Automatic Generation and Checking of Program
Specifications

Technical Report #MIT-LCS-TR-852
June 10, 2002

Jeremy W. Nimmer
MIT Lab for Computer Science
200 Technology Square
Cambridge, MA 02139 USA
jwnimmer@lcs.mit.edu

Abstract

This thesis introduces the idea of combining automatic generation and checking of program specifications,
assesses its efficacy, and suggests directions for future research.

Specifications are valuable in many aspects of program development, including design, coding, verifi-
cation, testing, and maintenance. They also enhance programmers’ understanding of code. Unfortunately,
written specifications are usually absent from programs, depriving programmers and automated tools of
their benefits.

This thesis shows how specifications can be accurately recovered using a two-stage system: propose
likely specifications using a dynamic invariant detector, and then confirm the likely specification using
a static checker. Their combination overcomes the weaknesses of each: dynamically detected proper-
ties can provide goals for static verification, and static verification can confirm properties proposed by a
dynamic tool.

Experimental results demonstrate that the dynamic component of specification generation is accurate,
even with limited test suites. Furthermore, a user study indicates that imprecision during generation is
not a hindrance when evaluated with the help of a static checker. We also suggest how to enhance the
sensitivity of our system by generating and checking context-sensitive properties.

This technical report is a reformatted version of the author’s Masters thesis of the same title, published by MIT in May, 2002.
He was advised by Michael Ernst, Assistant Professor of Electrical Engineering and Computer Science.

Contents

Introduction 3 544 Recall 0. 26
1.1 Uses for specifications 3 545 Density. 26
1.2 Previousapproaches 4 546 Redundancy 26
1.3 Combinedapproach 4 547 Bonus 27
1.3.1 Invariants as a specification 5 5.5 QualitativeResults L oL 27
1.3.2 Applications of generated specifications 5 551 General 27
1.3.3 Weak formalisms and partial solutions are useful . . . 5 552 Houdini 0. 27
1.4 Contributions 5 553 Daikon oL 28
15 Outline 6 55.4 Usesinpractice 28
5.6 DIiSCUSSION 28
Background 7 57 Conclusion o 29
2.1 Specifications o 7
2.2 Daikon: Specification generation $ Context sensitivity 30
2.3 ESC:Staticchecking oo v vv i 8 6.1 |Introduction 30
6.2 Context-sensitive generation 30
Extended Example 10 6.2.1 Applications 30
3.1 \Verificationbyhand 10 6.2.2 Implementation 31
3.2 Static verificationwithESC/Java 10 6.2.3 Evaluation, 31
3.3 Assistance fromDaikon 11 6.2.4 SUMMArY oo 32
3.4 DIiSCUSSION v v v e e 11 6.3 Context-sensitive checking 32
6.3.1 Polymorphic specifications 32
Accuracy Evaluation 14 6.3.2 Specialized representation invariants 34
4.1 |Introduction 14 6.3.3 Algorithm 34
42 Methodology 14 6.4 DISCUSSION o i e 34
4.2.1 Programsandtestsuites 14
422 Measurements 14 Scalability 35
43 EXPeriments 16 7.1 Stagedinference 35
431 SUMMAY . . . o v vvee e e e e e 16 7.2 Terminology 35
432 StackAr: array-basedstack 16 7.3 \Variableordering 35
4.3.3 Ratpo|y: p0|yn0mia| over rational numbers 16 7.4 COnSeqUenCeS of variable Ordering 37
4.3.4 MapQuick: driving directions 17 75 Invariantflow. 37
4.4 Remainingchallenges 18 7.6 Sampleflow 37
441 Targetprogramso 18 77 Paths ... 37
4.4.2 TestSUIES o o o 18 7.8 Treestructure. 38
4.4.3 Inherent limitations ofanytool 18 79 Conclusion 38
445 esomma ‘1§ Relted Work 3
45 Discussiono oo 19 8.1 Individual anal)_/ses 39
8.1.1 Dynamicanalyses 39
User Evaluation 20 8.1.2 Staticanalyses 39
5.1 Introduction 20 8.1.3 \Verification. 39
5.2 HOUAIN . .o oot 20 82 Houdini . . 39
521 Emulation 20 8.3 Applications 40
5.3 Methodology 21y Euture Work a1
53.1 UserTaSk """"""""""" 21 9.1 Furtherevaluation 41
5.3.2 Parnm_pants. S 21 9.2 Specification generation a1
5.3.3 Experlr_nental Design 22 9.3 ContextSensitivity 41
5.34 _Ar_1a|y5|s 23 g4 IMPIEMENtation . . .« « v v o 42
5.4 Quantitative Results, 25
541 Success 250 Conclusion 43
542 Time 26
543 Precision 26A User study information packet 45

Chapter 1

Introduction

Specifications are valuable in all aspects of program devgtegrammers apply recovered specifications to various tasks.
opment, including design, coding, verification, testing, optia the end, users are what matter, not technology for its own
mization, and maintenance. They provide valuable documeake.
tation of data structures, algorithms, and program operationThe remainder of this chapter surveys uses for specifications
As such, they aid program understanding, some level of whi@ection 1.1), summarizes previous solutions (Section 1.2),
is a prerequisite to every program manipulation, from initigkesents our approach (Section 1.3), summarizes our contri-
development to ongoing maintenance. butions (Section 1.4), and outlines the sequel (Section 1.5).

Specifications can protect a programmer from making
changes that inadvertently violate assumptions upon which H;e - .
program’s correct behavior depends. The near absence of xl Uses for SpECIfIC&tIOI’]S

plicit specifications in existing programs makes it all too eassy o ,
for programmers to introduce errors while making changes: /Qecmcatlons are useful, to humans and to tools, in all aspects

specification that is established at one point is likely to be dg_programrrjing. This section lists some uses of specifica-
pended upon elsewhere, but if the original specification is figns, to motivate why programmers care about them and why

documented, much less the dependence, then it is easy fE¥&2cting them from programs is a worthwhile goal.
programmer to violate it, introducing a bug in a distant part of Document code Specifications characterize certain aspects
the program. of program execution and provide valuable documentation of

. S . rogram'’ ration, algorithms, an ructures. Docu-
Furthermore, if a formal specification exists in a maching-P o9rams ope ation, algorithms, and data structures. Docu

. . entation that is automatically extracted from the program is
readable form, theorem-proving, dataflow analysis, model- : .) .
. . uaranteed to be up-to-date, unlike human-written information
checking, and other automated or semi-automated me

nisms can verify the correctness of a program with res erc]:a-t may not be updated when the code is.
prog P ;heck assumptions and avoid bugsSpecifications can be

to the specification, confirm safety properties such as lack. 0 .
bounds overruns or null dereferences, establish terminatior'1n<')5rerted Into a program and tested as code evolves _to ensure
response properties, and otherwise increase confidence irfc]hg;[]detected speC|f|cat_|ons are not later violated. This check-
implementation. ing can _be done dynam|ca_lly (vessert state_ments) or stat-
;)) o) ically (via stylized annotations). Such techniques can protect
_ Despite the benefits of having a specification, written Spegp ogrammer from making changes that inadvertently violate
ifications are usually absent from programs, depriving prossymptions upon which the program’s correct behavior de-
grammers and automated tools of their benefits. Few PfRigs. Program maintenance introduces errors, and anecdo-
grammers write them before implementation, and many USEBAY, many of these are due to violating specifications.
written specification at all. Nonetheless, it is useful to produce\5|iqate test suites. Dynamically detected specifications
such documentation after the fact [PC86]. Obtaining a SPeCH reveal as much about a test suite as about the program
ification at any point during development is better than nevgleit pecause the properties reflect the program’s execution
having a specification at all. over the test suite. A specification might reveal that the pro-
We propose and evaluate a novel approach to the recoveny@im manipulates a limited range of values, or that some vari-
specifications: generate them unsoundly and then check thgBles are always in a particular relationship to one another.
The generation step can take advantage of the efficiency offy@se properties may indicate insufficient coverage of pro-
unsound analysis, while the checking step is made tractaglam values, even if the suite meets structural coverage criteria
by the postulated specification. We demonstrate that our cafiich as statement coverage.
bined approach is both accurate on its own, and useful to pl’OBootstrap proofs. Automated or semi-automated mecha-
grammers in reducing the burden of verification. nisms can verify the correctness of a program with respect to
More generally, our research goal is to suggest, evaluatespecification, confirm safety properties, and otherwise in-
and improve techniques that recover specifications from exigtease confidence in an implementation. However, it can be
ing code in a reliable and useful way. We seek to explore htedious and error-prone for people to specify the properties to

3

be proved, and current systems have trouble postulating them; code
some researchers consider that task harder than performing
the proof [Weg74, BLS96]. Generated program specifications mstack pushcert);
could be fed into an automated system, relieving the human
of the need to fully hand-annotate their programs — a task that
few programmers are either skilled at or enjoy.

nyStack. i sEnpty() = false

Generator

Checker

Figure 1.1: Generation and checking of program specifications
results in a specification together with a proof of its consis-

tency with the code. Our generator is the Daikon invariant

A full discussion of related work appears in Chapter 8, but Wetector, and our checker is the ESC/Java static checker.
illustrate its main points here to characterize the deficiencies '

of previous approaches.

We consider the retrieval of a specification in two stages: ther formally writes both a description of the system and its
first is ageneratiorstep, where a specification is proposed,; thizsired properties. Automated tools attempt to prove the de-
second is &heckingstep, where the proposal is evaluated. kired properties, or to find counterexamples that falsify them.
cases where the analysis used for generation guaranteesHbatever, the work done by hand to create the model can be
any result is acceptable (for instance, if the analysis is soundyious and is error-prone. Furthermore, to guarantee that exe-
checking is unnecessary. Depending on the tools used, a ptaable code meets the desired properties, the models still have
grammer may elect to iterate the process until an acceptabladebe matched to the code, which is a difficult task in itself.
sultis reached, or may use the specification for different tasksstatic checking.In the case of theorem-proving or program
based and the result of the evaluation. verification, the analysis frequently requires explicit goals or

Past research has typically only addressed one stage, withotations, and often also summaries of unchecked code.
one of four general approaches. A tool may generate a spEgese annotations usually must be supplied by the program-
ification statically and soundly, so that checking is unneceger, a task that programmers find tedious, difficult, and un-
sary, or may generate it dynamically and unsoundly, leavirgvarding, and therefore often refuse to perform [FJLO1]. In
checking to the programmer. A tool may check a model of teentrast to model checking, annotations in a real program are
code and correctness properties that are both generated bytieé more numerous, since they are scattered throughout the
programmer, or may check a programmer-written specificatioddebase, and since real programs are often much larger than

1.2 Previous approaches

against code meant to implement it. the models used in model checking. Additionally, languages
Each of these four approaches presents an inadequate s@eed to annotate real programs may trade expressiveness for
tion to the problem. verifiability, so programmers may have trouble writing the

Static generation. Static analysis operates by examiningroperties they desire.
program source code and reasoning about possible executions.
It builds a model of the state of the program, such as possi-
ble values for variables. Static analysis can be conservatke3 Combined approach
and sound, and it is theoretically complete [CC77]. However,
it can be inefficient, can produce weak results, and is oftéur combined approach of generation and checking of pro-
stymied by constructs, such as pointers, that are commorgiam specifications results in a specification together with a
real-world programming languages. Manipulating complepeoof of its consistency with the code (see Figure 1.1). Our
representations of the heap incurs gross runtime and mespproach addresses both the generation and checking stages of
ory costs; heap approximations introduced to control cosgecification recovery, and utilizes techniques whose strengths
weaken results. Many researchers consider it harder to demplement each other’s weaknesses.
termine what specification to propose than to do the checking/Ve have integrated a dynamic invariant detector, Daikon
itself [Weg74, WS76, MW77, Els74, BLS96, BBM97]. [Ern00, ECGNO1], with a static verifier, ESC/Java [DLNS98,
Dynamic generation. Dynamic (runtime) analysis obtaind_ NS00], resulting in a system that produces machine-
information from program executions; examples include preerifiable specifications. Our system operates in three steps.
filing and testing. Rather than modeling the state of the pféirst, it runs Daikon, which outputs a list of likely invariants
gram, dynamic analysis uses actual values computed dumdgpined from running the target program over a test suite.
program executions. Dynamic analysis can be efficient addcond, it inserts the likely invariants into the target program
precise, but the results may not generalize to future programannotations. Third, it runs ESC/Java on the annotated target
executions. This potential unsoundness makes dynamic apedgram to report which of the likely invariants can be stati-
ysis inappropriate for certain uses, and it may make prograeaily verified and which cannot. All three steps are completely
mers reluctant to depend on the results even in other contettmatic, but users may improve results by editing and re-
because of uncertainty as to their reliability. running test suites, or by editing specific program annotations
Model checking. Specifications over models of the code afgy hand.
common for protocol or algorithmic verification. A program- The combination of the two tools overcomes the weaknesses

4

of each: dynamically generated properties can provide goalay seem. If the program is correct or nearly so, the gen-
for static verification (easing tedious annotation), and statitated specification is near to the intended behavior, and can
verification can confirm properties proposed by a dynamic tdm corrected to reflect the programmer’s intent. Likewise, the
(mitigating its unsoundness). Using the combined analysiggenerated specification can be corrected to be verifiable with
much better than relying on only one component, or perforthie help of a static checker, guaranteeing the absence of certain
ing an error-prone hand analysis. errors and adding confidence to future maintenance tasks.

The remainder of this section describes our generated specin addition to the results contained in this work, generated
fications, presents both realized and possible applications, apecifications have been shown to be useful for program refac-
argues that our solution is useful. toring [KEGNO1], theorem proving [NWEOQ2], test suite gen-
eration [Har02], and anomaly and bug detection [ECGNO1,
Dod02]. In many of these tasks, the accuracy of the generated
specification (the degree to which it matches the code) affects
A formal specification is a precise, often mathematical, didse effort involved in performing the task. One of the con-
scription of a program’s behavior. Specifications often stdtébutions of this work is that our generated specifications are
properties of data structures, such as representation invarisaisyrate.
or relate variable values in the pre-state (before a procedure
call) to their post-state values (after a procedure call). . . .

A specification for a procedure that records its maximu;lﬁg'3 Weak formalisms and partial solutions

argument in variablenaxmight include are useful

1.3.1 Invariants as a specification

if arg > max then max = arg else max = max Some may take exception to th_e_ timltomatic Generation
and Checking of Program Specificatior our approach to

where max represents the value of the variable at the tingesolution. The system is “not automatic”: users might have
the procedure is invoked amdax represents the value whero repeat steps or edit annotations before a checkable specifi-
the procedure returns. A typical specification contains maggtion is available. Also, the specification is incomplete: our
clauses, some of them simple mathematical statements sygiem does not recover the “whole thing”. While both criti-
others involving post-state values or implications. The claus#sms are true in a sense, we disagree on both points.
are conjoined to produce the full specification. These specifiMany specifications exist for a piece of code, each provid-
cation clauses are often call@d/ariants There is no single ing a different level of specificity. In theory, some analysis
best specification for a program; different specifications ineuld be sound, complete, and recover a full formal specifi-
clude more or fewer clauses and assist in different tasks. Liketion. However, such a specification is infeasible to generate
wise, there is no single correct specification for a prograflyy hand, or mechanically) or check (in most cases). In prac-
correctness must be measured relative to some standard, Soehpartial specifications (such as types) are easy to write and
as the designer’s intent, or task, such as program verificatiamderstand, and have been widely accepted.

Our generated specifications consist of program invariantsFurthermore, we allow that the system need not be perfect,
These specifications are partial: they describe and constrain completely automatic. It is not meant to be used in isola-
behavior but do not provide a full input-output mappingion, but will be used by programmers. Therefore, asking the
The specifications also describe the program’s actual beharsogrammer to do a small amount of work is acceptable, as
ior, which may vary from the programmer’s intended behaleng as there is benefit to doing so. Getting the programmer
ior. Finally, the specifications are also unsound: as descrilbedf-way there is better than getting them nowhere at all.
in Section 2.2, the proposed properties are likely, but not guar-
anteed, to hold. Through interaction with a checker that points
out unverifiable properties, a programmer may remove any h:4 Contributions
accuracies.

The thesis of this research is that program specifications may
1.3.2 Applications of generated specifications P€ accurately generated from program source code by a com-

bination of dynamic and static analyses, and that the resulting
These aspects of generated specifications suggest certain gesifications are useful to programmers.
while limiting others. Our research shows that the specifica-The first contribution of this research is the idea of produc-
tions are useful in verifying the lack of runtime exceptions. ing specifications from a combination of dynamic and static
contrast, using them as a template for automatic test case geralyses. Their combination overcomes the weaknesses of
eration might add little value, since the specifications alreaggch: dynamically detected properties can provide goals for
reflect the programs’ behavior over a test suite. As long static verification (easing tedious annotation), and static ver-
the programmer is aware of the specifications’ characteristifgation can confirm properties proposed by a dynamic tool
though, many applications are possible. (mitigating its unsoundness). Using the combined analysis is

The fact that the generated specifications reflect actoaich better than relying on only one component, or perform-

rather than intended behavior is also not as detrimental ag@ an error-prone hand analysis.

5

The second contribution of this research is the implemeatence of its efficacy for program understanding, validating test
tation of a system to dynamically detect then statically verifuites, and forming a statically verifiable specification.
program specifications. While each component had previouslfChapter 7 describes an implementation technique for Dai-
existed in isolation, we have improved Daikon to better suit tken that utilizes additional information about a program’s
needs of ESC/Java, and created tools to assist their combstatctural semantics. The technique helps Daikon to operate
tion. online and incrementally, thus enabling the examination of

The third contribution of this research is the experimentalrger or longer-running programs.
assessment of the accuracy of the dynamic component of spe€hapter 8 presents related work, outlining similar research
ification generation. We demonstrate that useful aspectsaofl showing how our research stands in contrast. We describe
program semantics are present in test executions, as meaguedous analyses (static and dynamic generators, and static
by verifiability of generated specifications. Even limited tesheckers) including a similar tool, Houdini, and present related
suites accurately characterize general execution propertiesapplications of generated specifications.

The fourth contribution of this research is the experimentalChapter 9 suggests future work to improve our techniques
assessment of the usefulness of the generated specificatioasdatheir evaluation.
users. We show that imprecision from the dynamic analysis iSChapter 10 concludes with a summary of contributions.
not a hindrance when its results are evaluated with the help of
a static checker.

The fifth contribution of this research is the proposal and ini-
tial evaluation of techniques to enhance the scope, sensitivity,
and scalability of our system. We suggest how to account for
context-sensitive properties in both the generation and check-
ing steps, and show how such information can assist program
understanding, validate test suites, and form a statically veri-
fiable specification. We also suggest an implementation tech-
nigue helps enable Daikon to analyze large and longer-running
programs.

1.5 Outline

The remainder of this work is organized as follows.

Chapter 2 describes our use of terminology. It also provides
background on the dynamic invariant detector (Daikon) and
static verifier (ESC) used by our system.

Chapter 3 provides an extended example of how the tech-
nigues suggested in this work are applied to a small program.
The chapter shows how a user might verify a program with our
system, and provides sample output to characterize the speci-
fications generated by our system.

Chapter 4 describes an experiment that studies the accuracy
of generated specifications, since producing specifications by
dynamic analysis is potentially unsound. The generated spec-
ifications scored over 90% on precision, a measure of sound-
ness, and on recall, a measure of completeness, indicating that
Daikon is effective at generating consistent, sufficient specifi-
cations.

Chapter 5 describes an experiment that studies the utility of
generated specifications to users. We quantitatively and quali-
tatively evaluate 41 users in a program verification task, com-
paring the effects of assistance by Daikon, another related tool,
or no tool at all. Statistically significant results show that both
tools improve task completion, but Daikon enables users to
express a fuller specification.

Chapter 6 describes extensions to the system. We introduce
techniques that enable context-sensitivity— the accounting
for control flow information in an analysis—in both the gen-
eration and checking steps. We provide brief experimental evi-

6

Chapter 2

Background

Original Instrumented

This section first explains our use of specifications, in order progam program S
Data ti
=
Run ‘

to frame our later results in the most understandable context. [= |
We then briefly describe dynamic detection of program invari- ~—=| Instrument \
ants, as performed by the Daikon tool, and static checking of

program annotations, as performed by the ESC/Java tool. Full ||
details about the techniques and tools are published elsewhere,

as cited below.

[Detect

| invariants

Figure 2.1: An overview of dynamic detection of invariants as
implemented by the Daikon invariant detector.

2.1 Specifications
(The latter is unknowable in any event.) Readers who pre-
Specifications are used in many different stages of develfg-the alternative definition may replace the term “specifica-
ment, from requirements engineering to maintenance. Furttign” by “description of program behavior” (and “invariant” by
more, specifications take a variety of forms, from a verbal dgrogram property”) in the text of this thesis.
scription of customer requirements to a set of test cases or awe believe that there is great promise in extending specifi-
executable prototype. In fact, there is no consensus regardiations beyond their traditional genesis as pre-implementation
the definition of “specification” [Lam88, GIJM91]. expressions of requirements. One of the contributions of our
Our research usdsrmal specifications We define a (for- research is the insight that this is both possible and desirable,
mal, behavioral) specification as a precise mathematical atpng with evidence to back up this claim.
straction of program behavior [LG01, Som96, Pre92]. This
definition is standard, but owrse of specifications is novel.
Our specifications are generated automatically, after an exe2 Daikon: Specification generation
cutable implementation exists. Typically, software engineers
are directed to write specifications before implementatiadbynamic invariant detection [Ern00, ECGNO01] discovers
then to use them as implementation guides — or simply to difely invariants from program executions by instrumenting
tain the benefit of having analyzed requirements at an eafyg target program to trace the variables of interest, running the
design stage [Som96]. instrumented program over a test suite, and inferring invariants
Despite the benefits of having a specification before implver the instrumented values (Figure 2.1). We use the term
mentation, in practice few programmers write (formal or irftest suite” for any inputs over which executions are analyzed,
formal) specifications before coding. Nonetheless, it is useflibse inputs need not satisfy any particular properties regard-
to produce such documentation after the fact [PC86]. Obtaing code coverage or fault detection. The inference step tests
ing a specification at any point during the development cg-set of possible invariants against the values captured from
cle is better than never having a specification at Bfist hoc the instrumented variables; those invariants that are tested to a
specifications are also used in other fields of engineering. Adficient degree without falsification are reported to the pro-
one example, speed binning is a process whereby, after fagrammer. As with other dynamic approaches such as testing
cation, microprocessors are tested to determine how fast thag profiling, the accuracy of the inferred invariants depends
can run [Sem94]. Chips from a single batch may be sold withpart on the quality and completeness of the test cases. The
a variety of specified clock speeds. Daikon invariant detector is language independent, and cur-
Some authors define a specification asaguriori descrip- rently includes instrumenters for C, Java, and I0A [GLV97].
tion of intended or desired behavior that is used in prescribedaikon detects invariants at specific program points such as
ways [Lam88, GIJM91]. For our purposes, it is not useful frocedure entries and exits; each program point is treated in-
categorize whether a particular logical formula is a specificdependently. The invariant detector is provided with a variable
tion based on who wrote it, when, and in what mental stateace that contains, for each execution of a program point, the

7

values of all variables in scope at that point. Each of a sdtA.

of possible invariants is tested against various combinations ofn invariant is reported only if there is adequate statistical

one, two, or three traced variables. evidence for it. In particular, if there are an inadequate number
For scalar variables, y, and z, and computed constant£f observations, observed patterns may be mere coincidence.

a, b, andc, some examples of checked invariants are: equ&onsequently, for each detected invariant, Daikon computes

ity with a constant x = a) or a small set of constants ¢ the probability that such a property Would_appear by chan<_:e_ in

{ab,c}), lying in a range 4 < x < b), non-zero, modulus & randqm set of samples. The property is rep_orted only if its

(x = a (mod b)), linear relationshipsz(= ax + by + c), or- probability is smaller than a user-defined confidence parame-

dering & < y), and functionsy = fn(x)). Invariants involy- € [ECGNOO]. _ _

ing a sequence variable (such as an array or linked list) in-The Daikon invariant detector is available frammp:/

clude minimum and maximum sequence values, lexicograpfg-Ics-mit.edu/daikon/

ical ordering, element ordering, invariants holding for all el-

ements in the sequence, or memberskig). Given two) - :
sequences, some example checked invariants are elem%n{5 ESC: Static CheCkmg

wise linear relationship, lexicographic comparison, and SUbs~ 1heig6 b NS98, LN9S], the Extended Static Checker
sequence relationship. Finally, Daikon can detect |mpI|cat|0H§S been in;plemente’d for M’odula-3 and Java. It staticaII;/
such as if p£null then p.value > x” and disjunctions such as X

