Blueware: Bluetooth Simulator for ns

Godfrey Tan
MIT Laboratory for Computer Science
Cambridge, MA 02139
{godfreyt }@Qlcs.mit.edu

October 29, 2002

1 Introduction

Bluetooth [2] is emerging as an important stan-
dard for short range, low-power wireless commu-
nication [3, 5]. Bluetooth operates in the 2.4 GHz
frequency band and a Bluetooth link has a maxi-
mum capacity of 1Mbps. Its link-layer Baseband
protocol is designed to facilitate the construction of
ad hoc networks without manual configuration or
wired infrastructure.

Bluetooth communication is based not on dis-
tributed contention resolution, as in traditional
wireless LANSs, but on a time-division duplex (TDD)
master-slave mechanism. A Bluetooth piconet con-
sists of one master and up to seven slaves. The mas-
ter allocates transmission time slots, each of which
takes 625 microseconds, to the slaves in the piconet.
The master and slaves use alternate transmission
slots, with each odd slot being used only by the
slave to which the master sent a frame in the pre-
vious even transmission slot.

Frequency hopping is used to permit multiple
concurrent Bluetooth communications within radio
range of each other, without adverse effects due to
interference. This facilitates high densities of com-
municating devices, making it possible for dozens
of piconets to co-exist and independently commu-
nicate in close proximity without significant perfor-
mance degradation. In principle, this raises the pos-
sibility of internetworking multiple piconets called
scatternets. However, the Bluetooth Specification
does not specify how this is to be done Providing
support for self-organizing scatternets has been an
active area of research [10, 7, 11, 9, 6, 12, 13]. In
particular, there are three main challenges: i) topol-
ogy formation, ii) link scheduling and iii) packet
routing. The TDD nature of Bluetooth combined
with its neighbor discovery protocol makes the first
two problems new and interesting.

To evaluate performance of Bluetooth piconets
and scatternets, we have developed an extensible
Bluetooth simulator, called Blueware, as an ex-

tension to ns [8]. Our simulator implements many
aspects of the Bluetooth protocol stack according
to the Bluetooth specification (version 1.1). Our
development efforts were eased by the Bluehoc [1]
simulator implementation released by IBM in 2001.
Bluehoc simulator works well in evaluating perfor-
mance within a single piconet. However, Bluehoc
lacks support for scatternet protocols such as topol-
ogy formation and link scheduling schemes. Blue-
ware addresses these issues and provides an ex-
tensible architecture for various scatternet forma-
tion and link scheduling schemes. Using this archi-
tecture, we have developed both scatternet forma-
tion [14] and link scheduling [13] schemes and eval-
uated their performance. The Blueware simulator
module is available for public use under the IBM
Public License [4]. The rest of this paper describes
in detail the Blueware simulator and its extensible
architecture support for scatternet protocols.

2 Blueware Simulator

The Blueware simulator implements most aspects of
the Bluetooth protocol stack according to the Blue-
tooth specification (version 1.1). Figure 2 shows the
Bluetooth protocol stack and Figure 1 depicts vari-
ous modules of the Blueware simulator. Each device
in the simulator is equipped with several modules
through which it discovers and communicates with
other devices. The WirelessPhy module provides
functionality of the Bluetooth radio. The FhChan-
nel module simulates the frequency hopped wire-
less medium. The Baseband module of the sim-
ulator implements the pseudo-random frequency-
hopping technique, and the Inquiry, Inquiry Scan,
Page, Hold, and Role-Change operations as speci-
fied in the Bluetooth Baseband specification. Poll-
Manager manages master-slave links within a pi-
conet and decides which active slave to poll. The
LMP module implements detailed LMP protocols
and the LC module implements link control opera-

Applications
HCIEventsHandler Hn-?ﬁf?s L2
L2CAP (o [Sehed |[R]| | F25P BRI
Host Controller Interface ‘ ’ hlost ‘ Host
T
Link Manager
LMP LMP LMP LMP
LC | ,uue | LC LCc .| Lc Lc Lc
Link Controller ira) " laiks] (@] = [@h
Baseband ’ Baseband ‘
l WirelessPhy | -
Radio ’ FHChannel ‘

