
A Type System and Analysis for the Automatic Extraction
and Enforcement of Design Information

Patrick Lam
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

plam@mit.edu

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

rinard@lcs.mit.edu

ABSTRACT
We present a new type system and associated type checker,
analysis, and model extraction algorithms for automatically
extracting models that capture aspects of the design of the
program. Our type system enables the developer to place a
token on each object; this token serves as the object’s rep-
resentative during the analysis and model extraction. The
polymorphism in our type system enables the use of general-
purpose classes whose instances may serve different purposes
in the computation; programmers may also hide the details
of internal data structures by placing the same token on all
of the objects in these data structures.

Our combined type system and analysis provide the model
extraction algorithms with sound heap aliasing information.
Our algorithms can therefore extract both structural models
that characterize object referencing relationships and behav-
ioral models that capture indirect interactions mediated by
objects in the heap. Previous approaches, in contrast, by
an absence of aliasing information, have focused on control-
flow interactions that take place at procedure call bound-
aries. We have implemented our type checker, analysis, and
model extraction algorithms and used them to produce de-
sign models. Our experience indicates that it is straight-
forward to produce the token annotations and that the ex-
tracted models provide useful insight into the structure and
behavior of the program.

Keywords
program understanding, design conformance, module sys-
tems, static program analysis

1. INTRODUCTION
Design abstractions such as object models [11] and mod-

ule dependency diagrams are a central feature of many soft-
ware development processes. In this capacity they provide
a way to quickly and easily explore design alternatives and
give the members of the design team a common and effec-
tive language for communicating important aspects of the
design.

In principle, the design abstractions should remain a pri-
mary source of information about the program for its entire
lifetime. But the standard practice is for programmers to
manually implement the design once it has been finalized,
raising the possibility of the implementation diverging from
the design. This divergence becomes ever more likely over
the lifetime of the program, limiting the credibility of the

original design and therefore its utility as a source of in-
formation about the program. In most cases, the design
is eventually discarded and the code becomes the primary
source of information about the program.

This paper presents a new type system and an associated
analysis that together support the automatic extraction of
design-level information from the source code. The goal is
to establish a guaranteed connection between the program
and its design, restore the credibility of the design as a re-
liable source of information about the program, and enable
developers to use design abstractions effectively throughout
the entire lifetime of the program.

We focus on abstractions that involve the structure of the
heap and the information flow (or lack of such flow) between
different subsystems. One particularly novel aspect of our
technique is that it accurately captures even indirect interac-
tions mediated by objects in the heap. Existing approaches,
in contrast, focus only on the direct interactions that take
place at procedure or method calls.

The key idea behind our approach is to allow the developer
to use the type system to place a token (chosen from a finite
set of tokens fixed at program analysis time) on each object
in the program; this token serves as the object’s representa-
tive during the analysis that extracts the design information
from the program. This approach addresses several common
problems that complicate the effective automatic extraction
of design information:

• Multiple Design Elements, Single Code Element:
Well-structured programs factor common behavior and
structure into a single, general-purpose code element
(for example, a container class or object factory). Dif-
ferent instantions of such an element often have dis-
tinct conceptual purposes in the computation and should
therefore correspond to different elements in the de-
sign. But standard analysis approaches treat each code
element as a unit, conflating the attributes of its dif-
ferent instantiations and failing to capture important
design-level distinctions.

The polymorphism in our type system eliminates this
problem. It allows the developer to place different to-
kens on different instantiations of the same class, en-
abling the analysis to separate objects with different
conceptual purposes even if the objects happen to be
instances of the same general-purpose class.

• Single Design Element, Multiple Code Elements:
Because the design captures aspects of the computa-

1



tion at a higher level of abstraction than the code,
multiple code elements are often required to imple-
ment a single design element. For example, a primary
object may maintain complex internal data structures
that the design abstracts as conceptually part of the
object. Any approach that fails to abstract these in-
ternal data structures will deliver an overly detailed
model that obscures key aspects of the design.

Our type system addresses this problem by allowing
the developer to place the same token on both the pri-
mary object and all of the objects that implement its
internal data structures. The analysis then treats the
entire collection of objects as a unit and appropriately
coalesces the combined information from all of the ob-
jects into a single design element.

Consider, for example, a set object with an internal
linked list of references to items in the set. Our sys-
tem allows the developer to place the same token on
both the set object and all of the linked list objects,
with a separate token on the items that the list nodes
reference. In the extracted models, the set and all of
its internal linked list nodes comprise a single abstrac-
tion. Because the items in the set have a different
token, they correspond to a separate abstraction.

• Aliasing: To accurately extract structural informa-
tion (for example, referencing relationships between
objects) and behavioral information (for example, how
information flows between subsystems), the analysis
needs to have information about the aliasing relation-
ships in the heap. An expensive whole-program pointer
analysis is the standard way to obtain this information.
Pointer analyses typically use the creation site of each
object to represent the object during the analysis, in
which case the analysis results conflate all objects allo-
cated at the same site and fail to appropriately coalesce
internal objects.

In our type system, the type of each object completely
characterizes the referencing relationships (at the gran-
ularity of tokens) in the part of the heap reachable
from that object. Instead of processing all of the load
and store statements to construct a model of the heap,
our analysis can simply propagate token information
across procedure boundaries to substitute out the to-
ken variables in the polymorphic types. The resulting
ground types provide the required aliasing informa-
tion.

Our analysis produces the following models:

• Object Models: An object model identifies the kinds
of objects in the heap and characterizes the relation-
ships between these different kinds of objects [11]. We
model the objects and relationships at the granularity
of tokens. Specifically, there is a node in the model
for each token. There is a labelled edge between two
tokens if the heap may contain two objects represented
by the tokens and one object may contain a reference
to the other. The label identifies the field containing
the reference. There is also an edge from t1 to t2 if
a method, executing such that this has token t1, can
create a reference to an object of token t2.

Building the model at the granularity of the tokens
separates conceptually distinct instances of the same

class and enables the model to appropriately capture
the different structural relationships associated with
these different instances.The standard approach, in con-
trast, operates at the granularity of classes and fails to
capture these distinctions [17].

• Subsystem Access Models: These models charac-
terize how subsystems access objects. Each of these
models is a bipartite graph. There is a node for each
token and a node for each subsystem, with an edge
from a subsystem to a token if the subsystem may ac-
cess an object represented by the token.

• Interaction Models: Interaction models character-
ize interactions between subsystems at the granularity
of tokens. We support two kinds of models:

– Call/Return Interaction Model: This model
characterizes the direct interactions that take place
at method calls and returns. The nodes in the
call/return model are subsystems. There is a solid
directed edge from subsystem s1 to s2 if a method
in s1 invokes a method in s2. The edge is labelled
with the tokens that represent the objects passed
as parameters in any s1 method calling s2. There
is a dashed directed edge from s2 to s1 if some
method in the s2 subsystem returns a result to a
method in s1. The edge is labelled with all tokens
representing objects returned from s2 to s1.