N 7 N o detects common errors that are usually not detected until run
p.value > limit or p.left € mytree”. Implications result from

o : o time, such as null dereference errors, array bounds errors, and
splitting data into parts based on some condition and compar-

) o . o ype cast errors.
ing the resulting invariants over each part; if mutually exclu= SC is intermediate in both power and ease of use between
sive invariants appear in each part, they may be used as pr{ale-

Lo o . : . Ijl?e-checkers and theorem-provers, but it aims to be more like
cates in implications, and unconditional invariants in each p

are composed into implications [EGKN99]. In this researc ,; t;grrn:ﬁ;nanfol\zr:'gEE;N”?'?Q:ebyrgogﬁ]azzfrzg:gsgheElgtct:e(rj'e_
we ignore those invariants that are inexpressible in ESC/Ja P g P prog '

. i) NAXs only certain types of errors. Programmers must write pro-
input language; for example, many of the sequence invariants . . S
are ignored. gram annotations, many of which are similar in flavoas
sert statements, but they need not interact with the checker

For each variable or tuple of variables in scope at a givgs it processes the annotated program. ESC issues warnings
program point, each potential invariant is tested. Each poteBout annotations that cannot be verified and about potential
tial unary invariant is checked for all Variables, each potentwn_time errors. Its output also includes Suggestions for cor-
binary invariant is checked over all pairs of variables, and g-ting the problem and stylized counterexamples showing an
forth. A potential invariant is checked by examining each sagkecution path that violated the annotation or raised the excep-
ple (i.e., tuple of values for the variables being tested) in tugyn.
As soon as a sample not satisfying the invariant is encountn order to verify a program, ESC/Java translates it into a
tered, that invariant is known not to hold and is not checkgghical formula called a verification condition such that the
for any subsequent samples. Because false invariants tengréyram is correct if the verification condition is true [FS01].
be falsified quickly, the cost of detecting invariants tends to ge verification condition is then checked by the Simplify
proportional to the number of invariants discovered. All the ifheorem-prover [Nel80].
variants are inexpensive to test and do not require full-fledgedesc performs modular checking: it checks different parts
theorem-proving. of a program independently and can check partial programs

To enable reporting of invariants regarding components, modules. It assumes that specifications supplied for miss-
properties of aggregates, and other values not stored in png-or unchecked components are correct. We will not discuss
gram variables, Daikon represents such entities as additidB&IC's checking strategy in more detail because this research
derived variables available for inference. For instance, if arragats ESC as a black box. (Its source code was until recently
a and integelasti are both in scope, then properties ovamavailable.)
a[lasti] may be of interest, even though it is not a variable ESC/Java is a successor to ESC/Modula-3. ESC/Java’s an-
and may not even appear in the program text. Derived varotation language is simpler, because it is slightly weaker.
ables are treated just like other variables by the invariant ddvis is in keeping with the philosophy of a tool that is easy
tector, permitting it to infer invariants that are not hardcod¢d use and useful to programmers rather than one that is ex-
into its list. For instance, ikize(A) is derived from se- traordinarily powerful but so difficult to use that programmers
guenceA, then the system can report the invariart size(A) shy away from it.
without hardcoding a less-than comparison check for the cas&SC/Java is not sound; for instance, it does not model arith-
of a scalar and the length of a sequence. For performance reatic overflow or track aliasing, it assumes loops are executed
sons, derived variables are introduced only when known to®er 1 times, and it permits the user to supply (unverified)
sensible. For instance, for sequenfkethe derived variable assumptions. However, ESC/Java provides a good approxi-
size(A) is introduced and invariants are computed overritation to soundness: it issues false warnings relatively infre-
beforeAfi] is introduced, to ensure thatis in the range quently, and successful verification increases confidence in a

8

piece of code. (Essentially every verification process over pro-
grams contains an unsound step, but it is sometimes hidden in
a step performed by a human being, such as model creation.)

This paper uses ESC/Java not only as a lightweight technol-
ogy for detecting a restricted class of runtime errors, but also
as a tool for verifying representation invariants and method
specifications. We chose to use ESC/Java because we are not
aware of other equally capable technology for statically check-
ing properties of runnable code. Whereas many other verifiers
operate over non-executable specifications or models, our re-
search aims to compare and combine dynamic and static tech-
nigues over the same code artifact.

ESC is publicly available fromhttp://research.
compaqg.com/SRC/esc/

Chapter 3

Extended Example

To illustrate the tools used in this work, the output they preeunters a related problem.pguish on a full stack, opop on
duce, and typical user interaction, this chapter presents anaxempty one, causes an array bounds exception. To show that
ample of how a user might use our system on a small progrpop succeeds, we must only allow calls whape s strictly
to verify the absence of runtime exceptions. positive. Such a statement about allowed calls to a method
Section 3.1 outlines how a user would verify the prograis called aprecondition and permits proofs over methods to
by hand, while Section 3.2 shows how ESC/Java may be usggkume the stated precondition as long as all calling code is
Section 3.3 demonstrates how Daikon complements ESC/Jgwvaranteed to meet it.
for this task, and Section 3.4 discusses how the example relatds both of these cases, changes not loc8teck could in-
to the sequel. validate a proof of its correctness. For this (and other) reasons,
it is advantageous to mechanize the checking of the proof, so
that as the code evolves over time, programmers can automat-
3.1 Verification by hand ically check that past correctness guarantees are maintained.
The ESC/Java tool (introduced in Section 2.3) performs this

Figure 3.1 shows the source code of a hypothetical stack sk

plementation. We consider the case where a programmer

wants to check that no runtime exceptions are generated by the) . . .

Stack class, and first consider how a proof may be achievad?2 ~ Static verification with ESC/Java
by hand.

If each method is examined in isolation, it cannot be shovgy using a tool to verify the absence of runtime exceptions,
that errors are absent. Even the one-lsfall method may programmers may have higher confidence that their code is
raise an exception ilts is null. One way to prove that thefree of certain errors. However, ESC/Java is unable to verify
elts field is non-null withinisFull is to prove thatlts raw source code. Users must write annotations in their code
is non-null for any realizable instance ofStack . Such a that state, for instance, representation invariants and precondi-
statement about all instances of a class is termeg@senta- tions.
tion invariant [LGO01], also known as aonbject invariant To Without any annotations, ESC/Java reports warnings as
prove a representation invariant, one must show that (1) eabbwn in Figure 3.1. Using ESC/Java’s output to guide rea-
constructor establishes the invariant, (2) assuming that thesaning similar to that described in the previous section, a user
variant holds upon entry, each method maintains it, and (3)ewuld add the annotations shown in Figure 3.2. This code con-
external code may falsify the invariant. tains the minimal number of annotations necessary to enable

Consider the proof thatlts is always non-null. It is triv- ESC/Java to verifistack .
ial to show (1) for the single constructor. Additionally, (2) The minimally-annotated code contains two declarations,
is easily shown for the methods of Figure 3.1, since nonetbfee representation invariants, and three preconditions. The
them sets theelts field. However, (3) is more interestingtwo spec _public declarations are a detail of ESC/Java; they
Sinceelts is declaredprotected instead ofprivate , state that the specification may refer to the fields. The three
subclasses dbtack are able to modify it. To complete therepresentation invariants state tledts is never null,size
proof, we must show that all subclassesStdck maintain is always in the proper range, aatls can store any type of
the invariant. This task could certainly be achieved for owbject. The first precondition restricts an argument, while the
version of a codebase, but would have to be repeated wh®re others restrict the state of tis¢ack .
ever any new subclass was added, or any existing subclass waiven these annotations, ESC/Java is able to statically ver-
modified. (A programmer could elect to make the figdds ify that Stack never encounters any runtime exceptions (as
vate , but this would not solve all problems, as noted in theng as all code in the system is checked with ESC/Java as
next paragraph.) well). While adding eight annotations may seem like an in-

A proof of legal array dereferencing push andpop en- consequential amount of work, the annotations are about 50%

10

public class Stack {

protected Object[] elts;
protected int size;

public Stack(int capacity) {
elts = new Object[capacity]; /I Attempt to allocate array of negative length
size = 0O;

}

public boolean isEmpty() {
return size == 0;

}

public boolean isFull() {
return size == elts.length; /I Null dereference

}

public void push(Object x) {
elts[size++] = x; /I Null dereference
/I Negative array index
/I Array index too large
/I RHS not a subtype of array element type
}

public Object pop() {
Object item = elts[--size]; /I Null dereference
/I Negative array index
/I Array index too large
elts[size] = null;
return item;

}
}

Figure 3.1: Original source ddtack.java . Comments have been added to show the warnings issued when checked by
ESC/Java.

of the original non-blank, non-punctuation lines. Annotatinglts is unchanged), angop (size is decremented).
the whole of a large program may surpass what a programme# tool packaged with Daikon can insert this proposed spec-
is willing to do. A tool that assisted the user in this task couification into the source code as ESC/Java annotations, result-
overcome such a difficulty. ing in the annotations shown in Figure 3.4.
When ESC/Java is run on this automatically-annotated ver-
.) sion of the source code, it warns that the postconditiopam

3.3 Assistance from Daikon involving String may not be met. The test suite pushed ob-

jects of varied types onto the stack, but only popped in the
The annotations given in Figure 3.2 form an (incompletgyse wherstring s had been pushed, so Daikon postulated
specification forStack . The representation invariants speghe (incorrect) postcondition opop. The user, after being
ify properties that the class and its subclasses must maint@jgmed about that annotation by ESC/Java, could either re-
while the preconditions specify when a method may legally kyve it by hand, or improve the test suite by adding cases
called. Since Daikon is able to propose likely specificatiofghere nonString s were popped. After either change, the
for a class, it may assist the user in the verification task. revised version of th&tack annotations would enable ESC/

Given a certain test suite (not shown), Daikon produces thig/a to verify the absence of runtime exceptions.
output in Figure 3.3. Each program point’s output is separated

by a horizontal line, and the name of each program point fol-

lows the line. TheStack:::OBJECT point states represen-3.4 Discussion

tation invariants, whilENTERpoints state preconditions and

EXIT points state postconditions. The example in this chapter shows how Daikon and ESC/Java
While we will not explain every line of the output here, wenay be used together to verify the lack of runtime exceptions

note that this proposed specification is broader than the minia tiny program through the automatic generation and check-

mal one shown in Figure 3.2. In particular, the representatimg of the program’s specification.

invariant is stronger (exactly the live elementsaifs are The specification verified in the previous section stated

non-null), as are postconditions on the construceits(is more than ESC/Java’s minimal specification would require. It

sized tocapacity), push (size is incremented; prefix of also reported useful properties of the implementation, such as

11

public class Stack {

/[*@ invariant elts != null; */
/*@ invariant \typeof(elts) == \type(java.lang.Object[]); */
[*@ invariant size >= 0; */
/*@ invariant size <= elts.length; */
*@ invariant (\forall int i; (0 <= i && i < size) ==> (elts[i] != null)); */
*@ invariant (\forall int i; (size <= i && i < elts.length) ==>
(elts[i] == null)); */

/*@ spec_public */ protected Obiject[] elts;
[*@ invariant elts.owner == this; */
/*@ spec_public */ protected int size;

[*@ requires capacity >= 0; */
/*@ ensures capacity == elts.length; */
/*@ ensures size == 0; */
public Stack(int capacity) {
elts = new Object[capacity];
I*@ set elts.owner = this; */
size = 0;

}

*@ ensures (\result == true) == (size == 0); */
public boolean isEmpty() { ... }

/*@ ensures (size <= elts.length-1) == (\result == false); */
public boolean isFull() { ... }

*@ requires x != null; */

/*@ requires size < elts.length; */

@ modifies elts[], size; */

*@ ensures x == elts[\old(size)]; */

/*@ ensures size == \old(size) + 1; */

*@ ensures (Mforall int i; (0 <= i && i < \old(size)) ==>
(elts[i] == \old(elts[i]))); */

public void push(Object x) { ... }

*@ requires size >= 1; */

@ modifies elts[], size; */

*@ ensures \result == \old(elts[size-1]); */

*@ ensures \result != null; */

/*@ ensures \typeof(\result) == \type(java.lang.String) */
/*@ ensures size == \old(size) - 1; */

public Object pop() { ... }

}

Figure 3.4: Output of Daikon automatically merged iStack source as ESC/Java annotations. Unchanged method bodies
have been removed to save space.

that precisely the live elements of the stack’s internal array
are non-null, or thapop returns a non-null result. Finally, it
pointed out a deficiency in the test suite, allowing for its easy
correction.

We also note that the specifications do not have to be used to
verify the absence of runtime exceptions. By generating and
checking specifications automatically, we have conveniently
produced a specification that matches an existing codebase.
Such a specification may be useful for many tasks, as de-
scribed in Section 1.3.2.

12

Stack:::OBJECT

this.elts = null

this.elts.class == “java.lang.Object[]"
this.size >= 0

this.size <= size(this.elts[])
this.elts[0..this.size-1] elements != null

public class Stack { this.elts[this.size..] elements == null

I*@ spec_public */ protected Object]] elts; Stack.Stack(int)::ENTER
/*@ spec_public */ protected int size; capacity >= 0
/@ invariant elts != null Stack.Stack(int):::EXIT
@ invariant 0 <= size && size <= _elts.length capacity == orig(capacity) == size(this.elts[])
/l@ invariant \typeof(elts) == \type(Object[]) this.size ==
/l@ requires capacity >= 0 Stack.isEmpty()::EXIT
public Stack(int cgpacny) {' this.elts == orig(this.elts)

elts = new Object[capacity]; this.elts[] == orig(this.elts[])

size = 0; this.size == orig(this.size)
} (return == true) <==> (this.size == 0)
public boolean isEmpty() { Stack.isFull()::EXIT

return size == 0; this.elts == orig(this.elts)
} this.elts[] == orig(this.elts[])

. . this.size == orig(this.size)
public boolean isFull() { (this.size <= size(this elts[)-1) <==>

return size == elts.length; (return == false)
}

)) Stack.push(java.lang.Object):::ENTER

/l@ requires size < elts.length x 1= null
public void push(Object x) { this.size < size(this.elts])

elts[size++] = x;
} Stack.push(java.lang.Object):::EXIT

_ _ X == orig(x) == this.elts[orig(this.size)]

/l@ requires size >= 1 this.elts == orig(this.elts)
public Object pop() { this.size == orig(this.size) + 1

Object item = elts[--size]; this.elts[0..orig(this.size)-1] ==

elts[size] = null; orig(this.elts[0..this.size-1])

return item;
} Stack.pop():::ENTER

this.size >= 1

}
. . . o Stack.pop():::EXIT
Figure 3.2: Minimal annotations (comments beginning \@h this.elts == orig(this.elts)

required by ESC/Java to verify the absence of runtime excegurn == orig(this.elts|this.size-1])

tions. return = null
return.class == "java.lang.String"
this.size == orig(this.size) - 1

Figure 3.3: Output of Daikon foBtack , given a certain test
suite (not shown). For readability, output has been edited to
rearrange ordering.

13

Chapter 4

Accuracy Evaluation

This chapter presents an experiment that evaluates the accid| of the programs excepfector andFixedSizeSet
racy of the generation step of our system: dynamic invariamzame with test suites, from the textbook or that were used
detection. In contrast, Chapter 5 studies how varying accuréay grading. We wrote our own test suites fédector and
can affect users during static checking. FixedSizeSet . The textbook test suites are more properly
characterized as examples of calling code; they contained just
. a few calls per method and did not exercise the program’s full
4.1 Introduction functionality. We extended the deficient test suites, an easy

o] task (see Section 4.4.2) and one that would be less necessary
We evaluate the accuracy of specification generation by Mgg-programs with realistic test suites.

suring the static verifiability of its result. Specifically, we mea- \yq generated all but one test suite or augmentation in less
sure how_much dynamlcally_generated s_peC|f|cat|0ns musttﬁgn 30 minutes. MlapQuick ’s augmentation took 3 hours

changed in order to be verified by a static checker. The stafits t0 a 1 hour round-trip time to evaluate changes.) We found
checker both guarantees that the implementation satlsﬁestﬂgaq examining Daikon’s output greatly eased this task. When
generated specification and ensures the absence of runfie,ods are insufficiently tested, the reported specification is
exceptions. Measured against this verification requweme&ponger than what the programmer has in mind, pointing out

the generated specifications scored nearly 90% on precisif the (true, unwritten) specification is not fully covered by
a measure of soundness, and on recall, a measure of Compiﬁgefests.

ness. Precision and recall are standard measures from infor-
mation retrieval [Sal68, VR79]

Our results demonstrate that non-trivial and useful aspeét2.2 Measurements
of program semantics are present in test executions, as mea- , _ _ . .
sured by verifiability of generated specifications. Our resu de_scrlbed |n_Sect|0n 1.3, our system runs Daikon and in-
also demonstrate that the technique of dynamic invariant &S Its output into the target program as ESC/Java annota-

tection is effective in capturing this information, and that thté)ns')])
results are effective for the task of verifying absence of run-YV& measured how different the reported invariants are from
time errors. a set of annotations that enables ESC/Java to verify that no

run-time errors occur (while ESC/Java also verifies the anno-

tations themselves). There are potentially many sets of ESC/
4.2 Methodo|ogy Java-verifiable annotations for a given program. In order to

perform an evaluation, we must choose one of them as a goal.
This section presents the programs studied and the data an@here is no one “correct” or “best” specification for a pro-
lyzed. gram: different specifications support different tasks. For
instance, one set of ESC/Java annotations might ensure that
no run-time errors occur, while another set might ensure that
a representation invariant is maintained, and yet another set
We analyzed the programs listed in Figure 40isjSets , might guarantee correctness with respect to externally im-
StackAr , andQueueAr come from a data structures textposed requirements.
book [Wei99]; Vector is part of the Java standard library; We chose as our goal task verifying the absence of run-time
and the remaining seven programs are solutions to assignmemsrs. Among the sets of invariants that enable ESC/Java to
in a programming course at MIT [MITO1]. prove that condition, we selected as our goal set the one that

Figure 4.2 shows relative sizes of the test suites and prequired the smallest number of changes to the Daikon out-

grams used in this experiment. Test suites for the smaller ppot. The distance to this goal set is a measure of the minimal
grams were larger in comparison to the code size, but no f@std the expected) effort needed to verify the program with
suite was unreasonably sized. ESC/Java, starting from a set of invariants detected by Dai-

4.2.1 Programs and test suites

14

Program LOC | NCNB | Meth. || Description

FixedSizeSet 76 28 6 set represented by a bitvector
DisjSets 75 29 4 disjoint sets supporting union, find
StackAr 114 50 8 stack represented by an array
QueueAr 116 56 7 queue represented by an array
Graph 180 929 17 generic graph data structure
GeoSegment 269 116 16 pair of points on the earth
RatNum 276 139 19 rational number

StreetNumberSet, 303 201 13 collection of numeric ranges
Vector 536 202 28 java.util.Vector growable array
RatPoly 853 498 42 polynomial over rational numbers
MapQuick 2088 | 1031 113 driving directions query processor
Total 4886 | 2449 273

Figure 4.1: Description of programs studied (Section 4.2.1). “LOC" is the total lines of code. “NCNB” is the non-comment,
non-blank lines of code. “Meth” is the number of methods.

Original Test Suite
Size Size Coverage Time
Program NCNB| NCNB | Calls | Stmt| Branch| Instr| Daikon
FixedSizeSet 28 0 0 [0.00| 0.00 0 0
DisjSets 29 27 745 10.67| 0.70 1 6
StackAr 50 11 72 | 0.60| 0.56 0 3
QueueAr 56 11 52 | 0.68| 0.65 0 12
Graph 99 Sys 3k | 0.76] 0.54 1 3
GeoSegment 116 Sys | 695k | 0.89| 0.75 | 138| 455
RatNum 139 Sys 58k [0.96| 0.94 7 28
StreetNumberSet 201 165 50k [0.95| 0.93 7 29
Vector 202 0 0 | 0.00| 0.00 0 0
RatPoly 498 382 88k | 0.94| 0.89 | 27 98
MapQuick 1031 445 |3.31M|0.66| 0.61 | 660| 1759
Augmented Test Suite
Size Size Coverage Time
Program NCNB || +NCNB| Calls | Stmt| Branch| Instr| Daikon
FixedSizeSet 28 39 12k | 1.00| 1.00 2 10
DisjSets 29 15 12k | 1.00| 0.90 3 18
StackAr 50 39 1k [0.64| 0.63 0 4
QueueAr 56 54 8k [0.71] 0.71 1 11
Graph 99 1 3k | 0.76] 0.54 1 3
GeoSegment 116 0 695k [0.89| 0.75 | 138| 455
RatNum 139 39 | 114k [0.96| 0.94 | 14 56
StreetNumberSet 201 151 | 197k | 0.95| 0.95 | 12 44
Vector 202 190 22k [0.90| 0.90 7 37
RatPoly 498 51 | 102k [0.96] 0.92 | 38| 139
MapQuick 1031 49 |3.37M|0.67| 0.71 | 673| 1704

Figure 4.2: Characterization of original and augmented test suites. “NCNB” is hon-comment, non-blank lines of code in the
program or its original, accompanying test suite; in this column “Sys” indicates a system test: one that is not specifically
focused on the specified program, but tests a higher-level system that contains the program (see Section 4.4.2). “+NCNB" is
the number of lines added to yield the results described in Section 4.3. “Calls” is the dynamic number of method calls received
by the program under test (from the test suite or internally). “Stmt” and “Branch” indicate the statement and branch coverage
of the test suite. “Instr” is the runtime of the instrumented program. “Daikon” is the runtime of the Daikon invariant detector.
Times are wall-clock measurements, in seconds.

15

kon. Our choice is a measure of how different the reported lrater sections describe specific problems that lead to unveri-
variants are from a set that is both consistent and sufficientfiable or missing invariants, but we summarize the imperfec-
ESC/Java’s checking—an objective measure of the prograams here.
semantics captured by Daikon from the executions. Most unverifiable invariants correctly described the pro-
Given the set of invariants reported by Daikon and tlggam, but could not be proved due to limitations of ESC/Java.
changes necessary for verification, we counted the numbeBofne limitations were by design, while others appeared to be
reported and verified invariants (the “Verif” column of Figbugs in ESC/Java.
ure 4.3), reported but unverifiable invariants (the “Unver” col- Most missing invariants were beyond the scope of Daikon.
umn), and unreported, but necessary, invariants (the “Mid&rification required certain complicated predicates or ele-
column). We computed precision and recall, standard meaent type annotations for ndrist collections, which Dai-
sures from information retrieval [Sal68, vR79], based on thdgen does not currently provide.

three numfbers. Precision, a measure of soundness, is defined
\eri ; .
asm. Recall, a measure of completeness, is deflna%lz StackAr: array-based stack

Verif if DA invari
as . For example, if Daikon reported 6 invariants) . . .
Verif+Miss P P StackAr is an array-based stack implementation [Wei99].

(4 verifiable and 2 other unverifiable), while the verified sq.th source contains 50 non-comment lines of code in 8 meth-
contained 5 invariants (the 4 reported by Daikon plus 1 adde L, along with comments that describe the behavior of the

by hand), the precision would be 0.67 and the recall woucf o o ; L
be 0.80. class but do not mention its representation invariant. It is sim-

We determined by hand h ¢ Daikon's i . j[Iar to the example of Chapter 3, but contains more methods.
¢ determined by hand how many of Dalkon's invanants rp o naivan invariant detector reported 25 invariants, in-

were redundant because they were logically implied by Oﬂl:‘?trjding the representation invariant, method preconditions,
invariants. Users would not need to remove the redund

. . . (gdification targets, and postconditions. (In addition, our sys-
invariants in order to use the tool, but we removed all 2

. . .) . m heuristically added 2 annotations involving aliasing of the
these invariants from consideration (and they appear in n%r?Pay)
of our measurements), for two reasons. First, Daikon attempt%Hen run on an unannotated versionSifckAr - ESC/

to avoid reporting redundant invariants, but its tests are not
. . . GI Va issues warnings about many potential runtime errors, such
perfect; these results indicate what an improved tool could

. . .) ?s null dereferences and array bounds errors. Our system gen-
achieve. More importantly, almost all redundant invariants e . 4
o ! . . . erated specifications for all operations of the class, and with
were verifiable, so including redundant invariants would ha%ﬁe dditi f the d di . / .
inflated our results ea ition of the detected invariants, ESC/Java issues no
' warnings, successfully checks that BiackAr class avoids
runtime errors, and verifies that the implementation meets the

. enerated specification.
4.3 Experiments g g

This section gives quantitative and qualitative experimental f&-3.3 RatPoly: polynomial over rational num-
sults. The results demonstrate that the dynamically inferred bers

specifications are often precise and complete enough to be ma- . .

