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Abstract. The possibility of aliasing between objects constitutes one of
the primary challenges in understanding and reasoning about correctness
of object-oriented programs. Ownership types provide a principled way of
specifying statically enforcable restrictions on object aliasing. Ownership
types have been used to aid program understanding and evolution, verify
absence of data races and deadlocks in multithreaded programs, and
verify absence of memory errors in programs with explicit deallocation.

This paper describes an efficient technique for supporting safe runtime
downcasts with ownership types. This technique uses the type passing
approach, but avoids the associated significant space overhead by stor-
ing runtime ownership information only for objects that are potentially
involved in downcasts. Moreover, this technique does not use any inter-
procedural analysis, so it preserves the separate compilation model of
Java. We implemented our technique in the context of Safe Concurrent
Java, which is an extension to Java that uses ownership types to guaran-
tee the absence of data races and deadlocks in well-typed programs. Our
approach is JVM-compatible: our implementation translates programs
to bytecodes that can be run on regular JVMs.

1 Introduction

The possibility of aliasing between objects constitutes one of the primary chal-
lenges in understanding and reasoning about correctness of object-oriented pro-
grams [14]. Unexpected aliasing can lead to broken invariants, mistaken assump-
tions, security holes, and surprising side effects, all of which may lead to defective
software. Ownership types provide a principled way of specifying statically en-
forceable restrictions on object aliasing.

Ownership types were first introduced in Flexible Alias Protection [9], and
formalized in [8]. Parameterized Race Free Java (PRFJ) [5] extends ownership
types to support inheritance and dynamic aliases (which allow, e.g., the descrip-
tion of iterators) and uses them to statically ensure the absence of data races
in Java programs. PRFJ also uses effects clauses and combines ownership types
with unique pointers [16], and read-only fields and objects, which allows many
important idioms to be expressed. Safe Concurrent Java (SCJ) [4] extends PRFJ
to prevent both data races and deadlocks in Java programs. AliasJava [2] uses
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ownership types to aid software evolution. Cyclone [13] uses a similar type system
to guarantee absence of memory errors in programs with explicit deallocation.

In ownership type systems, programmers can parameterize classes and meth-
ods by owners. This enables the writing of generic code that can be used in many
different contexts. The parameterization is somewhat similar to the proposals
for parametric types for Java [17, 6, 1, 19]. Ownership type systems are primar-
ily static type systems. The type checker uses the ownership type annotations
to statically ensure the absence of certain classes of errors (e.g., data races in
PRFJ, memory errors in Cyclone), but it is usually unnecessary to preserve the
ownership information at runtime. However, languages like Java [12] are not
purely statically typed languages. Java allows downcasts that are checked at
runtime. To support safe runtime downcasts, the system must preserve some
ownership information at runtime when ownership types are used in the context
of a language like Java.

There are primarily three techniques used to implement parametric polymor-
phism in a language like Java. The type erasure approach [6, 7] is based on the
idea of deleting type parameters (so Stack〈T〉 erases to Stack). But this approach
will not preserve ownership information at runtime, so it is unsuitable for sup-
porting safe runtime downcasts with ownership types. In the code duplication ap-
proach [1], polymorphism is supported by creating specialized classes/methods,
each supporting a different instantiation of a parametric class/method. But since
the parameters in ownership types are usually objects, this approach will lead
to an unacceptably large number of classes/methods. In the type passing ap-
proach [17, 19, 18], information on type parameters is explicitly stored in objects
and passed to code requiring them. But if the system stores the owners of every
object at runtime, this approach has the potential drawback of adding a per-
object space overhead. Java objects are typically very small, so adding even a
single field to every object may increase the size of most objects by a significant
fraction.

This paper describes an efficient technique for supporting safe runtime down-
casts with ownership types. This technique uses the type passing approach, but
avoids the associated significant space overhead by storing runtime ownership
information only for objects that are potentially involved in downcasts. More-
over, this technique does not use any inter-procedural analysis, so it preserves
the separate compilation model of Java. We implemented our technique in Safe
Concurrent Java [4, 5], which is an extension to Java that uses ownership types
to guarantee the absence of data races and deadlocks in well-typed programs.
Our approach is JVM-compatible: our implementation translates programs to
bytecodes that can be run on regular JVMs [15].

