine instruction. If a computational
machine instruction could accept an addresé, starting bit,
and bit length, then the complexity of the load/update
routines would disappear. An alternate approach might be to
have special hardware load and store instructions to access
bits of a word, This would retain the load/update
framework, but the routines would consist of only one

instruction,

2.9 MACHINE DESCRIPTION

Using DMACS, a machine specifier can implement a
language by describing various features of his machine, In
the next two chapters, the details of such a description are

examined in more detail.

Parts of the 'description' consist of listing names
of registers and of core memory units and of descrihing how
these relate to one another. Another part of this

description, however, involves writing short low-level code
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CHAPTER |11

A CODF GENERATOR AS A STATE MACHINE

3.1 OVERVIEW

3.1.1 THE STATE MACHINE

Chapter 3 presents a model of the logic of a
computational macro. This model pictures a code generator
as a state machine whose state is determined by the location
of the values used to generate code., The location of a
value may be an accessihle core location, a non-accessihle
core location, or a register. In the model, each
computational macro has one or more permitted states for its
operands from which code can be emitted. To generate code
for a macro, the code generator must make a transition into
one of the permitted states and emit a particular code

sequence from that state.

In a procedural macro definition language, the user
explicitly specifles these transitions himself, In a
descriptive system such as DMACS, loglic to perform
transitions is deduced automatically from machine-
descriptive information. The chapter shows how such an
automatic mechanism is built into DMACS to perform

transitions given a machine descripntion descriting register




structure, permitted states for computation, and code
sequences which perform these computations. HNot
surprisingly, the automatic mechanism makes certain
restricting assumptions as to object machine structure,
Thus, the model is a somewhat restricted one presented to
isolate the basic ideas involved, and to provide a basis

upon which a more general system can be built.

3.1.2 THE STATE OF THE MACHINF

In this chapter, the term 'state'! is used In two
contexts: the 'state' of the code generator as a whole, and
an input, output, or permitted 'state' of an individual
macro.

1. The state of the code generator is determined by the
locations of all the values which are to be used as
operands to any macro.

2. The Input state of a macro is determined by the
location of the values passed to it as operands.

3. A permitted state of a macro is a particular
configuration of operand locations from which code can
be emitted.

b, An output state of a macro is determined by the

location of the result of the computation.
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3.2 A SIMPLF EXAMPLE

The following simplified example illustrates how the
state machine concept is used. The example concentrates on

the integer addition for the IRM-360.

1. Input States: For simplicity, let us restrict operands to
two locations:

1. registers of class 'R' (abkreviated 'R')

2. accessible storage (ahbhreviated 's')
Thus input states for two operands can be descrihed hy the

following pairs (s,s), (s,R), (R,s), or (R,R).

2. Permitted States: The IBM-360 has two instructions which
perform Integer addition. Permitted states are (R,s),
(s,R), and (R,R), From (R,s) and (s,R) a
storage-to-register Add instruction, 'A', is emitted. From
(R,R) a register-register Add instructior, 'AR', is

emitted,

3. A Machine Independent Macro: !f the source languare
allowed both integer and floating point operands, the
language implementer might write a machire independent ADD

macro with logic as follows:







are discussed in Chapter 4, A more detafled description of

the 360's register structure is found in Section 3.7.

Next, the machine specifier defines integer addition,

IADD al,a?2 (commutative)

from R(al),R(a2) emit AR al,a?2 result R(al)

from R(al),S(a2) emit A al,a2? result R(al)
This description defines two permitted states, code to be
emitted from each state, and the location of the macro
result. In the first state, both operands are in registers,
From this state, an 'AR' instruction is to be emitted, The
result Is to be recorded in the register containing the
first operand, The declarations are used to fill out the
MIML macro. The attribute 'commutative' indicates that
addition is commutative, and thus R(a2),${al) will be

included as a permitted state without heing declared

explicitly.

Notice that the declarations are essentially a

description of I1BM=-360 integer addition,

5. Advantages: Because the state machine model is built
into DMACS, both the language Implementer and the machine
specifier find their tasks lightened. The language

implementer can write a very simple source macro without

worrying about machine structure. He need not perform tests
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to ascertain the state of the operands, nor transform the
input operand state in any way. The machine specifier, in
turn, is abhle to implement the macros by describing bis
machine without worrying about the constructs of ths source

language or the internals of the compiler.

6. The Role Of DMACS: The machine specifier defines his

register structure, the permitted states filling out each
'primitive' (such as IADD) in the machine independent
macros, the code sequences to be emitted from each permitted
state, and his data pathways including load and store
instructions. From this descriptive Information, DMACS must
deduce three things: how to select a target permitted state
for a given input state, how to reach that state, and how to
obtain a free register of a given class when, in the process

of making a transition, it needs to load a value.

The remainder of this chapter deals with these topics

in more detall and discusses the problems involved.




3.3 MACHINE STRUCTURE
3.3.1 REGISTERS

The code generator must be able to manipulate values
in and out of registers to attain permitted states. In
trying to incorporate automatic register handling logic into
DMACS, there are two conflicting goals, First, the user must
be able to describe his registers flexihly enough to include
a reasonably large class of machines. Second, there must bhe
enough restrictions so that the logic which attains
permitted states can be generated from this description
automatically., These two goals conflict since the more
flexible the model is, the harder it is to incorporate into
an automatic system, The assumptions as to register
structure outlined in this section are restrictive, but

provide a base for later extension of the model,

In attaining permitted states the system must he able
to find a free register of a given class, to load and store
the contents of any register, and to transfer a value from
one register to another, To allow this, the machine

specifier defines the following:

1. The Machine Registers: 62 =(rl,r2, r3 ,..rn)




2. Classes of Registers: (R1,R2,...Rn); Ri€C R

The classes are defined so that every register is In at
least onevclass, if only by itself, and so that any two
classes are elther subsets, equal, or disjolint. There

is no partial overlap.

3. Pathways to Core: Fach class of reglisters is assumed
to have a direct path to and from core., There is no
need to go through a second register in either loading
or storing. This is a simplifying assumption which
might be relaxed in a more powerful extension of the
model, (A stack machine, for Instance, does not conform
to this assumption). The machine specifier must define

the load and store instructions used In these pathways.

k., Paths between Registers: The machine specifier must

define any available register to register transfers.

5. Relationships between Registers: The machine
specifier may define relationships between registers.
These can be used for such register-register
relationships as even-odd pairs. He may also specify
that in certain conditions the use of one register
implies that a related register must he made availahle

as well,




In this fashion, the user descrites his register
structure., Section 3.3.3 describes how this information fis
used by DMACS to construct the GETREG routine to obhtain a

free register of a given class.

