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Abstract

We extend the offline memory correctness checking scheme presented by Blum et. al [BEG+91]
to develop an offline checker that can detect attacks by active adversaries. We introduce the concept
of incremental multiset hashes, and detail one example: MSet-XOR MAC, which uses a secret key, and
is efficient as updating the hash costs a few hash and XOR operations. Using multiset hashes as
our underlying cryptographic tool, we introduce a primitive, bag integrity checking, to explain offline
integrity checking; we demonstrate how this primitive can be used to build cryptographically secure
integrity checking schemes for random access memories and disks.

Recent papers describe processors, file systems, and databases in which hash trees are used to verify
the integrity of data in untrusted storage. Checkers using hash trees are referred to as online checkers,
as the trees are used to check, after each operation, whether the storage behaved correctly. The offline
checker we describe is designed for checking sequences of operations on an untrusted storage, and, for
some applications, performs better and uses less space than a checker using a hash tree.

In this paper, we also introduce a hybrid checker, which can capture the best of both the online and
offline schemes. The hybrid checker can operate mainly as an online checker when integrity checks need
to be performed frequently, and as an offline checker when checks can be performed less frequently. The
performance of the checker is expected to be close to the better scheme for every checking period.

1 Introduction

Recent papers, [GSC+03], [MS01], [MVS00], describe systems in which a trusted program, running in a
trusted computing base (TCB), maintains data stored on untrusted storage. The untrusted storage is
typically some arbitrarily large, easily accessible, bulk store in which the program regularly stores and loads
data which does not fit in a cache in the TCB. In [GSC+03], the program runs on a trusted processor; the
untrusted storage is the external random access memory (RAM). [MS01] and [MVS00] describe a file system
and database respectively, in which the program runs on a protected client and the data is maintained on
an untrusted server.

Each of the systems provides strong data integrity guarantees without trusting the storage. The systems
use Merkle (hash) trees [Mer79] to verify the integrity of data stored on untrusted storage. A tree of hashes
is maintained over the data, and the root of the tree is kept in the TCB. On each program store, the path
from the data leaf to the root is updated. On each program load, the path from the data leaf to the root
is verified before the data is treated as valid. The hash tree is used to check, after each load operation,
whether the untrusted storage performed correctly. The scheme, thus, is a pessimistic approach to integrity
checking; more importantly, on each program load or store, there are an additional number of accesses to
the untrusted storage, which grows logarithmically with the size of the data set. As the operations are
checked after each operation, the approach is referred to as online integrity checking [BEG+91].

This paper investigates an alternative approach to verifying the integrity of untrusted storage. We
extend the work presented by Blum et al. [BEG+91] on offline memory correctness checking. The offline
approach is used to check whether the untrusted storage performed correctly after a sequence of operations
is performed. The benefit of the approach is that there is a constant overhead on the number of storage
accesses on each program load or store. Blum’s correctness checker was implemented using ε-biased hash
functions [NN90]; these hash functions can be used to detect random errors, but are not cryptographically
secure. We extend Blum’s work to produce an offline integrity checker, secure against attacks by an active
adversary.
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Offline integrity checking can be particularly efficient in an application like certified execution. In
certified execution, a program is run on a processor, and the processor produces a certificate proving that
the computation was carried out in an authentic manner on the processor and that the program produced
a particular set of results. In the application, the processor needs to know, at the end of the program’s
execution, whether the RAM performed correctly. However, in the case the check fails, it is not necessary
to know which particular operation malfunctioned, or which stored value was tampered with. Certifying
executions can be important in applications like distributed computation, where an expensive computation
is carried out by several networked computers in a highly distributed manner. The person requesting the
computation must have some assurances that, when he receives results, the results are of authentic program
executions.

Offline integrity checking can also be useful in memory-constrained devices, as a hash tree does not have
to be built, and the memory checking code and its resources (stack and heap) can be smaller. There is
some space overhead to store time stamps, but it is typically smaller than the overhead of storing a tree of
hashes.

1.1 Model
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Figure 1: Model

Figure 1 illustrates the model we use. There is a checker that keeps and maintains some small, fixed-
sized, trusted state. The untrusted storage is arbitrarily large. The finite state machine (FSM) generates
loads and stores and the checker updates its trusted state on each FSM load or store to the untrusted
storage. The checker uses its trusted state to verify the FSM’s operations on the untrusted storage. The
TCB consists of the checker and its trusted state.

The FSM may also maintain a fixed-sized cache. The cache is initially empty, and can store data
frequently accessed by the FSM. Data that is loaded into the cache is checked by the checker and the FSM
can trust the data once it is loaded into the cache.

We consider a few examples. In the case of a processor accessing data in untrusted off-chip RAM (main
memory), the FSM is the unmodified processor running a user program. The processor may have an on-chip
cache. The checker is special hardware that is added to the processor to check the processor’s loads and
stores from the RAM. In the case of a network file system, or a database, where a client computer accesses
data stored on a disk at an untrusted server, the FSM is the client running a program. The client can
contain a cache. The checker is software that is added to the client to verify the client’s operations on the
server.

The problem this paper addresses is that of checking that the untrusted storage behaves like valid storage
i.e., that the data the FSM loads from the storage is the data it is supposed to get based on what it had
previously stored on the untrusted storage. For example, for random access storage, such as RAM or disks,
the storage behaves like valid random access storage if the data value that the FSM loads from a particular
address is the same data value that the FSM most recently stored to that address.

In our model, the untrusted storage is assumed to be actively controlled by an adversary. The adversary
can perform any software or hardware-based attack on the storage. The untrusted storage may not behave
like valid storage if the storage has malfunctioned because of errors, or the data stored has been somehow
altered by the adversary. We are interested in detecting whether the storage is behaving correctly (like valid
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storage). Recovery after detection of a malfunction or an attack by an active adversary is not considered in
this paper.

The checker must perform a check of the FSM’s operations before exporting FSM results which depend
on those operations to other programs or users. Thus, the FSM implicitly determines when it is necessary
to perform checks based on the functions it performs. If the FSM runs to completion to produce a result,
it is not necessary to check each load operation. The checker can perform a single check of all the FSM’s
operations on the storage when the FSM has completed. If the FSM produces intermediate results, the
operations used to produce those results must be checked before the results are exported to other programs
or users.

1.2 A Simple, Faulty, Approach

To help explain the complexity of the problem, we present an approach for random access storage that is
simple, but faulty. The approach is for the checker to compute a message authentication code (MAC) of the
data value and the address at which it is stored, and store the (data value, MAC) pair at the address on the
untrusted storage. The address needs to be included in the computation of the MAC so that an adversary
cannot copy data at one address to another address. When the FSM stores a data value to an address, the
checker updates the MAC at the address. When the FSM loads a data value from the address, the checker
recomputes the MAC and checks that it is the same as the MAC stored at the address. The data value is
considered valid if the MAC check passes, and is considered invalid otherwise.

The simple approach does not work: it does not prevent replay attacks. By our definition, a storage
behaves like valid random access storage if the data value that the FSM loads from a particular address
is the same data value that the FSM most recently stored to that address. In the simple approach, an
adversary can replace the (data value, MAC) pair stored at an address with pairs stored at that address
on earlier stores. Even worse, the adversary could execute the first store, and then block all of the stores
thereafter, and the checker would not detect the attack.

In the approaches described in this paper, the checker uses its small fixed-sized trusted state to ensure
that the value the FSM loads is the most recent value stored on the storage. The state must be updated
on each FSM store to maintain a snapshot of the current state of the storage.

1.3 Organization

Section 2 describes related work. Section 3 gives an overview of hash-tree based integrity (online) checking,
the scheme with which we compare our work. In Section 4, we describe multiset hashes, and present two
examples: MSetMuHash and MSet-XOR MAC; MSet-XOR MAC is described in detail. Our bag integrity checking
primitive is introduced in Section 5. In Section 6, we show how to use this primitive to build offline integrity
checking schemes for random access storage. A summary of an analysis of offline integrity checking is given
in Section 7, and experimental results are presented in Section 8. Section 9 introduces hybrid online-offline
integrity checking. Section 10 concludes our work. Appendix A gives a proof for the set-collision resistance
of MSet-XOR MACs. Appendix B provides proofs of the equivalence of the bag definitions that we use in
Section 5. Appendix C provides detailed analysis of the offline scheme.

2 Related Work

Our work is inspired by the work on memory correctness checkers by Blum et al. [BEG+91]. They proposed
using hash (Merkle) trees to detect attacks by active adversaries on RAM. They also proposed offline schemes
to check the correctness of RAM. Their implementation of offline checkers uses ε-biased hash functions
[NN90]; these hash functions can be used to detect random errors, but are not cryptographically secure. We
introduce a bag integrity checking primitive, and introduce multiset hash functions as a cryptographic tool
to implement it. We demonstrate how the bag primitive can be used as a basis to build offline RAM and
disk integrity checking checkers secure against active adversaries. Blum et. al also discuss offline checkers
for stacks and queues, and we note that these checkers can also be easily explained using our bag integrity
checking primitive. We demonstrate how caches can be used to make offline integrity checking substantially
more efficient and present theoretical and practical evaluations of the scheme. We also introduce a hybrid
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online-offline integrity checker, which can be particularly useful in checking untrusted storages in large
systems, like storages in file systems, databases, or on the Internet.

As described previously, [GSC+03], [MS01], [MVS00] describe systems which use hash trees to protect
memory, file systems, and databases respectively. For particular applications, like certified execution, the
storage could be checked more efficiently using offline integrity checking schemes. [GSC+03] and [MVS00]
do not propose schemes to recover from an adversary that corrupts data in the untrusted storage. In [MS01],
backups and client caches are used to repair damage from adversaries after the damage has been detected.

The eXecute Only Memory (XOM) architecture [LTM+00] is designed to run security requiring applica-
tions in secure compartments that can only communicate with the rest of the world on an explicit request
from the application. XOM protects data stored in memory by appending the data blocks with a MAC of
itself. To prevent an adversary from copying blocks from one memory address to another, the block’s address
is included in the MAC. The Protected File System (PFS) [SHS01] and the Transparent Cryptographic File
System (TCFS) [CCSP01] use similar integrity protection mechanisms. As described in Section 1.2, this
approach is vulnerable to replay attacks. For example, XOM will not notice if stores to memory are never
performed (except when memory is first initialized).

The Byzantine-fault-tolerant file system [CL99, CL00] is implemented as a state machine that is repli-
cated across different nodes in a distributed system. Each replica maintains the service state and implements
the service operations. The system provides recovery from tampering, though it relies on the assumption
that at least two-thirds of the replicas will be honest. The expectation is that the replicas are weakly
protected but not hostile, so the difficulty of an adversary taking over k hosts increases significantly with k.

Schneier and Kelsey describe a technique for securing audit logs on untrusted machines [SK98]. Each
log entry contains an element in a linear hash chain that serves to check the integrity of the values of all
previous log entries. It is this element that is actually kept in trusted storage, which makes it possible
to verify all previous log entries by trusting a single hash value. The technique is suitable for securing
append-only data that is read sequentially by a verifying trusted computer. However, it is not suitable for
a system that requires frequent and random read and write access to individual blocks of data.

