
Physical Random Functions

by

Blaise L. P. Gassend
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Abstract

In general, secure protocols assume that participants are able to maintain secret key infor-
mation. In practice, this assumption is often incorrect as an increasing number of devices
are vulnerable to physical attacks. Typical examples of vulnerable devices are smartcards
and Automated Teller Machines.

To address this issue, Physical Random Functions are introduced. These are Random
Functions that are physically tied to a particular device. To show that Physical Random
Functions solve the initial problem, it must be shown that they can be made, and that it
is possible to use them to provide secret keys for higher level protocols. Experiments with
Field Programmable Gate Arrays are used to evaluate the feasibility of Physical Random
Functions in silicon.
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Chapter 1

Introduction

1.1 Storing Secrets

One of the central assumptions in cryptographic protocols is that participants are able to
store secret keys. Protocol participants are able to protect themselves from adversaries
because they know something that the adversary does not know. Encrypted messages work
because their intended recipient knows a decryption key that eavesdroppers do not know.
Digital signatures work because the signer knows some information that nobody else knows,
so a potential impostor is unable to forge a signature.

In these examples, we can see that knowing secret information allows someone to perform
a certain action (read a message, produce a signature, etc.). In a way the secret keys that
are involved identify their bearer as being authorized to perform a certain action.

In many cases, unfortunately, keeping a secret is extremely hard to do. Many devices are
placed in environments in which they are vulnerable to physical attack. Automated Teller
Machines can be dismantled to try to extract keys that are used for PIN calculation or to
communicate with the central bank. In the cable television industry, users can open their
set-top boxes to try to extract decoding keys, so that others can get free access to premium
rate channels. The EPROM on smartcards can be examined to extract the bits of their
signing keys. Many examples and details of exploits can be found in [2, 4].

The state of the art method for protecting against key extraction through invasive physi-
cal attack is to enclose the key information in a tamper sensing device. A typical example of
this is the IBM 4758 [23]. A battery operated circuit constantly monitors the device, using a
mesh of wires that completely envelops it. If any of the wires are cut, the circuit immediately
clears the memory that contains critical secrets. This type of protection is relatively expen-
sive as the circuit must be enclosed in tamper sensing mesh and the tamper sensing circuitry
must be continuously powered. Despite this, the circuit remains vulnerable to sophisticated
attacks. For example, shaped charges could be used to separate the tamper sensing circuit
from the memory it is supposed to erase, faster than the memory can be cleared.

The goal of this thesis is to explore a different way of managing secrets in tamper prone
physical devices. It is based on the concept of Controlled Physical Random Functions
(CPUF).1 A Physical Random Function (PUF) is essentially a random function, which is

1Footnote 1 on page 17 explains the CPUF acronym.
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bound to a physical device in such a way that it is computationally and physically infeasible
to predict the output of the function without actually evaluating it on the original device.
That is, taking the device apart, or trying to find patterns in the function’s output won’t
help you predict the function’s output on new inputs. A CPUF is a PUF that can only be
evaluated only from within a specific algorithm.

Our hope is that with PUFs, a greater level of physical security will be attainable, at a
lower cost than with the classical approach of storing a digital secret. Indeed, an attacker
can easily read a digital secret by opening a device. To protect the secret, attackers must be
prevented from opening the device, or the device must be able to detect invasive attacks and
forget its secrets if an attack is detected. Our approach is different; we extract the secret
from a complex physical system in such a way that the secret is hard to get by any other
means. We can do this because we accept not to choose the secret, and we accept to do
more work to reliably reconstruct the secret. In exchange, we can do away with most of the
expensive protection mechanisms that were needed to protect the digital secret.

1.2 Related Work

The idea of PUFs is not new. It was first studied in [21] under the name of Physical One-
Way Functions. In that work, a wafer of bubble filled transparent epoxy is used. When a
laser beam is shone through the wafer and projected onto a light sensor, a speckle pattern is
created. This pattern is a complicated function of the direction from which the laser beam
is incident, and the configuration of the bubbles in the epoxy. For suitable bubble sizes and
densities, it is hypothesized that such a wafer is unclonable and that the speckle pattern for
a given illumination is hard to predict from the patterns for other illuminations.

What makes this approach work is that a sufficiently complex physical system can be
hard to clone, and can be made to exhibit a hard to predict but repeatable behavior. Thus,
we have a way of extracting some secret information that we do not choose from a physical
system. It appears that not being able to choose the secret information that is extracted
makes physical protection much cheaper to implement. This key observation explains why
PUFs are easier to implement than secure digital key storage.

The major advantage of CPUFs over the work described in [21] resides in the control.
Without control, the only possible application is the one-time pad identification system that
is presented in Section 2.2. The output of the PUF cannot be used as a secret for higher level
protocols because of the possibility of a man-in-the-middle attack: an adversary can monitor
outputs from the PUF to get the device’s secret for a specific instance of the protocol. He
can then use that secret to run the higher level protocol himself, pretending to be the device.

In our implementation of CPUFs, we use a silicon Integrated Circuit (IC) as the complex
physical system from which we seek to extract PUF data. During IC fabrication, a number of
process variations contribute to making each integrated circuit unique [6, 8]. These process
variations have previously been used to identify ICs. For example, [17] uses random fluc-
tuations in drain currents to assign an identifier to ICs. However, the identification system
that results is not resistant to adversarial presence. An adversary can easily find out the
identification string for an IC and then masquerade as that IC, since he has all the available
identification information.

14



Unlike the system we propose, these IC identification circuits attempt to extract informa-
tion from the manufacturing variations in an extremely controlled way, for reliability reasons.
In contrast, we use a complex physical circuit for which it is hard to predict the output from
direct physical measurements. Moreover, we produce a function instead of a single value, so
revealing one output of the function does not give away all the IC’s identification informa-
tion. The parameter that we measure in our circuit is the delay of a complex path through
a circuit.

1.3 Organization

This thesis is structured as follows. Chapter 2 gives a general overview of PUFs. It includes
definitions, a simple application, threat models and general remarks on PUF implementation.

Chapters 3 and 4 go further into the details of PUF implementation. First a weak PUF
has to be made that is directly based on a complex physical system. Chapter 3 shows
how optical and physical systems can be used to make a weak CPUF. Experimental results
for silicon PUFs implemented on Field Programmable Gate Arrays (FPGA) show that the
systems we suggest can actually be built, and give an idea of the orders of magnitude that
are involved. The following chapter takes the weak CPUF and shows how to make it into a
CPUF that is more secure and reliable. This improvement is made by surrounding the weak
CPUF with some digital pre- and post-processing.

Now that we know how to build CPUFs, we look at how they can be used. Our main
interest is to use PUFs in a network context; machines on the network could use their PUF
to prove their physical identity and integrity, even if they are located in hostile environments.
Ideally, we would like to build a PUF infrastructure to exchange credentials that has a com-
parable flexibility to public key infrastructures. Chapter 5 shows how such an infrastructure
can be built. Attaching an unique identity to a device raises serious privacy concerns, which
our infrastructure is able to address. The chapter is concluded with an example of use for
distributed computation.