(a) Bluetooth Stack

(b) Blueware Simulator

Figure 1: Comparison between Bluetooth stack and Blueware modules

tions such as the Automatic Repeat Request (ARQ)
scheme. As shown in the figure, every master-slave
link has unique instances of the LC and LMP mod-
ules which are responsible for carrying out all the
Bluetooth primitive link establishment, control and
communication operations. TaskScheduler imple-
ments the scheduling schemes for various Bluetooth
operations related to communication and neighbor
discovery. The Host module provides the Host Con-
troller Interface (HCI) and interacts with various
scatternet protocols. Each scatternet formation or
link scheduling scheme can be implemented by ex-
tending the HCIEventsHandler module as we dis-
cuss later in this section. Finally, the L2CAP mod-
ule provides segmentation and re-assembly of appli-
cation data units. The rest of this section describes
in detail each simulator module.

2.1 Baseband

Bluetooth Baseband implements two main func-
tions: i) to discover neighboring nodes using Inquiry
and Page operations and ii) to generate pseudo ran-
dom frequency hopping sequence. In this section,
we explain the details of both functions and how
they are implemented in the Blueware Baseband
module.

The link formation process specified in the Blue-
tooth Baseband specification consists of two pro-
cesses: Inquiry and Page [2]. The goal of the Inquiry
process is for a master node to discover the existence
of neighboring devices and to collect enough infor-
mation about the low-level state of those neighbors

(primarily related to their native clocks) to allow
it to establish a frequency hopping connection with
a subset of those neighbors. The goal of the Page
process is to use the information gathered during
the Inquiry process to establish a bi-directional fre-
quency hopping communication channel. Figure 2
illustrates the Bluetooth link formation process.

During the Inquiry process, a device enters ei-
ther the Inquiry or the Inquiry Scan state (mode).
A device in the Inquiry state repeatedly alternates
between transmitting short ID packets containing
an Inquiry Access Code (IAC) and listening for re-
sponses. There are a total of 64 reserved TACs but
only two of them are officially defined: Generic In-
quiry Access Code (GIAC) and Limited Inquiry Ac-
cess Code (LIAC). A device in the Inquiry Scan
state constantly listens for packets from devices in
the Inquiry state and responds when appropriate.
It is important to note that once a node is in the
Inquiry state, it remains in that state for several sec-
onds. A node periodically (every 1.28s or so) enters
the Inquiry Scan state to scan continuously over a
short window of 11.25ms, and thus, can communi-
cate with other nodes or sleep in between consecu-
tive scans. Thus, the duration that a node stays in
Inquiry or Inquiry Scan mode is asymmetric.

Multiple Inquiry Scan nodes can simultaneously
receive messages from the same Inquiry node. To
avoid contention, each scanning node chooses a ran-
dom back-off interval, T}, between 0 and 1023 time
slots before responding with the signaling infor-
mation. Let Tgyn, be the delay before two nodes
can synchronize their frequencies during the Inquiry

process. The time taken to complete the Inquiry
process is given by

Tinq = 2Tsync + TT‘b (1)

Tsynce varies according to the differences in clock
values between nodes. If the two nodes have syn-
chronized clocks, Tsyn. will be very short and thus,
Ty dominates T;,,. However, if they are not syn-
chronized, T’syn. will dominate.

A node remains in the Inquiry state and keeps
track of which nodes respond during this time.
The Inquiry operation is terminated when the num-
ber of responses has reached the maximum value,
num_responses, or the Inquiry timer, ingT'm, has
expired. The Baseband modules will then generate
an event to report the results of the Inquiry opera-
tion.

When an upper layer receives this event, it can
decide to enter the Page state to create connec-
tion with one of those devices which responded.
Analogously, a node in the Inquiry Scan state pe-
riodically enters the Page Scan state. A device
in the Page state uses the signaling information
obtained during the Inquiry state and sends out
trains of ID packets based on the discovered de-
vice’s address, BD_ADDR!. When the device in the
Page Scan state responds back, both devices pro-
ceed to exchange necessary information to estab-
lish the master-slave connection and eventually en-
ter the Connection state. The device in the Page
state becomes the master and the device in the Page
Scan state the slave. Figures 3 and 4 illustrate the
state transitions during the Inquiry and Page pro-
cesses respectively.

