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ABSTRACT
The Real-Time Specification for Java (RTSJ) allows a pro-
gram to create real-time threads with hard real-time con-
straints. Real-time threads use immortal memory and
region-based memory management to avoid unbounded
pauses caused by interference from the garbage collector.
The RTSJ uses runtime checks to ensure that deleting a re-
gion does not create dangling references and that real-time
threads do not access references to objects allocated in the
garbage-collected heap. This paper presents a static type
system that guarantees that these runtime checks will never
fail for well-typed programs. Our type system therefore 1)
provides an important safety guarantee for real-time pro-
grams and 2) makes it possible to eliminate the runtime
checks and their associated overhead.

Our system also makes several contributions over previ-
ous work on region types. For object-oriented programs, it
combines region types and ownership types in a unified type
system framework. For multithreaded programs, it allows
long-lived threads to share objects without using the heap
and without having memory leaks. For real-time programs,
it ensures that real-time threads do not interfere with the
garbage collector.

We have implemented several programs in our system.
Our experience indicates that our type system is sufficiently
expressive and requires little programming overhead. We
also ran these programs on our RTSJ platform. Our experi-
ments show that eliminating the RTSJ runtime checks using
a static type system can significantly decrease the execution
time of a real-time program.

1. INTRODUCTION
The Real-Time Specification for Java (RTSJ) [6] provides

a framework for building real-time systems. The RTSJ al-
lows a program to create real-time threads with hard real-
time constraints. These real-time threads cannot use the
garbage-collected heap because they cannot afford to be in-
terrupted for unbounded amounts of time by the garbage
collector. Instead, the RTSJ allows these threads to use ob-
jects allocated in immortal memory (which is never garbage
collected) or in regions [36]. Region-based memory manage-
ment systems structure memory by grouping objects in re-
gions under program control. Memory is reclaimed by delet-
ing regions, freeing all objects stored therein. The RTSJ
uses runtime checks to ensure that deleting a region does
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not create dangling references and that real-time threads do
not access heap references.

This paper presents a static type system for writing real-
time programs in Java. Our system guarantees that the
above-mentioned RTSJ runtime checks will never fail for
well-typed programs. Our system can serve as a front-end
for the RTSJ platform. It offers two advantages to real-time
programmers. First, it provides a safety guarantee that the
program will never fail because of a failed access check. Sec-
ond, if an RTSJ implementation allows disabling the RTSJ
runtime checks, then programs written in our system can
run more efficiently without risking memory errors.

Our approach is applicable even outside the RTSJ con-
text. In fact, it could be adapted to provide safe region-
based memory management for virtually any type-safe real-
time language. Given the advantages of using regions and
immortal memory in real-time systems, we believe our tech-
nology will be relevant in whatever type-safe real-time lan-
guage eventually emerges as the industry standard.

Our system also makes several important technical con-
tributions over previous work on type systems for region-
based memory management. For object-oriented programs,
it combines region types [36, 17, 26, 30] and ownership
types [14, 13, 7, 8] in a unified type system framework.
Region types statically ensure that programs never follow
dangling references. Ownership types provide a statically
enforceable way of specifying object encapsulation. Owner-
ship types enable modular reasoning about program correct-
ness. Consider, for example, a Stack object s that is imple-
mented using a Vector subobject v. To reason locally about
the correctness of the Stack implementation, a programmer
must know that v is not directly accessed by objects outside
s. With ownership types, a programmer can declare that s
owns v. The type system then statically ensures that v is
encapsulated within s.

In an object-oriented language that only has region types
(eg., [30]), the types of s and v would declare that they are
allocated in some region r. In an object-oriented language
that only has ownership types, the type of v would declare
that it is owned by s. Our type system provides a simple
unified mechanism to declare both properties. The type of
s can declare that it is allocated in r and the type of v can
declare that it is owned by s. Our system then statically
ensures that both objects are allocated in r, that there are
no pointers to v and s after r is deleted, and that v is en-
capsulated within s. We thus combine the benefits of region
types and ownership types.
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Our system extends region types to multithreaded pro-
grams by allowing explicit memory management for objects
shared between threads. Our system allows threads to com-
municate through objects in shared regions in addition to
the heap. A shared region is deleted when all threads exit
the region. However, programs in a system with just shared
regions (eg., [25]) will have memory leaks if two long-lived
threads communicate by creating objects in a shared region.
This is because the objects will not be deleted until both
threads exit the shared region. To solve this problem, we
introduce the notion of subregions within a shared region. A
subregion can be deleted more frequently, for example, after
each loop iteration in the long-lived threads.

Our system also introduces typed portal fields in subre-
gions to serve as a starting point for inter-thread communi-
cation. Portals also allow typed communication, so threads
do not have to downcast from Object to more specific types.
Typed communication prevents more errors statically. Our
system introduces user-defined region kinds to support sub-
regions and portal fields.

Our system extends region types to real-time programs by
using effects clauses [29] to statically check that real-time
threads do not interfere with the garbage collector. Our
system augments region kind declarations with region policy
declarations. We support two policies for creating regions
as in RTSJ. A region can be an LT (Linear Time) region, or
a VT (Variable Time) region. Memory for an LT region is
preallocated at region creation time, so allocating an object
in an LT region only takes time proportional to the size of
the object (because all the bytes have to be zeroed). Mem-
ory for a VT region is allocated on demand, so allocating
an object in a VT region takes variable time. Our system
checks that real-time threads do not use heap references,
create new regions, or allocate objects in VT regions.

Most previous region type systems allow programs to cre-
ate, but not follow, dangling references. Such references can
cause a safety problem when used with copying collectors.
We therefore prevent a program from creating dangling ref-
erences in the first place.

Contributions
To summarize, this paper makes the following contributions:

• Region types for object-oriented programs: Our
system combines region types and ownership types in a
unified type system framework that statically enforces
object encapsulation as well as enables safe region-
based memory management.

• Region types for multithreaded programs: Our
system introduces subregions within a shared region,
so long-lived threads can share objects without using
the heap and without having memory leaks. Our sys-
tem also introduces typed portal fields to serve as a
starting point for typed inter-thread communication.
Our system introduces user-defined region kinds to
support subregions and portals.

• Region types for real-time programs: Our system
allows programs to create LT (Linear Time) and VT
(Variable Time) regions as in RTSJ. It checks that
real-time threads do not use heap references, create
new regions, or allocate objects in VT regions, so that
they do not wait for unbounded amounts of time.

• Type inference: Our system uses a combination of
intra-procedural type inference and well-chosen defaults
to significantly reduce programming overhead. Our
approach permits separate compilation.

• Experience: We implemented several programs in
our system. Our experience indicates that our type
system is sufficiently expressive and requires little pro-
gramming overhead. We also ran these programs on
our RTSJ platform [4, 5, 22]. Our experiments show
that eliminating the RTSJ dynamic checks using a
static type system can significantly speed-up a real-
time program.

Outline
The paper is organized as follows. Section 2 describes our
type system. Section 3 describes our experimental results.
Section 4 presents related work. Section 5 concludes.

2. TYPE SYSTEM
This section presents our type system for safe region-based

memory management. Sections 2.1, 2.2, and 2.3 provide an
informal sketch of the type system. Section 2.4 presents
some of the important rules for typechecking. The full set
of rules are in the appendix. Section 2.5 describes type in-
ference techniques that reduce programming overhead. Sec-
tion 2.6 describes how programs in written our system are
translated to run on our RTSJ platform.

2.1 Regions for Object Oriented Programs
This section presents our type system for region-based

memory management in object-oriented programs. It com-
bines region types [36, 17, 26, 30] and ownership types [14,
13, 7, 8]. Region types statically ensure that programs using
region-based memory management are memory-safe, that
is, they never follow dangling references. Ownership types
provide a statically enforceable way of specifying object en-
capsulation. The idea is that an object can own subobjects
that it depends on, thus preventing them from being ac-
cessible outside. (An object a depends on subobject b [28]
if a calls methods of b and furthermore these calls expose
mutable behavior of b in a way that affects the invariants
of a.) Object encapsulation enables local reasoning about
program correctness. Ownership types have also been used
for statically preventing data races [9] and deadlocks [7] in
Java programs, for supporting safe lazy upgrades in object-
oriented databases [8], and for program understanding [3].
Our type system is based on the type system in [8].

Ownership Relation Objects are allocated in regions.
Every object in our system has an owner. An object can be
owned by another object, or by a region. We write o1 ºo o2

if o1 directly or transitively owns o2 or if o1 is the same as
o2. The relation ºo is thus the reflexive transitive closure
of the owns relation. Our type system statically guarantees
the properties in Figure 1. O1 states that our ownership
relation has no cycles. O2 states that if an object is owned
by a region, then that object and all its subobjects are allo-
cated in that region. O3 states the encapsulation property
of our system, that if y is inside the encapsulation boundary
of z and x is outside, then x cannot access y.1 An object x

1Our system handles inner class objects specially to support
constructs like iterators. Details can be found in [8].
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O1. The ownership relation forms a forest of trees.

O2. If region r ºo object x, then x is allocated in r.

O3. If object z ºo y but z 6ºo x, then x cannot access y.

Figure 1: Ownership Properties

R1. For any region r, heap º r and immortal º r.

R2. x ºo y =⇒ x º y.

R3. If region r1 ºo object o1, region r2 ºo object o2, and
r1 º r2, then o2 cannot contain a pointer to o1.

Figure 2: Outlives Properties

accesses an object y if x has a pointer to y, or methods of
x obtain a pointer to y. Figure 6 shows an example owner-
ship relation. We draw a solid line from x to y if x owns y.
Region r2 owns s1, s1 owns s1.head and s1.head.next, etc.

Outlives Relation Our system allows a program to create
regions. Our system also provides two special regions: the
garbage collected region heap, and the “immortal” region
immortal. The lifetime of a region is the time interval from
when the region is created until it is deleted. If the lifetime
of region r1 includes the lifetime of region r2, we say that
r1 outlives r2, and write r1 º r2. We extend the outlives
relation to include objects. The extension is natural: if
object o1 owns object o2, then o1 outlives o2, because o2

is accessible only through o1. Also, if region r owns object
obj , then obj is allocated in r, and therefore r outlives obj .
In all cases, x ºo y implies x º y. Our outlives relation
has the properties shown in Figure 2. R1 states that heap
and immortal outlive all regions. R2 states that the outlives
relation includes the ownership relation. R3 implies that
there are no dangling references in our system. Figure 6
shows an example outlives relation. We draw a dashed line
from region x to region y if x outlives y. In the example,
region r1 outlives region r2, and heap and immortal outlive
all regions. Using the above definitions, we can prove the
following easy lemmas:

Lemma 1. If object o1 º object o2, then o1 ºo o2.

Lemma 2. If region r º object o, then there exists a unique
region r’ such that r º r ′ and r ′ ºo o.

Grammar To simplify the presentation of key ideas behind
our approach, we describe our type system formally in the
context of a core subset of Java known as Classic Java [21].
Our approach, however, extends to the whole of Java and
other similar languages. Figure 3 presents the grammar for
our core language. A program consists of a series of class
declarations followed by an initial expression. A predefined
class Object is the root of the class hierarchy.