- e A second example further illustrates our results, and provides
chine verifiable. e

: . . . examples of verification problems.

Section 4.3.1 summarizes our experiments, while Sec- -
. : .RatPoly isanimplementation of rational-coefficient poly-
tions 4.3.2 through 4.3.4 discuss three example Programs, phmials that support basic algebraic operations. The source
detail to characterize the generated specifications and prow8e PP 9 P '

an intuition about the output of our system. Section 4.4 suﬁ?mams 498 non-comment lines of code, in 3 classes and 42

marizes the problems the system may encounter. methods. Informal comments state the representation invariant

and method specifications.

Our system produced a nearly-verifiable annotation set.
4.3.1 Summary Additionally, the annotation set reflected some properties of

the programmer’s specification, which was given by informal

We performed eleven experiments, as shown in Figure 4.3. dsnments. Figure 4.3 shows that Daikon reported 80 invari-
described in Section 4.2, Daikon’s output is automatically iants over the program; 10 of those did not verify, and 1 more
serted into the target program as annotations, which are edfiad to be added.
by hand (if necessary) until the result verifies. When the pro-The 10 unverifiable invariants were all true, but other miss-
gram verifies, the implementation meets the generated amgl invariants prevented them from being verified. For in-
edited specification, and runtime errors are guaranteed tost#hce, theRatPoly implementation maintains an object
absent. invariant that no zero-value coefficients are ever explicitly

In programs of up to 1031 non-comment non-blank lines sifored, so Daikon reported thatgaet method never returns
code, the overall precision (a measure of soundness) and rexath. However, ESC/Java annotations may not reference el-
(a measure of completeness) were 0.96 and 0.91, respectiwhents of Java collection classes; thus, the object invariant is

16

Program size Number of invariants Accuracy
Program LOC | NCNB | Meth. || Verif. | Unver. | Miss. || Prec.| Recall
FixedSizeSet 76 28 6 16 0 0 1.00 | 1.00
DisjSets 75 29 4 32 0 0 1.00 | 1.00
StackAr 114 50 8 25 0 0 1.00 | 1.00
QueueAr 116 56 7 42 0 13 1.00 | 0.76
Graph 180 99 17 15 0 2 1.00 | 0.88
GeoSegment 269 116 16 38 0 0 1.00 | 1.00
RatNum 276 139 19 25 2 1 0.93 | 0.96
StreetNumberSet 303 201 13 22 7 1 0.76 | 0.96
Vector 536 202 28 100 2 2 0.98 | 0.98
RatPoly 853 498 42 70 10 1 0.88 | 0.99
MapQuick 2088 | 1031 113 145 3 35 0.98 | 0.81
Total 4886 | 2449 273 530 24 55 0.96 | 0.91

Figure 4.3: Summary of specifications recovered, in terms of invariants detected by Daikon and verified by ESC/Java. “LOC”
is the total lines of code. “NCNB?” is the non-comment, non-blank lines of code. “Meth” is the number of methods. “Verif”

is the number of reported invariants that ESC/Java verified. “Unver” is the number of reported invariants that ESC/Java failed

to verify. “Miss” is the number of invariants not reported by Daikon but required by ESC/Java for verification. “Prec” is the
precision of the reported invariants, the ratio of verifiable to verifiable plus unverifiable invariants. “Recall” is the recall of the
reported invariants, the ratio of verifiable to verifiable plus missing.

not expressible and tlget method failed to verify. Similarly, larger data sets to be processed and a more varied database to
the mul operation exits immediately if one of the polynomibe loaded.
als is undefined, but the determination of this condition alsowe verified the other 18 classes (113 methods, 1031 lines).
required annotations accessing Java collections. Thus, E$KR& verified classes include data types (such as a priority
Java could not prove that helper methods usedhby never queue), algorithms (such as Dijkstra’s shortest path), a user
operated on undefined coefficients, as reported by Daikon. interface, and various file utilities. Figure 4.3 shows that Dai-
When using the provided test suite, three invariants wesen reported 148 invariants; 3 of those did not verify, and 35
detected by Daikon, but suppressed for lack of statistical jimd to be added.
tification. Small test suite augmentations (Figure 4.2) moreThe 3 unverifiable invariants were beyond the capabilities
extensively exercised the code and caused those invarianigfeSC/Java, or exposed bugs in the tools.
be printed. (Alternately, a command-line switch to Daikon setsThe largest cause of missing invariants was ESC/Java’s in-
its justification threshold.) With the test suite augmentatior;-ﬁ,mmeteness_ Its modular analysis or ignorance of Java se-
only one invariant had to be edited by hand (thus counting @8 ntics forced 9 annotations to be added, while 3 more were
both unverified and missing): an integer Iow’er bound had @yuired because other object invariants were inexpressible.
be weakened from 1 to 0 because ESC/Java’'s incompletenegsy ariants were also missing because they were outside the
prevented proof of the (true, but subtle) stricter bound. g0 of Daikon. Daikon does not currently report invari-
ants of nonkist Java collections, but 4 invariants about type

S A : : lIness information of these collections were required for

4.3.4 MapQuick: driving directions and nu orm .) e req
PQ 9 ESC/Java verification. Daikon also missed 5 invariants be-
A final example further illustrates our results. cause it does not instrument interfaces, and 3 invariants over

The MapQuick application computes driving directiondocal variables, which are also not instrumented. (We are cur-
between two addresses provided by the user, using real-wéatly enhancing Daikon to inspect interfaces and all collection
geographic data. The source contains 1835 non-comment liplasses.)
of code in 25 classes, but we did not compute specifications foFinally, 5 missing annotations were needed to suppress
7 of the classes. Of the omitted classes, three classes were B&g/Java warnings about exceptionslapQuick handles
so frequently (while loading databases) that recording tra¢@astrophic failure (such as filesystem errors) by raising an
for offline processing was infeasible due to space limitation#ichecked exception. The user must disable ESC’s verifica-
One class (the entry point) was only called a few times, so e of these exceptions, as they can never be proven to be
enough data was available for inference. Two classes hadabéent. This step requires user intervention no matter the tool,
little variance of data for inference (only a tiny database wakce specifying which catastrophic errors to ignore is an en-
loaded). Finally, one class had a complex inheritance hiergieering decision.
chy that prevented local reasoning (and thus hindered modufhe remaining 6 missing invariants arose from distinct
lar static analysis). All problems but the last could have beeauses that cannot be generalized, and that do not individually
overcome by an invariant detector that runs online, allowilagld insight.

17

4.4 Remaining challenges a system containing the module being examined, rather than
testing just the module itself.

Fully automatic generation and checking of program specificaynit tests —tests that check specific boundary values of

tions is not always possible. This section categorizes prom%ﬂécedures in a single module in isolation—were less suc-

we encountered in our experimental investigation. These lifsssful. This may seem counter-intuitive, since unit tests often

itations fall into three general CategoriES: pI‘OblemS with ta@hieve code Coverage and genera”y attempt to cover bound-

target programs, problems with the test suites, and problegpg cases of the module. However, in specifically targeting

with the Daikon and ESC/Java tools. boundary cases, unit tests utilize the module in ways statis-
tically unlike the application itself, throwing off the statistical
4.4.1 Target programs techniques used in Daikon. Equally importantly, unit tests tend

o) . . o to contain few calls, preventing statistical inference.
One challenge to verification of invariants is the likelihood that \nnen the initial test suites came from textbooks or were

programs contain errors that falsify the desired invariant. (Afpjt tests that were used for grading, they often contained just
though it was never our goal, we have previously identifiegyee or four calls per method. Some methodsSareet-
such errors in textbooks, in programs used in testing reseafgfimberset were not tested at all. We corrected these test
and elsewhere.) In this case, the desired invariant is not a 4fes put did not attempt to make them minimal. The cor-
invariant of the program. o _ rections were not difficult. When failed ESC/Java verification
Program errors may prevent verification even if the emgfiempts indicate a test suite is deficient, the unverifiable in-
does not falsify a necessary invariant. The test suite may pQfiants specify the unintended property, so a programmer has
reveal the error, so the correct specification will be generatﬁdsuggestion for how to improve the tests. For example, the
However, it will fail to verify because the static checker W"briginal tests for theliv operation orRatPoly exercised a
discover possible executions that violate the invariant. wide range of positive coefficients, but all tests with negative
Our experiments revealed an error in tMector class cqefficients used a numerator ef.. Other examples included
from JDK 1.1.8. TheoString method throws an exceptionceriain stack operations that were never performed on a full (or
for vectors with n_uII el_ements. Our o_rlglnal (code coveragennty) stack and a queue implemented via an array that never
complete) test suite did not reveal this fault, but Daikon rgzapned around. These properties were detected and reported
ported that the vector elements were always non-null on eniynverifiable by our system, and extending the tests to cover
totoString , leading to discovery of the error. The error is ygitional values was effortless.
corrected in JDK 1.3. (We were not aware of the error at theTest suites are an important part of any programming effort,

time of our experiments.) so time invested in their improvement is not wasted. In our ex-

h As:_nother e>_<amp]Ice of all(lllz\ely error thr?t we detedcteld, Oneﬁgrience, creating a test suite that induces accurate invariants
the object invariants fdtackAr _ states that unused e ementg little or no more difficult than creating a general test suite.

of the stack are null. Thpop operations maintain this invari-, snor poor verification results indicate specific failures in

ant (which approximatgly doubles the size.of thei_r code), bdé%ting, and reasonably-sized and realistic test suites are able
themakeEmpty operation does not. We noticed this when tr}g ccurately capture semantics of a program
expected object invariant was not inferred, and we correcteda

the error in our version dbtackAr .
4.4.3 Inherent limitations of any tool

4.4.2 Testsuites Every tool contains &ias the grammar of properties that it
Another challenge to generation is deficient or missing t&&n detect or verify. Properties beyond that grammar are in-
suites. In general, realistic test suites tend to produce verifiaggmountable obstacles to automatic verification, so there are
specifications, while poor verification results indicate specifigecifications beyond the capabilities of any particular tool.
failures in testing. For instance, in th&atNum class, Daikon found that the

If the executions induced by a test suite are not characterisgate method preserves the denominator and negates the
tic of a program’s general behavior, properties observed duritigmerator. However, verifying that property would require
testing may not generalize. However, one of the key resultsdeftecting and verifying that thgcd operation called by the
this research is that even limited test suites can capture paggaistructor has no effect because the numerator and denomi-
semantics of a program. This is surprising, even on small pr@tor of the argument are relatively prime. Daikon does not in-
grams, because reliably inferring patterns from small datasgtgle such invariants because they are of insufficiently general
is difficult. Furthermore, larger programs are not necessaslpplicability, nor can ESC/Java verify such a property. (Users
any better, because some components may be underexercisachdd new invariants for Daikon to detect by writing a Java
in the test suite. (For example, a main routine may only be ralass that satisfies an interface with four methods.)
once.) As another example, neither Daikon nor ESC/Java operates

System tests —tests that check end-to-end behavior ofvith invariants over strings. As a result, our combined sys-
system —tended to produce good invariants immediately, céem did not detect or verify that object invariants hold at the
firming earlier experiences [ECGNO1]. System tests exercesdt from a constructor or other method that interprets a string

18

argument, even though the system showed that other methtode errors. However, our investigations revealed examples

maintain the invariant. where such verification required each of these missing capa-
As a final example, th®ueueAr class guarantees that unbilities. In some cases, ESC/Java users may be able to restruc-

used storage is set to null. The representation invariants tioaé their code to work around these problems. In others, users

maintain this property were missing from Daikon’s output, bean insert unchecked pragmas that cause ESC/Java to assume

cause they were conditioned on a predicate more complicgpadticular properties without proof, permitting it to complete

than Daikon currently attempts. (The invariants are shownwerification despite its limitations.

Figure 5.8 on page 29). This omission prevented verification

of many method postconditions. In a user study (Chapter:ﬁ,))

no subject was able to write this invariant or an equivalent ofe:2 DISCUSSION

. The most surprising result of this experiment is that specifi-
4.4.4 Daikon :)

cations generated from program executions are reasonably ac-
Aside from the problems inherent in any analysis tool, tiggrate: they form a set that is nearly self-consistent and self-
tools used in this evaluation exhibited additional problems tsaifficient, as measured by verifiability by an automatic spec-

prevented immediate verification. Daikon had three deficigfication checking tool. This result was not at all obvioais
cies. priori. One might expect that dynamically detected invariants
First, Daikon does not examine the contents of hist- would suffer from serious unsoundness by expressing artifacts
Java collections such as maps or sets. This prevents it frohthe test suite and would fail to capture enough of the formal
reporting type or nullness properties of the elements, but théegnantics of the program.
properties are often needed by ESC/Java for verification. This positive result implies that dynamic invariant detection
Second, Daikon operates offline by examining traces wig-effective, at least in our domain of investigation. A second,
ten to disk by an instrumented version of the program und#pader conclusion is that executions over relatively small test
test. If many methods are instrumented, or if the programsigites capture a significant amount of information about pro-
long-running, storage and processing requirements can exd@@d semantics. This detected information is verifiable by
available capacity. a static analysis. Although we do not yet have a theoretical
Finally, Daikon uses Ajax [0’C01] to determine comparanodel to explain this, nor can we predict for a given test suite
bility of variables in Java programs. If two variables are ifow much of a program’s semantic space it will explore, we
comparable, no invariants relating them should be generdi@ye presented a datapoint from a set of experiments to expli-
or tested. Ajax fails on some large programs; all variables &&f€ the phenomenon and suggest that it may generalize. One
considered comparable, and spurious invariants are generggégon the results should generalize is that both Daikon and

and printed constraining unrelated quantities. ESC/Java operate modularly, one class at a time. Generating
or verifying specifications for a single class of a large system
4.45 ESC/Java is no harder than doing so for a system consisting of a single
o class.

ESC/Java’s input language is a variant of the Java ModelindVe speculate that three factors may contribute to our suc-
Language JML [LBR99, LBROOQ], an interface specificatiovess. First, our specification generation technique does not
language that specifies the behavior of Java modules. We atsempt to report all properties that happen to be true during
“ESCJIML” for the JML variant accepted as input by ESC/Javatest run. Rather, it produces partial specifications that inten-
ESCJML cannot express certain properties that Daikon tenally omit properties that are unlikely to be of use or that
ports. ESCJML annotations cannot include method calls, exas unlikely to be universally true. It uses statistical, algorith-
ones that are side-effect-free. Daikon uses these for obtainimig, and heuristic tests to make this judgment. Second, the
Vector elements and as predicates in implications. Unlikeformation that ESC/Java needs for verification may be par-
Daikon, ESCJML cannot express closure operations, sucltiaslarly easy to obtain via a dynamic analysis. ESC/Java’s re-
all the elements in a linked list. quirements are modest: it does not need full formal specifica-
ESCJML requires that object invariants hold at entry to atidns of all aspects of program behavior. However, its verifica-
exit from all methods, so it warned that the object invarianisn does require some specifications, including representation
Daikon reported were violated by private helper methods. \Weariants and input—output relations. Our system also veri-
worked around this problem by inlining one such method frofied additional detected properties that were not strictly neces-
theQueueAr program. sary for ESC's checking, but provided additional information
The full IML language permits method calls in assertiorshout program behavior. Third, our test suites were of accept-
includes\reach() for expressing reachability via transitiveable quality. Unit tests are inappropriate, for they produce very
closure, and specifies that object invariants hold only at enfryor invariants (see Section 4.4.2). However, Daikon’s output
to and exit from public methods. makes it extremely easy to improve the test suites by indicat-
Some of this functionality might be missing from ESC/Javag their deficiencies. Furthermore, existing system tests were
because it is designed not for proving general program propstequate, and these are more likely to exist and often easier to
ties but as a lightweight method for verifying absence of ruproduce.

19

Chapter 5

User Evaluation

This chapter describes an evaluation of the effectivenessof ~ Houdini

two tools to assist static checking. We quantitatively and qual-

itatively evaluate 41 users in a program verification task owdoudini is an annotation assistant for ESC/Java [FLOL,

three small programs, using ESC/Java as the static checkdL,01]. (A similar system was previously proposed by Rinta-

and either Houdini (described in Section 5.2) or Daikon foien [Rin00].) It augments user-written annotations with addi-

assistance. Our experimental evaluation reflects the effectiienal ones that complement them. This permits users to write

ness of each tool, validates our approach to generating &wler annotations and end up with less cluttered, but still au-

checking specifications, and also indicates important condioimatically verifiable, programs.

erations for creating future assistant tools. Houdini postulates a candidate annotation set and computes
the greatest subset of it that is valid for a particular program. It
repeatedly invokes the ESC/Java checker as a subroutine and
discards unprovable postulated annotations, until no more are

5.1 Introduction refuted. If even one required annotation is missing, then Hou-
dini eliminates all other annotations that depend on it. Cor-

_ .)) rectness of the loop depends on two properties: the set of true
Static checking can verify the absence of errors in a prografintations returned by the checker is a subset of the annota-

but often requires written annotations or specifications. Ag;ag passed in, and if a particular annotation is not refuted,

result, static checking can be difficult to use effectively: it cgfqp, adding additional annotations to the input set does not
be difficult to determine a specification and tedious to annotate <« the annotation to be refuted.

programs. Automated tools that aid the annotation process c
decrease the cost of static checking and enable it to be
widely used.

3oudini’s initial candidate invariants are all possible arith-
Me&tic and (in)equality comparisons among fields (and “inter-
esting constants” such asl, 0, 1, array lengthsyull , true
We evaluate techniques for easing the annotation burderabifalse), and also assertions that array elements are non-
applying two annotation assistant tools, one static (Houdialll . Many elements of this initial set are mutually contra-
and one dynamic (Daikon), to the problem of annotating Jayigtory.
programs for the ESC/Java static checker. According to its creators, over 30% of Houdini’s guessed
Statistically significant results show that both tools coannotations are verified, and it tends to reduce the number of
tribute to success, and neither harms users in a measurbl@€/Java warnings by a factor of 2-5 [FLO1]. With the assis-
way. Additionally, Houdini helps users express properties ugnce of Houdini, programmers may only need to insert about
ing fewer annotations. Finally, Daikon helps users expredse annotation per 100 lines of code.
more true and potentially useful properties than strictly re-

quired for a specific task, with no time penalty.

Interviews indicate that beginning users found Daikon %2'1 Emulation

be helpful but were concerned with its verbosity on poor tegbudini was not publicly available at the time of this exper-
suites; that Houdini was of uncertain benefit due to concefafent, so we were forced to re-implement it from published
with its speed and opaqueness; that static checking could bg&¥criptions. For convenience in this section only, we will call
potential practical use; and that both assistance tools to hgueemulation “Whodini.”
unique benefits. For each program in our study, we constructed the complete
The remainder of this chapter is organized as follows. Seet of true invariants in Houdini's grammar and used that as
tion 5.2 briefly describes the Houdini tool. Section 5.3 presem#odini’s initial candidate invariants. This is a subset of Hou-
our methodology. Sections 5.4 and 5.5 report quantitative afidi’s initial candidate set and a superset of verifiable Hou-
qualitative results. Section 5.6 examines the results and S#ni invariants, so Whodini is guaranteed to behave exactly
tion 5.7 concludes. like published descriptions of Houdini, except that it will run

20

faster. Fewer iterations of the loop (fewer invocations of ESC/ NCNB LOC | Minimal
Java) are required to eliminate unverifiable invariants, because |_Program Methods | ADT | Client | Annot.
there are many fewer such invariants in Whodini's set. Who- | DISIS€ts 4 28 29 17
dini typically takes 10—60 seconds to run on the programs used (S;L?glljeA’&r g gg ;g 52
for this study.
Figure 5.1: Characteristics of programs used in the study.
5.3 MethOdOIOgy “Methods” is the number of methods in the ADT. “NCNB

The section presents our experimental methodology and itng—C" is the non-comment, non-blank lines of code in either
9y the ADT or the client. “Minimal Annot” is the minimal num-

tionale. We are interested in studying what factors affectoa :
)) D er of annotations necessary to complete the task.
user’s performance in a program verification task. We are pri=

marily interested in the effect of the annotation assistant on

performance, or its effect in combination with other factorgeijther the ADT implementation code nor any part of the client

For instance, we study how the level of imprecision of Dajgas to be edited.

kon's output affects user performance. _ We met with each participant to review the packet and en-
Section 5.3.1 presents the participants’ task. Section 5.gfe that expectations were clear. Then, participants worked

describes participant selection and demographics. Sggtheir own desks, unsupervised. (Participants logged into our

tion 5.3.3 detaI|S the eXpeI’Imental deSIgn. Section 5.3.4 (E%UX machine and ran ESC/Java there_) Some participants

scribes how the data was collected and analyzed. received assistance from Houdini or Daikon, while others did
not. Participants could ask us questions during the study. We
5.3.1 User Task addressed environment problems (e.g., tools crashing) but did

o » _ not answer questions regarding the task itself.
Study participants were posed the goal of writing annotationsafier the participant finished the second annotation task, we

to enable ESC/Java to verify the absence of runtime errqf§nqucted a 20-minute exit interview. (Section 5.5 presents
Each participant performed this task on two different pProgramgaitative results from the interviews.)

in sequence.
Before beginning, participants received a packet (repro-
duced in Appendix A) containing 6 pages of written instru _rograms

tions, printouts of the programs they would annotate, and phare three programs used for this study were taken from a data

tocopies of figures and text explaining the programs, from tgguctures textbook [Wei99]. Figure 5.1 gives some of their
book from which we obtained the programs. The written igharacteristics.

structions explained the task, our motivation, ESC/Java andye selected three programs for variety. ThisjSets

its annotation syntax, and (briefly) the assistance tools. Tha&ss is an implementation of disjoint sets supportingpn
instructions also led participants through an 11-step exercigfifind operations without path compression or weighted
using ESC/Java on a sample program. The sample prografion. The original code provided only an unsaféon op-

an implementation of fixed-size sets, contained examplesegtion, so we added a saf@ion operation as well. The

all of the annotations participants would have to write to corgtackAr class is a fixed-capacity stack represented by an ar-
plete the task @invariant , @requires , @modifies , ray, while theQueueAr class is a fixed-capacity wrap-around
@ensures, @exsures). Participants could spend up tueue represented by an array. We fixed a bug imiéiee Em-

30 minutes reading the instructions, working through the @iy method of both to set all storagetall . In QueueAr,
ercises, and further familiarizing themselves with ESC/Javge also inlined a private helper method, since ESC/Java re-
Participants received hyperlinks to an electronic copy of th@ires that object invariants hold at private method entry and
ESC/Java user’s manual [LNSOO] and quick reference [SerQ&}fit, which was not the case for this helper.

The instructions explained the programming task as follows\ve selected these programs because they are relatively
straightforward ADTs. The programs are not trivial for the
annotation task, but are not so large as to be unmanageable.
We expect results on small programs such as these to scale
to larger programs, since annotations required for verifying
absence of runtime errors overwhelmingly focus on class-
specific properties

Two classes will be presented: an abstract data type
(ADT) and a class that calls it. You will create
and/or edit annotations in the source code of the
ADT. Your goal is to enable ESC/Java to verify
that neither the ADT nor the calling code may ever
terminate with a runtime exception. That is, when
ESC/Java produces no warnings or errors on both
the ADT and the calling code, your task is complete. 5.3.2 Participants

The ADT source code was taken from a data structures tekttotal of 47 users participated in the study, but six were dis-
book [Wei99]. We wrote the client (the calling code). Particqualified, leaving data from 41 participants total. Five partic-
ipants were instructed to edit only annotations of the ADT 4pants were disqualified because they did not follow the writ-

21

Mean | Dev. | Min. | Max. NCNB Calls Coverage
Years of college education 7.0 2.6 3 14 Program Suite| LOC |Stat.| Dyn. | Stmt.| Bran.| Prec.| Rec.
Years programming 11.7 5.0 4 23 DisjSets Tiny | 23 5 389| 0.67| 0.70| 0.65|0.57
Years Java programming 3.6 15 1 7 Small| 28 5| 1219/ 1.00| 0.90| 0.71|0.74
Good| 43 13 |11809| 1.00| 1.00 | 0.94|0.97
Frequencies StackAr Tiny | 14 4 32| 0.60| 0.56 | 0.54|0.52
Usual environment Unix 59%; Win 13%; both 29% Small| 24 5 141| 0.64| 0.63 | 0.83|0.73
Writes asserts in code “often” 30%; less frequently 709 Good| 54 | 14 | 2783 0.96| 0.94| 1.00|0.95
...in comments | “often” 23%; less frequently 779 QueueAr Tiny | 16 4 32| 0.68| 0.65| 0.37|0.44
Gender male 89%; female 11% Small| 44 10 490| 0.71)| 0.71| 0.47|0.56
Good| 66 | 10 | 7652/ 0.94| 0.88| 0.74|0.75

Figure 5.2: Demographics of study participants. “Dev” is stan-
dard deviation. Figure 5.3: Test suites used for Daikon runs. “NCNB LOC” is

the non-comment, non-blank lines of code. “Stat” and “Dyn”
are the static and dynamic number of calls to the ADT. “Stmt”
ten instructions; the sixth was disqualified because the parfigd “Bran” indicate the statement and branch coverage of the
ipant declined to finish the experiment. We also ran 6 tri@glst suite. “Prec” is precision, a measure of correctness, and

participants to refine the instructions, task, and tools; we #Rec” is recall, a measure of completeness; see Section 5.3.4.
not include data from those participants. All participants were

volunteers.