3.3,2 SAMPLE REGISTER DESCRIPTIOMN: IRM-360

rclass REG:r2,r3,r4,r5,r6,r7,r8,r9,r10,rll

rclass ODDREG:r3,r5,r7,r9,rll

relation EPAIR (stored:0DDRFR)

ri:r2

r5:ri

r7:r6

ro:r8

ril:rl1o0

rpath WORD->REC: L RFG,WORD

rpath REG->WORD: ST RFEG,WORD

rpath REG->ODDREG: LR ODDRFf,RFEC

These declarations define two register classes, For

each member of the class ODDREG, a related EPAIR register is
declared, The attribute (stored:0DDREG) means that when an
ODDREG register is called for, its related FPAIPR register

must be made available as well,
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3.3.3 THF 'GETRFG' ROUTINE

The GETREG routine is called by DMACS when in
performing a transition a free register of a given class is
needed. The routine must be adjusted by DMACS using the
machine specifier's description of his register structure,
so that it operates correctly for the particular mackine

registers and register classes involved.

The GETRFG routine cycles through the register class
it receives as an argument attempting to find an empty
register, If none are empty, the routine must choose a
register to store based on the 'flags' attatched to the
registers, The flags are used to protect values in
registers so that they will not he stored unless necessary.
The mechanism for flagging is complicated by the fact that a
macro can be called as a subroutine during a given macro
expansion. The priorities used in protecting registers are
discussed in more detail in Section 3,5, The net effect of
the priorities is that the most recently set registers are
stored last. The GETREG routine also must handle situations

when related registers must be freed at the same time.




3.4  THE AUTOMATIC TRANSITIOM

3.4,1 INTRODUCTION TO THE TRANSITION

Performing a transition involves transforming any
possible input state of a macro into one of that macro's
permitted states. The input state of a macro is determined
by the location of the values passed to it as operands.

These operands can be classed as follows:

1. s - in an accessible storage location in core memory
2. Ri - in a register of register class Ri

3, Rjf - in a non accessihle core location, requiring a
code generating load function which will isolate the
value in a register of class Rj. (The concept of having
to apply a function to an operand could apply to more
conversions as well as to loading non-accessible

values. Thus, although this paper deals onrly with Rjf
values in a limited context, the concept involved is a

more general one.)

For the sake of simplicity, this section deals only
with two-operand macros, (such as ADMD X,Y). For a two
operand macro, input states are taken from

(s URi URif) X (s URI URIif)

Permitted states are taken from
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(s URI) X (s U RI)

On a machine that has one class of registers (say R),
input states are (s,s), (s,R), (s,Rf), etc. Permitted
states for an arbitrary macro might be (s,R) and (R,R).

Thus a reasonable transition to make from input state (R,s)

is to permitted state (R,R).

Performing the transition involves choosing a target
permlitted state to aim for and a path to reach that state.
In the remalnder of the chapter, we assume that the tashk of
performing a transition can be seen as two distinct
problems:

1. Selection of a target permitted state for each input
state, based on the cost of transforming each operand

location,

2. Given an Input state and its target state,
determining in what sequence changes are to be made.
These two steps are closely related. On some machines, the
two steps can not be performed independently. For instance,

on a stack machine one can not consider the cost of
transforming the location of each operand individually
without considering the sequence of transformations. On a

machine that conforms to the assumptions that we have made
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about register structure, however, the separation of these

two steps Is possihle,

3.4.2 SELECTING A TARGET STATE

The selection of a target state for each possible
input state of a macro Is the first step in setting up the
automatic transition. |If there is only one permitted state,
this selection is trivial, Otherwise a target for each
input state must be selected from among several permitted
states. Clearly, some criteria is needed for measuring the
cost of changing states. For each input state, the permitted
state yielding the lowest such cost can then he selected as
a target. The cost criteria used in this section is the
number of instructions required (not counting inadvertent
storing of values since these are not predictable in
advance). Since we assumed in section 2,3 that each
register has a direct path to and from core, the maximum
cost of changing the location of one operand is 2 (storing
the value from one register, and then loading it into a
second), Rif values, which require a function to load them
into a register, are treated as if they were already in that
register since the function is to be applied in all cases

and is thus a constant cost.




Example: Assuming two register classes, R and R', and a

register-register transfer, sample costs are:

(input state)(permitted state)(cost) (comment)

(s,s) (s,R)
(s,R) (s,R)
(s,R) (R,s)
(s,R) (s,R")
(s,Rf) (R,R)
(Rf,Rf) (R,R)

1 load

0

2 store, load
1 transfer

1 load

0

Figure 3.1: Sample Transition Costs

An alternate cost criteria might be Instruction

execution times. In either case, the target selection

algorithm simply selects for each input state that permitted

state which can be reached at lowest cost. The selection of

a target state for each input state
every time the macro is called. It

table at machine description time.

3.4.3 SFQUENCING THE TRANSITION

Once a target state has been
state, there remains the problem of
which changes are to be made. This

general strategy which accomplishes

need not be performed

can be compiled Into a

selected for each irput
declding the order in
chapter first outlines a

sequencing for all

possible machine structures. The general strategy Is called

'b1ind' sequencing for reasons that
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Algorithm to select a target permitted state
for an input state of a macro

Input state: i = (i1,12)

Permitted states: pj = (pjl,pi2) j =1,n

'

J =1
target = nil
mincost = 00

totalcost=
cost(il,pjl)+cost(12,pj2)

totalcost <
mincost 2

target = j
mincost =
totalcost

The function cost(i,p) determines the number of instructions
required to change 1 to p.
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chapter later discusses a second strategy called
'predictive! sequencing which, when possible, might be more
~efficlent, The following discussion concentrates on 'blind’
sequencing, since blind sequencing always works and is a

good vehicle for outlining the problem involved,

To fllustrate the problem, let us consider the
transition from input state (s,s) to target state (R,R).