Owner Polymorphism Every class definition is parame-
terized with one or more owners. (This is similar to para-
metric polymorphism [32, 10, 1] except that our parameters
are values, not types.) An owner can be an object or a re-
gion. Parameterization allows programmers to implement a
generic class whose objects can have different owners. The

P ::= def ∗ e
def ::= class cn 〈formal+〉 extends c

where constr ∗ { field ∗ meth ∗ }
formal ::= k fn

c ::= cn 〈owner+〉 | Object〈owner 〉
owner ::= fn | r | this | initialRegion

field ::= t fd
meth ::= t mn 〈formal ∗〉((t p)∗) where constr ∗ { e }

constr ::= owner owns owner | owner outlives owner |
t ::= c | int | RHandle〈r〉
k ::= Owner | ObjOwner | rkind

rkind ::= Region | GCRegion | NoGCRegion | LocalRegion
e ::= v | h heap | h immortal | let v = e in { e } |

v.fd | v.fd = v | v.mn 〈owner ∗〉(v∗) |
new c | (RHandle〈r〉 h) { e }

h ::= v

cn ∈ class names
fd ∈ field names

mn ∈ method names
fn ∈ formal identifiers

v, p ∈ variable names
r ∈ region identifiers (including heap, immortal)

Figure 3: Grammar for Object Oriented Programs

1

3

2

user defined region kinds

user defined region kinds

���������

�
	����������
� ������� ���

� ������������� ��� ���������������

� ���! #"$������� ��� %�&� ��'��()������� ���

�+*-, ���.�������

Figure 4: Owner Kind Hierarchy: Section 2.1 uses
only Area 1. Sections 2.2 & 2.3 use Areas 2 & 3.

first formal owner is special: it owns the this object; the
other owners propagate the ownership information. If neces-
sary, methods can declare an additional list of formal owner
parameters. Each time new formals are introduced, pro-
grammers can specify constraints between them using where

clauses [18]. The constraints have the form “o1 owns o2”
(i.e., o1 ºo o2) and “o1 outlives o2” (i.e., o1 º o2).

Each formal has an owner kind. There is a subkinding
relation between owner kinds, resulting in the kind hier-
archy from the upper half of Figure 4. The hierarchy is
rooted in Owner, that has two subkinds: ObjOwner (owners
that are objects, we avoid using Object because it is already
used for the root of the class hierarchy) and Region. Region
has two subkinds: GCRegion (the kind of the garbage col-
lected heap) and NoGCRegion (for the normal regions). Fi-
nally, NoGCRegion has a single subkind, LocalRegion. (At
this point, there is no distinction between NoGCRegion and
LocalRegion. We will add new kinds in the next sections.)

Region Creation The expression “(RHandle〈r〉 h) {e}”
creates a new region and introduces two identifiers r and h
that are visible inside the scope of e. r is an owner of kind
LocalRegion that is bound to the newly created region. h
is a runtime value of type RHandle〈r〉 that is bound to the
handler of the region r. The region name r is only a type-
checking entity; it is erased (together with all the ownership
and region type annotations) immediately after typecheck-
ing. However, the region handle h is required at runtime
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when we allocate objects in region r; object allocation is ex-
plained in the next paragraph. The newly created region is
outlived by all regions that existed when it was created; it is
destroyed at the end of the scope of e. This corresponds to a
“last in first out” region lifetime. As we mentioned before, in
addition to the user created regions, we have special regions:
the garbage collected region heap (with handle h heap) and
the “immortal” memory immortal (with handle h immortal).
Objects allocated in the immortal region are never deallo-
cated. heap and immortal are never destroyed; hence, they
outlive all regions. We also allow methods to allocate ob-
jects in initialRegion. The special region initialRegion denotes
the most recent region that was created before the method
was called. We use runtime support to acquire the handle
of initialRegion.

Object Allocation New objects are created using the ex-
pression “new cn 〈o1..n〉”. o1 is the owner of the new object.
If o1 is a region, the new object is allocated there; otherwise,
it is allocated in the region where the object o1 is allocated.
For the purpose of typechecking, region handles are unnec-
essary. However, at runtime we need a handle of the region
we allocate in. The type rules check that we can obtain such
a handle (more details in Section 2.4). If o1 is a region r,
a handle of r must be in the environment. Therefore, if a
method has to allocate memory in a specific region that is
passed to it as an owner parameter, then it also needs to
receive the corresponding region handle as an argument.

We can instantiate a formal owner parameter with an in-
scope formal, a region name, or the this object. For every
type cn 〈o1..n〉 with multiple owners, our type system stati-
cally enforces the constraint that oi º o1, for all i ∈ {1..n}.
In addition, if an object of type cn 〈o1..n〉 has a method mn ,
and if a formal owner parameter of mn is instantiated with
an object obj , then our system ensures that obj º o1. These
restriction enable the type system to statically enforce ob-
ject encapsulation and prevent dangling references.

Example We illustrate our type system with the example
in Figure 5. A TStack is a stack of T objects. It is imple-
mented using a linked list. The TStack class is parameter-
ized by stackOwner and TOwner. stackOwner owns the new
TStack object and TOwner owns the T objects contained in
the TStack. The code specifies that the stack object owns
the list; therefore the list cannot be accessed from outside
the stack object. The program creates two regions r1 and r2

such that r1 outlives r2, and declares several stacks: s1 is
a stack allocated in region r2, whose elements are allocated
in r2; s2 is a stack allocated in r2, with elements in r1;
etc. However, the declaration of s6 does not typecheck. It
is declared as a stack allocated in r1, with elements from r2.
In each instantiation of TStack, all owners must outlive the
first owner, but r2 does not outlive r1; if this declaration
were legal, when r2 is deallocated we would obtain several
dangling pointers from the TNode objects. Figure 6 presents
the ownership and the outlives relations from this example,
(assuming the stacks contain two elements each). We use
circles for objects, rectangles for regions, solid arrows for
ownership and dashed arrows for the outlives relation be-
tween regions.

Safety Guarantees The following two theorems summa-
rize our safety guarantees. Theorem 3.1 states the memory

class TStack<Owner stackOwner, Owner TOwner> {
TNode<this, TOwner> head = null;

void push(T<TOwner> value) {
TNode<this, TOwner> newNode = new TNode<this, TOwner>;
newNode.init(value, head); head = newNode;

}

T<TOwner> pop() {
if(head == null) return null;
T<TOwner> value = head.value; head = head.next;
return value;

}
}

class TNode<Owner nodeOwner, Owner TOwner> {
T<TOwner> next;
TNode<nodeOwner, TOwner> next;

void init(T<TOwner> v, TNode<nodeOwner, TOwner> n) {
this.value = v; this.next = n;

}
}

(RHandle<r1> h1) {
(RHandle<r2> h2) {

TStack<r2, r2> s1;
TStack<r2, r1> s2;
TStack<r1, immortal> s3;
TStack<heap, immortal> s4;
TStack<immortal, heap> s5;

/* TStack<r1, r2> s6; illegal! */
/* TStack<heap, r1> s7; illegal! */

} }

Figure 5: Stack of T Objects

s1.head
(TNode)

s1 (TStack)

(TNode)
s1.head.next

s2 (TStack)

s2.head
(TNode) (TNode)

s2.head.next

s3 (TStack)

s3.head
(TNode) (TNode)

s3.head.next

s1.head.value
(T)

s2.head.value
(T)

(T)
s1.head.next.value

(T)
s2.head.next.value

(T)
s3.head.next.value

s3.head.value
(T)

r2

immortalheap

r1

Figure 6: TStack Ownership and Outlives Relations

safety property. Theorems 3.2 and 4 state the object encap-
sulation property. Note that objects owned by regions are
not encapsulated within other objects.

Theorem 3. If objects o1 and o2 are allocated in regions
r1 and r2 respectively, and field fd of o1 points to o2, then

1. r2 outlives r1.

2. Either owner of o2 ºo o1, or owner of o2 is a region.

Proof. Suppose class cn〈f1..n〉{... T 〈x1, ...〉 fd ...} is the
class of o1. Field fd of type T 〈x1, ...〉 contains a reference to
o2. x1 must therefore own o2. x1 can therefore be either 1)
heap, or 2) immortal, or 3) this, or 4) fi, a class formal. In
the first two cases, r2 = x1 º r1, and owner of o2 = x1 is a
region. In Case 3, r2 = r1 º r1, and owner of o2 = o1 ºo o1.
In Case 4, we know that fi º f1, since all owners in a legal
type outlive the first owner. Therefore, owner of o2 = x1 =
fi º f1 º this = o1. If owner of o2 is an object, we know
from Lemma 1 that owner of o2 ºo o1. This also implies
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that r2 = r1 º r1. If the owner of o2 is a region, we know
from Lemma 2 that there exists region r such that owner of
o2 º r and r ºo o1. For the last relation to be true, r2 = r
º r1.

Theorem 4. If a variable v in a method mn of an object
o1 points to an object o2, then either owner of o2 ºo o1, or
owner of o2 is a region.

Proof. Similar to the proof of Theorem 3, except that
now we have a fifth possibility for the owner of o2: a formal
method parameter that is a region or initialRegion (that are
not required to outlive o1). In this case, owner of o2 is a
region. The other four cases are identical.

2.2 Regions for Multithreaded Programs
In this section, we extend our language to allow multi-

threaded programs. Figure 7 presents the language exten-
sions. A fork is similar to a method call, except that the
invoked method is evaluated in a concurrent thread; the
parent thread does not wait for the completion of the new
thread, and the result of the method is not used. Our un-
structured concurrency model (similar to Java’s model) is
incompatible to the regions from Section 2.1 whose lifetime
is lexically bound. Those regions can still be used for allocat-
ing objects that are thread local (hence the name of the asso-
ciated region kind, LocalRegion), but objects shared by mul-
tiple threads require shared regions, of kind SharedRegion.

Shared Regions “(RHandle〈rkind r〉 h) {e}” creates a
shared region (ignore rkind for the moment); inside expres-
sion e, the identifiers r and h are bound to the region, re-
spectively the region handle. Inside e, r and h can be passed
to children threads. The objects allocated inside a shared
region are not deallocated as long as some thread can still ac-
cess them. To ensure this, each thread maintains a stack of
shared regions it can access, and each shared region main-
tains a counter of how many such stacks it is an element
of. When a new shared region is created, it is pushed on
the stack and its counter is initialized to 1. A child thread
inherits all the shared regions of its parent thread; the coun-
ters of these regions are incremented when the child thread
is forked. When the scope of a region name ends (the names
of the shared regions are still lexically scoped, even if their
lifetimes are not), the corresponding region is popped off
the stack and its counter is decremented. When a thread
terminates, the counters of all the regions from its stack are
decremented. If the counter of a region ever becomes zero,
the region is deleted. The typing rule for fork checks that
no argument passed to the started thread is allocated in a
local region; it also checks that no owner passed to the child
thread is a local region.

Subregions and Portals Shared regions provide the ba-
sis of inter-thread communication. However, in many cases,
they are not enough. E.g., imagine two threads, a producer
and a consumer, that communicate through a shared region
in a repetitive way. In each iteration, the producer allocates
some objects in the shared region, that are subsequently
used by the consumer. These objects become unreachable
after each iteration. However, these objects are not deallo-
cated until the two threads terminate and exit the shared
region. To solve this memory leak, we allow shared regions
to have subregions. In each iteration, the producer and the

P ::= def ∗ srkdef ∗ e

srkdef ::= regionKind srkn 〈formal ∗〉 extends srkind
where constr ∗ { field ∗ subsreg∗ }

rkind ::= ... as in Figure 3 ... | srkind
srkind ::= srkn 〈owner ∗〉 | SharedRegion

subsreg ::= srkind rsub

e ::= ... as in Figure 3 ... |
fork v.mn 〈owner ∗〉(v∗) |
(RHandle〈rkind r〉 h) { e } |
(RHandle〈r〉 h = [new]opt h.rsub) { e } |
h.fd | h.fd = v

srkn ∈ shared region kind names
rsub ∈ shared subregion names

Figure 7: Extensions for Multithreaded Programs

consumer enter a subregion of the shared region and use it
to allocate/read the object they want to communicate. At
the end of the iteration, both threads exit the subregion, its
reference count goes to zero, and its objects are deallocated.
To allow the two threads to pass the references of the ob-
jects they want to communicate, we allow (sub)regions to
have portal fields. Notice that storing the references in the
fields of a “hook” object is not possible: objects allocated
outside the subregion cannot point down inside the region
and objects allocated in the subregion do not survive be-
tween iterations, hence being unusable as “hooks”.