– Heap Interaction Model: This model charac-
terizes the indirect interactions that take place at
reads and writes to and from objects in the heap.
The nodes in this model are tokens. There is a
solid directed edge between two tokens if a sub-
system writes a reference to an object represented
by the first token into an object represented by
the second token. The label on the edge identifies
the subsystem that performed the write. There
is a dashed directed edge between two tokens if a
subsystem reads a field in an object represented
by the first token and obtains a reference to an
object represented by the second token. The la-
bel on the edge is the subsystem that performed
the read.

This model smoothly generalizes to support higher-
level actions (such as insertions and removals) on
abstract data types (such as hashtables and lists).

Together, these models enable the developer to trace
all of the dependences between and flow of informa-
tion through the subsystems in the program. They
also support useful projection operations — to focus
on a particular aspect of the interactions, the devel-
oper selects the relevant subsystems or tokens, then
hides those parts of the model that do not involve these
subsystems or tokens. The resulting projected models
clearly expose the properties of interest.

Our enhanced subsystem models succinctly capture all
of the information in standard subsystem interaction
models (which focus on aspects of the control flow; in
particular, on how methods in one subsystem invokes
methods in other subystems). But the availability of
a sound, relevant model of the heap also enables the
analysis to characterize not only the control flow but

2



also the information flow that occurs at method calls.
Perhaps more significantly, it can also characterize how
subsystems access data and capture indirect subsystem
interactions mediated by objects in the heap.

This paper makes the following contributions:

• Polymorphic Token Type System: It presents
a polymorphic type system that allows developers to
place a token on each object. This type system is
structured as an extension to Java, and includes a type
checking algorithm that determines if the type decla-
rations are correct.

• Analysis and Model Extraction Algorithms: It
presents an analysis algorithm and model extraction
algorithms that, together, use the type system to ex-
tract models that capture aspects of the design of the
program. This extraction-based approach ensures that
the models correctly reflect the design of the program.
In contrast with many previous approaches, the pres-
ence of sound heap aliasing information enables the
extraction of both structural models that characterize
object referencing relationships and behavioral models
that capture indirect interactions mediated by objects
in the heap.

• Experience: We have implemented our type system,
analysis, and model extraction algorithms. We have
used these algorithms to produce design models. Our
experience indicates that it is straightforward to pro-
duce the token annotations and that the extracted
models provide useful insight into the structure and
behavior of the program.

2. EXAMPLE
We next present an example that illustrates how our anal-

ysis produces the interaction models. Figure 1 presents a
program in which a driver coordinates the activities of a
producer and a consumer. The producer and consumer in-
teract via a stack of objects; the driver creates the stack,
then repeatedly invokes the producer (which pushes some
Integer items on to the stack) and the consumer (which
pops the Integer items off of the stack). There are two kinds
of interactions: call/return interactions in which the stack
flows between the driver, the producer, and the consumer,
and heap interactions in which the produced items flow from
the producer through the stack to the consumer. We next
discuss how our analysis produces models that present in-
formation about this program.

2.1 Subsystems
Our analysis describes the behavior of the system at the

granularity of subsystems. Each subsystem corresponds to
a set of method invocations that serve the same concep-
tual purpose in the computation. Our example contains
four subsystems: the MAIN subsytem that executes the main

method, the EP (Event Producer) subsystem that produces
the data, the EC (Event Consumer) subsystem that con-
sumes the data, and the ED (Event Driver) subsystem that
invokes the EP and EC subsystems.1

1In practice, we would expect the subsystems to be much
larger. We adopt this fine subsystem granularity in our ex-
ample for expository purposes.

token P, C, D, PCS, PCI;

subsys EP, EC, ED;

class Int<i> {

int v;

Int(int v) { this.v = v; }

}

class Node<s,i> {

Node<s,i> next;

Int<i> data;

}

class Stack<s,i> {

private Node <s,i> first;

public void push (Int<i> k) {

Node <s,i> n = new Node<s,i>();

n.data = k;

n.next = first;

first = n;

}

public Int<i> pop() {

Int<i> r = first.data;

first = first.next;

return r;

}

}

class Producer<p,s,i> entry EP {

int n = 0;

public void produce(Stack<s,i> s) {

s.push(new Int<i>(n++);

}

}

class Consumer<c,s,i> entry EC {

Int<i> r;

public void consume(Stack<s,i> s) {

r = s.pop();

}

}

class Driver<d> entry ED {

public void enter() {

Stack<PCS,PCI> s = new Stack<PCS,PCI>();

Producer<P,PCS,PCI> p =

new Producer<PT,PCS,PCI>();

Consumer<C,PCS,PCI> c =

new Consumer<C,PCS,PCI>();

p.produce(s);

c.consume(s);

}

}

class ProducerConsumer {

public static void main(String[] argv) {

new Driver<D>().enter();

}

}

Figure 1: Example Producer/Consumer Program

3



The program identifies some of the classes as subsystem
entry points. In our example, the program uses the enter EP

clause to identify all of the methods in the Producer class
as entry points to the EP subsystem, and similarly for the
EC and ED subsystems.

Once the program enters a subsystem, it remains within
that subsystem until it invokes a method in a class that is
an entry point for a different subsystem. So in our example,
execution starts within the MAIN subsystem, then moves into
the ED subsystem when the main method invokes the enter

method. The ED subsystem then invokes the EP and EC sub-
systems to produce and consume the data.

Note that because the push and pop methods are not sub-
system entry points, invocations of these methods are part
of the same subsystem that invoked them. This approach
enables the construction of general-purpose classes that may
be used for different purposes in different subsystems.

2.2 Polymorphic Token Types
Each class has a set of token parameters. The first pa-

rameter identifies the token placed on the class, while the
other parameters are used to declare the types of the ref-
erence fields of instances of the class. In our example, the
Stack <s, i> class has two parameters: the token vari-
able s identifies the token placed on stack instances, while
the token variable i identifies the token placed on items in
the stack. The class can use these token variables to de-
clare the types of its reference fields and the types of the
parameters of its methods.

The program specifies values for the token parameters at
object creation sites. In our example, the enter method uses
the statement Stack<PCS,PCI> s = new stack<PCS,PCI>();

to create a new instance s of the Stack class with tokens PCS
(producer/consumer stack) and PCI (producer/consumer item).
This object creation site uses concrete token values (PCS and
PCI). It is possible, however, for the program to use token
variables to specify the tokens at object creation sites. Con-
sider, for example, the object creation site new Int<i>(n++);

inside the produce method. This site uses the token vari-
able i to identify the token placed in the newly created Int

object.
As our example illustrates, token variables support a form

of polymorphism in which different instantiations of the same
class can have different tokens. This mechanism supports
general classes whose instances serve different conceptual
purposes in the computation.