3 Hash Trees

The scheme with which we compare our work is integrity checking using hash trees (Merkle trees) [Mer79].
Figure 2 illustrates a hash tree. The data values are located at the leaves of a tree. Each internal node
contains a collision-resistant hash of the data that is in each one of the nodes below it. The root of the tree
is stored in the checker where it cannot be tampered with.

V1 V2 V3 V4

h1 = h(V1.V2) h2 = h(V3.V4)

root = h(h1.h2)

Figure 2: A binary (m = 2) hash tree. Each internal node is a hash of the concatenation of the data in the
node’s children.

To check the integrity of a node in the tree, the checker:

1. reads the node and its siblings

2. concatenates their data together (α.β is the concatenation of strings α and β.)
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3. hashes the concatenated data

4. checks that the resultant hash matches the hash in the parent.

The steps are repeated on the parent node, and on its parent node, all the way to the root of the tree.
To update a node in the tree, the checker:

1. authenticates the node’s siblings via steps 1-4 described previously.

2. changes the data in the node, hashes the concatenation of this new data with the siblings’ data, and
updates the parent to be the resultant hash. This step must be performed in a manner which makes
changes to the node and its parent visible simultaneously (using the cache in the checker, say).

Again, the steps are repeated until the root is updated.
Hash trees allow individual data values in an arbitrarily large amount of data to be checked and updated

securely using a small, fixed-sized, trusted hash in the checker. On each FSM load, the checker checks the
path from the leaf, corresponding to the address containing the data, to the trusted root. On each FSM
store, the checker updates the path from the leaf to the trusted root. The number of accesses to the
untrusted storage on each FSM load or store is logarithmic in the size of the storage. If the trusted hash
were calculated directly over the data set, the overhead on each FSM load would be linear, as the entire
storage would have to be read on each load.

With a balanced m-ary tree, the number of nodes to check on a FSM load is logm(N), where N is the
number of leaves of data to be protected. If the checker frequently adds and deletes data values from the
tree, steps may have to be taken to ensure the tree remains balanced to maintain this logarithmic overhead.

If the size of a leaf is the size of a hash, an m-ary hash tree allows integrity verification with a per-bit
space overhead of about 1

m−1 bits. For example, in [GSC+03], a 4-ary hash tree is used, with the lowest
level hashes computed over 64 byte data value blocks. Each hash is 128 bits (MD5 [Riv92] is used for the
hashes). The experiments use 4 GBytes of RAM and about one quarter of the memory is used to store the
hashes of the tree.

4 Multiset Hashes

The principal cryptographic tool we use for offline integrity checking is a set-collision resistant multiset hash
function. This section defines the tool, and shows some example implementations.

In what follows, we will be working with a countable set of values V . We refer to a multiset as an
unordered group of elements where an element can occur as a member more than once [Ros99]. All sets are
multisets, but a multiset is not a set if an element appears more than once. Multiset union ∪MS combines
two sets into a multiset in which elements appear with a multiplicity that is the sum of their multiplicities
in the initial multisets. We shall call MS the set of multisets of elements of V , and S the set of subsets
of V .

Definition 4.1. Let (H, +H,≡H) be a triple of probabilistic polynomial time algorithms. That triple is a
multiset hash function if it satisfies:

compression: H maps elements of MS into elements of {0, 1}k, where k is some integer. Compression
guarantees that we can store hashes in a small bounded amount of memory.

comparability: Since H can be a probabilistic algorithm, a multiset need not always hash to the same
value. Therefore we need ≡H to compare hashes. The following relation must hold for comparison to
be possible: ∀A ∈MS : H(A) ≡H H(A)

incrementality: We would like to be able to efficiently compute H(A ∪MS B) knowing H(A) and H(B).
The +H operator makes that possible: ∀A, B ∈MS : H(A ∪MS B) ≡H H(A) +H H(B)

In particular, knowing only H(A) and e we can easily compute H(A ∪MS {e}) = H(A) +H H({e})

As it is, this definition is not very useful, as H could be any constant function. We need to add some
kind of collision resistance to have a useful hash function.

5



Definition 4.2. A multiset hash function is set-collision resistant if it is computationally infeasible to find
a set S and a multiset M such that |S| and |M | are of polynomial size in k, H(S) ≡H H(M) and S �= M . 1

4.1 Incremental cryptography

We use incremental cryptography, introduced by Bellare, Goldreich and Goldwasser [BGG94], as the basis
of our design of H. In particular, we present two instantiations of H, a MSetMuHash instantiation (HM) and
a MSet-XOR MAC instantiation (HX ). HM is simple, but costly as a multiplication (×) modulo a large prime
is used to update the hash. HX is less simple as it requires a secret key, but it is more efficient, as adding
elements to the hash costs a few hash and XOR (⊕) operations only. We present HM in Section 4.1.1, and
HX is detailed in Section 4.1.2.

4.1.1 Multiset Multiplication Hashes

Definition 4.3. Let H be a pseudorandom function over V (in practice one would use MD5 or SHA1). Let
p be a k-bit prime. Then we can define MSetMuHash by:2

HM(M) =
∏

e∈MSM

H(e) mod p

A +M B = A×B mod p

A ≡M B = (A = B)

Theorem 4.1. MSetMuHash is a set-collision resistant multiset hash function.

Proof. Since the algorithms clearly run in polynomial time, we simply verify the different conditions.

Compression: As the operations are performed modulo a large prime, a MSetMuHash will be k = �log2(p)�
bits large.

Comparability: HM and +M are deterministic, so simple equality suffices to compare hashes.

Incrementality: Follows from the definitions of HM and +M.

Set-collision resistance: We model our proof of MSetMuHash on Bellare and Micciancio’s proof in [BM97]
that their MuHash is collision resistant.

MuHash is computed as follows. Let message, M , be viewed as an ordered sequence of n blocks:
M = M [1] . . .M [n], where M [i] ∈ {0, 1}b. Let 〈i〉 denote the binary representation of block index i.
Let p be a large prime. Then

HMuHash(M) =
n∏

i=1

H(〈i〉 ·M [i]) mod p

Observe that if the block indices 〈i〉 were omitted, permuting message blocks would leave the hash
unchanged. As it is, the function is collision resistant under the assumption that the discrete log
problem is hard in Z∗

p , i.e., it is computationally infeasible to find two distinct messages which produce
the same MuHash.

Our proof of MSetMuHash is similar to the proof of MuHash in [BM97] (the details of the proof can be
found in one of our technical reports).

1To make this notion formal, we need to consider a family of hash functions indexed by a seed s. This family satisfies
collision resistance if for all probabilistic polynomial time algorithms A , and any numbers c,
∃k0 : ∀k ≥ k0, P rob{s← {0, 1}k , (S, M)← A(s) : S ∈ S ∧M ∈ MS ∧M �= S ∧Hs(M) ≡H Hs(S)} < k−c

Note that because A is polynomial, we will consider that it can only output polynomial sized S and M (we are disallowing
compact representations for multisets that would allow A to express larger multisets).

2Elements that appear multiple times in the multiset are iterated over multiple times in the product
∏

e∈MSM H(e).
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MSetMuHash is a simple and elegant example of a set-collision resistant multiset hash. Unfortunately it
relies on modular arithmetic, which makes it too costly for some applications. We will therefore look at
another candidate.

4.1.2 Multiset-XOR MACs

Definition 4.4. Let Hs be a pseudorandom function over ({1} × V) ∪ ({0} × {0, 1} k
3 ) keyed with a seed s

(in practice, one would apply the HMAC method [KBC97] to MD5 or SHA1 to construct such a function).
Let |M | denote the number of elements in M , R ← {0, 1} k

3 denote uniform random selection of R from
{0, 1} k

3 , then define MSet-XOR MAC by:3

HX (M) =

((
Hs(0, R)⊕

⊕
e∈MSM

Hs(1, e)
)

, |M | mod 2
k
3 , R

)
where R← {0, 1} k

3

(A, CA, RA) +X (B, CB , RB) =(
Hs(0, R)⊕A⊕Hs(0, RA)⊕B ⊕Hs(0, Rb)), CA + CB mod 2

k
3 , R

)
where R← {0, 1} k

3

(A, CA, RA) ≡X (B, CB , RB) =
(
A⊕Hs(0, RA) = B ⊕Hs(0, RB) ∧ CA = CB

)

Theorem 4.2. MSet-XOR MAC is a set-collision resistant multiset hash function as long as the key s remains
secret.

Proof. Since the algorithms clearly run in polynomial time, we simply verify the different conditions.

Compression: The output of HX is k-bits long by construction.

Comparability and Incrementality: Follow from the definitions of HX , +X and ≡X .

Set-collision resistance: We reduce the set collision resistance of MSet-XOR MAC to the collision resistance
of Bellare, Guérin and Rogaway’s incremental XOR message authentication scheme [BGR95].

In their scheme, a message authentication code is computed as follows. Let message, M , be viewed as
an ordered sequence of n blocks: M = M [1] . . .M [n], where M [i] ∈ {0, 1}b. Let 〈i〉 denote the binary
representation of block index i, and Fs be a pseudorandom function keyed by s. Then the XOR-MAC of
M is:

FXOR−MAC(M) = Fs(0, R)⊕
n⊕

i=1

Fs(1, 〈i〉, M [i])

Observe that if the block indices 〈i〉 were omitted, permuting message blocks would leave the hash
unchanged. The nonce R prevents an adversary from forming new MACs via linear combinations of
old ones. Bellare et. al prove that XOR-MAC is collision resistant if the key s used to create the MAC
is not known.

Our reduction of MSet-XOR MAC to XOR-MAC can be found in Appendix A.

A few interesting variants of MSet-XOR MAC exist. First, it is possible to replace the random nonce R
by a counter that gets incremented on each use of HX and +X , or by any other value that never repeats
itself in polynomial time. This removes the need for a random number generator from the scheme. Also, if
hashes are never revealed to the adversary (he knows what is being hashed, but not the value of the hash)
then we can remove Hs(0, R) from the scheme altogether.

3In a real implementation, the three parts of the hash need not be assigned the same number of bits. However the size of
each part is a security parameter.
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5 Bag Integrity Checking

We introduce bag integrity checking as our primitive for thinking about offline integrity checking. The
scenario consists of the checker and a bag. The bag is the untrusted storage and the checker performs two
operations on the bag:

• put : the checker puts an item into the bag

• take: the checker takes an item out of the bag.

Definition 5.1. A bag is a triple (B,Put,Take) consisting of a multiset B and two operations
Put, Take ∈ MS ×MS → MS defined by

Put(B, M) = B ∪MS M (1)

and
B = Take(B, M) ∪MS M. (2)

The checker is interested in whether the bag behaves correctly. A bag behaves correctly if it behaves as
a valid bag, a bag in which the sequence of puts and takes performed by the checker is a valid history for
the bag (i.e., only the checker has manipulated the bag with put and take operations).