The network context is not the only context in which PUF ideas can be put to use. In
Chapter 6 we show how the physical systems that we have used to make PUFs can instead
be used to store keys on a device, in a way that is more secure than simply storing keys
digitally.

This research has opened up many opportunities for future work. They are presented in
Chapter 7 along with some concluding remarks.

Many terms are defined in this thesis and later assumed to be known to the reader. A
glossary is provided at the end of the document to help the reader who has missed one of
the definitions.
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Chapter 2

Physical Random Functions

2.1 Definitions

First we give a few definitions related to Physical Random Functions. Because it is difficult
to quantify the physical abilities of an adversary, these definitions will remain somewhat
informal.

2.1.1 Physical Random Functions

Definition 1 A Physical Random Function (PUF)1 is a function that maps challenges to
responses, that is embodied by a physical device, and that has the following properties:

1. Easy to evaluate: The physical device is capable of evaluating the function in a short
amount of time.

2. Hard to characterize: From a limited number of plausible physical measurements or
queries of chosen Challenge-Response Pairs (CRP), an attacker who no longer has
the device, and who can only use a limited amount of resources (time, money, raw
material, etc...) can only extract a negligible amount of information about the response
to a randomly chosen challenge.

In the above definition, the terms short and limited are relative to the size of the device,
which is the security parameter. In particular, short can be read as linear or low degree
polynomial, and limited can be read as polynomial. The term plausible is relative to the
current state of the art in measurement techniques and is likely to change as improved
methods are devised.

In previous literature [21], PUFs were referred to as Physical One Way Functions. We
believe this terminology to be confusing because PUFs do not match the standard meaning
of one way functions [19].

In the rest of this thesis we will often compare PUF methods with methods that involve
storing and protecting a digital secret. We will generally refer to the latter methods as
classical methods.

1PUF actually stands for Physical Unclonable Function. It has the advantage of being easier to pronounce,
and avoids confusion with Pseudo-Random Functions.
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2.1.2 Controlled PUFs

Definition 2 A PUF is said to be Controlled if it can only be accessed via an algorithm
that is physically linked to the PUF in an inseparable way (i.e., any attempt to circumvent
the algorithm will lead to the destruction of the PUF). It is then called a Controlled PUF
(CPUF). In particular the control algorithm can restrict the challenges that are presented to
the PUF, limit the information about responses that is given to the outside world, and/or
implement some functionality that is to be authenticated by the PUF.

The definition of control is quite strong. In practice, linking the PUF to the algorithm
in an inseparable way is not trivial. However, we believe that it is easier to do than to link a
conventional secret key to an algorithm in an inseparable way, which is what classical devices
such as smartcards attempt.

Control is the fundamental idea that allows PUFs to go beyond simple identification
applications such as the one presented in Section 2.2. Control plays two major parts. In
Chapter 4 we will see that control can protect a weak PUF from the outside world, making
it into a strong PUF. Moreover, in the assumptions of the control definition, the control logic
is resistant to physical tampering, which means that we can embed useful functionality that
needs to be protected into the control logic.

In practice the PUF device will be designed so that the control logic is protected by the
fragile physical system that the PUF is based on. Any attempt to tamper with the former
will damage the latter. Figure 2-1 illustrates how the PUF is intertwined with its control
logic in a CPUF.

PUF

Digital Circuit

Device

(a) An uncontrolled PUF

Digital Circuit

Weak PUF

Device

(b) A controlled PUF

Figure 2-1: Control logic must be protected from tampering

2.1.3 Manufacturer Resistant PUFs

Definition 3 A type of PUF is said to be Manufacturer Resistant if it is technically infeasible
to produce two identical PUFs of this type given only a polynomial amount of resources.

Manufacturer resistance is an interesting property; it implies unclonability and greatly
reduces the level of trust that must be placed in the manufacturer of the device. Our way
of making PUFs manufacturer resistant is to measure parameters of a physical system that
are the result of process variation beyond the control of the manufacturer.
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2.2 Simple Keycard Application

The simplest application for PUFs is to make unclonable key cards. This application was
first described in [21]. These keycards would be as hard to clone as the silicon PUFs that we
present in Section 3.2. Without unclonability, a keycard that has been lost or lent should be
assumed to be compromised, even if it is later retrieved.

We describe a protocol for keycards that allows secure identification, in which some person
with access to the card can use it to gain access to a protected resource. The typical scenario
is that of a person with a key card presenting it to a reader at a locked door. The reader
can connect via a secure channel to a remote, trusted server. The server has previously
established a private list of randomly chosen CRPs with the card. When the person presents
the card to the reader, it contacts the server using the secure channel, and the server replies
with the challenge of a randomly chosen CRP in its list. The reader forwards the challenge
to the card, which returns the corresponding response. The reader forwards the response
back to the server via the secure channel. The server checks that the response matches what
it expected, and, if it does, sends an acknowledgment to the reader. The reader then unlocks
the door, allowing the user to pass.

The protocol works because, to clone a keycard, the adversary would have to either guess
which CRPs are in the database, or build a database of his own that covers a large enough
portion of the CRPs that he has a significant chance of knowing the CRP that the reader
will ask. For a big enough PUF, both tasks are infeasible.

Because the server’s database contains a small number of CRPs, the method only works
if each challenge is be used only once. Otherwise, a replay attack is possible. An attacker
harvests some challenges from the reader by trying to get access with a fake card. At a later
time he gets access to the real card, and asks it for the responses to the challenges that he
has harvested. Finally, he goes back to the reader, and keeps trying to get access until he is
asked one of the challenges for which he knows the response. Since the reader only contains
a small number of CRPs, the adversary has a significant chance that one of the ones he
harvested will get reused. The protocol worked only as long as an attacker was unable to
guess which of the unmanageable multitude of challenges would be used. As soon as the
attacker was able to find out that some challenges were more likely, he could make himself
a partial clone of the keycard, and get unauthorized access. Because each CRP can only be
used once, some people like calling this protocol a one-time-pad protocol.

The fact that CRPs can only be used once leads to the possibility of denial of service
attacks in which an adversary tries to gain access until the server has run out of CRPs. One
way of mitigating these attacks would be to use a classical challenge-response protocol to
authenticate that the card knows some digital secret, and only then using the PUF authen-
tication. That way, the denial of service attack is as hard as breaking the classical keycard,
while gaining unauthorized access additionally requires breaking the PUF authentication
protocol.

There remains the problem of storing a large number of CRPs for each keycard or renew-
ing CRPs once the database runs low. There doesn’t seem to be a cheap way of doing either
task, which shows how limited this protocol is. The protocol is interesting nevertheless as
it is the only PUF protocol that doesn’t require control. We shall explain this limitation of
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uncontrolled PUFs in Section 5.2.1.
The keycard only solves part of the problem of getting a door to open only for authorized

users. Other aspects include making the door sturdy enough to prevent forcible entry, making
the server and reader secure, and finding ways such as biometrics or Personal Identification
Numbers (PIN) for the user to identify herself to her keycard. Indeed, the goal is usually to
give access to a person, and not to any bearer of a token such as a keycard.