2.3 Analysis
The goal of our analysis is to compute, at the granularity

of tokens, the referencing relationships within the program.
This information allows the analysis to characterize struc-
tural relationships in the heap. It also serves as a foundation
for computing behavioral information about how subsystems
access and share information.

Our analysis processes the object creation and method call
statements to propagate token variable binding information
from callers to callees. In effect, the analysis substitutes out
all of the token variables from all of the types, replacing
the variables with the concrete tokens that actually appear
when the program runs.

In our example, the analysis propagates token bindings
from the enter method to the produce and consume meth-
ods as follows. At the call to the produce method, the anal-

ysis uses the declared types of p and s to generate the bind-
ing [p �→ P, s �→ PCS, i �→ PCI] for the token variables in
the produce method. It then propagates these bindings to
generate the binding [s �→ PCS, i �→ PCI] for the token vari-
ables in the push method. In a similar way, the analysis can
substitute out the token variables in the consume and pop

methods to obtain a complete set of bindings for all of the
token variables in the program.

The token propagation algorithm also propagates the cur-
rent subsystem identifier between invoked methods. The
combined analysis result contains both the token variable
bindings and a binding that indicates the subsystems that
may execute each method. So, in our example, the analysis
computes that the push method may execute as part of the
EP subsystem, and that the pop method may execute as part
of the EC subsystem.

At this point, the analysis can use the bindings to com-
pute, for each local variable, the set of tokens that represent
the objects to which the variable may refer. As described
below in Sections 4.4, 4.5, and 4.6, this information enables
the analysis to produce models that characterize the objects
that each subsystem may access and the ways that informa-
tion may flow between subsystems.

As described below in Section 4.3, the bindings at object
creation sites, when combined with the type declarations for
object fields, enable the analysis to produce an object model
that characterizes the referencing relationships between ob-
jects at the granularity of tokens.

Finally, the question may arise how to combine binding
information when different method invocations may have
different token variable bindings. Our framework supports
both context sensitive approaches (which provide a sepa-
rate result for each different combination of the values of
the token variables and subsystems in each method) and
context-insensitive approaches (which combine the different
contexts to generate a single mapping of token variables to
possible values valid for all executions). An intermediate
approach combines contexts from the same subsystem but
keeps contexts from different subsystems apart.

2.4 Object Models
In our system, the concrete type of each object, in com-

bination with the types of the objects that it (transitively)
references, characterizes the structure of the heap reachable
from the object. Once our analysis has computed the bind-
ings for the token variables at each object allocation site,
it can use the type declarations for the fields of the object
to build an object model that characterizes the referencing
relationships in the part of the heap reachable from that ob-
ject. This object model is a labelled, directed graph. The
nodes in the graph correspond to tokens; there is an edge
between two tokens if one of the objects represented by the
first token may contain a reference to an object represented
by the second token. The label on the edge is the name of
the field that may contain the reference.

By combining the object models from each of the object
creation sites, the analysis can produce a single object model
that characterizes, at the granularity of tokens, all of the ref-
erencing relationships in the entire heap. In some cases it is
also desirable to summarize local variable referencing rela-
tionships in the object model. Our tool can therefore process
the local variable declarations to insert an unlabelled edge
between two tokens if a method of an object represented by

4



P

PCI

C

r

PCS

data

D

Figure 2: Object Model for Producer/Consumer

EP

PCSPCI

EC

C

Figure 3: Subsystem Usage Model for Example

the first token has a local variable that may refer to an ob-
ject represented by the second token. Figure 2 presents the
object model from our example; this object model contains
the unlabelled edges from local variables.2

2.5 Subsystem Usage Models
Our analysis processes the statements in each method in

the context of the token variable binding information to ex-
tract a subsystem usage model. This model characterizes
how subsystems access objects at the granularity of tokens.
Each subsystem usage model is a bipartite graph. The nodes
in the graph correspond to subsystems and tokens; there is
an edge connecting a subsystem and a token if the subsystem
may access objects represented by the token.

Figure 3 presents the subsystem usage model from our
example program. The square nodes represent subsystems;
the ellipse nodes represent tokens. The edge between EP and
PCS, for example, indicates that EP may access the stack used
to pass values between the producer and consumer.

2.6 Call/Return Interaction Models
Call/return interaction models characterize the control

and data flow transfers that take place when a method in
one subsystem invokes a method in a different subsystem.

2We have implemented our type system, analysis, and model
extraction algorithms. To ease the construction of the
parser, it accepts a language whose surface syntactic details
differ a bit from those in our example. For example, our
implemented system encloses token parameters in *< and
*> instead of < and >. We use the dot graph presentation
system [12] to automatically produce graphical representa-
tions of our extracted models. All of the pictures in this
paper were automatically produced using our implemented
system.

MAIN

ED

D

EP

P, PCS, PCI

EC

C, PCS, PCI

Figure 4: Call/Return Interaction Model for Exam-
ple

The model itself is a labelled, directed graph. The nodes
correspond to subsystems; there is a solid edge between two
subsystems if a method in the first subsystem may invoke a
method in the second subsystem. There is a dashed edge if
the second method may return an object to the first subsys-
tem. The labels on the edges are the tokens that represent
the objects passed as parameters or returned as values.

We use the analysis results to extract the call/return inter-
action model as follows. At each method call site, we retrieve
the bindings that the analysis has computed for each of the
token variables in the types of the parameters. These bind-
ings identify the tokens that represent the objects passed as
parameters from the caller to the callee. We also extract the
subsystems for the caller and the callee.

If the callee is an entry method, the analysis generates a
solid edge between the two subsystems and labels the edge
with the set of tokens that represent the parameters. If the
invoked method returns an object, it also generates a return
edge, using the analysis results at the return statement(s)
in the callee to extract the tokens on the label of the return
edge. Figure 4 presents the call/return interaction model in
our example.

2.7 Heap Interaction Models
Heap interaction models capture the indirect interactions

that take place via objects in the heap. The nodes in this
model correspond to tokens. There is a solid edge between
two tokens if a subsytem may write a reference to an object
represented by the first token into an object represented
by the second token; there is a dashed edge (in the opposite
direction) if a subsystem may read that reference. The label
on each edge is the subsystem that performed the write or
the read. We remove a node (and its incident edges) from
the final graph if all of its incident edges have the same
subsytem label.

We use the analysis results to compute the heap inter-
action model as follows. At each statement that writes a
reference from one object to another object, we retrieve the
subsystems that may execute the statement, and, for each
subsystem, the tokens that represent the two objects. There
is an edge between each possible pair of tokens that repre-
sent the source and target objects. The label on each such
edge is the corresponding retrieved subsystem.