Figure 5.2 provides background information on the 41 pa#sk, these participants had to add enough annotations on their
ticipants. Participants were experienced programmers & so that ESC/Java could verify the program. The minimal
were familiar with Java programming, but none had ever usad@mber of such invariants is given in Figure 5.1.

ESC/Java, Houdini, or Daikon before. Participants had at leastoudini. This group was provided the same source code
3 years of post-high-school education, and most were grag-the control group, but used a version of ESC/Java enhanced
uate students in Computer Science at MIT or the Universitjth (our re-implementation of) Houdini. Houdini was auto-

of Washington. No participants were members of the authamgitically invoked (and a message printed) when the user ran
research group. escjava . To complete the task, these participants had to add

Participants reported their primary development enviro@rough annotations so that Houdini could do the rest of the
ment (options: Unix, Windows, or both), whether they writé/ork towards verifying the program.
assert statements in code (options: never, rarely, sometimeBaikon. The three Daikon groups received a program into
often, usually, always), and whether they write assertionsvitnich Daikon output had been automatically inserted as ESC/
comments (same options). While the distributions are simildgva annotations. To complete the task, these participants had
participants frequently reported opposite answers for asderboth remove unverifiable invariants inferred by Daikon and
tions in code vs. comments — very few participants frequentso add other uninferred annotations.
wrote assertions in both code and comments. These participants ran an unmodified version of ESC/Java.
There was no sense also supplying Houdini to participants who
were given Daikon annotations. Daikon always produces all
the invariants that Houdini might infer, so adding Houdini's
inference would be of no benefit to users.

Participants were not provided the test suite and did not run
The experiment used five experimental treatments: a con®alikon themselves. (Daikon took only a few seconds to run
group, Houdini, and three Daikon groups. on these programs.) While it would be interesting to study

No matter the treatment, all users started with a minirrthle process where users are able to both edit the test suite and
set of 3 to 6 annotations already inserted in the program. Ttkie annotations, we chose to study only annotation correction.
minimal set of ESC/Java annotations includpec _public Looking at the entire task introduces a number of additional
annotations on all private fields, permitting them to be mefactors that would have been difficult to control experimen-
tioned in specifications, armvner annotations for all private tally.

Object fields, indicating that they are not arbitrarily modi- To study the effect of test suite size on users’ experience,
fied by external code. We provided these annotations in order used three Daikon treatments with varying underlying test
to reduce both the work done and the background knowledugte sizes (See Figure 5.3). In later sections, discussion of the
required of participants; they confuse many users and are ‘fidikon” treatment refers any of the three below treatments;
the interesting part of the task. Our tools add this boilerplate use a subscript to refer to a specific treatment.
automatically. These annotations are ignored during data colbaikongny: This group received Daikon output produced
lection, since users never edit them. using example calling code that was supplied along with the

Control. This group was given the original program withADT. The example code usually involved just a few calls,
out any help from an annotation assistant. To complete thith many methods never called and few corner cases exposed

5.3.3 Experimental Design

Treatments

22

(see Figure 5.3). We call these the “tiny” test suites, but thg Variable Domain
term “test suites” is charitable. They are really just exampleg Independent

of how to call the ADT. Annotation assistant none, Houdini, Daikofis g
. . Program StackAr, QueueAr, DisjSets
These suites are much less exhaustive than would be used gyperience first trial, second trial
in practice. Our rationale for using them is that in rare cir-| [ocation MIT, Univ. of Wash.
cumstances users may not already have a good test suite, 0r Usual environment Unix, Windows, both

they may be unwilling to collect operational profiles. If Dai- | Years of college education
kon produces relatively few desired invariants and relatively| Years programming
many test-suite-specific invariants, it might hinder rather tharn| Years Java programming

help the annotation process; we wished to examine that cirr Writes asserts in code never, rarely, sometimes,
cumstance. Writes asserts in comments often, usually, always
. Dependent
_Dalkonsma”: Th|_s group received a pr_ogram into whmh_ a | syccess yes, no
different set of Daikon output had been inserted. The Daikon Time spent up to 60 minutes
output for these participants was produced from an augmented Einal written answer set of annotations (Fig. 5.6

form of the tiny test suite. The only changes were using the Nearest verifiable answer | set of annotations (Fig. 5.6
Stack andQueue containers polymorphically, and varying

the sizes of the structures created (since the tiny test suites)))
used a constant size). Figure 5.4: Variables measured (Section 5.3.4), and their do-

. . . .main (set of possible values). We also analyze computed val-
When constructing these suites, the author limited hi (P) y P

e h ision and recall (Section 5.3.4).
self to 3 minutes of wall clock time (including executing thnes’ such as precision and recall (Section)

test suites and running Daikon) for eachikjSets and
StackAr , and 5 minutes foQueueAr, in order to simulate Quantities Measured
low-cost testing methodology. As in the case of Daikgn _ . _
use of these suites measures performance when invariant¥ére interested in studying what factors affect a user's per-
detected from an inadequate test suite — one worse than fgmance in a program verification task. Figure 5.4 lists the
grammers typically use in practice. We call these the “smalidependent and dependent variables we measured to help an-
suites. swer this question.

Daikongeod: This group received Daikon output produced. We are primarily interested in the effect of the annotation as-

using a test suite constructed from scratch, geared toward t |§E_ant on performance, or its effect in .comblnatlor? with other
ing the code in full, instead of giving sample uses. These a ctors. We also measure other potentially related independent

guate test suites took the author about half an hour to prod &(!ables in order to identify additional factors that have an ef-
ect, and to lend confidence to effects shown by the assistant.

We measure four quantities to evaluate performance. Suc-
cess (whether the user completed the task) and the time spent
Assignment of treatments are straightforward. We also compare the set of annotations
in a user’s answer to the annotations in the nearest correct an-
There are a total of 150 possible experimental configuratiosgier. When users do not finish the task, this is their degree of
there are six choices of program pairs; there are five possilecess.
treatments for the first program; and there are five possiblérhe next section describes how we measure the sets of an-
treatments for the second program. No participant annotatedations, and the following section describes how we numer-
the same program twice, but participants could be assigneditiadly relate the sets.
same treatment on both trials.

In order to reduce the number of subjects, we ran onlyeasurement Techniques
subset of the 150 configurations. We assigned the first 32 par-
ticipants to configurations using a randomized partial factorigllis section explains how we measured the variables in Fig-
design, then filled in the gaps with the remaining participant§€® 5.4. The annotation assistant, program, and experience
(Participants who were disqualified had their places taken & derived from the experimental configuration. Participants

Subsequent participantS, in order to preserve ba|ance_) reported the other independent variables. For dependent vari-
ables, success was measured by running ESC/Java on the so-

lution. Time spent was reported by the user. If the user was
unsuccessful and gave up early, we rounded the time up to 60

5.3.4 Analysis minutes.
The most complex measurements were finding the nearest
This section explains what quantities we measured, how earect answer and determining the set of invariants the user
measured them, and what values we derive from the dirbed written. To find the nearest correct answer, we repeatedly
measurements. ran ESC/Java and made small edits to the user’'s answer until

23

One lexical annotation; two semantic annotations: Written

/l@ ensures (x != null) && (i = \old(i) + 1)

Two lexical annotations; one semantic annotation:

/l@ requires (arg > 0)
//@ ensures (arg > 0)

Figure 5.5: Distinction between lexical and semantic annota- Minimal

tions. The last annotation is implied becawasg is not de-
clared to be modified across the call.

_ Removed
there were no warnings, taking care to make as few changes as Verifiable

possible. A potential source of error is that we missed a nearer

answer. However, many edits were straightforward, suchg§, e 5 6: Visualization of written and verifiable sets of anno-

adding an anno_tation that must be present in. "3_‘" answers. Rens The left circle represents the set of invariants written
moving annotations was also straightforward: incorrect anng; yhe yser: the right circle represents the nearest verifiable

tations cause warnings from ESC/Java, so the statements @y the gverlap is correct invariants, while the fringes are ad-

be easily identified and removed. The most significant risk {gions or deletions. In general, the nearest verifiable set (the

declining to add an annotation that would prevent removal @iyt circle) is not necessarily the smallest verifiable set (the
others that depend on it. We were aware of this risk and wele ded region). See Section 5.3.4 for details.

careful to avoid it.
Determining the set of invariants present in source code re-
quires great care. First, we distinguish annotations basedegpected annotations, so we verified all results of the grading
whether they are class annotatio@iqvariant) or method system by hand. We found that mistakes were infrequent, and
annotations @requires , @modifies , @ensures, or where they did occur, we counted the invariants by hand. How-
@exsures). Then, we count invariants lexically and semarever, by and large, this automatic grading system ensures that
tically (Figure 5.5). our measurements are reliable, unbiased, and reproducible.
Lexical annotation measurements count the textual lines of
annotations in the source file. Essentially, the lexical countdsém uted Values
the number of stylized comments in the file. P
Semantic annotation measurements count how many @em the quantities directly measured (Figure 5.4) we com-
tinct properties are expressed. The size of the semanticfibd additional variables to compare results across differing
is related to the lexical count. However, an annotation may g@tegrams, and to highlight illuminating quantities.
press multiple properties, for instance if it contains a conjunc-Figure 5.6 visualizes the measured and derived quanti-
tion. Additionally, an annotation may not express any propefes. The measured quantities are the user’s final annotations
ties, if a user writes essentially the same annotation twice(aritten”) and the nearest verifiable set (“Verifiable”). Both
writes an annotation that is implied by another one. are sets of annotations as measured bys#anticcounting
We measure the semantic set of annotations (in additiortdohnique described in the preceding section. If the user was
the lexical count) because it is truer to the actual contentradt successful, then the written and verifiable sets differ. To
the annotations: it removes ambiguities due to users’ syntactieate a verifiable set, we removed unverifiable annotations
choices, and it accounts for unexpressed but logically derfi/Removed”), and added other annotations (“Added”). Veri-
able properties. fiable annotations written by the user fall into the middle sec-
To measure the semantic set, we created specially-fornied (“Correct”). Finally, compared with the minimal possible
calling code to grade the ADT. For each semantic propewmgrifiable answer (“Minimal”), the user may have expressed
to be checked, we wrote one method in the calling code. Tadditional annotations (“Bonus”). The minimal set does not
method instructs ESC/Java to assume certain conditions éagend on the user’s written annotations.
check others; the specific conditions depend on the propertfrrom these measurements, we compute several values.
being checked. For instance, to check a class invariant, th@recision, a measure of correctness, is defined as the frac-
grading method takes a non-null instance of the type as antiam of the written annotations that are correER{€SY. pre-
gument and asserts that the invariant holds for the argumeigion is always between 0 and 1. The fewer ‘symbols in
For preconditions, the grading method attempts one call tRégure 5.6, the higher the precision. We measure precision to
meets the condition, and one call that breaks it. If the firg¢termine the correctness of a user’s statements.
passes but the second fails, the precondition is present. SimRecall, a measure of completeness, is defined as the frac-
lar techniques exist for modifies clauses and postconditionsion of the verifiable annotations that are Writt%@%tr]
The grading system may fail if users write bizarre or ufiRecall is always between 0 and 1. The fewef "symbols

24

in Figure 5.6, the higher the recall. We measure recall to de- Effects predicted bjfreatment

termine how many necessary statements a user wrote. In {hiepend. var. | None | Houd. | Dr,s | Dgoog | Confidence
study, recall was a good measure of a user’s progress in fheuccesstQ | 36% 71% p=0.03
allotted time, since recall varied more than precision. Reca!l 2% 85% p =002
Density measures the average amount of semantic informagenSIty 1.00 | 1.78 1.00 p <001
onus 1.25 1.47 | 1.75 p < 0.01

tion per lexical statement. We measure density by dividing the

size of the user’'s semantic annotation set by the lexical an- Effects predicted bProgram

notation count. We measure density to determine the textWahepend. var. | DisjSets | StackAr | QueueAr| Confidence
efficiency of a user’s annotations. If a user writes many redurms;ccess 72% 52% 0% p < 0.01
dant properties, density is low. Additionally, when Houdinj Time 44 50 60 p < 0.01
is present, programs may have higher invariant densities, sindrecision 98% 88% p=0.01
some properties are inferred and need not be present as expli€iecall 95% | 85% 64% p < 0.01
annotations.
Redundancy measures unnecessary effort expended by Effects predicted bfxperience
Houdini users. For the Houdini trials, we computed the semanPepend. var. | First trial Second trial | Confidence

36% 65% p=0.02

tic set of properties written explicitly by the user and then re-Redundancy
stricted this set to properties that Houdini could have inferred,

producing a set of redundantly-written properties. We creat@%ure 5.7: Summary of important numerical results. For
a fraction from this set by dividing its size by the number

- ™] Qfach independent variable, we report the dependent variables
properties inferable by Houdini for that program. This fragrat it predicted and their means. If a mean spans multiple

tion lies between'O aqd 1 a”?' measures the rgdundancy I%\Sﬁljmns, the effect was statistically indistinguishable among
of users’ annotations in relation to the annotations that HQgse columns. Variables are explained in Section 5.3.4, and
dini may infer. effects are detailed in Section 5.4-@Q means that the result

Bonus a measure of additional information, is definefloigs only ifQueueAr data, for which no users were success-
as the ratio of verifiable annotations to the minimal sell is omitted.)

(%rl[]i:a—k"[e). The larger the top section of the right circle ir
Figure 5.6, the larger the bonus. We measured bonus to judge,
in a program-independent way, the amount of properties the- .10 level. To control experimentwise error rate (EER),
user expressed. we always used a multiple range test [Rya59] rather than di-
Bonus annotations are true properties that were not neegssi pairwise comparisons, and all of our tests took account of
for the verification task studied in this experiment, but makperimental imbalance. As a result of these safeguards, some
be helpful for other tasks or provide valuable documentatidarge absolute differences in means are not reported here. For
They generally specify the behavior of the class in more detéailstance, Daikogoq Users averaged 45 minutes, while users
In StackAr , for instance, frequently-written bonus annotawith no tool averaged 53 minutes, but the result was not sta-
tions specify that unused storage is set to null, andghah tistically justified. The lack of statistical significance was typ-
andpop operations may modify only the top of the stack (incally due to small sample sizes and variations in individual
stead of any element of the stack). performance.

Miscellaneous Values
5.4.1 Success

We studied the statistical significance of other computed vari-)

ables, such as the effect of the first trial's treatment on tH¢ Measured user success to determine what factors may gen-
second trial, the first trial’s program on the second trial, tf§&@lly help or hurt a user; we were particularly interested in
distinction between object or method annotations, whether Hig €ffect of the annotation assistant. Perhaps Daikon’s an-

user used Windows, etc. None of these factors was statisticARjations are too imprecise or burdensome to be useful, or
perhaps Houdini's longer runtime prevents users from making

significant.
progress.
The only factor that unconditionally predicted success was
54 Quantitative Results the identity of the program under tegt & 0.01). Success

rates were 72% fobisjSets , 52% for StackAr , and 0%
This section presents quantitative results of the experimdnt,QueueAr . This variety was expected, since the programs
which are summarized in Figure 5.7. Each subsection digere selected to be of varying difficulty. However, we did not
cusses one dependent variable and the factors that predict@xpectQueueAr to have no successful users.

We analyzed all of the sensible combinations of variableslf the data fromQueueAr trials are removed, then whether
listed in Section 5.3.4. All comparisons discussed below ar¢ool was used predicted succegs< 0.03). Users with no
statistically significant at the = .10 level. Comparisons thattool succeed 36% of the time, while users with either Daikon
are not discussed below are not statistically significant at treHoudini succeeded 71% of the time (the effects of the as-

25

sistants were statistically indistinguishable). Recall was also predicted by treatment=¢ 0.02). Mean
These results suggest that some programs are difficult tomeall increased from 72% to 85% when any tool was used,
notate, whether or not either Daikon or Houdini is assistinigut the effects among tools were statistically indistinguishable.
QueueAr requires complex invariants due to ESC/Java's elt-the QueueAr trials are removed, the effect is more pro-
pression language. (Section 5.6 considers this issue in mweanced f < 0.01): mean recall increased from 76% to 95%
detail.) Furthermore, for more easily-expressible invarianwghen any tool was used.
tool assistance improves the success rate by a factor of two. This suggests that both tools assist users in making progress
toward a specific task, and are equally good at doing so. More
542 Time surprisingly, users of Daikon were just as effective starting
from a tiny test suite as from a good one — a comprehensive
We measured time to determine what factors may speedest suite was not required to enhance recall.
slow a user. Perhaps evaluating Daikon’s suggested annota-
tions takes extra time, or perhaps Houdini’s longer runtime
adds to_total time spent. _ _ _ 5.4.5 Density
As with success, a major predictor for time spent was the

program under tesp(< 0.01). Mean times (in minutes) wereyye measured the semantic information per lexical statement
44 for DisjSets , 50 for StackAr , and 60 forQueueAr. i, determine what factors influence the textual efficiency of a

If the QueueAr trials are again removed, then experience al§ger’s annotations. Perhaps the annotations provided by Dai-
predicted time ¢ = 0.08). First-time users averaged 49 mingon cause users to be inefficiently verbose, or perhaps Houdini

utes, while second-time users averaged 43. enables users to state properties using fewer written annota-
Since no other factors predict time, even within successfiyns.

users, these results suggest that the presence of the assistar:r&l‘,]ee only factor that predicted the density was treatment

tools neither slow down nor speed up the annotation proc SS () 01). Houdini users had a mean density of 1.78 seman-

at least for these programs. This is a positive result for bq o)

: : roperties per written statement, while non-Houdini users
tools since the time spent was not affected, yet other measwgga mean of 1.00

were improved. o . : - Lo
Notably, density in Daikon trials was statistically indistin-
o guishable from the null treatment, with a mean 2% better than
5.4.3 Precision no tool.

We measured precision, the fraction of a user’s annotations
that are verifiable, to determine what factors influence the cor-
rectness of a user’s statements. Successful users have a pre@i-6 Redundancy

sion of 100% by definition. Perhaps the annotations supplied

by Daikon cause unsuccessful users to have incorrect annb@f-Houdini trials, we measured the redundancy of users’ an-
tions remaining when time is up. notations in relation to the annotations that Houdini may infer

As expected, precision was predicted by the program unéf computation is explained in Section 5.3.4). Perhaps users
test p = 0.01). Together,StackAr andDisjSets were understand Houdini’s abilities gnd do not repge}t its efforts, or
indistinguishable, and had a mean precision of 98%, whigrhaps users repeat annotations that Houdini could have in-
QueueAr had a mean of 88%. ferred.

These results suggest that high precision is relatively easyhe only factor that predicted redundancy was experience
to achieve in the time allotted. Notably, Daikon users did nt = 0.02). Users on the first trial had a mean redundancy of
have significantly different precision than other users. Sind8%, while users on the second trial had a mean redundancy
ESC/Java reports which annotations are unverifiable, perh@p§5%. Surprisingly, second-time users were more likely to
users find it relatively straightforward to correct them. Supite annotations that would have been inferred by Houdini.

porting qualitative results appear in Section 5.5.3. Overall, users redundantly wrote 51% of the available
method annotations. For object invariants, though, users
544 Recall wrote more redundant annotations as program difficulty in-

creased (14% fobisjSets , 45% for StackAr , and 60%

We measured recall, the fraction of the necessary annotatitstigQQueueAr).
that the user writes, to determine what factors influence theThese results suggest that users in our study (who have little
progress a user makes. Successful users have a recall of 1B@Udini experience) do not understand what annotations Hou-
by definition. Perhaps the assistants enabled the users to niiskemay infer, and frequently write out inferable invariants.
more progress in the allotted time. This effect is more prevalent if users are more familiar with
As expected, recall was predicted by the program under t@stat invariants are necessary, or if the program under study
(p < 0.01). Mean recall was 95% fdDisjSets , 85% for is difficult. Related qualitative results are presented in Sec-
StackAr , and 64% foiQueueAr . tion 5.5.2.

26

5.4.7 Bonus who worked incrementally for the whole experiment believed

that an initial attempt at writing relevant annotations at the start

We measured the relative size of a user’s verifiable set of anpac |4 have helped. All users who were given Daikon annota-
tations compared to the minimal verifiable set of annotatiO{?&nS decided to WO.I’k incrementally.

for the same program. The ratio describes the total semantic
amount of information the user expressed in annotations.

The only factor that predicted the bonus information was tké@nfusing warnings
tool used f < 0.01). Users with the Daikogoqtreatment had
a mean bonus of 1.75. Users with Daiggnor Daikoryma
had a mean bonus of 1.47, while users with Houdini or no t
had a mean of 1.25.

Examining the same measurements for successful use
informative, since the verifiable set for unsuccessful users il

tCrLUdeS ?‘”F’Otg_“ons tgzt the_g’hd'd no:twrr:teléctons!de]cr the BRows clauses, which refer to pre-state conditions that cause
ree +'s in Figure 5.6). € resufts held true. - for sucy,q exception. Additionally, users wanted to call pure methods

cessful users, the treatment also predicted bonus 'nformafwgnnotations, define helper macros for frequently-used pred-

(p < 0.01). D"?"k‘”bow users had a mean rquo of 1.71, D".’ul'cates, and form closures, but none of these are possible in
koniny and Daikogmai users had a mean ratio of 1.50, Wh'I%SC/Java’s annotation language

others had a mean of 1.21. . Users reported that ESC/Java’s execution trace informa-
These results suggest that Daikon users express a broia}gﬁr

range of verifiable properties, with no harm to time or success — the specific execution path leading to a potential er-
at the given task. For instance, StackAr or QueueAr —was helpful in diagnosing problems. Many users found

the trace to be sufficient, while other users wanted more spe-

Dalllkon é’fﬁ rf fre<tqutently spet(_:|f|ed that ung_sed sforag_e ISI S& iﬁ% information, such as concrete variable values that would
null, and that mutator operations may modify only a single ?ve caused the exception.

ement. Many Daikon users also wrote full specifications fo
the methods, describing exactly the result of each operation.
These bonus properties were not needed for the task studegd.2 Houdini

in this experiment, but they make the specification more com-

plete. This completeness may be helpful for other tasks, anH$iers’ descriptions of experiences with Houdini indicate its
provides valuable documentation. strengths and weaknesses. A total of 14 participants used Hou-

dini for at least one program. Three users had positive opin-
ions, five were neutral, and six were negative.