2.3 Threat Model

The reason for using PUFs rather than classical methods is to try to improve physical
security. In this section, we try to quantify the improvement by considering a variety of
threat models. First we will consider the abilities the attacker might have, then the goal he
is trying to achieve. Finally we will consider a few typical attack scenarios.

2.3.1 Attack Models

There is a wide range of different attack models to choose from:

Passive vs. Active

An attacker can simply observe a device (passive), or he can intercept, modify or create
signals of his own (active). For any reasonable level of security, an active attacker must be
assumed.

Remote vs. Physical Access

Classical methods are perfectly suited to defeating attackers that only have remote access
to a device. To be useful, PUFs must do just as well against remote attackers.

The real potential that PUFs have for improvement is against attackers with physical
access. There is a whole range of physical attackers to consider. Non-invasive ones will
simply observe information leaking from the device without opening it. Invasive attacks will
actually open the device. Destructive attacks will damage the device. Non-destructive ones
won’t leave any trace of the attacker’s work, allowing him to return the device to its owner
without arousing suspicion.

With physical attacks, a level of technology has to be assumed: there doesn’t seem to
be much we can do against an adversary who can take the device apart an atom at a time,
and then put it back together again. Consequently we won’t be able to make any absolute
statements about PUF security against physical attacks. Both financial resources and state
of the art technology must be considered to determine an attacker’s physical ability.

Openness of Design

Detailed information about the design of the PUF device can be available to the attacker or
not. Kerckhoffs’ [14] principle says that full knowledge of the design by the attacker should
be assumed and only key information should be assumed private.
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In the case of PUFs, the key information is typically the process variation that was
present during device fabrication. For manufacturer resistant PUFs, that variation can’t be
controlled and/or known by the manufacturer. For PUFs that aren’t manufacturer resistant,
the Manufacturer might have some knowledge of or control over that information.

Computational Ability

The attacker can have bounded (e.g., polynomial) or unbounded computation at his disposal.
Nevertheless, even an attacker with unbounded computation will be limited in the number
of queries he can make from the PUF as each query must be run through the single instance
of that PUF in existence.

Online or Offline

If the attacker can attempt an attack while the PUF is in use, we call him an online attacker.
If has access to the device only when it is idle, he is an offline attacker.

An online attacker might be the owner of a PUF equipped set-top box. An offline attacker
would be trying to clone the PUF equipped credit card that you left on your desk during a
lunch break.

2.3.2 Attacker Success

Possible goals the attacker may have are listed in approximate order of decreasing difficulty:

Attacker Clones the PUF

The attacker produces a device that is indistinguishable from the original. The word indis-
tinguishable can take on a range of meanings. For example, in copying a smartcard, the
attacker might need to produce a card that looks just like the owner’s original card, and
that passes for the original in the card reader. When cloning a phone card, however, the
clone only has to look like the original to the card reader.

Attacker Produces a Partial Clone of the PUF

In this case, the clone isn’t perfect, but is good enough for the clone to have a non- negligible
probability of passing for the original.

Attacker Gets the Response to a Chosen Challenge

Given any challenge, the attacker is able to get the corresponding response. This attack, like
those that follow, is only useful in the context of CPUFs, as uncontrolled PUFs are willing
to give the response to any challenge to whoever asks.
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Attacker Tampers with an Operation

Without being detected, the attacker is able to make a CPUF device perform an operation
incorrectly. The tampering can be more or less deliberate (i.e., the attacker chooses how
exactly the operation is carried out), which leads to a whole range of degrees of success.

Attacker Eavesdrops on an Operation

Without being detected, the attacker is able to read information that should have been
withheld from him.

Attacker Gets the Response to Some Challenge

The attacker manages to find out any CRP. This attack is actually not very interesting for
us except in Chapter 6. Indeed, we would like anybody to be able establish trusted relations
with a CPUF device, and this will involve knowing CRPs.

Manufacturer Produces two Identical Devices

This would violate the manufacturer resistance assumption. We can also imagine that the
manufacturer would be able to produce two nearly identical devices that could pass for one
another with non-negligible probability.

This security breach only applies for manufacturer resistant PUFs, it is independent in
strength from all the attacker goals except cloning.

2.3.3 Typical Attack Scenarios

We now describe some typical attack scenarios that we will be trying to prevent in the rest
of this thesis.

Brute-Force Attacks

Naturally, there are a number of brute force attacks that attempt to clone a PUF. An adver-
sary can attempt to produce so many PUFs that two will be identical. This is implausible, as
the number of PUFs to produce would be exponential in the number of physical parameters
that contribute to the PUF. Moreover it is not clear how to check if two PUFs are identical.

Alternatively, an adversary can attempt to get all the CRPs by querying the PUF. This
also fails as the number of CRPs to get is exponential in the PUF input size. The limitation
is more severe than in the previous case because all the CRPs must be extracted from a
single device that has a limited speed.

Model Building

An attacker could produce a generic model of a given class of PUF devices, and then use a
relatively small number of CRPs to find the parameters in his model for a specific instance
of the device. We can hope to make this attack difficult for a computationally bounded
attacker.
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Direct Measurement

An adversary could open the PUF device and attempt to measure physical parameters of the
PUF. Those parameters could then be used to manufacture a clone (not for manufacturer
resistant PUFs) of the device, or could be used as parameters for a model of the device. We
will often assume that this attack is infeasible as the attacker has to open the device without
damaging the parameters that he wishes to measure.

Information Leakage

Most protocols that a CPUF could be involved in require that some information being
processed in the device remain private. Unfortunately devices tend to leak information in
many ways. Power analysis, in particular, has attracted considerable attention in recent
years [15], but it is not alone [18, 2]. Therefore CPUFs must be designed with the possibility
of information leaks in mind if they involve any manipulation of private data.

Causing a CPUF to Misbehave

In the case of a CPUF, the adversary can attack the control logic that surrounds the PUF.
He could do so to extract information that should have remained hidden, or generally make
the device operate in an unexpected way without arousing suspicion.

This type of attack is present with classical methods [3]. Clock glitches, voltage glitches,
temperature extremes or radiation can all be used to cause misbehavior. The classical re-
sponse is to equip the device with sensors that detect these conditions, or regulate parameters
internally. These attacks and defenses still apply in the case of CPUFs.

PUFs can be used advantageously in the case of invasive attacks that try to cause the de-
vice to misbehave by tampering with its internal circuitry. Indeed, if the PUF is intertwined
with the critical circuitry, attempts to modify the circuitry are likely to damage the PUF
causing the tampering to be detected. This intertwining is to be compared with classical
methods [25, 23] that surround the device with a mesh of intrusion sensors causing the device
to clear its memory when an intrusion is detected. These intrusion sensors must be turned
on permanently to prevent an attacker from opening the device while it is off and doctoring
the tamper detection circuitry. With PUFs, there is no need for constant active monitoring;
the adversary will damage the PUF — which is the device’s secret information — whether
it is on or off.