Definition 5.2. A history is a finite sequence of put/take operations O1(., M1), O2(., M2), . . . , On(., Mn).
A bag with a valid history is a bag, Bn, that follows from a sequence of well defined put/take operations
starting from the empty set. That is, Bn results from the recurrence relation Bi = Oi(Bi−1, Mi) with B0 = ∅
where the put/take operations Oi satisfy the previous definitions (1) and (2).

Intuitively, Bi is the state of the bag at moment i. Also intuitively, a bag has a valid history if the
checker can take an item from the bag only if the item has previously been put in the bag by the checker
and has not yet been taken from the bag by the checker. This leads to the following equivalent definition of
a valid history. Given a history of put/take operations O1(., M1), O2(., M2), . . . , On(., Mn) we define the
put multisets Pi and the take multisets Ti by the recurrence relations

Pi =



∅ if i = 0,
Pi−1 ∪MS Mi if i > 0 and Oi = Put,
Pi−1 if i > 0 and Oi = Take,

and

Ti =



∅ if i = 0,
Ti−1 ∪MS Mi if i > 0 and Oi = Take,
Ti−1 if i > 0 and Oi = Put.

The history is valid if and only if for all 0 ≤ i ≤ n

Ti ⊆MS Pi (3)

as may easily be verified by the reader4. It turns out that the difference in Pi and Ti is the bag Bi, that is
for all 0 ≤ i ≤ n

Ti ∪MS Bi = Pi. (4)

5.1 Checker with a Log

It is instructive to analyze how the checker can verify the authenticity of the bag if the checker maintains a
log. The solution is intuitive: when the checker puts an item into the bag, it appends a record saying that
it put the item into the bag to its log; when the checker takes an item out of the bag, it appends a record
saying that it took the item out of the bag to its log. To check some arbitrary sequence of put and take
operations, the checker iterates through the log and ensures that each item was put into the bag before it
was taken from the bag. That is, as it iterates through the log, it checks that (3) is always true.

Of course, the problem with a log is that the state the checker maintains grows at least linearly with
the number of items in the bag. In our model, the state the checker maintains must be small and of a fixed
size.

4To prove (3) is equivalent to Definition 5.2, we define bags Bi by (4) and show, by using induction in i, that they satisfy
Definition 5.2. (3) immediately follows from (4).
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5.2 Checker with Multiset Hashes

To deal with the problem of a growing trusted space, we equip the checker with multiset hashes, instead of
a log. We describe a simple approach (which does not work). In this approach, the checker maintains two
multiset hashes, PutHash and TakeHash. As described in Section 4, the multiset hash is incremental in
that when a new element is added to the set, the multiset hash is updated by ‘adding’ (+H) a hash of the
element to the multiset hash. The multiset hash is of a small, fixed size, which is maintained when it is
updated. The multiset hash function is also set-collision resistant, as described in Section 4.

Initially, the bag is empty and PutHash and TakeHash are 0. The checker performs some arbitrary
sequence of put and take operations. To put an item into the bag, the checker:

1. puts the item into the bag

2. updates PutHash: PutHash +H= hash(item).

To take an item out of the bag, the checker:

1. takes an item from the bag

2. updates TakeHash: TakeHash +H= hash(item).

Thus, after each put or take operation, Oi, by the checker, (PutHash, TakeHash) is a hash of the items
currently in Pi and Ti respectively (i.e., it is a hash of the items currently in the bag). When the checker
wants to check the integrity of the bag after a sequence of operations, it takes all of the items currently in
the bag out of the bag, and, for each item, updates TakeHash to be (TakeHash +H hash(item)). If, after
all of the items have been removed, PutHash is equal to TakeHash, the bag is considered to have a valid
history.

This scheme does not work. The problem is that the checker can take an item, itema, say, out of the
bag that it did not put in. The attack follows. Suppose there is currently no itema in the bag, but an
adversary knows that sometime in the future, the checker will put itema into the bag. The adversary can
put itema in the bag now. The checker can take it out of the bag, i.e., take something out of the bag
that the checker did not put in. When the checker takes itema from the bag, it updates TakeHash to
be (TakeHash +H hash(itema)). The checker later puts itema in the bag and updates PutHash to be
(PutHash +H hash(itema)). When the checker puts itema in the bag, the adversary then takes itema

back out of the bag. When the checker performs an integrity check on the bag, the two multiset hashes will
be equal, but the bag will not be a valid bag: the checker took itema out of the bag when it did not put
one into the bag. At the point in time that the checker takes itema from the bag, Ti is not a submultiset
of Pi. In other words, even though the two multiset hashes match when the integrity of the bag is checked,
the history O1, O2, etc., is not valid for the final bag.

To prevent the attack, the checker is augmented with a counter and time stamps are appended to items
to prevent reordering. We present this solution in the next subsection.

5.3 Checker with Multiset Hashes and using Time stamps

This solution is described in Figure 3. The checker maintains multiset hashes, as in the previous scheme,
and also has a counter. The checker increments the counter each time it puts a set of items5 into the bag,
and appends the new value of the counter (a time stamp) to each item as it puts it into the bag. When the
checker takes a multiset of items from the bag, for each item, it checks that the time stamp on the item is
less than or equal to the current value of the counter.

The time stamp is included with the item when the multiset hashes are updated. The checker uses time
stamps to help check that items it takes from the bag have been put into the bag by the checker at an
earlier time.

More formally, the mulitsets, Mi, which the checker puts into the bag are sets which contain pairs (v, t)
where v represents a data value and t represents a time stamp. If the checker puts a set of items Is into
the bag at time t then Ot = Put and

Mt = {(v, t) : v ∈ Is}. (5)

If the checker takes a multiset of items Ims from the bag at time t then Ot = Take and for all v ∈ Ims

there exists a time stamp t′ such that (v, t′) ∈Mt, and the checker checks whether t′ ≤ t.
5Recall that, in a set, each element is distinct.
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The checker’s fixed-sized state is:

• 2 multiset hashes: PutHash and TakeHash. Initially both multiset hashes are 0:

• 1 counter: Timer. Initially Timer is 0.

• 1 flag: Error. Initially Error is false.

put(Is) puts a set of items Is into the bag:

1. Increment Timer.

2. For each item ∈ Is, put the pair, (item, Timer), into the bag.

3. For each item ∈ Is, update PutHash: PutHash +H= hash((item, Timer)).

take(P) takes the multiset of items that match the predicate P from the bag:

1. Take all pairs that match P from the bag.

2. If, for any pair, (item, T), we have T>Timer, then set Error to true.

3. update TakeHash: TakeHash +H= hash((item, T)).

check() returns true if, (i) the bag has behaved correctly (as a valid bag) and, (ii) the bag is empty,
according to the bag’s history of accesses:

1. If PutHash ≡H TakeHash is false or Error is true then return false.

2. Reset Timer to zero (this is an optimization).

3. Return true.

Figure 3: Bag Offline Integrity Checking

Theorem 5.1. Suppose all the time stamp checks pass. Then, PutHash = TakeHash if and only if the
bag is empty and the history O1, O2, . . ., is valid.

Proof. To prove that the scheme is secure, that is the sequence of operations Oi, 0 ≤ i ≤ n, is a valid history,
assume that the time stamp checks pass and that in addition PutHash = TakeHash. From (5) it follows
that pairs in different sets Mt with Ot = Put have different time stamps t, so sets Mt with Ot = Put
are disjoint. Therefore, their multiset union Pn is a set. Since the multiset hash function is set-collision
resistant, Tn = Pn, thus Tn is a set as well and by (4) the bag Bn is empty. To prove that the sequence of
operations Oi is a valid history we verify (3). Let (v, t) ∈ Ti. Clearly, (v, t) ∈Mj with Oj = Take for some
j ≤ i. Since all time stamp checks passed, t ≤ j proving t ≤ i. The tuple (v, t) ∈ Tn = Pn, hence, for some
k, (v, t) ∈Mk with Ok = Put. By (5) (i.e. as the checker controls the put pairs and stamps each put pair
with the current time), t = k. Together with t ≤ i, we conclude (v, t) ∈Mt ⊆ Pt ⊆ Pi. This proves Ti ⊆ Pi

as required.
If the bag Bn is empty and the history O1, O2, . . ., On is valid, then Tn = Pn by (3,4) implying that

PutHash = TakeHash.

Note that the put pairs that are added to PutHash are added by the checker and thus, we are guaranteed
that they will form a set. The adversary can control the take pairs, and thus, take pairs can be duplicated.
The set-collision resistance property implies that it is computationally infeasible to find a multiset of take
pairs different from the set of put pairs that will result in PutHash being equal to TakeHash at the end
of an integrity check.

The FSM uses the checker as an interface to the bag. The checker performs the put and take operations
for the FSM as described in Figure 3. When the FSM wants to check the integrity of the bag, it tells the
checker to take all of the items out of the bag (take(true)). At this point, the FSM performs a checker check
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operation. The check operation returns true if all of the time stamp checks have passed and PutHash is
equal to TakeHash. By Theorem 5.1, if the check operation returns true, the FSM knows that the bag
has behaved correctly and is empty (according to the bag’s history of accesses). So, by asking the checker
to compare the put hash and the take hash, the FSM determines whether the bag’s history is valid.

With the checker’s put and take operational primitives, we can build more complex operations for more
complex data structures. Section 6 demonstrates how this can be done for random access storages, such as
RAM and disks.

6 Integrity Checking of Random Access Storage

In Section 5, we developed a bag checker. It makes a checkable bag from an untrusted bag. Its interface is
made of three functions: put(S), which places all the elements in the set S into the untrusted bag; take(P ),
which takes all the elements that match predicate P from the untrusted bag; check() which returns true if
and only if the untrusted bag has behaved correctly and is empty according to its history of accesses (i.e. if
PutHash ≡H TakeHash and all the time stamp checks passed).

We now show how a checked bag can be used to create checked random access storage (RAS). We call
this algorithm the offline algorithm because checks are performed after a sequence of storage accesses, rather
than on each storage access.

Definition 6.1. Checked Random Access Storage is a primitive that provides the following interface:
store(a, v) stores data value v at address a. load(a) returns the data value that is stored at address
a. checkRAS() returns true if and only if for each address a and each load from a, the load returned the
data value that was most recently placed by store at address a.

Figure 4 shows how to produce checked random access storage from a checked bag. Essentially, the
random access storage is simulated by placing (address, data value) pairs in a checked bag. Therefore we
must maintain the invariant, which we term the RAS invariant, that there is always exactly one pair in
the bag for each address, according to the checker’s operations on the bag. During initialization, a pair is
placed in the bag for each address. To perform a load, the pair for the desired address is taken from the
bag, inspected, and then put back into the bag (to maintain the RAS invariant). To perform a store, the
pair previously in the bag for that address is taken from the bag, and replaced by the new pair. To check
the bag, we empty it into a fresh bag, and once the old bag is empty, we check it before throwing it out.