The rest of this paper is organized as follows. Section 2 gives an overview
of ownership types in Safe Concurrent Java (SCJ). Section 3 describes how we
support safe runtime downcasts in SCJ. Section 4 presents related work, and
Section 5 concludes.
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2 Safe Concurrent Java

Safe concurrent Java (SCJ) [4, 5] is an extension to Java that guarantees the
absence of data races and deadlocks in well-typed programs. The basic idea be-
hind our system is as follows. When programmers write multithreaded programs,
they already have a locking discipline in mind. Our system allows programmers
to specify this locking discipline in their programs. The resulting specifications
take the form of type declarations.

To prevent data races in SCJ, programmers associate every object with a
protection mechanism that ensures that accesses to the object never create data
races. The protection mechanism of an object can specify either the mutual ex-
clusion lock that protects the object from unsynchronized concurrent accesses, or
that threads can safely access the object without synchronization because either
1) the object is immutable, 2) the object is accessible to a single thread, or 3) the
variable contains the unique pointer to the object. Unique pointers are useful to
support object migration between threads. The type checker statically verifies
that a program uses objects only in accordance with their declared protection
mechanisms.

To prevent deadlocks, programmers partition all the locks into a fixed number
of lock levels and specify a partial order among the lock levels. The type checker
statically verifies that whenever a thread holds more than one lock, the thread
acquires the locks in the descending order. SCJ also allows programmers to use
recursive tree-based data structures to further order the locks that belong to
the same lock level. For example, programmers can specify that nodes in a tree
must be locked in the tree-order. SCJ allows mutations to the data structure that
change the partial order at runtime. The type checker uses an intra-procedural
intra-loop flow-sensitive analysis to statically verify that the mutations do not
introduce cycles in the partial order, and that the changing of the partial order
does not lead to deadlocks.

2.1 Ownership Types in a Subset of Safe Concurrent Java

This section presents Mini Safe Concurrent Java (MSCJ), which is a subset of
SCJ that prevents data races in well-typed programs. To simplify the presenta-
tion of key ideas behind our approach, the rest of the discussion in this paper
will be in the context of MSCJ. Our implementation, however, works for the
whole of SCJ and handles all the features of the Java language. The key to the
MSCJ type system is the concept of object ownership. Every object in MSCJ has
an owner. An object can be owned by another object, by itself, or by a special
per-thread owner called thisThread. Objects owned by thisThread, either directly
or transitively, are local to the corresponding thread and cannot be accessed by
any other thread. Figure 1 presents an example ownership relation. We draw
an arrow from object x to object y in the figure if object x owns object y. Our
type system statically verifies that a program respects the ownership properties
shown in Figure 2.
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Fig. 1. An Ownership Relation

1. The owner of an object does not change over time.
2. The ownership relation forms a forest of rooted trees, where the roots can have

self loops.
3. The necessary and sufficient condition for a thread to access to an object is that

the thread must hold the lock on the root of the ownership tree that the object
belongs to.

4. Every thread implicitly holds the lock on the corresponding thisThread owner. A
thread can therefore access any object owned by its corresponding thisThread owner
without any synchronization.

Fig. 2. Ownership Properties

Figure 3 shows the grammar for MSCJ. Figure 4 shows a TStack program in
MSCJ. For simplicity, all the examples in this paper use an extended language
that is syntactically closer to Java. A TStack is a stack of T objects. A TStack
is implemented using a linked list. A class definition in MSCJ is parameterized
by a list of owners. This parameterization helps programmers write generic code
to implement a class, then create different objects of the class that have dif-
ferent protection mechanisms. In Figure 4, the TStack class is parameterized by
thisOwner and TOwner. thisOwner owns the this TStack object and TOwner owns
the T objects contained in the TStack. In general, the first formal parameter of a
class always owns the this object. In case of s1, the owner thisThread is used for

P ::= defn* e
defn ::= class cn〈owner f*〉 extends c {field* meth*}

c ::= cn〈owner+〉 | Object〈owner+〉
owner ::= f | self | thisThread | efinal
meth ::= t mn(arg*) accesses (efinal*) {e}
field ::= [final]opt t fd = e

arg ::= [final]opt t x

t ::= c | int

e ::= new c | x | x = e | e.fd | e.fd = e | e.mn(e*) | e;e | let (arg=e) in {e} |
synchronized (e) in {e} | fork (x*) {e}

efinal ::= e

cn ∈ class names, fd ∈ field names, mn ∈ method names, x ∈ variable names, f ∈ owner names