Figure 5 presents the heap interaction model for our ex-
ample. The solid lines indicate that the EP subsystem may
write a PCI object into a PCS object and that the EC subsys-
tem may write a PCI object into a C object. The dashed line

5



PCS

PCI

EC EP

C

EC

Figure 5: Heap Interaction Model for Example

indicates that the EC subsystem may read the PCI object
back out of the PCS object.

Note that we have placed the PCS token on both the Stack
object and the Node objects that implement the Stack’s in-
ternal state, in effect collapsing all of the objects to a single
abstraction in the heap interaction model (and other mod-
els as well). This is an example of how tokens allow the
developer to hide irrelevant detail in the generated models.

2.8 Discussion
As this example illustrates, extracting and using pointer

analysis information is relatively straightforward given the
polymorphic token declarations. This information allows us
to create a broad range of models that characterize the heap
structure of the program, its information access behavior,
and both the direct and the indirect information flow be-
tween its subsystems.

We note that our analysis has more information about the
program than it presents in the extracted models. We have
chosen our specific set of models based on our expectations
of what developers would find most useful. We envision,
however, a much richer interactive program exploration sys-
tem that would allow developers to customize the models
to include more or less detail depending on their current
needs. To cite just one example, the developer could choose
to display the name and method of each local variable that
generated a given unlabelled edge in the object model. Such
a system would give developers appropriate access to all of
the information that the analysis extracts.

3. TYPE SYSTEM
We next present a formal treatment of a type system. The

type system is used to check token consistency constraints:
we check that declared tokens match actual tokens, and that
the aliasing and access restrictions of tokens are satisfied by
the actions of the code. The type system ensures that our
models are sound; for instance, when a token is changed,
the type system has ensured that the object had only one
heap reference to it, so that the token change is valid. Our
static type system is realized as a set of typing rules for a
simplified core language; in particular, note that we omit
subsystems from the type checking rules we present here.
Subsystems propagate identically to tokens, and induce no
constraints on the runtime behaviour of the program.

3.1 Static Type System
Figure 6 presents the static type rules that define the type

checker. The type system enforces the following token con-
straints:

• The program never creates multiple references to a
unique or borrowed object.

• The program never writes a borrowed object to a field.

• The program never writes to a field of a read-only ob-
ject.

• The program never accesses global tokens from meth-
ods labelled action.

Formally, a program consists of a sequence of class defi-
nitions, containing method, field and token definitions (see
Rule [PROG] in Figure 6). The goal is to derive the type
judgement � P , indicating that the program satisfies the
static type constraints.

The type system checks each method in turn by using its
owning class’ token definitions and where clauses, in con-
junction with the method parameter definitions, to con-
struct an initial typing environment for the method (see
Rule [PROC]). The type system then checks each statement
of the method in turn (Rules [STMT ACQUIRE] through
[STMT DESTR WRITE]). For each statement, it attempts
to derive a typing judgement of the form P ;E � s, which
indicates that the statement type-checks in the context of
the program P and the typing environment E. The typing
environment E binds variables to types and provides the
list of formal token variables along with constraints on their
possible kinds.

We next discuss how the type system enforces the ba-
sic consistency requirements for the different statements.
Consider the Rules [EXP FIELD READ] and [EXP VAR
READ]. The token associated with, respectively, x.fd or x,
must not have unique or borrowed kind; these objects may
only be read in the context of a destructive access statement.

The Rule [STMT INVOKE] ensures that a method call
may only occur when the necessary conditions hold. We
verify that all tokens used as actual token parameters ex-
ist (P ;E �token ai). We extract the kind kj1 corresponding
to each actual method parameter ej ; if it is U , then either
ej must be destructively read (ej = e′j--) or we must add
a borrowing token constraint to our augmented typing en-
vironment E′, ensuring that token aj1 can use kind B in
the callee’s context. Finally, the callee’s required token con-
straints ci must hold in the augmented typing environment
(P ;E′ �tconstr ci).

Next consider the type rule for destructive field writes
x.fd = y-- (Rule [STMT DESTR WRITE]). Safety con-
ditions are ensured by preventing writes to read-only ob-
jects (kx �= R) and writes of borrowed values (ky �= B).
As in Rule [EXP FIELD READ], we check that permission
to write to tx is available (kx = B ∨ kx = U). For a non-
destructive field write, we add the additional restriction that
y’s token may be neither borrowed nor unique: ky �∈ {B,U}.

Finally, consider the type Rules [STMT DESTR COPY]
for destructive copy x = y-- and [STMT DESTR READ]
for destructive read x = y.fd--. Destructive copy requires
the source object in y to either be unique (ky

1 = U), in which
case we require token compatibility: token ty

i must equal tx
i

if ky
i �= U ; or, for non-unique source objects (ky

1 �= U), we

6



require the tokens to match: tx = ty. A similar condition
holds for destructive write, except that we replace ty by tf

and ky
i by kf

i.

4. ANALYSIS AND MODEL EXTRACTION
We next present the analysis and model extraction algo-

rithms. The purpose of the analysis is to determine all of
the possible token variable bindings for each method. The
model extraction algorithms use the bindings to produce the
models.

4.1 Preliminaries and Notation
The program defines a set of tokens t ∈ T, token variables

p, v ∈ V∪T, a set of methods m ∈ M, a set of subsystem iden-
tifiers s ∈ S, a set of classes k ∈ K, a set of call sites c ∈ C,
and a set of object creation sites o ∈ O. Each class k has a
set of fields f ∈ fields(k). Each call site c may invoke a set of
methods m ∈ callees(c); we compute the call graph informa-
tion using a variant of class hierarchy analysis. Each call site
c is contained in a method method(c) and each object cre-
ation site o is contained in a method method(o). If a method
m is an entry method, then entry(m) is its subsystem iden-
tifier s, otherwise entry(m) = same, where same is a special
identifier indicating that each invocation of m is part of the
same subsystem as its caller. The type of an object created
at an object creation site o is k 〈v1, . . . , vl〉 = type(o), where
k is the class of the new object and v1, . . . , vl are the actual
token parameters of the new object. Each local variable
lv ∈ LV has a type k 〈v1, . . . , vl〉 = type(lv). Each class k has
a set of formal token parameters 〈p1, . . . , pl〉 = parms(k) and
a set of object references f k〈v1, . . . , vl〉, where k〈v1, . . . , vl〉
is the type of the object which field f references.

The analysis produces bindings b ∈ B = T ∪ V → T; we
require that b(t) = t for all t ∈ T. The identity function on
tokens is Id = λt.t.

4.2 Analysis
The analysis propagates binding information from caller

to callee to compute a set of calling contexts for each method.
More specifically, for each method m, it produces a set of
tuples 〈s, b〉 ∈ contexts(m). This set of tuples satisfies the
following context soundness condition:3

If

• c is a call site with l+1 actual parameters whose types
are k0 〈v0

1, . . . , v
0
n0〉, . . . , kl 〈vl

1, . . . , v
l
nl
〉,4

• c is inside a method mc = method(c),

• 〈s, b〉 ∈ contexts(mc), m ∈ callees(c), and

• m has l + 1 formal parameters whose types are
k0 〈p0

1, . . . , p
0
n0

〉, . . . , kl 〈pl
1, . . . , p

l
nl
〉,

then 〈s′, [pj
i �→ b(vj

i ).0 ≤ j ≤ l, 1 ≤ i ≤ nj ]∪Id〉 ∈ contexts(m),
where s′ = s if entry(m) = same, otherwise s′ = entry(m).