Open-Once Attacks

A final interesting model that we will consider is the open once model. In this model, the
attacker cannot exploit information leakage, and he destroys the PUF as soon as he opens
the device. However, it is assumed that the attacker can open the device at any time and get
full access to the digital state of the device (he can read and tamper at will) at any single
time. In doing so, though, he destroys the PUF. Essentially we have a black box containing
a PUF and some other circuitry. The PUF works as long as the box is closed, and once the
box has been opened so that we can play with the internal mechanisms, it can’t be re-closed.
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This model might appear contrived. Nevertheless, it leads to interesting results and is
plausible if information leakage can be prevented, and the PUF can be caused to break as
soon as the device is opened.

2.4 PUF Architecture

The definition that was given of a PUF is concerned mainly with functionality. We shall
now see an overview of different ways of implementing a PUF.

2.4.1 Digital PUFs

We can contemplate making a PUF by building a circuit that combines its input with a secret
using a pseudorandom function, and placing it in an impenetrable vault as in Figure 2-2.
This is an extreme case of the PUF as it is built with classical digital primitives. A digital
PUF has all the vulnerabilities of any digital circuit, as well as the complications of using
PUF protocols. Clearly, there is no point in using digital PUFs.

Function

Pseudorandom
Digital

Key

Figure 2-2: Architecture of a digital PUF

2.4.2 Physically Obfuscated Keys

If we eliminate the vault from the digital PUF, then the digital key that is inside can be
revealed to an adversary that performs an invasive attack. Therefore, we can try extract the
key from a complex physical system that is harder for an invasive adversary to comprehend
as in Figure 2-3. By using the complex physical system as a shield for the digital part of this
device (to prevent an attacker from opening it and inserting probes to get the key), it might
be possible to make a PUF. We will consider this type of idea in Chapter 6. Nevertheless,
it would be nice not to have a single digital value that, if probed, reveals all the device’s
secrets.

2.4.3 Analog PUFs

In analog PUFs, we try to put as much functionality as possible into a complex physical
system. That system takes a challenge and directly produces a response.

In practice, it is hard to find a physical system that has the characteristics we desire. The
output won’t be completely unpredictable, and because of measurement noise, the output
for a given challenge is likely not to be completely reliable. We can say that we have a weak
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Figure 2-3: Architecture of a physically obfuscated PUF

Post−
Processing

Weak
Analog PUFProcessing
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Figure 2-4: Architecture of an analog PUF

PUF. To solve these problems, some digital pre- and post-processing has to be added to the
physical system as is shown in Figure 2-4.

The upcoming chapter will look at candidate physical systems for an weak analog PUF.
Then in Chapter 4 we will look at the digital processing that is needed to strengthen the
PUF.
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Chapter 3

Analog Physical Random Functions

In this chapter, we will discuss ways to produce a weak analog PUF. This is the basic building
block that we strengthen into a full-fledged PUF in Chapter 4. The weaknesses that we are
willing to tolerate in this chapter have to do with PUFs that have noisy output and for which
modeling attacks might be possible.

We will briefly consider PUFs based on optical systems, then move on to the silicon
systems, which have been our main focus. This is in no means an exhaustive presentation
of ways to make weak analog PUFs.

3.1 Optical Approaches

3.1.1 Physical One-Way Functions

Physical One-Way Functions [21] are a simple example of analog PUFs (see Figure 3-1). The
physical system is a wafer of bubble-filled transparent epoxy. The PUF behavior is obtained
by shining a laser beam through the wafer from a location that is precisely defined by the
challenge. The laser beam interacts in a complex way with the bubbles in the wafer, and a
speckle pattern is observed on the other side of the wafer. This speckle pattern is a function
of the exact position of the bubbles and of the laser, and is the PUF’s response.

Pattern
Speckle

Laser

PSfrag replacements

θ

Figure 3-1: An optical PUF
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In [21], particular emphasis is put on the fact that the wafer that is being measured is a
3-dimensional system. This is very good because compared with a 2-dimensional system, it
increases the amount of information in the system, and makes direct measurement harder.
This is a significant advantage over the silicon PUFs that we will consider in Section 3.2 that
are essentially 2-dimensional.

3.1.2 Analog or Digital Interface

Unlike all the other PUFs that we will consider, the Physical One-Way Function is made to be
used with an analog interface: the wafer is embedded in a plastic card and all the expensive
optical equipment (laser, speckle detector) is part of the reader. This is interesting because
an adversary who wants to clone a wafer by using a model building method has a much
harder task. Indeed, not only does he have to be able to predict the speckle pattern for a
given laser position, he also has to determine the laser position, and simulate the speckle
pattern on the speckle detector in the time interval that is expected by the reader.

We have decided not to pursue analog interfaces as we are more interested in applications
where PUF devices are used remotely. That implies that the measurement equipment is just
as vulnerable to physical attack as the physical system it is measuring, and the advantages
of having an analog interface disappear. Therefore, we prefer to include the measurement
equipment into the PUF, and provide a digital interface (i.e., you digitally input the laser’s
position, and read out a digital representation of the speckle pattern).

A major advantage of incorporating the measurement equipment in the PUF is that
there is a reduced need for calibration. If many sensors in many readers have to be able
to measure a physical system, then they must all be identically calibrated, whereas if the
system is always measured with the same sensor, calibration is unnecessary.

Finally, full fledged CPUFs are only possible if the measurement equipment is part of the
PUF. Indeed, a CPUF should be able to restrict challenges and responses it receives, which
is not the case if it does not incorporate the measurement equipment.

Of course, for the digital interface method to be cost effective, the sensor equipment must
be cheap. That is certainly not the case for Physical One-Way Functions where precision
mechanisms are necessary to position the laser source correctly.

3.1.3 Optical CPUF

The Physical One-Way Function described above can, in principle, be made into a potentially
cost effective CPUF. The key idea is to integrate the light source and light sensors on a chip
that is embedded in an irregular transparent medium like the epoxy wafer that we have been
considering, and surrounded by reflecting material. The setup is depicted in Figure 3-2.

Instead of mechanically moving a laser source in accordance with the challenge, many
laser diodes are present on the chip, and depending on the challenge, a combination of them
is be turned on. Since the different laser diodes are not coherent with each other, a speckle
pattern with reduced contrast results. To avoid excessive loss of contrast, only a few sources
should be turned on at any given time.1 Moreover, a non-linear optical medium should be

1If the different sources could be made coherent with each other, this constraint would no longer hold. The
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Figure 3-2: An optical CPUF

used so that the speckle pattern isn’t simply the sum of the patterns that would result from
each source being turned on individually.

With this setup, a control algorithm could be embedded on the chip. The algorithm
would be protected from tampering by the optical medium, which would get damaged by
any invasive physical attack. Of course information leaks and non-invasive tampering still
have to be dealt with.