Region Kinds In practice, programs can declare several
shared region kinds. Each such kind extends another shared
region kind and can declare several fields and/or subregions
(see grammar rule for srkdef in Figure 7). The resulting
shared region kind hierarchy has SharedRegion as its root.
The new owner kind hierarchy consists of Areas 1 and 2
from Figure 4. Similar to classes, shared region kinds can
be generalized with respect to a list of owners that are used
in the field types; unlike objects, regions are not owned by
anybody so there is no special meaning attached to the first
owner. “(RHandle〈r2〉 h2 = [new]opt h1.rsub) {e}” evalu-
ates expression e in an environment where r2 is bound to the
subregion rsub of the region r1 that h1 is a handle of, and h1

is bound to the handle of r. In addition, if the keyword new

is present, r is a newly created region, distinct from the pre-
vious rsub subregion. If h is a handle of a region r, “h.fd ”
reads r’s shared field fd , and “h.fd = v” stores a value into
that field. The rule for region fields is the same as that for
object fields: a shared field of a region r is required to point
to an object allocated in r or in a region that outlives r.

Example Figure 8 contains an example that illustrates
the use of region fields and subregions. The main thread cre-
ates a shared region of kind CommunicationRegion and then
starts two threads, a producer and a consumer, that commu-
nicate through the shared region. In each iteration, the pro-
ducer enters the buffer subregion (of kind FrameBuffer),
allocates a Frame object in it, and stores a reference to the
frame in subregion’s field f. Next, the producer exits the
subregion and waits for the consumer. As f is non-null, the
subregion is not flushed. The consumer enters the subre-
gion, uses the frame object pointed to by its f field, sets
that field to null, and exits the subregion. Now, the sub-
region is flushed (its counter is zero and all its fields are
null) and a new iteration is able to start. In this paper, we
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regionKind FrameBuffer extends SharedRegion {
Frame<this> f;

}

regionKind CommunicationRegion extends SharedRegion {
FrameBuffer buffer;

}

class Producer<CommunicationRegion r> {
void run(RHandle<r> h) {

while(true) {
(RHandle<FrameBuffer buffer> hbuffer = h.buffer) {
Frame<buffer> frame = new Frame<buffer>;
grab_image(frame);
hbuffer.f = frame;

}
... // wake up the consumer
... // wait for the consumer

}}}

class Consumer<CommunicationRegion r> {
void run(RHandle<r> h) {

while(true) {
... // wait for the producer
(RHandle<FrameBuffer buffer> hbuffer = h.buffer) {
Frame<buffer> frame = hbuffer.f;
hbuffer.f = null;
process_image(frame);

}
... // wake up the producer

}}}

(RHandle<CommunicationRegion r> h) {
fork (new Producer<r>).run(h);
fork (new Consumer<r>).run(h);

}

Figure 8: Producer Consumer Example

do not discuss synchronization issues; the synchronization
primitives in the example are similar to those in Java.

Flushing Subregions When all the objects in a subregion
become inaccessible, the subregion is flushed, i.e., all objects
allocated inside it are deallocated. We do not flush a subre-
gion if its counter is positive. Furthermore, we do not flush
a subregion r if any of its portal fields is non-null (to allow
some thread to enter it later and use those objects) or if
any of r’s subregions has not been flushed yet (because the
objects from those subregions might point to objects from
r). Recall that subregions are a way of “packaging” some
data and sending it to another thread; the receiver thread
looks inside the subregion (starting from the portal fields)
and uses the data. Therefore, as long as a subregion with
non-null portal fields is reachable (i.e., a thread may ob-
tain a handler of it), the objects allocated inside it can be
reachable even if no thread is currently in the subregion.

2.3 Regions for Real-Time Programs
A real-time program consists of a set of real-time threads

with hard real-time constraints, a set of non real-time
threads, and a special garbage collection thread. (This is
a conceptual model; actual implementations might differ.)
A real-time thread has strict deadlines for completing its
tasks. Such a thread cannot afford to be interrupted for
an unbounded amount of time by the garbage collector.
However, the garbage collector cannot execute in parallel
with a thread that creates/destroys heap roots, i.e., point-
ers to heap objects, because this might cause it to collect
reachable objects. Therefore, special care should be taken
to ensure that the real-time threads do not hold and do not

meth ::= t mn 〈formal ∗〉((t p)∗) effects where constr ∗ {e}
effects ::= accesses owner ∗

srkind ::= ... as in Figure 7 ... | NHPRegion
subsreg ::= srkind :rpol rsub

rpol ::= LT(size) | VT
k ::= ... as in Figure 3 ... | rkind :LT

e ::= ... as in Figure 7 ... |
(RHandle〈rkind :rpol r〉 h) { e } |
NoGC fork v.mn 〈owner ∗〉(v∗)

Figure 9: Extensions for Real-Time Programs

overwrite any heap reference. (The last restriction is needed
to support copying collectors.) The language extensions for
real-time programs are in Figure 9.

Effects The expression “NoGC fork v.mn 〈owner ∗〉(v∗)”
starts a real-time thread that is guaranteed not to require
any interaction with the garbage collector. To statically
check this, we introduce method effects. The effect clause
of a method lists the owners (some of them regions) that
the method accesses. Accessing a region means allocat-
ing an object in that region. Accessing an object means
reading/overwriting a reference to that object or allocating
another object owned by it; notice that in our system read-
ing/writing a field of an object is not considered an access to
that object. If a method’s effects clause consists of the own-
ers o1..n then that method and the methods it invokes and
the threads that it starts (transitively) are guaranteed to
access only objects and regions owned by o1..n (transitively
and reflexively). The typing rule for a NoGC fork expression
checks all the constraints for a normal fork expression: lo-
cal regions or objects allocated in local regions cannot be
passed to the started thread as owner/normal parameters.
It also checks that no parameter is a heap object. Finally,
it checks that none of the owners mentioned in the effects
of the started thread method is heap or an object allocated
in heap. If a NoGC fork expression typechecks, the started
thread does not receive any heap reference; also, it cannot
obtain one by creating an object in the heap or by reading a
heap reference from an object field: the type system makes
sure that in both cases heap or an object allocated in heap
appears in the method effects.

Region Allocation Policies Our system supports two al-
location policies for regions. One policy is to allocate mem-
ory on demand, as new objects are created in a region. Our
runtime system allocates memory at the granularity of mem-
ory pages. For efficiency, we can have our own trivial alloca-
tor run inside these pages. Pages allocated for a region can
be chained into a linked list. We can maintain a pointer to
the first free address inside the last page. When we need to
allocate a new object, we can simply slide that pointer. If
this makes the pointer go outside its page, we can allocate
a new page, and allocate the new object at its beginning.
Allocating a new object can take unbounded time (or might
not even succeed), because of the possible memory page al-
location. Flushing the region frees all the memory pages
allocated for that region. Following the RTSJ terminology,
we call such regions VT (Variable Time) regions.

The other policy is to allocate all the memory for a region
at its creation. The programmer must provide an upper
bound for the total size of the objects that will be allocated
in the region. Allocating an object requires sliding a pointer,
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E2 = E, LocalRegion r, RHandle〈r〉 h, (re º r)∀re∈Regions(E)
P `env E2 P; E2; X, r; r ` e : t E ` X ºo heap

P; E; X; rcr ` (RHandle〈r〉 h) {e} : int

P; E; X; rcr ` e : cn 〈o1..n〉 P ` (t fd ) ∈ cn 〈(ki fni)i∈{1..n}〉
t′ = t[o1/fn1]..[on/fnn] t′ = cn 〈o′1..m〉 → E ` X ºo o′1

P; E; X; rcr ` e.fd : t′

class cn 〈(ki fni)i∈{1..n}〉 ... where constr1..c ... ∈ P
∀i ∈ {1..m}, (E `k oi : k ′i P ` k ′i ≤k ki) E ` oi º o1

∀i ∈ {1..c}, E ` constri[o1/fn1]..[om/fnm]
E ` X ºo o1 E `av RH(o1)

P; E; X; rcr ` new cn 〈o1..n〉 : cn 〈o1..n〉

P; E; X; rcr ` v0.mn 〈o1..n〉(v1..k) : t
∀i ∈ {0..k}, (E `v RKind(vi) = rkindi ∧ rkindi 6= LocalRegion)
∀i ∈ {1..n}, (E `o RKind(oi) = rkind′i ∧ rkind′i 6= LocalRegion)

E `o RKind(rcr) = kcr kcr 6= LocalRegion
P; E; X; rcr ` fork v0.mn 〈o1..n〉(v1..k) : int

E = E1, RHandle〈r〉 h, E2
E `av RH(r) E `av RH(this)

E ` o1 ºo o2 E `av RH(o2)
E `av RH(o1)

E ` o1 ºo o2 E `av RH(o1)
E `av RH(o2)

Figure 10: Some Typechecking Rules. The Complete Set of Rules is in the Appendix.

but if we try to overflow the region, we do not allocate any
new memory page. Instead, we throw an exception to signal
that the region size was too small. Allocating a new object is
linear in its size: sliding the pointer takes constant time, but
we also have to set to zero each allocated byte. Flushing the
region simply resets a pointer, and, importantly, does not
free the memory allocated for the region. We call regions
that use this allocation policy LT (Linear Time) regions.
Once we have an LT subregion, we can repeatedly enter it,
allocate objects in it, exit it (thus flushing it), and re-enter
it without having to allocate a new chunk of memory. This
is possible because flushing an LT region does not free its
memory. LT regions are ideal for real-time threads: once
such a region is created (with a large enough upper bound),
all memory allocation will succeed, in linear time; moreover,
the region can be flushed and reused without memory allo-
cation.

We allow the user to specify the region allocation pol-
icy (LT or VT) when a new region is created. The pol-
icy for the subregions is declared in the shared region kind
declarations. When we specify an LT policy, we also have
to specify the size of the region (in bytes). An expression
“(RHandle〈rkind :rpol r〉 h) {e}” creates a region with al-
location policy rpol and allocates memory for all its (tran-
sitive) (sub)regions (including itself) that are LT regions.
Our type system checks that a region has a finite number of
transitive LT subregions. Each time we enter a VT region,
or an LT top level region (i.e., a region that is not a sub-
region), the typechecker requires that heap is in the effects.
This is not required when entering an existing LT subregion
because no memory is allocated in that case.

No Heap Pointers Regions The garbage collector needs
to know all locations that point to heap objects, including
those locations that are inside regions. Moreover, a moving
collector might have to write to these locations. Suppose we
have a real-time thread that uses an LT region that contains
several such locations (these heap pointers might have been
created by a non real-time thread). The real-time thread
can flush the region (by exiting it), re-enter it and allocate
objects inside it, thus possibly writing at any location in-
side the LT region, including those that may be written by
the garbage collector! There are several ways of solving this
data race: 1) synchronize with the garbage collector, which
might introduce unbounded delays, 2) use a conservative
non-moving collector, and 3) require that a real-time thread
uses only regions that do not contain any heap reference
(regardless of whether the thread actually reads those ref-
erences or not). Our system uses the third solution, which
allows it to work with any garbage collector.

We introduce a new shared region kind, NHPRegion (No
Heap Pointers Region). A shared region of this kind does
not contain any object with a field pointing to a heap object.
Programmers can define shared region kinds that (transi-
tively) extend NHPRegion. The extended owner kind hier-
archy now includes all three areas from Figure 4. A real-time
thread is allowed to enter only regions of kind NHPRegion
(or a subkind of it). We enforce this by requiring that each
time the program enters a region whose kind is not a sub-
kind of NHPRegion, heap is among the effects. (Recall that
the typing rule for NoGC fork does not allow the body of a
child thread to have heap in its effects.) To enforce that a
NHPRegion region does not contain any heap reference, each
time we enter such a region we check that the code cannot
manipulate any heap reference, similar to the way we check
a NoGC fork expression.