Users reported difficulty in figuring out how to eliminate ESC/
qua warnings. Users said that ESC/Java’s suggested fixes
QFere obvious and unhelpful. Thexsures annotations were
articularly troublesome, since many users did not realize that
exceptional post-conditions referred to post-state values
he variables. Instead, users interpreted them like Javadoc

5.5 Qualitative Results
.] o _ Easier with less clutter

This section presents qualitative results gathered from exit in-
terviews conducted after each user finished all tasks. Sé&be positive opinions were of two types. In the first, users ex-
tion 5.5.1 briefly covers general feedback. Section 5.5.2 ¢wessed that Houdini “enabled me to be faster overall.” Hou-
scribes experiences with Houdini and Section 5.5.3 describlés appeared to ease the annotation burden, but users could
experiences with Daikon. not identify specific reasons short of “I didn't have to write
as much down.” In the second, users reported that Houdini
551 G | was “easier than Daikon,” often because they “didn’t have to

= enera see everything.” In short, the potential benefits of Houdini —

While the main goal of this experiment s to study the utility gtasing annotation burden and leaving source code cleaner —
invariant inference tools, exploring users’ overall experien#€re realized for some users.
provides background to help evaluate the more specific results

of tool assistance. No noticeable effect

The five users with neutral opinions did not notice any benefit
from Houdini, nor did they feel that Houdini hurt them in any
Users reported that annotating the program incrementally wegy. As it operated in the background, no effect was manifest.
not efficient. That is, running ESC/Java and using the warn-

ings to f_lgure out Wh_at to add was less efficient _than spendig@, and confusing

a few minutes studying the problem and then writing all seem-

ingly relevant annotations in one go. Four users switchedUsers’ main complaint was that Houdini was too slow. Some
the latter approach for the second half of the experiment arsgkrs who had previously worked incrementally began making
improved their relative time and success (but the data doesmote edits between ESC/Java runs, potentially making erro-
statistically justify a conclusion). Additionally, a few userseous edits harder to track down.

Incremental approach

27

Additionally, users reported that it was difficult to figure oub verify annotations derived from this property. Neverthe-
what Houdini was doing (or could be doing); this result is sufess, the property indicated a major deficiency in the test suite,
ported by Section 5.4.6. Some users wished that the annathich a programmer would wish to correct if his or her task
tions inferred by Houdini could have been shown to them upasas broader than the simple one used for this experiment.
request, to aid in understanding what properties were already
present. (The actual Houdini tool contains a front-end that is . .
capable of showing verified and refuted annotations [FLO ;5'4 Uses in practice

but it was not available for use in this study.) A number of participants believed that using a tool like ESC/

Java in their own programming efforts would be useful and

5.5.3 Daikon worthwhile. Specifically, users suggested that it would be es-
) pecially beneficial if they were more experienced with the tool,
Benefits if it was integrated in a GUI environment, if syntactic hurdles

Of the users who received Daikon’s invariants, about half coﬁ?—md be overcome, or if they needed to check a large existing

mented that they were certainly helpful. Users frequently Slﬁj'-Stem' o _

gested that the provided annotations were useful as a way B small number .of parquants believed that ESC/Java

become familiar with the annotation syntax. Additionally, thould not be useful in practice. Some users cared more about
annotations provided an intuition of what invariants shouf§obal correctness properties, while others preferred validating
be considered, even if what was provided was not accurdi¥ building a better test suite rather than annotating programs.

Finally, provided object invariants were appreciated becad8e user suggested that ESC/Java would only be useful if test-

some users found object invariants more difficult to discoy88 Was not applicable. o N
than method annotations. However, the majority of participants were conditionally

positive. Users reported that they might use ESC/Java oc-
casionally, or that the idea was useful but annotating pro-
grams was too cumbersome. Others suggested that writing and
About a third of the Daikogh, and DaikoRya users suggestedCheCking only a few properties (not the absence of exceptions)
that they were frustrated with the textual size of the providé¢puld be useful. Some users felt that the system was useful,
annotations. Users reported that the annotations had an Ryg.annotations as comments were distracting, while others felt
scuring effect on the code, or were overwhelming. Some uséidt the annotations improved documentation.

said they were able to learn to cope with the size, while oth-In short, many users saw promise in the technique, but few
ers said the size was a persistent problem. Dailgausers were satisfied with the existing application.

reported no problems with the output size.

Overload

Incorrect suggestions 5.6 Discussion
A significant question is how incorrect suggestions from dke have carefully evaluated how static and dynamic assistance
unsound tool affect users. A majority of users reported tHapls affect users in a verification task. This section considers
removing incorrect annotations provided by Daikon was eapgtential threats to the experimental design.
Others reported that many removals were easy, but some paAny experimental study approximates what would be ob-
ticularly complex statements took a while to evaluate for cagerved in real life, and selects some set of relevant factors
rectness. Users commented that, émisures annotations, to explore. This study attempts to provide an accurate ex-
ESC/Java warning messages quickly pointed out conditigrigration of program verification, but it is useful to consider
that did not hold, so it was likely that the annotation was potential threats to the results, and how we addressed them.
error. Disparity in programmer skill is known to be very large
This suggests that when a user sees a warning about araimd might influence our results. However, we have taken pro-
valid provided annotation and is able to understand the megrammers from a group (MIT and UW graduate students in
ing of the annotation, deciding its correctness is relatively easymputer science) in which disparity may be less than in the
The difficulty only arises when ESC/Java is not able to verifeneral population of all programmers. Furthermore, we per-
a correct annotation (or the absence of a runtime error), dorn statistical significance tests rather than merely comparing
the user has to deduce what else to add. means. The significance tests account for spread. (In many
The one exception to this characterization occurred for useases large disparities in means were not reported as signifi-
who were annotating thBisjSets class. In the test suitescant.) Use op = .10 means that if two samples are randomly
used with Daikogny and Daikogmay to generate the annotaselected from the same population, then there is only a 10%
tions, the parent of every element happened to have a losleance that they are (incorrectly) reported as statistically sig-
index than the child. The diagrams provided to users framficantly different. If the samples are drawn from populations
the data structures textbook also displayed this property,véth different means, the chance of making such an error is
some users initially believed it to be true and spent time tryiegen less.

28

/I Only live elements are non-null tools and limits the difficulty for a user.

(\forall int i; (0 <= i && i < theArray.length) ==>
(theArray[i] == null) <==> .
((currentSize == 0) || 5.7 Conclusion
(((front <= back) && _(i < front || i_> back)) ||
((front > back) && (i > back && i < front))))) Static checking is a useful software engineering practice. It
/I Array indices are consistent can reveal errors that would otherwise be detected only dur-

ing testing or even deployment. However, static checkers re-

(((CC“Jrrfe”r:tSS'izzee - bbifckk g f][fonr:t " 11) L' quire explicit goals for checking, and often also summaries of
((currentSize > 0) ? theArray.length : unchecked code. To study the effectiveness of two potential
-theArray.length))) specification generators, we have evaluated two annotation as-

sistance tools: Houdini and Daikon. A number of important

. . S . . conclusions can be drawn from this experiment.
Figure 58 O.bJeCt mvanapts required QuelueAr_ for E.SC/ Foremost is the importance of sensible and efficient genera-
Java verification. The written form of the invariants is maq%n of candidate specifications. In cases feeueAr where
more complicated by the limits of ESC/Java’s annotation lan- P S j) .
Lage no tool postulates the difficult but necessary invariants, users
guage. spend a significant amount of time trying to discover it. Ef-
ficiency is also important: even with a subset of its grammar
in use, Houdini users complained of its speed. While Dai-
pn fared no better than Houdini in terms of success or time,
produce the same results and will run faster, since it postul | IC;[?O?]"Ol"eZZ?;ZV&?r; g;‘:;s mg:}eef%gﬁlg[e Zalr;?(i:]de?tissjsc-
the true subset of the invariants in Houdini’s grammar. ' e) : ;
onIIEy : 4 ESC/I be affect d% to0l means that a more complete specification was achieved, which
Xperience ava users may be aflected by 100 asr?{ﬁy be useful for other tasks or serve as a form of documen-
tance in different ways than users with only an hour of e

) N . ! ! €tion. In short, efficient generation of candidate invariants is
perience, but it is infeasible to study users with experience, important task, and one Daikon performs well

We know of no _S|gn|f|cant number of experlenceq ESClav sers suggested that a permanent (final) set of annotations
users, and "a'””?g a user to beCO”.‘e an expert in ESC/J Buld not clutter the code. Therefore Houdini’s method of
takes months, so is too time-consuming for both the researg ?érring unwritten properties should be helpful. However, the
and the_ u_ser. _ _ results show that hiding even simple inferred annotations is
We limited users to a few hours of time at most, whichynfysing (leading to redundancy). Perhaps a user interface
restricted the size of the programs we could study. Our {&xt allows users to toggle annotations could help.
sults may not generalize to larger programs, if larger programsy key result is that assistants need not be perfect, support-
have more complex invariants. That no users succeededoyr claim (Section 1.3.3) that partial solutions are useful.
QueueAr may also seem to support this argument. HOWeVeyaikon's output contained numerous incorrect invariants (see
we believe thaQueueAr is not representative because it "¥igure 5.3), but Daikon did not slow down users, nor did it
quires unusually complicated invariants, whereas larger pficrease their precision. In fact, Daikon helped users write
grams do not generally require complicated invariants. more correct annotations, and this effect was magnified as bet-
We choseQueueAr as a particularly difficult example forter suites were used. Users effortlessly discard poor sugges-
the user study; it guarantees that unused storage is set to s and readily take advantage of correct ones.
via the invariants shown in Figure 5.8. These invariants wereryrthermore, Daikon can use even the tiniest “test suites”
particularly difficult for users to generate (and Daikon does n@ls small as 32 dynamic calls) to produce useful annotations.
suggest such complicated properties). Even test suites drawn from example uses of the program no-
However, larger programs do not necessarily require suigeably increase user recall. In short, test suites sufficiently
complex invariants. In general, even if a program is large alatige to enable Daikon to be an effective annotation assistant
maintains complex invariants, not all invariants are needed &tvould be easy to come by.
ESC/Java’s verification goals, and the necessary invariants afe sum, both assistants increased users’ effectiveness in
both relatively simple and sparse. Chapter 4 (Figure 4.3 completing the program verification task, but each had its own
page 17) showed that a 498-line program required one benefits. Houdini was effective at reducing clutter, but was
notation per 7.0 non-comment, non-blank lines of code, a® slow to use. Daikon was just as effective, increased the
a 1031-line program required one annotation per 7.1 linespount of true properties expressed by the user, and was ef-
whereafQueueAr required an annotation every 1.7 lines. Adective even in the presence of limited test suites. These results
ditionally, neither of the larger programs required complex imalidate our approach to the automatic generation and check-
variants. ing of program specifications. Users are effectively able to
Finally, since both Daikon and ESC/Java are modular (opegfine inaccurate output of an unsound generation step into a
ate on one class at a time), the invariants detected and requigsifiable specification more effectively than writing a specifi-
are local to one class, which both simplifies the scaling of thation from scratch.

Our re-implementation of Houdini may also affect the r
sults. As explained in Section 5.2.1, our implementation

29

Chapter 6

Context sensitivity

While we have shown our techniques to be useful, enhanpesperties can be effectively recovered, they may be applied to
ments could improve them further. The chapter suggests #heariety of applications:
addition of context sensitivity (Section 6.1) during both gener-Program understanding. In a sense, context-sensitivity
ation (Section 6.2) and checking (Section 6.3). may be seen as an incremental refinement of Daikon, permit-
ting it to be more specific in its output. For example, Dai-
. kon’s output concerning elements of a polymorphic container
6.1 Introduction type migf?t reportelt.clags € {String, Integer{: thg elements
»)) are limited to two types. With context-sensitivity, Daikon
A context-sensitivanalysis accounts for control flow infor-

.) X . “"would be able to report that the container was used with ei-
mation, as illustrated by the following example. Cons'dertﬁerString sorinteger s consistently — that all instances

method that picks an element from a collection: of the container were used homogeneously.

public Object pick(Collection c) { On the other hand, it is possible that context-sensitive in-
return c.iterator().next(); variants may reveal completely new information. A context-
} insensitive invariant detector may fail to find anything signif-

icant in calls made by &quare andRectangle class to

If a certain caller always passes in an ordered collectiqiyrawRect method. However, a context-sensitive detector
such as &/ector , a context-sensitive analysis that inferreg,, |4 notice that theSquare always used an equalidth

the specification based on each individual caller could t&;gheight . When code must be modified, understanding the
port the post-conditionresult == c[0] : the first ele- yitterent uses from varied call-sites may be useful, especially
ment of theVector - was always returned to that caller. Sim methods with a complex behavior that is not all exercised
ilarly, if a caller always passed a collection with a homquring a single call.

geneous elfement ty?e, fl_contextl-sensmve analy5|§ CﬁUId "erest suite evaluation. By reporting more properties that
port \typeof(\result) == \elementtype(c) - the are true over a test suite, a more specific analysis may help

return type opick - matched the element type of its argume%entify unfortunately-true invariants that make the suite less

In contrastcontext-insensitivepecification generation maygeneral than it should be. Depending on the verbosity of the

report that the argument and result are always non-null, bubffy, + the properties may by processed automatically [Har02]
pick is called from multiple locations, inference is unlikely, may be evaluated by programmers

:g tﬁ]rg(:s::uinacgltjneva”ams ovpick that relate the argument Optimization or refactoring identification. The most ob-
' vious example is partial specialization. When certain state has
constant or constrained values depending on the origin of the

6.2 Context-sensitive generation call, it may be appropriate to split one method into several, one
' for each caller, or to move some of the code across the function

As shown above, invariant detection that reports properties th@indary into the caller. Static analysis may be able to effect
are true for all calls to a procedure may fail to report propdR€se optimizations when the parameters are literal constants,
ties that hold only in certain contexts. This section propogdét exploiting dynamic information may give the programmer
uses for context-sensitive specification generation, descriB&ieper insight than is possible with a static analysis (such as
a technique to implement it, and provides brief experimeni’&'lth [KEGNO1]).

evidence of its efficacy.

Granularity

6.2.1 Applications : .
PP We can change the character of the analysis by varying the

Context-sensitive invariants can reveal differences in the wayel of abstraction, ogranularity, with which we distinguish
methods are used based upon the nature of the caller. If thdifferent callers during inference. At the finest level, every

30

call-site is considered a distinct caller; at an intermediate lev@function, the predicates necessarily have properties that can
all calls made from within the same method are considered b@ used to form implications. We augmented Daikon to read
gether; and at the coarsest level, all calls made from within #ide files produced during context instrumentation and form
same class are merged — progressively decreasing the “mhg-appropriate predicates at inference-time.
nification” at which we inspect the caller. Predicate generation can be done at different granularities
Other methods of grouping are possible, such as by thkile the instrumented source (and resulting trace) stay the
thread of the caller, or by a time index as a program mow&sme. This allows varying granularities to be applied to a trace
through different stages. We chose a lexical approach duevithout having to run the program every time the setting is
its ease of implementation and likelihood to both match prchanged.
grammer intuition and produce useful results.
We note_that as granularity becomes coarser, a wider Va”@%ﬁ Evaluation
of callers is needed to produce any distinction. Indeed, we
suspect that the benefits of a context-sensitive analysis will®eapters 4 and 5 propose two ways to evaluate a generated
most evident with larger test suites, or in examples where 8pecification: by studying its static verifiability, and by exam-
classes under test have a greater number of different clientiing its utility to users. For the evaluation of our context-
sensitive analysis, we repeat the accuracy experiments, but
Implicit vs. Explicit substitute a qualitative evaluation by the author for the user

. . . o evaluation.
It is worthwhile to consider how invariants produced by a

context-sensitive analysis may contribute to a generated spec-. T
o) . : F?tatlc Verifiability

ification. It may seem that new properties will describe facts

about the users of the class, instead of about its own specif@#en the additional sensitivity of our analysis, we were cu-
tion. rious how the results of Chapter 4 might change. The output

However, a context-sensitive analysis may be able to relafeour augmented system is a superset of its previous result,
behavior that varies with the caller to input parameters or interhich may either enable additional proofs or add more unver-
nal state by partitioning the set of samples in a novel way. Tifiable, test-suite dependent properties.
use of context information for partitioning has the power to We repeated the experiments described in Chapter 4. In-
distinguish behavioral aspects where formerly no pattern wagiants that explicitly mentioned a call-site were deemed in-
apparent. expressible in ESC/Java and thus discarded.

We categorize new invariants asplicitly contextual when Interestingly, most of the 11 programs had no significant
the invariant makes explicit reference to the origin of a methedanges. Since many were a single ADT and its test suite,
call, orimplicitly contextual when the invariant was discovereiere was only one calling context, and no additional informa-
due to partitioning on a call-site but does not mention a call@sn could be gained. The only program with any large differ-
explicitly. Implicitly contextual invariants will certainly con-ences wafatPoly , described immediately below.
tribute to the specification since they are no different than anyrhese results confirm our suspicion that small programs
other invariant. The effects of explicitly contextual invarianigith one or two classes in isolation will not contain many

on a specification are explored in Section 6.3. context-specific invariants. Furthermore, we see that in some
cases, the addition of sensitivity does not worsen the highly-
6.2.2 Implementation accurate results already obtained.

We have implementgd a co_ntext—s_ensitive dyn_amic invfirieﬁﬁtPoly: polynomial over rational numbers
detector by augmenting Daikon’s instrumentation and infer-
ence steps. We briefly describe our implementation techniqlié® RatPoly program is an implementation of rational-
here. coefficient polynomials that support basic algebraic opera-
We collect context information using a pre-pass to Daikortiens [MITO1]. The source contains 498 non-comment lines of
normal instrumentation. We transform the program by augpde, in 3 classes and 42 methods. Informal comments state
menting every in-program procedure call with an additiontile representation invariant and method specifications.
argument, a numeric identifier that uniquely identifies the call-We note thaRatPoly ’s implementation was written by a
site. The identifier may be added as a formal parameter, or ngagduate student in computer science, and its test suite was
be passed via global variable; we chose the former. Daikowstten by software engineering instructors for the purpose of
normal instrumentation then treats the argument the sameyi@sling student assignments. We believe that the test suite
any other: its runtime value is written to a trace databaseaaghors wanted to produce a suite with an exceedingly good
part of the record describing the procedure’s pre-state. ability to find faults. Even with that motivation, though, the
To detect conditional invariants predicated on call-sites, west suite lacked coverage of certain key values.
must supply Daikon with predicates that identify the call-sites This author, who is familiar with th®atPoly code, was
at the granularity we desire. Since the mapping from a calidrle to pick out the following properties of the program and
at some granularity to the set of identifiers that represent iitis test suite in approximately five minutes, using the output

31

RatNum.approx():::ENTER

(<Called from RatPoly.eval>) ==> (this.denom == 1)
RatNum.div(PolyCalc.RatNum):::ENTER

(<Called from RatPoly.divAndRem>) ==> (arg.denom == 1)
RatNum.mul(PolyCalc.RatNum):::ENTER

(<Called from RatPoly.divAndRem>) ==> (arg.numer >= 0)

Figure 6.1: Indications of test suite deficiencies, as found in partial output of context-sensitive invariant deteRadpaiy
using method-level granularity.

of our context-sensitive analysis. Three context-conditofal3 ~Context-sensitive checking
invariants ofRatNum stood out (Figure 6.1); each indicates

a deficiency in the test suite. The first shows that wheme previous section introduced context-sensitive invariant de-
evaluating the polynomial to produce a floating-point valugction, the distinction between implicitly and explicitly con-
RatPoly.eval only calledRatNum.approx with inte- textual invariants, and how explicitly contextual invariants can
gers; this indicates that only fraction-less polynomials wegsist program understanding and test suite validation. Explic-

used while testingval , a clear deficiency in the test suitejy contextual invariants may also help form a statically veri-
The same situation is evidenced by the second invariant: ofifiple specification.

integer-coefficient polynomials are divided. Furthermore, the
third invariant shows that only positive divisors are used.
These invariants point out flaws in the test suite and im
diately suggest how to improve it, but do not show up with
a context-sensitive analysis.

gﬁ.—&l Polymorphic specifications

Polymorphic code provides generalized behavior that is spe-
Two additional context-conditional invariants BfatNum cialized for the needs of the caller. The caller may, for in-
also stood out (Figure 6.2); each indicates a property stdnce, define types processed or stored (“a listohg s”)
RatPoly s representation. The first reflects that zero-valued may supply a maximum storage requirement (“support up
coefficients are never stored or manipulated, the second thagize objects”). In one sense, the polymorphic code has
NaNvalues are never stored or manipulated. just one specification, with parameters supplied by the client
. . , . at time of use. However, in another sense, we can think of
Finally, fo_ur context—conqnpnal |nvar|.ants_ <_Ratl?oly the code as having multiple specifications, one for each client.
StO,Od out (Flgure 6.3); gach |nd|catgs an meffl_mer)t mplemg-me multiple specifications are similar, but will in at least the
tation ch0|c¢ and candidate for partial specialization. The f'[ﬁfrtions that were parameterized — each is an instantiation
shows thativ repeatedly uses tigarse route to generate ¢ e gingle, parameterized specification given specific values
NaNponnomlaIs (instead of havmg a static reference to a SH3t the parameters. If an analysis can recover these instanti-
gle instance). The second and third show SeleCoeff ations of the generalized specification and apply them at the

:ES usﬁd ;]n a "”;]';3‘,’ ‘Xazj/é"hen ca}IIed fronega:]e f’,Wh'I? the ‘groper locations in the code, it is at least as effective as an
ourth shows thallivAndRem only removes the first element,, lysis that recovers the generalized specification.

of a vector. These usage patterns are candidates for parti

specialization, with the potential for speed improvements. e illustrate this concept with a hypothetical example

of a specification generated without context-sensitivity (Fig-
In short, context-sensitive dynamic invariant detection rare 6.4). IntSet uses a containeMyVector to store

vealed useful properties of both the program and its test suite elements. Even thougmtSet only stores non-null

that were not known beforehand, and that would have othetteger s, MyVector ’s specification does not reflect this

wise gone unnoticed. property because it has multiple callers. Thereftm&Set
fails to verify becaus&lyVector.get is notin general con-
strained to return a non-nulhteger . However, we can

specializeMyVector ’s specification fotntSet by defining
a specification fieldMyVector.user0 that enables a con-
text specific tdntSet (Figure 6.5). With this addition, both
classes would fully verify.

We can generalize this example as follows. If some in-
We have presented techniques that augment a dynamic invgtgnces of a clasB are used in a limited way from another
ant detector to enable context-sensitivity, have described olaissA, and those instances 8fare only used fronf, then
implementation, and have provided experimental evidencews can specialize a version Bk specification toA’s context,
its utility. We introduce the distinction betweenplicitly and potentially enabling more proofs withiis code. The special-
implicitly contextual invariants, and the idea ofjenularity ization would itself be checked, but would only be employed
to context-sensitivity, where data from multiple paths is coahen checking\'s code. We term theggolymorphic specifi-
lesced based upon the paths’ lexical position in the source.cations

6.2.4 Summary

32

RatNum.div(PolyCalc.RatNum):::ENTER

(<Called from RatPoly.divAndRem>) ==> (arg.numer != 0)
RatNum.mul(PolyCalc.RatNum):::ENTER

(<Called from RatPoly.divAndRem>) ==> (this.denom >= 1)

Figure 6.2: Indications of representation properties, as found in partial output of context-sensitive invariant detection on
RatPoly , using method-level granularity.

RatPoly.parse(java.lang.String):::ENTER

(<Called from RatPoly.div>) ==> (polyStr.toString == "NaN")
RatPoly.scaleCoeff(PolyCalc.RatTermVec, PolyCalc.RatNum):::ENTER

(<Called from RatPoly.negate>) ==> (scalar.denom == 1)

(<Called from RatPoly.negate>) ==> (scalar.numer == -1)

RatTermVec.remove(int):::ENTER
(<Called from RatPoly.divAndRem>) ==> (index == 0)

Figure 6.3: Indications of implementation inefficiencies, as found in partial output of context-sensitive invariant detection on
RatPoly , using method-level granularity.

class IntSet {
/l@ invariant elts != null
private MyVector elts;

/l@ requires elt '= null
public void add(Integer elt);

//@ requires elts.store.length > 0

/l@ ensures \result = null
public Integer min() {

return (Integer) elts.get(0);
}

%:igure 6.4: Generated specificatiowithout explicitly-contextual invariants. Even thoudhtSet
Integer s,MyVector 's specification does not reflect this property because it has multiple callers. Therefore, the statements
marked with/**/ fail to verify: the first becausMyVector.get
not constrained to return dnteger

class IntSet {
/I@ invariant elts.user0 == true
//@ invariant elts != null
private MyVector elts;

/l@ requires elt != null
public void add(Integer elt);

/l@ requires elts.store.length > 0
/l@ ensures \result != null
public Integer min() {

return (Integer) elts.get(0);
}

class MyVector {
/l@ invariant store != null
private Object[] store;

public void add(Object elt);

/@ requires index < store.length

public Object get(int index);

I/

}

class MyVector {
//@ ghost public boolean user0;

/@ invariant store != null
/[*@ invariant user0 ==>
(((store elements) != null) &&
((store elements).class == Integer))
*/
private Object[] store;

[*@ requires userQ0 ==>
((elt '= null) &&
(elt.class == Integer))
*/
public void add(Object elt);

/l@ requires index < store.length
/*@ ensures userQ0 ==>
((result '= null) &&
(\result.class == Integer))
*/
public Object get(int index);

may return null, the second becauldgVector.get

only stores non-null

is

}
Figure 6.5: Generated specificatiomih explicitly-contextual invariants. Once explicit context information is added (prop-
erties involvinguser0), verification succeeds. Only one change is madtS8et ; most additions are tMyVector 's
specification. (Somgforall and\typeof notation has been abbreviated for clarity and space.)