The Page process is similar to the Inquiry process
except that the paging device already knows the es-
timated clock value and BD_ADDR of the paged de-
vice. However, there will still be some synchroniza-
tion delay before the pager and the paged devices
can communicate. We define T}, as the time taken
to complete the Page process. It will be most ef-
ficient for the two nodes in the Inquiry process to
enter the Page process as soon as the inquiring node
has received the inquiry response. Thus, the total
time taken to establish a link between two nodes is

Teonn = Tz’nq + Tpg (2)

Ting is typically much larger than T}, and dom-
inates the delay to enter the Connection state?.

IBD_ADDR is the globally unique 48-bit address of the
Bluetooth device.

Zqu is in the order of seconds whereas T} is in the order
of milliseconds if both nodes in the Inquiry process enter
the Page process immediately after the inquiry response is
received.

Potential Master Potential Slave

IAC
T T(syn)
Inquiry : Inquiry Scan
State ’ T(rb) State
s Tisyn)
R V=S
Page H Page Scan
State DAC T(pg) State
EHS
DAC

Figure 2: Bluetooth link formation process

Potential Master

&)

Host decides;
set ingTm

Potential Slave

ingSeanTm expires.
1D, GIAC, MCLK

1D, GIAC, MCLK

N responses are collected or

d inqRespTm expires.
ingTm expires.

Figure 3: State transitions during the Inquiry pro-
cess

The Baseband module completely implements all
aspects of Inquiry and Page operations.

The Baseband module also implements the fre-
quency hopping sequence generator. At each clock
tick (312.5us), each node computes the frequency
for transmitting or receiving packets based on a
Bluetooth device address, clock values, and the
Baseband state. Although all nodes in Inquiry
and Inquiry Scan states hop over a well-known se-
quence?, their phases may differ since the phase is
decided by the native clock value of the node. Com-
puting the a radio frequency for each clock tick, in
fact, consumes significant amount of CPU cycles.
Thus, we added a cache to store the resulting fre-
quency based on the parameters, such as the clock
bits and the Baseband state, that are used to com-
pute the channel frequency. However, the frequency
hopping operation can still hamper the performance
of the simulator significantly for the reasons we ex-
plain in the next subsection.

3GIAC is used an address input to generate the well-
known sequence.

Potential Master

Potential Slave

Host decides;
set pgeTm pgeScanTm expires
1D, DAC, SCLK
@ ID, DAC, SCLK @ et pgeRespTm
set pgeRespTm

Figure 4: State transitions during the Page process

2.2 Frequency Hopped Channel

Bluetooth operates in the 2.4GHz band and sep-
arates the medium into 79 radio frequency chan-
nels. Since each node either transmits or listens on
a single channel at a time, there could be as many
as 79 parallel communications within a single radio
range. Frequency hopping technique coupled with
the TDD scheme presents an interesting issue in
modeling the wireless medium for simulation pur-
poses.

A simple approach is to model a single wireless
channel module that delivers a copy of every trans-
mitted packet to each node*. The node then com-
putes its receiving frequency to decide whether it
should receive the packet. The problem with this
approach is that the processing cost of each packet
grows linear with the number of nodes within the
transmission range. Assuming half of the nodes
transmit in every time slot, the total processing cost
of all the transmitted packets grow quadratic in the
number of nodes.

To avoid this, we model the wireless medium for
the frequency hopped networks like Bluetooth as
a single FhChannel module consisting of m chan-
nels. At every listening time-slot, each device reg-
isters its physical interface (WirelessPhy) with the
FhChannel module so that it only receives the pack-
ets transmitted on that frequency. When a packet
is transmitted on the FHChannel, it delivers a copy
of the packet to each node that has registered to
the channel corresponding to the transmitted fre-
quency. Compared to the previous approach, this
approach effectively reduces the processing cost of
each packet by a factor of m, where m = 79 for
Bluetooth. Although the worst case time complex-
ity of the packet processing cost remains the same,
when the number of nodes is less than or equal to
79, the average packet processing cost grows only

4This is the approach taken by [1].

linearly in the number of nodes.

2.3 Wireless Physical Interface

The WirelessPhy module implements the Bluetooth
radio. As of Blueware 1.0, this module simply
forwards the packets from(to) Baseband to(from)
FHChannel. In the future, this module should im-
plement a reasonable radio propagation model so
that proper energy and interference models can be
developed.