2.4 Rules for Typechecking
The previous sections presented the grammar for our core

language in Figures 3, 7, and 9. This section presents some
of the important type rules. The full set of rules and the
complete grammar can be found in the appendix. Figure 10
presents several (simplified) typechecking rules from our sys-
tem. At the core of our type system lies a set of rules of
the form P; E; X; rcr ` e : t. Such a rule means that in
program P, environment E and current region rcr, expres-
sion e has type t, and accesses only objects/regions that
are owned by the owners from the effect list X. The en-
vironment E stores information about the identifiers from
the current scope: the type of each variable, the owner kind
of each formal owner parameter or region, and the own-
ership/outlives relation between these owners. Formally,
E ::= ∅ | E, t v | E, k o | E, o2 ºo o1 | E, o2 º o1.

A useful auxiliary rule is E ` X1 ºo X2, i.e., the effects
X1 subsume the effects X2: ∀o ∈ X2, ∃g ∈ X1, s.t. g ºo o.
To prove constraints of the form g ºo o, g º o etc. in a spe-
cific environment E, the checker uses the constraints from
E, and the properties of º and ºo: transitivity, reflexivity,
ºo implies º, and the first owner from the type of an object
owns the object.

The expression “(RHandle〈r〉 h) {e}” creates a local re-
gion and evaluates e in an environment where r and h are
bound to the new region, respectively to its handle. The
associated rule constructs an environment E2 that extends
the original environment E by recording that r has kind
LocalRegion and h has type RHandle〈r〉. As r is deleted at
the end of e, all existing regions outlive it; E2 records this
too. e should typecheck according to the environment E2

and the permitted effects X, r (the local region r is a per-
mitted effect inside e). Because creating a region requires
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memory allocation, X must subsume heap. The expression is
evaluated only for its side-effects; this way, we avoid prob-
lems with the case when e evaluates to an object from r.
Hence, the type of the entire expression is int.

The rule for a field read expression “e.fd ” first checks e
and finds its type cn 〈o1..n〉. Next, it verifies that fd is a field
of class cn ; let t be its declared type. We obtain the type
of the entire expression by replacing in t each formal owner
parameter fni of cn with the corresponding owner oi. If the
expression reads an object, the rule checks that X subsumes
the owner of that object.

In the case of “new cn 〈o1..n〉”, we first check that the
class cn is defined in P. Next, we check that each formal
owner parameter fni of cn is instantiated with an owner oi

of appropriate kind, i.e., the kind k ′i of oi (provided by E)
is a subkind of the declared kind of fni. We also check that
in E, each owner oi outlives the first owner o1, and each
constraint of cn is satisfied. Allocating a (sub)object means
accessing its owner; therefore, we require that X subsumes
o1. The new object is allocated in the region o1 stands for
(if it is a region) or o1 is allocated in (if it is an object).
The rule E `av RH(o1) checks that a handle for this region
is available. If o1 ∈ {heap, immortal} this is trivially true;
otherwise, we use the bottom four rules from Figure 10.
If o1 is a region, the first rule looks for its handle into the
environment. The next two rules use the fact that all objects
are allocated in the same region as their owner. Therefore,
if o1 ºo o2 and we have the region handle for one of them,
we have the region handle for the other one. Finally, our
runtime is able to find the handle of a region where an object
(this in particular) is allocated. Notice that these rules do
significant reasoning, thus reducing annotation burden.

The case of fork is similar to that of a method call. In ad-
dition, the rule checks that the started thread receives only
regions that are not local (i.e., GCRegion and SharedRegion
regions) or objects allocated in such regions. For this, it re-
trieves the kinds of the regions that the owners stand for or
are allocated in and checks that none of these is LocalRegion;
similarly for the kinds of the regions where the parameters
are allocated. The rules for retrieving these region kinds (not
shown here) are similar to those for checking that a region
handle is available, rules that we explained in the previous
paragraph. The key idea they exploit is that a subobject is
allocated in the same region as its owner.

2.5 Type Inference
Although our type system is explicitly typed in principle,

it would be onerous to fully annotate every method with the
extra type information that our system requires. Instead,
we use a combination of inference and well-chosen defaults
to significantly reduce the number of annotations needed in
practice. We emphasize that our approach to inference is
purely intra-procedural and we do not infer method signa-
tures or types of instance variables. Rather, we use a default
completion of partial type specifications in those cases. This
approach permits separate compilation.

If owners of method local variables are not specified, we
use a simple unification-based approach to infer the owners.
The approach is similar to the ones in [9, 7]. For parameters
unconstrained after unification, we use initialRegion. For un-
specified owners in method signatures, we use initialRegion as
the default. For unspecified owners in instance variables, we
use the owner of this as the default. For static fields, we use

null

w2

Subregions

m

Portal

Memory space for region m

w1

Objects
allocated

in m

Region
fields

Figure 11: Translation of a region with three fields
and two subregions.

immortal as the default. Our default accesses clauses contain
all class and method owner parameters and initialRegion.

2.6 Translation to Real-Time Java
Although our system provides significant improvements

over RTSJ (static guarantees, subregions etc.), our language
can be translated to RTSJ in a reasonably easy way, by local
translation rules. This is mainly due to the fact that being
able to do type erasure was a key design goal; e.g., region
handles exist specifically for this purpose. Also, RTSJ has
mechanisms that are powerful enough to support our fea-
tures. RTSJ offers LTMemory and VTMemory regions where
it takes linear time, respectively variable time to allocate
objects. RTSJ regions are Java objects that point to some
memory space. In addition, RTSJ has two special regions:
heap and immortal. A thread can allocate in the current
region using new. A thread can also allocate in any re-
gion that it entered using newInstance, which requires a
region object. RTSJ regions are maintained similarly to our
shared regions, by counting the number of threads executing
in them. RTSJ regions have one portal, which is similar to
a region field except that its declared type is Object. Most
of the translation effort is focused on providing the missing
features: subregions and multiple, typed region fields. We
discuss the translation of several important features from
our type system; the full translation is discussed in [35].

We represent a region r from our system as an RTSJ re-
gion m plus two auxiliary objects w1 and w2 (Figure 11). m

points to a memory area that is pre-allocated for an LT re-
gion, or grown on-demand for a VT region. m also points
to an object w1 whose fields point to the representation of
r’s subregions. (We subclass LT/VTMemory to add an extra
field.) In addition, m’s portal points to an object w2 that
serves as a wrapper for r’s fields. w2 is allocated in the
memory space attached to m, while m and w1 are allocated
in the current region at the moment m was created.

The translation of “new cn 〈o1..n〉” requires a reference
to (i.e., a handle of) the region we allocate in. If this is
the same as the current region, we use the more efficient
new. The type rules already proved that we can obtain
the necessary handle, i.e., E `av RH(o1), using the four bot-
tom rules from Figure 10. Those rules “pushed” the state-
ment E `av RH(o) up and down the ownership relation until
we obtained an owner for which we can obtain the handle:
immortal, heap, this, or a region for which we have a vari-
able that holds the region handle. RTSJ provides mech-
anisms for retrieving the handle in the first three cases:
ImmortalArea.instance(), HeapArea.instance(), respec-
tively MethodArea.getMethodArea(Object). In the last case,
we simply use the handle variable.
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Program Lines of Code Lines Changed
Array 56 4
Tree 83 8
Water 1850 31
Barnes 1850 16
ImageRec 567 8
http 603 20
game 97 10
phone 244 24

Figure 12: Programming Overhead

Execution Time (sec)
Program Static Dymanic Overhead

Checks Checks
Array 2.24 16.2 7.23
Tree 4.78 23.1 4.83
Water 2.06 2.55 1.24
Barnes 19.1 21.6 1.13
ImageRec 6.70 8.10 1.21

load 0.667 0.831 1.25
cross 0.014 0.014 1.0
threshold 0.001 0.001 1
hysteresis 0.005 0.006 1
thinning 0.023 0.026 1.1
save 0.617 0.731 1.18

Figure 13: Dynamic Checking Overhead

3. RESULTS
To gain preliminary experience, we implemented several

programs in our system. These include two synthetic pro-
grams (Array and Tree), two scientific computations (Water
and Barnes), several components of an image recognition
pipeline (load, cross, threshold, hysteresis, and thinning), and
several simple servers (http, game, and phone, a database-
backed information sever). In each case, once we understood
how the program worked, adding the extra type annotations
was fairly straight forward. Figure 12 presents a measure of
the programming overhead involved. The figure shows the
lines of code that needed type annotations. In most cases,
we only had to change code where regions were created.

We also used our RTSJ implementation to measure the
execution times of these programs both with and without
the dynamic referencing and assignment checks as speci-
fied in the Real-Time Specification for Java. Figure 13
presents the running times of the benchmarks both with
and without dynamic checks in the absence of garbage col-
lection. Our synthetic programs (Array and Tree) were writ-
ten specifically to maximize the check overhead—our de-
velopment goal was to maximize the ratio of assignments
to other computation. The synthetic programs exhibit the
largest performance increases—they run approximately 7.2
and 4.8 times faster, respectively, without checks. The per-
formance improvements for the scientific programs and im-
age processing components provides a more realistic picture
of the check overhead. These programs have more modest
performance improvements, running up to 1.25 times faster
without checks. For the servers, the running time is domi-
nated by the network processing overhead and check removal
has virtually no effect. We present the overhead of dynamic
referencing and assignment checks in this paper. For a de-
tailed analysis of the performance of a full range of RTSJ
features, see [15, 16].

4. RELATED WORK
The seminal work in [37, 36] introduces a static type sys-

tem for region-based memory management for ML. Our sys-
tem extends this to object-oriented programs by combining
the benefits of region types and ownership types in a unified
type system framework. Our system extends region types
to multithreaded programs by allowing long-lived threads
to share objects without using the heap and without having
memory leaks. Our system extends region types to real-time
programs by ensuring that real-time threads do not interfere
with the garbage collector.

[2] provides a static analysis to free some regions early
to avoid the constraints of LIFO region lifetimes in [37,
36]. Capability Calculus [17] proposes a general type sys-
tem for freeing regions based on linear types. Vault’s type
system [19] allows a region to be freed before it leaves scope.
These systems are more expressive than our framework. How-
ever, these systems do not handle object-oriented programs
and the consequent subtyping, multithreaded programs with
shared regions, or real-time programs with real-time threads.
Moreover, we can augment our system with linear types and
other techniques used in the above systems. In fact, other
systems have already combined ownership-based type sys-
tems and unique pointers [11, 9, 3].

RegJava [30] describes a region type system for object-
oriented programs that handles subtyping and method over-
riding. We improve on this by combining the benefits of
ownership types and region types in a unified framework.
Cyclone [26] is a dialect of C with a region type system. An
extension to Cyclone handles multithreaded programs and
provides shared regions [25]. Our work improves on this
by providing subregions in shared regions and portal fields
in subregions, so that long-lived threads can share objects
without using the heap and without having memory leaks.
Other systems for regions [23, 24] use runtime checks to en-
sure memory safety. These systems are more flexible, but
they do not statically ensure safety.

To our knowledge, ours is the first static type system that
handles memory management in real-time programs. [31,
20] automatically translate Java code into RTSJ code us-
ing off-line dynamic analysis to determine the lifetime of
an object. Unlike our system, this system does not require
type annotations. It does, however, impose a runtime over-
head and it is not safe because the dynamic analysis might
miss some execution paths. Programmers can use this dy-
namic analysis to obtain suggestions for region type anno-
tations. If a program typechecks, the suggested annotations
were sound. We expect such tools to be of great value in
helping programmers write precise type annotations. We
previously used escape analysis [34] to remove RTSJ run-
time checks [33]. However, the analysis works only for some
programs. Our type system is more flexible.