33

6.3.2 Specialized representation invariants select all pairs wher€' has at least one field of tyge

o . . . and all fields of typdl” are not aliased outside 6f.
The specialization of Section 6.3.1 is only necessary if the

Bs used inA maintain an additional representation invariant.4. For each pair itb,;
Normally, that invariant would only appear as a property scat-
tered throughouA (e.g., allBs returned fromA have prop-

erty P). Furthermore, the property would often be impossi-

(a) Add a boolean specification-only fieldser C to
T's specification.

ble to verify with a modular checker, since the inductive proof (b) Replace <Called from Class C> in T's
that B's specialized representation invariant is maintained is specification withuserC .

beyond its scope. However, by pushing the invariant Bito (c) For each-typed fieldf in C, add an object invari-
we can enable its proof via ti@invariant annotation, and ant

allow its consequences to appear as verifiable postconditions @invariant this.f.userC == true

of B's methods. This is similar (in its effects) to inlining the
code ofB's methods while checking; in essence, it lets us These steps create context-independent specifications that
use a context-insensitive modular checker for context-sensitimay be verified in the same way as any other specification.
static analysis.

The technique is not limited just to types or nullness, as j . .
the MyVector example. Any property within the scope 06-4 Discussion

the tools can be enforced, such as integer ranges, sorted-r\llt\elssH q ical techni imol both th
etc. Though we use the terpolymorphic specificatigrthe ''c N3V€ presented practical techniques to implement both the

technique is applicable to more than just standard type infgp_neration and checking of automatically-generated specifica-
mation tions of polymorphic code, a situation that arises in most larger

The only requirement of the context used to speciaBzeS‘OI.t)W‘:Ire Ercr)Jetith]' «tension provid new wav to ind Dai
is consistency: all instances Bfthat are used with context- urgeneration extension provides a new way to induce Hal-

dependent specification enabled must always be checked \?ﬂn to produce |mpI|cat|ons.' Previous 'techmque.s depend on
that specification enabled. Otherwise, soundness is | dpcovering mutually .eXCIUS'Ve properties when mfer_ence IS
With this constraint, though, any granularity (defined in Se(égmplete. Our tt_achmque_of splitting based on call-site pro-
tion 6.2.1) is acceptable. Our intuition says that a class—le§//!aqef's a _necessarlly exclusive property that can be used to form
granularity will be most useful, as was the case WittSet . implications. . .

However, an even wider granularity, such as package-le el,our checking extension shows how to use a modu-

may also be useful. We suspect that using a may-alias anal isChEECKer to check context-d_ependent propert!es. Wr_nle
context-dependent properties were useful in studying

would suggest the proper scope. A private representation fi tPoly _even without being checked, providing a way to

can often be shown to be referenced by only one instance o date th ificati bl to take ad
defining class, in which case class-level granularity is app?@' ate e specilication may enable more users o take ad-

priate. On the other hand, if data is shared within a packa&%r,]tage of it
an instance may be aliased by multiple classes in that pack-

age, which suggests that package-level granularity would be
required.

6.3.3 Algorithm

We propose implementing the checking of explicitly contex-
tual specifications in the following way.

1. Run Daikon with context sensitivity enabled at the class
granularity. The generated specification for a clEssay
contain explicitly-contextual implications whose predi-
cate is of the fornxCalled from Class C>

2. Construct a sef,;; of pairs whose elements are every
observed substitution @ andC' as given in the previous
step.

3. Perform an analysis to forifi,;, a safe subset of,;.
(The safety requirement is that any time a refined speci-
fication of T' is utilized, those instances @f are always
checked with the refined specification.) As one choice,

34

Chapter 7

Scalability

Daikon operates offline and in batch mode, by first read-The naive solution would be to simply forgo the optimiza-
ing all data from a trace file into memory, and then proces&ns noted in the first paragraph of this section. However, such
ing it. For large or long-running programs, trace files may la@ approach is so computationally expensive as to be infeasi-
consume too much space or take too long to read from dible. Some optimization is required so that fewer candidate
or Daikon may have insufficient memory to hold all data. Tiavariants are instantiated and tested. Section 7.3 presents a
analyze larger or longer-running programs, Daikon should teehnique that provides such an optimization, but we first re-
modified to operaténcrementally processing one sample aview important terminology.

a time, without requiring that all data be available in mem-

ory, and operatenling running concurrently with the program

under test. This chapter proposes a technique to improve th& Terminology

scalability of Daikon by taking advantage of properties of pro-

gram point structure. By improving Daikon’s use of processgection 2.2 described how Daikon operates, but here we more

and memory resources, we enable online and incremental ggrefully define its terminology, to give a foundation for the

eration, permitting analysis of larger and longer-running preest of this chapter.

grams. A program pointis slightly more general than just a specific
location in the program. Instead, it represents a specific scope
(set of variables) and its associated semantics. For example,

7.1 Staged inference consider a program point associated with the pre-state of a
method. Its scope is all fields of the class and any arguments

As described in Section 2.2 (page 7), the Daikon invariant de-the method. Its semantics are that every time the method is

tector infers invariants over a trace database captured fronfaled, a snapshot of all pre-state within scope is taken. For a

instrumented version of the target program. Daikon operagggram point associated with the object invariants of a class,

in batch mode, by first reading all samples into memory, afi@ scope is all fields of the class, and its semantics are that

then using multiple passes over the samples to infer invariagiégry time the any public method is called, snapshots of all

The multiple passes permit optimizations because certain pfe-state and post-state within scope is taken.

variants are always true or false, or certain derived variable\ sampleis the snapshot of program state taken for a spe-

are undefined. By testing the strongest invariants in earlfic program point.

passes, the weaker invariants or certain derived variables maj variable is really an expression associated with a given

not need to be processed at all. For example,=f 0 always scope (a program point). It may be a simple field refer-

holds over an earlier pass, ther> 0 is necessarily true andence (such athis.x), may involve array indexing or slic-

need not be instantiated, tested, or reported on a later paggs(such ashis.myArray[x..y]), or may involve other
Similarly, unless the invariarit< theArray.length holds, the compound expressions.
derived variableheArray[i] may be non-sensical. A derived variablds a variable whose value is not provided

While operating in passes, Daikon also treats each progrian& sample, but is instead computed as a function of other
point independently. Therefore, data from one program pouatriables after the fact. It is computed by Daikon as opposed
may be discarded before the other points’ data is processetb the front end. For example, array slices are derived from the

However, processing data in passes prevents Daikon frisftharray given in the sample.
operating on traces where the amount of the data exceeds avail-
able memory. Currently, programs that run (uninstrumented)
for longer than about two minutes create enough data to redct3 ~ Variable ordering
this limit. To analyze larger or longer-running programs, Dai-
kon must operate incrementally, so that not all data is requirBglimprove the performance and usability of Daikon, we pro-
to be available at once. pose that program points should no longer be processed inde-

35

‘ this

B:::OBJECN

this.x

‘this this.x | B.m2:::ENTER
orig(this) | orig(this.x) return,""this,.}”'tyhis.x B.m2:::EXIﬁ

A.n|A:::CLASS

‘ this

this.b ‘ this.b.x

An A::foBJECT\

this A.n

A.m:::Exh

Figure 7.2: Flow relationship between variables for the code shown Shaded areas name the program point, while unshaded
boxes represent variables at that program point. Lines show the partial orggsidgscribed in Section 7.3, with a nub at the

lesser end of the relation. (For instaneey Cp orig(arg) in the lower left corner.) Relations implied by transitivity of

the partial order are not explicitly drawn.

arg | arg.x | return this.b‘this.b.x

orig(arg.x) | orig(this) | orig(this.b) | orig(this.b.x) | orig(A.n)

orig(arg)

public class A { ~ public class B { For reasons similar to ones that rel&e variables across
public static int n; private int x; program points, the relationships that contribute to the partial
private B b; public int m2(); order are as follows.
public int m(B arg); }

} Definition of orig()

.) . Variables onENTERpoints areCp the corresponding
Figure 7.1: Example declarations for two simple Java classes. orig() variables at allEXIT and EXCEPTIONpro-

gram points.
pendently. Instead, we relate variables from all program poinBbject invariants hold at method boundaries.
in a partial order. _ _ _ Instance variables from th©BJECT program point
The relationship that defines the partial ordes is “sees as are Cp the corresponding instance variables on all
much data as”. If variableX andY satisfyX Cp Y, then all ENTEREXIT, andEXCEPTIONprogram points.

data seen &t must also be seen At— X sees as much data as

Y. As a consequence, the invariants that hold ovare a sub- Object invariants hold for all instances of a type.

set of those that hold ovéf; since any data that contradicts an Instance variables from the::OBJECT program point

invariant overY must also contradict the same invariant aXer are Cp the corresponding instance variables on instru-
Figure 7.2 shows the partial order formed by, for mented arguments and fields of typg(For example, see

the example classes of Figure 7.1. Consider the relation- arg, = ... andthis.b.,..gesecr in Figure 7.2.)

ship betweenB:::OBJECT and B.m2:::ENTER . First,) o)

recall that all data from method entries must also applyUuPclassing preserves object invariants.

to the object invariants. (In other words, object invari- Instance variables from tfie::OBJECT program point
ants must always hold upon method entry.) Therefore, we areC p the same instance variables on subclasses or non-
have thiSB:::UBJECT ED thisg po...ENTER and thiS~XB:::OBJECT static inner classes df.

Cp this.Xgmo...exter- The same holds true for method ex-
its: thisB:::DBJECT ED thisB.mQ:::EXIT- Fina”y, note that
thisppo.evmer Cp orig(this)y, pegp, SINCE any pre-state Argument(s) to a methoshareC p argument(s) of meth-
data associated with a method exit must have been seen on 0ds that override or implement by the behavioral sub-
entry. typing principle.

Overriding methods may only weaken the specification.

36

7.4 Consequences of variable ordering s b | A A:::OBJECN

As shown in the previous section, the partial ordering of vari-
ables_ implies that When mvana_nts h_old true over variables at this.bx | An FA m: ENTER
certain program points, those invariants also must hold true

at lower (as drawn in Figure 7.2) program points. For in- \ \ \

. I >
stance, if we havehis.xg..gesecr > 0, then we also know orig(this.b.x) | orig(A.n) | this.b.x | A.n A'm:::EXIT\
thatarg'XA.m:::ENTER 2 O

Daikon’s implementation could take advantage of this fact 0 0 1 1|
by only instantiating, testing, and reporting invariants at the |
most general place they could be stated. For instance, if an t t

invariant always holds over an object’s fields, it would only

exist at theOBJECTprogram point (instead of each method’figure 7.3: Example indicating the need for path informa-

ENTERandEXIT points), and would only need to be testetion in sample and invariant flow, as described in Section 7.7.

once per sample. A portion of Figure 7.2 is reproduced, along with a poten-
The implementation could locate all invariants over a setf#l sample 0,0,1,1). Given only that sample, the invariant

variablesV at a program poinP by forming the closure o this.b.x = A.n atA:::OBJECT should hold. However, if the

at P using the partial ordering, and taking the union (conjungample flows as indicated by the bold links of the partial or-

tion) of the invariants present at each point in the closure. der, the invariant would be incorrectly falsified. Therefore, the
However, for this technique of minimal invariant instantipath taken is important.

ation to work, both the samples and the invariants must flow

through the partial order in a specific way, as explained in t
next two sections. ¥6 Sample flow

In the invariant flow algorithm, invariants flow down as they
7.5 Invariant flow are falsified. This property suggests a corresponding flow al-
gorithm to process samples.

The observations above lead to the following proposal for i |n—

variant instantiation. 1. Identify the exact program point where the sample was

drawn from.

1. Atthe start of inference, instantiate invariants only where , i
one or more of the variables used to fill in the invariant?: FOrm the closure of program points that have any variable
template has no predecessor in thg partial order. That filled in by following the relations upward in the partial
is, a set ofn variablesV” should be used to fill an-ary order.

template only itve3v € V: o Zp v. 3. Feed the sample to each of these program points in a topo-

logical order. A sample is fed to a point after it has been

“down” to the nearest program point(s) where every vari- €d to all points where a variable is greater. Therefore,
able used by the invariant is less in the partial order- 2any falsified invariants are always coped to lower pro-

ing (nearest meaning that there must be no intermediate 9ram points before the sample is fed there to falsify them.
choice). That is, a falsified invariant over a set of source

variablesA should be copied to destination sétswvhen 7 Path

all variables inB are at the same program point and Whez atns

VaeA: (e B:aCpb)A(-TJx:a Cp = Cp b).

2. When an invariant is falsified during inference, copy it

For both invariant and sample flow, the path taken through the

3. Treat equality specially, using only one of the equal vafartial order is important. For example, consider Figure 7.3.
ables. For example, if = y then instantiatex > z, but Given only this data, Daikon should report thiis.b.x = A.n
noty >z. If x =y is falsified, duplicate all invariantsatA::OBJECT . However, since we havehis.b.x,...opsecr

overx (replacingx with y), and also instantiate invariants=p orig(this.b.x), ...pyrr @NdAny. 0psecr Ep ADpn:ExiT,
relatingx andy. the values foorig(this.b.x) andA.n would falsify the

invariant. The problem is that the two paths through the partial

One positive consequence of this approach is that methodder are different — they traverse different program points.
defined in interfaces will have invariants reported over theirTo address this problem, we annotate each edge in the par-
arguments, even though no samples can ever be taken oriah-order with some nonce. A pair of variable&1,A2> is
terfaces directly. For example, if every implementation of dogether related t&B1,B2> by the partial order if the path
interface’s method is called with a non-null argument, Daikdrom Al to B1 follows the same nonces as the path frAz
will report this property as a requirement of the interface, ite B2. The nonces must be chosen so that sets of variables
stead of as a requirement of each implementation. from two program points that are related due to the same item

37

from the list starting on page 36 must share the same nonce. In
terms of Figure 7.2, parallel or nearly-parallel lines from one
program point to another will have the same nonce.

7.8 Tree structure

An important property of the technique presented in this chap-
ter is that an invariant only appears at the one place where it
may be most generally stated. This implies that each variable
has at most one parent, so the partial ordering forms a forest
of variables.

However, at least one situation violates this constraint. With
multiple inheritance (due to interfaces), a method’s specifica-
tion could be governed by multiple interfaces, so its arguments
would have multiple parents in the partial order. Further-
more, depending on the implementation of conditional pro-
gram points, a variable at a conditional program point could
have multiple parents. For instance, a field at a conditioned
method program point might have as parents both the uncondi-
tional version of itself from the unconditional method program
point, and the conditioned version of itself from the object pro-
gram point.

To solve this, we could reword “an invariant only appears
at theone placewhere it may be most generally stated” to
minimal number of placed he implementation would have to
take into account the non-tree nature of the partial order when
flowing samples and variables.

7.9 Conclusion

We have described a technique to improve the scalability
of Daikon by organizing program point structure to embody
knowledge of a program’s structural semantics. This technique
enables Daikon to use processor and memaory resources more
efficiently, because invariants that are known to be true need
not be instantiated, tested, or reported. This technique helps
enable online and incremental operation, permitting analysis
of larger and longer-running programs.

38

Chapter 8

Related Work

This is the first research we are aware of that has dynastund, conservative static analysis reports properties that are
cally generated and statically verified program specificatiotigje for any program run, and theoretically can detect all sound
used such information to investigate the amount of informatimvariants if run to convergence [CC77]. Static analyses omit
about program semantics available in test runs, or evalugbedperties that are true but uncomputable and properties of the
user effectiveness in using dynamically detected specificatipmsgram context. To control time and space complexity (espe-
to verify programs. cially the cost of modeling program states) and ensure termi-

The component analysis techniques, however, are welition, they make approximations that introduce inaccuracies,
known: much work has been done with a specific static weakening their results. For instance, accurate and efficient
dynamic analysis (Section 8.1). The Houdini tool is notabéfias analysis is still infeasible, though for specific applica-
similar to our research (Section 8.2). Finally, specificatiotisns, contexts, or assumptions, efficient pointer analyses can
generated from Daikon have been used for purposes beybadufficiently accurate [Das00].
the applications explored in this work (Section 8.3).

8.1.3 \Verification

8.1 Individual analyses _ _ ,
Many other tools besides ESC/Java statically check specifica-
While ours is the first work to evaluate the combination &ens [Pfe92, EGHT94, Det96, NCOD97]. Examples of static

static and dynamic analyses, the two component technigy@dfiers that are connected with real programming languages
are well-known. include LCLint [EGHT94], ACL2 [KM97], LOOP [JVHQB],

Java PathFinder [HP0OO], and Bandera [COM]. These other
. systems have different strengths and weaknesses than ESC/
8.1.1 Dynamic analyses Java, but few have the polish of its integration with a real pro-

Dynamic analysis has been used for a variety of programm@fgmming language.

tasks; for instance, inductive logic programming (ILP) [Qui90, The LOOP project verified an object invariant in Java's
Coh94] produces a set of Horn clauses (first-order if-th¥gctor class [JvH 98, HIv01]. The technique involved au-
ru|es) and can be run over program traces [5693], thou@ﬁnatic translation of Java to PVS [ORSQZ, ORSVH95], user-
with limited success. Programming by example [CHBG] is SPecified goals, and user interaction with PVS.

similar but requires close human guidance, and version spaces

can compactly represent sets of hypotheses [LDWO0O]. Value

profiling [CFE97, SS98] can efficiently detect certain simp8.2 Houdini

properties at runtime. Event traces can generate finite state

machines that explicate system behavior [BG97, CW98]. Pithe research most closely related to our integrated system is
gram spectra [AFMS96, RBDL97, HRWY98, Bal99] also capHoudini [FLO1, FILO1], an annotation assistant for ESC/Java.
ture aspects of system runtime behavior. None of these otffesimilar system was proposed by Rintanen [Rin00].) Hou-
techniques has been as successful as Daikon for generadingis motivated by the observation that users are reluctant to
specifications for programs, though many have been valuadaotate their programs with invariants; it attempts to lessen
in other domains. the burden by providing an initial set. Houdini takes a candi-
date annotation set as input and computes the greatest subset
of it that is valid for a particular program. It repeatedly in-
vokes the checker and removes refuted annotations, until no
Many static inference techniques also exist, including afmore annotations are refuted. The candidate invariants are all
stract interpretation (often implemented by symbolic exeqoessible arithmetic comparisons among fields (and “interest-
tion or dataflow analysis), model checking, and theorem pramg constants” such as1, 0, 1, array lengths, andull);

ing. (Space limitations prohibit a complete review here.) #any elements of this initial set are mutually contradictory.

8.1.2 Static analyses

39

At present, Houdini may be more scalable than our sy®n with IOA [GLV97], a formal language for describ-
tem. Houdini took 62 hours to run on a 36,000-line prograimmg computational processes that are modeled using 1/O au-
Daikon has run in under an hour on several 10,000-line ptomata [LT89]. The IOA toolsethftp://itheory.Ics.
grams. Because it currently operates offline in batch mode nitis edu/tds/ioa.html) permits I0A programs to be run
memory requirements make Daikon unlikely to scale to signd also provides an interface to the Larch Prover [GG90], an
nificantly larger systems without re-engineering. This is a lirmteractive theorem-proving system for multisorted first-order
itation of the Daikon prototype, not of the technique of dyegic. Daikon proposes goals, lemmas, and intermediate as-
namic invariant detection. An appropriate re-engineering sertions for the theorem prover. Representation invariants can
fort is currently underway, with its approach driven in part bgssist in proofs of properties that hold in all reachable states
insights gained in through this research. or representations, but not in all possible states or representa-

Houdini has been used to find bugs in several prograriens. In preliminary experiments [NWEO02], users found Dai-
Over 30% of its guessed annotations are verified, and it tefds of substantial help in proving Peterson’s 2-process mutual
to reduce the number of ESC/Java warnings by a factor of 2e%clusion algorithm (leading to a new proof that would not
With the assistance of Houdini, programmers may only neleave otherwise been obtained), a cache coherence protocol,
to insert about one annotation per 100 lines of code. and Lamport’'s Paxos algorithm.

Daikon’s candidate invariants are richer than those of Hou-Generated specifications also suggest program refactor-
dini; Daikon outputs implications and disjunctions, and iiegs —transformations of a program to improve readability,
base invariants are also richer, including more complicatstiucture, performance, abstraction, maintainability, or other
arithmetic and sequence operations. If even one requireddharacteristics [KEGNO1]. It is advantageous to automatically
variant is missing, then Houdini eliminates all other invarianigentify places in the program that are candidates for specific
that depend on it. Houdini makes no attempt to eliminate imefactorings. When particular invariants hold at a program
plied (redundant) invariants, as Daikon does (reducing its optint, a specific refactoring is applicable. Preliminary results
put size by an order of magnitude [ECGNO0Q]), so it is diffare compelling: Kataoka's tool identified a set of refactorings
cult to interpret numbers of invariants produced by Houdirthat the author of the codebase had not previously identified or
Houdini's user interface permits users to ask why a candidatmsidered, and their recommended refactoring are justified in
invariant was refuted; this capability is orthogonal to propogarms of run-time properties of the code that must hold for the
of candidates. Finally, Houdini was not publicly available umefactoring to be correct.
til shortly before publication, so we could not perform a direct Generated specifications are also useful for generating or
comparison. improving test suites. Harder [Har02] presents the specifica-

Combining the two approaches could be very useful. Riwn difference technique for generating, augmenting, and min-
instance, Daikon’s output could form the input to Houdinimizing test suites. The technique selects test cases by compar-
permitting Houdini to spend less time eliminating false invaiing Daikon-generated specifications induced by various test
ants. (A prototype “dynamic refuter” — essentially a dynamguites. A test case is considered interesting if its addition or
invariant detector — has been built [FLO1], but no details or reemoval causes the specification to change. The technique is
sults about it are provided.) Houdini has a different intent thagtomatic, but assumes the existence of a test case generator
Daikon: Houdini does not try to produce a complete specifidhat provides candidate test cases. The technique compares
tion or annotations that are good for people, but only to makell with branch coverage: it performs about as well for fault
up for missing annotations and permit programs to be less cligtection, and slightly better for augmentation and minimiza-
tered; in that respect, it is similar to type inference. Howevéign. However, the real benefit is in its combination with other
Daikon’s output could perhaps be used explicitly in place t#chniques, such as branch coverage. Each technique is better
Houdini’s inferred invariants. Invariants that are true but dat detecting certain types of faults.
pend on missing invariants or are not verifiable by ESC/Javasenerated specifications are also effective for anomaly and
would not be eliminated, so users might be closer to a cobug detection. In [Dod02], Dodoo reports that techniques to
pletely annotated program, though they might need to elimdiscover predicates for implications in Daikon discover about
nate some invariants by hand. 30% of the possible fault-revealing invariants supported by

Daikon’s grammar, and that about 30% of the actual reported

)) invariants are fault-revealing. This suggests that program-

8.3 Appllcatlons mers may only have to examine a few invariants before find-
ing one that points to the location of a fault. In [ECGNO1],

In this work, we evaluate the accuracy of Daikon’s specificgrnst et al. demonstrate that programmers performing a main-

tion generation, and measure its effectiveness when usegeiince task on C code were able to use Daikon's output

assist a program verification task. The surprising accuract@foth reveal a preexisting bug, and avoid introducing new

the results suggest that other uses of the generated specifig@s. Other similar dynamic analyses are also effective for
tions will have utility. Indeed, other researchers have usefulfimilar tasks: [RKS02] uses Daikon along with other tools,
utilized specifications generated from Daikon. while [HLO2] reimplements a subset of Daikon that operates

Generated specifications enable proofs over languages offiiihe alongside the program under test.
than Java. Our colleagues are currently integrating Dai-

40

Chapter 9

Future Work

Possibilities for future research fall into a few broad cat®.2 ~ Specification generation
gories: improvements to the evaluation (Section 9.1), improve-
ments to the techniques (Sections 9.2 and 9.3), and imprdwegen though Daikon was successfully used as a specification
ments to the implementation (Section 9.4). generator in this work, improvements to its analysis could pro-
duce even better results.
Properties that are difficult to obtain from a dynamic analy-
sis may be apparent from an examination of the source code.
9.1 Further evaluation For instance, properties enforced by language semantics are
not well-utilized by Daikon. Properties such as inheritance,
overriding, visibility, and immutable fields could both permit
Additional evaluation of the ideas proposed in this work is Ofgster inference (by e|iminating testing of necessar“y_true in-
of the most valuable lines of future research. variants) and more useful output (by avoiding repeating infor-
One worthwhile experiment would be a study of what fagaation obvious to programmers).
tors contributed to the success of the accuracy experiment idlternatively, Daikon could focus on code or properties that
Chapter 4. Multiple factors could be varied to explore thestymie a static analysis. Properties that require detailed knowl-
relevance to the results, including the programs under test,&dge of the heap or inter-procedural reasoning are often be-
test suites used to generate invariants, and Daikon settiygsid the capabilities of static tools, but may be within Dai-
such as thresholds for its statistical tests. kon’s reach. For instance, statically detecting the fact that a
Similarly, insight could be gained into the accuracy ofector -typed argument method never contains nulls might
context-sensitivity (Section 6.2) by enabling the contexauire analysis of all source code in the program, but a dy-
sensitive analysis and performing accuracy experiments sligmic analysis could simply observe all calls to the method
ilar to Chapter 4, but using programs that have more conte3d report whether any nulls were observed.
sensitive properties. Examining measurements of redundancy,
precision, and recall while varying the kind of the contex T
sensitivity enabled could lend insight into the effects of se?—'3 Context SenSItIVIty

sitivity on machine verification. The extensions of Chapter 6 provide many opportunities for

A case study similar to the modification teplace de- fyrther exploration.
scribed in [ECGNO1] would be informative. In contrast to ope way to improve the system would be to integrate the
the controlled experiment of Chapter 5, a case study provig@gariant information into a profile-viewer that helps the user
qualitative results regarding the overall utility of generatgg yisualize the call graph. The viewer could display invari-
specifications in the _software life-cycle, instead of quantitatiy@is from certain control flow edges on the edges themselves,
measures of a one-time task. Furthermore, a case study cQiifle context-insensitive properties could be associated with
explore larger programs, which may be different or more ithe nodes of the graph. This may be a convenient way to
teresting than smaller programs, but the results would only ewse the output. Furthermore, if standard profiler output
anecdotal. (such as call frequencies or elapsed times) is also shown, pro-
Finally, we should address performance of automatic togiammers can better relate frequent or expensive operations
such as Daikon. How do cost metrics (time and space requingth the conditions under which they occur.
ments) correlate with characteristics of the program under tesfn important next step in the checking of context-sensitive
(textual size or language), characteristics of the test size (capiecifications is to automatically generalize across multiple
or coverage), or settings of Daikon (grammar of invariantsallers and discover the parameter(s) of the underlying poly-
granularity of context, or statistical thresholds)? Measuringmiorphic specification. For instance, in the example of Sec-
these factors would help predict tool performance in situatiomsn 6.3, we might want to specifilyVector in terms of
not yet explored. two parameters: what element type it holds, and whether nulls

41

may be stored. Comparing the structure of multiple context-
dependent specifications may provide a way to achieve this re-
sult. Presenting just the generalized specification to users may
be more understandable, or may ease its checking.

