
On the Theory of Structural Subtyping

Viktor Kuncak and Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

{vkuncak, rinard}@lcs.mit.edu

MIT-LCS-TR-879, January 2003

Abstract

We show that the first-order theory of structural subtyping
of non-recursive types is decidable.

Let Σ be a language consisting of function symbols (rep-
resenting type constructors) and C a decidable structure in
the relational language L containing a binary relation ≤. C
represents primitive types; ≤ represents a subtype ordering.
We introduce the notion of Σ-term-power of C, which gen-
eralizes the structure arising in structural subtyping. The
domain of the Σ-term-power of C is the set of Σ-terms over
the set of elements of C.

We show that the decidability of the first-order theory of
C implies the decidability of the first-order theory of the Σ-
term-power of C. This result implies the decidability of the
first-order theory of structural subtyping of non-recursive
types.

Our decision procedure is based on quantifier elimination
and makes use of quantifier elimination for term algebras
and Feferman-Vaught construction for products of decidable
structures.

We also explore connections between the theory of struc-
tural subtyping of recursive types and monadic second-order
theory of tree-like structures. In particular, we give an em-
bedding of the monadic second-order theory of infinite bi-
nary tree into the first-order theory of structural subtyping
of recursive types.

Keywords: Structural Subtyping, Quantifier Elimina-
tion, Term Algebra, Decision Problem, Monadic Second-
Order Logic

∗This research was supported in part by DARPA Contract F33615-
00-C-1692, NSF Grant CCR00-86154, NSF Grant CCR00-63513, and
the Singapore-MIT Alliance.

†Draft of January 25, 2003, 10:57am,
see http://www.mit.edu/~vkuncak/papers for later versions.

Contents

1 Introduction 2

2 Preliminaries 2
2.1 Term Algebra 3
2.2 Terms as Trees 3
2.3 First Order Structures with Partial Functions 3

3 Some Quantifier Elimination Procedures 6
3.1 Quantifier Elimination 6
3.2 Quantifier Elimination for Boolean Algebras . 7
3.3 Feferman-Vaught Theorem 8
3.4 Term Algebras 11

3.4.1 Term Algebra in Selector Language . . 11
3.4.2 Quantifier Elimination 12

4 The Pair Constructor and Two Constants 16
4.1 Boolean Algebras on Equivalent Terms 16
4.2 A Multisorted Logic 17
4.3 Quantifier Elimination for Two Constants . . 18

5 A Finite Number of Constants 25
5.1 Extended Term-Power Structure 26
5.2 Structural Base Formulas 27
5.3 Conversion to Base Formulas 28
5.4 Conversion to Quantifier-Free Formulas . . . 28
5.5 One-Relation-Symbol Variance 29

6 Term-Powers of Decidable Theories 31
6.1 Product Theory of Terms of a Given Shape . 31
6.2 A Logic for Term-Power Algebras 32
6.3 Some Properties of Term-Power Structure . . 34
6.4 Quantifier Elimination 38
6.5 Handling Contravariant Constructors 43
6.6 A Note on Element Selection 44

7 Some Connections with MSOL 45
7.1 Structural Subtyping Recursive Types 45
7.2 A Decidable Substructure 47
7.3 Embedding Terms into Terms 47
7.4 Subtyping Trees of Known Shape 47
7.5 Recursive Feature Trees 48
7.6 Reversed Binary Tree with Prefix-Closed Sets 48

8 Conclusion 49

1

http://www.mit.edu/~vkuncak/papers

1 Introduction

Subtyping constraints are an important technique for check-
ing and inferring program properties, used both in type sys-
tems and program analyses [34, 16, 13, 28, 23, 4, 3, 1, 2, 20,
41, 17, 54, 7, 8, 5, 42, 47, 19].

This paper presents a decision procedure for the first-
order theory of structural subtyping of non-recursive types.
This result solves (for the case of non-recursive types) a
problem left open in [48]. [48] provides the decidability re-
sult for structural subtyping of only unary type constructors,
whereas we solve the problem for any number of constructors
of any arity. Furthermore, we do not impose any constraints
on the subtyping relation ≤, it need not even be a partial or-
der. The generality of our construction makes it potentially
of independent interest in logic and model theory.

We approach the problem of structural subtyping using
quantifier elimination and, to some extent, using monadic
second-order logic of tree-like structures. This paper makes
the contributions:

• we give a new presentation of Feferman-Vaught theo-
rem for direct products using a multisorted logic (Sec-
tion 3.3); for completeness we also include proof of
quantifier-elimination for boolean algebras of sets (Sec-
tion 3.2);

• we give a new presentation of decidability of the first-
order theory of term algebras; the proof uses the lan-
guage of both constructor and selector symbols (Sec-
tion 3.4);

• as an introduction to main result, we show decidability
of structural subtyping with one covariant binary con-
structor and two constants (Section 4), this result does
not rely on Feferman-Vaught technique;

• we present a new construction, term-power algebra for
creating tree-like theories based on existing theories
(Section 5);

• as a central result, we prove that if the base theory
is decidable, so is the theory of term-power with ar-
bitrary variance of constructors; we give an effective
decision procedure for quantifier elimination in term-
power structure; the procedure combines elements of
quantifier elimination in Feferman-Vaught theorem and
quantifier elimination in term algebras (Sections 5, 6).

• we show the decidability of structural subtyping non-
recursive types as a direct consequence of the main re-
sult;

• we give a simple embedding of monadic second-order
theory of infinite binary tree into the theory of struc-
tural subtyping of recursive types with two primitive
types (Section 7.1);

• we show that structural subtyping of recursive types
where terms range over constant shapes is decidable
(Section 7.4);

In addition to showing the decidability of structural sub-
typing, our hope is to promote the important technique of
quantifier elimination, which forms the basis of our result.

Quantifier elimination [22, Section 2.7] is a fruitful tech-
nique that was used to show decidability and classification
of boolean algebras [46, 51] decidability of term algebras

[31, Chapter 23], [39, 30], with membership constraints [10]
and with queues [43], decidability of products [35, 14], [31,
Chapter 12], and algebraically closed fields [50],

The complexity of the decision problem for the first-order
theory of structural subtyping has a non-elementary lower
bound. This is a consequence of a general theorem about
pairing functions [15, Theorem 1.2, Page 163] and applies to
term algebras already, as observed in [39, 43].

2 Preliminaries

In this section we review some notions used in the this paper.
If w is a word over some alphabet, we write |w| for the

length of w. We write w1 · w2 to denote the concatenation
of words w1 and w2.

A node v in a directed graph is a sink if v has no outgoing
edges. A node v in a directed graph is a source if v has no
incoming edges.

We write E1 ≡ E2 to denote equality of syntactic entities
E1 and E2.

We write x̄ to denote some sequence of variables
x1, . . . , xn.

We assume that formulas are built from propositional
connectives ∧, ∨, ¬, the remaining connectives are defined
as shorthands. Connective ¬ binds the strongest, followed
by ∧ and ∨.

A literal L is an atomic formula A or a negation of an
atomic formula ¬A. We define complementation of a literal
by A = ¬A and ¬A = A.

A formula ψ is in prenex form if it is of the form

Q1x1. . . . Qnxn.φ

where Qi ∈ {∀,∃} for 1 ≤ i ≤ n and φ is a quantifier free
formula. We call φ a matrix of ψ.

If φ is a formula then FV(φ) denotes the set of free vari-
ables in φ.

We write [x1 7→ a1, . . . , xk 7→ ak] for the substitution σ
such that σ(xi) = ai for 1 ≤ i ≤ k.

If φ is a formula and t1, . . . , tk terms, we write φ[x1 :=
t1, . . . , xk := tk] for the result of simultaneously substituting
free occurrences of variables xi with term ti, for 1 ≤ i ≤ k.

We write h(t) for the height of term t. h(a) = 0 if a is
a constant, h(x) = 0 if x is a variable. If f(t1, . . . , tk) is a
term then

h(f(t1, . . . , tk)) = 1 + max(h(t1), . . . , h(tk))

We assume that all function symbols are of finite arity. If
there are finitely many function symbols then for any non-
negative integer k there is only a finite number of terms t
such that h(t) ≤ k.

If φ(u) is a conjunction of literals, we say that φ′ results
from ∃u.φ(u) by dropping quantified variable u iff φ′ is the
result of eliminating from φ(u) all conjunctions containing
u. More generally, if ψ is a formula of form

Q1x1 . . . Qu . . . Qkxk. ψ0

then the result of dropping u from ψ is

Q1x1 . . . Qkxk. ψ
′
0

where ψ′0 is the result of dropping u from ∃u.φ0.
An equality is an atomic formula t1 = t2 where t1 and t2

are terms. A disequality is negation of an equality.

2

We use the usual Tarskian semantics of formulas. Unless
otherwise stated φ |= ψ will denote that formula φ ⇒ ψ
is true in a fixed relational structure that is under current
consideration.

Occasionally we find it convenient to work with multi-
sorted logic, where domain is union of disjoint sets called
sorts, and arity specifies the sorts of all operations. Con-
stants are operations with zero arguments. Relations are
operations that return the result in a distinguished sort bool
interpreted over the boolean lattice {false, true} or over the
distributive lattice of three-valued logic {false, true, undef}
from Section 2.3).

A structure C of a given language L is a pair of domain
C and the interpretation function J KC . Hence, we name op-
erations of the structure using symbols of the language and
the interpretation function. If C is clear from the context
we write simply J K for J KC .

In Section 3.3 and Section 6 we use logic with several
kinds of quantifiers. Our logic is first-order, but we give
higher-order types to quantifiers. For example, a quantifier

Q :: (A→ B) → B

denotes a quantifier that binds variables of A sort enclosed
within an expression of B sort and returns an expression of
B sort. If X and Y are sets then X → Y denotes the set of
all functions from A to B. When specifying the semantics
of the quantifier Q we specify a function

JQK : (JAK → JBK) → JBK

The semantics of an expressionM of sortB takes an environ-
ment σ which is a function from variable names to elements
of A and produces an element of B, hence JMKσ ∈ JBK. We
define the semantics of an expression Qx. M by:

JQx. MKσ = JQKh

where h : JAK → JBK is the function

h(a) = JMK(σ[x := a])

Here

σ[x := a](y) =

{
σ(y), if y 6≡ x

a, if y ≡ x

Specifying types for quantifiers allows to express more
Let σA be some arbitrary dummy global environment. If

F is a formula without global variables we write JF KσA to
denote the truth value of F ; clearly JF KσA does not depend
on σA and we denote it simply JF K when no ambiguity arises.

We use Hilbert’s epsilon as a notational convenience in
metatheory. If P (x) is a unary predicate, then εx.P (x) de-
notes an arbitrary element d such that P (d) holds, if such
element exists, or an arbitrary object otherwise.

2.1 Term Algebra

We introduce the notion of term algebra [22, Page 14].
Let Nat be the set of natural numbers. Let the signature

Σ be a finite set of function symbols and constants and let
ar : Σ → Nat be a function specifying arity ar(f) for every
function symbol or constant f ∈ Σ. Let FT(Σ) denote the
set of finite ground terms over signature Σ. We assume that
Σ contains at least one constant c ∈ Σ, ar(c) = 0, and at
least one function symbol f ∈ Σ, ar(f) > 0. Therefore,
FT(Σ) is countably infinite.

Let Cons(Σ) be the term algebra interpretation of signa-
ture Σ, defined as follows [22, Page 14]. For every f ∈ Σ with
ar(f) = k define JfK ∈ Cons(Σ), with JfK : FT(Σ)k → FT(Σ)
by

JfK(t1, . . . , tk) = f(t1, . . . , tk)

We will write f instead of JfK when it causes no confusion.

2.2 Terms as Trees

We define trees representing terms as follows.
We use sequences of nonegative integers to denote paths

in the tree. Let Σ be a signature. A tree over Σ is a partial
function t from the set Nat∗ of paths to the set Σ of function
symbols such that:

1. if w ∈ Nat∗, x ∈ Nat, and t(w · x) is defined, then t(w)
is defined as well;

2. if t(w) = f with ar(f) = k, then

{i | t(w · i) is defined } = {1, . . . , k}

A finite tree is a tree with a finite domain.

2.3 First Order Structures with Partial Functions

We make use of partial functions in our quantifier elimina-
tion procedures. In this section we briefly describe the ap-
proach to partial functions we chose to use; other approaches
would work as well, see e.g. [24].

A language of partial functions Σ1 contains partial func-
tion symbols in addition to total function symbols and rela-
tion symbols. Consider a structure with the domain A inter-
preting a language with partial function symbols Σ1. Given
some environment σ, we have JtKσ ∈ A ∪ {⊥} where ⊥ /∈ A
is a special value denoting undefined results. We require the
interpretations of total and partial function symbols to be
strict in ⊥, i.e. f(a1, . . . , ai,⊥, ai+2, . . . , ak) = ⊥.

We interpret atomic formulas and their negations over
the three-valued domain {false, true, undef} using strong
Kleene’s three-valued logic [26, 24, 44]. We require that
JRK(a1, . . . , ai,⊥, ai+2, . . . , ak) = undef for every relational
symbol R. Logical connectives in Kleene’s strong three-
valued logic are the strongest “regular” extension of the cor-
responding connectives on the two-valued domain [26]. The
regularity requirement means that the three-valued logic is
a sound approximation of two-valued logic in the following
sense. We may obtain the truth tables for three-valued logic
by considering the truth values false, true, undef as short-
hands for sets {false}, {true}, {false, true} and defining each
logical operation ∗ by:

s1 J∗K s2 = {b1 ◦ b2 | b1 ∈ s1 ∧ b2 ∈ s2}

where ◦ denotes the corresponding operation in the two-
valued logic. As in a call-by-value semantics of lambda cal-
culus, variables in the environments (σ) do not range over
⊥. We interpret quantifiers as ranging over the domain A
or its subset if the logic is multisorted; the interpretation of
quantifiers are similarly the best regular approximations of
the corresponding two-valued interpretations.

These properties of Kleene’s three-valued logic have the
following important consequence. Suppose that we extend
the definition of all partial functions to make them total
functions on the domain A by assigning arbitrary values out-
side the original domain. Suppose that a formula φ evaluates

3

to an element of b ∈ {false, true} in Kleene’s logic. Then φ
evaluates to the same truth-value b in the new logic of total
functions. This property of three-valued logic implies that
the algorithms that we use to transform formulas with par-
tial functions will apply even for the logic that makes all
functions total by completing them with arbitrary elements
of A.

We say that a formula ψ is well-defined iff its truth value
is an element of {false, true}.

Example 1 Consider the domain of real numbers. The fol-
lowing formulas are not well-defined:

3 = 1/0

∀x. 1/x > 0 ∨ 1/x < 0 ∨ 1/x = 0

The following formulas are well-defined:

∃x. 1/x = 3

∀x. 1/x 6= 3

x = 0 ∨ 1/x > 0

�

We say that a formula φ1 is equivalent to a formula φ2

and write φ1
∼= φ2 iff

Jφ1Kσ = Jφ2Kσ

for all valuations σ (including those for which Jφ1Kσ =
undef).

Sections below perform equivalence-preserving transfor-
mations of formulas. This means that starting from a well-
defined formula we obtain an equivalent well-defined for-
mula.

When doing equivalence preserving transformations it is
useful to observe that ∧,∨ still form a distributive lattice.
The partial order of this lattice is the chain false ≤ undef ≤
true. The element undef does not have a complement in
the lattice; unary operation ¬ does not denote the lattice
complement. However, the following laws still hold:

¬(x ∧ y) ∼= ¬x ∨ ¬y

¬(x ∨ y) ∼= ¬x ∧ ¬y

¬¬x ∼= x

The properties of ∧,∨,¬ are sufficient to transform any
quantifier-free formula into disjunction of conjunctions of lit-
erals using the well-known straightforward technique. How-
ever, this straightforward technique in some cases yields con-
junctions that are not well-defined, even though the formula
as a whole is well-defined.

Example 2 Transforming a negation of well-defined for-
mula:

¬(x 6= 0 ∧ (y = 1/x ∨ z = x+ 1))

may yield the following disjunction of conjunctions:

x = 0 ∨ (y 6= 1/x ∧ z 6= x+ 1)

where y 6= 1/x ∧ z 6= x+ 1 is not a well-defined conjunction
for x = 0.

�

To enable the transformation of each well-defined for-
mula into a disjunction of well-defined conjunctions of liter-
als, we enrich the language of function and relation symbols
as follows. With each partial function symbol f ∈ Σ1 of
arity k = ar(f) we associate a domain description Df =
〈〈x1, . . . , xk〉, φ〉 specifying the domain of f . Here x1, . . . , xk

are distinct variables and φ is an unnested conjunction of
literals such that FV(φ) ⊆ {x1, . . . , xk}. We require every
interpretation of a first-order structure with partial function
symbols to satisfy the following property:

JfK(a1, . . . , ak) 6= ⊥ ⇐⇒ JφK[x1 7→ a1, . . . , xk 7→ ak]

for all a1, . . . , ak ∈ A. We henceforth assume that every
structure with partial functions is equipped with a domain
description Df for every partial function symbol f .

The Proposition 8 below gives an algorithm for trans-
forming a given well-defined formula into a disjunction of
well-defined conjunctions. We first give some definitions and
lemmas.

Definition 3 If ψ is a formula with free variables, a do-
main formula for ψ is a formula φ not containing partial
function symbols such that, for every valuation σ,

JψKσ 6= undef ⇐⇒ JφKσ = true

From Definition 3 we obtain the following Lemma 4.

Lemma 4 Let ψ be a formula and φ a domain formula for
ψ. Then

ψ ∼= (ψ ∧ φ) ∨ (undef ∧ ¬φ)

Proof. Let σ be arbitrary valuation. Let v = JψKσ. If
v ∈ {true, false} then JφKσ = true and

J(ψ ∧ φ) ∨ (undef ∧ ¬φ)Kσ =

(v ∧ true) ∨ (undef ∧ false) = v.

If v = undef then JφK = false, so

J(ψ ∧ φ) ∨ (undef ∧ ¬φ)Kσ =

(undef ∧ false) ∨ (undef ∧ true) = undef.

Observe that ψ∧φ in Lemma 4 is a well-defined conjunc-
tion. We use this property to construct domain formulas
using partial function domain descriptions.

Let
Df = 〈〈x1, . . . , xk〉, Bf

1 ∧ . . . ∧B
f

lf
〉

for each partial function symbol f ∈ Σ1 of arity k, where
Bf

1 , . . . , B
f

lf
are unnested literals. If t1, . . . , tk are terms,

we write Bf
i (t1, . . . , tk) for Bf

i [x1 := t1, . . . , xk := tk]. Let
subt(t) denote the set of all subterms of term t.

For any literal B(t1, . . . , tn) where B(t1, . . . , tn) ≡
R(t1, . . . , tn) or B(t1, . . . , tn) ≡ ¬R(t1, . . . , tn), define

DomForm(B(t1, . . . , tn)) =∧
f(s1,...,sk)∈∪1≤i≤nsubt(ti)

1≤j≤lf

Bf
j (s1, . . . , sk) (1)

4

Lemma 5 Let B(t1, . . . , tn) be a literal containing partial
function symbols. Then DomForm(B(t1, . . . , tn)) is a do-
main formula for B(t1, . . . , tn).

Proof. Let σ be a valuation. By strictness of interpretations
of function and predicate symbols, JB(t1, . . . , tn)Kσ 6= undef
iff Jf(s1, . . . , sk)Kσ 6= ⊥ for every subterm f(s1, . . . , sk) of

every term ti, iff JBf
j (s1, . . . , sk)Kσ = true for every 1 ≤ j ≤

lf and every subterm f(s1, . . . , sk).

Lemma 6 Let B be a literal and let

DomForm(B) = F1 ∧ . . . ∧ Fm.

Then

B ∼= (B ∧ F1 ∧ . . . ∧ Fm) ∨∨
1≤i≤m(undef ∧ ¬Fi ∧ DomForm(Fi))

Proof. If JBKσ 6= undef, then JFiKσ = true for every
1 ≤ i ≤ m, and

Jundef ∧ ¬Fi ∧ DomForm(Fi)Kσ = false

so the right-hand side evaluates to JBKσ as well. Now
consider the case when JBKσ = undef. Then there exists
a term f(s1, . . . , sk) such that Jf(s1, . . . , sk)Kσ = undef.
Because σ(x) 6= ⊥ for every variable x, there exists a
term f(s1, . . . , sk) such that Jf(s1, . . . , sk)Kσ = undef and
JsiKσ 6= undef for 1 ≤ i ≤ k. Then there exists a formula Fp

of form Bf
j (s1, . . . , sk) such that JBf

j (s1, . . . , sk)Kσ = false,
and

Jundef ∧ ¬Fp ∧ DomForm(Fp)Kσ = undef.

Because
JB ∧ F1 ∧ . . . ∧ FmKσ = false,

and for every q,

Jundef ∧ ¬Fq ∧ DomForm(Fq)Kσ ∈ {undef, false},

the right-hand side evaluates to undef.

Lemma 7 Let φ0(ȳ) and φ1(ȳ) be well-defined formulas
whose free variables are among ȳ and let

ψ(ȳ) ≡ (undef ∧ φ0(ȳ)) ∨ φ1(ȳ)

If ψ(ȳ) is well-defined for all values of variables ȳ, then

ψ(ȳ) ∼= φ1(ȳ)

Proof. Consider any valuation σ. Let

v = Jφ1(ȳ)Kσ

and
v′ = Jψ(ȳ)Kσ

We need to show v = v′. Because φ(ȳ) and ψ(ȳ) are well-
defined, v, v′ ∈ {false, true}. We consider two cases.
Case 1. v = true. Then also v′ = true.
Case 2. v = false. Then v′ = undef ∧ φ0(ȳ). Because
v′ 6= undef, we conclude v′ = false.

Proposition 8 Every well-defined quantifier-free formula
ψ can be transformed into an equivalent disjunction ψ′ of
well-defined conjunctions of literals.

Proof. Using the standard procedure, convert ψ to dis-
junction of conjunctions

C1 ∨ . . . ∨ Cn

Let Ci = B∧C′
i where B is a literal and let DomForm(B) =

F1 ∧ . . . ∧ Fm. Replace B ∧ C′
i by

(B ∧ F1 ∧ . . . ∧ Fm ∧ C′
i) ∨∨

1≤i≤m(undef ∧ ¬Fi ∧ DomForm(Fi) ∧ C′
i)

By Lemma 6 and distributivity, the result is an equivalent
formula. Repeat this process for every literal in C1∨. . .∨Cn.
The result can be written in the form

(undef ∧ φ1) ∨ . . . ∨ (undef ∧ φp) ∨ φp+1 ∨ . . . ∨ φp+q (2)

where each φi for 1 ≤ i ≤ p+q is a well-defined conjunction.
Formula (2) is equivalent to

(undef ∧ (φ1 ∨ . . . ∨ φp)) ∨ φp+1 ∨ . . . ∨ φp+q (3)

and is equivalent to the well-defined formula ψ, so it is well-
defined. Formulas φ1 ∨ . . . ∨ φp and φp+1 ∨ . . . ∨ φp+q are
also well-defined. By Lemma 7, we conclude that formula
(3) is equivalent to

φp+1 ∨ . . . ∨ φp+q (4)

Because (4) is a disjunction of well-defined formulas, (4) is
the desired result ψ′.

The following proposition presents transformation to
unnested form for the structures with equality and partial
function symbols, building on Proposition 8. For a similar
unnested form in the first-order logic containing only total
function symbols, see [22, Page 58].

Proposition 9 Every well-defined quantifier-free formula
ψ in a language with equality can be effectively transformed
into an equivalent formula ψ′ where ψ′ is a disjunction of
existentially quantified well-defined conjunctions of the fol-
lowing kinds of literals:

• R(x1, . . . , xk) where R is some relational symbol of ar-
ity k and x1, . . . , xk are variables;

• ¬R(x1, . . . , xk) where R is some relational symbol of
arity k and x1, . . . , xk are variables;

• x1 = x2 where x1, x2 are variables;

• x = f(x1, . . . , xk) where f is some partial or total func-
tion symbol of arity k and x, x1, . . . , xk are variables;

• x1 6= x2 where x1 and x2 are variables.

Proof. Transform the formula to disjunction of well-formed
conjunctions of literals as in the proof of Proposition 8.

Then repeatedly perform the following transformation
on each well-defined conjunction φ. Let A(f(x1, . . . , xk)) be
an atomic formula containing term f(x1, . . . , xk). Replace
φ ∧A(f(x1, . . . , xk)) with

∃x0. φ ∧ x0 = f(x1, . . . , xk) ∧A(x0)

5

Replace x 6= f(x1, . . . , xk) with

x0 = f(x1, . . . , xk) ∧ x0 6= x

Repeat this process until the resulting conjunction φ′ is in
unnested form. φ′ is clearly equivalent to the original con-
junction φ when all partial functions are well-defined. When
some partial function is not well-defined, then both φ and φ′

evaluate to false, because by construction of φ in the proof
of Proposition 8, each conjunction contains conjuncts that
evaluate to false when some application of a function symbol
is not well-defined.

Let a left-strict conjunction in Kleene logic be denoted
by ∧′ and defined by

p ∧′ q = (p ∧ q) ∨ (p ∧ ¬p)

The correctness of the transformation to unnested form
in Proposition 9 relies on the presence of conjuncts that en-
sure that the entire conjunction evaluates to false whenever
some term is undefined. The following Lemma 10 enables
transformation to unnested form in an arbitrary context, al-
lowing the transformation to unnested form to be performed
independently from ensuring well-definedness of conjuncts.

Lemma 10 Let φ(x) be a formula with free variable x and
let t be a term possibly containing partial function symbols.
Then

1. φ(t) ∼= (∃x. x = t ∧ φ(x)) ∨ (undef ∧ ∀x.¬φ(x)) ;

2. φ(t) ∼= ∃x. x = t ∧′ φ(x) ;

3. φ(t) ∼= (∃x. x = t ∧ φ(x)) ∨ (t 6= t) .

Proof. Straightforward.

Proposition 13 below shows that a simplification similar
to one in Lemma 7 can be applied even within the scope
of quantifiers. To show Proposition 13 we first show two
lemmas.

Lemma 11 For all formulas φ0(x, ȳ) and φ1(x, ȳ),

∃x. (undef ∧ φ0(x, ȳ)) ∨ φ1(x, ȳ) ∼=
(undef ∧ ∃x.φ0(x, ȳ)) ∨ ∃x.φ1(x, ȳ)

Proof. By distributivity of quantifiers and propositional
connectives in Kleene logic we have:

∃x. (undef ∧ φ0(x, ȳ)) ∨ φ1(x, ȳ) ∼=
(∃x.undef ∧ φ0(x, ȳ)) ∨ ∃x.φ1(x, ȳ) ∼=
(undef ∧ ∃x.φ0(x, ȳ)) ∨ ∃x.φ1(x, ȳ)

Lemma 12 For all formulas φ0(x, ȳ) and φ1(x, ȳ),

∀x. (undef ∧ φ0(x, ȳ)) ∨ φ1(x, ȳ) ∼=
(undef ∧ ∀x.φ0(x, ȳ) ∨ φ1(x, ȳ)) ∨ ∀x.φ1(x, ȳ)

Proof. The following sequence of equivalences holds.

∀x. (undef ∧ φ0(x, ȳ)) ∨ φ1(x, ȳ) ∼=
¬∃x.¬(undef ∧ φ0(x, ȳ)) ∨ φ1(x, ȳ) ∼=
¬∃x. (undef ∨ ¬φ0(x, ȳ)) ∧ ¬φ1(x, ȳ) ∼=
¬∃x. (undef ∧ ¬φ1(x, ȳ)) ∨ (¬φ0(x, ȳ) ∧ ¬φ1(x, ȳ)) ∼=
¬ ((undef ∧ ∃x.¬φ1(x, ȳ)) ∨ (∃x. ¬φ0(x, ȳ) ∧ ¬φ1(x, ȳ))) ∼=
(undef ∨ ∀x.φ1(x, ȳ)) ∨ (∀x. φ0(x, ȳ) ∨ φ1(x, ȳ)) ∼=
(undef ∧ ∀x.φ0(x, ȳ) ∨ φ1(x, ȳ)) ∨ ∀x.φ1(x, ȳ)

Proposition 13 Let φ0(x̄, ȳ) and φ1(x̄, ȳ) be well-defined
formulas whose free variables are among ȳ and let

ψ(ȳ) ≡ Q1x1 . . . Qnxn. (undef ∧ φ0(x̄, ȳ)) ∨ φ1(x̄, ȳ)

where Q1, . . . , Qn are quantifiers. If ψ(ȳ) is well-defined for
all values of variables ȳ, then

ψ(ȳ) ∼= Q1x1 . . . Qnxn. φ1(x̄, ȳ)

Proof. Applying successively Lemmas 11 and 12 to quan-
tifiers Qn, . . . , Q1, we conclude

ψ(ȳ) ∼= (undef ∧ φ2(ȳ)) ∨Q1x1 . . . Qnxn. φ1(x̄, ȳ)

for some formula φ2(ȳ). Then by Lemma 7,

ψ(ȳ) ∼= Q1x1 . . . Qnxn. φ1(x̄, ȳ).

3 Some Quantifier Elimination Procedures

As a preparation for the proof of the decidability of term
algebras of decidable theories, we present quantifier elimina-
tion procedures for some theories that are known to admit
quantifier elimination. We use the results and ideas from
this section to show the new results in Sections 4, 5, 6.

3.1 Quantifier Elimination

Our technique for showing decidability of structural sub-
typing of recursive types is based on quantifier elimination.
This section gives some general remarks on quantifier elim-
ination.

We follow [22] in describing quantifier elimination proce-
dures. According to [22, Page 70, Lemma 2.7.4] it suffices
to eliminate ∃y from formulas of the form

∃y.
∧

0≤i<n

ψi(x̄, y) (5)

where x̄ is a tuple of variables and ψi(x̄, y) is a literal whose
all variables are among x̄, y. The reason why eliminating
formulas of the form (5) suffices is the following. Suppose
that the formula in prenex form and consider the innermost
quantifier of a formula. Let φ be the subformula containing
the quantifier and the subformula that is the scope of the
quantifier. If φ is of the form ∀x. φ0 we may replace φ
with ¬∃x.¬φ0. Hence, we may assume that φ is of the form

6

∃x. φ1. We then transform φ1 into disjunctive normal form
and use the fact

∃x. (φ2 ∨ φ3) ⇐⇒ (∃x. φ2) ∨ (∃x. φ3) (6)

We conclude that elimination of quantifiers from formulas of
form (5) suffices to eliminate the innermost quantifier. By
repeatedly eliminating innermost quantifiers we can elimi-
nate all quantifiers from a formula.

We may also assume that y occurs in every literal ψi,
otherwise we would place the literal outside the existential
quantifier using the fact

∃y. (A ∧B) ⇐⇒ (∃y.A) ∧B

for y not occurring in B.
To eliminate variables we often use the following identity

of a theory with equality:

∃x.x = t ∧ φ(x) ⇐⇒ φ(t) (7)

Section 2.3 presents analogous identities for partial func-
tions.

Quantifier elimination procedures we give imply the de-
cidability of the underlying theories. In this paper the inter-
pretations of function and relation symbols on some domain
A are effectively computable functions and relations on A.
Therefore, the truth-value of every formula without vari-
ables is computable. The quantifier elimination procedures
we present are all effective. To determine the truth value of
a closed formula φ it therefore suffices to apply the quan-
tifier elimination procedure to φ, yielding a quantifier free
formula ψ, and then evaluate the truth value of ψ.

3.2 Quantifier Elimination for Boolean Algebras

This section presents a quantifier elimination procedure for
finite boolean algebras. This result dates back at least to
[46], see also [51, 27, 32, 6, 49], [22, Section 2.7 Exercise 3].
Note that the operations union, intersection and comple-
ment are definable in the first-order language of the subset
relation. Therefore, quantifier elimination for the first-order
theory of the boolean algebra of sets is no harder than the
quantifier elimination for the first-order theory of the sub-
set relation. However, the operations of boolean algebra are
useful in the process of quantifier elimination, so we give the
quantifier elimination procedure for the language containing
boolean algebra operations.

Instead of the first-order theory of the subtype relation
we could consider monadic second-order theory with no re-
lation or function symbols. These two languages are equiv-
alent because the first-order quantifiers can be eliminated
from monadic second-order theory using the subset relation
(see Section 7.1).

Finite boolean algebras are isomorphic to boolean alge-
bras whose elements are all subsets of some finite set. We
therefore use the symbols for the set operations as the lan-
guage of boolean algebras. t1∩t2, t1∪t2, tc1, 0, 1, correspond
to set intersection, set union, set complement, empty set,
and full set, respectively. We write t1 ⊆ t2 for t1 ∩ t2 = t1,
we write t1 ⊂ t2 for the conjunction t1 ⊆ t2 ∧ t1 6= t2.