There are two possible paths, as this graph indicates:

12 @ 11
S
11 @ 12

In the graph, each node represents a state, square nodes

represent permitted states, and paths from one state to
another are represented by arcs., The arcs are labeled to
indicate what operation is being performed to which operand,
Thus 11 indicates that the first operand fs heing loaded

when that arc is followed,

In the graph, there are two paths from (s,s) to
(R,R). In this particular example, the paths are eaually
efficient and either can be selected, An important thing to

notice in this example is that every arc connects one
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possible input state to another. This Is true because we
have taken all possible combinations of locations as
possible input states. Since each arc must lead to another
possible input state, each state can be examined in turn and
one labeled arc can be drawn from its node. Drawing this
one arc for each state completes the graph. A decision
procedure for determining which arc to draw for a given

state Is given in Figure 3.2,

3.4,4 ACCIDENTAL TRANSITIONS

There is one complication to bhe considered in

performing the seaquencing. It Is illustrated below:

" 4D
S

Figure 3.2: Sample Sequencing Graph

In input state (R,Rf), the first operand is already in a
register. A code generating function is to be applied to
load the second operand. The function can generate code
using registers, and even might call macros as suhbroutines

to perform runtime computation. For instance, to load a hit




Algorithm For Blind Sequencing

Problem: Given an input state and a target state, determine
what operand to transform first. (Making this decision for
each possible input state completes the graph).

Each operand can be expressed as one of the following:

input Target

s s

R R

Rf R' (R' # R)

The first operation to he performed to a given operand can
be expressed as follows:

Target
Input s R R!
I 1="1o0ad"’
s nil 1 1 st='store’
R st nil t t="transfer’
Rf f1 f2 f3 fit="apply

function f'!

These operations can be given priorities:
st > f1 > f3 > f2 > t > 1
The effect of the priorities is to give highest precedence

to storing values, next highest to applying functions, then
to register transfers, and finally to simple loads.

Sequencing Is done by labelling each operand of each input
state by st, f1, f2, f3, t, 1; and then drawing the arc
corresponding to the operation with the highest priority.
If both have equal priority, then either can be picked,

Figure 3,3
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value extending across a word boundary it is necessary on
the 360 to load a register pair and perform double word
shifts to isolate the value. Thus, the function may require
the register containing thé first operand to be stored. |If
this happens, a transition to (s,R) occurs, rather than to
(R,R)., This is called an accidental transition from an
unstable state to an alternate state. To accomodate such
unexpected but unavoidahle transitions, the graph is
augmented to include dotted arcs from such unstable states

to the appropriate alternate state.

Figure 3.4: An 'Unstable' State

The graph in Figure 3.4 indicates that applyling f2 to the

input state (R,Rf) should lead to (R,R) but might lead to

(s,R). Full examples of such graphs are given in Figures

3.5 and 3.6.

Let us constder for a moment how such accidental
transitions can be implemented in DMACS, In the performance

of the transition (R,Rf)->(R,R), the register containing the
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input states: (s U R U Rf) X (s U R U Rf)
permitted states: (R,s), (R,R)

fl
Figure 3.5
input states: (s U R UR" URf) X (s UR UR'" U Rf)
permitted states: (R',s), (R',R) ROAR' = ¢
Rf,R
st2

Rf,

fl t
R,s

st2
R,R

Blind Sequencing Graphs
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first operand should not he stored unless necessary. This
can be assured by flagging that register's entry in the RST
(register state table). When storing any register, the
GETREG routine must attempt to respect these register

flags. After the function bhas been completed, the code
generator must check to see If the first operand is still ir
a register. If not it must follow the dotted arc to reach

its next state.

3.4,5 A REVIEW OF SEQUENCING

The sequencing strategy descrihed in the previous
sections is called 'blind' sequencing hecause it involves
applying load functions without looking ahead to see how

these functions hehave., Consider the followirng situation:

Figure 3.7: Sample Secuencing Graph

'Blind' sequencing arbitrarily selects one of these paths.
If it is possible to determine in advance whether a given

function can be applied without disturbing a value already




in a register, then a more effective strategy can be used.
The second strategy is called 'predictive' sequencing.
Predictive sequencing is not so general as blind sequencing
since for an arbitrary machine with register-register
relations like even-odd pairs, the exact needs of an
arbitrary function (even if quite simple) may he very

difficult to predict and control.

This chapter concentrates on the blind seauencing
approach. Predictive sequencing is mentioned primarily to
put the problem in perspective. The main argument against
developing a general predictive sequencing strategy for an
arbitrary machine is that it would be very difficult to
design, and would run the risk of using more instructions at
compile time than were ever saved at runtime. In code
generation, it is generally true that if elaborate
optimization is to be done, it is most profitahly done on a
fairly glohal basis, such as allocating registers over
loops, removing invariance from loops, consolidating common
subexpressions, etc, Blind sequencing has the advantage of
affording a degree of local optimization (compared to a
system which stores all registers hefore calling a function)

without any really elaborate machinery.




This concludes the introduction to sequencing, Let us
step back for a moment and evaluate briefly what these bhlind
sequencing graphs imply. A blind sequencing graph is
compiled at machine description time by DMACS, Any
particular graph applies to a particular machine, but the
concept of such a graph is a general formalism and is

applied to all machines,

Figure 3.8: Sample Sequencing Craph

To understand the signifigance of this fact, let us consider
what factors govern how frequently the accidental transition
is followed from (R,Rf) in Figure 3.8. The frequency
depends both on the source program and on the target
machine. If the source program uses data-types which
require simple accessing functions, then the dotted arc will
tend to be followed less often than if more complex
data-types are used. Similarly, if the machine has many
available registers, the dotted arc will tend to he followed

less often than if the machine has few of them,




Notice, however, that nelther the prograhmer nor the
machine specifier need even know that the prohlem exists.
For that matter, nelther need the language implementer.

Only one person need ever worry about it- the DMACS designer

who does all the worrylng for everyone.

5.4.6 A GENERAL OVERVIEW OF A TRAMSITION

The automatic transition mechanism looks at the type
of a macro's operands, looks at the permitted states, and
then initiates one or more transformations to attain one.
This process can be described in general terms:

1. A system is in a given state (certain values are in
certain locations),

2, It is desired to transform the system to a new state
with certain properties (particular values in particular
locations).

3. Functions are available which can effect a desired
local change to part of the system, but with possibly
unpredictable side-effects. (A load function applied to
an Rif value might store an arbitrary value from a
register).

L, It Is desired to make a sequence of such local

changes and still have the resulting global state

- Gf =




well-defined,

To accomplish this goal, the mechanism that generates
permitted states must be able to detect when one function it
applies stores a register that It expected to be loaded, and
either reload that value or else pick an alternate permitted

state. Two potential problems in a system of this sort are

deadlock and thrashing.