The partitioning of data suggested by context information
could be combined with other partitioning techniques [Dod02]
for use by machine learning (statistical) methods to form more
complicated predicates for implications. Context-sensitivity
provides an important first step towards producing useful and
relevant predicates for implications, but its combination with
machine learning may be even more useful.

Finally, future work could consider different degrees or
kinds of context sensitivity. We have proposed examining
callers at the line, method, class, or package granularity, but
other useful groupings of callers may be useful. Furthermore,
the sensitivity could extend to more than just the immediate
caller. Perhaps interesting distinctions would be created by
using the most recent methods or classes on the stack, or
using the most recent call not from the callee’s class itself.

9.4 Implementation

Finally, Daikon would benefit from improved scalability. It re-
quires that trace data to be written to disk, which prohibits
analysis of large programs, and that all data is available at
once, prohibiting online operation alongside the program. Fur-
thermore, performance with context-sensitivity also degrades
approximately linearly with the average number of callers per
method.

Work is underway to create an implementation of Daikon
that runs online, and that is more efficient at considering pred-
icates for implications. (Chapter 7 presented a part of this de-
sign.) This would remove the need to write disk-based trace
files, and permit the evaluation of larger programs.

42

Chapter 10

Conclusion

This thesis has demonstrated that program specifications when tools assist in separating the good from bad. Many
may be accurately recovered from program source code by a researchers have traditionally presupposed that complete
combination of dynamic and static analyses, and that the re- soundness is required when dealing with specifications,
sulting specifications are useful to programmers. and any unsound technigue would be disastrous. In fact,

We retrieve a specification in two stages: the first gea- unsound program analysis techniques are justifiably use-
erationstep, where a specification is unsoundly proposed; the ful for program development.
second is &heckingstep, where the proposal is soundly eval- L) o
uated. Our approach is advantageous because the generdif§FAction is advantageous. Programmer interaction is ac-
step can take advantage of the efficiency of an unsound anal- ceptable and useful.. We are not writing a complle.r, but
ysis, while the checking step is made tractable by the postu- [00IS t0 be used actively by programmers. Attempting to
lated specification. We expect our techniques to improve pro- Créate a system that solved every problem noted in the
grammer productivity when applied to verification, testing, op- 2ccuracy experiment (Chapter 4) on its own would be
timization, and maintenance tasks. doomed to failure. Allowing programmer involvement

We have performed two major experiments to evaluate our enables success.

approach. An assessment of the accuracy of the dynamic c@ffisnt matters. One factor in our success is that both tools
ponent of specification generation showed that generated spec- seq in our system were designed for use by working pro-
ifications scored over 90% on precision and recall, indicat- grammers using a practical language. This increases the
ing that the Daikon invariant detector is effective at generat- |ikelihood that the tools’ vocabulary and semantics are
ing consistent, sufficient specifications. An assessment of the \ye||-matched, and that programmers can take advantage
usefulness of the generated specifications to users showed that st their capabilities. We suspect that integration of tools
imprecision from the dynamic analysis is nota hindrance when - ith similar characteristics will also succeed, but static

its results are evaluated with the help of a static checker. and dynamic tools not meant for direct use by program-
We have also proposed techniques to improve the sensitiv- mers may not.

ity of our analyses when applied to polymorphic code. We

suggest how to account for context-sensitive properties in bbitegration is key. Users are able to effectively use a com-

the generation and checking steps, and show how such infor- bination of sound and unsound tools. Each tool by itself

mation can assist program understanding, validate test suites, has serious weaknesses, but the two together address each

and form a verifiable specification. other’s weaknesses and enhance each other’s strengths.
Given that our techniques have been successful within our

domain of investigation, we reflect on broader lessons that can

be gleaned from our results.

Incomplete answers are better than nothing. Incomplete
answers are usable, as long as their contribution out-
weighs the effort involved in their use. If our system
used a different checker, such as one oriented more
to theorem-proving, reports of errors might be less
localized, thus obscuring their root cause. By using a
modular checker, users may have found it (relatively)
easier to be successful when only part of the answer was
provided.

Imprecise answers are better than nothing. Even inaccu-
rate output can be used effectively in practice, especially

43

Acknowledgments

Portions of this thesis were previously published at the
First Workshop on Runtime Verification [NEO1], at ISSTA

2002 [NEO2a], and at FSE 2002 [NEO2b]. The first two works
draw mainly from Chapter 4, while the last draws mainly from
Chapter 5.

| have been extremely lucky to have Michael Ernst as my ad-
visor. Michael is committed to helping his students succeed,
and | have been a happy beneficiary of his invaluable guid-
ance, both technical and otherwise. He is always available and
works to involve his students in all aspects of research, from
brainstorming to writing, and implementation to presentation.
From his example, | have come to appreciate and enjoy re-
search. | truly cannot imagine a better graduate advisor.

| also owe thanks to my colleagues in the Program Analysis
Group — particularly Nii Dodoo, Alan Donovan, Lee Lin, Ben
Morse, Melissa Hao, Mike Harder, and Toh Ne Win — for
their contributions and suggestions. Mike Harder in particular
has provided excellent critical review of my ideas, competent
assistance in the engineering of our tools, and a good dose of
common sense.

Alan Donovan was a collaborator for the work in Sec-
tion 6.2.

| am indebted to Chandra Boyapati, Felix Klock, Stephen
Garland, Tony Hoare, Rachel Pottinger, Gregg Rothermel,
Steven Wolfman, and anonymous referees for their helpful
suggestions on previous papers describing this research. Their
feedback has significantly improved my investigation and pre-
sentation.

As my teachers and colleagues in teaching, Michael Ernst,
Daniel Jackson and John Guttag have provided inspiration and
insight into the joys of both studying and teaching software
engineering. Teaching has enabled me to better understand
the fundamental ideas, and taught me how to present my ideas
clearly.

| thank the 6.170 staff members who designed, wrote, and
documented some of the programs evaluated in Chapter 4, and
the programmers who volunteered for the study in Chapter 5
for their time and comments.

This research was supported in part by NSF grant CCR-
0133580 and CCR-9970985 and by a gift from NTT Corpo-
ration.

My musical activities have provided the perfect counterbal-
ance to my technical life. | thank my directors Fred Harris,
Larry Isaacson, Tom Reynolds, Rob Rucinski, and the late
John Corley for creating a wonderful musical environment for
me to enjoy, and my instructors Edward Cohen, Tele Lesbines,
George Ruckert, and Pamela Wood for opening my eyes and
ears to the world of music.

Finally, | thank my parents and grandparents for their un-
wavering support and encouragement. Even though they joke
about not understanding anything I've written, they have al-
ways encouraged me to do what | love, and I'm glad that |
have.

44

Appendix A

User study information packet

This appendix contains the information packet that was given to participants in the user study of Chapter 5 (page 20). The
formatting has been slightly altered, but the content remains the same, except for the author’s contact information on page 49,
which has been removed for publication. Also, contrary to what is stated on page 46, we did not actually provide printouts of
the noted documents to study participants.

Finally, we acknowledge that the source code, diagrams, and explanatory text on pages 51-56 are originally from [Wei99].
In particular: the text on page 52 is reproduced from pages 269-272 of [Wei99]; the figure on page 52 is reproduced from
page 272 of [Wei99]; the text on page 54 is reproduced from page 89 of [Wei99]; the figure on page 54 is reproduced from
pages 89-90 of [Wei99]; and the text on page 56 is reproduced from page 78 of [Wei99].

45

INTRODUCTION

Thank you for assisting us with this experiment. This document contains background information, instructions, and reference information.

MOTIVATION

We are interested in the use of automated tools to check that a program does not crash with unexpected runtime errors. By evaluating your
experience verifying two sample programs, we will be able to quantitatively judge our approach, and your individual comments will help us
better understand its merits and deficiencies. Finally, you will have an opportunity to learn about exciting program analysis tools.

EXPECTATIONS

It is important for you to understand our expectations before you start. First, and most importantly, you are under no pressure to complete
this experiment, even after you have started/ed may terminate the experiment at any time Also, no information about your personal
performance will ever be publicly revealed.

We donot expect that everybody will complete all the tasks within the given time bounds — the tasks are (intentionally) of widely varying
difficulties.

Finally, we have no expectations about your own performance. We are not evaluating your abilities — rather, we are evaluating tools for
programmers. Problems you encounter are likely to indicate shortcomings in the tools, and your experiences will help us to evaluate and
improve them.

LOGISTICS

e First, log in (via ssh) to the machirgeyer.lcs.mit.edu , using the username and password you were given. This (temporary)
account is exclusively your own — you are free to edit or upload files to your liking (use scp to transfer files). You should check that
you are able to run Emacs (or your editor of choice). The files and directories mentioned in this document are located relative to your
home directory.

e Next, spend no more than 20 minutes reading this documentation and studying the example below. You should read until you reach the
horizontal line before the EXPERIMENT section.

e You will then have two programming tasks to complete, each of which will be limited to an hour at most. (Some tasks may take
substantially less time; others may not be complete when the hour runs out.)

e Finally, we will conduct a brief exit interview to review your experiences.

More details are presented the the sections below.
In total, you will spend less than 2.5 hours. Please allow for an uninterrupted block of time to work on this project. Feel free to take short
breaks, but please do not read email, etc. while you are working.

THE EXTENDED STATIC CHECKER FOR JAVA

ESC/Java is a tool that statically checks certain program properties. Users express the properties via source code annotations, similar to
assertions. ESC reads the source code (and annotations) and warns about annotations which might not be universally true. ESC also warns
about potential runtime exceptions such as null dereferences and array bounds errors.

The annotations are called “pragmas” by ESC. In general, ESC supports annotations (pragmas) anywhere in the source code. However,
in this experiment, you will only use pragmas that specify properties of an abstract data type. Specifically, you will write a representation
invariant (object invariant) and method specifications (preconditions, postconditions, and modification targets).

ESC is a modular checker: it reasons about code by examining one method at a time. Therefore, ESC both checks and depends on
annotations. For instance, if an annotation describing the return value of an observer method is missing, ESC may not be able to prove a
result about a method which calls that observer.

The next section gives an example of an annotated program. While reading it, you may wish to refer to the user's manual and quick
reference for ESC/Java. We have given you a printout of these, but you may also read them online.

User's Manual:
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/SRC-2000-002.html

Quick Reference:
http://gatekeeper.dec.com/pub/DEC/SRC/technical-notes/SRC-2000-004.html

46

FIXED-SIZE SET

FixedSizeSet s an boolean-array-based implementation of a set of the integers 0-7. You can find the source codexartipe/
directory. TheFixedSizeSet class contains the implementation of the set, whileFhedSizeSetCheck class contains a few
testing routines which perform operations on the set. We have annétitedSizeSet in the same way we will ask you to annotate
two other data structures — this is an example of the “finished product” we will ask you to produce.

1. First, confirm that the program passes through ESC/Java without any errors. Run ESC on the sources:

[study@geyer 1% cd example
[study@geyer example]% escjava FixedSizeSet.java FixedSizeSetCheck.java

After a few seconds, ESC finishes with output that includes timing information and the word “passed” for each of the methods in
FixedSizeSet . This indicates a successful verification. You may also run ESC/Java on a single file, if you only want to verify one
class.

(If ESC/Java is crashing with a message like “unexpected exit from Simplify”, it is likely that you have nonsensical or contradictory
invariants. Try removing annotations until the problem disappears.)

2. Now, remove the first annotation and see what happens: change the line
/[*@ invariant bits != null */
by removing the@ This changes the line from an annotation pragma to a regular comment, which ESC ignores.
3. Run the checker again:

[study@geyer example]% escjava FixedSizeSet.java

FixedSizeSet.java:34: Warning: Possible null dereference (Null)
bits[n] = true;

ESC reports five warnings. The first one (reproduced above) states that the expbitgfioh in the add method may cause

a NullPointerException . ESC needs to know that the array is never null to prove correct operation, and a programmer
examining the source could easily determine this is true. However, since ESC checks each method in isolation, programmers must write
the non-nullness condition into the representation invariant.

4. Put back the first annotation (by adding tBagain) to restore the example to its original state.

5. Look at the annotations on the contains method and notice the use\gktbalt notation. In ESC)\result s a variable which
represents the result of the method. Accordinghgsult — may only be used i@ensures pragmas. Additionally, notice the use
of == in-between two boolean values. This is a way of writing an “if and only if” (a bi-implication), where each side implies the other.

6. Look at the annotations on the union method and notice the use gbtté...) notation.
/*@ ensures bits[0] == (\old(bits[0]) || other.bits[0]) */

The use of\old tells ESC to interpret the expression in the pre-state (i.e. on entry to the method). For instance, the above pragma for
union states that after the call, th& bit be set if either th@*" bit was set in the pre-state, or if other had tH& bit set. Variables
described in\old must also be listed in th@maodifies clause, or ESC will issue a caution.

7. To see how an omission ifrixedSizeSet can affect calling code, disable this annotation from the add method of
FixedSizeSet

/*@ ensures bits[n] == true */

Then, run escjava oRixedSizeSetCheck.java , which produces the following warning:

FixedSizeSetCheck: checkAdd() ...

FixedSizeSetCheck.java:33: Warning: Possible unexpected exception (Exception)

With the annotation missing, ESC/Java cannot verify that the set contains ‘3’ just after it has been inserte@ ectweode fails.
Replace the disabled annotation.

8. Now, examine the similar method, whose signature is shown here:
public boolean similar(FixedSizeSet other) throws RuntimeException

/*@ ensures other != null *
*@ exsures (RuntimeException) (other == null) */

47

Note the new clause@exsures . Exsures is used to talk about postconditions for exceptional exits. Specifitalig procedure

exits with an exceptionthen the expression in the exsures clause must be true. Simi@gnsures are expressions which must

hold on non-exceptional exits.

The @exsures semantics might seem counterintuitive, since we often would say “if (expression) then Exception”, whereas ESC
uses “if Exception then (expression)”. However, the combinatio@Exsures and @ensures can have the same effect. If

the expressions i@ensures and @exsures are exhaustive (they cover all possibilities), then a caller can determine what will
happen. For instance, in the example above, other can be either null or non-null, so ei@@niseires expression must hold, or the
@exsures expression must hold - they are exhaustive. Therefore, the caller is able to know exactly when an exception will occur.
As always, you may talk about either pre-state or post-state values ir@etisures and@exsures annotations (#6 above). Be

sure to useold if a variable is modified and you want pre-state; it is an easy point to miss.

9. Consider the second requires clause of the fillDigits method.
*@ requires \typeof(digits) == \type(Object[]) */

This invariant states that the runtime type of the arra@lgject[] (instead of some subclass); this allows ESC to prove that an
ArrayStoreException won't happen during assignment. (Recall that the run-time and compile-time of an array may differ.)
Section 3.2.4 of the ESC manual describes this in more detail.

10. The pragmas involvin@spec_public andtheowner field are baseline annotations needed by ESC. You do not have to understand
their specifics, as they will always be provided for you in this experiment.

11. To ensure you understafdxedSizeSet ’s annotations, spend a few minutes reading over the other annotations and/or experi-
menting with adding or deleting annotations. Consult the ESC/Java quick reference or manual if you have questions about any of the
annotations.

PROGRAMMING TASK

The study consists of two experiments, each one hour long. For each experiment, the programming task is as follows.

Two classes will be presented — an abstract data type (ADT) and a class which calls it. You will create and/or edit annotations in the
source code of the ADT. Your goal is to enable ESC/Java to verify that neither the ADT nor the calling code may ever terminate with a
runtime exception. That is, when ESC/Java produces no warnings or enrorgth the ADT and the calling code your task is complete.

TOOLS

For each of the two experiments, you may encounter one of three scenarios.

In the first scenario, you will receive un-annotated source code for the program (except for baseline annotations mentioned in #8 above),
and will use only ESC/Java.

In the second scenario, you will receive un-annotated source code for the program (except for baseline annotations mentioned in #8 above),
but will use the Houdini tool as part of ESC/Java. Houdini is a behind-the-scenes annotation assistant. When you run ESC/Java, Houdini
steps in and guesses likely annotations, which are fed into ESC/Java along with your source code. If a guessed annotation fails to verify, it
is simply ignored and has no effect on your checking. The guessed invariants are not shown to the user. By guessing likely invariants and
always supplying them for you behind the scenes, Houdini allows you to write fewer annotations in the source code itself. Houdini guesses
annotations of this form:

integers : variable cmp [-1, O, 1, array .length, variable]
(cmpis = # > > < X)

references : variable I= null

array o first variable elements of array are non-null

In the third scenario, you will receive source code with many annotations already present (in addition to the annotations mentioned in
note #8 above). These annotations were produced by the Daikon tool, which infers program invariants from actual program executions. The
properties were true for a small number of executions of the program, and may be true in general. However, since the executions did not
include all possible inputsome of the provided annotations may not be universally true You may use these annotations as a starting
point in your programming task. You are permitted to edit or delete them, and to add new annotations.

The third scenario is easy to distinguish, since you will already see annotations when you begin. For the first and second scenarios, you
can tell if Houdini is enabled by running ESC/Java on the source and watching for “Houdini is generating likely invariants” as the first line of
output.

GUIDELINES

e Ensure that both the ADT and calling code pass escjava.
e Ensure that you don't spend more than 60 minutes on each half.

48

Do not modify the calling code or the ADT’s implementation at all — you should only add oaadibtationsin the ADT .

Do not use any unsound pragmas provided by ESC/Java (su@mnasvarn, @assume or @axiom).

As you work to complete this task, you may have further questions. If you have practical questions, such as how to invoke ESC/Java, or
how to state a certain property, feel free to ask us. However, in order not to invalidate the results of the experiment, we will not answer
questions about the task itself, such as why a certain annotation fails to verify.

You may contact me (Jeremy) by visiting NE43-525, callisgip] (W), [snip] (h), emailing[snip], or zephyringsnip].

EXPERIMENT

When you are ready to begin, please start by answering these questions:

What login name were you given (studyXX)?

How many years of post-high-school education have you had?
How many years have you been programming?

How many years have you been programming in Java?

When you are programming, do you primarily work with tools for:
Circle one: Windows, Unix, or Both?

Do you write assert statements (in code) when you are writing code?
Circle one: Never, Rarely, Sometimes, Often, Usually, Always

Do you write assertions in comments when you are writing code?
Circle one: Never, Rarely, Sometimes, Often, Usually, Always

Have you ever used ESC/Java before?

Now, please start with the program in the direct@gxperimentl/ and perform the task described in the PROGRAMMING TASK
section above. See the README file found alongside the source, and photocopies from a textbook that we provide you, for additional
information about the program’s implementation. Spend at most one hour on this program. As you begin, and when you are done, make sure
you record the amount of time you spent in the space below.

Experiment 1 start time:

Experiment 1 stop time:

Experiment 1 elapsed time:

Do not edit the first program again — leave it unchanged as you continue on to the second.
Next, take the program in the directdtexperiment2/ and perform the same task. Again, note your start, stop, and elapsed times in
the space below. Spend at most one hour on this program.

Experiment 2 start time:

Experiment 2 stop time:

Experiment 2 elapsed time:

When you are done, please contact us for a brief exit interview. You may contact us via any of the methods listed in the section above. If
you are at LCS, simply stopping by room 525 may be easiest. If you are off-site, send me an email and I will call you.

We prefer an oral interview, and you may also find it more convenient, but if you would rather write out your answers, you may answer
the written interview questions below. In either case, please do one of these immediately after finishing, while the experience is fresh in your
mind.

Also, feel free to make comments below about your experience with ESC, Houdini, or any pre-annotated source code you were given. We
are interested in hearing your experiences, comments, and suggestions. (We will also examine your completed Werkpertheent1
and~/experiment2 directories.)

49

EXIT INTERVIEW

(Again, most participants will do an oral interview instead of answering these questions, but you may write your answers if you prefer. Feel
free to use additional sheets if necessary.)

Did you write all your annotations first, then check them, or incrementally add annotations and check? How much time did you spend after
the first ESC/Java run? (Essentially, describe your mode of operation while performing this task). Was the approach the same for both halves;
how did it differ?

Did you use cut-and-paste or write annotations from scratch? Furthermore, did you refer back to previous work during later work, (e.g.
review the example during experiment 2 to find out about exsures)?

What did you find especially hard (or especially easy)?

How much of your effort was struggle learning ESC idiosyncrasies; how much was thought-provoking exploration of the program? (Stated
another way: describe how much time was relatively spent on figuring out syntax or what could be stated, compared to trying to reason about
the program’s behavior or causes of warnings.)

Do you have any suggestions for improving the way the tool(s) work? (What did you expect or want to see which you didn’t?) Did you use
or appreciate the execution path information (branches taken) reported by ESC/Java?

Did the provided annotations help with the process? (If you were provided any annotations.)

Describe your qualitative experience with provided annotations?

If you were provided annotations for experiment 1, were they helpful to use for experiment 2?

Are there situations in your own work where you would consider using ESC/Java (or a similar tool if you don’t write Java code)? If so, under
what circumstances? If you were provided help from Daikon or Houdini, (how) would that affect your decision?

Before starting the experiment, were you already familiar with the notions of representation invariants, preconditions, and postconditions?

Please use this space for any further comments.

50

[**

*
*

*

Disjoint set class.