For every nonnegative integer k we introduce formulas
|t| ≥ k expressing that the set denoted by t has at least
k elements, and formulas |t| = k expressing that the set

denoted by t has exactly k elements. These properties are
first-order definable as follows.

|t| ≥ 0 ≡ true

|t| ≥ k+1 ≡ ∃x. x ⊂ t ∧ |x| ≥ k

|t| = k ≡ |t| ≥ k ∧ ¬|t| ≥ k+1

We call a language which contains terms |t| ≥ k and |t| = k
the language of boolean algebras with finite cardinality con-
straints. Because finite cardinality constraints are first-order
definable, the language with finite cardinality constraints is
equally expressive as the language of boolean algebras.

Every inequality t1 ⊆ t2 is equivalent to the equality
t1 ∩ t2 = t1, and every equality t3 = t4 is equivalent to the
cardinality constraint

|(t3 ∩ tc4) ∪ (t4 ∩ tc3)| = 0

It is therefore sufficient to consider the first-order formulas
whose only atomic formulas are of the form |t| = 0. For
the purpose of quantifier elimination we will additionally
consider formulas that contain atomic formulas |t|=k for all
k ≥ 1, as well as |t|≥k for k ≥ 0.

Note that we can eliminate negative literals as follows:

¬|t| = k ⇐⇒ |t| = 0 ∨ · · · ∨ |t| = k−1 ∨ |t| ≥ k+1

¬|t| ≥ k ⇐⇒ |t| = 0 ∨ · · · ∨ |t| = k−1
(8)

Every formula in the language of boolean algebras can there-
fore be written in prenex normal form where the matrix of
the formulas is a disjunction of conjunctions of atomic for-
mulas of the form |t| = k and |t| ≥ k, with no negative
literals.

Note that if a term t contains at least one operation of
arity one or more, we may assume that the constants 0 and
1 do not appear in t, because 0 and 1 can be simplified away.
Furthermore, the expression |0| denotes the integer zero, so
all terms of form |0| = k or |0| ≥ k evaluate to true or false.
We can therefore simplify every nontrivial term t so that
it either t contains no occurrences of constants 0 and 1, or
t ≡ 1.

We next describe a quantifier elimination procedure for
finite boolean algebras.

We first transform the formula into prenex normal form
and then repeatedly eliminate the innermost quantifier. As
argued in Section 3.1, it suffices to show that we can elimi-
nate an existential quantifier from any existentially quanti-
fied conjunction of literals. Consider therefore an arbitrary
existentially quantified conjunction of literals

∃y.
∧

1≤i≤n

ψi(x̄, y)

where ψi is of the form |t| = k or of the form |t| ≥ k. We
assume that y occurs in every formula ψi. It follows that no
ψi contains |0| or |1|.

Let x1, . . . , xm, y be the set of variables occurring in for-
mulas ψi for 1 ≤ i ≤ n.

First consider the more general case m ≥ 1. Let for
i1, . . . , im ∈ {0, 1},

ti1...im = xi1
1 ∩ · · · ∩ xim

m

where t0 = t and t1 = tc. The terms in the set

P = {ti1...im | i1, . . . , im ∈ {0, 1}}

7

original formula eliminated form
∃y. |s ∩ y| ≥ k ∧ |s ∩ yc| ≥ l |s| ≥ k + l

∃y. |s ∩ y| = k ∧ |s ∩ yc| ≥ l |s| ≥ k + l

∃y. |s ∩ y| ≥ k ∧ |s ∩ yc| = l |s| ≥ k + l

∃y. |s ∩ y| = k ∧ |s ∩ yc| = l |s| = k + l

Figure 1: Rules for Eliminating Quantifiers

form a partition; moreover every boolean algebra expression
whose variables are among xi can be written as a disjoint
union of some elements of the partition P . Any boolean
algebra expression containing y can be written, for some
p, q ≥ 0 as

(s1 ∩ y) ∪ · · · ∪ (sp ∩ y)∪

(t1 ∩ yc) ∪ · · · ∪ (tq ∩ yc)

where s1, . . . , sp ∈ P are pairwise distinct elements from the
partition and t1, . . . , tq ∈ P are pairwise distinct elements
from the partition. Because

|(s1 ∩ y) ∪ · · · ∪ (sp ∩ y) ∪ (t1 ∩ yc) ∪ · · · ∪ (tq ∩ yc)| =

|s1 ∩ y|+ · · ·+ |sp ∩ y|+ |t1 ∩ yc|+ · · ·+ |tq ∩ yc|

the constraint of form |t| = k can be written as∨
k1,...,kp,l1,...,lq

|s1 ∩ y| = k1 ∧ · · · ∧ |sp ∩ y| = kp ∧

|t1 ∩ yc| = l1 ∧ · · · ∧ |tq ∩ yc| = lp

where the disjunction ranges over nonnegative integers
k1, . . . , kp, l1, . . . , lq ≥ 0 that satisfy

k1 + · · ·+ kp + l1 + · · ·+ lq = k

From (8) it follows that we can perform a similar transfor-
mation for constraints of form |t| ≥ k. After performing this
transformation, we bring the formula into disjunctive nor-
mal form and continue eliminating the existential quantifier
separately for each disjunct, as argued in Section 3.1. We
may therefore assume that all conjuncts ψi are of one of the
forms: |s ∩ y| = k, |s ∩ yc| = k, |s ∩ y| ≥ k, and |s ∩ yc| ≥ k
where s ∈ P .

If there are two conjuncts both of which contain |s∩y| for
the same s, then either they are contradictory or one implies
the other. We therefore assume that for any s ∈ P , there is
at most one conjunct ψi containing |s ∩ y|. For analogous
reasons we assume that for every s ∈ P there is at most one
conjunct ψi containing |s ∩ yc|. The result of eliminating
the variable y is then given in Figure 1. The case when a
literal containing |s ∩ y| does not occur is covered by the
case |s ∩ y| ≥ k for k = 0, similarly for a literal containing
|s ∩ yc|.

It remains to consider the case m = 0. Then y is the
only variable occurring in conjuncts ψi. Every cardinality
expression t containing only y reduces to one of |y| or |yc|.
If there are multiple literals containing |y|, they are either
contradictory or one implies the others. We may therefore
assume there is at most one literal containing |y| and at
most one literal containing |yc|. We eliminate quantifier by
applying rules in Figure 1 putting formally s = 1 where 1 is
the universal set.

This completes the description of quantifier elimination
from an existentially quantified conjunction. By repeating
this process for all quantifiers we arrive at a quantifier-free
formula ψ. Hence we have the following theorem.

Theorem 14 For every first-order formula φ in the lan-
guage of boolean algebras with finite cardinality constraints
there exists a quantifier-free formula ψ such that ψ is a dis-
junction of conjunctions of literals of form |t| ≥ k and |t| = k
where t are terms of boolean algebra, the free variables of ψ
are a subset of the free variables of φ, and ψ is equivalent to
φ on all algebras of finite sets.

Remark 15 Now consider the case when formula φ has no
free variables. By Theorem 14, φ is equivalent to ψ where ψ
contains only terms without variables. A term without vari-
ables in boolean algebra can always be simplified to 0 or 1.
Because |0| = 0, the literals with |0| reduce to true or false,
so we may simplify them away. The expression |1| evaluates
to the number of elements in the boolean algebra. We call
literals |1| = k and |1| ≥ k domain cardinality constraints. A
quantifier-free formula ψ can therefore be written as a propo-
sitional combination of domain cardinality constraints. We
can simplify ψ into a disjunction of conjunctions of domain
cardinality constraints and transform each conjunction so
that it contains at most one literal. The result ψ′ is a sin-
gle disjunction of domain cardinality constraints. We may
further assume that the disjunct of form |1| ≥ k occurs at
most once. Therefore, the truth value of each closed boolean
algebra formula is characterized by a set C of possible cardi-
nalities of the domain. If ψ′ does not contain any |1| ≥ k lit-
erals, the set C is finite. Otherwise, C = C0 ∪{k, k + 1, . . .}
for some k where C0 is a finite subset of {1, . . . , k − 1}.

3.3 Feferman-Vaught Theorem

The Feferman-Vaught technique is a way of
discovering the first-order theories of com-
plex structures by analyzing their components.
This description is a little vague, and in
fact the Feferman-Vaught technique itself has
something of a floating identity. It works
for direct products, as we shall see. Clever
people can make it work in other situations too.
— [22], page 458

We next review Feferman-Vaught theorem for direct
products [14] which implies that the products of structures
with decidable first-order theories have decidable first-order
theories.

The result was first obtained for strong and weak pow-
ers of theories in [35]; [35] also suggests the generalization
to products. Our sketch here mostly follows [14] and [35],
see also [31, Chapter 12] as well as [22, Section 9.6]. Some-
what specific to our presentation is the fact that we use a
multisorted logic and build into the language the correspon-
dence between formulas interpreted over C and the cylindric
algebra of sets of positions.

Let LC be a relational language. Let further I be some
nonempty finite or countably infinite index set. For each
i ∈ I let Ci = 〈Ci, J KCi〉 be a decidable structure interpreting
the language LC .

We define direct product of the family of structures Ci,
i ∈ I, as the structure

P = Πi∈ICi

8

where P = 〈P, J KP 〉. P is the set of all functions t such that
t(i) ∈ Ci for i ∈ I, and J KP is defined by

JrKP (t1, . . . , tk) = ∀i. JrKCi(t1(i), . . . , tk(i))

for each relation symbol r ∈ LC .

inner formula relations for r ∈ LC

r :: tuplek → indset

inner logical connectives

∧I,∨I :: indset× indset → indset

¬I :: indset → indset

trueI, falseI :: indset

inner formula quantifiers

∃I,∀I :: (tuple → indset) → indset

index set equality

=I :: indset× indset → bool

logical connectives

∧,∨ :: bool× bool → bool

¬ :: bool → bool

true, false :: bool

index set quantifiers

∃L,∀L :: (indset → bool) → bool

tuple quantifiers

∃,∀ :: (tuple → bool) → bool

Figure 2: Operations in product structure

For the purpose of quantifier elimination we consider a
richer language of statements about product structure P.
Figure 2 shows this richer language. The corresponding
structure P2 = 〈P2, J KP2〉 contains, in addition to the func-
tion space P , a copy of the boolean algebra 2I of subsets of
the index set I. We interpret a relation r ∈ LC by

JrKP2(t1, . . . , tk) = { i | JrKCi(t1(i), . . . , tk(i)) }

We let JtrueIKP2 = I and write

r(t1, . . . , tk) =I trueI

to express JrKP (t1, . . . , tk). Hence P2 is at least as expressive
as P.

Note that Figure 2 does not contain an equality relation
between tuples. If we need to express the equality between
tuples, we assume that some binary relation r0 ∈ LC in the
base structure is interpreted as equality, and express the
equality between tuples t1 and t2 using the formula:

r0(t1, t2) =I trueI.

Figure 3 shows the semantics of the language in Figure 2.
(The logic has no partial functions, so we interpret the sort
bool over the set {true, false}.)

inner formula relations for r ∈ LC

JrKP2(t1, . . . , tk) = { i | JrKCi(t1(i), . . . , tk(i)) }

inner logical connectives

J∧IKP2(A1, A2) = A1 ∧A2

J∨IKP2(A1, A2) = A1 ∪A2

J¬IKP2(A) = I \A

JtrueIKP2 = I

JfalseIKP2 = ∅

inner formula quantifiers

J∃IKP2f =
⋃

t∈P f(t)

J∀IKP2f =
⋂

t∈P f(t)

index set equality

J=IKP2(A1, A2) = (A1 = A2)

logical connectives

(interpreted as usual)

index set quantifiers

J∃LKP2f =
⋃

A∈2I f(A)

J∀LKP2f =
⋂

A∈2I f(A)

tuple quantifiers

J∃KP2f = ∃t ∈ P. f(t)

J∀KP2f = ∀t ∈ P. f(t)

Figure 3: Semantics of operations in product structure P2

9

We let A1 ⊆I A2 stand for A1 ∧I A2 =I A2.
Note that the interpretations of ∧I, ∨I, ¬I, trueI, falseI,

=I, ∃L, ∀L form a first-order structure of boolean algebras of
subsets of the set I. We call formulas in this boolean algebra
sublanguage index-set algebra formulas.

On the other hand, relations r for r ∈ LC , together with
∧I, ∨I, ¬I, ∃I, ∀I form the signature of first-order logic with
relation symbols. We call formulas built only from these
operations inner formulas.

Let φ be a an inner formula with free tuple variables
t1, . . . , tm and no free indset variables. Then φ specifies a
relation ρ ⊆ Dm. Consider the corresponding first-order
formula φ′ interpreted in the base structure C; formula φ′

specifies a relation ρ′ ⊆ Cm. The following property follows
from the semantics in Figure 3:

ρ(t1, . . . , tm) = { i ∈ I | ρ′(t1(i), . . . , tm(i)) } (9)

Sort constraints imply that quantifiers ∃I,∀I are only applied
to inner formulas. Let φ be a formula of sort bool. By la-
belling subformulas of sort indset with variables A1, . . . , An,
we can write φ in form φ1:

∃LA1, . . . , An.

A1 =I φ1 ∧ . . . ∧ An =I φn ∧

ψ(A1, . . . , An)

where
φ = ψ(φ1, . . . , φn)

Furthermore, by defining B1, . . . , Bm to be the partition of
trueI consisting of terms of form

Ap1
1 ∧I . . . ∧I Apn

n

for p1, . . . , pn ∈ {0, 1}, we can find a formula ψ′ and formulas
φ′1, . . . , φ

′
m such that φ1 is equivalent to φ2:

∃LB1, . . . , Bm.

B1 =I φ′1 ∧ . . . ∧ Bm =I φ′m ∧

ψ′(B1, . . . , Bn)

(10)

and where φ′1, . . . , φ
′
m evaluate to sets that form partition of

trueI for all values of free variables. (By partition of trueI we
here mean a family of pairwise disjoint sets whose union is
trueI, but we do not require the sets to be non-empty.)

Now consider a formula of form ∃t.φ where φ is with-
out ∃,∀ quantifiers (but possibly contains ∃I,∀I and ∃L,∀L

quantifiers). We transform φ into φ2 as described, and then
replace

∃t. ∃LB1, . . . , Bm.

B1 =I φ′1 ∧ . . . ∧ Bm =I φ′m ∧

ψ′(B1, . . . , Bn)

(11)

with

∃LD1, . . . , Dm. ∃LB1, . . . , Bm.

D1 =I (∃It.φ′1) ∧ . . . ∧ Dm =I (∃It.φ′m) ∧

B1 ⊆I D1 ∧ . . . ∧ Bm ⊆I Dm ∧

partition(B1, . . . , Bn) ∧ ψ′(B1, . . . , Bn)

(12)

where partition(B1, . . . , Bn) denotes a boolean algebra ex-
pression expressing that sets B1, . . . , Bn form the partition
of trueI.

It is easy to see that 11 and 12 are equivalent.
By repeating this construction we eliminate all term

quantifiers from a formula. We then eliminate all set quan-
tifiers as in Section 3.2. For that purpose we extend the
language with cardinality constraints.

As the result we obtain cardinality constraints on inner
formulas. Closed inner formulas evaluate to trueI or falseI

depending on their truth value in base structure C. Hence,
if C is decidable, so is P2.

Theorem 16 (Feferman-Vaught) Let C be a decidable
structure. Then every formula in the language of Figure 2 is
equivalent on the structure P2 to a propositional combination
of cardinality constraints of the index-set boolean algebra i.e.
formulas of form |φ| ≥ k and |φ| = k where φ is an inner
formula.

Example 17 Let r ∈ LC be a binary relation on structure
C. Let us eliminate quantifier ∃t from the formula φ(t1, t2):

∃t.∃LA1, A2, A3.

A1 =I r(t, t1) ∧ A2 =I r(t1, t) ∧ A3 =I r(t2, t) ∧

|¬IA1| = 0 ∧ |¬IA2| = 0 ∧ |¬IA3| ≥ 1

We first introduce sets B0, . . . , B7 that form partition of
trueI. The formula is then equivalent to φ1:

∃t.∃LB0, B1, B2, B3, B4, B5, B6, B7.

B0 =I r(t, t1) ∧I r(t1, t) ∧I r(t2, t) ∧

B1 =I ¬Ir(t, t1) ∧I r(t1, t) ∧I r(t2, t) ∧

B2 =I r(t, t1) ∧I ¬Ir(t1, t) ∧I r(t2, t) ∧

B3 =I ¬Ir(t, t1) ∧I ¬Ir(t1, t) ∧I r(t2, t) ∧

B4 =I r(t, t1) ∧I r(t1, t) ∧I ¬Ir(t2, t) ∧

B5 =I ¬Ir(t, t1) ∧I r(t1, t) ∧I ¬Ir(t2, t) ∧

B6 =I r(t, t1) ∧I ¬Ir(t1, t) ∧I ¬Ir(t2, t) ∧

B7 =I ¬Ir(t, t1) ∧I ¬Ir(t1, t) ∧I ¬Ir(t2, t) ∧

φ0

where
φ0 ≡

|B1| = 0 ∧ |B2| = 0 ∧

|B3| = 0 ∧ |B5| = 0 ∧

|B6| = 0 ∧ |B7| = 0 ∧

|B4| ≥ 1

We now eliminate the quantifier ∃t from the formula φ1,

10

obtaining formula φ2:

∃LD0, D1, D2, D3, D4, D5, D6, D7.

D0 =I ∃It. r(t, t1) ∧I r(t1, t) ∧I r(t2, t) ∧

D1 =I ∃It. ¬Ir(t, t1) ∧I r(t1, t) ∧I r(t2, t) ∧

D2 =I ∃It. r(t, t1) ∧I ¬Ir(t1, t) ∧I r(t2, t) ∧

D3 =I ∃It. ¬Ir(t, t1) ∧I ¬Ir(t1, t) ∧I r(t2, t) ∧

D4 =I ∃It. r(t, t1) ∧I r(t1, t) ∧I ¬Ir(t2, t) ∧

D5 =I ∃It. ¬Ir(t, t1) ∧I r(t1, t) ∧I ¬Ir(t2, t) ∧

D6 =I ∃It. r(t, t1) ∧I ¬Ir(t1, t) ∧I ¬Ir(t2, t) ∧

D7 =I ∃It. ¬Ir(t, t1) ∧I ¬Ir(t1, t) ∧I ¬Ir(t2, t) ∧

φ3

where

φ3 ≡ ∃LB0, B1, B2, B3, B4, B5, B6, B7.

B0 ⊆I D0 ∧ . . . ∧ B7 ⊆I D7 ∧

φ0

We next apply quantifier elimination for boolean algebras
to formula φ3 and obtain formula φ′3:

φ′3 ≡ |D4| ≥ 1 ∧ |¬ID0 ∧I ¬ID4| = 0

Hence φ(t1, t2) is equivalent to

∃LD0, D4.

D0 =I ∃It. r(t, t1) ∧I r(t1, t) ∧I r(t2, t) ∧

D4 =I ∃It. r(t, t1) ∧I r(t1, t) ∧I ¬Ir(t2, t) ∧

|D4| ≥ 1 ∧ |¬ID0 ∧I ¬ID4| = 0

After substituting the definitions of D0 and D4, formula
φ(t1, t2) can be written without quantifiers ∃,∀,∃L,∀L.

�

3.4 Term Algebras

In this section we present a quantifier elimination procedure
for term algebras (see Section 2.1). A quantifier elimination
procedure for term algebras implies that the first-order the-
ory of term algebras is decidable. In the sections below we
build on the procedure in this section to define quantifier
elimination procedures for structural subtyping.

The decidability of the first-order theory of term alge-
bras follows from Mal’cev’s work on locally free algebras
[31, Chapter 23]. [39] also gives an argument for decid-
ability of term algebra and presents a unification algorithm
based on congruence closure [38]. Infinite trees are studied
in [12]. [30] presents a complete axiomatization for algebra
of finite, infinite and rational trees. A proof in the style of
[22] for an extension of free algebra with queues is presented
in [43]. Decidability of an extension of term algebras with
membership tests is presented in [10] in the form of a termi-
nating term rewriting system. Unification and disunification

problems are special cases of decision problem for first-order
theory of term algebras, for a survey see e.g. [45, 9].

We believe that our proof provides some insight into
different variations of quantifier elimination procedures for
term algebras. Like [22] we use selector language symbols,
but retain the usual constructor symbols as well. The ad-
vantage of the selector language is that ∃y. z = f(x, y) is
equivalent to a quantifier-free formula x = f1(z) ∧ Isf (z).
On the other hand, constructor symbols also increase the
set of relations on terms definable via quantifier-free formu-
las, which can slightly simplify quantifier-elimination pro-
cedure, as will be seen by comparing Proposition 34 and
Proposition 38. Compared to [22, Page 70], we find that the
termination of our procedure is more evident and the ex-
tension to the term-power algebra in Section 6 easier. Our
base formulas somewhat resemble formulas arising in other
quantifier elimination procedures [31, 11, 30]. Our terminol-
ogy also borrows from congruence closure graphs like those
of [39, 38], although we are not primarily concerned with
efficiency of the algorithm described. Term algebra is an ex-
ample of a theory of pairing functions, and [15] shows that
non-empty family of theories of pairing functions as non-
elementary lower bound on time complexity.

3.4.1 Term Algebra in Selector Language

To facilitate quantifier elimination we use a selector lan-
guage Sel(Σ) for term algebra [22, Page 61]. We define term
algebra in selector language as a first-order structure with
partial functions.

The set Sel(Σ) contains, for every function symbol f ∈
Σ of arity ar(f) = k, a unary predicate Isf ⊆ FT(Σ) and
functions f1, . . . , fk : FT(Σ) → FT(Σ) such that

Isf (t) ⇐⇒ ∃t1, . . . , tk. t = f(t1, . . . , tk)(13)

fi(f(t1, . . . , tk)) = ti, 1 ≤ i ≤ k (14)

fi(t) = ⊥, ¬Isf (t) (15)

For every f ∈ Σ and 1 ≤ i ≤ ar(f), expression fi(t) defined
iff Isf (t) holds, so we let Df = 〈x, Isf (x)〉.

As a special case, if d is a constant, then ar(d) = 0 and
Isd(t) ⇐⇒ t = d.

Proposition 18 For every formula φ1 in the language
Cons(Σ) there exists an equivalent formula φ2 in the selector
language.

Proof Sketch. Because of the presence of equality sym-
bol, every formula in language Cons(Σ) can be written in
unnested form such that every atomic formula is of two
forms: x1 = x2, or f(x1, . . . , xk) = y, where y and xi are
variables. We keep every formula x1 = x2 unchanged and
transform each formula

f(x1, . . . , xk) = y

into the well-defined conjunction

x1 = f1(y) ∧ · · · ∧ xk = fk(y) ∧ Isf (y)

Note that predicates Isf form a partition of the set of all
terms i.e. the following formulas are valid:

∀x.
∨

f∈Σ

Isf (x)

∀x. ¬(Isf (x) ∧ Isg(x)), for f 6≡ g
(16)

11

quantifier-free
formula

disjunction of
base formulas

-
Proposition 28

�
Proposition 34

-

¬,∧,∨

�

∃

Figure 4: Quantifier Elimination for Term Algebra

A constructor-selector language contains both construc-
tor symbols f ∈ Cons(Σ) and selector symbols fi ∈ Sel(Σ).

3.4.2 Quantifier Elimination

We proceed to quantifier elimination for term algebra. A
schematic view of our proof is in Figure 4. The basic in-
sight is that any quantifier-free formula can be written in a
particular unnested form, as a disjunction of base formulas.
Base formulas trivially permit elimination of an existential
quantifier, yet every base formula can be converted back to
a quantifier-free formula.

A semi-base formula is almost the base formula, except
that it may be cyclic. We introduce cyclicity after explaining
the graph representation of a semi-base formula.

Definition 19 (Semi-Base Formula) A semi-base for-
mula β with

• free variables x1, . . . , xm,

• internal non-parameter variables u1, . . . , up, and

• internal parameter variables up+1, . . . , up+q

is a formula of form

∃u1, . . . , un

distinct(u1, . . . , un) ∧

structure(u1, . . . , un) ∧

labels(u1, . . . , un;x1, . . . , xm)

distinct(u1, . . . , un) enforces that variables are distinct

distinct(u1, . . . , un) ≡
∧

1≤i<j≤n

ui 6= uj .

structure(u1, . . . , un) specifies relationships between terms
denoted by variables:

structure(u1, . . . , un) ≡
p∧

i=1

ui = ti(u1, . . . , un)

where each ti(u1, . . . , un) is a term of form f(ul1 , . . . , ulk)
for f ∈ Σ, k = ar(f).

labels(u1, . . . , un;x1, . . . , xm) identifies some free vari-
ables with some parameter and non-parameter variables:

labels(u1, . . . , un;x1, . . . , xm) ≡
∧

1≤i≤m

xi = uji

for some function j : {1, . . . ,m} → {1, . . . , n}.
We require each semi-base formula to satisfy the follow-

ing congruence closure property: there are no two distinct
variables ui and ui′ such that both ui = f(ul1 , . . . , ulk)
and ui′ = f(ul1 , . . . , ulk) occur as conjuncts φj in formula
structure.

We denote by U the set of internal variables of a given
semi-base formula, U = {u1, . . . , un}.

Definition 20 A semi-base formula in selector language is
obtained from the base formula in constructor language by
replacing every conjunct of form

ui = f(ul1 , . . . , ulk)

with the well-defined conjunction

Isf (ui) ∧ ul1 = f1(ui) ∧ · · · ∧ ulk = fk(ui)

A semi-base formula in selector language is clearly a well-
formed conjunction of literals. All atomic formulas in a semi-
base formula are unnested, in both constructor and selector
language.

We can represent a base formula as a labelled directed
graph with the set of nodes U ; we call this graph graph as-
sociated with a semi-base formula. Nodes of the graph are
in a bijection with internal variables of the semi-base for-
mula. We call nodes corresponding to parameter variables
up+1, . . . , up+q parameter nodes; nodes u1, . . . , up are non-
parameter nodes. Each non-parameter node is labelled by
a function symbol f ∈ Σ and has exactly ar(f) successors,
with edge from uk to ul labelled by the positive integer i
iff fi(uk) = ul occurs in the semi-base formula written in
selector language. A constant node is a node labelled by
some constant symbol c ∈ Σ, ar(c) = 0. A constant node
is a sink in the graph; every sink is either a constant or a
parameter node. In addition to the labelling by function
symbols, each node u ∈ U of the graph is labelled by zero
or more free variables x such that equation x = u occurs in
the semi-base formula.

Definition 21 (Base Formula) A semi-base formula φ is
a base formula iff the graph associated with φ is acyclic.

A semi-base formula whose associated graph is cyclic is un-
satisfiable in the term algebra of finite terms. Checking the
cyclicity of a base formula corresponds to occur-check in
unification algorithms (see e.g. [29, 11]).

Definition 22 By height H(u) of a node u in the acyclic
graph we mean the length of the longest path starting from
u.

A node u is sink iff H(u) = 0.

Definition 23 We say that an internal variable ul is a
source variable of a base formula β iff ul is represented by
a node that is source in the directed acyclic graph corre-
sponding to β. Equivalently, if β is written in the selector
language, then ul is a source variable iff β contains no equa-
tions of form ul = fi(uk).

Definition 24 If ui and uj are internal variables, we write
ui �∗ uj if there is a path in the underlying graph from node
ui to node uj. Equivalently, ui �∗ uj iff there exists a term
t(ui) in the selector language such that |= β ⇒ uj = t(ui).

12

Relation �∗ is a partial order on internal variables of β.
The following Lemma 25 is similar to the Independence

of Disequations Lemma in e.g. [10, Page 178].

Lemma 25 Let β be a base formula of the form

∃u1, . . . , up, up+1, . . . , up+q. β0

where up+1, . . . , up+q are parameter variables of β, and β0 is
quantifier-free. Let Sp+1, . . . , Sp+q be infinite sets of terms.
Then there exists a valuation σ such that Jβ0Kσ = true and
JuiKσ ∈ Si for p+ 1 ≤ i ≤ p+ q.

Proof. To construct σ assign first the values to parameter
variables, as follows. Let hG be the length of the longest
path in the graph associated with β. Pick σ(up+1) ∈ Sp+1 so
that h(σ(up+1)) > hG, and for each i where p+2 ≤ i ≤ p+q
pick σ(ui) ∈ Si so that h(σ(ui)) > h(σ(ui−1)) + hG. The
set of heights of an infinite set of terms is infinite, so it is
always possible to choose such σ(ui).

Next consider internal nodes u1, . . . , up+q in some topo-
logical order. For each non-parameter node ui such
that ui = f(ul1 , . . . , ulk) occurs in β0, let σ(ui) =
f(σ(uli), . . . , σ(ulk)).

Finally assign the values to free variables by σ(x) = σ(u)
where x = u occurs in β0.

By construction, JstructureKσ = true and JlabelsKσ =
true. It remains to show JdistinctKσ = true i.e. σ(ui) 6= σ(uj)
for 1 ≤ i, j ≤ p + q, i 6= j. We show this property of σ
by induction on m = min(H(ui),H(uj)). Without loss of
generality we assume H(ui) ≤ H(uj).

Consider first the case m = 0. Then ui is a parameter
or a constant node.

If ui is a constant and uj is a non-parameter variable
then ui and uj are labelled by different function symbols so
σ(ui) 6= σ(uj).

If ui is a constant and uj is a parameter variable then
h(σ(ui)) = 0 whereas h(σ(uj)) > hG ≥ 0.

Consider the case where ui is a parameter variable and
uj is a non-parameter variable. Let

J = {j1 | uj1 is a parameter variable s.t. uj �∗ uj1}

If J = ∅, then β0 uniquely specifies σ(uj), and

h(σ(uj)) = H(uj) ≤ hG < h(σ(ui))

Let J 6= ∅ and j0 = max J . If i ≤ j0, then

h(σ(ui)) ≤ h(σ(uj0)) < h(σ(uj))

If j0 < i then

h(σ(uj)) ≤ h(σ(uj0)) + hG < h(σ(uj0+1)) ≤ h(σ(ui))

Now consider the case m > 0. ui and uj are non-
parameter nodes, so let ui = f(ui1 , . . . , uik) and uj =
g(uj1 , . . . , ujl). If f 6= g then clearly σ(ui) 6= σ(uj). Other-
wise, by congruence closure property of base formulas, there
exists d such that uid 6= ujd . Then by induction hypothesis
σ(uid) 6= σ(ujd), so σ(ui) 6= σ(uj).

Corollary 26 Every base formula is satisfiable.

Proposition 27 (Quantification of Base Formula) If
β is a base formula and x a free variable in β, then there
exists a base formula β1 equivalent to ∃x.β.

Proof. Consider a formula ∃x.β where β is a base formula.
The only place where x occurs in β is x = us1 in the subfor-
mula labels. By dropping the conjunct x = us1 from β we
obtain a base formula β1 where β1 is equivalent to ∃x.β.

Proposition 28 (Quantifier-Free to Base) Every well-
defined quantifier-free formula in constructor-selector lan-
guage can be written as true, false, or a disjunction of base
formulas.

Proof Sketch. Let φ be a well-defined quantifier-free
formula in constructor-selector language. By Proposition 8
we can transform φ into an equivalent formula in disjunctive
normal form

ψ1 ∨ · · · ∨ ψp

where each ψi is a well-defined conjunction of literals. Con-
sider an arbitrary ψi. There exists an unnested quantifier-
free formula ψ′i with additional fresh free variables x1, . . . , xq

such that ψi is equivalent to

∃x1, . . . , xq. ψ
′
i

By distributivity and (6) it suffices to transform each con-
junction of unnested formulas into disjunction of base for-
mulas. In the sequel we will assume transformations based
on distributivity and (6) are applied whenever we transform
conjunction of literals into a formula containing disjunction.
We also assume that every equation f(x1, . . . , xn) = y is
replaced by the equivalent one y = f(x1, . . . , xn) and every
equation fi(x) = y is replace by y = fi(x).

Because of our assumption that Σ is finite, we can elim-
inate every literal of form ¬Isf (x) using the equivalence

¬Isf (x) ⇐⇒
∨

g∈Σ\{f}

Isg(x) (17)

which follows from (16). We then transform formula back
into disjunctive normal form and propagate the existential
quantifiers to the conjunctions of literals. We may therefore
assume that there are no literals of form ¬Isf (x) in the con-
junction. Furthermore, Isf (x) ∧ Isg(x) ⇐⇒ false for f 6≡ g,
so we may assume that for variable x there is at most one
literal Isf (x) for some f . If fi(x) occurs in the conjunction,
because the conjunction is well-defined, we may always add
the conjunct Isf (x). This way we ensure that exactly one
literal of form Isf (x) occurs in the conjunction.