In real life, the untrusted bag that the checked bag is based on is actually implemented with some un-
trusted random access storage (RAM or block storage for example). This untrusted bag is being accessed by
the bag checker when we access the checked bag. Takes and puts of (address, data value) pairs to the checked
bag result in takes and puts of (address, data value, time stamp) triples to the untrusted bag. If the untrusted
bag behaves correctly, the invariant that there is exactly one (address, data value) pair per address carries
over to (address, data value, time stamp) triples in the untrusted bag. Therefore, it is possible to implement
the untrusted bag using untrusted random access storage by storing (address, data value, time stamp) triples
as (data value, time stamp) pairs stored at an address that is proportional to the address from the triple.

Unfortunately, when we implement the untrusted bag using untrusted random access storage, we implic-
itly limit the range that the time stamp can take. Consequently, it will be necessary to call checkRAS on
the checked random access storage each time the time stamp reaches its maximum value. When checkRAS
replaces the checked bag that is in use by a fresh one, we replace the high time stamp from the old bag by
a low one in the new bag.

The advantage of this offline checker over an integrity checker using a hash tree is that there is a constant
overhead per FSM load and store, as compared with the logarithmic overhead of using a hash tree. However,
the offline approach does require that all of the addresses that the FSM used be read whenever an integrity
check is desired. (In Section ??, we optimize this requirement with a hybrid online-offline approach).

In the following subsections, we discuss the implementation issues involved in checking dynamically-
changing, sparsely-populated address spaces, and show how the offline scheme can be easily extended to
incorporate caches.

11



Let Pa be a predicate that returns true on a pair (a′, v) for which a = a′. To produce checked random access storage,
we use a checked bag, in which we will place (address, data value) pairs. We will arrange to always have exactly
one pair per address in the bag, according to the checker’s operations on the bag. Therefore, we will assume that
take(Pa) always returns exactly one pair (we can add an explicit check for this and set an Error flag if this does
not happen).

Initialization the bag must be filled at startup.

1. put(S) into the checked bag, where S is a set of (address, data value) pairs that represents the initial
state of the checked random access storage.

store(a, v) stores v at address a in the checked random access storage.

1. take(Pa) on the checked bag.

2. put(a, v) into the checked bag.

load(a) loads the data value at address a from the checked random access storage.

1. (·, v) =take(Pa) on the checked bag.

2. put(a, v) into the checked bag.

3. Return v to the caller.

checkRAS() returns true if and only if the storage has behaved correctly up until now.

1. Create a temporary checked bag T (call the current checked bag B).

2. S =take(true) from B.

3. If check() on B is false, then return false (the check failed).

4. put(S) into T .

5. B = T .

6. Return true.

Note that steps 2 and 4 involve a set S that is huge. In an actual implementation, we would merge both steps,
putting items into T as soon as they were removed from B.

Figure 4: Offline integrity checking of random access storage using a checked bag

6.1 Dynamically-changing, sparsely-populated, address space

6.1.1 General case

Thus far, we have looked at the problem of checking the integrity of fixed-sized RAS. However, in practice,
it is often desirable to check a RAS with a dynamically-changing, sparsely-populated, address space.

To enable a dynamically-changing address space, we augment the RAS interface with two methods:
add(S), and remove(a). add(S) calls put(S) to put, S, a set of (address, data value) pairs, into the bag;
remove(a) calls take(Pa) on the bag. Moreover, we arrange to set an Error flag if take(Pa) does not
return a singleton set, as was assumed in Figure 4; if the Error flag is set, checkRAS returns false6. The
augmented interface is shown in Figure 5.

If, during the FSM’s execution, the FSM wishes to increase its address space (for example, when the
program increases its heap size), the FSM calls add on the new addresses. The FSM can then store and load
from the larger address space. If, during the FSM’s execution, the FSM wants to decrease its address space,
the FSM calls remove on each of the addresses that will no longer be used. The FSM then stores and loads
from the smaller address space. Only the addresses in the FSM’s current address space are traversed during

6In an actual implementation, if the FSM performs an operation that causes take to be performed on an address that is
not in the bag, an entry that is not currently in the bag is read from the RAS. Therefore check will return false, and thus,
checkRAS will return false. Also, in an actual implementation, take(Pa) will not return a set or multiset with two or more
elements.
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add(S) adds S, a set of (address, data value) pairs, to the address space.

1. put(S) into the checked bag.

remove(a) removes address a from the address space.

1. take(Pa) on the checked bag.

store(a, v) stores v at address a in the checked random access storage.

1. take(Pa) on the checked bag.

2. put(a, v) into the checked bag.

load(a) loads the data value at address a from the checked random access storage.

1. (·, v) =take(Pa) on the checked bag.

2. put(a, v) into the checked bag.

3. Return v to the caller.

checkRAS() returns true if and only if the storage has behaved correctly up until now.

1. Create a temporary checked bag T (call the current checked bag B).

2. M =take(true) from B.

3. If check() on B is false, then return false (the check failed).

4. If check returned true, it means a set, as opposed to a multiset, of (a, v) pairs was read in step 2. Thus,
we refer to this set as S. add(S) into T .

5. B = T .

6. Return true.

Note that steps 2 and 4 involve a set S that is huge. In an actual implementation, we would merge both steps,
putting items into T as soon as they were removed from B.

Also, if take(Pa) does not return a singleton set, the checker sets an Error flag; if the Error flag is set,
checkRAS returns false.

Figure 5: Offline integrity checking of random access storage on a dynamically-changing, sparsely-populated,
address space

a checkRAS operation. This approach for checking the integrity of a dynamically-changing address space is
much simpler than checking the integrity of the space using a hash tree, which could require re-balancing
the tree.

As we are now considering sparsely-populated address spaces, we re-define the RAS invariant to be
that, according to the checker’s operations on the bag, no put operation is performed on an address that is
already present in the bag, and no take operation is performed on an address that is not present in the bag.
It is possible for the FSM to use the checked RAS in a way that is not well-defined (by adding the same
address twice, for example). Therefore, we will be particularly interested in FSMs whose implementations
always maintain the RAS invariant on correctly-behaving RAS. We call this property the FSM requirement.
The FSM maintains whatever data structures it needs to meet the FSM requirement7 in either trusted or
checked storage. We note that if the FSM requirement is met and the bag behaves like a valid bag, then
the RAS invariant is maintained.

Lemma 6.1. Assuming the FSM meets the FSM requirement, the RAS behaves like valid random access
storage (i.e. like a valid bag, which is empty after checkRAS has been performed, and the RAS invariant has
been satisfied) if and only if the checkRAS operation returns true.

Proof. The validity condition, that, assuming the FSM meets the FSM requirement, if the RAS behaves
7for example, the pointer to the top of the heap
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like valid RAS, then the checkRAS will return true, is easy to verify. We present an argument for the safety
condition: assuming the FSM meets the FSM requirement, if the RAS does not behave like valid random
access storage, then the checkRAS operation will return false.

In the first case, we assume that, even though the adversary tampered with (data value, time stamp)
pairs in the untrusted storage, the RAS invariant is still satisfied. In this case, either the bag did not behave
like a valid bag, or the bag is not empty after checkRAS was performed. In either case, the bag check
operation will return false, by Theorem 5.1. Thus, checkRAS will return false.

In the second case, we assume that the RAS invariant was not met. If we consider the first time the RAS
invariant was violated, the bag had to have previously misbehaved, as the FSM meets the FSM requirement.
That misbehavior will be caught by the bag checker, by Theorem 5.1. Thus, again, checkRAS will return
false.

The addresses the FSM uses may be any arbitrary subset of the addresses in the storage. When
an untrusted bag is implemented using RAS, as described in the beginning of Section 6, where (ad-
dress, data value, time stamp) triples are stored as (data value, time stamp) pairs, there is the issue of
determining which addresses to read in step 2 of a checkRAS function call. Implicitly, it is the untrusted
bag’s job to keep track of these addresses. As an example, the bag could use a bitmap (an extra bit per
address) to keep track of the addresses the FSM uses8. We note that the bitmap does not have to be pro-
tected as it is an internal structure to the untrusted bag: check() returns true if and only if the untrusted
bag has behaved correctly and is empty according to its history of accesses.

6.1.2 First Monotonic case

It is interesting to examine the case where there is no remove(a) operation in the checked random access
storage interface, and we allow the FSM to access some untrusted, and unchecked, storage directly (i.e.
data structures that are used to maintain the FSM requirement can be stored on untrusted, and unchecked,
storage). All of the other operations are present in the interface, and are as described in Figure 5. In this
case, the checkRAS procedure must ensure that each address is taken from the bag at most once in step 2
of the procedure.

Lemma 6.2. The RAS that is being checked has behaved like valid random access storage (i.e. like a valid
bag, which is empty after checkRAS has been performed, and the RAS invariant has been satisfied) if and
only if the checkRAS operation returns true and has taken a set (as opposed to a multiset) of addresses from
the bag.

Proof. The validity condition, that if the RAS has behaved like valid random access storage, then checkRAS op-
eration returns true and has taken a set of addresses from the bag is easy to verify. Again, we present an
argument for the safety condition: if checkRAS operation returns true and has read a set of addresses, then
the RAS has behaved like valid random access storage. The fact that the bag has behaved like a valid bag,
and is empty, follows directly from the checkRAS operation returning true, according to Theorem 5.1.

We argue that the RAS invariant has been satisfied by contradiction. Assume that the checkRAS oper-
ation returns true and has taken a set of addresses from the bag, and that the RAS invariant has not been
satisfied. This means that either:

1. a put operation (in add) was performed on an address already present in the bag, so the address is
in the bag multiple times. As there is no remove operation, it will remain that way until checkRAS is
performed. If checkRAS ensures that it reads each address at most once, then the bag is not empty
after take(true) is called. But, checkRAS returns true, so check returned true. Thus, we have a
contradiction of Theorem 5.1.

2. a take operation (in load or store) was performed on an address not present in the bag. Since the
bag behaved like a valid bag, that take operation returned the empty set, so the Error flag was set.
This contradicts the fact that checkRAS returned true.

8If the offline scheme is used to protect a process’s virtual memory space, this bitmap could be the valid bits in a page
table; in this case, addresses would be added or removed from the address space a page at a time.
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6.1.3 Second Monotonic case

It is also interesting to examine the case where, for a particular bag, by the time check is called on the bag
in step 3 of the checkRAS operation, no address has had add called on it more than once (either by using
the add operation, or in step 4 of checkRAS). In other words, the addresses which add has been called on
for a particular bag form a set (a simple example is, when the new bag is created, the FSM calls add on a
set of addresses in the set of (address, data value) pairs, and does not call it again until checkRAS is called).

Again, in this case, we can allow the FSM to access some untrusted, and unchecked, storage directly (i.e.
data structures that are used to maintain the FSM requirement can be stored on untrusted, and unchecked,
storage). All of the operations, including the remove operation, are present in the interface, and are as
described in Figure 5.

Lemma 6.3. Assuming the addresses which add has been called on form a set (as opposed to a multiset),
the RAS that is being checked has behaved like valid random access storage (i.e. like a valid bag, which
is empty after checkRAS has been performed, and the RAS invariant has been satisfied) if and only if the
checkRAS operation returns true.