Fig. 3. MSCJ Grammar
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1 // thisOwner owns the TStack object, TOwner owns the T objects in the stack.
2 class TStack<thisOwner, TOwner> {
3 TNode<this, TOwner> head = null;
4 TStack() {}
5 void push(T<TOwner> value) accesses (this) {
6 TNode<this, TOwner> newNode = new TNode<this, TOwner>(value, head); head = newNode;
7 }
8 T<TOwner> pop() accesses (this) {
9 T<TOwner> value = head.value(); head = head.next(); return value;
10 }
11 }
12 class TNode<thisOwner, TOwner> {
13 T<TOwner> value; TNode<thisOwner, TOwner> next;
14 TNode(T<TOwner> v, TNode<thisOwner, TOwner> n) accesses (this) {
15 this.value = v; this.next = n;
16 }
17 T<TOwner> value() accesses (this) { return value; }
18 TNode<thisOwner, TOwner> next() accesses (this) { return next; }
19 }
20 class T<thisOwner> { int x=0; }
21
22 TStack<thisThread, thisThread> s1 = new TStack<thisThread, thisThread>;
23 TStack<thisThread, self> s2 = new TStack<thisThread, self>;

Fig. 4. Stack of T Objects in MSCJ
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Fig. 5. Ownership Relation for TStacks s1 and s2

both the parameters to instantiate the TStack class. This means that the main
thread owns TStack s1 as well as all the T objects contained in the TStack. In
case of s2, the main thread owns the TStack but the T objects contained in the
TStack own themselves. The ownership relation for the TStack objects s1 and
s2 is depicted in Figure 5 (assuming the stacks contain three elements each). In
MSCJ, a method can contain an accesses clause that specifies the objects the
method accesses that must be protected by externally acquired locks. Callers
are required to hold the locks on the root owners of the objects specified in the
accesses clause before they invoke a method. In the example, the value and next
methods in the TNode class assume that the callers hold the lock on the root
owner of the this TNode object. Without the accesses clause, the value and next
methods would not have been well-typed.

2.2 Static Type Checking

This section describes some of the important rules for static type checking of
ownership types. The full set of rules can be found in [4]. The core of our type
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system is a set of rules for reasoning about the typing judgment: P ; E; ls ` e :
t. P , the program being checked, is included here to provide information about
class definitions. E is an environment providing types for the free variables of
e. ls describes the set of locks that are statically known to be held when e is
evaluated. t is the type of e.

The rule for accessing field e.fd checks that e is a well-typed expression of
some class type cn〈o1..n〉, where o1..n are actual owner parameters. It verifies
that the class cn with formal parameters f1..n declares or inherits a field fd
of type t and that the thread holds the lock on the root owner of e. Since t is
declared inside the class, it might contain occurrences of this and the formal class
parameters. When t is used outside the class, we rename this with the expression
e, and the formal parameters with their corresponding actual parameters.

[EXPRESSION REFERENCE]

P ; E; ls ` e : cn〈o1..n〉 P ` (t fd) ∈ cn〈f1..n〉 P ; E ` RootOwner(e) ∈ ls

P ; E; ls ` e.fd : t[e/this][o1/f1]..[on/fn]

The rule for invoking a method checks that the arguments are of the right
type and that the thread holds the locks on the root owners of all expressions
in the accesses clause of the method. The expressions and types used inside the
method are renamed appropriately when used outside their class.

[EXPRESSION INVOKE]

P ; E; ls ` e : cn〈o1..n〉 P ` (t mn(tj yj
j∈1..k) accesses(e′*) {...}) ∈ cn〈f1..n〉

P ; E; ls ` ej : tj [e/this][o1/f1]..[on/fn]

P ; E ` RootOwner(e′i[e/this][o1/f1]..[on/fn]) ∈ ls

P ; E; ls ` e.mn(e1..k) : t[e/this][o1/f1]..[on/fn]

The rule for checking a method assumes that the locks on the root owners of
all the expressions specified in the accesses clause are held. The rule then type
checks the method body under this assumption.

[METHOD]

E′ = E, arg1..n P ; E′ `final ei : ti P ; E′ ` RootOwner(ei) = ri

P ; E′; thisThread, r1..r ` e : t

P ; E ` t mn(arg1..n) accesses(e1..r) {e}

The rule for subtyping ensures that the parameters of the supertype are
instantiated either with constants (self or thisThread) or with owners that are
in scope, preserving the owner in the first position. The first owner must be
preserved because the first owner in our system is special, in that it owns the
this object.