We next ensure that every variable has either none or
all of its components named by variables. If the conjunction
contains literal Isf (x) but does not contain x = f(x1, . . . , xn)
and does not contain an equation of form y = fi(x) for
every i, 1 ≤ i ≤ ar(f), we introduce a fresh existentially
quantified variable for each i such that a term of form y =
fi(x) does not appear in the conjunction. At this point
we may transform the entire conjunction into constructor
language by replacing

Isf (ui) ∧ vl1 = f1(ui) ∧ · · · ∧ vlk = fk(ui)

with ui = f(vl1 , . . . , vlk) for k = ar(f).
We next ensure that for every two variables x1 and x2

occurring in the conjunction exactly one of the conjunct
x1 = x2 or x1 6= x2 is present. Namely if both conjuncts
x1 = x2 and x1 6= x2 are present, the conjunction is false.
If none of the conjuncts is present, we insert the disjunction

13

x1 = x2 ∨ x1 6= x2 as one of the conjuncts and transform
the result into disjunction of existentially quantified con-
junctions.

We next perform congruence closure for finite terms [38]
on the resulting conjunction, using the fact that equality is
reflexive, symmetric, transitive and congruent with respect
to free operations f ∈ Cons(Σ) and that t(x) 6= x for every
term t 6≡ x. Syntactically, the result of congruence closure
can be viewed as adding new equations to the conjunction.
If the congruence closure procedure establishes that the for-
mula is unsatisfiable, the result is false. Otherwise, all vari-
ables are grouped into equivalence classes. If a u1 = u2

occurs in the conjunction where both u1 and u2 are internal
variables, we replace u1 with u2 in the formula and elim-
inate the existential quantifier. If for some free variable x
there is no internal variable u such that conjunction x = u
occurs, we introduce a new existentially quantified variable
and a conjunct x = u. These transformations ensure that
for every equivalence class there exists exactly one internal
variable in the formula. It is now easy to pick representative
conjuncts from the conjunction to obtain conjunction of the
syntactic form in Definition 19 of semi-base formula. The
resulting formula is a base formula because congruence clo-
sure algorithm ensures that the associated graph is acyclic.

We next turn to the problem of transforming a base for-
mula into a quantifier-free formula. We will present two
constructions. The first construction yields a quantifier-free
formula in constructor-selector language and is sufficient for
the purpose of quantifier elimination. The second construc-
tion yields a quantifier-free formula in selector language and
is slightly more involved; we present it to provide additional
insight into the quantifier elimination approach to term al-
gebras.

We first introduce notions of covered and determined
variables of a base formula β. The basic idea behind these
notions is that β implies a functional dependence from the
free variables of β to each of the determined variables.

In both constructions we use the notion of a a covered
variable, which denotes a component of a term denoted by
some free variable. In the first construction we also use the
notion of determined variable, which includes covered vari-
ables as well as variables constructed from covered variables
using constructor operations f ∈ Cons(Σ).

Definition 29 Consider an arbitrary base formula β. We
say that an internal variable u is covered by a free variable
x iff x = u′ occurs in β for some u′ such that u �∗ u′. An
internal variable u is covered iff u is covered by x for some
free variable x (in particular, if x = u occurs in β then u
is covered). Let covered denote the set of covered internal
variables of base formula, and let uncovered = U \ covered
where U is the set of all internal variables of β.

Lemma 30 (Covered Base to Selector) Every base
formula without uncovered variables is equivalent to a
quantifier free formula in selector language.

Proof. Consider a base formula β where every variable is
covered. Consider an arbitrary quantified variable u. Be-
cause u is covered, there exists variable x free in β such that
u = t(x) for some term t in the selector language. Replace
every occurrence of u in the matrix of β by t(x) and elim-
inate the quantification over u. Repeating this process for

every variable u we obtain a quantifier-free formula equiva-
lent to β.

Definition 31 Let β be a base formula. The set determined
of determined variables of β is the smallest set S that con-
tains the set covered and satisfies the following condition:
if u is a non-parameter node and all successors u1, . . . , uk

(k ≥ 0) of u in the associated graph are in S, then u is also
in S.

In particular, every constant node is determined. A param-
eter node w is determined iff w is covered.

Lemma 32 If a node u is not determined, then there exists
an uncovered parameter node v such that u �∗ v.

Proof. The proof is by induction on H(()u). If H(()u) = 0
then u has no successors, and u cannot be a constant node
because it is not determined. Therefore, u is a parameter
node, so we may let v ≡ u. Assume that the statement
holds for for every node u′ such that H(()u′) = k and let
H(()u) = k + 1. Because u is not determined, there exists
a successor u′ of u such that u′ is not determined, so by
induction hypothesis there exists an uncovered parameter
node v such that u′ �∗ v. Hence u �∗ u′ �∗ v.

Lemma 33 Every base formula β is equivalent to a base
formula β′ obtained from β by eliminating all nodes that are
not determined.

Proof. Construct β′ from β by eliminating all terms
containing a variable u ∈ U \ determined and eliminating
the corresponding existential quantifiers. Then all variables
in β′ are determined. β′ has fewer conjuncts than β, so
|= β ⇒ β′. To show |= β′ ⇒ β, let σ be any assignment
of terms to determined variables of β such that β evaluate
to true under σ. As in the proof of Lemma 25, define the
extension σ′ of σ as follows. Choose sufficiently large values
σ′(v) for every uncovered sink variable v, so that σ′′ defined
as the unique extension of σ′ to the remaining undetermined
variables assigns different terms to different variables. This
is possible because the term model is infinite. The result-
ing assignment σ′′ satisfies the matrix of the base formula
β. Therefore, |= β′ ⇒ β, so β and β′ are equivalent base
formulas.

First Construction

Proposition 34 (Base to Constructor-Selector)
Every base formula β is equivalent to a quantifier-free
formula φ in constructor-selector language.

Proof. By Lemma 33 we may assume that all variables
in β are determined. To every variable u we assign a term
τ(u). Term τ(u) is in constructor-selector language and the
variables of τ(u) are among the free variables of β. If u ∈
covered, we assign τ(u) as in the proof of Lemma 30. If
u1, . . . , uk are the successors of a determined node u, we
put

τ(u) = f(τ(u1), . . . , τ(uk))

where f is the label of node u. This definition uniquely
determines τ(u) for all u ∈ determined. We obtain the
quantifier-free formula φ by replacing every variable u with
τ(u) and eliminating all quantifiers.

14

For every u we have |= β ⇒ u = τ(u), so |= β ⇒ φ.
Conversely, if φ is satisfied then τ defines an assignment for
u variables which makes the matrix of β true. Therefore β
and φ are equivalent.

Second Construction The reason for using constructor
symbols f ∈ Cons(Σ) in the first construction is to pre-
serve the constraints of form u 6= v when eliminating node
u with successors u1, . . . , uk. Using constructor symbols we
would obtain the constraint f(u1, . . . , uk) 6= v. Our second
construction avoids introducing constructor operations by
decomposing f(u1, . . . , uk) 6= v into disjunction of inequal-
ities of form ui 6= fi(v). When v is a parameter node, the
presence of term fi(v) potentially requires introducing a new
node in the associated graph, we call this process parame-
ter expansion. Parameter expansion may increase the total
number of nodes in the graph, but it decreases the num-
ber of uncovered nodes, so the process of converting a base
formula to a quantifier-free formula in the selector language
terminates.

Lemma 35 Let β be an arbitrary base formula.

1. If u is covered and u �∗ u′ then u′ is covered as well.

2. If u′ is uncovered and u′ is not a source, then there
exists u 6≡ u′ such that u �∗ u′ and u is also uncovered.

3. If β contains an uncovered variable then β contains an
uncovered variable that is a source.

Proof. By definition.

Parameter Expansion We define the operation of ex-
panding a parameter node in a base formula as follows. Let
β be an arbitrary base formula and w a parameter variable
in β. The result of expansion of w is a disjunction of base
formulas β′ generated by applying (13) to w. In each of
the resulting formulas β′ variable w is not a parameter any
more. Each β′ contains Isf (w) for some f ∈ Σ and node w
has successors u1, . . . , uk for k = ar(f). Each successor ui is
either an existing internal variable or a fresh variable. For a
given β, sink expansion generates disjunction of formulas β′

for every choice of f ∈ Σ and every choice of successors ui,
subject to congruence closure so that β′ is a base formula:
we discard the choices of successors of w that yield formulas
β′ violating congruence of equality. (This process is simi-
lar to converting quantifier-free formulas into disjunction of
base formulas in the proof of Proposition 28.) The following
lemma shows the correctness of parameter expansion.

Lemma 36 (Parameter expansion soundness) Let
∆ = β′1 ∨ · · ·β′k be the disjunction generated by parameter
expansion of a base formula β. Then ∆ is equivalent to β.

Lemma 36 justifies the use of parameter expansion in the
following Lemma 37.

Lemma 37 Every base formula β can be written as a dis-
junction of base formulas without uncovered variables.

Proof Sketch. By Lemma 33 we may assume that all vari-
ables of β are determined. Suppose β contains an uncovered
variable. Then by Lemma 35, β contains an uncovered vari-
able u0 such that u0 is a source. Because u0 is uncovered

and determined, it is not a parameter node. We show how to
eliminate u0 without introducing new uncovered variables.

Our goal is to eliminate u0 from the associated graph.
We need to preserve information that u0 is distinct from
variables u ∈ U \ {u0} in the graph. We consider two cases.

If u is not a parameter node, then by congruence closure
either u0 and u are labelled by different function symbols,
or they are labelled by the same function symbol f ∈ Σ
with ar(f) = k and there exists i, 1 ≤ i ≤ k and variables
ui = fi(u0) and u′i = fi(u

′) such that ui 6≡ u′i. Hence the
constraint u0 6= u is deducible from the inequalities of other
variables in β and we can eliminate u0 without changing the
truth value of β.

Next consider the case when u is a parameter node. By
assumption u is determined, and because it is parameter, it
is covered. We then perform parameter node expansion as
described above. The result of elimination of u0 in β is a
disjunction of base formulas β′, in each β′ every parameter
node is expanded. If u is a parameter node in β then the
constraint u0 6= u is preserved in each β′ because u is not a
parameter node in β′ so the previous argument applies.

Because the parameter nodes being expanded are cov-
ered, so are their successor nodes introduced by parameter
expansion. Therefore, by repeatedly applying elimination
of uncovered variables for every uncovered variable u0, we
obtain a disjunction ∆ of formulas β′ where each β′ has no
uncovered variables, and ∆ is equivalent to β.

Proposition 38 (Base to Selector) For every base for-
mula β there exists an equivalent quantifier-free formula ψ
in selector language.

Proof. By Lemma 37, β is equivalent to a disjunction
β1 ∨ · · · ∨ βn where each βi has no uncovered variables. By
Lemma 30, each βi is equivalent to some quantifier free for-
mula ψi, so β is equivalent to the quantifier-free formula
ψ1 ∨ · · · ∨ ψn.

The final theorem in this section summarizes quantifier elim-
ination for term algebra.

Theorem 39 (Term Algebra Quantifier Elimination)
There exist algorithms A, B, C such that for a given formula
φ in constructor-selector language of term algebras:

a) A produces a quantifier-free formula φ′ in constructor-
selector language

b) B produces a quantifier-free formula φ′ in selector lan-
guage

c) C produces a disjunction φ′ of base formulas

Proof. a): Transform formula φ into prenex form

Q1x1 . . . Qn−1xn−1Qnxn.φ
∗

where φ∗ is quantifier free, as in Section 3.1. We eliminate
the innermost quantifier Qn as follows.

Suppose first that Qn is ∃. Transform the matrix φ∗ into
disjunctive normal form C1 ∨ · · · ∨ Cn. By Proposition 28,
transform C1∨· · ·∨Cn into disjunction β1∨· · ·∨βm of base
formulas. Then propagate ∃ into individual disjuncts, using

∃xn. β1 ∨ · · · ∨ βm ⇐⇒ (∃xn.β1) ∨ · · · ∨ (∃xn.βm)

15

By Proposition 27, an existentially quantified base formula
is again a base formula, so ∃xn.βi ⇐⇒ β′i for some β′i. We
thus obtain the

Q1x1 . . . Qn−1xn−1. β
′
1 ∨ · · · ∨ β′m (18)

By Proposition 34, every base formula is equivalent to a
quantifier-free formula in selector language, so 18 is equiva-
lent to

Q1x1 . . . Qn−1xn−1.ψ

where ψ is a quantifier free formula. Hence, we have elimi-
nated the innermost existential quantifier.

Next consider the case when Qn is ∀. Then φ is equiva-
lent to

Q1x1 . . . Qn−1xn−1¬∃xn.¬φ∗

Apply the procedure for eliminating xn to ¬φ∗. The result
is formula of form

Q1x1 . . . Qn−1xn−1. ¬ψ (19)

where ψ is quantifier free. But ¬ψ is also quantifier free, so
we have eliminated the innermost universal quantifier. By
repeating this process we eliminate all quantifiers, yielding
the desired formula φ′.

The direct construction for showing b) is analogous to
a), but uses Proposition 38 in place of Proposition 34. To
show c), apply e.g. construction a) to obtain a quantifier-
free formula ψ and then transform ψ into disjunction of base
formulas using Proposition 28.

This completes our description of quantifier elimination
for term algebras.

We remark that there are alternative ways to define base
formula. In particular the requirement on disequality of all
variables is not necessary. This requirement may lead to
unnecessary case analysis when converting a quantifier-free
formula to disjunction of base formulas, but we believe that
it simplifies the correctness argument.

4 The Pair Constructor and Two Constants

In this section we give a quantifier elimination procedure for
structural subtyping of non-recursive types with two con-
stant symbols and one covariant binary constructor. Two
constants corresponds to two primitive types; one binary
covariant constructor corresponds to the pair constructor
for building products of types.

The construction in this section is an introduction to
the more general construction in Section 5, where we give a
quantifier elimination procedure for any number of constant
symbols and relations between them. The construction in
this section demonstrates the interaction between the term
and boolean algebra components of the structural subtyping.
We therefore believe the construction captures the essence
of the general result of Section 5.

The basic observation behind the quantifier elimination
procedure for two constant symbols is that the structure of
terms in this language is isomorphic to a disjoint union of
boolean algebras with some additional term structure con-
necting elements from different boolean algebras. As we ar-
gue below, the structural subtyping structure contains one
copy of boolean algebra for every equivalence class of terms
that have the same “shape” i.e. are same up to the constants
in the leaves.

Consider a signature Σ = {a, b, g} where a and b are
constant symbols and g is a function symbol of arity 2. We
define a partial order ≤ on the set FT(Σ) of ground terms
over Σ as the least reflexive partial order relation ρ satisfying

1. a ρ b;

2. (s1 ρ t1) ∧ (s2 ρ t2) ⇒ g(s1, s2) ρ g(t1, t2).

The structure with equality in the language {a, b, g,≤},
where ≤ is interpreted as above and a, b, g are interpreted
as free operations on term algebra corresponds to the struc-
tural subtyping with two base types a and b and one binary
type constructor g, with g covariant in both arguments. We
denote this structure by BS. We proceed to show that BS
admits quantifier elimination and is therefore decidable.

4.1 Boolean Algebras on Equivalent Terms

In preparation for the quantifier elimination procedure we
define certain operations and relations on terms. We also
establish some fundamental properties of the structure BS.

Define a new signature Σ0 = {cs, gs} as an abstraction of
signature Σ = {a, b, g}. Define function shapified : Σ → Σ0

by
shapified(a) = cs

shapified(b) = cs

shapified(g) = gs

Let ar(shapified(f)) = ar(f) for each f ∈ Σ; in this case cs is
a constant and gs is a binary function symbol. Let FT(Σ0)
be the set of ground terms over the signature Σ0. Define
shape of a term t, as the function sh : FT(Σ) → FT(Σ0), by
letting

sh(f(t1, . . . , tk)) =

shapified(f)(sh(t1), . . . , sh(tk))

for k = ar(f). In this case we have

sh(a) = cs

sh(b) = cs

sh(g(t1, t2)) = gs(sh(t1), sh(t2))

Define t1 ∼ t2 iff sh(t1) = sh(t2). Then ∼ is the smallest
equivalence relation ρ such that

1. a ρ b;

2. (s1 ρ t1) ∧ (s2 ρ t2) ⇒ g(s1, s2) ρ g(t1, t2).

For every term t define the word tCont(t) ∈ {0, 1}∗ by letting

tCont(a) = 0

tCont(b) = 1

tCont(f(t1, t2)) = tCont(t1) · tCont(t2)

The set of all words w ∈ {0, 1}n is isomorphic the boolean
algebra of Bn of all subsets of some finite sets of cardinality
n, so we write w1∩w2, w1∪w2, w

c for operations correspond-
ing to intersection, union, and set complement in the set of
words w ∈ {0, 1}n. We write w1 ⊆ w2 for w1 ∩ w2 = w1.

Define function δ by

δ(t) = 〈sh(t), tCont(t)〉

16

For term t in any language containing constant symbols, let
tLen(t) denote the number of occurrences of constant sym-
bols in t. If w is a sequence of elements of some set, let
sLen(w) denote the length of the sequence. Observe that
sLen(tCont(t)) = tLen(t) and tLen(sh(t)) = tLen(t). More-
over, t1 ∼ t2 implies sLen(tCont(t1)) = sLen(tCont(t2)). De-
fine the set B by

B = {〈s, w〉 | s ∈ FT(Σ0), w ∈ {0, 1}∗, tLen(s) = sLen(w)}

Function δ is a bijection from the set FT(Σ) to the set B.
For b1, b2 ∈ B define b1 ≤ b2 iff δ−1(b1) ≤ δ−1(b2). From
the definitions it follows

〈s1, w1〉 ≤ 〈s2, w2〉 ⇐⇒ s1 = s2 ∧ w1 ⊆ w2

If g is defined on B via isomorphism δ we also have

g(〈s1, w1〉, 〈s2, w2〉) = 〈gs(s1, s2), w1 · w2〉

For any fixed s ∈ FT(Σ0), the set

B(s0) = {〈s, w〉 ∈ B | s = s0} (20)

is isomorphic to the boolean algebra Bn, where n = tLen(s).
Accordingly, we introduce on each B(s) the set operations
t1 ∩s t2, t1 ∪s t2, t

c
1s. Expressions t1 ∩s t2 and t1 ∪s t2 are

defined iff sh(t1) = s and sh(t2) = s, whereas expression tc1s

is defined iff sh(t1) = s.
We also introduce cardinality expressions as in Sec-

tion 3.2. If t denotes a term, then the expression |t|s de-
notes the number of elements of the set corresponding to t.
Here we require s = sh(t). We use expressions |t|s = k and
|t|s ≥ k as atomic formulas for constant integer k ≥ 0. Note
that

t1 ≤ t2 ⇐⇒ sh(t1) = sh(t2) ∧ |t1 ∩ tc2|sh(t1) = 0 (21)

t1 = t2 ⇐⇒ sh(t1) = sh(t2) ∧

|(t1 ∩ tc2) ∪ (tc1 ∩ t2)|sh(t1) = 0
(22)

Let sh(t1) = s1, sh(t2) = s2, and s = gs(s1, s2). Then

|g(t1, t2)|s = |t1|s1 + |t2|s2 (23)

Equation 23 allows decomposing formulas of form
|g(t1, t2)|s ≥ k into propositional combinations of formulas
of form |t1|s1 ≥ k and |t2|s2 ≥ k.

Note further that the following equations hold:

g(t1, t2) ∩ g(t′1, t′2) = g(t1 ∩ t′1, t2 ∩ t′2)

g(t1, t2) ∪ g(t′1, t′2) = g(t1 ∪ t′1, t2 ∪ t′2)

g(t1, t2)
c = g(tc1, t

c
2)

If E(x1, . . . , xn) denotes an expression consisting only of op-
erations of boolean algebra, then from (4.1) by induction
follows that

E(g(t11, t
2
1), . . . , g(t

1
n, t

2
n)) = g(E(t11, . . . , t

1
n), E(t21, . . . , t

2
n))
(24)

Equations (24) and (23) imply

|E(g(t11, t
2
1), . . . , g(t

1
n, t

2
n))| = |E(t11, . . . , t

1
n)|+ |E(t21, . . . , t

2
n)|

(25)
Boolean algebra B(gs(s1, s2)) is isomorphic to the product
of boolean algebras B(s1) and B(s2); the constructor g acts
as union of disjoint sets.

a, b :: term

g :: term× term → term

Isg :: term → bool

g1, g2 :: term → term

= :: term× term → bool

≤ :: term× term → bool

cs :: shape

gs :: shape× shape → shape

Isgs :: shape → bool

gs
1, g

s
2 :: shape → shape

sh :: term → shape

=s :: shape× shape → bool

∩ ,∪ :: shape× term× term → term

c :: shape× term → term

1 , 0 :: shape → term

| | ≥ k, | | = k :: shape× term → bool

Figure 5: Operations and relations in structure FT2

4.2 A Multisorted Logic

To show the decidability of structure BS, we give a quantifier
elimination procedure for an extended structure, denoted
FT2. We use a first-order two-sorted logic with sorts term
and shape interpreted over FT2.

The domain of structure FT2 is FT(Σ)∪FT(Σ0) with el-
ements FT(Σ) having sort term and elements FT(Σ0) having
sort shape. Variables in Var have term sort, variables in Vars

have shape sort. In general, if t denotes an element of FT2,
we write tS to indicate that the element has sort shape.

Figure 5 shows operations and relations in FT2 with their
sort declarations. The signature is infinite because opera-
tions |t|s ≥ k and |t|s = k are parameterized by a non-
negative integer k.

We require all terms to be well-sorted. Functions g1 and
g2 are interpreted as partial selector functions in the term
constructor-selector language, so Dg1 = Dg2 = 〈〈x〉, Isg(x)〉.
Similarly, gs

1 and gs
2 are partial selector functions in the

shape constructor-selector language, so Dgs
1

= Dgs
2

=

〈〈x〉, Isgs(x)〉. The expressions t1∩s t2 and t1∪s t2 are defined
iff sh(t1) = sh(t2) = s, and tcs is defined iff sh(t) = s. We
therefore let

D∩s = D∪s =

〈〈ys, x1, x2〉, sh(x1) = ys ∧ sh(x2) = ys〉

and
D c = 〈〈ys, x〉, sh(x) = ys〉

For atomic formulas |t|s ≥ k and |t|s = k we require atomic
formula sh(t) = s to ensure well-definedness:

D| | =k = D| | ≥k = 〈〈ys, x〉, sh(x) = ys〉

Note that the language of Figure 5 subsumes the lan-
guage {a, b, g,≤} for the structural subtyping structure. The

17

quantifier-elimination procedure we present in Section 4.3
is therefore sufficient for quantifier elimination in the first-
order logic interpreted over the structural subtyping struc-
ture FT2.

4.3 Quantifier Elimination for Two Constants

We are now ready to present a quantifier elimination pro-
cedure for the structure FT2. The quantifier elimination
procedure is based on the quantifier elimination for term al-
gebras of Section 3.4 as well as the quantifier elimination for
boolean algebras of Section 3.2.

We first define an auxiliary notion of a us-term as a term
formed starting from shape us term variables and shape us

constants, using operations ∩us , ∪us , and c
us .

Definition 40 (us-terms) Let us ∈ Vars be a shape vari-
able. The set of us-terms Term(us) is the least set such that:

1. Var ⊆ Term(us)

2. 0us , 1us ∈ Term(us)

3. if t, t′ ∈ Term(us), then also

t ∩us t′ ∈ Term(us),

t ∪us t′ ∈ Term(us), and

tcus ∈ Term(us)

Similarly to base formulas of Section 3.4, we define struc-
tural base formulas for FT2 structure. A structural base for-
mula contains a copy of a base formula for the shape sort
(shapeBase), a base formula for the term sort without term
disequalities (termBase), a formula expressing mapping of
term variables to shape variables (hom), and cardinality con-
straints on term parameter nodes of the term base formula
(cardin).

Definition 41 (Structural Base Formula)
A structural base formula with:

• free term variables x1, . . . , xm;

• internal non-parameter term variables u1, . . . , up;

• internal parameter term variables up+1, . . . , up+q;

• free shape variables xs
1, . . . , x

s
ms ;

• internal non-parameter shape variables us
1, . . . , u

s
ps ;

• internal parameter shape variables us
ps , . . . , us

ps+qs

is a formula of form:

∃u1, . . . , un, u
s
1, . . . , u

s
ns .

shapeBase(us
1, . . . , u

s
ns , xs

1, . . . , x
s
ms) ∧

termBase(u1, . . . , un, x1, . . . , xm) ∧

hom(u1, . . . , un, u
s
1, . . . , u

s
ns) ∧

cardin(up+1, . . . , un, u
s
ps+1, . . . , u

s
ns)

where n = p + q, ns = ps + qs, and formulas shapeBase,
termBase, hom, and cardin are defined as follows.

shapeBase(us
1, . . . , u

s
ns , xs

1, . . . , x
s
ms) =

ps∧
i=1

us
i = ti(u

s
1, . . . , u

s
n) ∧

ms∧
i=1

xs
i = us

ji

∧ distinct(us
1, . . . , u

s
n)

where each ti is a shape term of form f(us
i1 , . . . , u

s
ik

) for
some f ∈ Σ0, k = ar(f), and j : {1, . . . ,ms} → {1, . . . , ns} is
a function mapping indices of free shape variables to indices
of internal shape variables.

termBase(u1, . . . , un, x1, . . . , xm) =

p∧
i=1

ui = ti(u1, . . . , un) ∧
m∧

i=1

xi = uji

where each ti is a term of form f(ui1 , . . . , uik) for some
f ∈ Σ, k = ar(f), and j : {1, . . . ,m} → {1, . . . , n} is a
function mapping indices of free term variables to indices of
internal term variables.

hom(u1, . . . , un, u
s
1, . . . , u

s
ns) =

n∧
i=1

sh(ui) = us
ji

where j : {1, . . . , n} → {1, . . . , ns} is some function such
that {j1, . . . , jp} ⊆ {1, . . . , ps} and {jp+1, . . . , jp+q} ⊆ {ps +
1, . . . , ps +qs} (a term variable is a parameter variable iff its
shape is a parameter shape variable).

cardin(up+1, . . . , up+q, u
s
ps+1, . . . , u

s
ps+qs) = ψ1 ∧ · · · ∧ ψr

where each ψi is of form

|t(up+1, . . . , up+q)|us = k

or
|t(up+1, . . . , up+q)|us ≥ k

for some us-term t(up+1, . . . , up+q) that contains no vari-
ables other than some of the variables up+1, . . . , up+q, and
the following condition holds:

If a variable up+j occurs in term
t(up+1, . . . , up+q), then sh(up+j) = us

occurs in formula hom.
(26)

We require each structural base formula to satisfy the
following conditions:

P0) the graph associated with shape base formula

∃us
1, . . . , u

s
ns . shapeBase(us

1, . . . , u
s
ns , xs

1, . . . , x
s
ms)

is acyclic (compare to Definition 21);

P1) congruence closure property for shapeBase subformula:
there are no two distinct variables us

i and us
j such that

both us
i = f(us

l1 , . . . , u
s
lk

) and us
j = f(us

l1 , . . . , u
s
lk

) occur
as conjuncts in formula shapeBase;

P2) congruence closure property for termBase subformula:
there are no two distinct variables ui and uj such that
both ui = f(ul1 , . . . , ulk) and uj = f(ul1 , . . . , ulk) occur
as conjuncts in formula termBase;

P3) homomorphism property of sh: for every non-parameter
term variable u such that u = f(ui1 , . . . , uik) occurs
in termBase, if the conjunct sh(u) = us occurs in
hom, then for some shape variables us

j1 , . . . , u
s
jk

the
term us = f s(us

j1 , . . . , u
s
jk

) occurs in shapeBase where
f s = shapified(f) and for every r where 1 ≤ r ≤ k,
conjunct sh(uir) = us

jr
occurs in hom.

18

According to Definition 41 a structural base formula con-
tains no selector function symbols. Formulation using se-
lector symbols is also possible, as in Definition 20. The
only partial function symbols occurring in a structural base
formula of Definition 41 are in cardin subformula. Condi-
tion (26) therefore ensures that functions in cardin and thus
the entire base formula are well-defined.

Note that acyclicity of shape base formula shapeBase
(condition P0) implies acyclicity of term base formula as
well. Namely, condition P3 ensures that any cycle in
termBase implies a cycle in shapeBase.

As in Section 3.4 we proceed to show that each quantifier-
free formula can be written as a disjunction of base formulas
and each base formula can be written as a quantifier-free
formula.

We strongly encourage the reader to study the following
example because it illustrates the idea behind our quantifier-
elimination decision procedure.

Example 42 The following sentence is true in structure
FT2.

∀x, y. x ≤ y ⇒

∃z. z ≤ x ∧ z ≤ y ∧

∀w. w ≤ x ∧ w ≤ y ⇒

∀v. g(v, z) ≤ g(z, v) ∧ Isg(v) ∧ Isg(w) ⇒ g1(w) ≤ g1(v)
(27)

An informal proof of sentence (27) is as follows. Suppose
that x ≤ y. Then sh(x) = sh(y) = xs. Let z = x ∩xs y.
Now consider some w such that w ≤ x and w ≤ y. Then
sh(w) = xs, so w ≤ z. Suppose that v is such that g(v, z) ≤
g(z, v). Then by covariance of g we have z ≤ v, so w ≤ v. If
we assume Isg(w) and Isg(v), then g1(w) and g1(v) are well
defined and by covariance of g we conclude g1(w) ≤ g1(v),
as desired.

We now give an alternative argument that shows that
sentence (27) is true. This alternative argument illustrates
the idea behind our quantifier-elimination decision proce-
dure. For the sake of brevity we perform some additional
simplifications along the way that are not part of the pro-
cedure we present (although they could be incorporated to
improve efficiency), and we skip consideration of some un-
interesting cases during the case analyses.

Let us first eliminate the quantifier from formula

∀v. g(v, z) ≤ g(z, v)∧ Isg(v)∧ Isg(w) ⇒ g1(w) ≤ g1(v) (28)

Formula (28) is equivalent to ¬∃v.φ1 where

φ1 ≡ g(v, z) ≤ g(z, v) ∧ Isg(v) ∧ Isg(w) ∧ ¬(g1(w) ≤ g1(v))
(29)

We next use (21) to eliminate atomic formulas t1 ≤ t2 and
replace them with cardinality constraints, resulting in for-
mula φ2 equivalent to φ1:

φ2 ≡ φ2,1 ∧ φ2,2

where

φ2,1 ≡ |g(v, z) ∩ g(z, v)c|sh(g(v,z)) = 0 ∧

sh(g(v, z)) = sh(g(z, v)) ∧

Isg(v) ∧ Isg(w)

(30)

u
vz

u
zv

u
v

u
z

u
w

u
z1

u
v1

u
w
1

u
z2

u
v2

u
w
2

v
z

w

u
w
2 s

u
w
1 s

u
w s

u
vz s

Figure 6: One of the Base Formulas Resulting from (28)

and

φ2,2 ≡

¬
(
|g1(w) ∩ g1(v)c|sh(g1(w)) = 0 ∧ sh(g1(w)) = sh(g1(v))

)
(31)

Here we have written e.g.

|g(v, z) ∩ g(z, v)c|sh(g(v,z)) = 0

as a shorthand for

|g(v, z) ∩sh(g(v,z)) g(z, v)
c
sh(g(v,z))|sh(g(v,z)) = 0

(In general, we omit term shape arguments for boolean alge-
bra operations if the arguments are identical to the enclosing
term shape argument of the cardinality constraint.)

We next transform φ2 into disjunction of well-defined
conjunctions. Following the ideas in Proposition 8, we trans-
form φ2,2 into φ3,1 ∨ φ3,2 where

φ3,1 ≡

|g1(w) ∩ g1(v)c|sh(g1(w)) ≥ 1 ∧ sh(g1(w)) = sh(g1(v))
(32)

and
φ3,2 ≡ sh(g1(w)) 6= sh(g1(v))

and then transform φ2,1 ∧ φ2,2 into

(φ2,1 ∧ φ3,1) ∨ (φ2,1 ∧ φ3,2)

For the sake of brevity we ignore the case φ2,1 ∧ φ3,2; it is
possible to show that φ2,1 ∧ φ3,2 is equivalent to false in the
context of the entire formula.

We transform φ2,1∧φ3,1 into unnested form, introducing
fresh existentially quantified variables uvz,uzv,uw1,uv1, u

s
vz,

us
w1 that denote terms occurring in φ2,1 ∧ φ3,1. The result

19

is formula φ4 where

φ4 ≡ ∃uvz, uzv, uw1, uv1, u
s
vz, u

s
w1.

uvz = g(v, z) ∧ uzv = g(z, v) ∧

uw1 = g1(w) ∧ uv1 = g1(v) ∧

us
vz = sh(uvz) ∧ us

w1 = sh(uw1) ∧

sh(uzv) = us
vz ∧ sh(uv1) = us

w1 ∧

Isg(v) ∧ Isg(w) ∧

|uvz ∩ uc
zv|us

vz
= 0 ∧ |uw1 ∩ uc

v1|us
w1
≥ 1

(33)
To transform φ4 into disjunction of structural base formulas
we keep introducing new existentially quantified variables
and adding derived conjuncts to satisfy the invariants of
Definition 41.