1. Deadlock: Deadlock occurs if a value is irrevocabhly
locked into a register by the flagging mechanism, so that it
can not be stored., If this were possihle, it is easy to
imagine a situation where a macro called as a subroutine
might be unable to obtain the registers it required. Such a
deadlock can not occur in the system outlined here, since
the register flags are only interpreted as reguests that a

register not be stored unless necessary.

2. Thrashing: In section 3.4.4, accidental transitions were
described. In such transitions, an attempt to reach onre
state results in an Inadvertent transition to an alternate
state. One might wonder whether such inadvertent
transitions could be repeated indefinitely. If so, then a
thrashing situation might result, in which each sucessive

attempt to reach a permitted state is thwarted. Fortunately,
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of a load function may result in macros being called as
subroutines, each macro invocation is numbered
sequentially. That number is used to flag registers. In
obtaining a register, the GETREG routine uses the following
priorities:

1, an empty register

2, an unflagged register

3. a register with the lowest flag (ie least recently

set)

Thus the most recently computed values are the most

securely protected. As a result, if a register is

loaded and no arbitrary functions are called it can be

relied upon to remain in its register,

The process of macro expansion involves performing

the following steps, I, 1, and 11! in sequence:

|. Protect Values Already in Registers: First any values to
be used by the macro which are already in the correct
registers are flagged., Such values include operand values
as well as values to be used as indices or bases to ohtain
an operand value. |If a value in a register requires that a
related register be stored, then make sure that register is

stored and flag it as well,




—ak

deteermine
input
node
apply
is node operation has an follow

to operand accidental y | normal

as indicated transition | arc to P—

by arc occurred ? next

from node l node
Y

permitted
node ?

done

follow dotted arc
to next node

Figure 3.9: Performing a Transition

11. Perform the transition to a Permitted State: MNotice
that it is in the process of following the sequencing arcs
that the load functions and the GFTREG routine are called as
subroutines. Load functions are called when a load is
applied to an Rif value. The GETRFE routine is called when

a load or transfer arc is traversed,

111, Perform Emission and Bookkeeping:

1, For each operand in storage, load any index or bhase
values which are not already loaded,

2. Erase all RST flags set by this macro,

3, Emit the code sequence associated with the permitted
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node attained using the seauencing graph, The code sequence
was specified by the machine specifier when defining
permitted states,

L, Erase the operands from the MRT and RST

5. Record macro result, if any, in the RST and MRT

3,6 AN EXTENSION: OPERATIONS TO MEMORY

A useful extension to the state mackine concept, as
outlined, Is to incorporate 'operation-to-memory'
instructions, such as 'add-to-storage'. It is simple to
include this common class of instructions by allowing the

user to specify alternate destinations for a macro result,

Example: For the PDP-10, which bas such instructions, an
OMML definition for IADD (defined in section 2.,1.2) can bhe:
1ADD al,a?
from REG(al),REG(a2) emit TADD al,a2 result PRFG(al)
from REG(al),WNRN(a2) emit 1ADD al,a? result RFr(al)
or emit 1ADDM al,a2 result WCPN(a2)
(The ITADD and IADDM instructions being emitted are PDP-10
opcodes.) The second state declaration indicates that if al
is in a register, and a2 is in core, then an IADD

instruction yields a result in the register, and an 1ADDM

instruction vields a result in core.
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To take advantage of such information, only four
modifications need be made to the logic outlined in this

chapter:

1. When emitting code: If such a choice exists and the
core location is a temporary, then defer emitting the
instruction, and flag the Register ir the RST,

indicating the two instructions and the core location.

2. In the GETRER logic: emit an operation-to-memory
instruction in preference to explicitly storing a

value.

3. In selecting a permitted target state: If there is a
choice of input states due to deferral of such an
instruction, then evaluate both possihle input states
and select that one whose target has least cost, |If the
selection requires emission of an operation-to-register
Instruction, continue to defer its emission until it is

clear that the value need not he stored.

L, After sequencing and prior to code emission: First
emit any necessary op-to-register instructions for input

operands which have been defered.




Although these simple modifications to the DMACS logic
certainly lead to no dramatic gains in efficiency, they do

represent a useful extension to the state machine corcept.

3.7 SAMPLE MACHIME DESCRIPTIONS

This section outlines the logic of two simple
machine independent macros whick might he written in MIML,
Then OMML descriptions of the IRM=360 and of the PDP-10

which fill out the macros are given,

Machine Independent Macro Logic:

macro MUL X,Y
if the types of X and Y are integer
then ITMUL X,Y
else if the types of X and Y are floating
then FMUL X, Y
else error

macro SUB X,Y
if the types of X and Y are integer
the ISUR X,Y
else if the types of X and Y are floating
then FSUR X,Y
else error

OMML Machine Description of the IRM-3€0:

The IRM=360 has one set of registers for integer
arithmetic and another set for floating point arithmetic,
and therefore has separate pathways to and from these
registers. For multiplication and division of integer
operands, even-odd pairs of registers are used,




rclass REG:r2,r3,r4,r5,r6,r7,r8,r9,r10,rl11

rclass ODDREG:r3,r5,r7,r9,rll

rclass FREG:fr0,fr2,frk, fré

relation EPAIR (stored:0DDRFG)
r3:r2,r5:rb4,r7:r6,r9:r8,r11:10

rpath WORD->REG: L REG,WORD
rpath REG->WORD: ST REG,WORD
rpath FREG->WORD: LE FREG,WORD
rpath WORD->FREG: STE FREG,WORD

IMUL m1,m2 (commutative)
from ODDREG(m1),REG(m2) emit MR FPAIR(m1l),m2 result ODDRFG(ml)
from ODDREG(m1),WORD(m2) emit M EPAIR(m1),m2 result ODDRFG(ml)

(On the 1BM=360, multiplication requires one operand in an
'odd' register. The multiply instruction must refer to its
even pair.)

1SUB sl1,s2
from REG(sl),REG(s2) emit SR sl1,s2 result RFG(sl)
from REG(sl),WORD(s2) emit S sl,s2 result RFh(s2)

FMUL ml,m2 (commutative)
from FREG(m1),FREG(m2) emit MER ml,m2 result FRFG(ml)
from FREG(ml1l),WORD(m2) emit MF ml,m2 result FRFC(ml)

FSUB sl1,s2

from FREG(sl),FREG(s2) emit SFR s1,s2 result FRFR(sl)

from FREG(sl),WORD(s2) emit SF sl1l,s2 result FRER(sl)

from FREG(s2),WORD(sl) emit LNER s2,s52;AF s2,s1l result FREG(s2)

(Notice that since a 'complement register' instruction,
LNER, exists for floating point, a state can be specified
with s2 in a register and sl in core).