For now we have not seriously considered implementing this optical CPUF, but it bears
some resemblance to preexisting intrusion detection systems [1]. It is interesting for many
reasons: it is based on a 3-dimensional physical system, the control logic is clearly intertwined
with the PUF, it is manufacturer resistant, and there is hope that there will be better tem-
perature stability than with purely silicon PUFs. On the downside, the bubble-filled epoxy
might be a problem for heat dissipation and the processes that enable optical components
to be present on-chip are still costly.

3.2 Silicon Approaches

Instead of combining optics and microelectronics to produce a PUF, we have focused on
ways to produce PUFs that only use cheap and extensively studied silicon technology. This
section describes the approaches that we have considered to make a PUF out of an integrated
circuit (IC).

Silicon PUFs try to harness the variations that are present when chips are fabricated.
These variations and their sources are under constant research [6] as they determine the mini-
mum feature size on ICs. In each new process, chip manufacturers do their utmost to reduce
variation. Yet, with each generation, the relative variation increases (Chapter 14 of [8]).
This observation shows us that the process variation in ICs might be an excellent starting
point for manufacturer resistant PUFs since this variation exists despite the manufacturing
world’s best effort.

Using process variation to provide chips with a unique identifier has already been done [17]
by measuring drain currents in transistors. However, this method reduces the variation to

number of challenges would then grow exponentially with the number of sources, rather than polynomially.
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a vector of bits, that is easy to clone by embedding those bits same bits into a device that
only pretends to measure physical parameters. The major question that we must answer is
how to go beyond simple identification, and use process variation to produce a PUF.

3.2.1 Overclocking

For the most part, circuits on ICs are designed in the synchronous logic model: a huge
combinational circuit maps a vector of inputs to a vector of outputs, and a bank of registers
connects a subset of the outputs to a subset of the inputs (see Figure 3-3). The whole circuit
is synchronized on a clock that ticks at regular intervals. Each time the clock ticks the
registers instantly copy their input to their output. The combinational logic sees its new
input, and propagates it through its logic gates, to compute the new output. While the logic
is computing, the output can go through some glitching as signals propagate through the
logic at different speeds. Eventually the output settles and the circuit is ready for the next
clock tick.

Registers

Logic
Combinational

Outputs

Clock

Inputs

Figure 3-3: A general synchronous logic circuit

As long as the clock frequency is low enough, the output always has time to settle,
and the circuit behaves as expected.2 Fabrication variation only shows up in the details of
how signals propagate through the combinational logic. Once the clock signal arrives, all
functional chips will have stabilized at the same output value.

This simple picture has been a key contributor to the successful scaling of electronic
devices from thousand transistor circuits to hundred-million transistor circuits. Simply by
selecting a clock frequency that is low enough, the effects of all the manufacturing variations
can be wiped out. However, if the clock frequency is increased, the clock might tick when
the output of the combinational logic is still settling, and the results become chip dependent.

This discussion inspires a very simple type of PUF implementation. A challenge is a
whole vector of inputs to the combinational logic and a delay. To query the PUF, the circuit
is brought into a state in which it will, at the next clock cycle, have the challenge input
going into the combinational logic. At the clock tick, that signal starts propagating through
the combinational logic. Instead of being sent after the normal clock period, the next tick
is sent after the delay that is contained in the challenge. The vector that is captured by the
registers during that tick is taken to be the PUF’s response. Essentially, the idea is to tell
chips apart by looking at their response to momentary overclocking.

2Of course, there are extra constraints in real circuits because registers have more elaborate timing
problems, which are irrelevant here.
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In principle, this method could be combined with the methods from Chapter 4 to produce
a PUF. In practice, there are many difficulties:

• There is a huge number of challenges for which the response will not depend on the
chip at all, or will depend very little on the chip (for example, all challenges for which
the delay is greater than the normal clock period). For simple circuits, most challenges
will be in this case. That means that a method for finding significant challenges must
be found, or else the chip must be queried a huge number of times to get enough
identifying information out of it (see Section 4.2).

One way of selecting good challenges would be, to take an arbitrary input vector for
the challenge, and look at how the output depends on the delay that we put in the
challenge. We pick a delay that is close to a transition of the output. Such challenges
would be more likely to vary across chips.

• For complex circuits such as a multiplier, the output vector might vary very rapidly
while settling. In order to capture the response consistently, the output vector must
be stable for a small period of time around the clock tick called the hold time. If that
minimum time is rarely met in the output vector’s settling, then few challenges will
consistently output the same response. Instead of measuring the device, we would be
measuring noise.

• Depending on environmental parameters such as temperature, the settling of the output
vector might not occur in the same way. It is not clear how this PUF scheme would
be able to recognize a chip that was characterized at a different ambient temperature
than the one at which it is used.

• The clock is an extremely sensitive part in a circuit, especially as the circuit size and
speed increase. Inserting a precisely timed glitch in its normal operation as this PUF
implementation requires is a difficult task.

• The way the combinational logic settles might depend on the previous input as well as
the current one, so the previous input would also have to be included in the challenge.

• For complex sequential circuits (in which many outputs of the combinational logic are
fed through registers), it is not always possible to bring the circuit into an arbitrary
state. Even when it is possible, determining how to do so is very difficult. There-
fore, instead of defining the input vector in the challenge, one would need to give a
sequence of steps that would bring the circuit into the appropriate state for the PUF
measurement to be made.

Clearly, there are a number of problems that arise from this simple PUF implementation.
None of them are insurmountable, but so far this doesn’t seem like a practical way to make
a PUF, though it would have been nice to have a method to make a PUF from an arbitrary
synchronous circuit.
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3.2.2 Genetic Algorithm

Some interesting work [26] involving FPGAs and genetic algorithms shows that it is possible
to evolve a circuit to distinguish between an input that oscillates at 1kHz and an input that
oscillates at 10kHz. The interesting part for us, is that the evolved circuit, when loaded into
a different FPGA, no longer works. Moreover, when we look at the evolved circuit, it is not
at all apparent how exactly it works.

This experiment confirms once again that process variation does make chips measurably
different, and also shows a way of producing circuits that are hard to understand, and that
tell chips apart. We can in theory base a PUF on this observation. A challenge is an FPGA
circuit, and the response is the output of that circuit when it is loaded into the FPGA.

As with the overclocking method, many challenges will produce responses that do not
depend on the chip, while others will produce erratic responses. A genetic algorithm can be
used to find challenges that meet our needs.

Environmental parameters are also likely to change the responses as is observed in [26],
though it might be possible to vary environmental parameters during training to find chal-
lenges that are sufficiently robust to environmental parameters such as temperature [27].

Overall this method is neat, and shows that PUFs can be made. Unfortunately, it is
impractical because the genetic algorithm takes a prohibitive time to run.

3.2.3 Delay Measurement

So far we have considered two ways of making a Silicon PUF. Both methods were very
general, but both had similar problems: it is hard to find challenge-response pairs that
actually differ from chip to chip, and it is hard to get reliable operation, particularly in
presence of environmental variation (such as changes in temperature). We will now turn
to a method that is less general but that we have better control over. The basic idea is to
measure delays in a specially designed circuit to produce a PUF.