[SUBTYPE]

P ; E ` cn1〈o1..n〉 P ` class cn1〈f1..n〉 extends cn2〈f1 o′*〉 {...}
∀ o′. (o′ = self) ∨ (o′ = thisThread) ∨ (∃ j. o′ = fj)

P ; E ` cn1〈o1..n〉 <: cn2〈f1 o′*〉 [o1/f1]..[on/fn]
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3 Safe Runtime Downcasts

This section describes how we support safe runtime downcasts efficiently. We
describe our technique in the context of Mini Safe Concurrent Java (MSCJ) that
we presented in Section 2. The type system for MSCJ described in Section 2
is a purely static type system. In fact, one way to compile and run a MSCJ
program is to convert it into a Java program after type checking, by removing
the type parameters and the accesses clauses from the program. The program
can then be compiled and run as a regular Java program. However, a language
like Java is not a purely statically typed language. Java allows downcasts that
are checked at runtime. To support safe downcasts, the system must preserve
some ownership information at runtime when ownership types are used in the
context of a language like Java.

To express runtime casts in MSCJ, we extend the MSCJ grammar as follows.

e ::= ... | (cn〈o1..n〉) e

Fig. 6. Grammar Extensions to Support Runtime Casts

We next present the static type checking rules for runtime casts in MSCJ.
Casting an object to a supertype of its declared type is always safe. Casting an
object to a subtype of its declared type requires runtime checking. Section 2.2
contains the rule for subtyping.

[EXPRESSION UPCAST]

P ; E; ls ` e : c2 P ; E ` c2 <: c1

P ; E; ls ` (c1) e : c1

[EXPRESSION DOWNCAST (REQUIRES RUNTIME CHECK)]

P ; E; ls ` e : c1 P ; E ` c2 <: c1

P ; E; ls ` (c2) e : c2

To support downcasts, we store information on type parameters explicitly
in objects and pass the information to code requiring the information. But if
the system stores the owners of every object at runtime, this approach has the
potential drawback of adding a per-object space overhead. Java objects are typ-
ically very small, so adding even a single field to every object may increase the
size of most objects by a significant fraction. Our technique avoids the associ-
ated significant space overhead by storing runtime ownership information only
for objects that are potentially involved in downcasts. Our technique for effi-
cient implementation of type passing is based on two key observations about the
nature of parameterization in ownership types.

The remainder of this section is organized as follows. Sections 3.1 and 3.2
describe the key observations that enable us to support downcasts efficiently.
Sections 3.3 and 3.4 presents our technique for supporting safe downcasts.
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1 class T<thisOwner> {...}
2 class TStack<thisOwner, TOwner> {...}
3 class TStack2<thisOwner, TOwner> extends TStack<thisOwner, TOwner> {...}
4
5 Object<thisThread> o1;
6 Object<thisThread> o2;
7 Object<thisThread> o3;
8 ...
9 T<thisThread> t1;
10 T<self> t2;
11 ...
12 TStack<thisThread, thisThread> s1;
13 TStack<thisThread, self> s2;
14 ...
15 TStack2<thisThread, thisThread> q1;
15 TStack2<thisThread, self> q2;
16 ...
17 t1 = (T<thisThread>) o1; // Safe iff o1 belongs to class T
18 t2 = (T<self>) o2; // Compile time error
19 ...
20 s1 = (TStack<thisThread, thisThread>) o3; // Requires checking runtime ownership
21 s2 = (TStack<thisThread, self>) o3; // Requires checking runtime ownership
22 ...
23 q1 = (TStack2<thisThread, thisThread>) s1; // Safe iff s1 belongs to class TStack2
24 q2 = (TStack2<thisThread, self>) s1; // Compile time error

Fig. 7. Runtime Downcasts

3.1 Downcasts to Types With Single Owners

A key observation that enables efficient implementation of downcasts is as fol-
lows. Consider the code in Figure 7. In Line 17, object o1 of declared type
Object〈thisThread〉 is downcast to type T〈thisThread〉. For this downcast, the
owner of the declared type of o1 matches the owner of the type that o1 is being
downcast into. Hence, this downcast is safe iff o1 belongs to class T at runtime.
It is unnecessary to check ownership information at runtime for this downcast.

In general, whenever an object is downcast into a type with matching owners,
it is not necessary to check ownership information at runtime to ensure that the
downcast is safe. If the owners of the declared type of the object match the owners
of the type that the object is being downcast into, then the downcast will be
safe iff the object belongs to the appropriate class at runtime (e.g., Lines 17 and
23 in Figure 7). If the owners do not match, the downcast will always fail (e.g.,
Line 18 and 24 in Figure 7).