OMML Machine Description of the PDP-10:

The PDP-10 has one set of registers for both integer
and floating point arithmetic., Since the PDP-10 has
operation-to-memory instructions, all memory-register state
declarations include two alternate destinations.
rclass REG:a,b,c,d,e, f,g,h,1,j,k,1,m,n
rpath REG->WORD: MOVEM REG,WORD
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rpath WORD->REG: MOVE REG,WORD

IMUL ml,m2 (commutative)
from REG(m1),REG(m2) emit IMUL ml,m2 result REG(ml)
from REG(m1l),WORD(m2) emit IMUL ml,m2 result REG(m1)
or emit {MULM ml,m2 result WORD(m2)

ISUB sl1,s2
from REG(s1),RFG(s2) emit 1SUR sl,s2 result REG(s])
from REG(s1),WORN(s2) emit ISUR s1,s2 result RFG(s1)
or emit ISURM s1,s2 result WORD(s2)
FMUL ml,m2 (commutative)
from REG(m1),REG(m2) emit FMPR ml,m2 result REG(m1)
from REG(m1),WORD(m2) emit FMPR ml,m2 result RFEG(ml)
or emit FMPRM ml,m2 result WORD(m2)
FSUB sl,s2
from REG(sl),RFEG(s2) emit FSBR ml,m2 result REC(s1)

from REG(s1),WORD(s2) emit FSBR ml,m2 result REGC(m])
or emit FSBRM ml,m2 result WORD(m2)

3.8 SUMMARY: THE STATE MACHINME

The chapter outlines how a code generator performing
computations can be pictured as a state machine. Then it
shows how the state machine can be formalized and
incorporated into DMACS, a system for building machine

independent code generators.

Once the state machine model is incorporated into
DMACS, it becomes a tool that a languare implementer can
use. It is a convenient tool since it frees the language

implementer from worrying about machine structure, from
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having to perform tests to determine Input states to his
macros, and from bhaving to implement transitions to
permitted states. Thus, the macro logic that the language
implementer specifies need only deal with particular
semantic features of his source language. Therefore the
semantics of the source language are logically divorced from
any one target machine's structure. As a result, these
macros become much simpler to write. Also, once these
machine independent macros are written, they can be
implemented for a variety of machines from a machine

description.




CHAPTER |V

DATA REFERENCE MACROCS

L.1 INTRODUCTION
4L.1,1 OVERVIEW
Chapter 3 described a state machine model which is
built into DMACS and used as a tool to create machine
independent macros which can be filled out from a machine
description. The state machine is useful to help model

computational macros,

Chapter 4 turns to the problem of achieving the same
machine independence for data reference macros. To achieve

this goal, a data definition facility is built into DMACS,

Source
Data
Declaration

Target
Machine —— DMACS
Description

Source Data
Described
For Target
Machine
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A machine specifier describes his machine memory structure
and describes how source data ltems are mapped into that
memory., From this description DMACS characterizes source
data items In terms of the primitives of the data definition
facility, .The language designer writes his data reference
logic in terms of the primitives of the faclility using two
built-in functions, called the INCREMENT and COMVERT
functions. These functions operate on the primitives of the
data definition facility. In effect, these two functions
represent a machine independent model of data reference
logic. A language implementer can write data reference
macros in terms of these built-in functions without

worrying about how the data items of his language map into

the core memory of a particular machine.

Chapter L4 is not an extension of Chapter 3, 1t
pursues a similar goal in a new area: machine Independence
for data reference macros similar to that acheived in

Chapter 3 for computational macros.
4,1,2 DATA REFERENCE

This section introduces the reader to the term 'data
reference' as used in this chapter, and gives a simple

example of data reference macros in action., The data
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reference constructs dealt with in this chapter are
subscripted structures as found in PL/1, P11/l is chosen
both because it is a well known language and also because it
has powerful data referencing constructs. For simplicity
the chapter deals only with structures whose size is static
and known at compile time. This restriction eliminates some
of the messiness of PL/1l's structure implementation and lets
us concentrate on the basic problems of making such
references machine independent. If we allow dynamically
varying structure sizes, then we must worry about what logic
can be performed at compile time and whkat logic must he
performed at run time by generated code. Restricting our
attention to static structures frees us to concentrate more
fully and more clearly on machine independence of data
reference, rather than on the details of implementing
dynamic structures for PL/1. The restrictions still allow

useful and flexible data referencing constructs.

A sample structure is the following:

declare 1 A (10) fixed,

2 X,

2 B (10),
3 Y (3),
3¢ (10),
3 7,

2.0 (2);

This declaration defines a subscripted structure. The
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A(1) ~ X

B(1) CY(1)
Y(2)
Y(3)
c(1)
C(2)

c(10)

Y (1)

L7
R(10) [Y(l)

Q(1)
~Q(2)

AC10) (X

B(1) [:
B(2) [:

B(10) [
n(1)

LQ(2)

Sample Structure Layout
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i 33 8S Al

1+1 SUBST i,B

f+2 SS i1+2,J
i+3 SUBST i+2,C
i+4 SS 1+43,K

This approach can handle any structure reference in a

simple, general fashion.

Having discussed the data reference macros to be
dealt with, we now present a simple example of how code
might be generated for the macros outlined above. This
simple example assumes that the items all represent full
words of data on some particular machine. Later we shall
extend this simplified situation to allow more complicated

data items.

Each structure item is characterized by two numbers:
1, an offset from the beginning of 1its subhstructure
element
2, an element length
The structure item B, for instance, has an offset of 1, and

an element length of 14,

In generating code for the macros ahbove, two running
totals can be kept: complle time words- CW, and runtime
words- RW, The running total represents a displacement Into

the structure. At the end of the set of macros, the




displacement points to fhe correct terminal data item.
The following logic illustrates how the macros might be
expanded. In the interest of clarity and simplicity, the
code generated is not as optimal as it might be,.
SS A,| records the offset of A, which is 0, in CW, and
generates code to multiply the element Tength of A (143)
by 1-1, The result of the multiplication becomes RV,
(1-1 is used in the multiplication on the assumption
that the first (zeroth) element is defined as A(1l).)

SUBST i,B adds at compile time the offset of B, which is
1, to CW,.

SS i+1,J generates code to multiply the element length
of B, 14, by J-1 and add the result to RW,

SUBST i+2,C adds at compile time the offset of C, 3, to
CW.