1

2

Parametrized Delay Circuit

Challenge

Delay Measurement Circuit
Response

Figure 3-4: Measuring delays to get a PUF

The general architecture of a delay-based silicon PUF is shown in Figure 3-4. The main
element is a parametrized delay circuit. When a rising edge is applied to the input of the
delay circuit (1), it propagates through the delay circuit. After some amount of time that
is a function of the challenge that is applied to the circuit, the rising edge arrives at the
circuit’s output (2). In the PUF, the delay circuit is coupled to a delay measurement circuit
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that generates the rising edge, and measures the time until it emerges from the delay circuit.
It outputs the delay as the response. As long as the delay circuit is complex enough, we
have a good PUF candidate.

Many of the drawbacks that existed with previous circuits have now been solved. Any
challenge now gives a response that changes from chip to chip, so we no longer need to
look for challenges that stimulate some chip dependent behavior. Since the delay circuit is
designed so that one rising edge at the input leads to a single rising edge at the output,
the quantity that we are measuring is well defined; as long as the delay circuit is designed
so that its delay is the same each time it is stimulated, we will be able to get consistent
measurements.

Environmental Parameter Compensation

The problem that remains is robustness to environmental variations. Fortunately, it turns
out (sections 3.3 and 3.4) that when temperature changes, delays of similar design vary
proportionally to each other. Therefore, by measuring two different delays and dividing them
by one another it is possible to get a value that is a lot less dependent on environmental
parameters such as power supply voltage and temperature than the values that are being
divided. We call ratios of two delays compensated measurements, and the operation of
dividing delays by each other compensation.

We now have a viable silicon PUF candidate. In the next sections we go into the details
of the delay measurement circuit and the delay circuit so that we have a complete story on
how to build delay-based silicon PUFs.

3.2.4 Measuring a Delay

Self-Oscillating Loops

The main method that we have used to measure delays is to use the delay circuit to build
a self-oscillating loop. We do this by inverting the output of the delay circuit and feeding
it back into the delay circuit’s input. This circuit spontaneously oscillates with a period
approximately two times greater than the delay to be measured.3 The period of the loop
can easily be determined by counting the number of oscillations in a given amount of time
as measured by some reference clock. Because of compensation, the reference clock doesn’t
even need to be calibrated, it need only be stable over short time-scales.

Figure 3-5 shows the details of the self-oscillating loop circuit. The Oscillating signal is
used to turn the loop on or off. The output of the loop is synchronized to the reference clock
by using two registers. Another register and an and gate are used to detect rising edges.
The rising edges are then counted, as long as the Counting signal is high. To perform the
measurement, the loop is turned on, the counter is reset using the Reset signal, Counting
is put high for a predefined amount of time, and finally a frequency is read from the output

3Since all we care about is getting a consistent measurement out of the chip, the fact that the loop period
is only approximately twice the delay of the delay circuit doesn’t bother us.
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Figure 3-5: A self-oscillating loop to measure a delay

of the counter.4 Of course the clock must be at least two times faster than the loop for this
circuit to function.

A few constraints on the delay circuit must be maintained for self-oscillating loops to
work. Indeed, the edge that enters the delay circuit might get split into many competing
edges inside the circuit. One of those edges will eventually cause the output of the delay
circuit to change, which will almost immediately cause an opposite polarity edge to be applied
to the input of the delay circuit. If some edges from the previous time through the loop are
still present in the delay element, they could change the delay that is seen by the new edge.
With a badly designed delay circuit, this could lead to chaotic variations in the delay, and
unreliable responses.

This method leads to very precise measurements. Unfortunately, to get measurements
with precisions of tens parts per million, hundreds of thousands of clock cycles must elapse
during the measurement. Measuring delays is consequently a slow affair, which gets even
longer when we start using vectorization (see Section 4.2).

Arbiters

To make delay measurement faster, we are trying to do direct delay measurements, which
only run a single edge through the delay circuit. This is not a trivial task given that
in our experiments, we have to measure the delays with precisions on the order of tens of
picoseconds. An added advantage of not using an oscillating circuit, is that stable frequencies
are particularly easy for an adversary to look for when he is trying to probe a circuit. This
weakness could allow an adversary to bypass a CPUF’s post-processing steps, such as the
output random function (see Section 4.3).

Daihyun Lim is currently running experiments in which, instead of measuring two delays
and taking their ratio, two delays are simply compared. Two (possibly intermingled) delay
circuits are excited simultaneously. An arbiter circuit at the output determines which rising
edge arrived first and sets its output to 0 or 1 depending on the winner. Figure 3-6 shows
an arbiter-based circuit.

Preliminary results show that the method works. The disadvantage of the method is
that if for some challenge, one delay is consistently greater than another across chips, then

4In fact, because the reference clock period must be less than half the loop period, it is better, for
maximum precision, to count the number of clock ticks in a predefined number of oscillations of the loop
rather than the number of oscillations of the loop in a certain number of clock ticks.
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Figure 3-6: An arbiter-based PUF

the response will always be the same for that challenge. Fortunately, each measurement can
be performed extremely fast, so it is possible to try many challenges in the time it would
take to measure a single delay with a self-oscillating loop. In one experiment we have run,
around 2 % of challenges have a response that changes between chips. This figure would
be sufficient to make the arbiter circuit faster than the self-oscillating loop circuit despite
having to try more challenges. With more control over delay circuit layout, we hope to get
much more than 2 % of useful challenges.

3.2.5 Designing a Delay Circuit

Choosing the right delay circuit is the key to making silicon PUFs work. The delay circuit
must be designed to have a consistent delay and be resistant to model building attacks.

To make model building difficult, it is tempting to try to reproduce the types of struc-
tures that appear in digital pseudo-random functions such as SHA1 [20] or MD5 [22], to
make the relation between individual physical parameters and global delay hard to invert.
Unfortunately, those functions are designed to have a cascade effect: if a single bit is changed
at the input, one can expect half the output bits to change as a result. This chaotic behavior
is contradictory with what we need to get reliable delay operation. With a chaotic analog
circuit, any small fluctuation in the physical parameters would completely change the circuit
output, making it useless for identification purposes (it might be usable as a random number
generator, though).

Therefore, we will use the opposite approach. We will start from a circuit that gives
reliable outputs, study it, and propose ways of making it harder to model.

Our basic delay circuit is made up of a string of switch blocks. A switch block has two
inputs, two outputs and a control bit. The value of the control bit determines if the inputs
go straight through to the outputs, or if they are exchanged, as in Figure 3-7. The input
of the delay circuit goes to both inputs of the first switch block. One of the outputs of the
last switch block is used as the output of the delay circuit, the other is ignored (or possibly
used as the other input to the arbiter circuit if we are doing direct measurement). Figure 3-8
shows the full circuit.