5. CONCLUSIONS
The Real-Time Specification for Java (RTSJ) allows a pro-

gram to create real-time threads with hard real-time con-
straints. The RTSJ uses runtime checks to ensure mem-
ory safety. This paper presents a static type system that
guarantees that these runtime checks will never fail for well-
typed programs. Our type system therefore 1) provides an
important safety guarantee for real-time programs and 2)
makes it possible to eliminate the runtime checks and their
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associated overhead. Our system also makes several con-
tributions over previous work on region types. For object-
oriented programs, it combines region types and ownership
types in a unified type system framework. For multithreaded
programs, it allows long-lived threads to share objects with-
out using the heap and without having memory leaks. For
real-time programs, it ensures that real-time threads do not
interfere with the garbage collector. We have implemented
several programs in our system. Our experience indicates
that our type system is sufficiently expressive and requires
little programming overhead. We also ran these programs
on our RTSJ platform. Our experiments show that elimi-
nating the RTSJ runtime checks using a static type system
can significantly speed-up a real-time program.
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APPENDIX

A. COMPLETE GRAMMAR
P ::= def ∗ srkdef ∗ e

def ::= class cn 〈formal+〉 extends c where constr ∗ {field ∗ meth ∗}
formal ::= k fn

c ::= cn 〈owner+〉 | Object〈owner 〉
owner ::= fn | r | this | initialRegion

field ::= t fd
meth ::= t mn 〈formal ∗〉((t p)∗) effects where constr ∗ {e}

effects ::= accesses owner ∗
constr ::= owner owns owner | owner outlives owner

t ::= c | int | RHandle〈r〉

srkdef ::= regionKind srkn 〈formal ∗〉 extends srkind where constr ∗ {field ∗ subsreg ∗}
subsreg ::= srkind :rpol rsub
srkind ::= srkn 〈owner ∗〉 | SharedRegion | NHPRegion
rkind ::= srkind | Region | NoGCRegion | GCRegion | LocalRegion
rpol ::= LT(size) | VT

k ::= Owner | ObjOwner | rkind | rkind :LT

e ::= v | h heap | h immortal | let v = e in { e } |
v.fd | v.fd = v | v.mn 〈owner ∗〉(v∗) | new c |
fork v.mn 〈owner ∗〉(v∗) | NoGC fork v.mn 〈owner ∗〉(v∗) |
(RHandle〈r〉 h) { e } |
(RHandle〈rkind :rpol r〉 h) { e } |
(RHandle〈r〉 h = [new]opt h.rsub) { e } |
h.fd | h.fd = v

h ::= v

cn ∈ class names
fd ∈ field names

mn ∈ method names
fn ∈ formal identifiers

v, p ∈ variable names
r ∈ region identifiers (including heap and immortal)

srkn ∈ shared region kind names
rsub ∈ shared subregion names
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B. TYPE RULES
In this section, we formally describe our type system. To simplify the presentation of key ideas, we

describe our type system in the context of the previously introduced small language. However, our approach
extends to the whole of Java and other similar languages. Throughout this section, we try to use the same
notations as in the grammar. To save space, we use o instead of owner and f instead of formal . We also
use g and a as alternate variables ranging over the set of owners. We also suppose the program source has
been preprocessed by replacing each constraint “o1 owns o2” with non-ASCII, but shorter form “o1 ºo o2”
and each constraint “o1 outlives o2” with “o1 º o2.”

The core of our type system is a set of typing judgments of the form P; E; X; rcr ` e : t. The meaning of
such a rule is that in the context of the program P, environment E, e yields type t and accesses only objects
(transitively) owned by the owners from X (X is simply a list of owners: X ::= o∗). P, the program being
checked, is included to provide information about class definitions. The typing environment E provides
information about the type of the free variables of e (t v, i.e., variable v has type t), the kind of the owners
currently in scope (k o. i.e., owner o has kind k), and the two relations between owners: the “ownership”
relation (o2 ºo o1, i.e., o2 owns o1) and the “outlives” relation (o2 º o1, i.e., o2 outlives o1). More formally,
E ::= ∅ | E, t v | E, k o | E, o2 ºo o1 | E, o2 º o1.

The table below presents the format and the meaning of all our typing rules:

Typing rule Meaning
` P : t Program P has type t.
P `def def def is a well formed class definition from program P .
P `srkdef srkdef j srkdef j is a well formed shared region kind definition from program P .
P;E; X; rcr ` e : t In program P, environment E, and current region rcr, expression e has

type t. Its evaluation accesses only objects (transitively) outlived by
owners listed in the effects X.

P `env E E is a well formed environment with respect to program P .
P;E `meth meth Method definition meth is well defined with respect to program P and

environment E.
P ` mbr ∈ c Class c defines or inherits “member” definition mbr . “Member” refers

to a field or a method: mbr = field | meth .
P ` rmbr ∈ rkind Shared region kind rkind defines or inherits “region member” defini-

tion rmbr . “Region member” refers to a field or a subregion: rmbr =
field | subsreg .

P;E `type t t is a well formed type with respect to program P and environment E.
P ` t1 ≤ t2 t1 is a subtype of t2, with respect to program P.
P;E `okind k k is a well formed owner kind, with respect to program P and environ-

ment E.
P ` k1 ≤k k2 k1 is a subkind of k2, with respect to program P and environment E.
E ` X2 ºo X1 Effect X1 is subsumed by effect X2, with respect to environment E.
E ` constr In environment E, constr is well formed (i.e., the owners involved in it

are well formed) and satisfied.
E `k o : k In environment E, o is a well formed owner with kind k.
E `o RKind(o) = k Owner o is allocated in a region of kind k.
E `v RKind(v) = k v points to an object allocated in a region of kind k.
E `av RH(o) The handle of the region o is allocated in (if o is an object) or o stands

for (if it is a region) is available in the environment E.
E ` o2 ºo o1 In environment E, owner o2 (an object or a region) owns owner o1 (which

must be an object).
E ` o2 º o1 In environment E, owner o2 outlives owner o1.

We use several auxiliary predicates, almost all of them very straightforward. The only exception is
InheritanceOK (P) which will be defined formally later. The table below presents a description of these
auxiliary predicates:
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Predicate Meaning
WFClasses(P) No class is defined twice and there is no cycle in the class hierarchy.
WFRegionKinds(P) No region kind is defined twice and there is no cycle in the region kind

hierarchy.
FieldsOnce(P) No class or region kind contains two fields with the same name, either

declared or inherited.
MethodsOnce(P) No class declares two methods with the same name.
InheritanceOK (P) The requirements (i.e., constraints) of a sub-class/kind are included in

the super-class/kind requirements. For overriding methods, in addition
to the usual subtyping relations between the return/parameter types,
the requirements of the overrider are included in the overridden method
requirements; similarly for the effects. This predicate will be formally
defined later.

B.1 Well Typed Programs: ` P : t

[PROG]

WFClasses(P) WFRegionKinds(P) FieldsOnce(P) MethodsOnce(P) InheritanceOK (P)
P = def 1..n srkdef 1..r e ∀i ∈ {1..n}, P `def def i ∀i ∈ {1..r}, P `srkdef srkdef j

P; ∅;world; heap ` e : t
` P : t

B.2 Well Formed Environments: P `env E

[ENV ∅]

P `env ∅

[ENV v]

P `env E
v 6∈ Dom(E)
P; E `type t

P `env E, t v

[ENV OWNER]

P `env E
o 6∈ Dom(E)
P;E `okind k
P `env E, k o

[ENV ºo]

P `env E
E `k o1 : ObjOwner

E `k o2 : k
P `env E, o1 ºo o2

[ENV ¹]

P `env E
E `k o1 : k1

E `k o2 : k2

P `env E, o1 º o2

where Dom(∅) = ∅
Dom(E, t v) = {v} ∪Dom(E)
Dom(E, k o) = {o} ∪Dom(E)
Dom(E, ) = Dom(E), otherwise

B.3 Well Formed Class Definitions:P `def def

[CLASS DEF]

def = class cn 〈(ki fni)i∈{1..n}〉 extends c where constr1..c {field1..m meth1..p} P = ... def ...
E = ∅, (ki fni)i∈{1..n}, constr1..c, cn 〈fn1..n〉 this, (fni º fn1)i∈{2..n} P `env E P; E `type c

∀j ∈ {1..m}, (field j = tj fd j P;E `type tj) ∀k ∈ {1..p}, P; E `meth methk

P `def def

B.4 Well Formed Shared Region Kind Definitions:P `srkdef srkdef

[REGION KIND DEF]

srkdef = regionKind srkn 〈(ki fni)i∈{1..n}〉 extends r where constr1..c { field1..m subsreg1..s }
P = ... srkdef ...

E = ∅, (ki fni)i∈{1..n}, constr1..c, srkn 〈fn1..n〉 this, (fni º this)i∈{1..n} P `env E P;E `okind r
∀j ∈ {1..m}, (field j = tj fd j P; E `type tj)

∀k ∈ {1..s}, (subsregk = srkindk rsubk P; E `srkind srkindk)
P `srkdef srkdef
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B.5 Well Formed Types: P;E `type t

[TYPE INT]

P;E `type int

[TYPE OBJECT]

E `k o : k
P; E `type Object〈o〉

[TYPE REGION HANDLE]

E `k r : k P ` k ≤k Region
P; E `type RHandle〈r〉

[TYPE C]

P = ... def ... def = class cn 〈(ki fni)i∈{1..n}〉 ... where constr1..c ...
∀i ∈ {1..n}, (E `k oi : k ′i ∧ P ` k ′i ≤k ki ∧ E ` oi º o1)

∀i ∈ {1..c}, E ` constr i[o1/fn1]..[on/fnn]
P; E `type cn 〈o1..n〉

B.6 Subtyping Rules:P ` t1 ≤ t2

[SUBTYPE REFL]

P ` t ≤ t

[SUBTYPE TRANS]

P ` t1 ≤ t2
P ` t2 ≤ t3
P ` t1 ≤ t3

[SUBTYPE CLASS]

P `def class cn 〈(ki fni)i∈{1..n}〉
extends cn2〈fn1 o∗〉 ...

P ` cn 〈o1..n〉 ≤ cn2〈fn1 o∗〉[o1/fn1]..[on/fnn]

B.7 Well Formed Owner Kinds: P;E `okind k

[STANDARD OWNERS]

k ∈ {Owner,ObjOwner, Region, GCRegion,
NoGCRegion, NHPRegion, LocalRegion, SharedRegion}

P; E `okind k

[LT REGIONS]

P;E `okind rkind
P; E `okind rkind :LT

[USER DECLARED SHARED REGION]

P `srkdef regionKind srkn 〈(ki fni)i∈{1..n}〉 ... where constr1..c ...
∀i ∈ {1..n}, (E `k oi : k ′i P ` k ′i ≤k ki)
∀i ∈ {1..c}, E ` constr i[o1/fn1]..[on/fnn]

P; E `okind srkn 〈o1..n〉
B.8 Owner Subkinding Rules: P ` k1 ≤k k2

[SUBKIND OWNER]

k ∈ {ObjOwner,Region}
P ` k ≤k Owner

[SUBKIND REGION]

k ∈ {GCRegion, NoGCRegion}
P ` k ≤k Region

[SUBKIND NOGCREGION]

k ∈ {LocalRegion,SharedRegion}
P ` k ≤k NoGCRegion

[SUBKIND NHPREGION]

P ` NHPRegion ≤k SharedRegion

[SUBKIND SHARED REGION KIND]

P `srkdef regionKind srkn 〈(ki fni)i∈{1..n}〉 extends r ...
P ` srkn 〈o1..on〉 ≤k r[o1/fn1]..[on/fnn]

[DELETE LT]

P ` rkind :LT ≤k rkind

[ADD LT]

P ` rkind1 ≤k rkind2

P ` rkind1 :LT ≤k rkind2 :LT

[SUBKIND REFL]

P ` k ≤k k

[SUBKIND TRANS]

P ` k1 ≤k k2 P ` k2 ≤k k3

P ` k1 ≤k k3

[SUBKIND VALUE]

P ` Value ≤k k
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B.9 Well Formed Methods: P;E `meth meth

[METHOD]

E′ = E, f1..n, constr1..c, (tj pj)j∈{1..p}, Region initialRegion, RHandle〈initialRegion〉 hfresh

P `env E′ P;E′; a1..q; initialRegion ` e : t
P; E `meth t mn 〈f1..n〉((tj pj)j∈{1..p}) accesses a1..q where constr1..c {e}

B.10 Methods/Fields Defined in a Class:P ` field ∈ c and P ` meth ∈ c

In the next two rules, let mbr = field | meth be a class member (i.e., a field / method definition).