Because Isg(v) and Isg(w) appear in the conjunct, we
give names to the remaining successors of v, w, by intro-
ducing uw2 = g2(w), uv2 = g2(v). We may now write
the constraints in constructor language, using e.g. conjunct
v = g(uv1, uv2) instead of

Isg(v) ∧ uv1 = g1(v) ∧ uv2 = g2(v)

To ensure that every term variable has an associated shape
variable, we introduce fresh variables us

v, us
w, us

z, u
s
w2, u

s
v2

with conjuncts us
v = sh(v), us

w = sh(w), us
z = sh(z), us

w2 =
sh(uw2), u

s
v2 = sh(uv2).

Note that base formula contains distinct(us
1, . . . , u

s
n) sub-

formula. In the case when the current conjunction is not
strong enough to entail the disequality between shape vari-
ables us

i and us
j , we perform case analysis, considering the

case us
i = us

j (then us
i can be replaced by us

j), and the case
us

i 6= us
j . This case analysis will lead to a disjunction of struc-

tural base formulas (unless some of the formulas is shown
contradictory in the transformation process). In contrast to
shape variables, we do not not perform case analysis for dis-
equality of term variables, because termBase in Definition 41
does not contain a distinct subformula.

In this example we perform case analysis on whether
us

w = us
z and us

w = us
v should hold. For the sake of the exam-

ple let us consider the case when us
w = us

z = us
v, us

v2 = us
w2

and us
vz, u

s
w, u

s
w1, u

s
w2 are all distinct. In that case shape

variables us
w, u

s
z, u

s
v denote the same shape, so let us replace

e.g. us
z and us

v with us
w. Similarly, we replace us

v2 with us
w2.

We obtain conjuncts sh(v) = us
w, sh(z) = us

w, sh(uv2) = us
w2.

We next ensure homomorphism property P3 in Defini-
tion 41. From conjuncts uvz = g(v, z), sh(uvz) = us

vz, and
sh(v) = us

w, we conclude

us
vz = sh(uvz) =

sh(g(v, z)) =

gs(sh(v), sh(z)) =

gs(us
w, u

s
w)

so we add the conjunct us
vz = gs(us

w, u
s
w) to the formula.

Similarly, from w = g(uw1, uw2), sh(w) = us
w, sh(uw1) =

us
w1, sh(uw2) = us

w2 we conclude us
w = g(uw1, uw2) and add

this conjunct to the formula. Adding these two conjuncts
makes property P3 hold. (Note that, had we decided to
consider the case where sh(v) 6= sh(z) we would have arrived
at a contradiction due to sh(us

vz) = sh(us
zv).)

We next apply rule (25) to reduce all cardinality con-
straints into cardinality constraints on parameter nodes
(nodes u for which there there is no conjunct of form
u = f(ui1 , . . . , uik)). We replace |uvz ∩ uc

zv|us
vz

= 0 with

|uv ∩ uc
z|us

w
= 0 ∧ |uz ∩ uc

v|us
w

= 0 (34)

Variable v is a parameter variable, but z is not, which pre-
vents application of (25). We therefore introduce uz1 and
uz2 such that z = g(uz1, uz2). Because sh(z) = us

w, we have
sh(uz1) = us

w1 and sh(uz2) = us
w2 by homomorphism prop-

erty. We can now continue applying rule (25) to (34). The
result is:

|uv1 ∩ uc
z1|us

w1
= 0 ∧ |uz1 ∩ uc

v1|us
w1

= 0 ∧

|uv2 ∩ uc
z2|us

w2
= 0 ∧ |uz2 ∩ uc

v2|us
w2

= 0

To make the formula conform to Definition 41 we introduce
internal variables uv, uz, uw corresponding to free variables
v, z, w, respectively. The resulting structural base formula
is

∃uvz, uzv, uv, uz, uw, uv1, uv2, uz1, uz2, uw1, uw2,

us
vz, u

s
w, u

s
w1, u

s
w2.

shapeBase1 ∧ termBase1 ∧

hom1 ∧ cardin1

(35)

where

shapeBase1 = us
vz = gs(us

w, u
s
w) ∧ us

w = gs(us
w1, u

s
w2) ∧

distinct(us
vz, u

s
w, u

s
w1, u

s
w2)

termBase1 = uvz = g(uv, uz) ∧ uzv = g(uz, uv) ∧

uv = g(uv1, uv2) ∧ uz = g(uz1, uz2) ∧

uw = g(uw1, uw2) ∧

v = uv ∧ z = uz ∧ w = uw

hom1 =

sh(uvz) = us
vz ∧ sh(uzv) = us

vz ∧

sh(uv) = us
w ∧ sh(uz) = us

w ∧ sh(uw) = us
w ∧

sh(uv1) = us
w1 ∧ sh(uz1) = us

w1 ∧ sh(uw1) = us
w1 ∧

sh(uv2) = us
w2 ∧ sh(uz2) = us

w2 ∧ sh(uw2) = us
w2

cardin1 = |uv1 ∩ uc
z1|us

w1
= 0 ∧ |uz1 ∩ uc

v1|us
w1

= 0 ∧

|uv2 ∩ uc
z2|us

w2
= 0 ∧ |uz2 ∩ uc

v2|us
w2

= 0 ∧

|uw1 ∩ uc
v1|us

w1
≥ 1

Figure 6 shows a graph representation of the subformulas
shapeBase1, termBase1, and hom1 of the resulting structural
base formula.

Recall that we are eliminating the quantification over v
from ¬∃v.φ1. We can now existentially quantify over v. As
in Proposition 27, we simply remove the conjunct v = uv

from termBase and the quantifier ∃v.
As in Figure 4 of Section 3.4 the structural base for-

mula form allows us to eliminate an existential quantifier,
whereas the quantifier-free form allows us to eliminate a
negation. We transform the structural base formula (35)
into a quantifier-free formula as follows.

20

We first use rule (7) to eliminate variable uvz, replacing
it with g(v, z). In the resulting formula g(v, z) occurs only
in hom1 in the form

sh(g(uv, uz)) = us
vz (36)

But (36) is a consequence of conjuncts us
vz = gs(us

w, u
s
w),

sh(uv) = us
w and sh(uw) = us

w, so we omit (36) from the
formula. In analogous way we eliminate variable uzv and
the conjuncts that contain it. We also eliminate uv, anal-
ogously to uvz and uzv. In the resulting formula us

vz oc-
curs only in distinct subformula of shapeBase. Conjuncts
us

vz 6= us
w, us

vz 6= us
w1, and us

vz 6= us
w2 follow from the re-

maining conjuncts in shapeBase by acyclicity. Hence we may
replace distinct(us

vz, u
s
w, u

s
w1, u

s
w2) by distinct(us

w, u
s
w1, u

s
w2).

Now us
vz does not occur in the matrix of the formula, so we

may eliminate ∃us
vz altogether.

The resulting formula is:

φ5 ≡ ∃uz, uw, uv1, uv2, uz1, uz2, uw1, uw2, u
s
w, u

s
w1, u

s
w2.

us
w = gs(us

w1, u
s
w2) ∧ distinct(us

w, u
s
w1, u

s
w2) ∧

uz = g(uz1, uz2) ∧ uw = g(uw1, uw2) ∧

z = uz ∧ w = uw ∧

sh(uz) = us
w ∧ sh(uw) = us

w ∧

sh(uv1) = us
w1 ∧ sh(uz1) = us

w1 ∧ sh(uw1) = us
w1 ∧

sh(uv2) = us
w2 ∧ sh(uz2) = us

w2 ∧ sh(uw2) = us
w2 ∧

|uv1 ∩ uc
z1|us

w1
= 0 ∧ |uz1 ∩ uc

v1|us
w1

= 0 ∧

|uv2 ∩ uc
z2|us

w2
= 0 ∧ |uz2 ∩ uc

v2|us
w2

= 0 ∧

|uw1 ∩ uc
v1|us

w1
≥ 1

(37)
We next eliminate uv1. It suffices to eliminate it from con-
juncts where it occurs, so we consider formula φ5,1:

φ5,1 ≡ ∃uv1.

sh(uv1) = us
w1 ∧ sh(uz1) = us

w1 ∧ sh(uw1) = us
w1 ∧

|uv1 ∩ uc
z1|us

w1
= 0 ∧ |uz1 ∩ uc

v1|us
w1

= 0 ∧

|uw1 ∩ uc
v1|us

w1
≥ 1

(38)
Note that all variables from φ5,1 belong to B(s) where s
is the value of shape variable us

w1 (see (20)). This means
that we can apply quantifier elimination for boolean algebra
(Section 3.2) to eliminate uv1. The result is

φ5,2 ≡ sh(uz1) = us
w1 ∧ sh(uw1) = us

w1 ∧

|uw1 ∩ uc
z1|us

w1
≥ 1

(39)

Similarly, to eliminate uv2 we consider formula φ5,3:

φ5,3 ≡ ∃uv2.

sh(uv2) = us
w2 ∧ sh(uz2) = us

w2 ∧ sh(uw2) = us
w2 ∧

|uv2 ∩ uc
z2|us

w2
= 0 ∧ |uz2 ∩ uc

v2|us
w2

= 0

(40)
The result of boolean algebra quantifier elimination on φ5,3

is true (indeed, one may let uv2 = uz2). The resulting base

formula with uv1 and uv2 eliminated is φ6 :

φ6 ≡ ∃uz, uw, uz1, uz2, uw1, uw2, u
s
w, u

s
w1, u

s
w2.

us
w = gs(us

w1, u
s
w2) ∧ distinct(us

w, u
s
w1, u

s
w2) ∧

uz = g(uz1, uz2) ∧ uw = g(uw1, uw2) ∧

z = uz ∧ w = uw ∧

sh(uz) = us
w ∧ sh(uw) = us

w ∧

sh(uz1) = us
w1 ∧ sh(uw1) = us

w1 ∧

sh(uz2) = us
w2 ∧ sh(uw2) = us

w2 ∧

|uw1 ∩ uc
z1|us

w1
≥ 1

(41)

Observe that the equalities in φ6 are sufficient to express all
variables bound in φ6 in terms of free variables (all internal
variables are “covered”):

uz = z uw = w

uz1 = g1(z) uz2 = g2(z)

uw1 = g1(w) uw2 = g2(w)

us
w = sh(w)

us
w1 = gs

1(sh(w)) us
w2 = gs

2(sh(w))

(42)

Structural base formula φ6 is therefore equivalent to the
quantifier-free formula φ7,1:

φ7,1 ≡ Isgs(sh(w)) ∧ Isg(w) ∧ Isg(z) ∧

distinct(gs
1(sh(w)), gs

2(sh(w)))

sh(z) = sh(w) ∧ |g1(w) ∩ g1(z)c|gs
1(sh(w)) ≥ 1

(43)
When transforming formula φ4 we chose the case us

w1 6= us
w1.

If we choose the case us
w1 = us

w2, we obtain quantifier-free
formula φ7,2:

φ7,2 ≡ Isgs(sh(w)) ∧ Isg(w) ∧ Isg(z) ∧

sh(z) = sh(w) ∧ gs
1(sh(w)) = gs

2(sh(w)) ∧

|g1(w) ∩ g1(z)c|gs
1(sh(w)) ≥ 1

(44)
Our quantifier elimination would also consider the case
sh(g2(w)) 6= sh(g2(z)). The procedure finds the case con-
tradictory in a larger context, when eliminating ∃z, because
sh(z) = sh(x) = sh(w) follows from z ≤ x and w ≤ x. Ig-
noring this case, we observe that φ7,1 ∨ φ7,2 is equivalent to
the quantifier-free formula φ8, where

φ8 ≡ Isgs(sh(w)) ∧ Isg(w) ∧ Isg(z) ∧

sh(z) = sh(w) ∧ |g1(w) ∩ g1(z)c|gs
1(sh(w)) ≥ 1

(45)
Let us therefore assume that the result of quantifier elimi-
nation in (28) is ¬φ8.

We proceed to eliminate the next quantifier, ∀w, from

∀w. w ≤ x ∧ w ≤ y ⇒ ¬φ8 (46)

(46) is equivalent to

¬∃w. w ≤ x ∧ w ≤ y ∧ φ8

21

After eliminating ≤ we obtain

¬∃w. |w ∩ xc|sh(w) = 0 ∧ sh(x) = sh(w) ∧

|w ∩ yc|sh(w) = 0 ∧ sh(y) = sh(w) ∧

Isgs(sh(w)) ∧ Isg(w) ∧ Isg(z) ∧

sh(z) = sh(w) ∧ |g1(w) ∩ g1(z)c|gs
1(sh(w)) ≥ 1

(47)
We now proceed similarly as in eliminating variable v. The
result is ¬φ9 where

φ9 ≡ sh(x) = sh(z) ∧ sh(y) = sh(z) ∧

Isg(x) ∧ Isg(y) ∧ Isg(z) ∧ Isgs(sh(z)) ∧

|g1(x) ∩ g1(y) ∩ g1(z)c|gs
1(sh(z)) ≥ 1

(48)

The remaining quantifiers that bind z, y, and x are elimi-
nated similarly.

To eliminate the quantifier ∃z, we need to transform ¬φ9

into disjunction of base formulas. This transformation re-
quires negation of φ9 and creates several disjuncts. We con-
sider only the two cases, φ10 and φ11, that are not contradic-
tory in the enclosing context of conjuncts z ≤ x and z ≤ y:

φ10 ≡ sh(x) = sh(z) ∧ sh(y) = sh(z) ∧ ¬Isgs(sh(z))
(49)

φ11 ≡ sh(x) = sh(z) ∧ sh(y) = sh(z) ∧

Isg(x) ∧ Isg(y) ∧ Isg(z) ∧ Isgs(sh(z)) ∧

|g1(x) ∩ g1(y) ∩ g1(z)c|gs
1(sh(z)) = 0

(50)

φ10 is equivalent to

sh(x) = cs ∧ sh(y) = cs ∧ sh(z) = cs (51)

The result of eliminating ∃z from

∃z. |z ∩ xc|sh(z) = 0 ∧ |z ∩ yc|sh(z) = 0 ∧ φ10

is therefore

φ10,2 ≡ sh(x) = sh(y) ∧ ¬Isgs(sh(x)) (52)

The result of eliminating ∃z from

∃z. |z ∩ xc|sh(z) = 0 ∧ |z ∩ yc|sh(z) = 0 ∧ φ11

is
φ11,2 ≡ sh(x) = sh(y) ∧ Isgs(sh(x))

φ10,2 ∨ φ11,2 is equivalent to sh(x) = sh(y). Converting

|x ∩ yc|sh(x) = 0 ∧ sh(x) = sh(y) ⇒ sh(x) = sh(y)

to structural base formula yields true. We conclude that (27)
is a true sentence in the structure FT2, which completes our
quantifier elimination procedure example.

�

Formulas in the Example 42 do not contain disequalities be-
tween terms variables, only disequalities between shape vari-
ables. If a conjunction contains disequalities between term
variables, we eliminate the disequalities using rule (22) in
the process of converting formula to disjunction of struc-
tural base formulas. The following Example 43 illustrates
this process.

Example 43 Consider the formula

φ′6 ≡ φ6 ∧ uz 6= uw

Where φ6 is given by (41). By (22), literal uz 6= uw is
equivalent to ψ1 ∨ ψ2 where

ψ1 ≡ sh(uz) 6= sh(uw) (53)

and

ψ2 ≡ sh(uz) = sh(uw) ∧

|(uz ∩ uc
w) ∪ (uc

z ∩ uw)|sh(uz) ≥ 1
(54)

In this case, formula φ6∧ψ1 is contradictory. Formula φ6∧ψ2

is equivalent to φ′′6 where

φ′′6 ≡ ∃uz, uw, uz1, uz2, uw1, uw2, u
s
w, u

s
w1, u

s
w2.

us
w = gs(us

w1, u
s
w2) ∧ distinct(us

w, u
s
w1, u

s
w2) ∧

uz = g(uz1, uz2) ∧ uw = g(uw1, uw2) ∧

z = uz ∧ w = uw ∧

sh(uz) = us
w ∧ sh(uw) = us

w ∧

sh(uz1) = us
w1 ∧ sh(uw1) = us

w1 ∧

sh(uz2) = us
w2 ∧ sh(uw2) = us

w2 ∧

|uw1 ∩ uc
z1|us

w1
≥ 1 ∧

|(uz ∩ uc
w) ∪ (uc

z ∩ uw)|us
w
≥ 1

(55)

As in Example 42, we now apply rule (25) to

|(uz ∩ uc
w) ∪ (uc

z ∩ uw)|us
w
≥ 1

and transform φ′′6 into a disjunction of base formulas.

�

We proceed to sketch the general case of quantifier elimina-
tion. The following Proposition 44 is analogous to Proposi-
tion 27; the proof is again straightforward.

Proposition 44 (Quantification of Structural Base)
If β is a structural base formula and x a free term vari-
able in β, then there exists a base structural formula β1

equivalent to ∃x.β.

The following Proposition 45 corresponds to Proposition 28.

Proposition 45 (Quantifier-Free to Structural Base)
Every well-defined quantifier-free formula φ in the language
of Figure 5 can be written as true, false, or a disjunction of
structural base formulas.

Proof Sketch. Let φ be a well-defined quantifier-free
formula in the language of Figure 5.

We first use rule (21) to eliminate occurrences of ≤ in
the formula replacing them with cardinality constraints.

We then convert formula into disjunction φ1∨· · ·∨φn of
well-formed conjunctions of literals. We next describe how
to transform each conjunction φi into a disjunction of base
formulas.

Let φi be a conjunction of literals. Using the technique
of Proposition 9, we convert the formula to unnested form,
adding existential quantifiers. We then eliminate unnested

22

unnested form cardinality constraint
x = x1 ∩s x2 |x+ (x1 ∩ x2)|s = 0

x = x1 ∪s x2 |x+ (x1 ∪ x2)|s = 0

x = xc
1s |x+ xc

1|s = 0

Figure 7: Elimination of Boolean Algebra Unnested Formu-
las . Expression x+ y is a shorthand for (x∩ yc)∪ (y ∩ xc).

conjuncts that contain boolean algebra operations, accord-
ing to Figure 7. The only atomic formulas in the resulting
existentially quantified conjunction are of form x = a, x = b,
x = g(x1, x2), Isg(x), x1 = g1(x), x2 = g2(x), x1 = x2,
xs = cs, xs = gs(xs

1, x
s
2), Isgs(xs), xs

1 = gs
1(x

s), xs
2 = gs

2(x
s),

xs
1 = xs

2, x
s = sh(x), as well as |t1|xs ≥ k and |t2|xs = k for

some xs-terms t1 and t2. The only negated atomic formulas
are of form x1 6= x2, x

s
1 6= xs

2, ¬Isg(x) and ¬Isgs(xs). As in
the proof of Proposition 28, we use (17) to eliminate ¬Isg(x)
and ¬Isgs(xs). This process leaves formulas of form x1 6= x2

and xs
1 6= xs

2 as the only negated atomic formulas.
In the sequel, whenever we perform case analysis and

generate a disjunction of conjunctions, existential quantifiers
propagate to the conjunctions, so we keep working with a
existentially quantified conjunction. The existentially quan-
tified variables will become internal variables of a structural
base formula.

We next convert conjuncts that contain only term vari-
ables to a base formula, and convert shape part to base
formula, as in the proof of Proposition 28. We simultane-
ously make sure every term variable has an associated shape
variable, introducing new shape variables if needed. (This
process is interleaved with conversion to base formula, to en-
sure that there is always a conjunct stating that newly intro-
duced shape variables are distinct.) We also ensure homo-
morphism requirement by replacing internal variables when
we entail their equality. Another condition we ensure is that
parameter term variables map to parameter shape variables,
and non-parameter term variables to non-parameter shape
variables; we do this by performing expansion of term and
shape variables. We perform expansion of shape variables as
in Section 3.2. Expansion of term variables is even simpler
because there is no need to do case analysis on equality of
term variable with other variables.

The resulting existentially quantified conjunction might
contain disequalities u 6= u′ between term variables. We
eliminate these disequalities as explained in Example 43,
by converting each disequality into a cardinality constraint
using (22). In general, we need to consider the case when
sh(u) 6= sh(u′) and generate another disjunct.

Elimination of disequalities might violate previously es-
tablished homomorphism invariants, so we may need to
reestablish these invariants by repeating the previously de-
scribed steps. The overall process terminates because we
never introduce new inequalities between term variables.

As a final step, we convert all cardinality constraints into
constraints on parameter term variables, using (25). In the
case when the shape of cardinality constraint is cs, we can-
not apply (25). However, in that case the homomorphism
condition ensures that each of the participating variables is
equal to a or equal to b. This means that we can simply
evaluate the cardinality constraint in the boolean algebra
{a, b}. If the result is true we simply drop the constraint,

otherwise the entire base formula becomes false.
This completes our sketch of transforming a quantifier-

free formula into disjunction of structural base formulas.

We introduce the notion of covered variables in structural
base formula by generalizing Definition 29.

Definition 46 The set covering of variable coverings of a
structural base formula β is the least set S of pairs 〈u, t〉
where u is an internal (shape or term) variable and t is a
term over the free variables of β, such such that:

1. if x = u occurs in termBase then 〈u, x〉 ∈ S;

2. if xs = us occurs in shapeBase then 〈us, xs〉 ∈ S;

3. if 〈u, t〉 ∈ S and u = f(u1, . . . , uk) occurs in termBase
for some f ∈ Σ then {〈u1, f1(t)〉, . . . , 〈uk, fk(t)〉} ⊆ S;

4. if 〈us, ts〉 ∈ S and us = f s(us
1, . . . , u

s
k) occurs in

shapeBase then {〈us
1, f

s
1(t

s)〉, . . . , 〈us
k, f

s
k(ts)〉} ⊆ S;

5. if 〈u, t〉 ∈ S and sh(u) = us occurs in hom then
〈us, sh(t)〉 ∈ S.

Definition 47 An internal term variable u is covered iff
there exists a term t such that 〈u, t〉 ∈ S. An internal shape
variable us is covered iff there exists a term ts such that
〈us, ts〉 ∈ S.

Lemma 48 Let β be a structural base formula with matrix
β0 and let covering be the covering of β.

1. If 〈u, t〉 ∈ S then |= β0 ⇒ u = t.

2. If 〈us, ts〉 ∈ S then |= β0 ⇒ us = ts.

Proof. By induction, using Definition 46.

Corollary 49 Let β be a structural base formula such that
every internal variable is covered. Then β is equivalent to a
well-defined quantifier-free formula.

Proof. By Lemma 48 using (7).

Lemma 50 Let u be an uncovered non-parameter term
variable in a structural base formula β such that u is a source
i.e. no conjunct of form

u′ = f(u1, . . . , u, . . . , uk)

occurs in termBase. Let β′ be the result of dropping u from
β. Then β is equivalent to β′.

Proof. Let u occur in termBase in form

u = f(u1, . . . , uk)

The only other occurrence of u in β is in hom and has the
form sh(u) = us. Because non-parameter term variables
are mapped to non-parameter shape variables, shapeBase
contains formula

us = shapified(f)(us
1, . . . , u

s
k) (56)

where us
1, . . . , u

s
k are such that, by homomorphism property,

sh(ui) = us
i occurs in hom. This means that the conjunct

sh(u) = us is a consequence of the remaining conjuncts, so it
may be omitted. After that, applying (7) yields a structural
base formula β′ not containing u, where β′ is equivalent to
β.

23

Corollary 51 Every base formula is equivalent to a base
formula without uncovered non-parameter term variables.

Proof. If a structural base formula has an uncovered
non-parameter term variable, then it has an uncovered non-
parameter term variable that is a source. By repeated ap-
plication of Lemma (50) we eliminate all uncovered non-
parameter term variables.

The next example illustrates how we deal with cardinal-
ity constraints |1s|s ≥ k and |1s| = k, which contain no
term variables. These constraints restrict the size of shape
s. Luckily, we can be translate them into shape base formula
constraints.

Example 52 (Shape Term Size Constraints)
Let x < y denote conjunction x ≤ y∧x 6= y. Let us eliminate
quantifiers from formula ∃x.φ(x) where

φ(x) ≡ ¬(∃y.∃z. x < y ∧ y < z) ∧

¬(∃u. u < x)

(57)

Eliminating variables y, z from the first conjunct and vari-
able u from the second conjunct yields

¬|xc|sh(x) ≥ 2 ∧ ¬|x|sh(x) ≥ 1

which is equivalent to

(|xc|sh(x) = 0 ∨ |xc|sh(x) = 1) ∧ |x|sh(x) = 0

and further to disjunction

(|xc|sh(x) = 0 ∧ |x|sh(x) = 0) ∨ (|xc|sh(x) = 1 ∧ |x|sh(x) = 0)

The first disjunct can be shown contradictory. Let us trans-
form the second disjunct into a structural base formula. Af-
ter introducing u = x and us = sh(u), we obtain

∃u, us. x = u ∧ sh(u) = us ∧ |u|us = 0 ∧ |uc|us = 1

Then ∃x.φ(x) is equivalent to

∃u, us. sh(u) = us ∧ |u|us = 0 ∧ |uc|us = 1

Eliminating parameter term variable u yields

∃us. |1|us = 1

Constraint |1|us = 1 means that the largest set in the
boolean algebra B(s) where s is the value of us has size
one. There exists exactly one boolean algebra of size one
in the structure FT2, namely {a, b}. Therefore, |1|us = 1 is
equivalent to us = cs. We may now eliminate us by letting
us = cs. We conclude that the sentence ∃x.φ(x) is true.

Notice that we have also established that formula φ(x)
is equivalent to sh(x) = cs, as a consequence of

|1sh(x)|sh(x) = 1

�

The following Proposition 53 corresponds to Proposi-
tion 38.

Proposition 53 (Struct. Base to Quantifier-Free)
Every structural base formula β is equivalent to a quantifier-
free formula φ in the language of Figure 5.

Proof Sketch. By Corollary 51 we may assume that β
has no uncovered non-parameter term variables. By Corol-
lary 49 we are done if there are no uncovered variables, so
it suffices to eliminate uncovered parameter term variables
and uncovered shape variables.

Let u be an uncovered parameter term variable. Then u
does not occur in termBase. Indeed, suppose for the sake of
contradiction that u occurs in termBase in some formula

u′ = f(u1, . . . , u, . . . , uk)

Then u′ is an uncovered non-parameter variable in β, which
is a contradiction because we have assumed β has no uncov-
ered non-parameter variables. Therefore, u does no occur in
termBase, it occurs only in hom and cardin. Let sh(u) = us

occur in hom. Let ψ1, . . . , ψp be all conjuncts of cardin that
contain u. Each ψi is of form |ti|us ≥ ki or |ti|us = ki for
some us-term ti. Let uj1 , . . . , ujq be all term variables ap-
pearing in ti terms other than u. Conjunct sh(ujr) = us

occurs in hom for each r where 1 ≤ r ≤ q. The base formula
can therefore be written in form

β1 ≡ ∃x1, . . . , xe, x
s
1, . . . , x

s
f . φ ∧ φ1

where

φ1 ≡ ∃u. sh(u) = us ∧

sh(uj1) = us ∧ . . . ∧ sh(ujq) = us ∧

ψ1 ∧ . . . ∧ ψp

(58)

All term variables in ψ1, . . . , ψk range over terms of shape
us. Therefore, φ1 defines a relation in the boolean algebra
B(JusK). This allows us to apply construction in Section 3.2.
We eliminate u from ψ1 ∧. . .∧ ψp and obtain a propositional
combination ψ0 of cardinality constraints with us-terms. φ0

does not contain variable u. We may assume that ψ0 is in
disjunctive normal form

ψ0 ≡ α1 ∨ . . . ∨ αw

Let

φ1,i ≡ sh(uj1) = us ∧ . . . ∧ sh(ujq) = us ∧ αi

for 1 ≤ i ≤ w. Base formula β1 is equivalent to disjunction
of base formulas β1,i where

β1,i ≡ ∃x1, . . . , xe, x
s
1, . . . , x

s
f . φ ∧ φ1,i

We have thus eliminated an uncovered parameter term vari-
able u from β1. By repeating this process we eliminate all
uncovered parameter term variables from a base formula.
The resulting formula contains no uncovered term variables.

It remains to eliminate uncovered shape variables. This
process is similar to term algebra quantifier elimination in
Section 3.4. An essential part of construction in Section 3.4
is Lemma 25, which relies on the fact that uncovered pa-
rameter variables may take on infinitely many values. We
therefore ensure that uncovered parameter shape variables
are not constrained by term variables through conjuncts out-
side shapeBase.

Suppose that us is an uncovered parameter shape vari-
able in a base formula β. us does not occur in termBase.
us does not occur in hom either, because all term variables
are covered, and a conjunct sh(u) = us would imply that us

24

is covered. The only possible occurrence of us is in cardi-
nality constraint ψ of subformula cardin, where ψ is of form
|t|us = k or of form |t|us ≥ k. Suppose there is some term
variable u occurring in t. Then sh(u) = us so us is covered,
which is a contradiction. Therefore, t has no variables. t
can thus be simplified to either 0us or 1us . In general, a con-
straint of form |1|us = k or |1|us ≥ k is a domain cardinality
constraint for boolean algebra B(JusK) (see Remark 15 as
well as (20)). A constraint containing |0us | is equivalent to
true or false. A constraint |1|us = 0 is equivalent to false. A
constraint |1|us = k for k ≥ 1 is equivalent to

us = ts1 ∨ · · · ∨ us = tsp

where ts1, . . . , t
s
p is the list of all ground terms in signature Σ0

that have exactly k occurrences of constant cs. We therefore
generate a disjunction of base formulas β1, . . . , βp where βi

results from β by replacing |1|us = k with us = tsi. We con-
vert each βi to a disjunction of base formulas by labelling
subterms of ti by internal shape variables and doing case
analysis on the equality between new internal shape vari-
ables to ensure the invariants of a base formula. The result
is a disjunction of base formulas where variable us occurs
only in shapeBase subformula.

Similarly, |1|us ≥ k + 1 is equivalent to ¬(|1|us = k) and
thus to

us 6= ts1 ∧ · · · ∧ us 6= tsq (59)

where ts1, . . . , t
s
q is the list of all ground terms in signature

Σ0 that have at most k occurrences of constant cs. We
replace |1|us ≥ k + 1 by (59) and again convert the result
to a disjunction of base formulas where us occurs only in
shapeBase subformula.

Each of the resulting base formulas β1 are such that every
uncovered variable in β1 is a shape variable that occurs only
in shapeBase. Let

β1 ≡ ∃u1, . . . , un, u
s
1, . . . , u

s
ps , us

ps+1, . . . , u
s
ps+qs .

shapeBase(us
1, . . . , u

s
ns , xs

1, . . . , x
s
ms) ∧

termBase(u1, . . . , un, x1, . . . , xm) ∧

hom(u1, . . . , un, u
s
1, . . . , u

s
n) ∧

cardin(up+1, . . . , up+q, u
s
ps+1, . . . , u

s
ps+qs)

where us
1, . . . , u

s
ps are uncovered shape variables. Then β1 is

equivalent to β2:

β2 ≡ ∃u1, . . . , un, u
s
ps+1, . . . , u

s
ps+qs .

φ2(us
ps+1, . . . , u

s
ps+qs , xs

1, . . . , x
s
ms)

termBase(u1, . . . , un, x1, . . . , xm) ∧

hom(u1, . . . , un, u
s
1, . . . , u

s
n) ∧

cardin(up+1, . . . , up+q, u
s
ps+1, . . . , u

s
ps+qs)

Here φ2 is a base formula (Definitions 19 and 21) whose free
variables are variables free in β2 as well as all covered shape
variables:

φ2(us
ps+1, . . . , u

s
ps+qs , xs

1, . . . , x
s
ms) ≡ ∃us

1, . . . , u
s
ps .

shapeBase(us
1, . . . , u

s
ps , us

ps+1, u
s
ps+qs , xs

1, . . . , x
s
ms)

Applying Lemma 37 we conclude that φ2 is equivalent to
some disjunction

k∨
i=1

φ3,i

of base formulas without uncovered variables. Let β3,i be the
result of replacing φ2 with φ3,i in β2. Then β2 is equivalent
to

k∨
i=1

β3,i

and each β3,i has no uncovered variables either, because
every free variable of φ3,i is either free or covered in β3,i.
By Corollary 49 each β3,i can be written as a quantifier free
formula.

The following Theorem 54 corresponds to 39 of Sec-
tion 3.4.

Theorem 54 (Two Constants Quant. Elimination)
There exist algorithms A, B such that for a given formula
φ in the language of Figure 5:

a) A produces a quantifier-free formula φ′ in selector lan-
guage

b) B produces a disjunction φ′ of structural base formulas

Proof. Analogous to proof of Theorem 39, using Propo-
sition 45 in place of Proposition 28 and Proposition 53 in
place of Proposition 38.

Corollary 55 The first-order theory of the structure FT2 is
decidable.