Does not use union heuristics or path compression.
Elements in the set are numbered starting at O.
@author Mark Allen Weiss

*

pu
{

blic class DisjSets

/*@ spec_public */ private int [] s;
/*@ invariant s.owner == this */

/**

* Construct the disjoint sets object.

* @param numElements the initial number of disjoint sets.
*

public DisjSets(int numElements)

s = new int [numElements];

/*@ set s.owner = this */

for(int i = 0; i < s.length; i++)
s[i]=-1
}

Viid

* Union two disjoint sets. For simplicity, we assume rootl and
* root2 are distinct and represent set names.

*

* @param rootl the root of set 1.
* @param root2 the root of set 2.

*%[

public void unionDisjoint(int rootl, int root2)

s[root2] = rootl;

/**

* Union any two sets.

* @param setl element in set 1.
* @param set2 element in set 2.

**/
public void unionCareful(int setl, int set2)
{

int rootl = find(setl);

int root2 = find(set2);

if (rootl != root2)

unionDisjoint(rootl, root2);

}
/**

* Perform a find.

* Error checks omitted again for simplicity.

* @param x the element being searched for.
* @return the set containing x.

*%/

public int find(int x)

iftsf x] <0)
return Xx;
else

return find(s[x]);

51

In this chapter, we describe an efficient data structure to solve the equivalence problem. The data structure is simple to implement. Each
routine requires only a few lines of code, and a simple array is used. The implementation is also extremely fast, requiring constant average
time per operation.

Recall that the problem does not require that a find operation return any specific name; just that finds on two elements return the same
answer if and only if they are in the same set. One idea might be to use a tree to represent each set, since each element in a tree has the sam
root. Thus, the root of the tree can be used to name the set. We will represent each set by a tree. (Recall that a collection of trees is known as a
forest) Initially, each set contains one element. The trees we will use are not necessarily binary trees, but their representation is easy, because
the only information we will need is a parent link. The name of a set is given by the node of the root. Since only the name of the parent is
required, we can assume that this tree is stored implicitly in an array: eachs@ihtryin the array represents the parent of elemetit i is
aroot, thers[i] = -1 . Inthe forestin Figure 8.35[i] = -1 for 0 < ¢ < 8. As with binary heaps, we will draw the trees explicitly,
with the understanding that an array is being used. We will draw the root’s parent link vertically for convenience.

To perform a union of two sets, we merge the two trees by making the parent link of on tree’s root link to the root node of the other
tree. It should be clear that this operation takes constant time. Figures 8.2, 8.3, and 8.4 represent the forest afteniea¢hBf |,
union(6,7) ,union(4,6) , where we have adopted the convention that the new root aftentba(x,y) is x. The implicit represen-
tation of the last forest is shown in figure 8.5.

Afind(x) on elemenk is performed by returning the root of the tree containing

i i ¥ I [
| T T ; !
Pt S ' £ = s Y
{0 JexEs) -’:H", [3] I'/~l: G [
\-.___..-'l ".___.-" "‘___.-" ".___.-" "'.__,_.4;{ "H-.__-". I'-\.._,.f"l

S
[5]
!
Flgure 8.2 Afer union(4, 5]
k i i k & i
| | |
AL 'L“\. il L 5
5 P T o it i
R R e e Ty (6)
NS M A E nEL, ‘-q,__a;__‘_ \”—‘“"“u_
e, ol
5] {5)
LS A
Figure 8.3 Aller union(&, 7]
i L 4 i
J— /J\ o e e
o e R e
b "-\.,____.-" o L _.-"l LS 5

Figure 8.4 Afier unicni4,a}

52

/**
* Array-based implementation of the queue.
* @author Mark Allen Weiss

**/

public class QueueAr

{
/*@ spec_public */ private Object [] theArray;
/*@ invariant theArray.owner == this */
/*@ spec_public */ private int currentSize;
/*@ spec_public */ private int front;
/*@ spec_public */ private int back;
/**
* Construct the queue.
**/

public QueueAr(int capacity)

theArray = new Object[capacity];
currentSize = 0;

front = 0;

back = theArray.length - 1;

*@ set theArray.owner = this */

}
[**

* Test if the queue is logically empty.
* @return true if empty, false otherwise.

*x[

public boolean isEmpty()

return currentSize == 0;

}
Viid

* Test if the queue is logically full.
* @return true if full, false otherwise.

**/
public boolean isFull()
{
return currentSize == theArray.length;
}
/**
* Make the queue logically empty.
*k
/
public void makeEmpty()
{
currentSize = 0;
front = 0;

back = theArray.length - 1;
java.util. Arrays.fill(theArray, 0, theArray.length, null);
}

J**

* Get the least recently inserted item in the queue.
* Does not alter the queue.

* @return the least recently inserted item in the queue, or null, if empty.

**/
public Object getFront()
if(isEmpty())
return null;
return theArray[front ;

}

Viid

* Return and remove the least recently inserted item from the queue.

* @return the least recently inserted item in the queue, or null, if empty.

**/
public Object dequeue()
if(isEmpty())

return null;
currentSize--;

53

}

Object frontltem = theArray[front];

theArray[front] = null;

if (++front == theArray.length)
front = 0;

return frontltem;

Jxx

* Insert a new item into the queue.
* @param x the item to insert.
* @exception Overflow if queue is full.

x|

public void enqueue(Object x) throws RuntimeException

{

if(isFull())
throw new RuntimeException("Overflow");
if (++back == theArray.length)
back = 0;
theArray[back] = x;
currentSize++;

The operations should be clear. To enqueue an elexem incrementurrentSize andback , then setheArray[back] = x
To dequeue an element, we set the return valuféddrray[front] , decrementurrentSize , and then incremerftont . Other
strategies are possible (this is discussed later). We will comment on checking for errors presently.
There is one potential problem with this implementation. AfteehQueues , the queue appears to be full, sifzack is now at the last
array index, and the neginqueue would be in a nonexistent position. However, there might only be a few elements in the queue, because
several elements may have already been dequeued. Queues, like stacks, frequently stay small even in the presence of a lot of operations.
The simple solution is that whenevieont or back gets to the end of the array, it is wrapped around to the beginning. The following
figures show the queue during some operations. This is knowriesudar array implementation.

R Sl Initial Sgane
| T —— 5
BEEFEEEE

- |
II_— _ front buuul-

Afver engueue(1]

: .
l ElE s

Aﬂcr_erweuem
o P [

back frvz'rl

Aler degueue, Which Returns 2

EEER |||'|1—

back [rom1

e —

—

Alter degueus, Which Beturns £

R EEEE

—

| ront back i

After deguese, Which Returns 1

—

1|3 | | |1-+

-

back
[romL

Aler degueus, Which Beturns 3
and Makes the Queus Empiy

EEEEEEEEE

i
Rear Frent |

(=]

54

/**

* Array-based implementation of the stack.
* @author Mark Allen Weiss

**/

public class StackAr

{

/*@ spec_public */ private Object [] theArray;
/*@ invariant theArray.owner == this */
/*@ spec_public */ private int topOfStack;

/**
* Construct the stack.
* @param capacity the capacity.

*x|

public StackAr(int capacity)

theArray = new Object[capacity];
/@ set theArray.owner = this */
topOfStack = -1;

}

[xx }

* Test if the stack is logically empty.

* @return true if empty, false otherwise.
**/

public boolean isEmpty()

{
return topOfStack == -1;

[x*

* Test if the stack is logically full.

* @return true if full, false otherwise.
**/

public boolean isFull()

{
return topOfStack == theArray.length - 1;

}
/**
* Make the stack logically empty.
*%
/

public void makeEmpty()

java.util.Arrays fill(theArray, 0, topOfStack + 1, null);
topOfStack = -1;
}
/**
* Get the most recently inserted item in the stack.
* Does not alter the stack.
* @return the most recently inserted item in the stack, or null, if empty.
**/

public Object top()

if(isEmpty())
return null;
return theArray[topOfStack];

}

/**
* Remove the most recently inserted item from the stack.
* @exception RuntimeException if stack is already empty.
**/

public void pop() throws RuntimeException

if(ISEmpty())
throw new RuntimeException("Underflow");
theArray[topOfStack--] = null;

/**

* Insert a new item into the stack, if not already full.
* @param x the item to insert.

* @exception RuntimeException if stack is already full.

*%[

55

pu

Vi
*
*
*

*

blic void push(Object x) throws RuntimeException

if(isFull())
throw new RuntimeException("Overflow");
theArray[++topOfStack] = x;

Return and remove most recently inserted item
from the stack.
@return most recently inserted item, or null, if
stack is empty.

*x|

pu
{

blic Object topAndPop()

if(isEmpty())

return null;
Object topltem = top();
theArray[topOfStack--] = null;
return topltem;

Array Implementation of Stacks

An alternative implementation avoids links and is probably the more popular solution. The only potential hazard with this strategy is that
we need to declare an array size ahead of time. Generally this is not a problem, because in typical applications, even if there are quite a few
stack operations, the actual number of elements in the stack at any time never gets too large. It is usually easy to declare the array to be large
enough without wasting too much space. If this is not possible, we can either use the linked list implementation or use a technique, suggested
in exercise 3.29, that expands the capacity dynamically.

If we use an array implementation, the implementation is trivial. Associated with each stiaekisay andtopOfStack ,whichis—1
for an empty stack (this is how an empty stack is initialized). To push some elenmeno the stack, we incremetdpOfStack and then
settheArray[topOfStack] = x . To pop, we set the return valuettee Array[topOfStack] and then decremetapOfStack

Notice that these operations are performed in not only constant time, but very fast constant time. On some mashiassndop s (of
integers) can be written in one machine instruction, operating on a register with auto-increment and auto-decrement addressing. The fact that
most modern machines have stack operations as part of the instruction set enforces the idea that the stack is probably the most fundamental
data structure in computer science, after the array.

One problem that affects the efficiency of implementing stacks is error testing. Our linked listimplementation carefully checked for errors.
As described above, @op on an empty stack orpush on a full stack will overflow the array bounds and cause an abnormal termination.

This is obviously undesirable, but if checks for these conditions were put in the array implementation, they would be likely to take as much
time as the actual stack manipulation. For this reason, it has become a common practice to skimp on error checking in the stack routines,
except where error handling is crucial (as in operating systems). Although you can probably get away with this in most cases by declaring the
stack to be large enough not to overflow and ensuring that routines thpbpseever attempt tpop an empty stack, this can lead to code

that barely works at best, especially when programs are large and are written by more than one person or at more than one time. Because
stack operations take such fast constant time, it is rare that a significant part of the running time of a program is spent in these routines. This
means that it is generally not justifiable to omit error checks. You should always write the error checks; if they are redundant, you can always
comment them out if they really cost too much time. Having said all this, we can now write routines to implement a general stack using
arrays.

A stack classStackAr is shown, partially implemented, in Figure 3.42. The remaining stack routines are very simple and follow the
written description exactly (see Figs 3.43 to 3.47). Notice that in pofh andtopAndPop we dereferencdthat is, make null) the array
reference to the object being removed. This is not required, since it will

56

Bibliography

[AFMS96]

[Bal9g]

[BBM97]

[BG93]

[BG97]

[BLS96]

[CC77]

[CDH*00]

[CFE97]

[CHK 93]

[Coh94]

[CW98]

David Abramson, lan Foster, John Michalakes, and RfiRas00]
Sock. Relative debugging: A new methodology for de-
bugging scientific applications€Communications of the

ACM, 39(11):69-77, November 1996. [Det96]

Thomas Ball. The concept of dynamic analysis. In
ESEC/FSEpages 216-234, September 6-10, 1999.

Nicolaj Bjgrner, Anca Browne, and Zohar Manna. Au-

tomatic generation of invariants and intermediate af?LNS98]

sertions.Theoretical Computer Scienc&73(1):49-87,
February 1997.

Ivan Bratko and Marko Grobelnik. Inductive learnin

applied to program construction and verification. &podOZ]
Jog Cuena, editoAIFIPP '92, pages 169-182. North-
Holland, 1993.

Bernard Boigelot and Patrice Godefroid. Automatif=CGNO0]

synthesis of specifications from the dynamic observa-
tion of reactive programs. IMACAS '97 pages 321—
333, Twente, April 1997.

Saddek Bensalem, Yassine Lakhnech, and Hassen
Saidi. Powerful techniques for the automatic genera-
tion of invariants. InCAV, pages 323-335, July 31—
August 3, 1996.

Patrick M. Cousot and Radhia Cousot. Automatic syn-
thesis of optimal invariant assertions: Mathematic
foundations. InProceedings of the ACM Symposium
on Artificial Intelligence and Programming Languages
pages 1-12, Rochester, NY, August 1977.

[EGKN99]

James Corbett, Matthew Dwyer, John Hatcliff, Co-
rina Fasareanu, Robby, Shawn Laubach, and Hongjun
Zheng. Bandera: Extracting finite-state models from
Java source code. ICSE pages 439-448, June 7-9,

2000.
[Els74]
Brad Calder, Peter Feller, and Alan Eustace. Value pro-

filing. In MICRO-97 pages 259-269, December 1-3,
1997.

Allen Cypher, Daniel C. Halbert, David Kurlanderjgrno0]
Henry Lieberman, David Maulsby, Brad A. Myers, and

Alan Turransky, editorsWatch What | Do: Program-

ming by DemonstratianMIT Press, Cambridge, MA,

1993. [FILO1]
William W. Cohen. Grammatically biased learning:
Learning logic programs using an explicit antecedent
description language Atrtificial Intelligence 68:303—

366, August 1994. [FLO1]

Jonathan E. Cook and Alexander L. Wolf. Event-based
detection of concurrency. IRSE pages 35-45, Novem-
ber 1998.

57

[ECGNO1]

GHT94]

Manuvir Das. Unification-based pointer analysis with
directional assignments. IiPLDI, pages 35-46,
June 18-23, 2000.

David L. Detlefs. An overview of the Extended Static
Checking system. IfProceedings of the First Work-
shop on Formal Methods in Software Practiqeages
1-9, January 1996.

David L. Detlefs, K. Rustan M. Leino, Greg Nelson,
and James B. Saxe. Extended static checking. SRC Re-
search Report 159, Compaq Systems Research Center,
December 18, 1998.

Nii Dodoo. Selecting predicates for conditional invari-
ant detection using cluster analysis. Master’s thesis,
MIT Dept. of EECS, 2002.

Michael D. Ernst, Adam Czeisler, William G. Griswold,
and David Notkin. Quickly detecting relevant program
invariants. InICSE, pages 449-458, June 2000.

Michael D. Ernst, Jake Cockrell, William G. Griswold,
and David Notkin. Dynamically discovering likely pro-
gram invariants to support program evolutionEEE
TSE 27(2):1-25, February 2001. A previous version
appeared iNnCSE pages 213-224, Los Angeles, CA,
USA, May 1999.

David Evans, John Guttag, James Horning, and
Yang Meng Tan. LCLint: A tool for using specifica-
tions to check code. IFSE pages 87-97, December
1994.

Michael D. Ernst, Wiliam G. Griswold, Yoshio
Kataoka, and David Notkin. Dynamically discover-
ing pointer-based program invariants. Technical Report
UW-CSE-99-11-02, University of Washington, Seattle,
WA, November 16, 1999. Revised March 17, 2000.

Bernard Elspas. The semiautomatic generation of in-
ductive assertions for proving program correctness. In-
terim Report Project 2686, Stanford Research Institute,
Menlo Park, CA, July 1974.

Michael D. ErnstDynamically Discovering Likely Pro-
gram Invariants PhD thesis, University of Washing-
ton Department of Computer Science and Engineering,
Seattle, Washington, August 2000.

Cormac Flanagan, Rajeev Joshi, and K. Rustan M.
Leino. Annotation inference for modular checkehs-
formation Processing Letters2(4):97-108, February
2001.

Cormac Flanagan and K. Rustan M. Leino. Houdini, an
annotation assistant for ESC/Java. Hirmal Methods
Europe volume 2021 oL NCS pages 500-517, Berlin,
Germany, March 2001.

[FSO01]

[GG90]

[GIMO1]

[GLV97]

[Har02]

[HIvO1]

[HLO2]

[HPOO]

[HRWY98]

[JvH 98]

[KEGNO1]

[KM97]

[Lam88]

[LBR99]

[LBROO]

Cormac Flanagan and James B. Saxe. Avoiding expobWO00]
nential explosion: Generating compact verification con-
ditions. INPOPL, pages 193-205, January 17-19, 2001.

Stephen Garland and John Guttag. LP, the Larch ProJeG01]
In M. Stickel, editor,Proceedings of the Tenth Inter-
national Conference on Automated Deductigalume

449 of LNCS Kaiserslautern, West Germany, 1990[LN98]

Springer-Verlag.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineeringrentice Hall, [LNS00]
Englewood Cliffs, NJ, 1 edition, 1991.

Stephen J. Garland, Nancy A. Lynch, and Mandana
Vaziri. 10A: A language for specifying, programming,

and validating distributed systems. Technical repor[h_sg]
MIT Laboratory for Computer Science, 1997.

Michael Harder.
specifications.
May 2002.

Marieke Huisman, Bart P.F.
Joachim A.G.M. van den Berg. A case study in

class library verification: Java’s Vector clasdnter- [MW77]
national Journal on Software Tools for Technlogy
Transfer 2001.

Improving test suites via generated
Master’s thesis, MIT Dept. of EECS[MITOl]

Jacobs, and

Sudheendra Hangal and Monica S. Lam. Tracking dov&HCODw]

software bugs using automatic anomaly detection. In
ICSE May 2002.

Klaus Havelund and Thomas Pressburger. Model
checking Java programs using Java PathFirderrna- [NEO1]
tional Journal on Software Tools for Technology Trans-

fer, 2(4):366-381, 2000.

Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu
Yi. An empirical investigation of program spectra. In
PASTE '98 pages 83-90, June 16, 1998. [NEO2a]

Bart Jacobs, Joachim van den Berg, Marieke Huisman,
Martijn van Berkum, Ulrich Hensel, and Hendrik Tews.
Reasoning about Java classesO@PSLA pages 329— [NEO2b]
340, Vancouver, BC, Canada, October 18-22, 1998.

Yoshio Kataoka, Michael D. Ernst, William G. Gris-

wold, and David Notkin. Automated support for pro{Nel80]
gram refactoring using invariants. 18SM, pages 736—

743, November 2001.

Matt Kaufmann and J Strother Moore. An industrial
strength theorem prover for a logic based on CommdNWEO2]
Lisp. IEEE TSE 23(4):203-213, April 1997.

David Alex Lamb.Software Engineering: Planning for
Change Prentice Hall, Englewood Cliffs, NJ, 1988.

Gary T. Leavens, Albert L. Baker, and Clyde Rub)l.o Co1]
JML: A notation for detailed design. In Haim Kilov,
Bernhard Rumpe, and lan Simmonds, edit@shav-

ioral Specifications of Businesses and Systgmages [ORS92]
175-188. Kluwer Academic Publishers, Boston, 1999.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Pre-
liminary design of JML: A behavioral interface speci-
fication language for Java. Technical Report 98-06m,

Tessa Lau, Pedro Domingos, and Daniel S. Weld. Ver-
sion space algebra and its application to programming
by demonstration. IHCML, Stanford, CA, June 2000.

Barbara Liskov and John GuttagProgram Develop-
ment in Java: Abstraction, Specification, and Object-
Oriented Design Addison-Wesley, Boston, MA, 2001.

K. Rustan M. Leino and Greg Nelson. An extended
static checker for Modula-3. I@ompiler Construction
'98, pages 302-305, April 1998.

K. Rustan M. Leino, Greg Nelson, and James B. Saxe.
ESC/Java user's manual. Technical Report 2000-002,
Compaq Systems Research Center, Palo Alto, Califor-
nia, October 12, 2000.

Nancy A. Lynch and Mark R. Tuttle. An introduction to
Input/Output automataCWI-Quarterly 2(3):219-246,
September 1989.

MIT Dept. of EECS. 6.170: Laboratory in software
engineering. http://www.mit.edu/"6.170/ ,
Spring 2001.

James H. Morris, Jr. and Ben Wegbreit. Subgoal in-
duction. Communications of the ACN0(4):209-222,
April 1977.

Gleb Naumovich, Lori A. Clarke, Leon J. Osterwell,
and Matthew B. Dwyer. Verification of concurrent soft-
ware with FLAVERS. InICSE pages 594-595, May
1997.

Jeremy W. Nimmer and Michael D. Ernst. Static ver-
ification of dynamically detected program invariants:
Integrating Daikon and ESC/Java. Rroceedings of
RV'01, First Workshop on Runtime VerificatioParis,
France, July 23, 2001.

Jeremy W. Nimmer and Michael D. Ernst. Automatic
generation of program specifications. IBSTA July
2002.

Jeremy W. Nimmer and Michael D. Ernst. Invariant
inference for static checking: An empirical evaluation.
In FSE November 2002.

Greg NelsonTechniques for Program VerificatioRhD
thesis, Stanford University, Palo Alto, CA, 1980. Also
published as Xerox Palo Alto Research Center Research
Report CSL-81-10.

Toh Ne Win and Michael Ernst. Verifying distributed
algorithms via dynamic analysis and theorem proving.
Technical Report 841, MIT Lab for Computer Science,
May 25, 2002.

Robert O’CallahanGeneralized Aliasing as a Basis for
Program Analysis ToolsPhD thesis, Carnegie-Mellon
University, Pittsburgh, PA, May 2001.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A
prototype verification system. IRroceedings of the
11th International Conference on Automated Deduc-
tion (CADE-11) volume 607, pages 748-752, Saratoga
Springs, NY, June 1992.

lowa State University, Department of Computer ScCfORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and

ence, February 2000. Seevw.cs.iastate.edu/
“leavens/JML.html

58

Friedrich von Henke. Formal verification for fault-
tolerant architectures: Prolegomena to the design of

[PC86]

[Pfe92]

[Pre92]

[Qui90]

[RBDL97]

[Rin0O]

[RKS02]

[Rya59]

[Sal68]

[Sem94]

[Ser00]

[Som96]

[SS98]

[VR79]

[Weg74]

[Wei99]

[WS76]

PVS. IEEE TSE 21(2):107-125, February 1995. Spe-
cial Section—Best Papers of FME (Formal Methods
Europe) '93.

David Lorge Parnas and Paul C. Clements. A rational
design process: How and why to fake IlEEE TSE
SE-12(2):251-257, February 1986.

Frank Pfenning. Dependent types in logic program-
ming. In Frank Pfenning, editofypes in Logic Pro-
gramming chapter 10, pages 285-311. MIT Press,
Cambridge, MA, 1992.

Roger S. Pressmargoftware Engineering: A Practi-
tioner's Approach McGraw-Hill, New York, third edi-
tion, 1992.

J. Ross Quinlan. Learning logical definitions from rela-
tions. Machine Learning5:239-266, 1990.

Thomas Reps, Thomas Ball, Manuvir Das, and James
Larus. The use of program profiling for software main-
tenance with applications to the year 2000 problem. In
ESEC/FSEpages 432-449, September 22-25, 1997.

Jussi Rintanen. An iterative algorithm for synthesizing
invariants. InAAAI/IAAI, pages 806-811, Austin, TX,
July 30—August 3, 2000.

Orna Raz, Philip Koopman, and Mary Shaw. Semantic
anomaly detection in online data sourceslGSE May
2002.

T. A. Ryan. Multiple comparisons in psychological re-
search.Psychological Bulletin56:26—47, 1959.

Gerard Salton. Automatic Information Organization
and Retrieval McGraw-Hill, 1968.

Semiconductor Industry Association. The national tech-
nology roadmap for semiconductors. San Jose, CA,
1994.

Silvija Seres. ESC/Java quick reference. Technical Re-
port 2000-004, Compag Systems Research Center, Oc-
tober 12, 2000. Revised by K. Rustan M. Leino and
James B. Saxe, October 2000.

lan Sommerville. Software Engineering Addison-
Wesley, Wokingham, England, fifth edition, 1996.

Avinash Sodani and Gurindar S. Sohi. An empirical
analysis of instruction repetition. kSPLOSpages 35—
45, October 1998.

C. J. van Rijsbergeninformation Retrieval Butter-
worths, London, second edition, 1979.

Ben Wegbreit. The synthesis of loop predicates.
Communications of the ACM7(2):102-112, February
1974.

Mark Allen Weiss. Data Structures and Algorithm
Analysis in JavaAddison Wesley Longman, 1999.

Ben Wegbreit and Jay M. Spitzen. Proving proper-
ties of complex data structureslournal of the ACM
23(2):389-396, April 1976.

59