2.4 Link Controller

Each point to point (master-slave) link is managed
by the LinkController module. LinkController im-
plements Automatic Repeat Request (ARQ) to pro-
vide the reliability on a single link. We distinguish
between two types of links: master links and slave
links. A link is considered a master(slave) link by
an end node if the node is acting as a master(slave)
on that link. For each slave link, the LinkController
module also maintains the active member address,
am_addr, assigned by the master during the con-
nection setup. Each Bluetooth node can have a
maximum of 7 master links and 8 slave links®.

2.5 Poll Manager

A Bluetooth master node can have a maximum of
7 slaves and the PollManager module is responsible
for managing these master-slave links within a pi-
conet. In particular, PollManager decides which ac-
tive slave to poll in every master time slot. The de-
fault PollManager implements a simple round-robin
scheduling scheme.

2.6 Link Manager Protocol (LMP)

The LMP module implements several operations
that are used for link setup and control. More
specifically, LMP is responsible for

1. Setting up and configuring a new link,

2. Switching master and slave roles on a particu-
lar link,

3. Putting a link into low power modes such as
Hold, Sniff and Park, and

4. Tearing down an existing connection.

5Bluetooth Specification does not limit the number of
slave links. The maximum number of links can easily be
configured in Blueware.

Link Manager communicates with neighboring de-
vices using the Link Manager Protocol to carry out
specific link control operations. As shown in Fig-
ure 2, each link or connection is managed by an
instance of LinkController and an instance of LMP.

The LMP module also maintains a number of out-
put packet queues. There are three separate output
queues for packets associated with the LMP layer,
the L2CAP layer, and the rest of the upper layers.
The LMP layer packets are given the highest prior-
ity whereas the L2CAP packets (application data)
are given the lowest priority. Blueware implements
queues using BTQueue class which provides a uni-
form interface across existing queuing schemes such
as RED and Fair Queuing. By default, DropTail
queues are used.

2.7 Host Module

The Host module implements the Host Controller
Interface (HCI) that separate upper and lower lay-
ers. In some Bluetooth systems, the lower layers,
Radio, Baseband, LinkController and LinkMan-
ager, may be implemented on a single chip whereas
the rest of the layers and applications could be run-
ning on a separate host processor. HCI cleanly de-
fines the separation of lower and upper layers us-
ing HCI commands and events. As explained later,
Blueware provides an extensible HCI event mecha-
nism so that multiple scatternet protocols can in-
teroperate.

2.8 Miscellaneous Aspects

In this subsection, we present various implementa-
tion aspects of Blueware that are interesting. One
challenge in implementing Baseband is that mul-
tiple operations could be occurring simultaneously
and some operations are bound to fail upon inter-
ruption. Imagine a situation where a periodic Page
Scan event gets triggered while the node is in the
middle of setting up a connection. To solve this
problem, we have introduced a notion of session at
the Baseband module. The Baseband will change
its state only if there is no other Baseband sessions
in progress. Thus, in the aforementioned scenario,
the Page Scan operation has to wait until the con-
nection is properly established. This design effec-
tively serializes the Baseband operations and avoid
undesired effects. The layers above Baseband such
as LMP can also find out whether there is any on-
going session in progress. Blueware also allows Host
to setup an un-interruptible session.

Blueware allows switching of roles between indi-
vidual nodes. In particular, when a master node
switches its role with one of its slave, it becomes a

@ Master
O Save

& Savebridge
@ Master bridge

Figure 5: A Bluetooth scatternet

master-bridge node (see Figure 3 acting as a slave
in the newly created piconet where its former slave
is now the master, and as the master of its own pi-
conet as before. Note that the role switch operation
does not affect other slave nodes in the piconet.

A node can enable(disable) various link policies
such as role-switching and hold mode by invoking
appropriate HCI commands. The LinkManager will
carry out the corresponding LMP operations based
on these policies.

3 Support for Scatternet Pro-
tocols

Blueware provides an extensible architecture
for various scatternet formation and scheduling
schemes. Figure 5 shows a Bluetooth scatternet
containing 3 piconets. The piconets are connected
by two different types of bridge nodes: slave and
master. In Figure 5, master bridge D participates
as slave in A’s piconet and as master in its own
piconet. Slave bridge B communicates as slave in
both A and C’s piconets. Unlike previous work [1],
our simulator allows both kind of bridges. In addi-
tion, a node can request to change role with its peer
by issuing a corresponding HCI command.