[DECLARED CLASS MEMBER]

P `def class cn 〈(ki fni)i∈{1..n}〉 ... {... mbr ... }
P ` mbr ∈ cn 〈fn1..n〉

[INHERITED CLASS MEMBER]

P ` mbr ∈ cn 〈fn1..n〉
P `def class cn2〈(ki fn ′i)i∈{1..m}〉 extends cn 〈o1..n〉...

P ` mbr [o1/fn1]..[on/fnn] ∈ cn2〈fn ′1..m〉
B.11 Subregions/Fields Defined in a Region Kind:P ` field ∈ rkind and

P ` subsreg ∈ rkind

In the next two rules, let rmbr = field | subsreg be a region member (i.e., a field / subregion definition).

[DECLARED REGION MEMBER]

P `srkdef regionKind srkn 〈(ki fni)i∈{1..n}〉 ... { ... rmbr ... }
P ` rmbr ∈ srkn 〈fn1..n〉

[INHERITED REGION MEMBER]

P ` rmbr ∈ srkn 〈fn1..n〉
P `srkdef regionKind srkn 〈(ki fn ′i)i∈{1..m}〉 extends srkn 〈o1..n〉 ...

P ` rmbr [o1/fn1]..[on/fnn] ∈ srkn2〈fn ′1..m〉
B.12 Effect subsumption:E ` X1 ºo X2

[X1 ºo X2]

X1 = o1..n X2 = g1..m

∀i ∈ {1..n}, ∃j ∈ {1..m}, E ` oj ºo gi

E ` X1 ºo X2

We frequently use a special case of this rule, E ` X ºo o, where the second effect, i.e., list of owners,
consists of a single owner.

B.13 Provable Constraints:E ` constr

[ENV CONSTR]

E = E1, constr , E2

E ` constr
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[ºo world]

E ` world º o

[ºo OWNER]

E = E1, cn 〈o1..n〉 this, E2

E ` o1 ºo this

[ºo REFL]

E ` o ºo o

[ºo TRANS]

E ` o1 ºo o2 E ` o2 ºo o3

E ` o1 ºo o3

[ºo → º ]

E ` o1 ºo o2

E ` o1 º o2

[º heap/immortal]

o1 ∈ {heap, immortal}
E ` o1 º o2

[º REFL]

E ` o º o

[º TRANS]

E ` o1 º o2 E ` o2 º o3

E ` o1 º o3

B.14 Well Formed Owners: E `k o : k

[OWNER THIS]

E = E1, cn 〈...〉 this, E2

E `k this : Owner

[OWNER FORMAL]

E = E1, k o, E2

E `k o : k

[OWNER HEAP]

E `k heap : GCRegion

[OWNER IMMORTAL]

E `k immortal : SharedRegion

B.15 Region Kind: E `o RKind(o) = k and E `v RKind(v) = k

[RKIND THIS]

E `v RKind(this) = k
E `o RKind(this) = k

[RKIND FN1]

E `k o : k
k 6∈ {Owner,ObjOwner}

E `o RKind(o) = k

[RKIND FN2]

E `k o : k
k ∈ {Owner, ObjOwner}

E ` o2 ºo o E `o RKind(o2) = k2

E `o RKind(fn ) = k2

[RKIND INT]

E = E1, int v, E2

E `v RKind(v) = Value

[RKIND CLASS]

E = E1, cn 〈o1..n〉 v, E2

E `o RKind(o1) = k
E `v RKind(v) = k

B.16 Available Region Handlers:E `av RH(o)

[AV HEAP]

E `av RH(heap)

[AV IMMORTAL]

E `av RH(immortal)

[AV HANDLE]

E = E1, RHandle〈r〉 h, E2

E `av RH(r)

[AV THIS]

E = E1, cn 〈o1..n〉 this, E2

E `av RH(this)

[AV TRANS1]

E ` o1 ºo o2 E `av RH(o2)
E `av RH(o1)

[AV TRANS2]

E ` o1 ºo o2 E `av RH(o1)
E `av RH(o2)

B.17 Well Typed Expressions:P;E; X; rcr ` e : t

[EXPR VAR]

E = E1, t v, E2

P;E; X; rcr ` v : t

[EXPR LET]

P;E; X; rcr ` e1 : t1 E′ = E, t1 v
P `env E′ P; E′; X; rcr ` e2 : t2

P; E;X; rcr ` let v = e1 in e2 : t2

[EXPR NEW]

P;E `type c c = cn 〈o1..n〉
E `av RH(o1) E ` X ºo o1

P;E; X; rcr ` new c : c
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[EXPR H HEAP]

P;E; X; rcr ` h heap : RHandle〈heap〉

[EXPR H IMMORTAL]

P; E; X; rcr ` h immortal : RHandle〈immortal〉

[EXPR REF READ]

P;E; X; rcr ` v : cn 〈o1..n〉
P ` (t fd ) ∈ cn 〈fn1..n〉
t′ = t[o1/fn1]..[on/fnn]

t′ = cn 〈o′1..m〉 → E ` X ºo o′1
P; E; X; rcr ` v.fd : t′

[EXPR REF WRITE]

P; E; X; rcr ` v1 : cn1〈o1..n〉
P;E; X; rcr ` v2 : t2

P ` (t fd ) ∈ cn1〈fn1..n〉
t′ = t[o1/fn1]..[on/fnn] P ` t2 ≤ t′

t′ = cn ′〈g1..m〉 → E ` X ºo g1

P; E; X; rcr ` v1.fd = v2 : t′

[EXPR INVOKE]

P; E;X; rcr ` v : cn 〈o1..n〉 ∀i ∈ {(n + 1)..m}, E ` oi º o1

P ` t mn 〈(ki fni)i∈{(n+1)..m}〉((tj pj)j∈{1..k}) accesses Xm where constr1..c {e} ∈ cn 〈fn1..n〉
Rename(α)

def
= α[o1/fn1]..[om/fnm][rcr/initialRegion]

∀i ∈ {1..k}, (P; E;X; rcr ` vi : t′i ∧ P ` t′i ≤ Rename(ti))
∀i ∈ {(n + 1)..m}, (E `k oi : k ′i ∧ P ` k ′i ≤k Rename(ki))

E ` X ºo Rename(Xm) ∀i ∈ {1..c}, E ` Rename(constr i)
P; E;X; rcr ` v.mn 〈o(n+1)..m〉(v1..k) : Rename(t)

[EXPR REGION]

P;E `okind rkind rkind = srkn 〈〉 P ` rkind ≤k Region

kr =
{

rkind :LT if rpol = LT(size)
rkind otherwise E2 = E, kr r, RHandle〈r〉 h

E3 =
{

E2, (re º r)∀re∈Regions(E) if P ` rkind ≤k LocalRegion
E2 otherwise P `env E3

X2 =

{ {o ∈ X | E `o RKind(o) = ki ∧ P ` ki ≤k NoGCRegion}
if P ` rkind ≤k NHPRegion

X otherwise
P; E3; X2, r; r ` e : t E ` X ºo heap

P ` rkind ≤k NHPRegion → ∀v ∈ FreeVars(e), (E `v RKind(v) = k ∧ P ` k ≤k NoGCRegion)
P;E; X; rcr ` (RHandle〈rkind :rpol r〉 h) {e} : int

where FreeVars(e) is the set of free variables from e and Regions(E) is the set of all regions mentioned in
E:

Regions(∅) = ∅
Regions(E, rkind r) = Regions(E) ∪ {r}
Regions(E, ) = Regions(E), otherwise

[EXPR SUBREGION]

P; E; X; rcr ` h2 : RHandle〈r2〉 E `k r2 : srkn2〈o1..n〉
P ` rkind3 :rpol rsub ∈ srkn2〈fn1..n〉 rkind = rkind3[o1/fn1]..[on/fnn][r2/this]

kr =
{

rkind :LT if rpol = LT(size)
rkind otherwise E2 = E, kr r, RHandle〈r〉 h, r2 º r P `env E2

X2 =

{ {o ∈ X | E `o RKind(o) = ki ∧ P ` ki ≤k NoGCRegion}
if P ` rkind ≤k NHPRegion

X otherwise
P; E2; X2, r; r ` e : t

new ∨ ¬(P ` rkind ≤k NHPRegion) ∨ (rpol = V T ) → E ` X ºo heap
P ` rkind ≤k NHPRegion → ∀v ∈ FreeVars(e), (E `v RKind(v) = k ∧ P ` k ≤k NoGCRegion)

P;E; X; rcr ` (RHandle〈r〉 h1 = [new]opt h2.rsub) {e} : int
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[EXPR LOCALREGION]

P;E; X; rcr ` (RHandle〈LocalRegion :VT r〉 h) {e} : int
P; E;X; rcr ` (RHandle〈r〉 h) {e} : int

[EXPR FORK]

P; E;X; rcr ` v0.mn 〈o1..n〉(v1..k) : t

NonLocal(k)
def
= (P ` k ≤k SharedRegion) ∨ (P ` k ≤k GCRegion)

∀i ∈ {0..k}, (E `v RKind(vi) = ki ∧ NonLocal(ki))
∀i ∈ {1..n}, (E `o RKind(oi) = k ′i ∧ NonLocal(k ′i))

E `o RKind(rcr) = kcr NonLocal(kcr)
P;E; X; rcr ` fork v0.mn 〈o1..n〉(v1..k) : int

[EXPR NOGCFORK]

∀i ∈ {0..m}, (E `v RKind(vi) = ki ∧ P ` ki ≤k SharedRegion :LT)
∀i ∈ {1..n}, (E `o RKind(oi) = k ′i ∧ P ` k ′i ≤k SharedRegion :LT)

E `o RKind(rcr) = kcr P ` kcr ≤k SharedRegion :LT
X ′ = {o ∈ X | E `o RKind(o) = ki ∧ P ` ki ≤k SharedRegion}

P; E; X ′; rcr ` v0.mn 〈o1..n〉(v1..m) : t
P; E;X; rcr ` NoGC fork v0.mn 〈o1..n〉(v1..m) : int

[EXPR GET REGION FIELD]

P; E; X; rcr ` h : RHandle〈r〉 E `k r : srkn 〈o1..n〉
P ` t fd ∈ srkn 〈fn1..n〉 t′ = t[o1/fn1]..[on/fnn][r/this]

E ` X ºo r ((t′ = int) ∨ (t′ = cn 〈o′1..m〉 ∧ E ` X ºo o′1))
P; E; X; rcr ` h.fd : t′

[EXPR SET REGION FIELD]

P; E; X; rcr ` h : RHandle〈r〉 E `k r : srkn 〈o1..n〉
P ` t fd ∈ srkn 〈fn1..n〉 t1 = t[o1/fn1]..[on/fnn][r/this]

P; E; X; rcr ` v : t′ P ` t′ ≤ t1 E ` X ºo r
P;E; X; rcr ` h.fd = v : t1

B.18 Correct Method Overriding: InheritanceOK (P)

[INHERITANCEOK PROG]

P = def 1..n srkdef 1..r e ∀i ∈ {1..n}, P ` InheritanceOK (def i)
∀i ∈ {1..r}, P ` InheritanceOK (srkdef i)

InheritanceOK (P)

[INHERITANCEOK CLASS]

def = class cn 〈(ki fni)i∈{1..n}〉 extends cn 〈o1..m〉 where constr1..q ...
def ′ = class cn ′〈(k ′i fn ′i)i∈{1..m}〉 extends c where constr ′1..u ...

P `def def ′ constr1..u[o1/fn ′1]..[om/fn ′m] ⊆ constr ′1..q
∀mn , ( P ` meth ∈ def ∧ meth = tr mn 〈...〉(...) ... ∧

P ` meth ′ ∈ def ′ ∧ meth = t′r mn 〈...〉(...) ... )
→ P ` OverridesOK (meth ,meth ′)

P ` InheritanceOK (def )

18



[OVERRIDESOK METHOD]

meth = tr mn 〈f1..n〉((ti pi)i∈{1..m}) accesses a1..q where constr1..r ...
meth ′ = t′r mn 〈f1..n〉((t′i p′i)i∈{1..m}) accesses a′1..s where constr ′1..u ...