The analysis produces an analysis result that satisfies this
condition by propagating token bindings in a top-down fash-
ion from callers to callees starting with the main method. It
3Note that constructors are treated just like any other
method in this analysis.
4By convention, the receiver is parameter 0.

initializes the analysis by setting contexts(main) = {〈MAIN, Id〉}.
It uses a fixed-point computation within strongly connected
components of the call graph to ensure that the final result
satisfies the context soundness condition. Note that this al-
gorithm produces a completely context-sensitive solution in
that it records each context separately in the analysis result.
It is also possible to adjust the algorithm to merge contexts
and produce a less context-sensitive result.

4.3 Object Model Extraction
Figure 7 presents the object model extraction algorithm.

This algorithm produces a set of nodes N ⊆ T and a set of
labelled edges of the form 〈t1, f, t2〉; each such edge indicates
that the field f in an object represented by token t1 may
contain a reference to an object represented by token t2.
The algorithm processes all of the object creation sites o in
the program; for each site, it uses the token variable bindings
produced by the analysis to determine the potential token
instantiations for objects created at that site. It then uses
the bindings to trace out the part of the heap reachable from
objects created at that site. The visit algorithm uses a set
V of visited class/binding pairs to ensure that it terminates
in the presence of recursive data structures.

set N = ∅, E = ∅, V = ∅
for all object creation sites o ∈ O

let m = method(o)
let k〈v1, . . . , vl〉 = type(o)
let 〈p1, . . . , pl〉 = parms(k)
for all 〈s, b〉 ∈ contexts(m)

visit(k, [pi �→ b(vi).1 ≤ i ≤ l] ∪ Id)

visit(k, b)
if 〈k, b〉 �∈ V then

let 〈v1, . . . , vl〉 = parms(k)
set N = N ∪ {b(v1)}
set V = V ∪ {〈k, b〉}
for all f k′〈v′1, . . . v′j〉 ∈ refs(k)

set E = E ∪ {〈b(v1), f, b(v′1)〉}
let 〈p1, . . . , pj〉 = parms(k′)
visit(k′, [pi �→ b(v′i).1 ≤ i ≤ j] ∪ Id)

Figure 7: Object Model Extraction Algorithm

Note that this algorithm produces only the labelled edges
for the heap references. Our implemented algorithm also
processes the local variable declarations to add the unla-
belled edges that summarize potential referencing relation-
ships associated with the local variables in each class.

4.4 Subsystem Access Model Extraction
Figure 8 presents the subsystem access model extraction

algorithm. It produces a set of nodes N ⊆ S∪T and a set of
edges E of the form 〈s, t〉; each such edge indicates that the
subsystem s may access an object represented by token t.
The algorithm processes all of the accesses in the program,
retrieving the binding information produced by the analysis
to determine 1) the subsystems that can execute the access
and 2) the tokens that represent the accessed objects.

4.5 Call/Return Interaction Model Extraction

7



� P

[PROG]
ClassesOnce(P ) FieldsOnce(P )

ProcsOnce(P ) TokensOnce(P ) JumpsLocal(P )
P = defn1..n P � defni

� P

P � defn

[CLASS]
gi = tokenfi E = g2..n, tconstr〈c1..s〉 P ;E � fieldi P ;∅ �tkind tokeni

P � class cn〈f1..n〉 where c1..r{field1..j token1..k proc1..m}

P ;E � proc

[PROC]
argi = cni〈fi1..imi

〉vni locali = cni〈fi1..imi
〉vni

E = E0, arg1..n, localn+1..n+l ∀i ∈ [1..t]. P ;E � si

(fij
= fk ∨ P ;∅ �tkind fij

) P ;E0 � wf

P ;E � mn〈f1..r〉(arg1..n){localn+1..n+l s1..t}

P ;E � field

[FIELD INIT]
P ;E � τ

P ;E � τ fd

P � field ∈ c

[FIELD DECLARED]
P � class c〈f1..n〉 · · · {· · ·field · · · }

P � field ∈ c〈f1..n〉

P ;E � wf

[ENV ∅]

P ;∅ � wf

[ENV TOKEN FORMAL]
P ;E � wf tn �∈ Dom(E)

P ;E, token tn � wf

[ENV TOKEN CNS’T]
P ;E � wf

P ;E, tconstr〈. . .〉 � wf

[ENV X]
P ;E � τ x �∈ Dom(E)

P ;E, τ x � wf

P ;E �token t

[TOKEN GB’L REF]
P ;E �tkind t in k

P ;E �token t

[TOKEN FORMAL]
E = E1, token t, E2 P ;E � wf

P ;E �token t

P ;E �tkind t

[TOKEN GLOBAL KIND]
P = defn1..n proc1..r T1, t in k, T2

P ;E � wf action �∈ E
P ;E �tkind t in k

[TOKEN CNS’T KIND]
E = E1, tconstr〈t in k〉, E2

P ;E � wf
P ;E �tkind t in k

[TOKEN CNS’T NOT KIND]
E = E1, tconstr〈t not in k〉, E2

k′ �= k P ;E � wf
P ;E �tkind t in k′

[TOKEN CNS’T IMPLIES]
E = E1, tconstr〈t in k implies t’ in k’〉, E2

P ;E �tkind t in k P ;E � wf
P ;E �tkind t′ in k′

P ;E �tconstr c

[CONSTR EQUALITY]
P ;E �tkind t in k

P ;E �tconstr tconstr〈t in k〉

[CONSTR IMPL]
P ;E �tkind t in k P ;E �tkind t′ in k′

P ;E �tconstr tconstr〈t in k implies t’ in k’〉
P ;E �tkind t in k �= k′′

P ;E �tconstr tconstr〈t in k” implies t’ in k’〉

[CONSTR INEQUALITY]
P ;E �tkind t in k �= k′

P ;E �tconstr tconstr〈t not in k’〉

P ;E � τ

[TYPE OBJECT]
P ;E �token t

P ;E � Object〈t〉

[TYPE C]
P � class cn〈f1..n〉 · · · P �token t1..n

P ;E � cn〈t1..n〉

P ;E � cond

[COND EQ]
P ;E � e1
P ;E � e2

P ;E � e1==e2

[COND NEQ]
P ;E � e1
P ;E � e2

P ;E � e1!=e2

P ;E � e:τ

[EXP VAR READ]
E = E1, τ y, E2 τ = c〈t1..n〉
P ;E �tkind t1 in k k �∈ {B,U}

P ;E � y:τ

[EXP FIELD READ]
E = E1, τy y, E2 τy = cy〈ty

1..m〉 τf = cf 〈tf
1..n〉

P � (τf fd) ∈ τy P ;E �tkind ty
1 in ky P ;E �tkind tf

1 in kf kf �∈ {B,U}
P ;E � y.fd:τf [tf

1/ty
f(1)] · · · [tf

m/ty
f(m)]