In dynamic environments, where nodes arrive and
depart arbitrarily, it is important that the scat-
ternet formation scheme and the link scheduling
scheme interoperate seamlessly so that both effi-
cient connectivity and communication are possi-
ble. The scatternet formation scheme dictates how
connected nodes in an existing scatternet conduct
neighbor-discovery operations so that network par-
titions can be healed and new arriving nodes can
be connected. Meanwhile, a link scheduling scheme
is essential in coordinating communication between
neighboring nodes to carry out successful packet
transfers. Since Bluetooth devices, each with a sin-

gle radio chip, can only be active on one channel
at a time, the link scheduling scheme must sched-
ule communication events on different links based
on the availability and traffic patterns. In particu-
lar, link scheduling schemes can invoke appropriate
HCI commands to hold or park a particular link for
a certain amount of time. Thus, a task schedul-
ing mechanism is essential so that various discovery
and communication events can be carried out with-
out scheduling conflicts.

Blueware also provides a flexible interface so
that various scatternet formation, link schedul-
ing, and packet routing schemes can interoperate
seamlessly. In particular, the simulator defines
the HCIEventsHandler interface that each of these
schemes can implement so that they can receive ap-
propriate events related to discovering and commu-
nicating with neighbors. The rest of this section
explains in detain the TaskScheduler module and
HCI Events handling mechanism.

3.1 Task Scheduler

Although the Bluetooth specification provides nec-
essary HCI commands to carry out Inquiry or Page
operations and to activate or hold a communication
link, it does not provide any commands for schedul-
ing those operations so that efficient scatternet com-
munication protocols could be developed. We im-
plement a task scheduling framework in Blueware
and suggest that such a framework be incorporated
in the next version of the Bluetooth specification.
Figure 3.1 shows the main routines provided by
the TaskScheduler module. The scatternet forma-
tion and link scheduling schemes can schedule fu-
ture events using the Schedule methods. Event is a
C++ object and contains information that the Host
module wants to store. Schedule routine creates a
new task of at least mindur duration at the earliest
time possible after the start time. ScheduleHard
is similar to Schedule except that it creates a new
task only if the start and finish times of the task fall
between start and finish. An existing task can be
canceled using the Cancel method. There are also
other routines that can list all existing tasks that
are currently scheduled. Using these methods, the
Host can schedule various tasks effectively.
TaskScheduler interacts with the lower Blue-
tooth layers such as LMP and Baseband to pro-
vide the necessary functionality for scheduling
tasks. TaskScheduler maintains an ordered list
of tasks each of which is denoted by a triple
(event, start, finish). TaskScheduler also main-
tains a timer to trigger events related to scheduled
tasks. For each scheduled task, TaskScheduler re-
ports two out of three possible events back to the

Schedule(event, start, mindur);
ScheduleHard(event, start, finish, mindur);
Cancel(event);

// callback
handle(event, type);

Figure 6: Major routines provided by TaskSched-
uler.

Host which implements the scatternet formation
and link scheduling schemes. The event type can
be Begin, End, or Cancel denoting that the sched-
uled interval associated with the event has begun,
has ended or has been canceled respectively. If the
Begin event is received, the Host requests Base-
band to carry out the corresponding operations as-
sociated with the event.

Since the scatternet formation scheme operates
independently from the link scheduling scheme,
scheduling conflicts may arise between different
types of tasks. We distinguish between two kinds
of task: i) Form and ii) Comm. The Form tasks rep-
resent scatternet formation related operations such
as Inquiry whereas a Comm task specifies when and
how long a node communicates on its communica-
tion channel. TaskScheduler resolves the conflicts
using the following rules:

1. The ongoing task is never interrupted or pre-
empted by another task.

2. A future Form task is scheduled as soon as the
current task’s finish time has reached. If neces-
sary, all the existing tasks which fall in between
the start and finish times of the Form task are
canceled.