This circuit is interesting because each challenge selects a different path through the
circuit, leading to an exponential number of paths. Of course, these paths are far from being
independent of each other. In fact, for a k stage circuit, if we assume an additive delay
model — the total delay of a path is the sum of the delays of the elements that make it up
— then knowing 4k independent paths is sufficient to set up a linear system of equations,
which, when inverted, would give all the elementary delays in this circuit.
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Figure 3-7: When bi = 0 the paths go straight through, when bi = 1, the paths are crossed.
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challenge

Figure 3-8: The simple delay circuit

Combined with the methods discussed in Chapter 4, this circuit would actually be suf-
ficient for any remote attacker. Nevertheless, just as we choose to use analog PUFs rather
than physically obfuscated keys in Section 2.4, it would be nice to make the physical system
that the PUF is based on intrinsically harder to model. We shall therefore present a number
of tricks that make model building harder.

To date we do not know how much difficulty is added by these tricks if an additive delay
model is assumed. What is certain is that, deviations from the additive delay model, and
the input pseudorandom function that we introduce in Section 4.1, makes attacks even more
difficult.

Variable delay buffers

Variable delay buffers can be used to make additive delay modeling much more difficult.
Essentially they are delay elements that have a delay which depends on an auxiliary input.
The subtlety is that no glitches must be introduced if the auxiliary input changes while
an edge is propagating through the delay element, or else measurement reliability would
decrease.
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OutputInput

Control

OutputInput
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Figure 3-9: Variable delay buffers can be made with a buffer and a tristate buffer. The
tristate buffer can be active-high as on the left, or active-low as on the right. Depending on
the polarity of the edges and whether the variable delay buffer is active-high or active-low,
competing edges will be brought closer together or farther apart.

Variable delay buffers can easily be made by combining a slow buffer (essentially a yes
logic block) and a fast tristate buffer (a buffer that can have its output turned off) as in
Figure 3-9. If the tristate buffer is off, the delay is long. If the tristate buffer is on, the delay
is short. If the tristate buffer changes state while an edge is propagating through the buffer
some intermediate delay results.

Since our basic circuit has two edges propagating through it simultaneously, we can use
one of the edges as the auxiliary input to a variable delay buffer, and have the other path
go through the buffer as is shown in Figure 3-10.

bb

Switch Switch .   .   ..   .   .

i i+1

Figure 3-10: Variable delay buffers in a delay circuit

The presence of variable delay buffers makes additive delay modeling much harder as
the delays of individual circuit elements are no longer constant. The adversary must make
guesses about which state the variable delay buffer is in. In fact the variable delay buffers
have a delay that can vary continuously in a certain range which makes the adversary’s life
even harder. It is interesting to note that variable delay buffers can be used to create non-
monotonic behavior: a component in the circuit that becomes faster can make the overall
circuit slower.

Great care must be taken when designing a circuit with variable delay buffers. They lead
to circuits with complicated behaviors. If misused, a number of things can go wrong. The
circuit can become chaotic, and therefore useless. If the variable delay buffers tend to make
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the leading path get even further ahead than it already is, then the two competing paths
will get well separated after just a few circuit stages and the remaining variable delay buffers
will be in predictable states.

Overall, variable delay buffers seem like a powerful but potentially dangerous tool. A lot
more research could be devoted to exploring delay circuits based on them.

Minimum and Maximum

A somewhat more controlled way of preventing a model building adversary from setting up
linear systems of equations is to put max and min operators in the model he is building.
For direct delay measurement, this can be done using an and-gate or an or-gate respectively.
For self-oscillating loop circuits the task is a little harder as there are both rising and falling
edges to take into account, we will see how to handle that case in Section 3.4.1.

b3b2b1 b128b127

.   .   .

switch

input

challenge

output

Figure 3-11: Delay circuit with max operator

One way of using these operators to make model building harder is shown in Figure 3-11.
A model building attacker doesn’t know which path was selected by the and-gate, which
forces him to produce two equations for each CRP he knows. An exponential number of
possible systems of equations results when many CRPs are combined, unless some pruning
strategy is found. For a while [9], our hope was that as long as our delay circuit was laid
out in a way that preserved the symmetry between the two paths, and an input random
function was used on the challenge, this circuit would be hard to break in the additive delay
model. Recent unpublished work by Marten van Dijk shows that such a circuit is vulnerable
to statistical attacks, even with an input random function. Perhaps incorporating more max
and/or min operators in the circuit would thwart these attacks.

Arbiters

Yet another way of making modeling attacks harder is to have some of the switches be
controlled by signals that are generated earlier on in the delay circuit. For example, Figure 3-
12 shows how an arbiter can decide, part way through the circuit, which path is fastest so
far, and set a switch further down the circuit based on that decision.
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Figure 3-12: Adding internal variables with an arbiter. Note that for simplicity, this figure
does not include the logic needed to reset the arbiter between edges.

The attacker’s job is harder because he has no way of knowing what the arbiter’s decision
was. The drawback is that there are borderline cases where the edges arrive at the arbiter
almost simultaneously. Those cases will lead to erratic responses. Therefore, the number of
arbiters that can be placed in the circuit this way must remain limited.

3.2.6 Intertwining

In a CPUF, an invasive adversary must be prevented from tampering with the control algo-
rithm. Our way of addressing this problem is to design the CPUF so that the control logic
is protected by the physical system that the PUF is based on. That way, the adversary is
forced to damage the physical system if he tries to tamper. In the case of silicon PUFs,
we suggest that the top layer of wires above the control logic be devoted to delay wires, as
shown in Figure 3-13. Those delay wires would then act as a shield for the underlying logic.

Delay Wires

Power Wires
Logic and

Substrate

Control Logic

Figure 3-13: Control logic, protected by overlying delay wires

At this time, we do not have the means to test the difficulty of tampering with the
control logic while leaving the PUF sufficiently intact. Attacks through the top of the chip
are greatly hindered because the adversary must gain access to lower layers of the chip
without damaging PUF wires. Unlike attacks against classical circuits that surround the
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Figure 3-14: In this plot we show how multiple self-oscillating loops on the same IC interfere.
The histograms show the frequency of the loop oscillating alone or with the seven other loops
on the IC turned on. The frequency shift between these two situations is tiny compared with
measurement noise.

chip with meshes, the adversary is detected as soon as the wire delay starts changing; he
does not need to cut the wire completely to change the PUF.

Attacks through the bottom of the chip are not taken into account with this approach, but
to date, invasive attacks on chips have concentrated on entering through the top. Entering
through the bottom of the chip without destroying it seems much more difficult.

If the adversary opens the chip, but does not attempt to penetrate the PUF wires, he
can try to make measurements of the signals flowing in the delay wires. Those measure-
ments could help him build a model of the circuit. His task is particularly easy in the case
of self-oscillating loop measurements. He simply needs to determine the frequency of the
oscillation to know the output of the PUF before any post-processing (see Chapter 4). A
possible solutions is to design the chip’s packaging so that its removal will sufficiently change
the delays of the PUF wires (preferably in an inhomogeneous way to make sure that compen-
sated measurements won’t cancel out the change). In the case of direct delay measurement,
arranging to have a large number of delay elements in lower levels of the chip, so that the
adversary can only get a limited amount of information for his model by direct measurement,
is another possibility.