P ;E � s

[STMT NEW]
E = E1, τ x, E2 τ = c〈t1..n〉

P ;E � c〈f1..n〉
P ;E � x = new c〈t1..n〉

[STMT LABEL]
P ;E � wf
P ;E � �:

[STMT READ/COPY]
E = E1, τ x, E2

P ;E � e:τ
P ;E � x = e

[STMT GOTO]
P ;E � wf

P ;E � goto �

[STMT IF]
P ;E � �1: P ;E � �2:

P ;E � cond
P ;E � ifcond then �1else �2

[STMT INVOKE]
P � mn〈f1..r〉(τj yj)j∈1..n{· · · }

P ;E �token ai τj = cnj〈fj1..jmj
〉 τ ′

j = τj [ai/fi] aj1 = fj1 [ai/fi] P ;E �tkind aj1 in kj1

ej = e′
j | e′

j-- kj1 = U ⇒ (ej = e′
j-- ∨ (tconstr〈kj1 in B〉 ∈ E′)) P ;E � e′

j :τ
′
j

E′ ⊇ E E′ minimal P ;E′ �tconstr ci

P ;E � a0.mn〈a1..r〉(e′
1..n)

[STMT DESTR COPY]
E = E1, τx x, E2 E = E′

1, τy y, E′
2 τx = c〈tx

1..n〉 τy = c〈ty
1..n〉

P ;E �tkind tx
i in kx

i P ;E �tkind ty
i in ky

i
ky
1 = U ⇒ ∀i. (ky

i �= U ⇒ ty
i = tx

i ) ky
1 �= U ⇒ tx = ty

P ;E � x = y--

[STMT DESTR READ]
E = E1, τx x, E2 E = E′

1, τy y, E′
2 P � (τf fd) ∈ τy

τx = cx〈tx
1..n〉 τf = cx〈tf1..n〉 τy = cy〈ty

1..m〉
P ;E �tkind tx

i in kx
i P ;E �tkind tfi in kf

i P ;E �tkind ty
i in ky

i

kf
1 = U ⇒ ∀i. (kf

i �= U ⇒ tfi = tx
i ) kf

1 �= U ⇒ tx = tf

P ;E � x = y.fd--

[STMT WRITE]
E = E1, τx x, E2 E = E′

1, τy y, E′
2 τx = cx〈tx

1..n〉 τy = cy〈ty
1..m〉

P ;E �tkind tx
1 in kx kx �= R P ;E �tkind ty

1 in ky ky �∈ {B,U}
P ;E � (τy fd) ∈ τx

P ;E � x.fd = y

[STMT DESTR WRITE]
E = E1, τx x, E2 E = E′

1, τy y, E′
2 τx = cx〈tx

1..n〉 τy = cy〈ty
1..m〉

P ;E �tkind tx
1 in kx kx �= R P ;E �tkind ty

1 in ky ky �= B
P ;E � (τy fd) ∈ τx

P ;E � x.fd = y--

Figure 6: Type Rules

8



set N = ∅, E = ∅
for each method m

for each access lv.f in m
let k 〈v1, . . . , vl〉 = type(lv)
for each 〈s, b〉 ∈ contexts(m)

set N = N ∪ {s, b(v1)}
set E = E ∪ {〈s, b(v1)〉}

Figure 8: Subsystem Access Model Extraction Al-
gorithm

Figure 9 presents the call/return model extraction algo-
rithm. It produces a set of nodes N ⊆ S and a set of edges
E of the form 〈s1, t, s2〉. The algorithm processes all of the
call sites in the program, retrieving the binding information
produced by the analysis to determine 1) if the call site may
invoke an entry method of a different subsystem, and 2) if
so, the tokens that represent the objects passed as param-
eters between the subsystems. Note that there is an edge
for each such token. To eliminate visual clutter, our model
display algorithm coalesces all edges between the same two
subsystems, producing a single edge with a list of the tokens
passed as parameters between the subsystems.

set N = ∅, E = ∅
for each call site c

for each 〈s, b〉 ∈ contexts(method(c))
for each m ∈ callees(c)

let s′ = entry(m)
if s′ �= same and s′ �= s then

set N = N ∪ {s, s′}
let k0 〈v0

1, . . . , v
0
n0〉, . . . , kl 〈vl

1, . . . , v
l
nl
〉 be the types

of the actual parameters at the call site c
set E = E ∪ {〈s, b(vi

1), s
′〉.1 ≤ i ≤ l}

Figure 9: Call/Return Model Extraction Algorithm

The algorithm in Figure 9 does not generate the return
edges. Our implemented algorithm generates these edges by
similarly processing the return statements of entry methods.

4.6 Heap Interaction Model Extraction
The heap interaction model extraction algorithm produces

a set of nodes N ⊆ T and two sets of edges. The write
edges W ⊆ T × S × T summarize the write interactions;
an edge 〈t1, s, t2〉 ∈ W indicates that the subsytem s may
write a reference to an object represented by token t1 into an
object represented by token t2. The read edges R ⊆ T×S×
T summarize the read interactions; an edge 〈t1, s, t2〉 ∈ R
indicates that the subsytem s may read a reference to an
object represented by token t2 from an object represented
by token t1.

Figure 10 presents the algorithm that extracts the write
interactions W . The algorithm processes all of the write
accesses in the program, retrieving the binding information
produced by the analysis to determine 1) the subsystems
that may perform the write and 2) the tokens that represent
the accessed objects. The algorithm that extracts the read
interactions is similar. The set of nodes N is initialized to ∅
before the read and write interaction algorithms execute. To
reduce visual clutter, the model display algorithm removes

set W = ∅
for each method m

for each write access lv1.f = lv2 in m
let k1 〈v1

1, . . . , v
1
l1〉 = type(lv1)

let k2 〈v2
1, . . . , v

2
l2〉 = type(lv2)

for each 〈s, b〉 ∈ contexts(m)
if (b(v1

1) �= b(v2
1) then

set N = N ∪ {b(v1
1), b(v2

1)}
set W = W ∪ {〈b(v2

1), s, b(v1
1)〉}

Figure 10: Heap Interaction Model Extraction Al-
gorithm

all nodes whose incident edges all have the same label.

5. EXPERIENCE
We have implemented a prototype version of our sys-

tem by extending the Kopi Java compiler5. We tested our
approach on Tagger, a text formatting system written by
Daniel Jackson. Tagger consists of 1721 lines of Java code
and 14 classes (not counting the standard Java libraries). It
accepts a text file augmented with formatting commands as
input and produces as output another text file in the Quark
document definition language.