P ` t′r ≤ tr ∀i ∈ {1..m}, P ` ti ≤ t′i
a′1..q ⊆ a1..s constr ′1..r ⊆ constr1..u

P ` OverridesOK (meth ,meth ′)

[INHERITANCEOK REGION KIND]

srkdef = regionKind srkn 〈f1..n〉 extends srkn ′〈o1..m〉 where constr1..q ...
srkdef ′ = regionKind srkn ′〈(k ′i fn ′i)i∈{1..m}〉 extends srkind where constr ′1..s ...

P `srkdef srkdef ′ constr1..s[o1/fn ′1]..[om/fn ′m] ⊆ constr ′1..q

P ` InheritanceOK (srkdef )
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C. TRANSLATION TO RTSJ
In this section, we present details on how we translate programs written in our system to RTSJ programs

using local translation rules. The following subsections show the translation for expressions that create or
enter regions, access region fields, allocate objects, or start threads. The translation for the other language
constructs is trivial—we do a simple type-erasure based translation. In this section, we use bold font for
the generated code and italic font (default font for mathematical notation in LATEX) for the expressions
that are evaluated at translation time.

C.1 Region Representation
Similar to our system, RTSJ allows the programmers to create memory regions (“memory areas” in

RTSJ terminology). It also has two special memory areas: a garbage-collected heap and an immortal
memory area. A memory area is a normal Java objects that also point to a piece of memory for the
objects allocated in that memory area. Figure 14 presents the RTSJ hierarchy of classes for memory
management. The root of this hierarchy, MemoryArea, is subclassed by HeapMemory, ImmortalMemory and
ScopedMemory. HeapMemory and ImmortalMemory represent the heap, respectively the immortal memory
area; there exists only one instance of each of them. ScopedMemory is the class for normal regions; it
has two subclasses: LTMemory (for LT regions) and VTMemory (for VT regions). The RTSJ regions are
maintained similarly to our shared regions: each thread has a stack of regions it can currently access, and
each region has counter of how many threads can access it.
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Figure 14: RTSJ hierarchy of memory management related classes and our extensions to it.

We translate each region from our system into a memory area and some additional objects. Figure 15
presents the translation into RTSJ of a region r with three fields and two subregions. We represent r as
an RTSJ memory area m plus two auxiliary objects w1 and w2. m points to a piece of memory that is
pre-allocated for an LT region, or grown on-demand for a VT region. m also points to an object w1 whose
fields point to the representation of r’s subregions (we subclass LT/VTMemory to add an extra field); these
subregions are represented in the same way as r. (Note that we only allow a region to have a bounded
number of subregions.) In addition, m’s portal points to an object w2 that serves as a wrapper for r’s
fields. w2 is allocated in the memory space attached to m, while m, w1, and all the similar objects for the

null

w2

Subregions

m

Portal

Memory space for region m

w1

Objects
allocated

in m

Region
fields

Figure 15: Translation of a region with three fields and two subregions
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public interface Irkind extends IRegion {
rkind Subs getSubs();

rkind Fields getFields();

}

public class rkind Fields {
∀ field (t fd ) ∈ rkind

public t fd ;

}

public class rkind Subs {
∀ subregion (srkinds :rpols rsub) ∈ rkind

public Isrkinds rsub;

}

Figure 16: Declaration of Irkind for representing regions of kind rkind

public interface IRegion {
boolean isFlushed();

void setIsFlushed(boolean value);

void tryToFlush();

boolean isASubregion();

void setIsASubregion(boolean value);

AtomicInteger getNInside();

AtomicInteger getNExiting();

}

Figure 17: Declaration of IRegion, the common super type of Irkind s

representation of r’s transitive subregions are allocated in the current region at the time m was created.

There are several differences between RTSJ memory areas and our regions. The following list presents
them, together with our translation for each case; Figure 16 presents the classes and interfaces we introduce
along the way.
1. To ensure proper nesting of memory area enter/exit operations, RTSJ uses the following mechanism

for executing code inside a memory area: the program calls the enter method of the memory area
object and passes it a Runnable object; the run() method of this object is executed inside the memory
area. To translate an expression of the form “(RHandle〈rkind :rpol r〉 h) {e}” into this pattern, we
have to create Runnable objects.

2. RTSJ does not have thread-local memory areas. Therefore, we have to translate the local regions into
memory areas that are maintained through thread counting; even if we know that only one thread
uses them. This is less efficient than a genuine implementation of local regions but is still correct.

3. An RTSJ memory area has one portal field, similar to our region fields, except that it is untyped
(i.e., has type Object). To allow multiple and typed region fields, for each region kind rkind from
our system, we introduce a field wrapper class rkindFields (Figure 16) that contains a field for each
original field. For each region of kind rkind , the portal of the corresponding memory area points to
an object of class rkindFields allocated in that memory area.

4. RTSJ does not have anything equivalent to our subregions. To simulate them, for each region kind
rkind , we introduce a subregion wrapper class rkindSubs (Figure 16) that has one field for each
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import javax.realtime.*;

import java.util.concurrent.atomic.*;

public class LTrkind extends LTMemory implements Irkind {
private boolean isFlushed;

public boolean isFlushed() { return isFlushed; }
public boolean setIsFlushed(boolean value) { isFlushed = value; }
private boolean isASubregion;

public boolean isASubregion() { return isASubregion; }
private rkind Subs subs;

public rkind Subs getSubs() { return subs; }
public rkind Fields getFields() { return (rkind Fields) getPortal(); }
private AtomicInteger n_inside = new AtomicInteger(0); // number of threads inside

public AtomicInteger getNInside() return n_inside;

public AtomicInteger n_exiting = new AtomicInteger(0); // number of threads exiting

public AtomicInteger getNExiting() return n_exiting; // See JSR 166

public LTrkind (boolean isASubregion, int size) {
super(size);

this.flushed = true; this.isASubregion = isASubregion;

this.subs = new rkind Subs();

∀ subregion (srkinds :rpols rsub) ∈ rkind , generate

subs.rsub =

if rpol s = LT(size) new LTsrkinds(true, size);

else new VTsrkinds(true);

}

public void tryToFlush() {
if(canFlush()) {

setIsFlushed(true); setPortal(null);

rkind Subs subs = getSubs();

if(!isASubregion()) {
∀ subregion (rkinds :rpols rsub) ∈ rkind , generate

IRegion sr = subs.rsub;

if(!sr.isFlushed()) sr.tryToFlush();

}}}

private boolean canFlush() {
if(getReferenceCount() != 1) return false;

if(!isASubregion()) return true;

rkind Fields fields = this.getFields();

if(fields != null) {
∀ field (t fd ) ∈ rkind , generate

if(fields.fd != null) return false;

}
rkind Subs subs = this.getSubs();

∀ subregion (srkinds :rpols rsub) ∈ rkind , generate

if(!subs.rsub.isFlushed()) return false;

return true;

}}

Figure 18: Declaration of class LTrkind . LTrkind represents regions of kind rkind , with allocation policy LT.

The declaration of VTrkind , the VT version, is almost identical, except that it subclasses VTMemory and its

constructor does not take any size parameter.
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subregion. Subregions are represented similar to their parent region. When we create a region, we
automatically create all its transitive subregions. All the memory area objects and the field wrappers
are allocated in the current region at the creation time. Each memory area that represents a region of
kind rkind implements the interface Irkind (Figure 16); this interface has special methods for retrieving
the field wrapper object and the subregion wrapper. In addition Irkind extends the interface IRegion
(Figure 17) that has some region maintenance methods.

5. Our RTSJ platform flushes a memory area when its counter changes from one to zero and its portal
is null. While designing our language, our goal was as follows. We wanted to provide semantics where
flushing or deleting of regions is transparent to programs (so one cannot detect under program control
if a region has been flushed or deleted). However, we also wanted to reclaim memory space as soon as
possible. We therefore came up with the following rules for flushing a region: we flush a subregion if
the counter is zero, all fields are null and all subregions have been flushed; we flush a region as soon
as its counter is zero (because the region won’t be used afterward). To enforce our rules, at each place
where we might exit a region we call its method tryToFlush(). This method acts as follows: if the
counter is about to become zero and our other conditions are satisfied, we set the portal field to null
such that RTSJ flushes that region; otherwise, we let it be non-null to prevent the region from being
flushed.

In RTSJ, the programmer chooses the desired allocation policy by allocating a LTMemory or a VTMemory
object. Hence, for each region kind rkind , we define two implementations of Irkind : a class LTrkind
that extends LTMemory, and a class VTrkind that extends VTMemory. This creates the class hierarchy
from Figure 14. Figure 18 presents the declaration of LTrkind . VTrkind is almost identical, except that
it inherits from VTMemory, and its constructor does not take any size argument. As Java does not have
multiple class inheritance, there is significant code duplication between LTrkind and VTrkind . This can be
improved by factoring out most of the code as static methods in one of the two classes.

In our system, we have both region names and region handles. The region names are for typechecking
purposes only that are removed by the type erasure. The region handles are runtime values; a region
handle that had the type RHandle〈r〉 in our system is translated into a reference to an object Irkind ,
where rkind is the kind of the region r.

C.2 Creating a Default Local Region
Instead of presenting directly the translation for general region creation expression of the form

“(RHandle〈rkind :rpol r〉 h) {e}”, we first look at a simplified case. An expression of the form
“(RHandle〈r〉 h) {e}” creates a local region (i.e., a region of kind LocalRegion) using the default alloca-
tion policy VT. Figure 19 presents the translation for “(RHandle〈r〉 h) {e}”. The code from Figure 19
works as follows:

1. Create region h = new VTLocalRegion(false)

2. Declare a class RE that implements the Runnable interface. Its run() method serve as a wrapper for
the expression e. We introduce several fields in RE for dealing with the free variables of e. For each
such variable v 6= this, RE has a field v of appropriate type. If this appears in e, we create a field
with a fresh name this (this refers to another object in the methods of RE ). The body of the run()
method consists of e, with each free occurrence of this substituted by this.

3. We create an instance re of RE in the current region and initialize its fields with the free variables of
e.

4. Execute e: h.enter(re);

5. Retrieve the (possibly changed) values of the free variables of e from re’s fields.

C.3 Creating a Shared Region
The translation for “(RHandle〈rkind :rpol r〉 h) {e}” is very similar to that for a local region, with

the following differences:

1. We replace line 1 with the following code:
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{
// create a new RTSJ region

1: ILocalRegion h = new VTLocalRegion(false);

// create a Runnable object to wrap the code of e

class RE implements Runnable {
// one field for h and for each free variable of e

2: ILocalRegion h;

∀ v ∈ FreeVars(e) \ {this}; let t be its type in the environment

public t v;

if this ∈ FreeVars(e); let t be its type in the environment

public t this;

public void run() {
3: translation of e[ this/this]

}
}
RE re = new RE();

// store h and all free variables of e in re’s fields

re.h = h;

∀ v ∈ FreeVars(e) \ {h, this}
re.v = v;

if this ∈ FreeVars(e)

re. this = this;

// evaluate e

((MemoryArea) h).enter(re);

// restore the values of e’s free variables

∀ v ∈ FreeVars(e) \ {h, this}
v = re.v;

}

where RE , re, and this are fresh identifiers.