The primary benefit of this observation is that whenever an object is down-
cast into a type with a single owner, it is unnecessary to check ownership infor-
mation at runtime to ensure that the downcast is safe. Since a vast majority of
classes in a system with ownership types have single owners, this implies that it
is unnecessary to check ownership information at runtime for most of the down-
casts. The only classes that usually have multiple owners are collection classes.
The only times when it might be necessary to check ownership information at
runtime to ensure that the downcast is safe is when an object is downcast into
a type with multiple owners (e.g., Lines 20 and 21 in Figure 7).
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3.2 Anonymous Owners

Another key observation that enables efficient implementation of downcasts is as
follows. Consider the code in Figure 4. The TStack class in the figure is param-
eterized by thisOwner and TOwner. However, the owner parameter thisOwner is
not used in the static scope where it is visible. Similarly, the owner parameter
thisOwner for class T is not used in the body of class T. If an owner parameter is
not used, it is unnecessary to name the parameter. Our system allows program-
mers to use 〈-〉 for such anonymous owner parameters. Figure 8 shows how we
extend the MSCJ grammar to support anonymous owner parameters. Figure 11
shows the TStack example in Figure 4 implemented using anonymous owners for
the TStack class and the T class.

defn ::= ... | class cn〈- f*〉 extends c {field* meth*}

Fig. 8. Grammar Extensions to Support Anonymous Owners

The primary benefit of having anonymous owners is that if an owner param-
eter of a class is not named, it is unnecessary to store the owner parameter of
the class at runtime, or pass the owner parameter to code that uses the class at
runtime. In a system with ownership types, the only classes that usually have
named owners are collection classes with multiple owners. Examples include
Vector〈-,elementOwner〉, Hashtable〈-,keyOwner,valueOwner〉, etc. But most of the
classes have single owners that are anonymous. It is unnecessary to store own-
ership information for those classes, or pass ownership information to code that
uses those classes. Thus, our system incurs a runtime space and time overhead
only for code that uses classes with named owner parameters like the collection
classes. The rest of the code has no overhead in our system.

3.3 Preserving Ownership Information at Runtime

This section describes how our system preserves ownership information at run-
time for classes with named owner parameters in the context of MSCJ. We
presented the grammar for MSCJ in Figure 3 with extensions in Figures 6 and
8. This section presents the rules for translating a MSCJ program into an equiv-
alent program in a Java-like language without ownership types. If we did not
have to support safe runtime downcasts, the translation process would have been
simple. We could have converted a MSCJ program into an equivalent Java-like
program by simply removing the owner parameters and the accesses clauses.
However, to support safe runtime downcasts, we must preserve some ownership
information in the translation process.

The core of our translation is a set of rules of the form: (T [[C]] P E) = C ′.
The rule translates a code fragment C to a code fragment C ′. P , the program
being checked, is included here to provide information about class definitions. E
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(T [[P ]]) = (T [[defn* e]])
= (T [[defn]] P )* (T [[e]] P ∅)

(T [[defn]] P ) = (T [[class cn〈f1..n〉 extends cn′〈o1..n′ 〉 {field* meth*}]] P )
= class cn extends cn′

{Object $f1..n (T [[field]] P [f1..n])* (T [[method]] P [f1..n])*}

(T [[defn]] P ) = (T [[class cn〈- f2..n〉 extends cn′〈o1..n′ 〉 {field* meth*}]] P )
= class cn extends cn′

{Object $f2..n (T [[field]] P [f2..n])* (T [[method]] P [f2..n])*}

(T [[meth]] P E) = (T [[t mn(arg*) accesses (efinal*) {e}]] P E)
= (T [[t]] P E) mn ((T [[arg]] P E)*) {(T [[e]] P E)}

(T [[field]] P E) = (T [[[final]opt t fd = e]] P E)

= [final]opt (T [[t]] P E) fd = (T [[e]] P E)

(T [[arg]] P E) = (T [[[final]opt t fd]] P E)

= [final]opt (T [[t]] P E) fd

(T [[t]] P E) = (T [[cn〈owner+〉]] P E)
= cn

(T [[t]] P E) = (T [[int]] P E)
= int

(T [[e]] P E) = (T [[(cn〈o1..n〉) e]] P E)
= {$temp = (cn) (T [[e]] P E);

if ($temp.$f2 != (O[[o2]] P E)) throw new ClassCastException;
...;
if ($temp.$fn != (O[[on]] P E)) throw new ClassCastException;
$temp}