Proof. The validity condition, that assuming the addresses which add has been called on form a set, if
the RAS that is being checked has behaved like valid random access storage then the checkRAS operation
returns true, is easy to verify. We present an argument for the safety condition: assuming the addresses
which add has been called on form a set, if the checkRAS operation returns true, then the RAS that is
being checked has behaved like valid random access storage. Again, the fact that the bag has behaved
like a valid bag, and is empty, follows directly from the checkRAS operation returning true, according to
Theorem 5.1. Again, we argue that the RAS invariant has been satisfied by contradiction. Assume that the
addresses which add has been called on form a set and the checkRAS operation returns true, and that the
RAS invariant has not been satisfied. This means that either:

1. a put operation (in add) was performed on an address already present in the bag, so the address is
in the bag multiple times. This contradicts the fact that the addresses which add has been called on
form a set.

2. a take operation (in load, store, or remove) was performed on an address not present in the bag.
Since the bag behaved like a valid bag, that take operation returned the empty set, so the Error
flag was set. This contradicts the fact that checkRAS returned true.

6.2 Caches

Integrating a cache into the FSM can produce a drastic reduction in bandwidth usage to the untrusted
storage. Up to now we have based the offline RAS checker on the checked bag abstraction. In this section we
break the abstraction and add a write allocate cache9 to optimize the scheme. We discuss this optimization
in the context of a processor working with untrusted RAM.

In a cache, data is organized into blocks, with each block containing multiple data values. As the cache
is trusted, and RAM (main memory) is untrusted, the cache contains just value blocks, while the RAM
contains (value block, time stamp) pairs. We detail the caching algorithm:

• when the cache evicts a block of data,

– if the block is dirty, the checker increments Timer, writes the (value block, current time) pair to
the appropriate RAM address, and updates PutHash with the
(RAM address, value block, current time) triple.

– if the block is clean, the checker increments Timer, writes only the current time to the appropriate
RAM address, and updates PutHash with the (RAM address, value block, current time) triple.

• when the cache brings a block of data in from RAM, the checker reads the time stamp and checks that
it is less than or equal to the current value of Timer. The checker then updates TakeHash with the
(RAM address, value block, time) triple.

9In a write allocate cache, the whole data block is brought into the cache when one of its words is read or written.
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In essence, when the cache evicts a block, the (address, value block) pair is put into RAM. When the cache
brings in a block from RAM, the (address, value block) pair is taken from RAM. The checkRAS operation
iterates through the addresses. For each address, it checks to see if the block at the address is in the cache;
if it is in the cache, no action is taken for the address (TakeHash has already been updated when the
block at the address was brought into the cache). If the address’s block is not in the cache, it takes the
(address, value block) from RAM. If PutHash is equal to TakeHash at the end, the integrity check is
successful.

There are a few important points to note when evaluating this caching algorithm. The first is that the
entire cache is used to store data values, so the cache hit rate - the fraction of FSM storage operations
that find their data in the cache - is the same as that in a base FSM without storage integrity checking (in
Section 7, we contrast this hit rate with the data value hit rate of an FSM using a checker which uses hash
trees, in which both hashes and data values must be stored in the cache for the checker to perform well.)

The algorithm has an overhead of reading the FSM’s addresses in RAM whose blocks are not in the
cache when performing checkRAS. The second point we would like to note is that, besides this overhead,
the only other overhead of the caching algorithm is the bandwidth consumed by reading and writing time
stamps. The cache hit rate remains the same, and when blocks are brought into or ejected from the cache,
time stamps are also read from or written to RAM. If the number of loads and stores performed by the
FSM is large, the amortized cost of the overhead of reading the RAM to perform checkRAS is very small,
and the principal overhead comes from reading and writing time stamps. If a cache block is 64 bytes, say,
and a time stamp is 32 bits, say, the overhead of the time stamps is small. In other words, with this caching
algorithm, if the number of FSM storage operations before checkRAS is performed is large, we can expect
the performance of offline integrity checking to be very close to the base performance of the standard FSM
without any storage integrity checking. In Section 7 and Appendix C, we formalize this analysis. It is
interesting to note that, if the number of FSM storage operations is large, offline integrity checking can
perform better than the simple, faulty, scheme described in Section 1.2, in which a 128-bit MAC (assuming
MD5 is used for the MACs), is appended to a block which is stored in RAM.

7 Analysis

In this section, we present a summary of our analysis of the online and offline integrity checkers. Our
analysis is detailed in Appendix C. Table 1 summarizes the space and bandwidth overhead of the offline
and online schemes.

Offline Online

per-bit space overhead bt

bv

bh

bv−bh

b/w consumption of initialization N(bv + bt) bvN
m−1

b/w overhead at run time, with a cache 2btt(1− hv) + (N − C)(bv + bt) t(1− δhv)bhz

Table 1: Comparison of Offline and Online Integrity Checking

In the table, bt is the number of bits in a time stamp, bv is the number of bits in cache block and N is
the number of data value blocks the FSM uses, i.e. the number of blocks to which a time stamp is appended
when the block is stored in the untrusted storage. t is the number of FSM loads and stores the FSM can
perform before a check is required. C is the number of blocks that can be stored in the cache, and hv is the
cache hit rate - the fraction of FSM storage operations that find their data in the cache. We assume that,
in the online scheme, one hash covers one cache block implying bv = mbh.

As in Section 3, m is the number of children of each node in a hash tree. bh is the number of bits in
hash. δhv, where 0 ≤ δ ≤ 1, is the cache hit rate of data values in an online checker (this is less than the
cache hit rate of an offline checker as both hashes and data values must be stored in the cache for an online
checker to perform well). z is the average number of hashes the online checker fetches from the storage on
each FSM storage operation.

The principal points of the analysis are that:
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• if the size of a time stamp is less than the size of a hash, the offline scheme will have a smaller space
overhead than the online scheme. As described in Appendix C, 4 GBytes of memory are used in the
experiments in Section 8, with 1

16 of the memory being consumed by 32-bit time stamps. We contrast
this with the experiments in [GSC+03], where 1

4 of memory is used for 128-bit MD5 hashes for a 4-ary
hash tree in a similar experimental set up.

• if the period between offline integrity checks, t, is greater than (N−C)(bv+bt)
(1−δhv)bhz−2bt(1−hv) , the cost of fetching

hashes on each FSM storage operation in an online checker will exceed the cost of reading the addresses
the FSM used to perform a checkRAS operation in an offline checker, and the offline checker will
consume less bandwidth than an online checker. In the experiments in Section 8, we are concerned
with the number of FSM storage accesses T = (1 − hv)t for the offline case: these are the number
of FSM accesses to the untrusted storage. If we assume δ = 1 for large caches, the offline scheme is
better than the online scheme if T ≥ (N−C)(bv+bt)

bhz−2bt
.

8 Experiments

This section evaluates the offline integrity checking scheme compared to the online hash trees for computer
processors through detailed simulations. We first investigate the impact of the offline scheme on processor
performance ignoring the overhead of reading memory in the checkRAS operation (cf. Figure ??). This
analysis provides the cost of offline integrity checking when memory integrity needs to be checked only at
the end of program execution, or very infrequently in comparison to the total execution time of the program.
Then, we study the performance of the offline scheme when more frequent integrity checks are required.

Our simulation framework is based on the SimpleScalar tool set [BA97]. The simulator models specu-
lative out-of-order processors, which are standard modern microprocessors such as the Intel Pentium. For
all of the experiments in this section, nine SPEC2000 CPU benchmarks [Hen00] are used as representative
applications: gcc, gzip, mcf, twolf, vortex, vpr, applu, art, and swim. The SPEC benchmark suite
is a standard set of programs that are generally used in the computer architecture community to evalu-
ate processor performance. These benchmarks show varied characteristics and represent various types of
applications.

The offline integrity checking module is added next to the on-chip Level 2 (L2) cache 10. The module
computes the MSET-XOR MAC of (address, data value, time stamp) triples and updates appropriate set
hashes as described in Section 6.2 on L2 cache misses and cache evictions. For each memory access, the
processor speculatively continues computation as soon as the values arrive from memory, and the hash
computations are computed in the background. Therefore, hash computations do not increase memory
latency. When the processor checks memory integrity by reading the memory space that was used, i.e., the
checkRAS operation in Figure ??, it waits for the check to be done before continuing computation.

The online integrity checking is implemented in a similar way next to the L2 cache. The online module
uses hash trees and computes the hashes in the background so that it does not increase the memory latency.
Since memory integrity is checked on every access, there is no specific checking operation like checkRAS.

8.1 Steady-State Performance

Applications that sign results at the end of execution, or do so relatively infrequently, are first consid-
ered. For these applications, the overhead of reading the memory space for the offline scheme during the
checkRAS operation is negligible. If a typical program executes for a minute, this corresponds to roughly 100
billion instructions, on a state-of-the-art 2- or 4-way superscalar 1 GHz processor. The checkRAS operation
typically takes less than a billion cycles, and if this is performed once, at the end of the execution, the
overhead is very small.

In this subsection, we compare the offline scheme with the online scheme and quantify their overheads
relative to a standard processor without integrity checking. We will ignore the overhead of the checkRAS op-
eration. This comparison will demonstrate the advantage of the offline scheme over the online scheme when
integrity checking is infrequent.

10A typical processor has two levels of on-chip caches. Main memory is accessed only if the requested data cannot be found
in the caches (cache misses).
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Figure 6: Steady-state performance overhead of memory integrity checking: standard processor without
integrity checking (base), offline integrity checking (offline), and online integrity checking (online).
Results are shown for four different cache sizes (256KB, 512KB, 1MB, 2MB) with cache block size of 64B.
32-bit time stamps for offline and 128-bit hashes for online are used.

Figure 6 illustrate the impact of integrity checking on the program performance. For four different
L2 cache sizes, the IPCs (instructions per clock cycle) of three schemes are shown: a standard processor
(base), offline integrity checking scheme (offline), and online integrity checking scheme (online). The IPC
represents how fast a program executes. Therefore, higher IPC results indicate better program performance.

The experimental results clearly demonstrate the advantage of the offline scheme over the online scheme
when we can ignore the checkRAS overhead. For all programs and configurations simulated, the offline
scheme outperforms the online scheme. The overhead of the offline scheme compared to base is 15% in the
worst case and often less than 5%, whereas the online scheme has over 50% overhead in the worst case and
10-20% in general.

Ignoring the checking overhead, the online scheme significantly reduces the performance overhead over
the offline scheme in two ways: L2 cache pollution and memory bandwidth consumption. The online scheme
stores hashes in the on-chip cache with program data, and degrades the cache performance for the program.
In the figure, the effect of this cache pollution is evident for a small cache (256KB). The performance
degradation of the offline scheme for cache-sensitive benchmarks such as gcc, twolf, vortex, and vpr in
the 256-KB case is mainly due to the cache pollution. On the other hand, the offline scheme does not pollute
the cache at all since it does not need to cache time stamps. As a result, the offline scheme only shows a
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marginal performance degradation even for the small cache.
The offline scheme can also consume less bandwidth than the online scheme. With the 64-B cache block

(bv = 512) and the 32-bit time stamp (bt = 32), the offline scheme consumes an additional 64 bits (8 Bytes)
of memory bandwidth for each access of 64-B cache block. The bandwidth overhead is 12.5%. On the other
hand, the online scheme reads about 1.5 hashes (128-bit, bh = 128) for each memory access on average
(z = 1.5), which translates to 37.5% overhead in the memory bandwidth usage. Even though the online
scheme improves significantly using caches (z reduces from 14 to 1.5), the offline scheme is considerably
better than the online scheme. Due to less bandwidth consumption, the offline scheme is better than the
online scheme even for large caches where cache pollution is not an issue (Figure 6 (d)).