Figure 19: Translation for “(RHandle〈r〉 h) {e}”
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1’: Irkind h =

if (rpol = LT(size)) new LTrkind (true, size);

else new VTrkind (true);

Accordingly, field h of the class RE (line 2) has now type Irkind .
2. The body of the run() method of class RE (line 3) is replaced with

public void run() {

int x = h.getNInside().add(1);

while (h.getNExiting().get() > 0) sleep(0,1000); // Wait until exiting threads finish exiting

if (x == 1) {
h.setIsFlushed(false);

if (h.getPortal() == null) h.setPortal(new rkind Fields());

} else {
while (h.getPortal() == null) sleep(0,1000);

}

try {

translation of e[id /this]

} finally {
h.getNExiting().add(1); // Begin exiting the region

int x = h.getNInside().add(-1);

if (x == 0) h.tryToFlush();

h.getNExiting().add(-1); // Finish exiting the region

}
}

At the beginning of the run() method, if this is the first thread entering the region, we mark the
region h as unflushed and make sure it has a non-null portal. By using the try-finally block, we
ensure that no matter how e terminates, we execute some code right before run() is exited and the
counter of memory area h is decremented. The method h.tryToFlush() enforces our region flushing
policy.

In the above code, both the beginning and the end of run() access the isFlushed field from the region
object (indirectly via tryToFlush) and its portal. We avoid race conditions with a tricky synchro-
nization mechanism that uses atomic operations defined in JSR 166 [27]. Our synchronization ensures
safety: when a thread is using a region, no other thread can flush the same region; and when a thread
is using a region, the region has a non-null portal. Our synchronization also ensures that the last
thread exiting a region flushes the region if the conditions for flushing are met.

Note that the above code has a priority inversion problem. In the above code, a thread entering a
region waits if there are threads exiting (and perhaps flushing) the region. The process of exiting the
region only takes a bounded amount of time, so normally, the wait should be for a bounded amount of
time. However, when a regular thread is exiting the region, it might be suspended for an unbounded
amount of time by the garbage collector. If a real-time thread then wants to enter the region, it might
have to wait for an unbounded amount of time for the regular thread to finish exiting the region.

The above priority inversion problem occurs even in the Real-Time Specification for Java, so we do no
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worse than the RTSJ. However, it is possible to modify our type system slightly to avoid the priority
inversion problem. We describe the modifications in Section C.9.

C.4 Entering a Subregion
The translation for “(RHandle〈r〉 h = h2.rsub) {e}” is very similar to the one from Section C.3. The

only difference is that now, instead of creating a region, we simply read one and use it. The beginning of
the translation (line 1’) becomes:

1’’: Isrkind h = h2.getSubs().h;

where rkind is the kind of the subregion rsub .

C.5 Creating a Subregion
The translation for “(RHandle〈r〉 h = new h2.rsub) {e}” is very similar to the one from Section C.3.

Only the beginning of the translation changes as follows:

1’’’: class RE implements Runnable {
VTMemory h;

VTMemory h2;

public void run() {
h =

if rpol s = LT(size) new LTrkinds(true, size);

else new VTrkinds(true);

h2.subs.rsub = h;

}
}
MemoryArea ma = MemoryArea.getMemoryArea(h2);

h2.subs.rsub.setIsASubregion(false);

RE re = new RE ();

re.h = h; re.h2 = h2;

ma.enter(re);

h = re.h; h2 = re.h2;

where rkinds is the kind of the subregion rsub , rpols is its allocation policy, and RE, re, and ma are fresh
identifiers. The above code works as follows:

1. To be consistent with our representation of regions (see Section C.1), we allocate the memory area
objects for the new subregion (and its subregions) in the same memory area where the previous
subregion was allocated. Most of the above code deals with technical details related to this operation.

2. The previous subregion is “detached” from its parent: “h2.subs.rsub.setIsASubregion(false)” to
record the fact that it cannot be entered from its parent. The first time its counter becomes zero, it
will be flushed (and subsequently deleted along with its subregions).

C.6 Manipulating Region Fields
We translate “h.fd” as follows:

((rkind Fields) h.getPortal()).fd

where rkind is the kind of the region r that h is a handle of, i.e., in the type environment, h has type
RHandle〈r〉. The translation for “h.fd = v” is similar:

((rkind Fields) h.getPortal()).fd = v
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C.7 Allocating an Object
There are no constructors in the language we presented so far. However, they are trivial to add: an

expression of the form “new cn 〈o1..n〉(e1..m)” desugars into a “new cn 〈o1..n〉” followed by a call to the
appropriate constructor. We translate “new cn 〈o1..n〉(e1..m)” as follows:

1. First, we generate Java code to retrieve the memory area where the new object is allocated. The type
rule for new already checked that E `av RH(o1), i.e., a handle for this region is available at runtime,
even after type-erasure (see the rules from Section B.16). We use the typechecker judgments to retrieve
that region. Notice that each of the rules that prove a statement of the form E `av RH(o) has at most
one such statement among its preconditions. Therefore, if we consider the part of the proof tree for
E `av RH(o1) that corresponds only to this kind of rules, we obtain a chain. We can retrieve the
relevant memory area in all cases:
[AV HANDLE] The typing environment contains a handle h of type RHandle〈r〉 for

the relevant region r. In the translated code h is a local variable that
points to the region we allocate in; we directly use (MemoryArea) h.

[AV HEAP] Allocation in heap; call HeapMemory.instance().
[AV IMMORTAL] Allocation in immortal; call ImmortalMemory.instance().
[AV THIS] Allocation in the region this is allocated in; call

MemoryArea.getMemoryArea(this)

2. Next, we generate a call to newInstance, to allocate a new object in the memory area that the
code generated at 1 evaluates to. We also recursively translate e1, . . . , em (the arguments of the
constructor).

Optimization: newInstance allows us to allocate an object in any region. However, it currently uses
reflection, e.g., for passing the class of the allocated object. Hence, it is less efficient than new, that
allocates only in the current region. The typechecker knows the current region rcr for the new expression
that we translate. For [AV HEAP], [AV IMMORTAL] and [AV HANDLE], if rcr is identical to the region
we allocate in, we use new. We can apply this optimization even in the case of [AV THIS], if the typechecker
can prove that rcr ºo this.

C.8 Forking a Thread
Figure 20 presents the translation for an expression of the form “fork v0.mn 〈o1..n〉(v1..m)”. The re-

sulting code works as follows:

1. In Java, threads are objects whose class is a subclass of java.lang.Thread. Programmers create
thread objects using new and start them by invoking their start() method. start() starts a thread
whose body is the run() method of the thread object. In RTSJ, threads that want to use regions
have to subclass javax.realtime.RealtimeThread, which itself subclasses java.lang.Thread. Ac-
cordingly, we define a class T for our thread. T has one field vi to store the value of each variable
vi.

2. The run() method of T invokes mn with the right receiver and parameters. When the thread ter-
minates, each region that is still on its stack of regions is exited. Therefore, for each such region, if
our conditions for flushing it are fulfilled, we need to make sure that it meets the conditions for being
flushed by RTSJ. Fortunately, RTSJ offers methods that allow us to examine the stack of memory
areas associated with a thread.

3. We create a instance of class T , generate code to store the result of each variable vi in the appropriate
field and next start the thread.

The only difference in the translation for “NoGC fork v0.mn 〈o1..n〉(v1..m)” is that we subclass T from
NoHeapRealtimeThread, instead of RealtimeThread. In RTSJ, a NoHeapRealtimeThread is not inter-
rupted by the garbage collector because it cannot manipulate heap references. RTSJ ensures this using
dynamic checks. Our system ensures this statically, so we can remove these dynamic checks if an RTSJ
platform allows us to do so.

C.9 Avoiding Priority Inversion Using Static Type Checking
Recall the priority inversion problem from Section C.3. A real-time thread entering a region waits for

threads exiting (and perhaps flushing) the region. If a regular thread exiting the region is suspended (for
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{
class T extends javax.realtime.RealtimeThread {
∀ i ∈ {0 , . . . ,m}, one field to store the value of vi (of type ti) :

ti vi;

public void run() {
try {

v0.mn(v1,..., vm);

} finally {
for(int i = 0; i < getMemoryAreaStackDepth(); i++) {

IRegion isr = (IRegion) getOuterMemoryArea(i);

synchronized(isr) { isr.tryToFlush(); }
}

}
} // end of run()

}
T t = new T();

∀ i ∈ {0, ..., m} generate one line of the form :

t.vi = vi;

t.start();

}

where T and t are fresh identifiers.

Figure 20: Translation for “fork v0.mn 〈o1..n〉(v1..m)”

an unbounded amount of time) by the garbage collector, the real-time thread might have to wait for an
unbounded amount of time before being able to enter the region.

We can avoid this problem by modifying our type system slightly. Note that the problem occurs only
when a regular thread and a real-time thread share a region. Note also that the problem occurs only when
a real-time thread is trying to enter a region. But since a real-time thread cannot create new regions,
it can only enter sub-regions of shared regions. Therefore, if we prevent regular threads and real-time
threads from sharing the same sub-regions, we can avoid the priority inversion problem.

Here are the necessary extensions to the type system to achieve this:

1. For space reasons, we use the names GC, NoGC threads for normal, respectively real-time threads.
For each subregion declaration, we ask the programmer to specify whether that subregion is 1) a
GC subregion (i.e., only GC threads can access it) or 2) a NoGC region (i.e., only NoGC threads can
access it). We introduce a grammar rule for the thread types tt and we update the grammar rule for
subregion declarations:

tt ::= GC | NoGC
subsreg ::= srkind :rpol tt rsub

2. When we enter a subregion, we can find out from its declaration whether it is a GC or a NoGC
subregion. We need to check that the current thread has the appropriate thread type (GC or NoGC).
For this, we modify the type judgments for expressions P; E;X; rcr ` e : t to keep track of the possible
types of threads that can execute e. The new type judgments have the form P; E; X; rcr;T ` e : t,
where T ⊆ {GC, NoGC} is the set of types of the threads that may execute e. Most of the rules just
propagate T without using it. The rule for entering a subregion is one of the exceptions:

[EXPR SUBREGION]

E; X; rcr;h2;P ` RHandle〈r2〉 : E `k r2 : srkn2〈o1..n〉
P ` rkind3 :rpol tt rsub ∈ srkn2〈(ki fni)i∈{1..n}〉 T = {tt}

... the other antecedents are unchanged ...
P; E; X; rcr; T ` (RHandle〈r〉 h1 = [new]opt h2.rsub) {e} : int
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This way, only a normal (i.e., GC) thread can execute an expression that enters a GC subregion.
Similarly, only a real-time (i.e., NoGC) thread can execute an expression that enters a NoGC subregion.
Expressions that do not enter any subregion can be executed by any thread.

3. Each method declaration should specify the types of the threads that may execute it:

meth ::= t mn 〈formal ∗〉((t p)∗) effects where constr ∗ callableFrom tt ∗ {e}
By default, if a method declaration does not have any callableFrom clause, we assume the method is
declared as callable from any thread, i.e. “callableFrom GC,NoGC”. The list of thread types from
the method declaration is used while typechecking the expression e, the body of the method:

[METHOD]

E′ = E, f1..n, constr1..c, (tj pj)j∈{1..p}, Region initialRegion, RHandle〈initialRegion〉 hfresh

P `env E′ P; E′; a1..q; initialRegion;T ` e : t
P;E `meth t mn 〈f1..n〉((tj pj)j∈{1..p}) accesses a1..q where constr1..c callableFrom T {e}

Therefore, if a method declares that a normal (i.e., GC) thread may call it, then that method cannot
be called from a NoGC thread.

4. The rule for a fork expression checks that the initial method invoked in the child thread may be called
from a GC thread. Analogously, the rule for a NoGC fork expression checks that the corresponding
method may be called from a NoGC thread.

5. We update the rule for method invocation to check that the set of types of the threads that may
execute the call expression is included in the set of types of the threads that may execute the invoked
method:

[EXPR INVOKE]

P;E; X; rcr; T ` v : cn 〈o1..n〉
P ` t mn 〈f(n+1)..m〉((tj pj)j∈{1..k}) ... callableFrom Tmn {e} ∈ cn 〈f1..n〉

T ⊆ Tmn

... the other antecedents are unchanged ...
P;E; X; rcr; T ` v.mn 〈o(n+1)..m〉(v1..k) : Rename(t)

29