(T [[e]] P E) = (T [[new cn〈o1..n〉]] P E)
= {$temp = new cn;

$temp.$f1 = (O[[o1]] P E); ...; $temp.$fn = (O[[on]] P E);
$temp}

where (class cn〈f1..n〉 ...) ∈ P

(T [[e]] P E) = (T [[new cn〈o1..n〉]] P E)
= {$temp = new cn;

$temp.$f2 = (O[[o2]] P E); ...; $temp.$fn = (O[[on]] P E);
$temp}

where (class cn〈- f2..n〉 ...) ∈ P

(O[[o]] P E) = (O[[thisThread]] P E) = $Owner.THISTHREAD()
(O[[o]] P E) = (O[[self]] P E) = $Owner.SELF()
(O[[o]] P E) = (O[[f ]] P [... f ...]) = $f
(O[[o]] P E) = (O[[e]] P E) = (T [[e]] P E)

(T [[e]] P E) = (T [[x]] P E) = x
(T [[e]] P E) = (T [[x = e]] P E) = x = (T [[e]] P E)
(T [[e]] P E) = (T [[e.fd]] P E) = (T [[e]] P E).fd
(T [[e]] P E) = (T [[e1.fd = e]] P E) = (T [[e1]] P E).fd = (T [[e]] P E)
(T [[e]] P E) = (T [[e1.mn(e*)]] P E) = (T [[e1]] P E).mn((T [[e]] P E)*)
(T [[e]] P E) = (T [[e1;e2]] P E) = (T [[e1]] P E);(T [[e2]] P E)
(T [[e]] P E) = (T [[let (arg=e1) in {e}]] P E) = let (arg=(T [[e1]] P E)) in {(T [[e]] P E[arg])}
(T [[e]] P E) = (T [[synchronized (e1) in {e}]] P E) = synchronized ((T [[e1]] P E)) in {(T [[e]] P E)}
(T [[e]] P E) = (T [[fork (x*) {e}]] P E) = fork (x*) {(T [[e]] P E)}

Fig. 9. Translation Function
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1 public class $Owner {
2 public static Object self = "self";
3
4 public static Object SELF() { return self; }
5 public static Object THISTHREAD() { return Thread.currentThread(); }
6 }

Fig. 10. The $Owner Class

is an environment containing the formal owner parameters in scope in C. The
translated code uses the $Owner class shown in Figure 10. The $Owner class
contains two static methods that return objects that represent the thisThread
owner and the self owner respectively. The translation rules are presented in
Figure 9. Section 3.4 explains the translation process with examples.

3.4 Implementation

This section illustrates with examples how our implementation preserves own-
ership information at runtime for classes with named owner parameters. If a
Safe Concurrent Java (SCJ) program is well-typed with respect to the rules for
static type checking, our implementation translates the program into an equiv-
alent Java program. (Actually, our implementation translates a SCJ program
into Java bytecodes directly. But for ease of presentation, we will describe an
equivalent translation into Java code.) The translation mechanism is illustrated
in Figures 11, 12, 13, and 14. Figure 11 shows a TStack class with anonymous
owners. Figure 12 shows client code that uses the TStack class. Figures 13 and
14 show the translation of the TStack code and the client code.

Classes Classes in the translated code contain extra owner fields, one for each
named owner parameter of the class. For example, in Figure 13, the translated
TStack class has an extra $TOwner field. The translated TNode class has two
extra fields: $thisOwner and $TOwner. The translated T class has no extra fields
since the T class does not have any named owner parameters.

Constructors Constructors in the translated code contain extra owner argu-
ments, one for each named owner parameter of the class. The constructors in the
translated code initialize the owner fields of the class with the owner arguments
of the constructor. For example, in Figure 13, the constructor for TStack has an
extra $TOwner argument. The constructor initializes the $TOwner field of the
TStack object from the $TOwner argument.