8.2 Effects of Checking Periods

The last subsection clearly demonstrated that the offline integrity checking outperforms the online scheme
when checking is infrequent. However, applications may need to check the memory integrity more often for
various reasons such as exporting intermediate results to other programs. In these cases, we cannot ignore
the overhead of frequent checkRAS operations. In this subsection, we compare the offline scheme and the
online scheme including the overhead of periodic checkRAS operations.

We assume that the offline scheme checks memory integrity every T accesses to the untrusted RAM. A
processor executes a program until it makes T main memory accesses, then checks the integrity of the T
accesses by reading the memory it used before continuing. Obviously, the overhead of the offline checking
heavily depends on the characteristics of the program and the check period T . We use two representative
benchmarks mcf and art – the first has the most overhead for the checkRAS operation and the second has
the least overhead. mcf uses 191MB of main memory and takes about 140 million cycles for each check. On
the other hand, art uses only 2MB of memory and takes about 2.7 million cycles for a check.

Figure 7 compares the performance of the offline and the online integrity checking for varying check peri-
ods. In the figure, IPCs for the online scheme (online), the offline scheme ignoring the checkRAS operation
(offline-steady-state), and the offline scheme including the checkRAS operation (offline) are shown.

Experimental results show that the performance of the offline scheme heavily depends on the checking
period. The offline checking is infeasible when the application needs to assure the memory integrity after
every memory access. In this case, the online integrity checking should be used. On the other hand, if
checking is less frequent, the offline scheme can outperform the online scheme. Also, as the checking period
increases, the performance of the offline scheme converges to the steady-state performance ignoring the
checkRAS operation (around 100 million accesses for mcf, and ten million accesses for art).

The break-even point between the offline scheme and the online scheme depends on the characteristics
of the program. For programs using large amount of memory such as mcf, the checking period should
be long so that the cost of checkRAS is amortized. However, the offline scheme performs as well as the
online for much shorter checking periods for programs with small amount of memory usage. For example,
with 256-KB L2 caches, the break point, for mcf is around T = 5 million accesses, which corresponds to
about 200 million instructions (0.15 seconds with 4-way superscalar 1-GHz processors), and for art is 100
thousand accesses, which is about 800 thousand instructions (6ms). The analysis in Section 7 predicts these
break-even points quite accurately. For example, in the case of mcf with a 2-MB cache, the analysis results
in,

T ≥ (3129344− 32768) · (512 + 32)
128 · 1.9− 2 · 32

≈ 9.4× 106.

The value of N was calculated based on 191MB (1MB = 16,384 cache blocks) memory usage, and z = 1.9.

9 Hybrid Integrity Checker

Figure 8 illustrates the various interfaces discussed in this paper. In Section 5, we constructed a checked
bag, with the interface put(Is), take(P), and check()11, from an underlying untrusted bag, whose interface
was standard bag put(Im) and take(P) operations12. In Section 6, we used the checked bag to construct
a checked random access storage (RAS), with the interface add(S), remove(a), store(a, v), load(a), and

11In this section, we will refer to these operations as cbag-put(Is), cbag-take(P) and cbag-check().
12In this section, we will refer to these operations as ubag-put(Im) and ubag-take(P); Im denotes a multiset of items.
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Figure 7: Performance comparision between the offline scheme and the online scheme for various offline
checking periods. Results are shown for 256-KB and 2-MB L2 caches with 64-B blocks. 32-bit time stamps
and 128-bit hashes are used.

checkRAS()13. We refer to the interface to the checked bag as a bag checker and the interface to the checked
RAS as an offline RAS checker (offline checker).

In this section, we will introduce a hybrid RAS checker (hybrid checker), with the operations:
hybrid-moveToOffline(a), hybrid-store(a, v), hybrid-load(a), and hybrid-checkRAS (Y ). Figure 9 il-
lustrates a hybrid checker. To construct the hybrid checker, we use the checked RAS, and a variant of
the hash tree described in Section 3, which we call a partial-hash tree. Partial-hash trees are described in
Section 9.2.

9.1 Motivation for the hybrid checker

One of the disadvantages of the offline checker in Section 6 is that all of the addresses that the FSM used
since the beginning of its execution must be read during each offline-checkRAS operation; otherwise,
even if the RAS were behaving like valid RAS, the underlying untrusted bag would not be empty and the
cbag-check operation would fail. This approach is feasible for RAM or small disks, but impractical for

13In this section, we will refer to these operations as offline-add(S), offline-remove(a), offline-store(a, v),
offline-load(a), and offline-checkRAS().
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hybrid RAS checker:
hybrid-moveToOffline(a)
hybrid-store(a, v)
hybrid-load(a)
hybrid-checkRAS(Y )

offline RAS checker:
offline-add(S)
offline-remove(a)
offline-store(a, v)
offline-load(a)
offline-checkRAS()

partial-hash tree checker:
pht-isAddressPresentInTree(a)
pht-moveToTree(a, v)
pht-moveFromTree(a)
pht-store(a, v)
pht-load(a)

online RAS checker:
online-store(a, v)
online-load(a)

bag checker:
cbag-put(Is)
cbag-take(P)
cbag-check()

ubag-put(Im)
ubag-take(P)

Figure 8: Interfaces

large-scale storage in file systems or databases. For large scale storage, it is desirable to use a scheme in
which the FSM would only need to read addresses it used since the last integrity check when it is performing
its current integrity check.

The second disadvantage of the offline checker is that, if integrity checks are frequent, the offline checker
can perform worse than the online checker, because of the overhead it incurs reading the addresses it used
since the beginning of its execution to perform the integrity check. It is desirable to construct a checker
which could take advantage of the benefits of both the online and offline checkers; the FSM could use this
checker to maximize its performance during its execution.

We propose using a hybrid RAS checker to address these issues. In the hybrid approach, the checker
maintains both a hash tree and the offline multiset hashes and timer. Data is initially stored in the tree.
The idea is that, when the FSM wants to perform a particular computation on a subset of the data in the
storage, it can either work on the data in an online fashion using the tree, or it can take the data out of the
tree, and work on it in an offline fashion. When the FSM performs an intermediate offline integrity check,
the FSM only needs to read addresses that were used since the last intermediate check, instead of having
to read all of the addresses it used since the beginning of its execution. If the intermediate offline integrity
check is successful, data can then be returned to the tree.

With respect to when the FSM works on data in an offline fashion, the hash tree can be seen as acting
as a repository for the data values, and the offline scheme gives the FSM some work space for it to perform
some computation. To work on a subset of the data in the storage, the FSM checks the data out of the
repository and operates on it in the work space. When the FSM has completed the computation, it checks
the computation’s operations, and then exports the result of the computation. The FSM can then deposit
the data back into the repository.

The FSM can dynamically employ several strategies during its execution that would maximize its per-
formance. As an example of a strategy the FSM might employ, if there is data the FSM regularly uses
and data it uses rarely, it can protect the data it uses regularly with the offline scheme, and protect the
data it uses rarely using the hash tree; this can reduce the number of addresses that are read to perform
an offline integrity check. As a second example of an FSM strategy, if, during some part of its execution,
the FSM will be regularly exporting results, the FSM can protect the data using the online scheme, which
has a smaller overhead when integrity checks are very frequent; if, during some other part of its execution,
the FSM performs a computation for which it will not export a result for some time, the data that is being
used can be moved to the offline scheme, which performs better when integrity checks are less frequent.

9.2 Partial-Hash Tree

Besides the checked RAS developed in Section 6, we also use a partial-hash tree to develop the hybrid
checker. A partial-hash tree is similar to a hash tree, except that there is an extra bit associated with each
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Figure 9: A hybrid checker. There is an extra bit, called a statusBit, associated with each leaf node.
statusBits are always protected by the tree. If a leaf node’s statusBit is 1, the data value is protected
by the online scheme; if a leaf node’s statusBit is 0, the data value is protected by the offline scheme.

leaf node (recall that the leaf nodes contain data in a hash tree). The extra bit, which we refer to as a
statusBit, is always protected by the tree.

If a leaf node’s statusBit is set (equal to ‘1’), the leaf node is protected by the tree, and said to be
‘present’ in the tree. If a leaf node’s statusBit is not set (equal to ‘0’), the leaf node is not protected by
the tree, and is said to be ‘not present’ in the tree.

The partial-hash tree interface has the following operations: pht-isAddressPresent(a),
pht-moveToTree(a, v), pht-moveFromTree(a), pht-store(a, v), and pht-load(a); the interface is described
in Figure 10. The operations pht-store(a, v), and pht-load(a) simply call online-store(a, v), and
online-load(a) respectively; online-store(a, v), and online-load(a) are the hash tree store and load
operations described in Section 3.

Considering the layout of the tree, an address and its statusBit can be protected by the same hash
when the address is present in the tree. When the address is not present in the tree, the hash protects the
statusBit.

9.3 Hybrid Checker

The interface for the hybrid checker is shown in Figure 11. At first, we consider a fixed-sized RAS. The oper-
ations are: hybrid-moveToOffline(a), , hybrid-store(a, v), hybrid-load(a), and hybrid-checkRAS(Y ).

hybrid-moveToOffline(a) checks the integrity of the data value in address a in the tree, and moves the
data from the protection of the tree to the protection of the offline scheme. hybrid-store(a, v) first reads
(but does not check) a’s statusBit in the partial-hash tree. If it is 1, it checks the statusBit and performs
an online store; if it is 0, it performs an offline store. hybrid-load performs similarly. hybrid-checkRAS(Y )
checks the data protected by the offline scheme. Addresses specified in Y are moved back to the protection
of the online scheme. If the offline-checkRAS call in hybrid-checkRAS returns true, hybrid-checkRAS
returns true; otherwise, hybrid-checkRAS returns false.

Compared with the checked RAS described in Section 6, the new adversarial attack we must consider is
that an adversary can change the statusBit of an address from 1 to 0 and alter the data value corresponding
to the address in the offline scheme. As the statusBit is not checked if it is 0, the FSM could do an offline
load (or offline store) on this value, when it should have done an online load (or online store). However, as
implied by Lemma 9.1, which follows, this attack, and other attacks on the storage, will be detected by the
hybrid checker.

Lemma 9.1. The RAS (that is protected by the offline scheme) has behaved like valid random access storage
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pht-isAddressPresentInTree(a) returns true if and only if address a is present in the tree.

1. check the integrity of the statusBit pertaining to address a in the manner described in Section 3.

2. if the statusBit is 1, return true. If it is 0, return false.

pht-moveToTree(a, v) move address a to the partial-hash tree, and set its value to be v.