This completes description of our quantifier elimination
for the first-order theory of structure FT2, which models
structural subtyping with two base types and one binary
constructor. It is straightforward to extend the construc-
tion of this section to any number of covariant constructors
if the base formula has only two constants. In Section 5 we
extend the result to any number of constants as well. Fi-
nally, in Section 6 we extend the result to allow arbitrary
decidable structures for primitive types, even if the number
of primitive types is infinite.

5 A Finite Number of Constants

In this section we prove the decidability of structural sub-
typing of any finite number of constant symbols (primitive
types) and any number of function symbols (constructors).
We first show the result when all constructors are covariant,
we then show the result when some of the constructors are
contravariant.

We introduce the notion of Σ-term-power of some struc-
ture C as a generalization of the structure of structural sub-
typing.

We represent primitive types in structural subtyping as
a structure C with a finite carrier C. We call C the base
structure. Without loss of generality, we assume that C has
only relations; functions and constants are definable using
relations. Let LC be a set of relation symbols and let≤ ∈ LC

be a distinguished binary relation symbol. ≤ represents the
subtype ordering between types. C is finite, so C is decidable
(see Section 6 for the case when C is infinite but decidable).

We represent type constructors as free operations in the
term algebra with signature Σ. To represent the variance
of constructors we define for each constructor f ∈ Σ of
arity ar(f) = k and each argument 1 ≤ i ≤ k the value
variance(f, i) ∈ {−1, 1}. The constructor f is covariant in

25

argument i iff variance(f, i) = 1. For convenience we assume
ar(f) ≥ 1 for each f ∈ Σ.

The Σ-term-power of C is a structure P defined as fol-
lows. Let Σ′ = Σ ∪ C. The domain of P is the set P of
finite ground Σ′-terms. Elements of C are viewed as con-
stants of arity 1. The structure P has signature Σ∪LC . The
constructors f ∈ Σ are interpreted in P as in a free term
algebra:

JfKP(t1, . . . , tk) = f(t1, . . . , tk)

A relation r ∈ LC\{≤} is interpreted pointwise on the terms
of same “shape” as follows. JrKP is the least relation ρ such
that:

1. if JrKC(c1, . . . , cn) then ρ(c1, . . . , cn)
2. if ρ(ti1, . . . , tin) for all i where 1 ≤ i ≤ k, then

ρ(f(t11, . . . , t1k), . . . , f(tn1, . . . , tnk))

The relation ≤ ∈ LC is interpreted similarly, but taking into
account the variance. J≤KP is the least relation ρ such that

1. if J≤KC(c1, c2) then ρ(c1, c2)
2. if

ρvariance(f,i)(ti1, . . . , tin)

for all i where 1 ≤ i ≤ k, then

ρ(f(t11, . . . , t1k), . . . , f(tn1, . . . , tnk))

Here we use the notation ρv for v ∈ {−1, 1} with the mean-
ing: ρ1 = ρ and ρ−1 = {〈y, x〉 | 〈x, y〉 ∈ ρ}.

We next sketch the decidability of structural subtyping
for any finite number of primitive types C. For now we as-
sume that all constructors f ∈ Σ are covariant, the relation
≤ thus does not play a special role.

5.1 Extended Term-Power Structure

For the purpose of quantifier elimination we define the struc-
ture PE by extending the domain and the set of operations
of the term-power structure P.

The domain of PE is PE = P ∪ PS where PS is the set
of shapes defined as follows. Let Σs = {cs} ∪ {f s | f ∈ Σ}
be a set of function symbols such that cs is a fresh constant
symbol with ar(cs) = 0 and f s are fresh distinct constant
symbols with ar(f s) = ar(f) for each f ∈ Σ. The set of
shapes PS is the set of ground Σs-terms. When referring to
elements of PE by term we mean an element of P ; by shape
we mean an element of PS . We write Xs to denote an entity
pertaining to shapes as opposed to terms, so xs, us denote
variables ranging over shapes, and ts to denotes terms that
evaluate to shapes.

The extended structure PE contains term algebra opera-
tions on terms and shapes (including selector operations and
tests, [22, Page 61]), the homomorphism sh, and cardinality
constraint relations |φ|ts = k and |φ|ts ≥ k:

1. constructors in the term algebra of terms, f ∈ Σ′

JfKPE (t1, . . . , tk) = f(t1, . . . , tk);
2. selectors in term the algebra of terms,

JfiKPE (f(t1, . . . , tk)) = ti;
3. constructor tests in the term algebra of terms,

JIsf KPE (t) = ∃t1, . . . , tk. t = f(t1, . . . , tk);
4. constructors in the term algebra of shapes, f s ∈ Σs

Jf sKPE (ts1, . . . , t
s
k) = f s(ts1, . . . , t

s
k);

5. selectors in the term algebra of shapes,
Jf s

i KPE (f s(ts1, . . . , t
s
k)) = tsi;

6. constructor tests in the term algebra of shapes,
JIsf sKPE (ts) = ∃ts1, . . . , tsk. ts = f s(ts1, . . . , t

s
k);

7. the homomorphism mapping terms to shapes such
that:

JshKPE (f(t1, . . . , tn)) =

shapified(f)(JshKPE (t1), . . . , JshKPE (tn))
(60)

where

shapified(x) = cs, if x ∈ C

shapified(f) = f s, if f ∈ Σ
(61)

8. cardinality constraint relations

J|φ(x1, . . . , xk)|ts = kKPE (t1, . . . , tk) =

|Jφ(x1, . . . , xk)KPE (t1, . . . , tk)| = k
(62)

and

J|φ(x1, . . . , xk)|ts ≥ kKPE (t1, . . . , tk) =

|Jφ(x1, . . . , xk)KPE (t1, . . . , tk)| ≥ k
(63)

where φ(x1, . . . , xk) is is a first-order formula over the
base-structure language LC with free variables
x1, . . . , xk, term ts denotes a shape, and k is a
nonnegative integer constant.

It remains to complete the semantics of cardi-
nality constraint relations, by defining the set
Jφ(x1, . . . , xk)KPE (t1, . . . , tk). If s is a shape, we call
the set of positions of constant cs in s leaves of s, and
denote it by leaves(s). We represent a leaf as a sequence of
pairs 〈f, i〉 where f is a constructor of arity k and 1 ≤ i ≤ k.
If l ∈ leaves(s) and sh(t) = s, then t[l] denotes the element
c ∈ C at position l in term t i.e. if l = 〈f1, i1〉 . . . 〈fn, in〉
then

t[l] = fn
in(. . . f2

i2(f
1
i1(t)) . . .) (64)

We define:

Jφ(x1, . . . , xk)KPE (t1, . . . , tk) =

{l | Jφ(x1, . . . , xk)KC(t1[l], . . . , tk[l])}
(65)

The following equations follow from (65) and can be used as
an equivalent alternative definition for cardinality relations:

|Jφ(x1, . . . , xk)KPE (c1, . . . , ck)| ={
1, Jφ(x1, . . . , xk)KC(c1, . . . , ck)

0, ¬Jφ(x1, . . . , xk)KC(c1, . . . , ck)

(66)

|Jφ(x1, . . . , xk)KPE (f(t11, . . . , t1l), . . . , f(tk1, . . . , tkl))|

= |Jφ(x1, . . . , xk)KPE (t11, . . . , tk1)|+ . . .

+ |Jφ(x1, . . . , xk)KPE (t1l, . . . , tkl)|
(67)

Definition (65) generalizes [14, Definition 2.1, Page 63].
We write |φ(t1, . . . , tk)|ts = k as a shorthand for the
atomic formula (|φ(x1, . . . , xk)|ts = k)(t1, . . . , tk), similarly

26

for |φ(t1, . . . , tk)|ts ≥ k. This is more than a notational con-
venience, see Section 6 for an approach which introduces sets
of leaves as elements of the domain of PE and defines a cylin-
dric algebra interpreted over sets of leaves. The approach in
this section follows [35] in merging the quantifier elimination
for products and quantifier elimination for boolean algebras.

Some of the operations in PE are partial. We use the
definitions and results of Section 2.3 to deal with partial
functions. fi(t) is defined iff Isf (t) holds, f s

i (t
s) is defined

iff Isf s(ts) holds. Cardinality constraints |φ(t1, . . . , tk)|ts =
k and |φ(t1, . . . , tk)|ts ≥ k are defined iff sh(t1) = . . . =
sh(tk) = ts holds.

The structure PE is at least as expressive as P because
the only operations or relations present in P but not in PE

are JrKP for r ∈ LC , and we can express JrKP(t1, . . . , tk) as
|¬ r(t1, . . . , tk)|sh(t1) = 0.

Our goal is to give a quantifier elimination for first-order
formulas of structure PE . By a quantifier-free formula we
mean a formula without quantifiers outside cardinality con-
straints, e.g. the formula |∀x.x ≤ t|xs = k is quantifier-free.

5.2 Structural Base Formulas

In this section we define the notion of structural base for-
mulas for any base structure C with a finite carrier.

Definition 56 of structural base formula for quantifier
elimination in PE differs from Definition 41 in the conjuncts
of cardin subformula. Instead of cardinality constraints on
boolean algebra terms, Definition 56 contains cardinality
constraints on first-order formulas.

The notion of base formula and Lemma 25 apply to terms
P as well as shapes PS in the structure PE because shapes
are also terms over the alphabet Σs. For brevity we write u∗

for an internal shape or term variable, and similarly x∗ for
a free shape or term variable, t∗ for terms, f∗ for term or
shape term algebra constructor and f∗i for a term or shape
term algebra selector.

Definition 56 (Structural Base Formula)
A structural base formula with:

• free term variables x1, . . . , xm;
• internal non-parameter term variables u1, . . . , up;
• internal parameter term variables up+1, . . . , up+q;
• free shape variables xs

1, . . . , x
s
ms ;

• internal non-parameter shape variables us
1, . . . , u

s
ps ;

• internal parameter shape variables us
ps , . . . , us

ps+qs

is a formula of the form:

∃u1, . . . , un, u
s
1, . . . , u

s
ns .

shapeBase(us
1, . . . , u

s
ns , xs

1, . . . , x
s
ms) ∧

termBase(u1, . . . , un, x1, . . . , xm) ∧

termHom(u1, . . . , un, u
s
1, . . . , u

s
ns) ∧

cardin(up+1, . . . , un, u
s
ps+1, . . . , u

s
ns)

where n = p+ q, ns = ps + qs, and formulas shapeBase,
termBase, termHom, cardin are defined as follows.

shapeBase(us
1, . . . , u

s
ns , xs

1, . . . , x
s
ms) =

ps∧
i=1

us
i = ti(u

s
1, . . . , u

s
ns) ∧

ms∧
i=1

xs
i = us

ji

∧ distinct(us
1, . . . , u

s
n)

where each ti is a shape term of the form f s(us
i1 , . . . , u

s
ik

)
for some f ∈ Σ0, k = ar(f), and
j : {1, . . . ,ms} → {1, . . . , ns} is a function mapping indices
of free shape variables to indices of internal shape variables.

termBase(u1, . . . , un, x1, . . . , xm) =

p∧
i=1

ui = ti(u1, . . . , un) ∧
m∧

i=1

xi = uji

where each ti is a term of the form f(ui1 , . . . , uik) for
some f ∈ Σ, k = ar(f), and j : {1, . . . ,m} → {1, . . . , n} is
a function mapping indices of free term variables to indices
of internal term variables.

termHom(u1, . . . , un, u
s
1, . . . , u

s
ns) =

n∧
i=1

sh(ui) = us
ji

where j : {1, . . . , n} → {1, . . . , ns} is some function such
that {j1, . . . , jp} ⊆ {1, . . . , ps} and
{jp+1, . . . , jp+q} ⊆ {ps + 1, . . . , ps + qs} (a term variable is
a parameter variable iff its shape is a parameter shape
variable).

cardin(up+1, . . . , un, u
s
ps+1, . . . , u

s
ns) = ψ1 ∧ · · · ∧ ψd

where each ψi is a cardinality constraint of the form

|φ(uj1 , . . . , ujl)|us = k

or
|φ(uj1 , . . . , ujl)|us ≥ k

where {j1, . . . , jl} ⊆ {p+ 1, . . . , n} and the conjunct
sh(ujd) = us occurs in termHom for 1 ≤ d ≤ l. We require
each structural base formula to satisfy the following
conditions:

P0) the graph associated with shape base formula

∃us
1, . . . , u

s
ns . shapeBase(us

1, . . . , u
s
ns , xs

1, . . . , x
s
ms)

is acyclic;

P1) congruence closure property for shapeBase subformula:
there are no two distinct variables us

i and us
j such that

both us
i = f(us

l1 , . . . , u
s
lk

) and us
j = f(us

l1 , . . . , u
s
lk

)
occur as conjuncts in formula shapeBase;

P2) congruence closure property for termBase subformula:
there are no two distinct variables ui and uj such that
both ui = f(ul1 , . . . , ulk) and uj = f(ul1 , . . . , ulk)
occur as conjuncts in formula termBase;

P3) homomorphism property of sh: for every
non-parameter term variable u such that
u = f(ui1 , . . . , uik) occurs in termBase, if conjunct
sh(u) = us occurs in termHom, then for some shape
variables us

j1 , . . . , u
s
jk

term us = f s(us
j1 , . . . , u

s
jk

)
occurs in shapeBase where f s = shapified(f) and for
every r where 1 ≤ r ≤ k, conjunct sh(uir) = us

jr

occurs in termHom.

Note that the validity of the occur check for term variables
follows from P0) and P3). Another immediate consequence
of Definition 56 is the following Proposition 57.

Proposition 57 (Quantification of Str. Base Form.)
If β is a structural base formula and x a free shape or term
variable in β, then there exists a base structural formula β1

equivalent to ∃x.β.

We proceed to show that a quantifier-free formula can be
written as a disjunction of base formulas, and a base formula
can be written as a quantifier-free formula.

27

5.3 Conversion to Base Formulas

Conversion from a quantifier-free formula to the structural
base formula is given by Proposition 57. The proof of Propo-
sition 58 is analogous to the proof of Proposition 45 but uses
of (67) instead of (25).

Proposition 58 (Quantifier-Free to Structural Base)
Every well-defined quantifier-free formula φ is equivalent
on PE to true, false, or some disjunction of structural base
formulas.

5.4 Conversion to Quantifier-Free Formulas

The conversion from structural base formulas to quantifier-
free formulas is similar to the case of two constant symbols
in Section 4.3, but requires the use of Feferman-Vaught tech-
nique.

Definition 59 The set determinations of variable determi-
nations of a structural base formula β is the least set S of
pairs 〈u∗, t∗〉 where u∗ is an internal term or shape variable
and t∗ is a term over the free variables of β, such such that:

1. if x∗ = u∗ occurs in termBase or shapeBase, then
〈u∗, x∗〉 ∈ S;

2. if 〈u∗, t∗〉 ∈ S and u∗ = f∗(u∗1, . . . , u
∗
k) occurs in

shapeBase or termBase then
{〈u∗1, f∗1 (t∗)〉, . . . , 〈u∗k, f∗k (t∗)〉} ⊆ S;

3. if {〈u∗1, f∗1 (t∗)〉, . . . , 〈u∗k, f∗k (t∗)〉} ⊆ S and
u∗ = f∗(u∗1, . . . , u

∗
k) occurs in shapeBase or termBase

then 〈u∗, t∗〉 ∈ S;

4. if 〈u, t〉 ∈ S and sh(u) = us occurs in termHom then
〈us, sh(t)〉 ∈ S.

Definition 60 An internal variable u∗ is determined if
〈u∗, t∗〉 ∈ determinations for some term ts. An internal vari-
able is undetermined if it is not determined.

Lemma 61 Let β be a structural base formula with ma-
trix β0 and let determinations be the determinations of β. If
〈u∗, t∗〉 ∈ S then |= β0 ⇒ u∗ = t∗.

Corollary 62 Let β be a structural base formula such that
every internal variable is determined. Then β is equivalent
to a well-defined quantifier-free formula.

Proof. By Lemma 61 using

∃x.x = t ∧ φ(x) ⇐⇒ φ(t) (68)

Lemma 63 Let u be an undetermined non-parameter term
variable in a structural base formula β such that u is a source
i.e. no conjunct of the form

u′ = f(u1, . . . , u, . . . , uk)

occurs in termBase. Let β′ be the result of removing u and
conjuncts containing u from β. Then β is equivalent to β′.

Proof. The conjunct containing u in termHom is a conse-
quence of the remaining conjuncts, so we drop it. We then
apply (68).

Corollary 64 Every base formula is equivalent to a base
formula without undetermined non-parameter term vari-
ables.

Proof. If a structural base formula has an undeter-
mined non-parameter term variable, then it has an unde-
termined non-parameter term variable that is a source. Re-
peatedly apply Lemma 63 to eliminate all undetermined
non-parameter term variables.

The following Lemma 65 is a consequence of the fact that
terms of a fixed shape s form a substructure of P isomorphic
to the finite power Cm where m = |leaves(s)| and follows
from Feferman-Vaught theorem in Section 3.3.

Lemma 65 Let

α ≡ ∃u. sh(u) = us ∧

sh(u1) = us ∧ . . . ∧ sh(uk) = us ∧

ψ1 ∧ . . . ∧ ψp

(69)

where each ψi is a cardinality constraint of the form |φ|us =
k or |φ|us ≥ k where all free variables of φ are among
u, u1, . . . , uk. Then there exists formula ψ such that ψ
is a disjunction of conjunctions of cardinality constraints
|φ′| = k and |φ′| ≥ k where the free variables in each φ′ are
among u1, . . . , uk and formula α is equivalent on PE to α′

where

α′ ≡ sh(u1) = us ∧ . . . ∧ sh(uk) = us ∧ ψ (70)

Proposition 66 (Struct. Base to Quantifier-Free)
Every structural base formula β is equivalent on PE to
some well-defined quantifier-free formula φ.

Proof Sketch. By Corollary 64 we may assume that β has
no undetermined non-parameter term variables. By Corol-
lary 62 we are done if there are no undetermined variables,
so it suffices to eliminate undetermined parameter term vari-
ables and undetermined shape variables.

Let u be an undetermined parameter term variable. u
does not occur in termBase because it cannot have a succes-
sor or a predecessors in the graph associated with term base
formula. Therefore, u′ occurs only in termHom and cardin.
Let us be the shape variable such that us = sh(u) occurs
in termHom. Let ψ1, . . . , ψp be all conjuncts of cardin that
contain u.

Each ψi is of the form |φ|us ≥ ki or |φ|us = ki and for
each variable u′ free in φ the conjunct sh(u) = us occurs
in termHom. The base formula can therefore be written in
form

β1 ≡ ∃x1, . . . , xe, x
s
1, . . . , x

s
f . φ ∧ α

where α has the form as in Lemma 65. Applying Lemma 65
we eliminate u and obtain ψ =

∨w
i=1 αi where and each αi is

a conjunction of cardinality constraints. Base formula β1 is
thus equivalent to the disjunction

∨w
i=1 β1,i where each β1,i

is a base formula

β1,i ≡ ∃x1, . . . , xe, x
s
1, . . . , x

s
f . φ ∧ φ1,i

By repeating this process we eliminate all undetermined pa-
rameter term variables from a base formula. Each of the
resulting base formulas contains no undetermined term vari-
ables.

28

It remains to eliminate undetermined shape variables.
This process is similar to term algebra quantifier elimi-
nation; the key ingredient is Lemma 25, which relies on
the fact that undetermined parameter variables may take
on infinitely many values. We therefore ensure that un-
determined parameter shape variables are not constrained
by term and parameter variables through conjuncts outside
shapeBase.

Consider an undetermined parameter shape variable us.
us does not occur in termHom, because all term variables
are determined and a conjunct us = sh(u) would imply that
us is determined as well. us can thus occur only in cardin
within some cardinality constraint |φ|us = k or |φ|us ≥ k.
Moreover, formula φ in each such cardinality constraint is
closed: otherwise φ would contain some free variable u, by
definition of base formula u would have to be a parame-
ter variable, all parameter term variables are determined,
so us would be determined as well. Let us denote some
shape s. Because φ is a closed formula, |φ| is equal to
0 if JφKC = false and to the shape size m = |leaves(s)| if
JφKC = true. (The fact that closed formulas reduce to the
constraints on domain size appears in [35, Theorem 3.36,
Page 13].) After eliminating constraints equivalent to 0 = k
and 0 ≥ k, we obtain a conjunction of simple linear con-
straints of the form m = k and m ≥ k. These constraints
specify a finite or infinite set S ⊆ {0, 1, . . .} of possible sizes
m. Let A = {s | |leaves(s)| ∈ S}. If the set S is infinite
then it contains an infinite interval of form {m0,m0 +1, . . .}
so the set A is infinite. If Σ contains a unary construc-
tor and S is nonempty, then A is infinite. If Σ contains
no unary constructors and S is finite then A is finite and
the cardinality constraints containing us are equivalent to∨p

i=1 u
s = tsi where A = {ts1, . . . , tsp}. We therefore gener-

ate a disjunction of base formulas β1, . . . , βp where βi re-
sults from β by replacing cardinality constraints containing
us with with us = tsi. We convert each βi to a disjunction
of base formulas by labelling subterms of ti with internal
shape variables and doing case analysis on the equality be-
tween new internal shape variables to ensure the invariants
of a base formula, as in the proof of 58. By repeating this
process for all shape variables us where the set S is finite,
we obtain base formulas where the set A is infinite for every
undetermined parameter shape variable us. We may then
eliminate all undetermined parameter and non-parameter
shape variables along with the conjuncts that contain them.
The result is an equivalent formula by Lemma 25.

All variables in each of the resulting base formulas are
determined. By Corollary 62 each formula can be written
as a quantifier-free formula, and the resulting disjunction is
a quantifier-free formula.

5.5 One-Relation-Symbol Variance

So far we have assumed that all constructors are covariant.
In this section we describe the changes needed to extend
the result to the case when the constructors have arbitrary
variance with respect to some distinguished binary relation
denoted ≤.

Definition 67 If φ is a first-order formula in the language
LC the contravariant version of φ, denoted φ(−1), is defined

by induction on the structure of formula by:

(r(t1, . . . , tk))(−1) = r(t1, . . . , tk), if r ∈ LC \ {≤}

(t1 ≤ t2)
(−1) = t2 ≤ t1

(φ1 ∧ φ2)
(−1) = φ1

(−1) ∧ φ2
(−1)

(φ1 ∨ φ2)
(−1) = φ1

(−1) ∧ φ2
(−1)

(¬φ)(−1) = ¬φ(−1)

(∃t.φ)(−1) = ∃t.φ(−1)

(∀t.φ)(−1) = ∀t.φ(−1)

(71)

Define C−1 to have the same domain and same interpretation
of operations and relations r ∈ LC \ {≤} but where

J≤KC
−1

= (J≤KC)−1 (72)

We clearly have for every formula φ and every valuation σ:

Jφ(−1)KC = JφKC
−1

(73)

If l ∈ leaves(s) is a leaf l = 〈f1, i1〉 . . . 〈fn, in〉, define
variance(l) as the product of integers

n∏
j=1

variance(f j , ij) (74)

We generalize (65) to

Jφ(x1, . . . , xk)KPE (t1, . . . , tk) =

{l | Jφ(x1, . . . , xk)KC
′
(t1[l], . . . , tk[l])}

(75)

where C′ denotes C for variancel = 1 and C−1 for variancel−
1. Hence, isomorhism between terms of some fixed shape
s with |leaves(s)| = m and Cm breaks, but there is still an

isomorphism with CP (s) × (C−1)N(s) where

P (s) = |{l ∈ leaves(s) | variance(l) = 1}|

N(s) = |{l ∈ leaves(s) | variance(l) = −1}|
(76)

Because of this isomorphism, Lemma 65 still holds and we
may still use Feferman-Vaught theorem from Section 3.3.

Equation (67) generalizes to:

|Jφ(x1, . . . , xk)KPE (f(t11, . . . , t1l), . . . , f(tk1, . . . , tkl))|

=
∑l

i=1 |Jφ
(variance(f,l))(x1, . . . , xk)KPE (t1i, . . . , tki)|

(77)
The only change in the proof of Proposition 58 is the use
of (77) instead of (67). Most of the proof of Proposition 66
remains unchanged as well; the only additional difficulty is
eliminating constraints of the form |φ|us = k and |φ|us ≥ k
where us is a parameter shape variable and φ is a closed
formula. Lemma 68 below addresses this problem.

We say that an algorithm g finitely computes some func-
tion f : A→ 2B where B is an infinite set iff g is a function
from A to the set Fin(B) ∪ {∞} where Fin(B) is the set of
finite subsets of set B, ∞ is a fresh symbol, and

g(a) =

{
f(a), if f(a) ∈ Fin(B)

∞, if f(a) /∈ Fin(B)
(78)

29

Lemma 68 There exists an algorithm that, given a shape
variable us and a conjunction ψ ≡

∧n
i=1 ψi of cardinality

constraints where each ψi is of form |φi|us = ki or |φi|us ≥ ki

for some closed formula φi, finitely computes the set

A = {s | JψKP [us 7→ s]} (79)

of shapes which satisfy ψ in P.

Proof Sketch. Let φ be a closed formula in language LC .
Compute JφKC and Jφ(−1)KC and then replace |φ|s with one
of the expressions P (s) +N(s), P (s), N(s), 0 according to
the following table.

JφKC Jφ(−1)KC |φ|s =
true true P (s) +N(s)

true false P (s)

false true N(s)

false false 0

(80)

The constraints of the form N(s) + P (s) = k and N(s) +
P (s) = k can be expressed as propositional combinations of
constraints of the form N(s) = k, P (s) = k, P (s) ≥ k and
N(s) ≥ k. Therefore, ψ can be written as a propositional
combination of these four kinds of constraints and each con-
junction C(s) can further be assumed to have one of the
forms:

F1) CkP ,kN (s) ≡ P (s) = kP ∧N(s) = kN ;

F2) C
kP ,k+

N
(s) ≡ P (s) = kP ∧N(s) ≥ kN ;

F3) C
k+

P
,kN

(s) ≡ P (s) ≥ kP ∧N(s) = kN ;

F4) C
k+

P
,k+

N
(s) ≡ P (s) ≥ kP ∧N(s) ≥ kN .

Let A = {s ∈ PS | C(s)}. To compute A when Σ contains
unary constructors, we first restrict Σ to the language Σ′

with no unary constructors, and compute the set A′ ⊆ A
using language Σ′. If A′ is empty, so is A, otherwise A is
infinite. Assume that Σ contains no unary constructors. As-
sume further Σ contains at least one binary constructor and
at lest one constructor is contravariant in some argument.
Let

S = {〈P (s), N(s)〉 | s ∈ A}

Because P (s)+N(s) = |leaves(s)| and there are only finitely
many shapes of any given size (every constructor is of arity
at least two), it suffices to finitely compute S. S can be
given an alternative characterization as follows. If f ∈ Σ,
ar(f) = k, f is covariant in l arguments and contravariant
in k−l arguments define

JfKS(〈p1, n1〉, . . . , 〈pk, nk〉) =

〈
∑l

i=1 pi +
∑k

i=l+1 ni,
∑l

i=1 ni +
∑k

i=l+1 pi〉
(81)

Let U be the subset of {〈p, n〉 | p, n ≥ 0} generated from
element 〈1, 0〉 using operations JfKS for f ∈ Σ. Then

S = {〈p, n〉 ∈ U | c(p, n)} (82)

where c(p, n) is the linear constraint corresponding to the
constraint C(s).

Let C(s) = CkP ,kN (s). Then S ⊆ {〈p, n〉 | p + n =
kP +kN}. S is therefore a subset of a finite set and is easily
computable, which solves case F1).

Let C(s) = C
k+

P
,k+

N
(s). Because Σ contains a binary con-

structor, S contains pairs 〈p, n〉 with arbitrarily large p+n,
so either the p components or n component of elements of
S grows unboundedly. Because Σ contains a constructor f
contravariant in some argument, we can define using f an
operation o acting as a constructor covariant in at least one
argument and contravariant in at least one argument. Using
operation on tuples whose one component grows unbound-
edly yields tuples whose both components grow unbound-
edly. Therefore, S is infinite, which solves case F4).

Finally, consider the case C(s) = C
kP ,k+

N
(s) (this will

solve the case C(s) = C
k+

P
,kN

(s) as well). Observe that

C
kP ,k+

N
(s) = CkP ,0+(s) ∧

kP−1∧
i=0

¬CkP ,i(s) (83)

Because the set S for each CkP ,i(s) is finite, it suffices to
finitely compute S for CkP ,0+(s). In that case

S = {〈p, n〉 ∈ U | p = kP } (84)

Let
Si = {〈p, n〉 ∈ U | p = i}

Ti = {〈p, n〉 ∈ U | n = i}
(85)

To finitely compute S, finitely compute the sets Si and Ti

for 0 ≤ i ≤ kP . The algorithm starts with all sets Si and Ti

empty and keeps adding elements according to operations
JfKS .

Assume that S0, T0, . . . , Si−1, Ti−1 are finitely computed.
The computation of Si and Ti proceeds as follows. Let f ∈ Σ
be a constructor of arity k with l covariant arguments. For
Si we consider all solutions of the equation

p1 + · · ·+ pl + nl+1 + . . .+ nk = i (86)

for nonnegative integers p1, . . . , pl, nl+1, . . . , nk. First con-
sider solution solutions where no variable is equal to i. If for
one of the solutions, one of the sets Sp1 , . . . , Spl is infinite,
then Si is infinite, otherwise add to Si all elements 〈i, n〉
where

n = n1 + · · ·+ nl + pl+1 + . . .+ pk (87)

If n ≤ kP then also add the same elements 〈i, n〉 to Tn.
Next, proceed analogously with Ti, considering solutions of

n1 + · · ·+ nl + pl+1 + . . .+ pk = i (88)

If at this point Si is not infinite and not empty, then also
consider the solutions of (87) where pj = i for some j. If
such solution exists, then mark Si as infinite. Proceed anal-
ogously with Ti. Finally, if both Si and Ti are still finite
but there exists a solution for Si where nl+j = i for some j
and exists a solution for Tj where pl+d = i for some d, then
mark both Si and Ti as infinite. This completes the sketch
of one step of the computation. (This step also applies to
S0 and T0; we initially assume that 〈1, 0〉 ∈ T0.)

Example 69 Let us apply this algorithm to the special case
where Σ = {f, g} and

variance(g) = 〈1, 1〉

30

variance(f) = 〈−1, 1〉
Let us see what the set S looks like. If 〈x, y〉 ∈ S define
k〈x, y〉 = 〈kx, ky〉 as in a vector space.

First, 〈1, 0〉 ∈ S because of cs. Next 〈1, 1〉 ∈ S because
of f s and 〈2, 0〉 ∈ S because of gs.

More generally, we have the following composition rule:
If 〈p1, n1〉, 〈p2, n2〉 then

〈p1 + p2, n1 + n2〉 ∈ S

because of gs, and

〈n1 + p2, p1 + n2〉 ∈ S

because of f s.
Using gs we obtain all pairs 〈p, 0〉 for p ≥ 1. Using f s

once on those we obtain 〈1, n〉 for n ≥ 0. Adding these we
additionally obtain 〈p, n〉 for p ≥ 2 and n ≥ 0. Hence we
have all pairs 〈p, n〉 for p ≥ 1 and n ≥ 0 and those are the
only ones that can be obtained. Thus,

S = {〈p, n〉 | p ≥ 1 ∧ n ≥ 0}

As expected, the case F1) yields a finite and the case F4)
an infinite set. The case F2) for kP = 0 is an empty set,
otherwise it is an infinite set. The case F3) always yields
an infinite set. This solves the problem for two constructors
f, g.

�

Lemma 68 allows to carry our the proof of Proposition 66
so we obtain our main result for finite C.

Theorem 70 (Term Power Quant. Elimination)
There exists an algorithm that for a given well-defined
formula φ produces a quantifier-free formula φ′ that is
equivalent to φ on PE.

Corollary 71 (Decidability of Structural Subtyping)
Let C be a structure with a finite carrier and P a Σ-term-
power of C. Then the first-order theory of P is decidable.

6 Term-Powers of Decidable Theories

In this section we extend the result of Section 5 on decidabil-
ity of term-powers of a base structure C to allow C to be an
arbitrary decidable theory, even if the carrier C is infinite.

To keep a finite language in the case when C is infinite,
we introduce a predicate IsPRI that allows testing whether
t ∈ C for a term t ∈ P .

In structural base formulas, we now distinguish between
1) composed variables, denoting elements t ∈ P for which
Isf (t) holds for some constructor f ∈ Σ, and 2) primitive
variables, denoting elements t ∈ P for which IsPRI(t) holds.

Another generalization compared to Section 5 is the use
of a syntactically richer language for term power algebras; to
some extent this richer language can be viewed as syntactic
sugar and can be simplified away.

The generalization to infinitely many primitive types and
the generalization to a richer language are orthogonal.

For most of the section we focus on covariant construc-
tors, Section 6.5 discusses a generalized notion of variance.