Allocation Sites Client code in the translated version that creates a new ob-
ject of a class must pass extra owner arguments to the constructor, one for each
named owner parameter of the class. If the owner is an expression that eval-
uates to an object, the client code passes the object to the constructor. For
example, in Figure 13, the push method in TStack passes the this object as the
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1 // TStack has an anonymous owner, TOwner owns the T objects in the stack.
2
3 class TStack<-, TOwner> {
4
5 TNode<this, TOwner> head = null;
6
7 TStack() {}
8 void push(T<TOwner> value) accesses (this) {
9 TNode<this, TOwner> newNode = new TNode<this, TOwner>(value, head); head = newNode;
10 }
11 T<TOwner> pop() accesses (this) {
12 T<TOwner> value = head.value(); head = head.next(); return value;
13 }
14 }
15
16 class TNode<thisOwner, TOwner> {
17
18 T<TOwner> value; TNode<thisOwner, TOwner> next;
19
20 TNode(T<TOwner> v, TNode<thisOwner, TOwner> n) accesses (this) {
21 this.value = v; this.next = n;
22 }
23 T<TOwner> value() accesses (this) { return value; }
24 TNode<thisOwner, TOwner> next() accesses (this) { return next; }
25 }
26
27 class T<-> { int x=0; }

Fig. 11. TStack With Anonymous Owners

1 class T<-> {...}
2 class TStack<-, TOwner> {...}
3 class TStack2<-, TOwner> extends TStack<-, TOwner> {...}
4
5 Object<thisThread> o1;
6 Object<thisThread> o2;
7 ...
8 TStack<thisThread, thisThread> s1 = new TStack<thisThread, thisThread>;
9 TStack<thisThread, self> s2 = new TStack<thisThread, self>;
10 ...
11 TStack2<thisThread, thisThread> q1;
12 TStack2<thisThread, self> q2;
13 ...
14 s1 = (TStack<thisThread, thisThread>) o1;
15 s2 = (TStack<thisThread, self>) o2;
16 ...
17 q1 = (TStack2<thisThread, thisThread>) s1;
18 q2 = (TStack2<thisThread, self>) s2;
19 ...
20 boolean b1 = (o1 instanceof TStack<thisThread, thisThread>);
21 boolean b2 = (o2 instanceof TStack<thisThread, self>);

Fig. 12. Client Code for TStack
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1 // TStack has an anonymous owner, TOwner owns the T objects in the stack.
2
3 class TStack {

Object $TOwner;
4
5 TNode head = null;
6
7 TStack(Object $TOwner) {

this.$TOwner = $TOwner;
}

8 void push(T value) {
9 TNode newNode = new TNode(this, $TOwner, value, head); head = newNode;
10 }
11 T pop() {
12 T value = head.value(); head = head.next(); return value;
13 }
14 }
15
16 class TNode {

Object $thisOwner, $TOwner;
17
18 T value; TNode next;
19
20 TNode(Object $thisOwner, Object $TOwner, T v, TNode n) {

this.$thisOwner = $thisOwner; this.$TOwner = $TOwner;
21 this.value = v; this.next = n;
22 }
23 T value() { return value; }
24 TNode next() { return next; }
25 }
26
27 class T { int x=0; }

Fig. 13. Translation of TStack in Figure 11

1 class T {...}
2 class TStack {...}
3 class TStack2 extends TStack {...}
4
5 Object o1;
6 Object o2;
7 ...
8 TStack s1 = new TStack($Owner.THISTHREAD());
9 TStack s2 = new TStack($Owner.SELF());
10 ...
11 TStack2 q1;
12 TStack2 q2;
13 ...
14
15 s1 = (TStack) o1;

if (s1.$TOwner != $Owner.THISTHREAD()) throw new ClassCastException();
16 s2 = (TStack) o2;

if (s2.$TOwner != $Owner.SELF()) throw new ClassCastException();
17 q1 = (TStack2) s1;

if (q1.$TOwner != $Owner.THISTHREAD()) throw new ClassCastException();
18 q2 = (TStack2) s2;

if (q2.$TOwner != $Owner.SELF()) throw new ClassCastException();
19 ...
20 boolean b1 = ((o1 instanceof TStack) && (((TStack) o1).$TOwner == $Owner.THISTHREAD()));
21 boolean b2 = ((o2 instanceof TStack) && (((TStack) o2).$TOwner == $Owner.SELF()));

Fig. 14. Translation of TStack Client Code in Figure 12
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first argument to the TNode constructor. If the owner is a formal parameter,
the client code passes the value of the formal parameter stored in one of its
extra owner fields. For example, in Figure 13, the push method in TStack passes
the value stored in the $TOwner field as the second argument to the TNode
constructor. If the owner is thisThread or self, the client code passes the object
returned by $Owner.THISTHREAD() or $Owner.SELF() to the constructor. For
example, in Figure 14, the client code creates TStacks s1 and s2 by passing
$Owner.THISTHREAD() and $Owner.SELF() to the TStack constructor respec-
tively.