1. update the statusBit pertaining to address a, in the manner described in Section 3, to be 1.

2. update the appropriate nodes so that the leaf node for address a is protected by the tree and has the
value v. The nodes are updated in the manner described in Section 3. (This step can be performed at
the same time as the previous step, so that the logarithmic cost of using the hash tree is incurred once.)

pht-moveFromTree(a) remove address a from the partial-hash tree.

1. update the statusBit pertaining to address a, in the manner described in Section 3, to be 0.

2. update the appropriate nodes so that the internal nodes of the tree no longer protect the leaf node for
address a. The nodes are updated in the manner described in Section 3. (This step can be performed at
the same time as the previous step, so that the logarithmic cost of using the hash tree is incurred once.)

pht-store(a, v) stores v at address a.

1. online-store(a, v)

pht-load(a) loads the data value at address a.

1. v = online-load(a)

2. Return v to the caller.

Figure 10: Partial-hash tree

if and only if the hybrid-checkRAS operation returns true.

Proof. hybrid-moveToOffline calls offline-add. An adversary cannot have offline-add be called on an
address accessed in an offline manner zero times, by changing its statusBit from 1 to 0. If the adversary
did change the bit from 1 to 0:

• if hybrid-moveToOffline is called on the address, pht-isAddressPresentInTree would check the
statusBit and detect the tampering.

• if either hybrid-store or hybrid-load is called on the address, the address would be operated on in
an offline manner. In this case, the RAS would not behave like valid RAS as the RAS invariant was
not maintained: a cbag-take operation would be performed on an address that is not present in the
bag. The offline-checkRAS would return false, and the tampering would be detected.

An adversary cannot have offline-add be called on an address accessed in an offline manner two or
more times, by changing its statusBit from 0 to 1. If the adversary did change the bit from 0 to 1:

• hybrid-moveToOffline calls pht-isAddressPresentInTree which would check the statusBit and
detect the tampering.

Thus, the addresses which offline-add is called on form a set. By Lemma 6.3, if the addresses which
offline-add has been called on form a set, the RAS that is being checked has behaved like valid random
access storage if and only if the offline-checkRAS operation returns true. hybrid-checkRAS returns true
if and only if offline-checkRAS return true.

As described in Section 6.1.1, there is the issue of determining which addresses to read in step 2 of the
offline-checkRAS call in hybrid-checkRAS. Again, we argue that it is the underlying untrusted bag’s job
to keep track of these addresses, and thus, the data structures used to maintain this information do not
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hybrid-moveToOffline(a) move address a to the offline scheme.

1. Call pht-isAddressPresentInTree(a).

(a) If it returns false, a is already present in the offline scheme. Thus, simply return to the caller.

(b) If it returns true, a is present in the online scheme. a must be moved to the offline scheme.

i. Call v = pht-load(a) to check the integrity of the data value stored at a in the tree.

ii. Call v = pht-moveFromTree(a). (Steps 1, 1(b)i, 1(b)ii can be performed at the same time, using
a cache, so that the logarithmic cost of using the hash tree is incurred once.)

iii. Call offline-add(a, v).

hybrid-store(a, v) stores v at address a.

1. read the statusBit pertaining to address a.

(a) if the statusBit is 1, a is in the online scheme.

i. Call pht-isAddressPresentInTree(a). If it returns true, continue; otherwise, return an error
to the caller.

ii. pht-store(a, v). (This step can be performed at the same time as the previous step, using a
cache, so that the logarithmic cost of using the hash tree is incurred once.)

(b) if the statusBit is 0, a is in the offline scheme.

i. Call offline-store(a, v).

hybrid-load(a) loads the data value at address a.

1. read the statusBit pertaining to address a.

(a) if the statusBit is 1, a is in the online scheme.

i. Call pht-isAddressPresentInTree(a). If it returns true, continue; otherwise, return an error
to the caller.

ii. v = pht-load(a). (This step can be performed at the same time as the previous step, using a
cache, so that the logarithmic cost of using the hash tree is incurred once.)

iii. Return v to the caller.

(b) if the statusBit is 0, a is in the offline scheme.

i. Call v = offline-load(a, v).

ii. Return v to the caller.

hybrid-checkRAS(Y ) returns true if and only if the storage (currently being used by the offline scheme) has behaved
correctly; each of the addresses in Y is moved back into the tree (online scheme).

1. Call offline-checkRAS(). In Step 4 of offline-checkRAS, if a ∈ Y , do not put it into bag T . Instead,

(a) Call pht-moveToTree(a, v), where v is the data value at a.

2. If Step 1 returned true, return true; otherwise return false.

Figure 11: Hybrid Offline-Online RAS Checker (Hybrid Checker)
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have to be protected. One possibility is to maintain an extra bit per hash tree node. These bits are all
initially one. When an address is moved to the offline scheme in hybrid-moveToOffline, the bits from the
address’s leaf node to the root are set to 0. In hybrid-checkRAS, the tree is traversed in either a depth-first
or breadth-first manner to determine which addresses are in the offline scheme. The appropriate bits are
reset to 1 when addresses are moved back into the online scheme.

9.3.1 Hybrid Add and Remove operations

The operations hybrid-add(a, v, f) and hybrid-remove(a) could be added to the interface in Figure 11.
hybrid-add add’s an address to the online scheme if f (flag) is 1, and to the offline scheme if f is 0.
hybrid-remove checks to determine if the address to be removed is in the online or offline scheme; the
address is then removed from the appropriate scheme.

• For hybrid-add,

– If the address is being added to the protection of the online scheme, the appropriate nodes for
the address and its statusBit are added to the partial-hash tree, with the statusBit being
set to 1. The address can be operated on with hybrid-store and hybrid-load. The address’s
value can be moved to the offline scheme using hybrid-moveToOffline.

– If the address is being added to the protection of the offline scheme, it is added with respect to one
of the manners described in Section 6.1. The appropriate nodes for the statusBit and leaf node
for the address are added to the tree, with the statusBit being protected by the tree and set
to 0. The address can be operated on with hybrid-store and hybrid-load. hybrid-checkRAS
can be used to move the address’s value to the online scheme.

• For hybrid-remove,

– If the address to be removed is currently being protected by the online scheme, the appropriate
nodes for the address and its statusBit are removed from the partial-hash tree.

– If the address to be removed is currently being protected by the offline scheme, it is removed with
respect to one of the manners described in Section 6.1. The appropriate nodes for the address
and its statusBit are removed from the partial-hash tree.

9.3.2 Space Considerations

We provide some discussion on the space layout of the hybrid scheme. To implement the hybrid scheme
the layout of data values, statusBits, hashes and time stamps should be determined. Data values should
be stored at the addresses, as usual. Given an address, it should be easy for the checker to compute the
location of its statusBit. When the checker reads either the data value at an address or the address’s
statusBit, it is likely to be more efficient if the checker reads both from the storage together.

Given an address it should be easy for the checker to compute the location of its time stamp. Also,
given a node in the hash tree, it should be easy for the checker to compute the location of its parent.

For memory, one possible space layout would be for the part of the storage that is addressable by the
FSM i.e. the part which would store data values, to be at the top of the storage. The non-FSM-addressable
part of the storage would contain statusBits, internal hash tree nodes, and time stamps. For storage in a
file system or database, the statusBits and time stamps could be part of a data objects meta data. The
internal hash tree nodes could be in the non-FSM-addressable part of the storage.

Compared with the hash tree described in Section 3, the extra space overhead is the statusBits and
time stamps. As described in Section 7, the size of a time stamp can be small, relative to the size of a hash.
Thus, the space overhead of the hybrid scheme should not be much larger than that of the online scheme.

10 Conclusion

In this paper, we investigate offline integrity checking as an alternative method to using hash trees to check
the integrity of untrusted storage. The advantages of offline integrity checking over hash tree-based (online)
integrity checking include:
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• Can perform better as untrusted memory accesses are constant time.

• Can have a smaller space overhead.

• Easier to implement.

In offline integrity checking, there is a constant overhead on the number of checker accesses to the
untrusted storage on each program access, as opposed to the logarithmic overhead on the number of accesses
incurred by using a tree. The cost is that the addresses that were used must be read to do an integrity check;
schemes such as the hybrid online-offline scheme optimize this requirement and facilitate offline integrity
checking on large storages.

Though the paper focuses on integrity checking, (data value, time stamp) pairs can be further encrypted
when they are stored on the untrusted storage to prevent adversaries from reading them. As the time stamp
is different each time a pair is written to the storage, the encrypted pairs will be different each time a pair
is written to the storage. We expect offline integrity checking to be particularly useful in applications like
certified execution on appliances, and the protection of memory in small devices. We also expect hybrid
integrity checking will present an alternative to using hash trees to verify the integrity of very large storage,
such as the storage in file systems and databases.
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A Appendix: Reduction from MSet-XOR MAC to XOR-MAC

In this appendix, we reduce the set-collision resistance of MSet-XOR MAC to the collision resistance of
XOR-MAC.

Definition A.1. Let ≡′
X be the comparability operator which just compares the first elements of HX (S)

triples. That is:

(A, CA, RA) ≡′
X (B, CB , RB) =

(
A⊕Hs(0, RA) = B ⊕Hs(0, RB)

)
Lemma A.1. It is computationally infeasible to find two sets A and B of polynomial size such that A �= B
and HX (A) ≡′

X HX (B).

Proof. We introduce a numbering vi of the elements of V . Let n(S) be the index of the highest element in
the set S. We define a set of encoding functions over sets, En : S → {0, 1}∗, by |En(S)| = n and for i ≤ n(S),
En(S)[i] = 1 if vi ∈ S or 0 otherwise.

Let FXOR−MAC be the XOR-MAC that we defined in section 4.1.2, and H1
X (S) denote the first element of

the triple HX (S). We would now like the pseudorandom functions Hs and Fs to be such that

H1
X (S)⊕

n⊕
i=1

Fs(1 · 〈i〉 · 0) = FXOR−MAC(En(S)) if n ≥ n(S) (6)

when both algorithms pick the same random nonce R (effectively, we are XOR-ing out the nonce term on
each side).

One can verify that a sufficient condition for (6) to hold is

Hs(0, x) = Fs(0, x) (7)
Hs(1, vi)⊕ Fs(1, 〈i〉, 0) = Fs(1, 〈i〉, 1) (8)

If Hs is fixed, we use (7) to define Fs(0, x). We then define Fs(1, x, 1), to be some arbitrary pseudorandom
function H ′

s that is not correlated with Hs. In turn this defines Fs(1, x, 0) via equation (8).
If some algorithm B, given oracle access to Fs, can distinguish it from a random function, then it can

distinguish (x, y) → (Hs(x), H ′
s(y)) from a random function, which is impossible because Hs and H ′

s are
uncorrelated. So, as constructed, Fs is a pseudorandom function.