We first augmented Tagger with subsystem and token an-
notations. This augmentation increased the number of lines
of code to 1755. We added token and/or subsystem annota-
tions to a total of 201 lines of code. This augmented version
has the following subsystems, with one boundary class per
subsystem:

• Pars: The parser subsystem, which contains code to
read the input file, group characters into words, and
recognize formatting commands.

• Pmap: The property management subsystem, which
manages the data structures that control the trans-
lation between each Tagger formatting command and
the corresponding Quark output.

• Act: The action subsystem, which uses property man-
agement subsystem to translate Tagger commands into
Quark commands, then passes the output to the Gen
subsystem.

• Gen: The generation subystem, which produces the
output Quark document. This subsystem manages the
translation of the Quark commands into a flat stream
of output symbols. It is responsible for generating the
surface syntax of the Quark document and producing
the output file.

• Eng: The engine subystem, which processes the Tag-
ger commands and serially dispatches each command
to the Act subsystem.

• Main: The main subsystem, which initializes the sys-
tem and implements the connection between the Pars
subsystem, which reads the input file, and the Act
subsystem, which processes the text and Tagger com-
mands in the file.

5Available at http://www.dms.at/kopi/

9



Of the original 14 classes, six are boundary classes in the
annotated version. Two more are abstract superclasses of
boundary classes. Another two are used to transfer data be-
tween the Pars, Eng, Act, and Gen subsystems; their meth-
ods simply store and retrieve the transferred data. Another
class reads in the configuration data that governs the trans-
lation from Tagger to Quark formatting commands; this
class is encapsulated within the PMap subsystem. Another
two store updatable processing state relating to the output
document, for example the current position in an itemized
list of paragraphs. These classes are encapsulated inside the
Eng subsystem. The remaining class manages assertions.

The augmented version has the following tokens:

• Gen:

• Eng: The token for instances

To facilitate the use of code from the Java libraries, our
implemented system generates a single token for each class in
the library and by default places that token on each instance
of the corresponding class.

In general, Tagger separates classes with state from classes
that only encapsulate code. The exceptions are the Gen,
Num, and Counter classes, which have both state and non-
trivial behavior.

6. RELATED WORK
We discuss related work in the areas of software model

extraction, pointer analysis, and ownership types.

6.1 Modeling Extraction
Software models play a key role in most software devel-

opment processes [26, 11]. Modeling is usually carried out
during the design phase as a way of exploring and specify-
ing the design. The design is then usually implemented by
hand, opening up the possibility of inconsistencies between
the design and the implementation. The software engineer-
ing community has long recognized the need for tools to help
ensure that the software conforms to its design [16]. Auto-
matic model extraction is a particularly appealing alterna-
tive, because it holds out the promise of delivering models
that are guaranteed to correctly reflect the structure of the
implementation.

6.1.1 Control-Flow Interactions
Most previous model extraction systems have focused on

control-flow interactions. The software reflexion system, for
example, automatically extracts an abstraction of the call
graph and enables the developer to compare this abstraction
with a high-level module dependency diagram [19]. Arch-
Java augments Java with the concepts of components and
ports. It enforces the constraint that all inter-component
control transfers must take place through ports [1].

Our use of polymorphic token types and the associated
analysis enables us to capture a wider range of design is-
sues; specifically structural issues associated with referenc-
ing relationships between objects in the heap and informa-
tion flow issues associated with method invocations. Most
importantly, we also capture indirect information flow be-
tween subsystems that takes place via objects in the heap.
To the best of our knowledge, all previous systems do not
attempt to perform the analysis that would enable them to

capture these kinds of dependences. This raises the possi-
bility that the extracted models fail to accurately capture
all important interactions.

6.1.2 Object Model Extraction
Standard approaches for extracting object models from

code treat each class as a unit. In type-safe languages, it is
even possible to extract a (relatively crude) object model di-
rectly from the type declarations of the fields in the objects.
Problems with this approach include conflation of different
instances of general-purpose classes and overly detailed ob-
ject models because of a failure to abstract internal data
structures. Womble [17] attacks the latter failure by treat-
ing collection classes separately as relations between objects.
Womble is also unsound in that the extracted model may fail
to accurately characterize the referencing relationships. In
contrast, our extracted object models are sound and avoid
both conflation of instances of general-purpose classes and
excessive detail associated with failing to abstract internal
data structures.

6.2 Pointer Analysis
Pointer analysis has been an active area of research for

well over 15 years. Approaches range from efficient flow-
and context-insensitive approaches [3, 25, 24, 21, 14, 10,
15] to potentially more precise but less efficient flow- and
context-sensitive approaches [22, 27, 13, 7, 18, 23]. These
approaches vary in whether they create a result for each
program point (flow-sensitive analyses) or one result for the
entire program (flow-insensitive analyses). They also vary
in whether they produce a result for each calling context
(context-sensitive analyses) or one result that is valid for
all calling contexts (context-insensitive analyses). There are
also flow-insensitive but context-sensitive analyses that pro-
duce a single parameterized result for each procedure that
can be specialized for each different calling context [20].

From our perspective, a primary difference between ex-
isting pointer analysis algorithms and our approach is the
flexibility our approach offers in selecting object represen-
tatives. Specifically, our polymorphic type system enables
the developer to separate objects allocated at the same ob-
ject creation site in the generated model. We believe this
separation is crucial to delivering models that accurately re-
flect the conceptual purposes of the different objects in the
computation. Of course, obtaining this additional precision
requires the developer to provide the polymorphic type dec-
larations.

Another difference is that because the type declarations
in our programs characterize the points-to relations in the
reachable region of the heap, there is no need to analyze the
individual store and load instructions to synthesize a points-
to graph. Instead, the analysis can simply propagate tokens
to substitute token variables out of the polymorphic types.
The analysis needs to process the load and store instructions
only to generate the heap interaction graph.

Our approach is quite flexible in the degree of context-
sensitivity that it provides. It is possible to tune the anal-
ysis to produce a separate result for each combination of
token variable and subsystem values, a result that separates
subsystems but combines information within a single sub-
system, or a single result for each method.

6.3 Ownership Types

10



Ownership type systems are designed to enforce object
encapsulation properties [9, 6, 5, 8, 2]. In this capacity,
they can be used to ensure that objects from one instance of
an abstraction are not used to inappropriately communicate
with other instances of the same abstraction [4, 2]. For
example, one might use ownership types in a multithreaded
web server to ensure that the sockets associated with one
server thread do not escape to be used by another server
thread.

Our system focuses on extracting communication patterns.
Encapsulation violations in our system therefore show up as
unexpected communication. We would attack the problem
of verifying encapsulation properties by enabling the devel-
oper to state desired properties, then checking the appro-
priate extracted model to verify that the program did not
violate these properties.