The rules guarantee that every Form task will be
scheduled no later than the maximum duration of
a Comm task. Form tasks are given higher priority
since carrying discovery operations out in a timely
fashion shorten the time required to create a con-
nected scatternet. We note that various policies
can be set between the scatternet formation scheme
and the link scheduling scheme to resolve schedul-
ing conflicts. For instance, a scatternet formation
scheme may only require the task scheduler to ap-
ply the second rule if the Form task is to carry out
Page or Page Scan operations instead of the Inquiry
and Inquiry Scan operations.

3.2 HCIEventsHandler

Blueware provides a flexible interface so that var-
ious scatternet formation (Form), link scheduling

(Sched) and packet routing (Rtr) schemes can in-
teroperate seamlessly. As shown in Figure 2, the
simulator defines the HCIEventsHandler interface
that each of these schemes can extend so that they
can receive appropriate events related to discover-
ing and communicating with neighbors.

As mentioned before, the Host module imple-
ments most HCI commands to allow upper layers
to easily use the functionality of the lower Blue-
tooth layers. To report the results of a particu-
lar operation, the Host module callbacks the upper
layer that issued the HCI command. Blueware al-
lows each upper layer module to register for all HCI
events. When a particular HCI event is triggered by
a lower layer, the Host module iterates through the
registered event handlers and delivers the HCI event
sequentially in the order of their registration.

3.3 Implementing Scatternet Proto-
cols

We have developed a scatternet formation scheme,
TSF, and a link scheduling scheme, LCS, using
the Blueware simulator. TSF (for Tree Scatter-
net Formation) is an efficient topology construction
algorithm that are targeted for dynamic environ-
ments [14]. TSF extends TopologyConstructor class
which in turn extends HCIEventsHandler. LCS (for
Locally Coordinated Scheduling) is a meeting-based
protocol that schedule Bluetooth links effectively by
coordinating one-hop neighbors [13]. LCS extends
TaskScheduler® which extends HCIEventsHandler.
Extending TaskScheduler is unnecessary if the link
scheduling scheme does not want to change the de-
fault policy provided by TaskScheduler. We note
that HCIEventsHandler contains a small number
of HCI events that are not specified in Bluetooth
Specification 1.1. These new HCI events are neces-
sary if an efficient link scheduling scheme like LCS
is to be implemented strictly above the Host mod-
ule. However, the link scheduling schemes may also
be integrated with the lower layers, in which case,
those new HCI events are unnecessary.

4 Running Simulations

In this section, we explain in detail how to run simu-
lations using Blueware. There are two main aspects
of scatternet protocols that one can evaluate using
Blueware. First, users can specify the node arrivals
model to evaluate the delays associated with form-
ing a connected scatternet topology and energy con-

6There are no particular reasons why TaskScheduler
should extend HCIEventsHandler. We do this for implemen-
tation convenience.

sumed (in terms of the times nodes spend in busy
states). Second, a mixture of TCP and CBR flows
can be setup to evaluate the throughput, delay and
energy consumption. In short, various scatternet
formation and scheduling algorithms can be evalu-
ated using Blueware.

4.1 Modeling Node Arrivals

Figure 4 shows the example TCL script to run the
simulation. Configuration parameters can be set
in the Sim array. NumDevices specifies the to-
tal number of nodes which must not exceed the
maximum number of nodes allowed by Blueware.
You can change the maximum value by setting
MaxNumNodes in bt-def.h to a desired value. X
and Y defines the length and width of the area (in
meters) where nodes are placed randomly. If they
are not specified, all nodes will be placed within the
radio range of each other. Seed is simply the ran-
dom seed used for the simulation run. Using the
same Seed results in the same sequence of random
numbers and thus, provides predictable outcome.

SimulationTime specifies how long the simula-
tion last. The interval of node arrivals is defined
as [Arrival Start, Arrival Start + ArrivalTime]. In
addition, the number of nodes that arrive si-
multaneously at time 0s can be specified with
NumStartDevices. By configuring these param-
eters, users can generate various arrival scenarios.

4.2 Generating Traffic

The simplest way to generate traffic is to setup a
flow between a source and destination pair. Src
and Dst specifies the IP addresses of the source
and destination respectively. Currently, two kinds
of applications are supported: TCP and CBR.
Traf ficRatio can be set to get a desired mixture
of flows. FTP applications are used to generate
TCP traffic whereas CBR agents are used to gener-
ate UDP packets periodically at a rate defined by
CBRRate. The packet size of each type of flow
can also be configured (I'CPSize and CBRSize).
AppStart defines the start time of all applications.
It is important to note that if AppStart is too early,
there may not exist a connected scatternet and thus,
the destination may be unreachable.