SS i+3,K generates code to add K-1 to RW. (no
multiplication is necessary since the element length of
C is 1).
The result of all the computation is a pair of values
(CW, RW) which represent a compile time displacement and a
runtime index pointing to the desired data item., On a
machine 1ike the IBM-3€0, this pair can be put directly into

a machine instruction (ie. Load, Add) to access that data

item.

The above example iltlustrates the general operation of
data reference macros. It is shown later that an expanded,

but similarly clean, framework can be used to handle data
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more complicated than the full word items of this example,
When data items are bytes and bitstrirgs, the logic of the
macros is somewhat more complicated, and the eventual result
is not a simple full word pointer, but rather a '"location'
that can he input to a load/update routine which accesses

the data-item pointed to.

The most important point to notice in the example is
that each structure item is characterized by an offset and

an element length and that on different machines, these

offsets and lengths might be different, A terminal data
item is also characterized by two additional parameters, a
load/update pair to access the item, and a data length whichk
need not be the same as the element length (For instance, an
array of 5-bit bitstrings alligned on word boundaries would
have a data length of 5 bits, but an element length of one

word.) These too could vary for different machines.

4.2 THE DATA DEFINITION FACILITY
4.2.1 DESCRIPTION OF DATA

The previous section examined a simple example of data
reference. This section presents a more precise framework
for describing the type of data with which the chapter is

concerned, A data item can be characterized by a L-tuple

- 74 -




(OF,EL,DL,LU) describing how it is Implemented on 2a
particular machine.

OF- the offset of the data item from the origin of the
structure element to which it belongs

EL- the element length of the structure element which
that data item defines

DL- the data length- the length of the piece of data
which the data item represents

LU- the load/update pair which accesses the data item.

OF and EL can characterize any data item. DL and LU apply

only to terminal data items.

The following example illustrates how data items
declared in a particular source program might be implemented

differently on two different machines, the IRM-360 and the

PDP-10:
declare 1 A packed,
2 B fixed,
2 C char (2),
2 D char;

The PDP-10 is a word addressed machine with 36 bits/word.
Assume a data item of type 'fixed' to be defined as a word
item, and a character to be defined as a nine bhit item. The
IBM=360 is a byte addressed machine with 8 bits/byte.

Assume a fixed data item to be defined as a word (four byte)

item, and a character to be defined as a hyte. Section
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4.2.3 describes how such definition is done. Granting these

assumptions, the storage layout for structure A Is as

follows:
PDP- 10:
€ A >
L s c Ip!
< word X word >
I BM- 360:

P >

«—— B —»—C —

L p | |

< >
A byte

Thus the data item 'A.D' is described as follows on the two

machines:
1. on the PDP=-10

OF~ 1 word, 18 bits

EL- 9 bits

DL- 9 bits

LU~ the loadupdate routine for bitstrings

(Notice, as an aside, that if one wanted to pack 5
seven-bit characters into a word, then instead of an
element length, this item would have two numhers
associated with it, 36 and 5, Any Index Into an array of
such characters would be multiplied by 36 and divided by
5 to yield a bit displacement.)

2. on the IBM-360

OF- 6 bytes
EL=- 1 byte
DL=- 1 byte

LU- the load update routine for bytes.
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4L,2.2 DATA DEFINITION

To allow data reference macros to operate over data
which can be described differently for different machines,

certain problems must be solved,

1. Suitahle primitives must be found, flexihle enough to
describe offsets and lengths of data for a number of

machines,.

2. An algorithm must be written which takes a structure
declaration and a machine description and computes
offsets and lengths describhing that data for that

machine, expressed in terms of these primitives,

3, Data reference macros must be written in terms of
these primitives, so that these macros will he machine

independent,

DMACS solves these three problems by using a built ir
data definition facility. The primitives of the data
definition facility are addressahle units and bhits. All

data is ultimately descrited in these terms.

The remainder of the chapter filrst outlines bhow these

primitives can be deduced from information supplied by a




machine specifier. The chapter then il1lustrates how DMACS
can help a language implementer write data reference macros

in terms of these primitives.
4,2.3 DEDUCTION OF PRIMITIVES FROM A MACHIME DESCRIPTION

DMACS characterizes data for any machine in terms of
addressable units and bits. Information to make this
characterization must be deduced from the machine

description which specifies the following:

1, core memory units: The machine specifier defines his core
memory units (such as bhits, bytes, words, double words,
etc.), how these map into each other, and which is
addressable.
A sample declaration for the IRM 360 follows:

mem BIT

mem BYTE (8 BIT, addressable)

mem WORD (4 BYTE, boundary &)

mem DWORND (8 BRYTE, bhoundary 8)

The attribute 'boundary 4' indicates that an

element with storage class WORD has an address
congruent to zero, modulo &,

2. Source data types: The machine specifier must indicate
which storage unit each source data type Is to bhe mapped

into. It is here that a character data item might he defined
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as a byte on the I1RM=360 and as a hitstring on the PDP-10,
For a language where data can be packed or allirned, hoth
storage units are indicated. DMACS uses this information
together with the core memory unit information to determine
the offsets and lengths of data items from a source
program,

map fixed to WORD

map char to BYTE

map bit unalligned to BIT

map bit alligned to BIT allign WORD

The last declaration indicates that when a 'bit'

data item has been declared to he 'alligned', it

is to be alligned on a WOPD boundary,

3. Load/Update routines: For each of the memory units, the
machine specifier must define a load/update routine to
access source data items mapped by the speciflier into that

memory unit,

Some storage classes may bhave simple routines:

mpath WORD~>REG: L REG,WORD

mpath REG->WORD: ST RFG,WORD

mpath BYTE->REG: SR REG,RFG;IC RFG,BYTF
(etc.)

Other load/update routines are more complicated,

and are discussed in section 4,2.4, .




When a language data declaration is processed,
information from such a machine descrintion must ke used to
compute offsets and lengths for each data item. The offsets
and lengths can each be describhed by a 2-tuple (addressable
units, bits)., The tuple (4,2), for instance, stands for &

addressable units and 2 bits.