Now, let A be a polynomial time algorithm that outputs two sets A and B such that A �= B and
HX (A) ≡′

X HX (B) with high probability.
Let n0 = max(n(A), n(B)). Applying relation (6) twice givesFXOR−MAC(En0(A)) = FXOR−MAC(En0(B)),

so we have found a collision for XOR-MAC. Since En0(A) and En0(B) are sparse, they can be used by a poly-
nomial algorithm to find a polynomial sized change to make to a (possibly exponentially large) message to
get a collision. This contradicts the collision resistance of XOR-MAC.

Theorem A.2. MSet-XOR MAC is set-collision resistant.
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Proof. Let A be a set-collision finder for HX . We use A to produce a set S and a multiset M such that
HX (S) ≡X HX (M) and S �= M .14

We construct the set S′ = {e ∈ M : multM (e) = 1 mod 2}, where multM (e) denotes the multiplicity of
e in M . It follows that HX (S′) ≡′

X HX (M) ≡′
X HX (S). Therefore, because of Lemma A.1, S = S′.

If M is a set, then M = S′ = S, which contradicts the assumption that A produced a collision for HX .
So M is a multiset, and there exists e0 in M such that multM (e0) > 1. Moreover, by construction of S′,
ei ∈ S =⇒ multM (ei) ≥ 1. So |S′| = ∑ei∈S 1 <

∑
ei∈M multM (ei) = |M |.

Summing up, we have |S| = |S′| �= |M |. Because the cardinalities of S and M are polynomial in k,
for large enough k the cardinalities will be less than 2

k
3 , from which we conclude that the inequality holds

modulo 2
k
3 . This contradicts the hypothesis that A had found a collision. So MSet-XOR MAC is set-collision

resistant.

Note that this proof clearly shows the necessity of including the cardinality of the multiset M that is
being hashed in HX (M), and shows why k

3 bits are sufficient to encode the cardinality.

B Appendix: Proof of the equivalence of the bag definitions

Define Bi as:
Bi = Oi(Bi−1, Mi) (9)

Define B′
i as:

Ti ∪MS B′
i = Pi (10)

We prove, by induction, that, for all 0 ≤ i ≤ n,

Q(i) ::= Bi = B′
i.

That is, (9) defines a unique bag, Bi. (10) defines a unique bag, B′
i. We prove that, for all 0 ≤ i ≤ n,

Bi = B′
i; i.e. for all 0 ≤ i ≤ n, the two bags are the same.

Proof. Base case: Prove Q(0) is true. B0 = ∅. Also, P0 = T0 = ∅; thus, B′
0 = ∅. Therefore, when i = 0,

B0 = B′
0.

Inductive Step: Assume Q(i) is true, prove Q(i + 1) is true. That is,
assume Bi = B′

i, prove Bi+1 = B′
i+1.

Case 1: Put operation:

Bi+1 = Put(Bi, Mi+1)
by (1)←−−−→ Bi+1 = Bi ∪MS Mi+1

by inductive hypothesis←−−−−−−−−−−−−−−−−−−−→ Bi+1 = B′
i ∪MS Mi+1

by (10)←−−−−→ Bi+1 ∪MS Ti = Pi ∪MS Mi+1

by definition of Pi and Ti←−−−−−−−−−−−−−−−−−−−−−→ Bi+1 ∪MS Ti+1 = Pi+1

by (10)←−−−−→ Bi+1 = Bi+1.

14Note that because of the way HX and ≡X are defined, if S and M collide for some pair of random nonces, then they
collide for all pairs of random nonces.
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Case 2: Take operation:

Bi+1 = Take(Bi, Mi+1)
by (2)←−−−→ Bi+1 ∪MS Mi+1 = Bi

by inductive hypothesis←−−−−−−−−−−−−−−−−−−−→ Bi+1 ∪MS Mi+1 = B′
i

by (10)←−−−−→ Bi+1 ∪MS Mi+1 ∪MS Ti = Pi

by definition of Pi and Ti←−−−−−−−−−−−−−−−−−−−−−→ Bi+1 ∪MS Ti+1 = Pi+1

by (10)←−−−−→ Bi+1 = Bi+1.

Also, as, for all 0 ≤ i ≤ n, Bi = Oi(Bi−1, Mi) ⇐⇒ Ti ∪MS Bi = Pi, then,
for all 0 ≤ i ≤ n, Bi = Oi(Bi−1, Mi) ⇐⇒ Ti ∪MS Bi = Pi ⇐⇒ Ti ⊆MS Pi.

C Appendix: Detailed Analysis

In Section C.1, we analyze the space overhead and bandwidth overhead of offline integrity checking. In
Section C.2, we analytically compare the offline scheme with the online scheme. Table 1 summarized the
space overheads and bandwidth overheads of the offline and online schemes.

C.1 Offline Integrity Checking

C.1.1 Space Overhead

We analyze the per-bit space overhead of the offline scheme. Let t be the number of FSM load and store
operations the FSM can perform before a check is required. Each time stamp has to be log2(t) bits large if
there is no cache. If there is a cache, each time stamp needs to be log2(t(1− hv)) bits where hv is the cache
hit rate - the fraction of FSM storage operations that find their data in the cache.

Denote the size of a time stamp as bt. Denote the number of data value bits in a block, to which a time
stamp is appended, as bv. The per-bit space overhead of the time stamps is bt

bv
bits.

C.1.2 Bandwidth Overhead

Bandwidth Consumption of Initialization
Let N be the number of data value blocks to which a time stamp will be appended. An offline checker

makes N accesses to the untrusted storage to initialize it. The total number of bits the checker transmits
is N(bv + bt) bits.

Bandwidth Overhead at Run Time, with a trusted cache
The cache reduces the bandwidth of storage integrity checking. The offline caching algorithm is described

in Section 6.2. In the algorithm, the entire cache is used for data values. If the cache hit rate is hv, the
number of FSM accesses to the untrusted storage is (1− hv)t. On each of these accesses, the checker reads
a time stamp and writes a time stamp as it brings in a block and evicts a block from the cache. If the
evicted block is dirty, as a block is read from the storage and another block is written to the storage, the
per-access overhead of time stamps is bt. If the evicted block is clean (the more common case), as a block
is read from the storage but no block is written to the storage, the per-access overhead of time stamps is
2bt. Thus, we express the bandwidth overhead of time stamps as 2btt(1 − hv). Let C be the number of
blocks the cache can hold, each block being of size bv. The bandwidth overhead of the checkRAS operation
is (N − C)(bv + bt) as the checker reads both data values and time stamps unless they are in the cache.
Thus, the total bandwidth overhead of the offline scheme is 2btt(1− hv) + (N − C)(bv + bt).
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C.2 Comparison with Online Integrity Checking

C.2.1 Space Overhead

We provide some comparison of the overhead of storing time stamps to the space overhead of a hash tree.
The space overhead in the offline scheme is bt

bv
bits. As described in Section 3, if the size of a leaf is the

size of a hash, an m-ary hash tree has a space overhead of approximately 1
m−1 bits. The parameter, m, is

typically small, like 2, 4, or 8, say.
Suppose a cache block is bv bits large. That is, suppose that, in the offline scheme, a time stamp covers

one cache block, and, in the online scheme, a hash covers one cache block. Let bh be the size of a hash. As
one hash covers m leaves, bv = mbh. The space overhead of the hash tree is thus, bh

bv−bh
. If bt < bh, then

bt

bv
< bt

bv−bt
< bh

bv−bh
. This means that if the size of a time stamp is less than the size of a hash, the offline

scheme will have a smaller space overhead than the online scheme. The size of a hash is usually 128 bits
(MD5 [Riv92]) or 160 bits (SHA-1 [NIS95]). In Section 8, we use 32 bits for each time stamp on a 64 byte
data value block (cache line). The experiments are run using 4 GBytes of memory, and 1

16 of the memory
is used to store the time stamps. We contrast this with the experiments in [GSC+03], where over 1

4 of the
memory is used for the hashes of a 4-ary hash tree in a similar experimental set up (MD5 is used for the
hashes).

C.2.2 Bandwidth Overhead

Bandwidth Consumption of Initialization
The total number of bits an offline checker transmits to initialize the storage is N(bv + bt) bits. To

compare, in the initialization approach described in [GSC+03], the online checker uses about mN
m−1 accesses

to initialize the storage. Thus, the online checker transmits bhmN
m−1 = bvN

m−1 bits to initialize the storage. As
bv

m−1 < (bv + bt), offline initialization consumes more bandwidth than online initialization.

Bandwidth Consumption at Run Time, with a trusted cache
The cache can be used to improve the performance of the offline scheme described in Section 3. The

cache can be used to store both recently-used data values and recently-used hashes. The checker trusts data
values stored in the cache, and can perform FSM accesses directly on them without any hashing. If the
checker fetches a data value from untrusted storage, it must check the integrity of the value before putting
it into the cache. However, instead of checking the entire path from the value to the root of the tree, if the
checker finds a hash along that path in the cache, this hash is trusted; the checker can treat the data value
as valid when the hash’s children are verified. The checker can also store the hashes used in the verification
of the value in the cache and use them to check the integrity of other values. When a data value or hash is
ejected from the cache, the checker brings its parent into the cache (if it is not already there), and updates
the parent in the cache. Storing hashes and data in the cache has a significant performance advantage
because each hash node in the tree stored in the cache acts as a root of a tree smaller than the original tree,
which reduces the average lengths of the paths from leaves to trusted nodes that the checker must validate.
The data value cache hit rate decreases as both data values and hashes are stored in the cache; however,
the storage bandwidth consumption is significantly reduced as less hashes are fetched from the storage. A
trusted cache, which stores both hashes and data values, is necessary to efficiently implement a hash tree
integrity checking scheme [GSC+03].

In the integrated hash tree/caching online algorithm, the cache hit rate of data values decreases. We
denote this cache hit rate as δhv, where 0 ≤ δ ≤ 1. We also denote the average number of hashes the checker
fetches from the storage on each FSM storage operation as z. Thus, the checker’s bandwidth overhead to
read hashes from the untrusted storage is t(1 − δhv)bhz. The parameters δ and z depend on the access
patterns of the FSM and the relative size of the cache to the size of untrusted storage.

For the comparison, we see that if t ≥ (N−C)(bv+bt)
(1−δhv)bhz−2bt(1−hv) , the cost of fetching hashes on each FSM

storage operation in an online checker will exceed the cost of reading the addresses the FSM used to
perform the checkRAS operation in an offline checker, and the offline checker will consume less bandwidth
than an online checker. In the experiments in Section 8, we are concerned with the number of FSM storage
accesses T = (1− hv)t for the offline case: these are the number of FSM accesses (loads and stores) on the
untrusted storage. If we assume δ = 1 for large caches, the offline scheme is better than the online scheme
if T ≥ (N−C)(bv+bt)

bhz−2bt
.
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Note that the smaller z is, the larger is the bound. In other words, the more the cache reduces the
logarithmic overhead of using the hash tree, the larger the offline integrity checking period must be before
the advantage of the constant overhead per access of the offline scheme takes effect. Also note that the
larger δ is, the larger is the hit rate of data values in the cache, and the larger is the bound. This is also
intuitive, as the larger the data value hit rate, the smaller the number of accesses the checker makes to the
storage, and the less the likelihood the performance of the checker will be affected by the cost of using the
tree.

31