Topo and Sched specifies which topology forma-
tion and scheduling schemes are used respectively.
As mentioned before, we have provided implemen-
tations of TSF and LCS in Blueware 1.0.

number of nodes: the node’s bd_addr
set Sim(NumDevices) 20

length and width of the area in meters
set Sim(X) 7.07
set Sim(Y) 7.07

random seed for this simulation run
set Sim(Seed) 12

simulation time in seconds
set Sim(SimulationTime) 235

start time of node arrivals in seconds
set Sim(ArrivalStart) 0

interval of node arrivals,

ArrivalEnd = ArrivalStart + ArrivalTime
set Sim(ArrivalTime) O

number of devices that arrive at time Os.
set Sim(NumStartDevices) O

source and destination addresses

set Sim(Src) 0

set Sim(Dst) 14

the start time of applications in seconds
set Sim(AppStart) 35

traffic ratio of TCP to CBR:

1 means 100% TCP and O means 100% CBR
set Sim(TrafficRatio) 1

total number of applicatiomns

set Sim(NumApps) 1

TCP packet size in bytes

set Sim(TCPSize) 512

CBR packet size in bytes

set Sim(CBRSize) 335

CBR data rate in bps

set Sim(CBRRate) bkb

link scheduling scheme
set Sim(Sched) LCS

topology formation scheme

set Sim(Topo) TSF

tsf parameter to test healing performance
set Sim(TSFheal) O

alternative tracing support
set Sim(Trace) OFF
set Sim(AgentTrace) OFF

source ./topo.tcl

Figure 7: Example TCL script

4.3 Tracing and Analysis

Blueware provides extensive tracing support. Trace
statements can be put anywhere in Blueware code
by using TRACE_BT macros. One of the 32 pos-
sible trace levels must be specified when using the
macro. Individual trace levels can be turned on and
off by setting trace_level variable in bt-baseband.cc.
At the minimum, trace.level should be set to
LEVEL_ACCT so that analysis can be done us-
ing the scripts provided. Trace and AgentTrace
can also be turned on to use the alternative tracing
support provided by Bluehoc.

When LEVEL_ACCT is turned on, you can use
the analysis script analys.pl to analyze the simu-
lation run. Figure 4.3 shows the sample output of
analys.pl. For space constraints, we have removed
some parts of the output. ConDelay (for connec-
tion setup delay) is the time it takes for a node to
establish its first communication link. LastLink is
the total time elapsed until a connected scatternet
containing all nodes is formed. The output also
shows the break down of the time nodes spend in
each Baseband state as well as the traffic statistics
of each application.

Node ConDelay
0 ce 2.66e+00
1 3.28e+00
2 2.66e+00
3 3.10e+00
Avg 2.92e+00 StdDev 3.16e-01

SuccRate 100.00 LastLink 3.28 ..[

Node Life INQ

INQ_SC CONN
0 2.71e+02 0.00e+00 6.54e-02 (0) 1.26e-02
1 2.71e+02 1.33e+00 1.92e-01 (1) 1.28e-02
2 2.71e+02 5.30e+00 1.12e-01 (0) 3.07e+00
3 2.71e+02 9.81e-01 1.85e-01 (0) 9.92e+01
AVG 1.90e+00 1.39e-01 1.00e+02
Avg disc time(%): 1.09
Traffic Stats
src->dst Thruput Delay NPkts Dur ...

0->1 2.58e+05 3.81e-01
Total 2.58e+05 3.81e-01

12578 2.00e+02
AvgHops 2.00e+00

Figure 8: Output of the analysis script

5 Limitations

Blueware simulator has its limitations. The simu-
lator does not implement a reasonable interference
model”. Clearly, a good and realistic interference
model for Bluetooth is necessary to evaluate the
performance of Bluetooth networks. Thus, when
using Blueware, one must bear in mind that the
results achieved using simulation are the best case
results. We note that when evaluating topology for-
mation schemes, a lack of interference model does
not significantly impact the results when the node
density is not too high. The reason is that Blue-
tooth Inquiry procedure uses ID packet that are
very short (72 bits) and that the chances of ID
packet collisions are rare. Without the interference
model, the throughput and delay achieved by a link
scheduling scheme are also the best possible results.