As a simple example, consider the following

structure:

declare 1 2Z,
2 A fixed,
2 B bit (12),
2 C bit (3),
2 D2 bit alligned;

The following table indicates how the structure might bhe

described for the IBRM-360 and the PDP-10:

(data) (offset)(length) (offset)(length)

A (0,0) (4,0) (0,0) (1,0)

B (4,0) (0,12) (1,0) (0,12)

C (5,14) (0,3) (1,12) (0,3)

D (8,0) (0,2) (2,0) (0,2)
I1BM=360 PhDP=-10

Cach tuple represents addressabhle units and bits. A is a
fixed data item which is mapped into a full word on hoth
machines (and hence &4 addressable units on the 360), and B,
C, and D are mapped into bits. The flowchart cof a general
algorithm which will take a structure and descrite it using

these primitives is given in Figure 4,1,
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This algorithm illustrates how offsets and element
lengths can be computed for data items, Two stacks are

used: DISP and STACK,

2
pisp 1 "~ STACK
0 laddr | bits name

The stacks are pushed each time a new structure level is
encountered, and are popped eack time a level ends. Fach
entry of DISP has two fields, one for addressable units and
one for bits, which record displacement from the beginning
of the current structure level., STACK is used to store the
name of the current data item at each level, For each data

item an offset €OP)and an element length (FL) is computed.
4L.,2.4 COMPLEX LOAD/UPDATE ROUTIMES

The previous section rave examples of simple
load/update routines for addressable data items.
Load/update routines for non-addressabhle items (ie. bit
strings) are more complicated for several reasons,

1. They take as input an address, a bit displacement,
and a bit length, |
2, Bit displacements can be runtime or compile time

values,




increment
DISP
appropriatel

is DISP
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@ done

Figure 4.1
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3, Bitstrings can run across word boundaries,

Two possible solutions are available to handle this
problem. The easiest solution is to require that the
machine specifier provide a suhroutine which makes the
appropriate checks, and executes the correct load and shift
instructions for the different situations. The second
solution is to allow the machine specifier to define open
code sequences to be generated, at least for the simpler
cases (for instance, when bit displacement is known at
compile time, and hence it can be determined that the item

does not cross a word boundary).

A sample load routine for the IBM 360 might appear
somewhat as follows:
mpath BIT->RFG: L REG,WORD

SLL RFG,DISP

SRL RFR,32-LFM
The whole problem of exactly how to allow a machire
spercifier to define open sequences of this sort is a
difficult one. It is to a large degree an implementation
problem for a DMACS builder, rather than a conceptual

problem of machine independence. It is therefore left

somewhat open In this chapter.




L,3 MACHINE INDFPENDENT MACROS

L.3,1 DATA MACRO LOGIC

The previous sections have illustrated how data items
on any machine can be characterized in terms of the
primitives of a data definition facility. This section
describes how machine independent data macros can be written
in terms of the primitives of the facility Iin a clean,

simple fashion.

As outlined in section 4,1,2, the operation of a data

macro consists of incrementing a pointer into a data base, a
pointer consisting of both runtime and compile time values,
In the machine independent macros which a language
implementer writes, all offsets and lengths are expressed in
addressable units and bits, Thus the pointer heing
incremented can be seen as a b-tuple: (CA,RA,CR,RP),

CA- compile time addressable units

RA- run time addressable units

CBR- compile time bits

RB- run time bits
Any element may be nil: 1ie, if CA is nil, the pointer has
not been incremented by any compile time addressable units.

The process of incrementing the pointer can he expressed hy

the following graph, called the IMCPEMFMNT function:
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ca/nil
‘® ()

ca/Add-c(CA, ca)

Cb/li] rb/nil
cb/Add-c(CB,cb) rb/Addrr(RB,rb)

This graph contains four pairs of states, Fachk pair is a
state machine recording the presence or ahsence of one
element of the L4-~tuple., Hence, [If the pointer has no
runtime bits, the third pair is in the state 'nil'., Fach

pair starts in the state 'nil', Input is represented by

ca', 'cb', 'ra', and 'rb', Actions to be taken are either
Add-c, representing addition at compile time, or Add-r,
representing addition at run time, or nil. When the pointer
is incremented by a new value, the appropriate state machine
makes a transition., [If this is the first transition for
that machine, then there is a change of state witk no action
performed, |If this is not the first transition, then eitbher

a compile time 'Add-c' is performed, or code is gmenerated to

- 85 -




to perform a run time 'Add-r',

The graph is a machine independent model of the
operation of a data reference macro. It is machine
independent because it operates on the primitives of a data
definition facility in which data for a variety of machines

can be automatically expressed.

Since the INCREMENT function is machine independent
it is buflt into DMACS, Using this function, the language
designer can write his macros without worrying ahout how
different data items map into core, 1In a similar manner, a
COMVERT function to convert the pointer into a data item
"location' (to be input to a load /update routine) is built
into DMACS, The logic for this routine is discussed In the

next section.

Using these two built in routines, a languare
designer can write a subscript macro with the following
logic:

SUBSCRIPT X,1
1, subtract 1 from | yielding Value(1-1).
2, if the element length of X is (1,0) or (0,1)
then INCREMENT X by Value(l-=1)
else multiply Value(l=1) by the element length of X
and INCREMFMNT X by the result
3. if X is a terminal data item
then apply COMNVERT to the pointer computed ahove.
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(When incrementing X with a value, the units of the element
length of X determines whichk component of the pointer is
incremented., If | is a compile time value, the suhtraction
and multiplication can be done at compile time., Otherwise
code must be generated to perform these operations at run
time.)

The macro is completely free of machine dependent
detail., Using the two functions huilt into DMACS, the
language implementer is able to write a macro dealing only
with the semantics of his source language. For instance,
such a macro might include logic to handle subscript bounds
or to handle special types of subscripting such as for

triangular matrices, but need pay no concern to machine

structure at all,
4,3.2 THE CONVERT FUNCTION

The COMVERT function takes a pointer in the form of
a bL-tuple (CA,RA,CR,RR) as discussed ir the previous
section, and converts it into a form suitahle for use by a
load/update routine. When the pointer is expressed in
addressable units and references a simply accessahle item,
conversion is not necessary. When the pointer includes
hits, however, the bit elements of the pointer must bhe
normalized to yield a number of addressable units, and a

local bit displacement within the memory unit pointed to by




the addressable elements RA and CA,

First we discuss the problem of normalization, and

then how It fits into the CONVERT loric as a whtole.

NORMALIZATION: Consider the problem of accessing a
bitstring on the PDP-10 and on the IBM=360 given the bhase
address of a data area and a bit index into it, On the
PDP-10, the index should be divided by 36 (bits/word),
yielding a full-word index as the quotient, and the bit
displacement as remainder, On the 360, assuming the
load/update routine uses full word load Instructions, the
address of a full-word boundary is wanted, together with a
bit displacement to within that word, Therefore, the index
should be divided by 32 (bits/word), yielding a bit
displacement as remainder, Multiplying the quotient hy &
would then yield an index in addressable units. Thus a data
type may have the following attributes when implemented on a
particular machine: Md- a number to divide a bit pointer by,
to yield a 'local! bit pointer as a remainder, Ma- a numher
to multiply the result of that division by to yield

addressable units.