As in Section 3.3 let C = 〈C,R〉 be a decidable structure
where C is a non-empty set and R is a set of relations inter-
preting some relational language LC , such that each r ∈ R

lifted relations r′ for r ∈ LC

r′ :: termk → bool

term algebra on terms

constructors, f ∈ Σ:

f :: termk → term

constructor test, f ∈ Σ:

Isf :: term → bool

selectors, f ∈ Σ:

fi :: term → term

Figure 8: Basic Operations of Σ-term-power Structure

is a relation of arity ar(r) on set C, i.e. r ⊆ Car(r). We
assume that R contains a binary relation symbol r= ∈ R,
interpreted as equality on the set C.

Operations and relations of the Σ-term-power structure
are summarized in Figure 8. We will show the decidability of
the first-order theory of the structure with these operations.

In the special case when C = {a, b} and

r = {〈a, a〉, 〈a, b〉, 〈b, b〉}

we obtain the theory in Section 4. When R = {r} where r is
a partial order on types, we obtain the theory of structural
subtyping of non-recursive covariant types. For arbitrary
relational structure C, if f ∈ Σ for ar(f) = k we obtain a
structure that properly contains the k-th strong power of
structure C, in the terminology of [35].

The structure of this section follows Sections 4. We also
associate a boolean algebra of sets with each term t. How-
ever, in this case, the elements of the associated boolean
algebra are sets of occurrences of the constants that sat-
isfy the given first-order formula interpreted over C. The
occurrences of constants within the terms of a given shape
correspond to the indices of the product structure in Sec-
tion 3.3. We call these occurrences leaves, because they can
be represented as leaves of the tree corresponding to a term.

6.1 Product Theory of Terms of a Given Shape

In this section we define the notions shape and leafset, and
state some properties that we use in the sequel.

Let
Σ0 = {cs} ∪ {f s | f ∈ Σ}

be a set of function symbols such that cs is a fresh constant
symbol with ar(cs) = 0 and f s are fresh distinct constant
symbols with ar(f s) = ar(f) for each f ∈ Σ. Let shapified :
Σ′ → Σ0 be defined by

shapified(x) = cs, if x ∈ C

shapified(f) = f s, if f ∈ Σ

Let FT(Σ0) be the set of ground terms with signature Σ0

and FT(Σ′) the set of ground terms of signature Σ′.
Define function sh :: FT(Σ′) → FT(Σ0) mapping each

term to its shape by

sh(f(t1, . . . , tn)) = shapified(f)(sh(t1), . . . , sh(tn))

31

for each f ∈ Σ′. Define t1 ∼ t2 iff sh(t1) = sh(t2).
Let t be a term or shape and t′ the tree representing t as

in Section 2.2. If p is a path such that t′(p) is defined and
denotes a constant, we write t[p] to denote t′(p) and call p a
leaf. Note that t[p] is defined iff sh(t)[p] is defined. On the
set of equivalent terms leaves act as indices of Section 3.3. If
s is a shape, let leaves(s) denote the set of all leaves defined
on shape s.

Generalizing tCont of Section 4.1, define function tCont :
FT(Σ′) → C∗ by:

tCont(c) = cs, if c ∈ C

tCont(f(t1, . . . , tk)) = tCont(t1) · . . . · tCont(tk)

Define δ(t) = 〈sh(t), tCont(t)〉 and

B = {〈s, w〉 | s ∈ FT(Σ0), w ∈ C∗, tLen(s) = sLen(w)}

If all constructors f ∈ Σ are covariant then δ is a bijection
between FT(Σ′) and B. Let

B(s0) = {〈s, w〉 ∈ B | s = s0}

For a fixed s0, the set B(s0) is isomorphic to the power
structure Cn where n = tLen(s).

For each shape s we introduce operations from Sec-
tion 3.3. To distinguish the sets of positions belonging to
different shapes, we tag each set of positions L with a shape
s. We call the pair 〈s, L〉 a leafset. The interpretation of
each relation r ∈ LC is the leafset:

JrsK(t1, . . . , tk) = 〈s, {p | JrKC(t1[p], . . . , tk[p])}〉

We let ∧I
s, ∨I

s, ¬I
s, trueI

s, falseI
s stand for intersection, union,

complement, full set and empty set in the algebra of subsets
of the set leaves(s). We also introduce ∃I

s as the union of a
family of subsets indexed by a term of shape s and ∀I

s as the
intersection of a family of subsets indexed by a term.

We use constructor-selector language for the term alge-
bra on terms. We introduce constructor-selector language
on shapes by generalizing operations in Section 4.1 in a nat-
ural way. In addition, we introduce a constructor-selector
language on leafsets. For each f ∈ Σ we introduce a con-
structor symbol fL on leafsets and define

leafified(f) = fL

Constructors fL act on leafsets as follows. If Li ⊆ leaves(si)
for 1 ≤ i ≤ k define

fL(〈s1, L1〉, . . . , 〈sk, Lk〉) = 〈s, L〉

where s = f s(s1, . . . , sk), and L ⊆ leaves(s) is given by

L = ({1} · L1) ∪ · · · ∪ ({k} · Lk)

(Here we define A ·B = {a · b | a ∈ A ∧ b ∈ B}.)
We define selector functions on leafsets as follows. If s =

f s(s1, . . . , sk) and L ⊆ leaves(s), then fL
i (〈s, L〉) = 〈si, Li〉

where Li ⊆ leaves(si) is defined by

Li = {w | w · i ∈ A}

Equivalently, we require that

fL
i (fL(〈s1, L1〉, . . . , 〈sn, Ln〉)) = 〈si, Li〉

We can now express relations r′ in Figure 8 using the fact:

r′(t1, . . . , tk) ⇐⇒

sh(t2) = sh(t1) ∧ . . . ∧ sh(tk) = sh(t1) ∧

rsh(t1)(t1, . . . , tk) = trueI
sh(t1)

(89)

To handle an infinite number of elements of the base
structure C, we do not introduce into the language constants
for every element of C as in Section 5. Instead, we introduce
the predicate IsPRI :: term → bool called primitive-term test
that checks whether a term is a constant:

IsPRI(x) = (x ∈ C)

and the predicate IsPRIL :: leafset → bool called primitive-
leafset test :

IsPRIL(〈s, L〉) = (s = cs)

Instead of the rule (16), we have for f, g ∈ Σ ∪ {PRI}:

∀x.
∨

f∈Σ∪{PRI}
Isf (x)

∀x. ¬(Isf (x) ∧ Isg(x)), for f 6≡ g
(90)

Analogous rules hold for term algebra of leafsets:

∀x.
∨

f∈Σ∪{PRI}
IsfL(x)

∀x. ¬(IsfL(x) ∧ IsgL(x)), for f 6≡ g
(91)

Term algebra of shapes satisfies the original rules (16) of
term algebra.

6.2 A Logic for Term-Power Algebras

To show the decidability of the first-order theory of the
structure FT∗ with operations in Figure 8, we show decid-
ability for a richer structure. Figure 9 shows the operations
and relations of this richer structure.

The structure has four sorts: bool representing truth val-
ues, term representing terms, shape representing shapes, and
leafset representing sets of leaves within a given shape. The
structure can be seen as as a combination of the operations
of Figure 5 and Figure 2.

For each relation symbol r ∈ R we define a relation sym-
bol r∗ of sort shape × termk → bool acting on terms of the
same shape. While in Section 4.2 we associate a boolean
algebra with the terms of same shape, in this section we
associate a cylindric algebra [21] with terms of the same
shape. This is a particularly simple cylindric algebra re-
sulting from lifting first-order logic on the base structure
C so that elements are replaced by terms of a given shape
(which are isomorphic to functions from leaves to elements),
and boolean values are replaced by sets of leaves (isomor-
phic to functions from leaves to booleans). In both cases,
operations on the set X are lifted to operations on the set
leaves(s) → X. Syntactically, we introduce a copy of all
propositional connectives and quantifiers: ∧I , ∨I , ¬I , trueI ,
falseI . Like boolean algebra operations in Figure 5, these
syntactic constructs in Figure 9 take an additional shape
argument, because term-power algebra contains one copy of
a strong power Cn of base structure for each shape. We call
formulas built using the operations of the cylindric algebra
inner formulas.

32

per-shape product structure

inner formula relations for r ∈ LC :

r :: shape× termk → leafset

inner logical connectives:

∧I ,∨I :: shape× leafset× leafset → leafset

¬I :: leafset → leafset

trueI , falseI :: leafset

inner formula quantifiers:

∃I ,∀I :: shape× (term → leafset) → leafset

leafset equality:

=L :: leafset× leafset → bool

leafset cardinality constraints, k ≥ 0:

| | ≥ k, | | = k :: shape× leafset → bool

leafset quantifiers:

∃L,∀L :: (leafset → bool) → bool

term equality:

= :: term× term → bool

term quantifiers:

∃,∀ :: (term → bool) → bool

shape equality:

=s :: shape× shape → bool

shape quantifiers:

∃s,∀s :: (shape → bool) → bool

logical connectives:

∧,∨ :: bool× bool → bool

¬ :: bool → bool

true, false, undef :: bool

term algebra on terms

constructors, f ∈ Σ:

f :: termk → term

constructor test, f ∈ Σ:

Isf :: term → bool

primitive-term test:

IsPRI :: term → bool

selectors, f ∈ Σ:

fi :: term → term

term shape:

sh :: term → shape

term algebra on leafsets

constructors, f ∈ Σ:

fL :: leafsetk → leafset

constructor test, f ∈ Σ:

IsfL :: leafset → bool

primitive-leafset test:

IsPRIL :: leafset → bool

selectors, f ∈ Σ:

fL
i :: leafset → leafset

leafset shape:

lssh :: leafset → shape

term algebra on shapes

constructors, f ∈ Σ0:

f s :: shapek → shape

constructor test, f ∈ Σ0:

Isf s :: shape → bool

selectors, f ∈ Σ:

f s
i :: shape → shape

Figure 9: Operations and relations in structure P

33

For each operation in Figure 2 there is an operation in
Figure 9, potentially taking a shape as an additional argu-
ment (for operations used to build inner formulas). The logic
further contains term algebra operations on terms, leafsets,
and shapes.

We use undecorated identifiers (e.g. u) to denote vari-
ables of term sort, variables with superscript S to denote
shape variables (e.g. us) and variables with superscript L to
denote leafset variables (e.g. uL).

Figures 10 and 11 show the semantics of logic in Fig-
ure 9. The first row specifies semantics of operations in the
case when all arguments are defined and are in the domain
of the operation. The domain of each operation is in the
second column, it is omitted if it is equal to the entire do-
main resulting from interpreting the sort of the operation.
All operations except for plain logical operations and quan-
tifiers over the bool domain are strict. Logical operations
and quantifiers over the bool domain are defined as in the
three-valued logic of Section 2.3.

We remark that values of leafset act as terms with two
constants in Figure 5. In fact, if the base structure C has
only two constants then the formula x = a and its proposi-
tional combinations are sufficient to express all facts about
C, so in that case there is no need to distinguish between
terms and leafsets.

6.3 Some Properties of Term-Power Structure

In this section we establish some further properties of the
term-power structure, including the homomorphism proper-
ties between the term algebra of terms and the term algebra
of leafsets. We also argue that it suffices to consider a re-
stricted class of formulas called simple formulas.

Recall that r= ∈ R is the equality relation on C. Given
r=, we can express the equality between terms by:

t1 = t2 ⇐⇒ r=′(t1, t2)

⇐⇒ sh(t2) = sh(t1) ∧ r=(t1, t2) = trueI
sh(t1)

(92)
We define the notion of a us-term as in Definition 40

except that we use different symbols for boolean algebra
operations.

Definition 72 (us-terms) Let us ∈ Vars be a shape vari-
able. The set of us-terms Term(us) is the least set such that:

1. uL ∈ Term(us) for every leafset variable uL;

2. falseI
us , trueI

us ∈ Term(us);

3. if tL1, t
L
2 ∈ Term(us), then also

tL1 ∧I
us tL2 ∈ Term(us),

tL1 ∨I
us tL2 ∈ Term(us), and

¬I
ustL1 ∈ Term(us)

If ts is a term of shape sort, the notion of ts-inner formula
is defined as follows.

Definition 73 (us-inner formula) Let us ∈ Vars be a
shape variable. The set of us-inner formulas Inner(us) is
the least set such that:

1. if u1, . . . , uk are term variables and r ∈ LC such that
ar(r) = k, then

rus(u1, . . . , uk) ∈ Inner(us)

2. falseI
us , trueI

us ∈ Inner(us)

3. if φ1, φ2 ∈ Inner(us) then also

φ1 ∧I
us φ2 ∈ Inner(us)

φ1 ∨I
us φ2 ∈ Inner(us)

¬I
usφ1 ∈ Inner(us)

4. if φ ∈ Inner(us) and u is a term variable that does not
occur in us, then also

∃I
usu.φ ∈ Inner(us)

∀I
usu.φ ∈ Inner(us)

If φ ∈ Inner(us) and u1, . . . , un is the set of free term vari-
ables of φ, we write φ(us, u1, . . . , un) for φ. Furthermore, if
ts is a term of shape sort and t1, . . . , tn terms of term sort,
we write φ(ts, t1, . . . , tn) for

φ[us := ts, u1 := t1, . . . , un := tn]

where we assume that variables bound by ∃I and ∀I are
renamed to avoid the capture of variables that are free in
ts, t1, . . . , tn.

We call φ(ts, t1, . . . , tn) an instance of the us-inner for-
mula φ(us, u1, . . . , un).

If φ(us, u1, . . . , un) is an inner formula, we abbrevi-
ate it by writing [φ′(u1, . . . , un)]us where φ′ results from
φ(us, u1, . . . , un) by omitting the shape argument us from
the operations occurring in φ(us, u1, . . . , un). Similarly, we
write [φ′(t1, . . . , tn)]ts for φ(ts, t1, . . . , tn).

According to the semantics in Figure 10, sh is a homo-
morphism from the term algebra of terms to the term alge-
bra of shapes. In addition, lssh is a homomorphism from the
term algebra of leafsets to the term algebra of shapes.

We also have the following important property. Let r ∈
LC be a relation symbol of arity n, let f ∈ Σ be a function
symbol of arity k, and let

sh(t1j) = . . . = sh(tnj) = sj

for 1 ≤ j ≤ k. If f s = shapified(f), fL = leafified(f), and
s = f s(s1, . . . , sk) then

rs(f(t11, . . . , t1k), . . . , f(tn1, . . . , tnk)) =

fL(rs1(t11, . . . , tn1), . . . , rsk (t1k, . . . , tnk))
(93)

Furthermore, if lssh(lj) = lssh(l′j) = sj for 1 ≤ j ≤ k and

34

interpretation of sorts

JtermK = FT(Σ′)

JshapeK = FT(Σ0)

JleafsetK = {〈s, L〉 | L ⊆ leaves(s)}

JboolK = {true, false, undef}

semantics well-definedness
inner formula relations for r ∈ LC :

JrK(s, t1, . . . , tk) = 〈s, {l | JrKC(t1[l], . . . , tk[l])}〉 sh(t1) = s ∧ . . . ∧ sh(tk) = s

inner logical connectives:

J∧IK(s, 〈s1, L1〉, 〈s2, L2〉) = 〈s, L1 ∩ L2〉 s1 = s ∧ s2 = s

J∨IK(s, 〈s1, L1〉, 〈s2, L2〉) = 〈s, L1 ∪ L2〉 s1 = s ∧ s2 = s

J¬IK(s, 〈s1, L1〉) = 〈s, leaves(s) \ L1〉 s1 = s

JtrueIK(s) = 〈s, leaves(s)〉

JfalseIK(s) = 〈s, ∅〉

inner formula quantifiers, for h : JtermK → JleafsetK:

J∃IK(s, h) = 〈s,
⋃
{L | ∃t ∈ JtermK. sh(t) = s ∧ h(t) = 〈s, L〉}〉 ∀t ∈ JtermK. lssh(h(t)) = s

J∀IK(s, h) = 〈
⋂
{L | ∃t ∈ JtermK. sh(t) = s ∧ h(t) = 〈s, L〉}, 〉 ∀t ∈ JtermK. lssh(h(t)) = s

leafset equality:

J=LK(〈s1, L1〉, 〈s2, L2〉) = s1 = s2 ∧ L1 = L2

leafset cardinality constraints:

J|〈s1, L1〉|s ≥ kK = (|L1| ≥ k) s1 = s

J|〈s1, L1〉|s = kK = (|L1| = k) s1 = s

leafset quantifiers, for h : JleafsetK → JboolK:

J∃LKh = ∃〈s, t〉 ∈ JleafsetK. h(〈s, t〉)

J∀LKh = ∀〈s, t〉 ∈ JleafsetK. h(〈s, t〉)

term equality:

J=K(t1, t2) = (t1 = t2)

term quantifiers, for h : JtermK → JboolK:

J∃Kh = ∃t ∈ JtermK. h(t)

J∀Kh = ∀t ∈ JtermK. h(t)

shape equality:

J=sK(ts1, ts2) = (ts1 = ts2)

shape quantifiers, for h : JshapeK → JboolK:

J∃sKh = ∃t ∈ JshapeK. h(t)

J∀sKh = ∀t ∈ JshapeK. h(t)

Figure 10: Semantics for Logic of Term-Power Algebra (Part I)

35

semantics well-definedness
term algebra on terms

constructors, f ∈ Σ:

JfK(t1, . . . , tk) = f(t1, . . . , tk)

constructor test, f ∈ Σ:

JIsf K(t) = ∃t1, . . . , tk. t = f(t1, . . . , tk)

primitive-term test:

JIsPRIK(t) = (t ∈ C)

selectors, f ∈ Σ:

JfiK(t) = εti. t = f(t1, . . . , ti, . . . , tk) JIsf K(t)

term shape:

Jsh(f(t1, . . . , tn))K = shapified(f)(sh(t1), . . . , sh(tn))

term algebra on leafsets

constructors, f ∈ Σ:

JfLK(〈s1, L1〉, . . . , 〈sk, Lk〉) = 〈f(s1, . . . , sk), ({1} · L1) ∪ · · · ∪ ({k} · Lk)〉

constructor test, f ∈ Σ:

JIsfLK(〈s, L〉) = ∃s1, L1, . . . , sk, Lk. 〈s, L〉 = JfLK(〈s1, L1〉, . . . , 〈sk, Lk〉)

primive-leafset test:

JIsPRILK(〈s, L〉) = (s = cs)

selectors, f ∈ Σ:

JfL
i K(〈s, L〉) = ε〈si, Li〉. 〈s, L〉 = JfLK(〈s1, L1〉, . . . , 〈si, Li〉, . . . , 〈sk, Lk〉) JIsfLK(〈s, L〉)

leafset shape:

JlsshK(〈s, L〉) = s

term algebra on shapes

constructors, f ∈ Σ:

Jf sK(s1, . . . , sk) = f s(s1, . . . , sk)

constructor test, f ∈ Σ0:

JIsf sK(s) = ∃s1, . . . , sk. s = f s(s1, . . . , sk)

selectors, f ∈ Σ:

Jf s
i K(s) = εsi. s = f s(s1, . . . , si, . . . , sk) JIsf sK(s)

Figure 11: Semantics for Logic of Term-Power Algebra (Part II)

36

s = f s(s1, . . . , sk) then

fL(l1, . . . , lk) ∧I
s f

L(l′1, . . . , l
′
k) =L

fL(l1 ∧I
s1 l

′
1, . . . , lk ∧I

sk
l′k)

fL(l1, . . . , lk) ∨I
s f

L(l′1, . . . , l
′
k) =L

fL(l1 ∧I
s1 l

′
1, . . . , lk ∧I

sk
l′k)

¬I
sf

L(l1, . . . , lk) =L

fL(¬I
s1 l1, . . . ,¬

I
sk
lk)

∃I
st.f

L(h1(t), . . . , hk(t)) =L

fL(∃I
s1t.h1(t), . . . ,∃I

sk
t.hk(t))

∀I
st.f

L(h1(t), . . . , hk(t)) =L

fL(∀I
s1t.h1(t), . . . ,∀I

sk
t.hk(t))

(94)

From these properties by induction we conclude that if
φ(us, u1, . . . , un) is an inner formula, then

φ(s, f(t11, . . . , t1k), . . . , f(tn1, . . . , tnk)) =

fL(φ(s1, t11, . . . , tn1), . . . , φ(sk, t1k, . . . , tnk))
(95)

Let φ(us, u1, . . . , un) be an inner formula and let
φ′(u1, . . . , un) be a first-order formula that results from re-
placing operations ∧I

s,∨I
s,¬I

s, ∀I
s,∃I

s by ∧,∨,¬, ∀,∃. Inter-
preting φ′(u1, . . . , un) over the structure C yields a relation
ρ′ ⊆ Cn. If

sh(t1) = . . . = sh(tk) = s

then

JφK(s, t1, . . . , tk) = 〈s, {l | ρ′(t1[l], . . . , tk[l])}〉

The following Definition 75 introduces a more restricted
set of formulas than the set of formulas permitted by sort
declarations in Figure 9. We call this restricted set of for-
mulas simple formulas. One of the main properties of simple
formulas compared to arbitrary formulas is that simple for-
mulas allow the use of operations ∃I ,∀I , and relations r ,
r ∈ LC only within instances of us-inner formulas.

Definition 74 A simple operation is any operation or re-
lation in Figure 9 except for operations ∃I ,∀I , and relations
r for r ∈ LC .

Definition 75 (Simple Formulas) The set of simple for-
mulas is the least set that satisfies the following.

1. if φ(us, u1, . . . , un) is a an inner formula, ts a term of
shape sort, t1, . . . , tn terms of term sort and uL is a
leafset variable, then

uL =L φ(ts, t1, . . . , tn)

is a simple formula.

2. applying simple operations to simple formulas yields
simple formulas.

Example 76 A formula

uL =L ∃I
us
1
u. rus

2
(u, u) (96)

is not a simple formula for us
1 6≡ us

2. Formula

(us
1 = us

2 ∧ uL =L ∃I
us
1
u. rus

1
(u, u)) ∨

(us
1 6= us

2 ∧ undef)

is a simple formula equivalent to formula (96). We abbrevi-
ate ∃I

us
1
u. rus

1
(u, u) as [∃Iu. r(u, u)]us

1
.

�

Lemma 77 shows that for every formula in the logic of
Figure 9 there exists an equivalent simple formula. Note
that even simple formulas are sufficient to express the re-
lations of structural subtyping. A reader not interested in
the decidability of the more general logic of Figure 9 may
therefore ignore Lemma 77.

Lemma 77 (Formula Simplification) For every well-
defined formula in the logic of Figure 9 there exists an equiv-
alent well-defined simple formula.

Proof Sketch. According to the definition of simple for-
mula, we need to ensure that every occurrence of quantifiers
∀I ,∃I and relations r is an occurrence in some inner-formula
instance φ(ts, t1, . . . , tn). Each occurrence rts(t1, . . . , tn) is
an inner formula instance by itself, so the main difficulty is
fitting the quantifiers ∀I and ∃I into inner formulas.

Let us examine the syntactic structure of formulas of
logic in Figure 9. This syntactic structure is determined
by sort declarations. Each expression of leafset is formed
starting from

1. relations r ∈ LC ;

2. leafset variables;

3. trueI , falseI

using operations ∧I , ∨I , ¬I , ∀I , ∃I , as well as fL and fL
i . The

leafset expressions can be used in a formula in the following
ways (in addition to constructing new leafset expressions):

1. to compare for equality using =L;

2. to test for the top-level constructor using IsfL ;

3. to form leafset cardinality constraints;

4. to form a shape using lssh.

Because the top-level sort of a formula is bool, every
term tL0 of sort leafset occurs within some formula tL1 =L tL2
or IsfL(tL), |tL|ts = k, |tL|ts ≥ k or as part of some term

lssh(tL). We can replace IsfL(tL) with

∃uL. uL =L tL ∧′ IsfL(u
L)

according to Lemma 10, so we need not consider that case.
We can similarly eliminate non-variable leafset terms from
cardinality constraints. If a leafset term tL occurs in an
expression lssh(tL), we consider the smallest atomic formula
ψ(lssh(tL)) enclosing lssh(tL), and replace ψ(tL) with

∃uL. uL =L tL ∧′ ψ(uL)

This transformation is valid by Lemma 10 because ψ and
lssh are strict.

37

We further assume that in every atomic formula tL1 =L tL2,
the term tL1 is a leafset variable.

Suppose that a term tL in a formula uL =L tL is not an
instance of an inner formula. Then there are two possibili-
ties.

1. There are some occurrences of leafset term algebra op-
erations fL, fL

i or leafset variables uL
1 in tL. Here by

“occurrence” in tL we mean occurrence that is reachable
without going through a shape argument or a relation,
but only through operations ∀I ,∃I , ∧I ,∨I ,¬I . For ex-
ample, we ignore the occurrences of fL, fL

i within terms
ts that occur in ∧I

ts .

2. not all shape arguments in ∀I ,∃I , ∧I ,∨I ,¬I ,
trueI , falseI , r occurring in tL are syntactically iden-
tical.

We eliminate the first possibility by propagating leafset
term algebra operations fL, fL

i inwards until they reach ex-
pressions of form Lts(t1, . . . , tn), applying the equations (94)
from left to right. We then convert fL, fL

i operations of
term algebra of leafsets into operations of the term algebra
of terms applying (93) from right to left.

To eliminate the second possibility, let ts1, . . . , t
s
n be the

occurrences (reachable through trueI , falseI , ∧I , ∨I , ¬I ,
∀I , ∃I) in term tL of the shape arguments of operations
trueI , falseI , ∧I , ∨I , ¬I , ∀I , ∃I . Then replace

uL = tL(ts1, . . . t
s
n)

with

(∃sus. ∀CL
1 (us =s ts1) ∧′ . . . ∧′ ∀CL

n (us =s tsn)∧′

uL =L tL(us, . . . , us)) ∨
(undef ∧

∨
1≤i<j≤n t

s
i 6= tsj)

Here ∀CL
i denotes universal quantification ∀ui,1, . . . , ui,ni

where ui,1, . . . , ui,ni is a list of those term variables occur-

ring in tsi that are bound by some quantifier ∃I ,∀I within tL.

6.4 Quantifier Elimination

In this section we give a quantifier elimination procedure for
the term-power structure. The procedure of this section is
applicable whenever C is a structure with a decidable first-
order theory.

Definition 78 below generalizes the notion of structural
base formula of Definition 41, Section 4.3. There are two
main differences between Definition 41 and the present Def-
inition 78.

The first difference is the presence of three (instead of
two) base formulas: shape base, leafset base, and term base.
This difference is a consequence of the distinction between
leafsets and terms and is needed whenever base structure
C has more than two elements. There is a homomorphism
formula relating leafset base formula to shape base formula
and a homomorphism formula relating term base formula to
shape base formula. Furthermore, some of the leafset vari-
ables are determined by term variables using inner formula
maps, which establishes the relationship between term base
formula and leafset base formula. Cardinality constraints
now apply to leafset variables.

The second difference is the distinction between com-
posed and primitive non-parameter leafset and term vari-
ables. A composed non-parameter variable denotes a leafset
or a term whose shape s has property Isf s(s) for some f ∈ Σ.
A primitive non-parameter variable denotes a leafset or a
term whose shape is cs and has property IsPRI or IsPRIL . The
purpose of this distinction is to allow cardinality constraints
and inner formula maps not only on parameter variables,
but also on primitive non-parameter variables, which is use-
ful when the base structure C is decidable but infinite.

Definition 78 (Structural Base Formula)
A structural base formula with:

• free term variables x1, . . . , xm;

• internal composed non-parameter term variables
u1, . . . , ur;

• internal primitive non-parameter term variables
ur+1, . . . , up;

• internal parameter term variables up+1, . . . , up+q;

• free leafset variables xL
1, . . . , x

L
mL ;

• internal composed non-parameter leafset variables
uL

1, . . . , u
L
rL ;

• internal primitive non-parameter leafset variables
uL

rL+1, . . . , u
L
pL ;

• internal parameter leafset variables upL+1, . . . , upL+qL ;

• free shape variables xs
1, . . . , x

s
ms ;

• internal non-parameter shape variables us
1, . . . , u

s
ps ;

• internal parameter shape variables us
ps , . . . , us

ps+qs

is a formula of form:

∃u1, . . . , un, u
L
1, . . . , u

L
nL , u

s
1, . . . , u

s
ns .

shapeBase(us
1, . . . , u

s
ns , xs

1, . . . , x
s
ms) ∧

leafsetBase(uL
1, . . . , u

L
nL , x

L
1, . . . , x

L
mL) ∧

leafsetHom(uL
1, . . . , u

L
nL , u

s
1, . . . , u

s
ns) ∧

termBase(u1, . . . , un, x1, . . . , xm) ∧

termHom(u1, . . . , un, u
s
1, . . . , u

s
ns) ∧

cardin(uL
rL+1, . . . , u

L
nL , u

s
ps+1, . . . , u

s
ns) ∧

innerMap(ur+1, . . . , un, u
L
rL+1, . . . , u

L
nL , u

s
ps+1, . . . , u

s
ns)

where n = p + q, nL = pL + qL, ns = ps + qs, and formu-
las shapeBase, leafsetBase, termBase, leafsetHom, termHom,
cardin, innerMap are defined as follows.

shapeBase(us
1, . . . , u

s
ns , xs

1, . . . , x
s
ms) =

ps∧
i=1

us
i = ti(u

s
1, . . . , u

s
ns) ∧

ms∧
i=1

xs
i = us

ji

∧ distinct(us
1, . . . , u

s
n)

where each ti is a shape term of form f s(us
i1 , . . . , u

s
ik

) for
some f ∈ Σ0, k = ar(f), and j : {1, . . . ,ms} → {1, . . . , ns} is

38

a function mapping indices of free shape variables to indices
of internal shape variables.

leafsetBase(uL
1, . . . , u

L
nL , x

L
1, . . . , x

L
mL) =

rL∧
i=1

uL
i = ti(u

L
1, . . . , u

L
nL) ∧

pL∧
i=rL+1

IsPRIL(u
L
i) ∧

mL∧
i=1

xL
i = uL

ji

where each ti is a term of form f(ui1 , . . . , uik) for some

f ∈ Σ, k = ar(f), and j : {1, . . . ,mL} → {1, . . . , nL} is a
function mapping indices of free leafset variables to indices
of internal leafset variables.

leafsetHom(uL
1, . . . , u

L
nL , u

s
1, . . . , u

s
ns) =

nL∧
i=1

lssh(uL
i) = us

ji

where j : {1, . . . , nL} → {1, . . . , ns} is some function such
that {j1, . . . , jp} ⊆ {1, . . . , ps} and {jpL+1, . . . , jpL+qL} ⊆
{ps+1, . . . , ps+qs} (a leafset variable is a parameter variable
iff its shape is a parameter shape variable).

termBase(u1, . . . , un, x1, . . . , xm) =

r∧
i=1

ui = ti(u1, . . . , un) ∧
p∧

i=r+1

IsPRI(ui) ∧
m∧

i=1

xi = uji

where each ti is a term of form f(ui1 , . . . , uik) for some
f ∈ Σ, k = ar(f), and j : {1, . . . ,m} → {1, . . . , n} is a
function mapping indices of free term variables to indices of
internal term variables.

termHom(u1, . . . , un, u
s
1, . . . , u

s
ns) =

n∧
i=1

sh(ui) = us
ji

where j : {1, . . . , n} → {1, . . . , ns} is some function such
that {j1, . . . , jp} ⊆ {1, . . . , ps} and {jp+1, . . . , jp+q} ⊆ {ps +
1, . . . , ps +qs} (a term variable is a parameter variable iff its
shape is a parameter shape variable).

cardin(uL
rL+1, . . . , u

L
nL , u

s
ps+1, . . . , u

s
ns) = ψ1 ∧ · · · ∧ ψd

where each ψi is of form

|tL(uL
rL+1, . . . , u

L
nL)|us = k

or
|tL(uL

rL+1, . . . , u
L
nL)|us ≥ k

for some us-term tL(uL
rL+1, . . . , u

L
nL) that contains no vari-

ables other than some of the variables uL
rL+1, . . . , u

L
nL , and

the following condition holds:

If a variable uL
j for rL + 1 ≤ j ≤ nL occurs in

the term tL(uL
rL+1, . . . , u

L
nL), then lssh(uL

j) =
us occurs in formula leafsetHom.

(97)

innerMap(ur+1, . . . , un, u
L
rL+1, . . . , u

L
nL , u

s
ps+1, . . . , u

s
ns) =

η1 ∧ · · · ∧ ηe

where each ηi is of form

uL
j = φI(us, ui1 , . . . , uik)

for some inner formula φI(us, ui1 , . . . , uik) ∈ Inner(us)

where L + 1 ≤ j ≤ nL i.e. uL
j is a primitive

non-parameter leafset variable or parameter leafset vari-
able, {ui1 , . . . , uik} ⊆ {ur+1, . . . , un} are primitive non-
parameter term variables and parameter variables, the con-
junct lssh(uL) = us occurs in leafsetHom, and the following
condition holds:

sh(uij) = us occurs in formula termHom for
every j where 1 ≤ j ≤ k.