7. CONCLUSION
The software engineering community has long recognized

the need for tools to help ensure that the software conforms
to its design. Our implemented system, with its polymor-
phic type system, analysis, and automatic model extractors,
takes an important step towards this goal of verified de-
sign. Our models capture important information about the
program; because they are automatically generated, they
are guaranteed to accurately reflect the program’s structure
and behavior. The sound heap aliasing information provided
by our combined type system and analysis enables the ex-
traction of both structural object referencing models and
behavioral models that characterize not only direct inter-
actions that take place at method and procedure calls, but
also indirect interactions mediated by objects in the heap.

We believe our approach holds out the promise of inte-
grating the design effectively into the entire lifecycle of the
software; today, in contrast, design models tend to become
increasingly less reliable (and therefore less relevant) as de-
velopment proceeds into the implementation and mainte-
nance phases. The potential result would be a more power-
ful and pervasive notion of design, leading to more reliable
systems and more economical development.

Acknowledgements
The authors would like to thank Derek Rayside for much
useful feedback on the paper.

8. REFERENCES
[1] J. Aldrich, C. Chambers, and D. Notkin. Archjava:

Connecting software architecture to implementation.
In 24th International Conference on Software
Engineering, Orlando, FL, May 2002.

[2] J. Aldrich, V. Kostadinov, and C. Chambers. Alias
annotations for program understanding. In
Proceedings of the 17th Annual Conference on
Object-Oriented Programming Systems, Languages and
Applications, Seattle, WA, Nov. 2002.

[3] L. O. Andersen. Program Analysis and Specialization
for the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, May 1994.

[4] B. Bokowski and J. Vitek. Confined types. In
Proceedings of the 14th Annual Conference on
Object-Oriented Programming Systems, Languages and
Applications, Denver, CO, Nov. 1999.

[5] C. Boyapati, R. Lee, and M. Rinard. Ownership types
for safe programming: Preventing data races and
deadlocks. In Proceedings of the 17th Annual
Conference on Object-Oriented Programming Systems,
Languages and Applications, Seattle, WA, Nov. 2002.

[6] C. Boyapati and M. Rinard. A parameterized type
system for race-free Java programs. In Proceedings of
the 16th Annual Conference on Object-Oriented
Programming Systems, Languages and Applications,
Tampa Bay, Florida, Oct. 2001.

[7] J. Choi, M. Burke, and P. Carini. Efficient
flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In Conference
Record of the Twentieth Annual Symposium on
Principles of Programming Languages, Charleston,
SC, Jan. 1993. ACM.

[8] D. Clarke and S. Drossopoulou. Ownership,
encapsulation and disjointness of type and effect. In
Proceedings of the 17th Annual Conference on
Object-Oriented Programming Systems, Languages and
Applications, Seattle, WA, Nov. 2002.

[9] D. Clarke, J. Potter, and J. Noble. Ownership types
for flexible alias protection. In Proceedings of the 13th
Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, Vancouver,
Canada, Oct. 1998.

[10] M. Das. Unification-based pointer analysis with
directional assignments. In Proceedings of the
SIGPLAN ’00 Conference on Program Language
Design and Implementation, Vancouver, Canada, June
2000.

[11] D. D’Souza and A. Wills. Objects, Components, and
Frameworks with UML: the catalysis approach.
Addison-Wesley, Reading, Mass., 1998.

[12] J. Ellson, E. Ganser, E. Koutsofios, and S. North.
Graphviz. Available from
http://www.research.att.com/sw/tools/graphviz.

[13] M. Emami, R. Ghiya, and L. Hendren.
Context-sensitive interprocedural points-to analysis in
the presence of function pointers. In Proceedings of the
SIGPLAN ’94 Conference on Program Language
Design and Implementation, pages 242–256, Orlando,
FL, June 1994. ACM, New York.

[14] M. Fahndrich, J. Foster, Z. Su, and A. Aiken. Partial
online cycle elimination in inclusion constraint graphs.
In Proceedings of the SIGPLAN ’98 Conference on
Program Language Design and Implementation,
Montreal, Canada, June 1998.

[15] N. Heintze and O. Tardieu. Ultra-fast aliasing using
cla: A million lines of code in a second. In Proceedings
of the SIGPLAN ’01 Conference on Program
Language Design and Implementation, Snowbird, UT,
June 2001.

[16] D. Jackson and M. Rinard. The future of software
analysis. In A. Finkelstein, editor, The Future of
Software Engineering. ACM, New York, June 2000.

[17] D. Jackson and A. Waingold. Lightweight extraction
of object models from bytecode. In 21st International
Conference on Software Engineering, Los Angeles,
CA, May 1999.

[18] W. Landi and B. Ryder. A safe approximation
algorithm for interprocedural pointer aliasing. In

11



Proceedings of the SIGPLAN ’92 Conference on
Program Language Design and Implementation, San
Francisco, CA, June 1992.

[19] G. Murphy, D. Notkin, and K. Sullivan. Software
reflexion models: Bridging the gap between source
and high-level models. In Proceedings of the ACM
SIGSOFT 95 Symposium on the Foundations of
Software Engineering, Washington, DC, Oct. 1995.

[20] R. O’Callahan. Generalized Aliasing as a Basis for
Program Analysis Tools. PhD thesis, School of
Computer Science, Carnegie Mellon Univ., Pittsburgh,
PA, Nov. 2000.

[21] R. O’Callahan and D. Jackson. Lackwit: A program
understanding tool based on type inference. In 1997
International Conference on Software Engineering,
Boston, MA, May 1997.

[22] E. Ruf. Context-insensitive alias analysis reconsidered.
In Proceedings of the SIGPLAN ’95 Conference on
Program Language Design and Implementation, La
Jolla, CA, June 1995.

[23] A. Salcianu and M. Rinard. Pointer and escape
analysis for multithreaded programs. In Proceedings of
the 8th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Snowbird, UT,
June 2001.

[24] M. Shapiro and S. Horwitz. Fast and accurate
flow-insensitive points-to analysis. In Proceedings of
the 24th Annual ACM Symposium on the Principles of
Programming Languages, Paris, France, Jan. 1997.

[25] B. Steensgaard. Points-to analysis in almost linear
time. In Proceedings of the 23rd Annual ACM
Symposium on the Principles of Programming
Languages, St. Petersburg Beach, FL, Jan. 1996.

[26] J. Warmer and A. Kieppe. The Object Constraint
Language: Precise Modeling with UML.
Addison-Wesley, Reading, Mass., Redwood City, CA,
1998.

[27] R. Wilson and M. Lam. Efficient context-sensitive
pointer analysis for C programs. In Proceedings of the
SIGPLAN ’95 Conference on Program Language
Design and Implementation, La Jolla, CA, June 1995.
ACM, New York.

12