Although Blueware implements many aspects of
Bluetooth, there are some features of Bluetooth
that are not implemented. Blueware currently does
not support synchronous connections (SCO) and
also lacks proper support for QoS. Lastly, Blueware
is not currently integrated with existing ad hoc rout-
ing schemes such as DSR and AODV. However, it
does have a “hook” in place in bt-host.cc so that
routing schemes can easily be integrated.

6 Summary

We have developed a Bluetooth simulator that close
follows the Bluetooth Specifications. Although the
simulator (like any other simulators) cannot possi-
bly provide an absolutely correct and realistic model
of real world scenarios, it offers a quick and easy
way to evaluate novel scatternet protocols. Build-
ing the simulator gives us insights in understanding
many of the engineering difficulties as well as per-
formance aspects. We have also offered suggestions
to be included in the future Bluetooth Specification
so that various scheduling and topology formation
schemes can be interoperated seamlessly. Blueware
1.0 is available for public use and can be downloaded
from http://nms.lcs.mit.edu/projects/blueware.

7 Acknowledgments

The efforts of implementing Blueware are signifi-
cantly eased by an existing implementation of the
Bluetooth simulator, Bluehoc, and as such we would
like to thank the Bluehoc team.

"There exists some code to deal with interference. In
particular, bt-distfer.h contains a table of forward error rate
provided by the Bluehoc team

References

[1]

2]

(3]
[4]
[5]

[6]

[7]

(8]
[9]

[10]

[11]

[12]

[13]

[14]

Bluetooth Extension for ns.
//oss.software.ibm.com/developerworks/
opensource/bluehoc/.

Specification of the Bluetooth System. http://
www.bluetooth.com/, December 1999. Bluetooth
Special Interest Group document.

J. Bray and C. Sturman. Connection Without Ca-
bles. Prentice Hall, 2001.

Blueware: Bluetooth simulator for ns.
nms.lcs.mit.edu/projects/blueware/.
J. Haartsen. The Bluetooth Radio System. IEEE
Personal Communications Magazine, pages 28-36,
February 2000.

N. Johansson, F. Alriksson, and U. Jonsson.
JUMP Mode- A Dynamic Window-based Schedul-
ing Framework for Bluetooth Scatternets. In ACM
Symposium on Mobile Ad Hoc Networking and
Computing, Long Beach, CA, October 2001.

C. Law, A. K. Mehta, and K.-Y. Siu. Performance
of a New Bluetooth Scatternet Formation Proto-
col. In ACM Symposium on Mobile Ad Hoc Net-
working and Computing, Long Beach, CA, October
2001.

ns-2 Network Simulator.
vint/nsnam/.

A. Racz, G. Milklos, F. Kubinszky, and A. Valko.
A Pseudo Random Coordinated Scheduling Algo-
rithm for Bluetooth Scatternets. In ACM Sympo-
stum on Mobile Ad Hoc Networking and Comput-
ing, Long Beach, CA, October 2001.

T. Salonidis, P. Bhagwat, L. Tassiulas, and
R. LaMaire. Distributed topology construction of
Bluetooth personal area networks. In Proc. IEEE
INFOCOM, Anchorage, AK, April 2001.

G. Tan. Interconnecting Bluetooth-like Personal
Area Networks. In 1st Annual Student Ozygen
Workshop, pages 45-46, Gloucester, MA, July
2001.

G. Tan. Self-organizing Bluetooth Scatternets.
Master’s thesis, Massachusetts Institute of Tech-
nology, Jan. 2002.

G. Tan and J. Guttag. A Locally Coordinated
Scatternet Scheduling Algorithm. In The 27th An-
nual IEEE Conference on Local Computer Net-
works (LCN), Tampa, FL, Nov. 2002.

G. Tan, A. Miu, H. Balakrishnan, and J. Gut-
tag. An Efficient Scatternet Formation Algorithm
for Dynamic Environments. In TJASTED Interna-
tional Conference on Communications and Com-
puter Networks (CCN(2), Cambridge, MA, Nov.
2002.

http:

http://

http://www.isi.edu/