(98)

We require each structural base formula to satisfy the fol-
lowing conditions:

P0) the graph associated with shape base formula

∃us
1, . . . , u

s
ns . shapeBase(us

1, . . . , u
s
ns , xs

1, . . . , x
s
ms)

is acyclic (compare to Definition 21);

P1) congruence closure property for shapeBase subformula:
there are no two distinct variables us

i and us
j such that

both us
i = f(us

l1 , . . . , u
s
lk

) and us
j = f(us

l1 , . . . , u
s
lk

) occur
as conjuncts in formula shapeBase;

P2) congruence closure property for leafsetBase subformula:
there are no two distinct variables uL

i and uL
j such that

both uL
i = fL(uL

l1 , . . . , u
L
lk

) and uL
j = fL(uL

l1 , . . . , u
L
lk

)
occur as conjuncts in formula leafsetBase;

P3) congruence closure property for termBase subformula:
there are no two distinct variables ui and uj such that
both ui = f(ul1 , . . . , ulk) and uj = f(ul1 , . . . , ulk) occur
as conjuncts in formula termBase;

P4) homomorphism property of lssh: for every non-
parameter leafset variable uL such that uL =
fL(uL

i1 , . . . , u
L
ik

) occurs in leafsetBase, if conjunct

lssh(uL) = us occurs in leafsetHom, then for some shape
variables us

j1 , . . . , u
s
jk

term us = f s(us
j1 , . . . , u

s
jk

) occurs
in shapeBase where f s = shapified(f) and for every r
where 1 ≤ r ≤ k, conjunct lssh(uir) = us

jr
occurs in

leafsetHom.

P5) homomorphism property of sh: for every non-parameter
term variable u such that u = f(ui1 , . . . , uik) oc-
curs in termBase, if conjunct sh(u) = us occurs in
termHom, then for some shape variables us

j1 , . . . , u
s
jk

term us = f s(us
j1 , . . . , u

s
jk

) occurs in shapeBase where
f s = shapified(f) and for every r where 1 ≤ r ≤ k,
conjunct sh(uir) = us

jr
occurs in termHom.

As in Section 3.4 and Section 4.3 we proceed to show that
each quantifier-free formula can be written as a disjunction
of base formulas and each base formula can be written as
a quantifier-free formula. We first give a small example to
illustrate how the techniques of Section 4.3 extend to the
more general case of Σ-term-power.

39

Example 79 We solve one subproblem from Example 42
using the language of term-power algebras.

Consider the formula

∃v. g(v, z) ≤ g(z, v) ∧ Isg(v) ∧ Isg(w) ∧

¬(g1(w) ≤ g1(v))
(99)

Formula (99) is in the language of Figure 8, with ≤ a binary
lifted relation. After converting (99) into the language of
Figure 9 we obtain as one of the possible cases formula:

∃v. [g(v, z) � g(z, v)]sh(g(z,v)) =L trueI
sh(g(z,v)) ∧

sh(g(z, v)) =s sh(g(z, v)) ∧

Isg(v) ∧ Isg(w) ∧

[g1(w) � g1(v)]sh(g1(w)) 6=L trueI
sh(g1(w)) ∧

sh(g1(v)) =s sh(g1(w))

(100)

where � is the subtyping relation on the base structure C so
that ≤ = �′. We next transform the formula into unnested
form, obtaining:

∃v, uvz, uzv, uw1, uv1. ∃LuL
vz, u

L
w1. ∃sus

vz, u
s
w1.

uvz = g(v, z) ∧ uzv = g(z, v) ∧

uw1 = g1(w) ∧ uv1 = g1(v) ∧

us
vz =s sh(uvz) ∧ us

w1 =s sh(uw1) ∧

sh(uzv) =s us
vz ∧ sh(uv1) =s us

w1 ∧

Isg(v) ∧ Isg(w) ∧

uL
vz =L [uvz � uzv]us

vz

|¬uL
vz|us

vz
= 0 ∧

uL
w1 =L [uw1 � uv1]us

w1
∧

|¬uL
w1| ≥ 1

(101)

We next transform (101) into disjunction of base formulas.
A typical base formula is:

∃uvz, uzv, uv, uz, uw, uv1, uv2, uz1, uz2, uw1, uw2.

∃LuL
vz, u

L
v, u

L
z, u

L
v1, u

L
v2, u

L
z1, u

L
z2, u

L
w1.

∃sus
vz, u

s
w, u

s
w1, u

s
w2.

shapeBase1 ∧

leafsetBase1 ∧ leafsetHom1 ∧

termBase1 ∧ termHom1 ∧

cardin1 ∧ innerMap1

(102)

shapeBase1 = us
vz = gs(us

w, u
s
w) ∧ us

w = gs(us
w1, u

s
w2) ∧

distinct(us
vz, u

s
w, u

s
w1, u

s
w2)

leafsetBase1 = uL
vz = gL(uL

v, u
L
z) ∧

uL
v = gL(uL

v1, u
L
v2) ∧ uL

z = gL(uL
z1, u

L
z2)

leafsetHom1 = lssh(uL
vz) = us

vz ∧

lssh(uL
v) = us

w ∧ lssh(uL
z) = us

w ∧

lssh(uL
v1) = us

w1 ∧ lssh(uL
v2) = us

w2 ∧

lssh(uL
z1) = us

w1 ∧ lssh(uL
z2) = us

w2 ∧

lssh(uL
w1) = us

w1

termBase1 = uvz = g(uv, uz) ∧ uzv = g(uz, uv) ∧

uv = g(uv1, uv2) ∧ uz = g(uz1, uz2) ∧

uw = g(uw1, uw2) ∧

z = uz ∧ w = uw

termHom1 =

sh(uvz) = us
vz ∧ sh(uzv) = us

vz ∧

sh(uv) = us
w ∧ sh(uz) = us

w ∧ sh(uw) = us
w ∧

sh(uv1) = us
w1 ∧ sh(uz1) = us

w1 ∧ sh(uw1) = us
w1 ∧

sh(uv2) = us
w2 ∧ sh(uz2) = us

w2 ∧ sh(uw2) = us
w2

innerMap1 =

uL
v1 =L [uv1 � uz1]us

w1
∧ uL

z1 =L [uz1 � uv1]us
w1

∧

uL
v2 =L [uv2 � uz2]us

w2
∧ uL

z2 =L [uz2 � uv2]us
w2

∧

uL
w1 =L [uw1 � uv1]us

w1

cardin1 = |¬uL
v1|us

w1
= 0 ∧ |¬uL

z1|us
w1

= 0 ∧

|¬uL
v2|us

w2
= 0 ∧ |¬uL

z2|us
w2

= 0 ∧

|¬uL
w1|us

w1
| ≥ 1

We next show how to transform the base formula (102) into
quantifier-free form.

We substitute away non-parameter term variables
uvz, uzv, uv and non-parameter leafset variables uL

vz, u
L
v, u

L
z,

because the homomorphism constraints they participate in
may be derived from the remaining conjuncts. We next elim-
inate parameter term variables uv1, uv2 and parameter leaf-
set variables uL

v1, u
L
v2, u

L
z1, u

L
z2, u

L
w1. Grouping the conjuncts

in cardin1 and innerMap1 by their shape, we may extract the
subformulas ψ1 and ψ2 of (102).

ψ1 ≡

∃uv1.∃LuL
v1, u

L
z1, u

L
w1.

sh(uv1) =s us
w1 ∧ sh(uz1) =s us

w1 ∧ sh(uw1) =s us
w1 ∧

lssh(uL
v1) =s us

w1 ∧ lssh(uL
z1) =s us

w1 ∧

lssh(uL
w1) =s us

w1 ∧

uL
v1 =L [uv1 � uz1]us

w1
∧ uL

z1 =L [uz1 � uv1]us
w1

∧

uL
w1 =L [uw1 � uv1]us

w1
∧

|¬uL
v1|us

w1
= 0 ∧ |¬uL

z1|us
w1

= 0 ∧

|¬uL
w1|us

w1
| ≥ 1

and

ψ2 ≡

∃uv2.∃LuL
v2, u

L
z2.

sh(uv2) =s us
w2 ∧ sh(uz2) =s us

w2 ∧

sh(uL
v2) =s us

w2 ∧ sh(uL
z2) =s us

w2 ∧

uL
v2 =L [uv2 � uz2]us

w2
∧ uL

z2 =L [uz2 � uv2]us
w2

∧

|¬uL
v2|us

w2
= 0 ∧ |¬uL

z2|us
w2

= 0

Formula ψ1 expresses a fact in a structure isomorphic to
the power Cn where n is the number of leaves in the shape

40

denoted by us
w1. Similarly, ψ2 expresses a fact in a prod-

uct structure Cm where m is the number of leaves in the
shape denoted by us

w2. We can therefore use the technique
of Feferman-Vaught technique (Section 3.3) to eliminate the
quantifiers from formulas ψ1 and ψ2. According to Exam-
ple 17, ψ1 is equivalent to:

∃LuL
0, u

L
4.

uL
0 =L [∃It. t � uz1 ∧I uz1 � t ∧I uw1 � t]us

w1
∧

uL
4 =L [∃It. t � uz1 ∧I uz1 � t ∧I ¬Iuw1 � t]us

w1
∧

|uL
4|us

w1
≥ 1 ∧ |¬IuL

0 ∧I ¬IuL
4|us

w1
= 0

We similarly apply Feferman-Vaught construction to ψ2 and
obtain the result true. We may now substitute the results of
quantifier elimination in ψ1 and ψ2. The resulting formula
is:

∃uvz, uzv, uv, uz, uw, uv1, uv2, uz1, uz2, uw1, uw2.

∃LuL
vz, u

L
v, u

L
z, u

L
v1, u

L
v2, u

L
z1, u

L
z2, u

L
w1.

∃sus
vz, u

s
w, u

s
w1, u

s
w2.

shapeBase1 ∧

leafsetHom2 ∧

termBase2 ∧ termHom2 ∧

cardin1 ∧ innerMap1

where

leafsetHom2 = lssh(uL
0) = us

w1 ∧ lssh(uL
4) = us

w1

termBase2 = uz = g(uz1, uz2) ∧ uw = g(uw1, uw2) ∧

z = uz ∧ w = uw

innerMap2 =

uL
0 =L [∃It. t � uz1 ∧I uz1 � t ∧I uw1 � t]us

w1
∧

uL
4 =L [∃It. t � uz1 ∧I uz1 � t ∧I ¬Iuw1 � t]us

w1
∧

cardin2 = |uL
4|us

w1
≥ 1 ∧ |¬IuL

0 ∧I ¬IuL
4|us

w1
= 0

In the resulting formula all variables are expressible in terms
of free variables, so we can write the formula without quan-
tifiers ∃,∀,∃L,∀L.

�

The following Proposition 80 is analogous to Proposi-
tion 44; the proof is straightforward.

Proposition 80 (Quantification of Struct. Base) If β
is a structural base formula and x a free shape, leafset, or
term variable in β, then there exists a base structural for-
mula β1 equivalent to ∃x.β.

The following Proposition 81 corresponds to Proposition 45.

Proposition 81 (Quantifier-Free to Structural Base)
Let φ be a well-defined simple formula without quantifiers
∃L,∀L, ∃,∀, ∃s,∀s. Then φ can be written as true, false, or
a disjunction of structural base formulas.

Proof Sketch. The overall idea of the transformation to
base formula is similar to the transformation in the proof of
Proposition 45. Additional complexity is due to inner formu-
las. However, note that an inner formula φ(us, u1, . . . , un)
is well-defined iff δ(us, u1, . . . , un) holds where

δ(us, u1, . . . , un) ≡ sh(u1) = us ∧ . . . ∧ sh(un) = us

Hence, each formula φ(us, u1, . . . , un) can be treated as a
partial operation p of sort

shape× termn → leafset

and the domain given by

Dp = 〈〈us, u1, . . . , un〉, δ(us, u1, . . . , un)〉

This means that we may apply Proposition 9 and convert
formula to disjunction existentially quantified well-defined
conjunctions of literals in one of the following forms:

1. equality with inner formulas: uL
0 =L φ(us, u1, . . . , un)

where φ(us, u1, . . . , un) is a us-inner formula;

2. formulas of leafset boolean algebra:

uL
0 =L uL

1 ∧I
us uL

2

uL
0 =L uL

1 ∨I
us uL

2

uL
0 =L ¬I

usuL
1

uL
0 =L trueI

us

uL
0 =L falseI

us

3. formulas of term algebra of terms:

u1 = u2, u1 6= u2

u0 = f(u1, . . . , un)

u = fi(u0)

Isf (u0), ¬Isf (u0)

sh(u) = us

4. formulas of term algebra of leafsets:

uL
1 =L uL

2, u
L
1 6=L uL

2

uL
0 =L fL(uL

1, . . . , u
L
n)

uL =L fL
i (uL

0)

IsfL(uL
0), ¬IsfL(uL

0)

lssh(uL) =L us

5. formulas of term algebra of shapes:

us
1 =s us

2, u
s
1 6=s us

2

us
0 =s f s(us

1, . . . , u
s
n)

us =s f s
i (u

s
0)

Isf s(us
0), ¬Isf s(us

0)

41

We next describe transformation of each existentially
quantified conjunction. In the sequel, whenever we perform
case analysis and generate a disjunction of conjunctions, ex-
istential quantifiers propagate to the conjunctions, so we
keep working with a existentially quantified conjunction.
The existentially quantified variables will become internal
variables of a structural base formula.

Analogously to the proof of Proposition 28, we use
(90), (91), (16) to eliminate literals ¬Isf (u0), ¬IsfLfL(uL

0),
¬Isgs(us

0).
As in the proof of Proposition 45, we replace formulas of

leafset boolean algebra by cardinality constraints, similarly
to Figure 7.

We next convert formulas of term algebra of terms into
a base formula, formulas of term algebra of leafsets into a
base formula, and formulas of term algebra of shapes into a
base formula.

We simultaneously make sure that every term or leafset
variable has an associated associated shape variable, intro-
ducing new shape variables if needed.

We also ensure homomorphism requirements by replac-
ing internal variables when we entail their equality.

Another condition we ensure is that parameter term vari-
ables map to parameter shape variables, and non-parameter
term variables to non-parameter shape variables; we do this
by performing expansion of term and shape variables.

We perform expansion of shape variables as in Sec-
tion 3.2. Expansion of term and variables is even simpler
because there is no need to do case analysis on equality of
term variable with other variables.

We eliminate disequality between term variables us-
ing (92). We eliminate disequalities between leafset vari-
ables as in Example 43, by converting each disequality into
a cardinality constraint. Elimination of disequalities might
violate previously established homomorphism invariants, so
we may need to reestablish these invariants by repeating the
previously described steps. The overall process terminates
because we never introduce new inequalities between term
or leafset variables.

As a final step, we convert all cardinality constraints into
constraints on parameter term variables, using (95).

In the case when the shape of cardinality constraint is cs,
we cannot apply (95). However, in this case, unlike Propo-
sition 45, we do not do case analysis on all possible constant
leafsets (this is not even possible in general). This is because
Definition 78, unlike Definition 41 implies no need to further
decompose cardinality constraints in that case, because we
allow primitive non-parameter leafset variables.

This completes our sketch of transforming a quantifier-
free formula into disjunction of structural base formulas.

We introduce the notion of determined variables in struc-
tural base formula generalizing Definition 29 and Defini-
tion 46.

For brevity, we write u∗ for internal shape, term, or leaf-
set variables, similarly x∗ for a free variable, t∗ for a term
and f∗ for a shape, term, or leafset term algebra constructor
and f∗i for a shape, term, or leafset term algebra selector.

Definition 82 The set determinations of variable determi-
nations of a structural base formula β is the least set S of
pairs 〈u∗, t∗〉 where u∗ is an internal term, leafset, or shape
variable and t∗ is a term over the free variables of β, such
such that:

1. if x∗ = u∗ occurs in termBase, leafsetBase, or
shapeBase, then 〈u∗, x∗〉 ∈ S;

2. if 〈u∗, t∗〉 ∈ S and u∗ = f∗(u∗1, . . . , u
∗
k) oc-

curs in shapeBase, termBase, or leafsetBase then
{〈u∗1, f∗1 (t∗)〉, . . . , 〈u∗k, f∗k (t∗)〉} ⊆ S;

3. if {〈u∗1, f∗1 (t∗)〉, . . . , 〈u∗k, f∗k (t∗)〉} ⊆ S and u∗ =
f∗(u∗1, . . . , u

∗
k) occurs in shapeBase, termBase, or

leafsetBase then 〈u∗, t∗〉 ∈ S;

4. if 〈u, t〉 ∈ S and sh(u) = us occurs in termHom then
〈us, sh(t)〉 ∈ S;

5. if 〈uL, tL〉 ∈ S and lssh(uL) = us occurs in leafsetHom
then 〈us, lssh(tL)〉 ∈ S;

6. if uL = φ(us, u1, . . . , un) occurs in innerMap
where φ(us, u1, . . . , un) is an inner formula
and {〈us, ts〉, 〈u1, t1〉, . . . , 〈un, tn〉} ⊆ S, then
〈uL, φ(ts, t1, . . . , tn)〉 ∈ S. (In the special case
when φ contains no free term variables, if 〈us, ts〉 ∈ S
then 〈uL, φ(us)〉 ∈ S.

Definition 83 An internal variable u∗ is determined if
〈u∗, t∗〉 ∈ determinations for some term ts. An internal vari-
able is undetermined if it is not determined.

Lemma 84 Let β be a structural base formula with ma-
trix β0 and let determinations be the determinations of β. If
〈u∗, t∗〉 ∈ S then |= β0 ⇒ u∗ = t∗.

Proof. By induction, using Definition 82.

Corollary 85 Let β be a structural base formula such that
every internal variable is determined. Then β is equiva-
lent to a well-defined formula without quantifiers ∃L,∀L, ∃,∀,
∃s,∀s.

Proof. By Lemma 84 using (7).

Lemma 86 Let u be an undetermined composed non-
parameter term variable in a structural base formula β such
that u is a source i.e. no conjunct of form

u′ = f(u1, . . . , u, . . . , uk)

occurs in termBase. Let β′ be the result of dropping u from
β. Then β is equivalent to β′.

Proof. Because u is a composed non-parameter term
variable, it does not occur in innerMap, so it only occurs
in termBase and termHom. The conjunct containing u in
termHom is a consequence of the remaining conjuncts, so it
may be dropped. After that, applying (7) yields a structural
base formula β′ not containing u, where β′ is equivalent to
β.

Lemma 87 Let uL be an undetermined composed non-
parameter leafset variable in a structural base formula β such
that uL is a source i.e. no conjunct of form

uL′ = fL(uL
1, . . . , u

L, . . . , uL
k)

occurs in leafsetBase. Let β′ be the result of dropping uL

from β. Then β is equivalent to β′.

42

Proof. Because uL is a composed non-parameter term
variable, it does not occur in innerMap or cardin, so it only
occurs in leafsetBase and leafsetHom. The conjunct con-
taining uL in leafsetHom is a consequence of the remaining
conjuncts, so it may be dropped. After that, applying (7)
yields a structural base formula β′ not containing uL, where
β′ is equivalent to β.

Corollary 88 Every base formula is equivalent to a base
formula without undetermined composed non-parameter
term variables and without undetermined composed non-
parameter leafset variables.

Proof. If a structural base formula has an undetermined
composed non-parameter term variable, then it has an un-
determined composed non-parameter term variable that is
a source, similarly for leafset variables. By repeated appli-
cation of Lemma 86 and Lemma 87 we eliminate all unde-
termined non-parameter term and leafset variables.

The following Proposition 89 corresponds to Proposi-
tion 53 and Proposition 66.

Proposition 89 (Struct. Base to Quantifier-Free)
Every structural base formula β is equivalent to a well-
defined simple formula φ without quantifiers ∃L,∀L, ∃,∀,
∃s,∀s.

Proof Sketch. By Corollary 88 we may assume that
β has no undetermined composed non-parameter term and
leafset variables. By Corollary 85 we are done if there are
no undetermined variables, so it suffices to eliminate:

1. undetermined parameter term variables,

2. undetermined primitive non-parameter term variables,

3. undetermined parameter leafset variables,

4. undetermined primitive non-parameter leafset vari-
ables, and

5. undetermined shape variables.

If u is an undetermined parameter term variable or a prim-
itive non-parameter term variable, then u does not occur in
termBase, so it occurs only in termHom and innerMap. If
uL is an undetermined parameter leafset variable or a prim-
itive non-parameter leafset variable then uL does not occur
in leafsetBase, so it occurs only in leafsetHom, innerMap, and
cardin.

For a undetermined term or leafset variable of shape us

such that there is an uncovered parameter or primitive non-
parameter term or leafset variable with shape us, consider
all conjuncts γi in innerMap of form

uL
j = φ(us, ui1 , . . . , uik)

and all conjuncts δi from cardin of form:

|tL(uL
rL+1, . . . , u

L
nL)|us = k

or
|tL(uL

rL+1, . . . , u
L
nL)|us ≥ k

Together with formulas from termHom and leafsetHom that
contain term and leafset variables free in formulas γi and δi,
these conjuncts form a formula η which expresses a relation

in the substructure of term-power algebra which (because
constructors are covariant) is isomorphic to a term-power
of C. We therefore use Feferman-Vaught theorem from Sec-
tion 3.3 to eliminate all term and parameter variables from
η. By repeating this process we eliminate all undetermined
parameter and leafset variables.

It remains to eliminate undetermined shape variables.
This process is similar to term algebra quantifier elimina-
tion in Section 3.4. An essential part of construction in
Section 3.4 is Lemma 25, which relies on the fact that unde-
termined parameter variables may take on infinitely many
values. We therefore ensure that undetermined parameter
shape variables are not constrained by term and parame-
ter variables through conjuncts outside shapeBase. An un-
determined parameter shape variable us does not occur in
termHom or leafsetHom because there are no parameter term
and leafset variables, so us can occur only in innerMap and
cardin.

However, because undetermined parameter and leafset
variables are eliminated from the formula, if us is a parame-
ter shape variable then exactly one of these two cases holds:

1. there are some conjuncts in innerMap and cardin that
contain us and contain some determined term and leaf-
set variables, in this case us is determined, or

2. there are no conjuncts in innerMap containing us and
cardin contains only domain cardinality constraints of
form |1|us = k and |1|us ≥ k.

Hence, if us is a shape variable it remains to eliminate the
constraints of form |1|us = k and |1|us ≥ k. We eliminate
these constraints as in the proof of Proposition 66.

In the resulting formula all variables are determined. By
Corollary 85 the formula can be written as a formula without
quantifiers ∃L,∀L, ∃,∀, ∃s,∀s.

The following is the main result of this paper.

Theorem 90 (Term Power Quant. Elimination)
There exist algorithms A, B such that for a given formula
φ in the language of Figure 9:

a) A produces a quantifier-free formula φ′ in selector lan-
guage

b) B produces a disjunction φ′ of structural base formulas

We also explicitly state the following corollary.

Corollary 91 Let C be a structure with decidable first-order
theory. Then the set of true sentences in the logic of Figure 9
interpreted in the structure P according to Figures 10 and
11 is decidable.

6.5 Handling Contravariant Constructors

In this section we discuss the decidability of the Σ-term-
power structure for a decidable theory C when some of the
function symbols f ∈ Σ are contravariant. We then sug-
gest a generalization of the notion of variance to multiple
relations and to relations with arity greater than two.

The modifications needed to accommodate contravari-
ance with respect to some distinguished relation symbol
≤∈ R for the case of infinite C are analogous to the modifi-
cations in Section 5.5. We this obtain a quantifier elimina-
tion procedure for any decidable theory C in the presence of
contravariant constructors.

43

Theorem 92 (Decidability of Structural Subtyping)
Let C be a decidable structure and P a Σ-term-power of C.
Then the first-order theory of P is decidable.

In the rest of this section we consider a generalization
that allows defining variance for every relation symbol r ∈ R
of any arity, and not just the relation symbol ≤∈ R.

For a given relation symbol r ∈ R, function symbol
f ∈ Σ, with k = ar(f), and integer i where 1 ≤ i ≤ k,
let Pr(f, i) denote a permutation of the set {1, . . . , k} that
specifies the variance of the i-th argument of f with respect
to the relation r. For example, if r is a binary relation then
Pr(f, i) is the identity permutation {〈1, 1〉〈2, 2〉} if i-th ar-
gument of f is covariant, or a the transpose permutation
{〈1, 2〉, 〈2, 1〉} if i-th argument of f is contravariant.

If l ∈ leaves(s) is a leaf l = 〈f1, i1〉 . . . 〈fn, in〉, define the
permutation variance(l) as the composition of permutations:

variance(l) = Pr(f
n, in) ◦ · · · ◦ Pr(f

1, i1)

Then define JrK by

JrK(s, t1, . . . , tk) =

〈s, {l | JrKC(tp1 [l], . . . , tpk [l]) ∧

〈p1, . . . , pk〉 = variance(l)
}〉

We generalize (76) by defining

Nπ(s) = |{l ∈ leaves(s) | variance(l) = π}|

As in Section 5.5, we can transform the constraints
|1|us = k and |1|us ≥ k on each parameter shape variable
into a conjunction of constraints of form:

Nπ(us) = k

or
Nπ(us) ≥ k

A problem on nonnegative integers. To solve the
problem of variance with any number of relation symbols of
any arity, it suffices to solve the following problem on sets
of tuples of non-negative integers.

Let Nat = {0, 1, 2, . . .}. Consider the structure St =
Natd for some d ≥ 2 and let D = {1, 2, . . . , d}. If p is a
permutation on D, let Mp denote an operation St → St
defined by

Mp(x1, . . . , xd) = (xp1 , . . . , xpd)

If 〈x1, . . . , xd〉, 〈y1, . . . , yd〉 ∈ St define

〈x1, . . . , xd〉+ 〈y1, . . . , yd〉 = 〈x1 + y1, . . . , xd + yd〉

Consider a finite set of operations f : Stk → St where each
operation f is determined by k permutations pf

1 , . . . , p
f
k in

the following way:

f(t1, . . . , tk) = M
p

f
1
(t1) + . . .+M

p
f
k
(tk)

Hence, each operation f of arity k is given by a permutation
which specifies how to exchange the order of arguments in
the tuple. After permuting the arguments the tuples are
summed up.

Given a finite set F of operations f , let S be the set
generated by operations in F starting from the element
(1, 0, . . . , 0) ∈ St. Let C(n1, . . . , nd) be a conjunction of
simple linear constraints of the forms

ni = ai

and
ni ≥ ai

Consider the set

AC = {(n1, . . . , nd) ∈ S|C(n1, . . . , nd)}

The problem is: For given set of operations F , is there an
algorithm that given C(n1, . . . , nd) finitely computes the set
AC .
End of a problem on nonnegative integers.

We conjecture that the technique of Lemma 68 can be
generalized to yield a solution to the problem on nonnegative
integers and thus establish the decidability for the notion of
variance with respect to any number of relations with any
number of arguments.

6.6 A Note on Element Selection

We make a brief note related to the choice of the language
for making statements in term-power algebras. In Section 5
we avoided the use of leafset variables by substituting them
into cardinality constraints. In this section we use a cylindric
algebra of leafsets.

An apparently even more flexible alternative is to allow
the element selection operation

select :: term× leaf → elem

where elem is a new sort, interpreted over the set C, and
leaf is a sort interpreted over the set of pairs of a shape and
a leaf. Instead of the formula

rus(t1, . . . , tn) =L trueI
us

we would then write

∀l. rus(select(t1, l), . . . , select(tn, l)) =L trueI
us

Using select operation we can define update relation:

update(t1, l0, e, t2) ≡

∀l. ((l = l0 ∧ select(t2, l) = e) ∨

(l 6= l0 ∧ select(t2, l) = select(t1, l)))

The resulting language is at least as expressive as the lan-
guage in Figure 5. This language is interesting because it
allows reasoning about updates to leaves of a tree of fixed
shape, thus generalizing the theory of updatable arrays [33]
to the theory of trees with update operations, which would
be useful for program verification. We did not choose this
more expressive language in this report for the following
reason.

If the base structure C has a finite domain C, then for
certain reasonable choice of the relations interpreting LC it
is possible to express statements of this extended language
in the logic of Figure 9. The idea is to assume a partial order
on the elements of C with a minimal element, and use terms
t with exactly one leaf non-minimal to model the leaves.

44

On the other hand, in the more interesting case when C
is infinite, we can easily obtain undecidable theories in the
presence of selection operation. Namely, the selection oper-
ation allows terms to be used as finite sets of elements of C.
The term-power therefore increases the expressiveness from
the first-order theory to the weak monadic second-order the-
ory, which allows quantification over finite sets of objects.
Weak monadic theory allows in particular inductive defini-
tions. If theory of structure C is decidable, weak monadic
theory might therefore still be undecidable, as an example
we might take the term algebra itself, whose weak monadic
theory would allow defining subterm relation, yielding an
undecidable theory [56, Page 508].

7 Some Connections with MSOL

This section explores some relationships between the the-
ory of structural subtyping and monadic second-order logic
(MSOL) interpreted over tree-like structures. We present
it as a series of remarks that are potentially useful for un-
derstanding the first-order theory of structural subtyping of
recursive types, see [36, 37] for similar results in the context
of the theory of feature trees.

In Section 7.1 we exhibit an embedding of MSOL of in-
finite binary tree into the first-order theory of structural
subtyping of recursive types with two constant symbols a,b
and one covariant binary function symbol f . MSOL of infi-
nite binary tree is decidable. Although the embedding does
not give an answer to the decidability of the structural sub-
typing of recursive types, it does show that the problem is at
least as difficult as decidability of MSOL over infinite trees.
We therefore expect that, if the theory of structural subtyp-
ing of recursive types is decidable, the decidability proof will
likely either use decidability of MSOL over infinite trees, or
use directly techniques similar to those of [18, 57].

In Section 7.2 we use the embedding in Section 7.1 to
argue the decidability of formulas of the first-order theory
of structural subtyping of recursive types where variables
range over terms of certain fixed infinite shape se.

In Section 7.3 we present an encoding of all terms using
terms of shape se. We argue that the main obstacle in us-
ing this encoding to show the decidability of the first-order
theory of structural subtyping recursive types is inability to
define the set of all prefix-closed terms of the shape se.

In Section 7.4 we generalize the decidability result of Sec-
tion 7.2 by allowing different variables to range over different
constant shapes.

In Section 7.5 we illustrate some of the difficulties in
reducing first-order theory of structural subtyping to MSOL
over tree-like structures. We show that if we use a certain
form of infinite feature trees instead of infinite terms, the
decidability follows.

In Section 7.6 we point out that monadic second-order
logic with prefix-closed sets is undecidable, which follows
from [48]. This fact indicates that if we hope to show the
decidability of structural subtyping of recursive types, it is
essential to maintain the incomparability of types of different
shape.

7.1 Structural Subtyping Recursive Types

In this section we define the problem of structural sub-
typing of recursive types. We then give an embedding of
MSOL of the infinite binary tree into the first-order theory

of structural subtyping of infinite terms over the signature
Σ = {a, b, g} with the partial order ≤.

We define MSOL over infinite binary tree [6, Page 317]

as the structure MSOL(2) = 〈{0, 1}∗, succ0, succ1〉. The do-
main of the structure is the set {0, 1}∗ of all finite strings
over the alphabet {0, 1}. We denote first-order variables by
lowercase letters such as x, y, z. First-order variables range
over finite words w ∈ {0, 1}∗. We denote second-order vari-
ables by uppercase letters such as X,Y, Z. Second-order
variables range over finite and infinite subsets S ⊆ {0, 1}∗.
The only relational symbol is equality, with the standard in-
terpretation. There are two function symbols, denoting the
appending of the symbol 0 and the appending of the symbol
1 to a word:

succ0 w = w · 0

succ1 w = w · 1

For the purpose of embedding into the first-order theory
of structural subtyping, we consider a structure MSOL(1) =
〈{0, 1}∗,j,Succ0,Succ1〉 equivalent to MSOL(2). We use the
language of MSOL without first-order variables to make
statements within MSOL(1). j is a binary relation on sets
denoting the subset relation:

Y1 j Y2 ⇐⇒ ∀x. x ∈ Y1 ⇒ x ∈ Y2

Succ0 and Succ1 are binary relations on sets, Succ0,Succ1 ⊆
2{0,1}∗ × 2{0,1}∗ , defined as follows:

Succ0(Y1, Y2) ⇐⇒ Y2 = {w · 0 | w ∈ Y1}

Succ1(Y1, Y2) ⇐⇒ Y2 = {w · 1 | w ∈ Y1}

The structure MSOL(1) is similar to one in [18]; the dif-
ference is that relations Succ0 and Succ1 are true even for
non-singleton sets.

Lemmas 93 and 94 show the expected equivalence of
MSOL(2) and MSOL(1).

Lemma 93 (MSOL(2) expresses MSOL(1)) Every rela-

tion on sets definable in MSOL(1) is definable in MSOL(2).