When the bit pointer is a compile time value, this

normalization is performed at compile time. Otherwise, code
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must be generated to perform the normalization at run time.

CONVERT: The convert function takes a pointer
P=(CA,RA,CB,RR) and converts it to a location L=(CA,RA,chl)
or L=(CA,RA,rb1), where chl and rhl are local hit

displacements into a memory unit. The logic of this

function fis:
1. If CR=nl1 and RB=nil, then normalize CR at compile

time yielding ca and cbl, Then INCPEMENT P by ca

2. If RBENIY then do
( a. if CB# nil then
(generate code to add RR and CR yielding RP)

b. generate code to normalize RBR yielding ra and

rbl
c. INCREMENT P with ra )

This function yields an expression which can be input
to a load/update pair. This function operates on the

primitives of a data-definition facllity and is therefore

machine-independent.
b.,4 SUMMARY

The chapter describes how a data definition facility
is built into DMALS to facilitate the writing of machine
independent macros. Then it discusses how this facility fis
used: how the machine speciflier describes his machine
memory, accessing functions, and the mapping of source data

types into core; and how DMACS then uses the information to
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compute the primitives which describe a source program's
data. The chapter then discusses how machine independent
macros are written in terms of two machine independent
functions (INCREMFNT and CONVERT), operating over these
primitives, These two functions embody the substance of the
machine related part of data reference macros. They are
built into DMACS to be used as a tool hy the languare

implementer.

The basic concept set forth in this chapter is the
use of a data definitional facility., The rest of the
chapter is built around this idea, It Is Instructive to ask
how much more flexibility the definitional facility affords
over a code generator for a single target machine. At first
glance, it might appear that the definitional facility
merely lets DMACS describe data with different numhers on
different machines, but perform the same manipulations with
those numbers in all cases. This is not true. The
definitional facility gives the language implementer the
ability to handle a given source data reference with
different sections of his logic on different machines. Thus
an array of characters can be handled for the IRM-360 as an
array of addressahle units with element length of 1, whereas

on the PDP-10, it would be handled as an array of bitstrings
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of length 9. The operations performed on these element
lengths could be different, and the load update routines

used to access the items could be different,

Thus the definitional facility of DMACS provides a
flexible interface between machine structure and macro
logic. At the same time, it is an interface that is almost
invisible to both the machine specifier and the language
implementer. The language implementer is able to think
primarily in terms of the semantics of his language
irrespective of machine structure, and the machine
specifier merely gives a description of his machine. DMAFS
takes care of binding the macros and the maéhine description

together,
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CHAPTER V
CONCLUSIONS AND FURTHFR WORK

5.1 AREAS FOR FURTHER WORK
5.1.1 FURTHER ASPECTS OF rODF CFENFRATIOM
The scope of the present research is limited since it
does not address the task of making an entire compliler
machine independent. Only two classes of macros are
studlied, and only a limited set of possihle operand types
are allowed. Also, many machline idiosyncrasies, such as

interrupt handling, are ignored,

The problem of making a powerful compiler machine
independent is a difficult and a messy one. The prohlem is
somewhat softened by the fact that many machine
idiosyncracies can properly be handled by subroutines, and

thus may not prove to be insurmountable stumhling blocks.

One signifigant area not dealt with is the class of
control macros, such as subroutine calls, entry and return
macros, etc, These macros may not, however, reauire any
elaborate mechanisms to allow machine independence. In
general, such control macros are implemented very similarly
on different machines and may be describtable merely hy

appropriate code sequences. One minor probhlem is to assure
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that the stack is allocated .in the correct units.

Types of operands not considered include character
strings and decimal operands such as those found on the
IBM-360. PRoth of these types of operands are generally not
manipulated via registers, but rather by subroutine or by
special memory-memory fInstructions. The model of
computation in Chapter 3 is oriented primarily towards
manipulating values using registers., More work is also
needed to determine exactly how load/update routines can
best be defined to fit into a machine independent

framework.

5.1.2 EXTENDING THE MODFLS

The models presented in this paper are set forth
primarily to isolate some basic ideas involved irn code
generation, and to provide a basis for more general
extensions which could include a broader spectrum of machine

structure,

In particular, one might relax some of the
constraints imposed on register structure in Chapter 3,
(perhaps to include such machines as a stack machine), and

develop an automatic mechanism for attaining permitted
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states in this less constrained system. Ry re]axfng
constraints in this fashion, it might be possihble to ohtain
a number of different automatic mechanisms, together with
classes of machine structures which can bhe handled by each

mechanism.

In a similar vein, one might consider different
possible addressing structures, and determine how the
machine independent data reference logic can be modified to
accomodate them, In particular, it might be useful to look
at addressing on small machines, such as the PDP-8, which
tend to have anomolous addressing strategles due to bit
conserving design considerations. |In fact, such machines
might be practical candidates for a descriptive system like
DMACS, since they tend to be reasonably similar, and since
they tend to be unsuitable for sustaining compilers

themselves.
5.2 SUMMARY OF RESULTS

The present research has examined the two most common
types of macro used for handling arithmetic values:
computation macros, and data reference macros. For each of
the two types of macro, the paper develops a machine

independent formalism which models the machine dependent
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aspects of the macro's logic: a state machine for
computation macros; and the IMCRFMENT and COMVERT functiors

for data reference macros.

Chapters 3 and & show how the models can be
incorporated into DMACS, a descriptive macro system. A
language implementer can use the models as tools, writing
his macros in terms of machine independent primitives which
invoke the model. A machine specifier can then describe his
machine, and descriptively fill out the primitives as they

apply to his machine.
Thus the research has several purposes:

1. The research is a first attempt to formalize some of the

logic involved in generating code for high level languages.,

2. The research is an attempt to see what is involved [n
attaining machine independence in a code generator, similar
to the language indebendence and the token independence
acheived by automatic parsing and automatic lexical

systems.

3. Towards this end, this paper explores the question of
just what might reasonably constitute a 'description' of a

machine,
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L. The research helps make clearer the distinctior hetween
the semantics of a bhigh level languare and the structure of
a target machine, a distinctior that is often unclear in a

compiler oriented towards a single mackine.
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