Casts Casts in the translated code not only check that the Java types match,
but also check that the owners match. For example, in Figure 14, in Line 15, the
translated code not only checks that o1 is of Java type TStack, but also checks
that the owner of the T elements in the TStack is thisThread. In Line 16, the
translated code not only checks that o2 is of Java type TStack, but also checks
that the owner of the T elements in the TStack is self.

InstanceOf The instanceof operation in the translated code returns true iff the
Java types match and the owners match. For example, in Figure 14, in Line 20,
the instanceof operation returns true iff o1 is of Java type TStack and the owner
of the T elements in the TStack is thisThread. In Line 21, the instanceof operation
returns true iff o2 is of Java type TStack and the owner of the T elements in the
TStack is self.

Parameterized Methods Parameterized methods are handled similar to pa-
rameterized classes. For ease of presentation, the MSCJ language we described in
Section 2 has only parameterized classes but not parameterized methods. But our
implementation handles both parameterized classes and parameterized methods.
Named owner parameters of methods are explicitly passed as arguments to the
methods in the translated code.

4 Related Work

4.1 Ownership Types

Ownership types were first introduced in Flexible Alias Protection [9], and for-
malized in [8]. Parameterized Race Free Java (PRFJ) [5] extends ownership types
to support inheritance and dynamic aliases (which allow, e.g., the description of
iterators) and uses them to statically ensure the absence of data races in Java
programs. PRFJ also uses effects clauses and combines ownership types with
unique pointers [16], and read-only fields and objects, which allows many impor-
tant idioms to be expressed. Safe Concurrent Java (SCJ) [4] extends PRFJ to
prevent both data races and deadlocks in Java programs. AliasJava [2] uses own-
ership types to aid software evolution. Cyclone [13] uses a similar type system
to guarantee absence of memory errors in programs with explicit deallocation.
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4.2 Parametric Polymorphism in Java

Our implementation of parameterized ownership types is related to the type
passing approach [17, 19, 18] of implementing parametric polymorphism in Java.
In the type passing approach, information on type parameters is explicitly stored
in objects and passed to code requiring them. But if the system stores the owners
of every object at runtime, this approach has the potential drawback of adding a
per-object space overhead. Java objects are typically very small, so adding even
a single field to every object may increase the size of most objects by a significant
fraction. This paper describes an efficient technique for implementing ownership
types using the type passing approach that avoids the associated significant space
overhead by storing runtime ownership information only for some objects.

4.3 Types for Safe Concurrent Programing

Many researchers have proposed language mechanisms for safe concurrent pro-
gramming. The Extended Static Checker for Java (Esc/Java) [10] is an annota-
tion based system that uses a theorem prover to statically detect many kinds
of errors including data races and deadlocks. Race Free Java [11] extends the
static annotations in Esc/Java into a formal race-free type system. Guava [3] is
another dialect of Java for preventing data races. Parameterized Race Free Java
(PRFJ) [5] builds on Race Free Java and lets programmers write generic code to
implement a class, and create different objects of the same class that have dif-
ferent protection mechanisms. PRFJ also supports objects with unique pointers
and read-only objects and fields that can be accessed without synchronization.
Safe Concurrent Java (SCJ) [4] extends PRFJ to prevent both data races and
deadlocks in multithreaded programs.

5 Conclusions

The possibility of aliasing between objects constitutes one of the primary chal-
lenges in understanding and reasoning about correctness of object-oriented pro-
grams. Ownership types provide a principled way of specifying statically enfor-
cable restrictions on object aliasing. Ownership types have been used to aid pro-
gram understanding and evolution, verify absence of data races and deadlocks in
multithreaded programs, and verify absence of memory errors in programs with
explicit deallocation.

This paper describes an efficient technique for supporting safe runtime down-
casts with ownership types. This technique uses the type passing approach, but
avoids the associated significant space overhead by storing runtime ownership in-
formation only for objects that are potentially involved in downcasts. Moreover,
this technique does not use any inter-procedural analysis, so it preserves the sep-
arate compilation model of Java. We implemented our technique in the context
of Safe Concurrent Java, which is an extension to Java that uses ownership types
to guarantee the absence of data races and deadlocks in well-typed programs.
Our approach is JVM-compatible: our implementation translates programs to
bytecodes that can be run on regular JVMs.
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