Proof. We express relations ⊆, Succ0, Succ1 as formulas in
MSOL(2), as follows. We express Y1 ⊆ Y2 as

∀x. Y1(x) ⇒ Y2(x),

Succ0(Y1, Y2) as

∀x.Y2(x) ⇐⇒ ∃y.y = succ0(x),

and Succ1(Y1, Y2) as

∀x.Y2(x) ⇐⇒ ∃y.y = succ1(x).

The statement follows by induction on the structure of for-
mulas.

Let R ⊆ (2{0,1}∗)k × ({0, 1}∗)n be relation of arity k + n.

Define R∗ ⊆ (2{0,1}∗)k × (2{0,1}∗)n by

R∗(Y1, . . . , Yk, X1, . . . , Xn) ≡

∃x1, . . . , xn. X1 = {x1} ∧ · · · ∧Xn = {xn} ∧

R(Y1, . . . , Yk, x1, . . . , xn)

45

Lemma 94 (MSOL(1) expresses MSOL(2)) If R is defin-

able in MSOL(2), then R∗ is definable in MSOL(1).

Proof Sketch. Property of being an empty set is definable
in MSOL(1) by the formula

φ0(Y1) ≡ ∀Y2.Y1 j Y2

The relation ⊂ of being a proper subset is definable in
MSOL(1) by formula

φ1(Y1, Y2) ≡ Y1 j Y2 ∧ Y1 6= Y2

and the relation ⊂1 of having one element more is definable
by formula

φ2(Y1, Y2) ≡ Y1 ⊂ Y2 ∧ ¬∃Z. Y1 ⊂ Z ∧ Z ⊂ Y2

The property of being a singleton set can then be expressed
by formula

φ3(Y1) ≡ ∃Y0. φ0(Y0) ∧ Y0 ⊂1 Y1

We define the relation on singletons corresponding to succ0

by

φ4(Y1, Y2) ≡ φ3(Y1) ∧ φ3(Y2) ∧ Succ0(Y1, Y2)

Similarly, the relation corresponding to succ1 is defined by

φ5(Y1, Y2) ≡ φ3(Y1) ∧ φ3(Y2) ∧ Succ1(Y1, Y2)

If R is expressible by some formula ψ in MSOL(2), then R is
expressible by a formula in prenex normal form, so suppose
ψ is of form

Q1V1 . . . QnVn.ψ0

where ψ0 is quantifier free. We construct a formula ψ′ ex-
pressing R∗ in MSOL(1). We obtain the matrix ψ′0 of ψ′

by translating ψ0 as follows. If x is a first-order variable in
ψ0, we represent it with a second-order variable X denot-
ing a singleton set. We replace membership relation Y (x)
with subset relation X ⊂ Y . We replace succ0 with φ4 and
succ1 with φ5. We construct ψ′ by adding quantifiers to
ψ′0 as follows. Second-order quantifiers remain the same.
First-order quantifiers are relativized to range over single-
ton sets: ∀x.ψi becomes ∀X.φ3(X) ⇒ ψ′i and ∃x.ψi becomes
∃X. φ3(X) ∧ ψ′i(X).

We can view MSOL(1) as a first-order structure with the
domain 2{0,1}∗ . We show how to embed MSOL(1) into the
first-order theory of structural subtyping.

We define the first-order structure of structural subtyp-
ing of recursive types similarly to the corresponding struc-
ture for non-recursive types in Section 4; the only difference
is that the domain contains both finite and infinite terms.
Infinite terms correspond to infinite trees [12, 30].

We define infinite trees as follows. We use alphabet {l, r}
to denote paths in the tree. A tree domain D is a finite or
infinite subset of the set {l, r}∗ such that:

1. D is prefix-closed: if w ∈ {l, r}∗, x ∈ {l, r} then
w · x ∈ D implies w ∈ D;

2. if w ∈ D then exactly one of the following two proper-
ties hold:

(a) w is an interior node: {w · l, w · r} ⊆ D

(b) w is a leaf: {w · l, w · r} ∩D = ∅.

A tree with a tree domain D is a total function T from the
set of leaves of D to the set {a, b}.

Note that the tree domain D of a tree T can be recon-
structed from T as the prefix closure of the domain of the
graph of function T ; we write TDom(T) for the tree domain
of tree T .

Two trees are equal if they are equal as functions. Hence,
equal trees have equal function domains and equal tree do-
mains.

We say that T1 ≤ T2 iff TDom(T1) = TDom(T2) and
T1(w) ≤0 T2(w) for every word w ∈ TDom(T1). Here ≤0 is
the relation {〈a, a〉, 〈a, b〉, 〈b, b〉}.

If T1 and T2 are trees, then g(T1, T2) denotes the tree T
such that

TDom(T) = {l · w | w ∈ T1} ∪ {r · w | w ∈ T2}
T (l · w) = T1(w), if w ∈ T1

T (r · w) = T2(w), if w ∈ T2

Let IT denote the set of all infinite trees. The structural
subtyping structure is the structure SIT = 〈IT, g, a, b,≤〉.
SIT is an infinite-term counterpart to the structure BS from
Section 4.

Similarly to the case of finite terms, define the relation
∼ of “being of the same shape” in SIT by

t1 ∼ t2 ≡ ∃t0. t0 ≤ t1 ∧ t0 ≤ t2

Observe that t1 ∼ t2 iff TDom(t1) = TDom(t2).

We next present an embedding ι of MSOL(1) into SIT.
The image of the embedding ι are the infinite trees that are
in the same ∼-equivalence-class with the tree te. We define
te as the unique solution of the equation:

te = g(g(te, te), a)

Trees in the ∼-equivalence class of te have the tree domain
D = TDom(te) given by the regular context-free grammar

D → ε | r | l | lrD | llD
whereas the leaves L ofD are given by the context-free gram-
mar

L → ε | r | lrL | llL
or the regular expression (lr|ll)∗r. Let h be the homomor-
phism of words from {0, 1}∗ to {l, r}∗ such that

h(0) = ll

h(1) = lr

If w = a1 . . . an is a word, then wR denotes the reverse of
the word, wR = an . . . a1.

We define the embedding ι to map a set Y ⊆ {0, 1}∗ into
the unique tree t such that t ∼ te and for every w ∈ {0, 1}∗,

w ∈ Y ⇐⇒ T (h(wR) · r) = b (103)

Observe that ι(∅) = te. Define formulas TSucc0(t1, t2) and
TSucc1(t1, t2) as follows:

TSucc0(t1, t2) ≡ t2 = g(g(t1, te), te)

TSucc1(t1, t2) ≡ t2 = g(g(te, t1), te)

It is straightforward to show that ι is an injection and that
ι maps relation ⊂ into ≤, relation Succ0 into TSucc0, and
relation Succ1 into TSucc1. Moreover, the range of ι is the
set of all terms t such that sh(t) = se where se = sh(te).

46

7.2 A Decidable Substructure

Section 7.1 shows that terms of shape se form a substructure
within SIT that is isomorphic to MSOL(1). In this section
we consider the following converse problem.

Consider the formulas BF that, instead of quantifiers
∃,∀, contain bounded quantifiers ∃e,∀e that range over the
elements of the set

Te = {t | sh(t) = se}

We show that the set of closed formulas from BF that are
true in SIT is decidable.

Although the quantifiers are bounded, terms in this logic
can still denote elements of shape other than se. For exam-
ple, the in the atomic formula

g(x1, x2) ≤ g(x3, g(g(x4, x5), b))

the term g(x1, x2) denotes a term of the shape gs(se, se).
First we show that all atomic formulas are of one of the
following forms:

1. x0 = g(g(x1, x2), a);

2. x0 = g(g(x1, x2), b);

3. x1 = x2;

4. x1 ≤ x2.

Consider an atomic formula t1 = t2. The key idea is that if
sh(t1) 6= sh(t2) then the formula t1 = t2 is false.

If none of the term t1 and t2 is a variable then one of them
is a constant or a constructor application. If t1 ≡ g(t11, t12)
then either t1 = t2 is false or t2 ≡ g(t21, t22) for some t21, t22.
We may therefore decompose t1 = t2 into t11 = t21 and
t12 = t22. By repeating this decomposition we arrive at
terms of form t1 = t2 where both t1 and t2 are constants or
at the equality of form x0 = t(x1, . . . , xn). The equalities
between the constants can be trivially evaluated. This leaves
only terms of form x0 = t(x1, . . . , xn). Let ts(xs

1, . . . , x
s
n) be

a shape term that results from replacing a and b with cs and
replacing g with gs in t. Because all variables range over Te,
we conclude that x0 = t(x1, . . . , xn) can be true only if

se = ts(se, . . . , se)

If t(x1, . . . , xn) ∈ {a, b} is then (7.2) is false. If
t(x1, . . . , xn) ≡ x1, we obtain formula of the desired form.
So assume t(x1, . . . , xn) ≡ g(t21, t22). Then sh(t21) =
gs(se, se) and sh(t22) = cs. Therefore, t21 ≡ g(t211, t212)
where either sh(t211) = sh(t212) = se or t1 = t2 is
false. Similarly, either t22 ∈ {a, b} or t1 = t2 is false.
Therefore, t(x1, . . . , xn) ≡ g(g(t211, t212), a), t(x1, . . . , xn) ≡
g(g(t211, t212), b), or t1 = t2 is false. If t(x1, . . . , xn) ≡
g(g(t211, t212), a) then we may replace the t1 = t2 with the
formula

∃ey1, y2. x0 = g(g(y1, y2), a) ∧ y1 = t211 ∧ y2 = t212

and similarly in the other case. By continuing this process
by the induction on the structure of the term t(x1, . . . , xn)
we either conclude that t1 = t2 is false, or we conclude that
t1 = t2 is equivalent to a conjunction of formulas of the
desired form.

Conversion of atomic formula of form t1 ≤ t2 is analogous
to the conversion of formulas t1 = t2.

To see the decidability it now suffices to convert
the formulas of the form x0 = g(g(x1, x2), a) and
x0 = g(g(x1, x2), b) into formulas TSucc0(t1, t2) and
TSucc1(t1, t2). Expressibility of x0 = g(g(x1, x2), a) fol-
lows from the fact that the following relationship between
X0, X1, X2 is expressible in MSOL:

X0 = {w · 0 | w ∈ X1} ∪ {w · 1 | w ∈ X2}

Similarly, the expressibility of x0 = g(g(x1, x2), b) follows
from the fact that

X0 = {w · 0 | w ∈ X1} ∪ {w · 1 | w ∈ X2} ∪ {ε}

is expressible in MSOL. We conclude that the set of closed
BF formulas that are true in SIT is decidable.

7.3 Embedding Terms into Terms

We next give an embedding of the set of all terms into Te.
As in Section 7.1 te be the unique solution of the equation
te = g(g(te, te), a) and let

t4(x1, x2, x3, x4) ≡ g(g(g(g(x1, x2), x3), te), x4)

Define
ta ≡ t4(te, te, a, a)

tb ≡ t4(te, te, a, b)

tg(x1, x2) ≡ t4(x1, x2, b, b)

Then define the homomorphism hT from the set of all terms
to the set Te by

hT (a) = ta

hT (b) = tb

hT (g(t1, t2)) = tg(hT (t1), hT (t2))

Then hT is embedding of the set of all terms into the subset
subset Te of all terms. The term algebra operations a, b, g
map to ta, tb, tg and ≤ maps to ≤.

Note that, if it were possible to define a predicate P (t)
such that

P (x) ⇐⇒ ∃y.hT (y) = x (104)

then we could express all statements of SIT within the BF
subtheory, and therefore SIT would be decidable.

The fundamental problem with specifying P (x) is not the
use of two bits to encode the three possible elements {a, b, g},
but the constraint that if a term contains a subterm of the
form t4(t1, t2, a, a) or t4(t1, t2, a, b) at some even depth, then
t1 ≡ t2 ≡ te. Compared to the relationships given by con-
structor g, this constraint requires taking about successor
relation at the opposite side of the paths within a tree, see
Section 7.6.

7.4 Subtyping Trees of Known Shape

We next argue that if we allow the logic to have a copy of
bounded quantifiers ∃s,∀s for every constant shape s, we
obtain a decidable theory. To denote constant shapes in a
finite number of symbols we consider in addition to term
algebra symbols gs, cs the expressions that yield solutions of
mutually recursive equations on shapes; the details of the
representation of types are not crucial for our argument, see
e.g. [12]

47

Consider a closed formula in such language. Because ev-
ery variable has an associated constant shape, we can com-
pute the set of all shapes occurring in the formula. This
means that all variables of the formula range over a finite
known set of shapes. This allows us to define the predicate
P given by (104) as a disjunction of cases, one case for ev-
ery shape. Define hmin, hmax functions that take a shape and
produce a lower and upper bound for terms of that shape:

hmin(c
s) = ta

hmin(g
s(ts1, t

s
2)) = tg(hmin(t

s
1), hmin(t

s
2))

hmax(c
s) = tb

hmax(g
s(ts1, t

s
2)) = tg(hmax(t

s
1), hmax(t

s
2))

If s1, . . . , sn is the list of shapes occurring in a formula, we
then define a predicate P specific to that formula by

P (t) =

n∨
i=1

(hmin(si) ≤ t ∧ t ≤ hmax(t))

We can therefore define P (t) and use it to translate the
formula into a BF formula of the same truth value. There-
fore, structural subtyping with quantification bounded to
constant shapes is decidable.

For decidability of the structural subtyping recursive
types it would be interesting to examine the decision proce-
dure for MSOL and determine whether there is some unifor-
mity in it that would allow us to handle even quantification
over shapes that are determined by variables.

7.5 Recursive Feature Trees

We next remark that certain notion of subtyping of recursive
feature trees is decidable. By a feature tree we mean an infi-
nite tree built using a constructor which takes other feature
trees and an optional node label as an argument. In this sec-
tion we consider the simple case of one binary constructor f
and assume only one label denoted by 1. Hence, an empty
feature tree is a feature tree, and if t1 and t2 are feature trees
then so are f ε(t1, t2) and f1(t1, t2). We represent an empty
feature tree e by an infinite tree that has all features ε. We
compare feature trees as follows. Let ≤ be defined on the
features {ε, 1} as the relation {〈ε, ε〉, 〈ε, 1〉, 〈1, 1〉}. Define ≤
on trees as the least relation such that:

1. e ≤ t for all terms t;

2. t1 ≤ t′1 and t2 ≤ t′2 implies

fr1(t1, t2) ≤ fr2(t′1, t
′
2)

for all r1, r2 ∈ {ε, 1} such that r1 ≤ r2.

The decidability of feature trees follows from Section 7.1
because of the isomorphism hF between the set of terms Te

and the set of feature trees. Here hF is defined by:

hF (e) = te

hF (f ε(t1, t2)) = g(hF (t1), hF (t2), a)

hF (f1(t1, t2)) = g(hF (t1), hF (t2), b)

The feature trees as we defined them have a limited fea-
ture and node label alphabet. This is not a fundamental

problem. Muchnik’s theorem [57] gives the decidability of
MSOL of trees over arbitrary decidable structures. It is
reasonable to expect that the decidability of MSOL over
decidable structures yields a generalization of the result of
Section 7.1 and therefore the decidability of feature trees
with a richer vocabulary of features.

The crucial property of our definition of feature trees is
that features can appear in any node of the tree. Hence,
there are no prefix closure requirements on trees as in Sec-
tion 7.3, which is responsible for relatively simple reduction
to MSOL.

7.6 Reversed Binary Tree with Prefix-Closed Sets

It is instructive to compare the difficulties our approach
faces in showing the decidability of structural subtyping of
recursive types with the difficulties reported in [48]. In [48,
Section 5.3] the authors remark that the difficulty with ap-
plying tree automata is that the set x = f(y, z) is not reg-
ular. By reversing the set of paths in a tree representing
a term we have shown in Section 7.1 that the relationship
x = f(y, z) becomes expressible. However, the difficulty now
becomes specifying a set of words that represents a valid
term, because there is no immediate way of stating that a
set of words is prefix-closed. If we add an operation that
allows expressing relationship at both “ends” of the words,
we obtain a structure whose MSOL is undecidable due to
the following result [52, Page 183].

Theorem 95 MSOL theory of the structure with two suc-
cessor operations w · 0 and w · 1 and one inverse successor
operation 0 · w is undecidable.

The case that is of interest of us is the dual to Theorem 95
under the word-reversing isomorphism: a structure with op-
erations 0 · w, 1 · w, w · 0 has undecidable MSOL closed
formulas.

Instead of expressing prefix-closure using operations w·0,
w · 1, let us consider MSOL over the structure that contains
only operations 0 · w and 1 · w, but where all second-order
variables range over prefix-closed sets. This logic also turns
out to be undecidable.

Let PCl be the set of prefix-closed sets. For each word w,
there exists the smallest PCl set containing w, namely the
set C(w) given by:

C(w) = {w′ | w′ ≺ w}

Every subset of C(w) in PCl is a of the form C(w1) for some
word w1. Define PSucc0 and PSucc1 on PCl by:

PSucc0(X1, X2) = ∃w. X1 = C(w) ∧X2 = C(0 · w)

PSucc1(X1, X2) = ∃w. X1 = C(w) ∧X2 = C(1 · w)

Consider a monadic theory PrefT with relations PSucc0 and
PSucc1 where second-order variables range over the subsets
of PCl. It is easy to see that PrefT corresponds to the first-
order theory of non-structural subtyping of recursive types,
with subset relation ⊆ corresponding to subtype relation ≤,
empty set corresponding to the least type⊥, PSucc0(X1, X2)
corresponding to X2 = f(X1,⊥), and PSucc1(X1, X2) cor-
responding to X2 = f(⊥, X2). The first-order theory of
non-structural subtyping was shown undecidable in [48], so
PrefT is undecidable. An interesting open problem is the de-
cidability of fragments of the first-order theory of structural

48

subtyping. This problem translates directly to the decid-
ability of the fragments of PrefT, a monadic theory with
prefix-closed sets, or, under the word-reversal isomorphism,
the decidability of fragments of the monadic theory of two
successor symbols with suffix-closed sets.

8 Conclusion

In this paper we presented a quantifier elimination proce-
dure for the first-order theory of structural subtyping of
non-recursive types. Our proof uses quantifier elimination.
Our decidability proof for the first-order theory of structural
subtyping clarifies the structure of the theory of structural
subtyping by introducing explicitly the notion of shape of a
term.

We presented the proof in several stages with the hope of
making the paper more accessible and self-contained. Our
result on the decidability of Σ-term-power is more general
than the decidability of structural subtyping non-recursive
types, because we allow even infinite decidable base struc-
tures for primitive types. We view this decidability result
as an interesting generalization of the decidability for term
algebras and decidability of products of decidable theories.
This generalization is potentially useful in theorem proving
and program verification.

Of potential interest might be the study of axiomatiz-
ability properties; the quantifier elimination approach is ap-
propriate for this purpose [31, 30], we did not pay much at-
tention to this because we view the language and the mech-
anism for specifying the axioms of secondary importance.

Our goal in describing quantifier elimination procedure
was to argue the decidability of the theory of structural sub-
typing. While it should be relatively easy to extract an algo-
rithm from our proofs, we did not give a formal description
of the decision procedure. One possible formulation of the
decision procedure would be a term-rewriting system such as
[11]; this formulation is also appropriate for implementation
within a theorem prover. Our approach eliminates quanti-
fiers as opposed to quantifier alternations. For that purpose
we extended the language with partial functions. The use of
Kleene logic for partial functions seems to preserve most of
the properties of two valued logic and appears to agree with
the way partial functions are used in informal mathematical
practice. An alternative direction for proving decidability
of structural subtyping would be to use Ehrenfeucht-Fraisse
games [53, Page 405]; [15] uses techniques based on games
to study both the decidability and the computational com-
plexity of theories.

The complexity of our the decidability for structural sub-
typing non-recursive types is non-elementary and is a conse-
quence of the non-elementary complexity of the term alge-
bra, whose elements and operations are present in the theory
of structural subtyping. Tools like MONA [25] show that
non-elementary complexity does not necessarily make the
implementation of a decision procedure uninteresting. An
interesting property of quantifier elimination is that it can
be applied partially to elimination an innermost quantifier
from some formula. This property makes our decision pro-
cedure applicable as part of an interactive theorem prover
or a subroutine of a more general decision procedure.

In this paper we have left open the decidability of struc-
tural subtyping of recursive types, giving only a few remarks
in Section 7. In particular we have observed in Section 7.1
that every formula in the monadic second-order theory of the

infinite binary tree [6, Page 317] has a corresponding formula
in the first-order theory of structural subtyping of recursive
types. In that sense, the decision problem for structural
subtyping recursive types is at least as hard as the decision
problem for the monadic second-order logic interpreted over
the infinite binary tree. This observation is relevant for two
reasons.

First, it is unlikely that a minor modification of the quan-
tifier elimination technique we used to show the decidabil-
ity of structural subtyping non-recursive types can be used
to show the decidability of recursive types. Because of the
embedding in Section 7.1 such a quantifier-elimination proof
would have to subsume the determinization of tree automata
over infinite trees.

Second, the embedding suggests even greater difficulties
in implementing a decision procedure for the first-order the-
ory of structural subtyping (provided that it exists). While
we know at least one interesting example of weak monadic
second-order logic decision procedure, namely [25] we are
not aware of any implementation of the full monadic second-
order logic decision procedure for the infinite tree.

The relationship between the non-structural as well as
structural subtyping and monadic second-order logic of the
infinite binary tree and tree like structures [58] requires fur-
ther study. In that respect the work on feature trees [36, 37]
appears particularly relevant.

Acknowledgements The first author would like to thank
Albert Meyer for pointing out to the work [15], and Jens
Palsberg and Jakob Rehof for useful discussions about the
subject of this paper.

References

[1] Alexander Aiken. Introduction to set constraint-based
program analysis. Science of Computer Programming,
35:79–111, 1999. 1

[2] Alexander Aiken, Dexter Kozen, and Ed Wimmers. De-
cidability of systems of set constraints with negative
constraints. Information and Computation, 122, 1995.
1

[3] Alexander Aiken, Edward L. Wimmers, and T. K. Lak-
shman. Soft typing with conditional types. In Proc.
21st ACM POPL, pages 163–173, New York, NY, 1994.
1

[4] Roberto M. Amadio and Luca Cardelli. Subtyping re-
cursive types. Transactions on Programming Languages
and Systems, 15(4):575–631, 1993. 1

[5] L. O. Andersen. Program Analysis and Specialization
of the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, 1994. 1

[6] Egon Boerger, Erich Graedel, and Yuri Gurevich. The
Classical Decision Problem. Springer-Verlag, 1997. 3.2,
7.1, 8

[7] Witold Charatonik and Leszek Pacholski. Set con-
straints with projections are in NEXPTIME. In Proc.
35th Annual Symposium on Foundations of Computer
Science (FOCS), pages 642–653, 1994. 1

49

[8] Witold Charatonik and Andreas Podelski. Set con-
straints with intersection. In Proc. 12th IEEE LICS,
pages 362–372, 1997. 1

[9] Hubert Comon. Disunification: A survey. In Jean-
Louis Lassez and Gordon Plotnik, editors, Computa-
tional Logic: Essays in Honor of Alan Robinson. The
MIT Press, Cambridge, Mass., 1991. 3.4

[10] Hubert Comon and Catherine Delor. Equational for-
mulae with membership constraints. Information and
Computation, 112(2):167–216, 1994. 1, 3.4, 3.4.2

[11] Hubert Comon and Pierre Lescanne. Equational prob-
lems and disunification. Journal of Symbolic Computa-
tion, 7(3):371, 1989. 3.4, 3.4.2, 8

[12] Bruno Courcelle. Fundamental properties of infinite
trees. Theoretical Computer Science, 25(2):95–169,
March 1983. 3.4, 7.1, 7.4

[13] Rowan Davies and Frank Pfenning. Intersection types
and computational effects. In Proc. ICFP, pages 198–
208, 2000. 1

[14] S. Feferman and R. L. Vaught. The first order prop-
erties of products of algebraic systems. Fundamenta
Mathematicae, 47:57–103, 1959. 1, 3.3, 5.1

[15] Jeanne Ferrante and Charles W. Rackoff. The Compu-
tational Complexity of Logical Theories, volume 718 of
Lecture Notes in Mathematics. Springer-Verlag, 1979.
1, 3.4, 8, 8

[16] Tim Freeman and Frank Pfenning. Refinement types
for ML. In Proc. ACM PLDI, 1991. 1

[17] Alexandre Frey. Satisfying subtype inequalities in poly-
nomial space. Theoretical Computer Science, 277:105–
117, 2002. 1

[18] Yuri Gurevich and Leo Harrington. Trees, automata,
and games. In Proceedings of the fourteenth annual
ACM symposium on Theory of computing, pages 60–
65, 1982. 7, 7.1

[19] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing
analysis using CLA: A million lines of C code in a sec-
ond. In Proc. ACM PLDI, 2001. 1

[20] Fritz Henglein and Jakob Rehof. The complexity of sub-
type entailment for simple types. In Proc. 12th IEEE
LICS, pages 352–361, 1997. 1

[21] L. Henkin, J. D. Monk, and A. Tarski. Cylindric Alge-
bras, Part I. North Holland, 1971. 6.2

[22] Wilfrid Hodges. Model Theory, volume 42 of Encyclo-
pedia of Mathematics and its Applications. Cambridge
University Press, 1993. 1, 2.1, 2.3, 3.1, 3.2, 3.3, 3.4,
3.4.1, 5.1

[23] Trevor Jim and Jens Palsberg. Type inference in sys-
tems of recursive types with subtyping. http://www.
cs.purdue.edu/homes/palsberg/, 1999. 1

[24] Manfred Kerber and Michael Kohlhase. A mechaniza-
tion of strong Kleene logic for partial functions. In
Alan Bundy, editor, Proc. 12th CADE, pages 371–385,
Nancy, France, 1994. Springer Verlag, Berlin, Germany.
LNAI 814. 2.3

[25] Nils Klarlund, Anders Møller, and Michael I.
Schwartzbach. MONA implementation secrets. In Proc.
5th International Conference on Implementation and
Application of Automata. Lecture Notes in Computer
Science, 2000. 8

[26] Stephen Cole Kleene. Introduction to Metamathemat-
ics. D. Van Nostrand Company, Inc., Princeton, New
Jersey, 1952. fifth reprint, 1967. 2.3

[27] Dexter Kozen. Complexity of boolean algebras. Theo-
retical Computer Science, 10:221–247, 1980. 3.2

[28] Dexter Kozen, Jens Palsberg, and Michael I.
Schwartzbach. Efficient recursive subtyping. Mathe-
matical Structures in Computer Science, 5(1):113–125,
1995. 1

[29] John W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, 2nd edition, 1987. 3.4.2

[30] Michael J. Maher. Complete axiomatizations of the
algebras of the finite, rational, and infinite trees. Proc.
3rd IEEE LICS, 1988. 1, 3.4, 7.1, 8

[31] Anatolii Ivanovic Mal’cev. The Metamathematics of
Algebraic Systems, volume 66 of Studies in Logic and
The Foundations of Mathematics. North Holland, 1971.
1, 3.3, 3.4, 8

[32] Ursula Martin and Tobias Nipkow. Boolean unification:
The story so far. Journal of Symbolic Computation,
7(3):275–293, 1989. 3.2

[33] John McCarthy and James Painter. Correctness of a
compiler for arithmetic expressions. In Proceedings of
Symposia in Applied Mathematics. American Mathe-
matical Society, 1967. 6.6

[34] John C. Mitchell. Type inference with simple types.
Journal of Functional Programming, 1(3):245–285,
1991. 1

[35] Andrzej Mostowski. On direct products of theories.
Journal of Symbolic Logic, 17(1):1–31, March 1952. 1,
3.3, 5.1, 5.4, 6

[36] Martin Mueller and Joachim Niehren. Ordering
constraints over feature trees expressed in second-
order monadic logic. Information and Computation,
159(1/2):22–58, 2000. 7, 8

[37] Martin Mueller, Joachim Niehren, and Ralf Treinen.
The first-order theory of ordering constraints over fea-
ture trees. Discrete Mathematics and Theoretical Com-
puter Science, 4(2):193–234, September 2001. 7, 8

[38] Greg Nelson and Derek C. Oppen. Fast decision pro-
cedures based on congruence closure. Journal of the
ACM (JACM), 27(2):356–364, 1980. 3.4, 3.4.2

[39] Derek C. Oppen. Reasoning about recursively defined
data structures. Journal of the ACM, 27(3), 1980. 1,
3.4

[40] Frank Pfenning. Unification and anti-unification in the
calculus of constructions. In Proc. 6th IEEE LICS,
pages 74–85, 1991.

50

http://www.cs.purdue.edu/homes/palsberg/
http://www.cs.purdue.edu/homes/palsberg/

[41] Francois Pottier. Simplifying subtyping constraints: A
theory. Information and Computation, 170(2):153–183,
November 2001. 1

[42] Jakob Rehof. The Complexity of Simple Subtyping
Systems. PhD thesis, Computer Science Department,
Univ. of Copenhagen (DIKU), April 1998. 1

[43] Tatiana Rybina and Andrei Voronkov. A decision pro-
cedure for term algebras with queues. ACM Transac-
tions on Computational Logic (TOCL), 2(2):155–181,
2001. 1, 3.4

[44] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm.
Parametric shape analysis via 3-valued logic. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 24(3):217–298, 2002. 2.3

[45] Jörg H. Siekmann. Unification theory. Journal of Sym-
bolic Computation, 7(3):207–274, 1989. 3.4

[46] Thoralf Skolem. Untersuchungen über die Axiome des
Klassenkalküls and über “Produktations- und Summa-
tionsprobleme”, welche gewisse Klassen von Aussagen
betreffen. Skrifter utgit av Vidnskapsselskapet i Kris-
tiania, I. klasse, no. 3, Oslo, 1919. 1, 3.2

[47] Bjarne Steensgaard. Points-to analysis in almost linear
time. In Proc. 23rd ACM POPL, St. Petersburg Beach,
FL, January 1996. 1

[48] Zhendong Su, Alexander Aiken, Joachim Niehren, Tim
Priesnitz, and Ralf Treinen. First-order theory of sub-
typing constraints. In Proc. 29th ACM POPL, 2002.
1, 7, 7.6, 7.6

[49] Madhu Sudan. Quantifier elimination for boolean al-
gebras is trivial. Personal Communication, MIT LCS
Elevator, 9 October 2002. 3.2

[50] Alfred Tarski. Arithmetical classes and types of al-
gebraically closed and real-closed fields. Bull. Amer.
Math. Soc., 55, 64, 1192, 1949. 1

[51] Alfred Tarski. Arithmetical classes and types of boolean
algebras. Bull. Amer. Math. Soc., 55, 64, 1192, 1949.
1, 3.2

[52] Wolfgang Thomas. Automata on infinite objects. In
Handbook of Theoretical Computer Science, Volume B,
pages 133–191. Elsevier and The MIT Press, 1990. 7.6

[53] Wolfgang Thomas. Languages, automata, and logic. In
Handbook of Formal Languages Vol.3: Beyond Words.
Springer-Verlag, 1997. 8

[54] Jerzy Tiuryn. Subtype inequalities. In Proc. 7th IEEE
LICS, 1992. 1

[55] Ralf Treinen. The first-order theory of ordering con-
straints over feature trees. Discrete Mathematics and
Theoretical Computer Science, 4(2):193–234, 2001.

[56] K. N. Venkataraman. Decidability of the purely exis-
tential fragment of the theory of term algebras. Journal
of the ACM (JACM), 34(2):492–510, 1987. 6.6

[57] Igor Walukiewicz. Monadic second-order logic on tree-
like structures. In STACS’96, volume 1046 of Lecture
Notes in Computer Science, 1996. 7, 7.5

[58] Igor Walukiewicz. Monadic second-order logic on tree-
like structures. Theoretical Computer Science, 275(1–
2):311–346, March 2002. 8

51

	Introduction
	Preliminaries
	Term Algebra
	Terms as Trees
	First Order Structures with Partial Functions

	Some Quantifier Elimination Procedures
	Quantifier Elimination
	Quantifier Elimination for Boolean Algebras
	Feferman-Vaught Theorem
	Term Algebras
	Term Algebra in Selector Language
	Quantifier Elimination

	The Pair Constructor and Two Constants
	Boolean Algebras on Equivalent Terms
	A Multisorted Logic
	Quantifier Elimination for Two Constants

	A Finite Number of Constants
	Extended Term-Power Structure
	Structural Base Formulas
	Conversion to Base Formulas
	Conversion to Quantifier-Free Formulas
	One-Relation-Symbol Variance

	Term-Powers of Decidable Theories
	Product Theory of Terms of a Given Shape
	A Logic for Term-Power Algebras
	Some Properties of Term-Power Structure
	Quantifier Elimination
	Handling Contravariant Constructors
	A Note on Element Selection

	Some Connections with MSOL
	Structural Subtyping Recursive Types
	A Decidable Substructure
	Embedding Terms into Terms
	Subtyping Trees of Known Shape
	Recursive Feature Trees
	Reversed Binary Tree with Prefix-Closed Sets

	Conclusion