3.3 Experiments

The rest of this chapter describes experiments that were performed using XC2S200 Field
Programmable Gate Arrays (FPGAs)5 on various delay circuits. FPGAs are an example of
a high-volume part where the manufacturing process is tuned to produce ICs that are as
identical as possible in order to maximize yield and performance. Our experiments indicate
that even a highly-optimized manufacturing process designed for predictability has enough
variability to enable reliable identification.

5The exact components that were used were the XC2S200PQ208-5.
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Figure 3-15: This plot shows compensated measurement dependency on power supply volt-
age. The dependency for 1% changes in supply voltage is small enough for our purposes.
Interestingly, by running the FPGAs near the 2.7V extremum, it might be possible to further
reduce the voltage dependency.

In all our experiments, we compare delays across two or more FPGAs with

each FPGA being programmed by exactly the same personality matrix. This
means that each FPGA has exactly the same logic circuit, and moreover the circuit is laid
out in the exact same locations on each FPGA. Therefore, these FPGAs can be viewed as
copies of the same IC.

First we consider a non-parametrized delay circuit, just to see how much variability is
present, in Section 3.3.1. Then, in Section 3.3.2 we try to evaluate how valid the additive
delay model is, using the simplified circuit in Figure 3-18. Finally, a circuit that might
actually provide enough security for a real application is presented in Section 3.4.

3.3.1 Quantifying Inter-Chip Variability

In our first experiment, each FPGA is equipped with 8 self-oscillating loops, the circuit for
which is shown in Figure 3-5. Each loop is made up of 32 buffers6 and an inverter. We
determine the frequencies of the loops by measuring the number of oscillations they make
during a certain period of time (typically 220 cycles of an external 50 MHz oscillator). The
period of the loops is on the order of 60ns.

We ran various experiments to quantify measurement errors, inter-FPGA variation, vari-
ation due to ambient temperature and variation due to power supply voltage variations.
To summarize our findings, the following standard deviations are given in parts per million
(ppm). A deviation of n ppm around a frequency f0 corresponds to a deviation of nf0

106 . These
deviations correspond to measurement across several FPGAs.

Here are the main results:

1. Consecutive measurements of the same delay produce slightly different results because

6In this context, a buffer is simply a logic gate that copies its input to its output with a short delay. They
are usually used to amplify signals.
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Figure 3-16: These histograms show the relation between measurement error (width of a
peak) and inter-FPGA variation (each peak is for a different FPGA), with and without
compensation. Clearly information about the FPGA’s identity can be extracted from these
measurements.

of measurement inaccuracy inherent in the loop circuit. The standard deviation of this
measurement error with compensated measurement is 30 ppm.

2. The standard deviation in inter-FPGA delays with compensated measurements ranges
from 5000 ppm to 30000 ppm depending on the pair of loops that is used for the
measurement. Figure 3-16 shows an example of the relationship between measure-
ment error and inter-FPGA variation for four different FPGAs. Clearly identification
information can be extracted from the frequencies of the loops that we are measuring.

3. The frequency of a loop can be influenced by nearby circuitry. To try to evaluate the
magnitude of this interference, we compared the frequency of one of the loops when
the other loops on the FPGA were turned on or off. The deviation we observed was
10 ppm. Figure 3-14 shows the frequency distribution for a loop when the other loops
are turned on or off.

4. The variation in frequency when the ambient temperature is varied from 25 to 50
degrees Celsius is 50000 ppm for uncompensated measurements. This is sufficient to
prevent FPGA identification. Fortunately, with compensation (see Section 3.2.3), this
reduces to 100 ppm. Figure 3-17 illustrates the temperature dependence with and
without compensation.

5. Power supply voltage variations are also well compensated for by our scheme. Around
the FPGA’s 2.5V operating point, the variation of the compensated measurement
with voltage is about 3000ppm/V as shown in Figure 3-15. In practice, external
power supply variations can be kept to within 1%, which corresponds to 1%× 2.5V ×
3000ppm/V = 75 ppm. Therefore, commonly available voltage regulators will suffice
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Figure 3-17: These graphs show the results of an experiment in which two FPGAs had their
ambient temperature vary between 25◦C and 50◦C. The top plots show the measurement
value versus time (in half-second sampling intervals). Note that the two FPGAs did not
undergo the same temperature changes at the same time. The bottom plots are histograms
of the respective plots on top.

to keep the supply voltage within tolerable bounds. It is interesting to note that the
compensated measurement seems to have an extremum around 2.7V . By running the
FPGAs at 2.7V instead of 2.5V this extremum could be used to further improve the
robustness of the measurements.

6. Circuit aging can create variance in measurements carried out over a long period of
time. However, the effect of circuit aging is typically significantly less than power
supply or temperature variation. Future study will have to check the impact of aging
on the measurements.

Given the numbers above, if we take 100 ppm as a rough estimate of the noise, and
10000 ppm as a rough estimate of the signal, then we have a signal to noise ratio of 100. If
the noise distribution was Gaussian (this is not really the case as some parts of the noise
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Figure 3-18: The demultiplexer circuit, used to test the feasibility of additive delay modeling
of a PUF circuit.

are due to slowly varying parameters such as temperature and supply voltage), we would be

able to extract 1

2
log

2

(

10000

100

)

≈ 3.3 bits per measurement. So with 20 measurements, on 20
different loops, we would get about 2× 33 bits, which would allow us to distinguish between
10 billion different chips (taking into account the birthday paradox).

To summarize the experiments in this section, compensated measurements enable reliable
identification under appreciable environmental variations.

We note that variance in a manufacturing process can be increased quite easily by mak-
ing small changes in the fabrication steps, e.g., not regulating temperature and pressure as
tightly, and increased variance will allow reliable identification under a greater amount of
environmental variation. Also, with the advent of deep sub-micron (e.g., 90 nm) devices,
there is greater intrinsic fluctuation for minimum width devices due to lithography toler-
ance and dopant fluctuation [28]. Finally, an IC containing a PUF could be placed in an
environment-resistant board to improve reliability.

3.3.2 Additive Delay Model Validity

We ran the same experiments on the demultiplexer circuit shown in Figure 3-18. A circuit
with 12 stages was used in our experiments.

The observed measurement error, inter-FPGA variation and dependence on environmen-
tal conditions were compatible with the results from Section 3.3.1.

In addition to confirming the results from the previous experiments, the new circuit
was able to show us the effect of challenges on the frequency of the self-oscillating loops.
Figure 3-19 shows the compensated response of two different FPGAs as a function of the
input challenge.

44



0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

0 500 1000 1500 2000 2500 3000 3500 4000 4500

"fulldata.ana3.mean"

(a) Ana FPGA

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

0 500 1000 1500 2000 2500 3000 3500 4000 4500

"fulldata.bob.means"

(b) Bob FPGA

Figure 3-19: Compensated Delay versus Input Challenges for the Demultiplexer circuit on
two different FPGAs: The large scale structure is identical, and is due to differences in
routing of paths on a given circuit. The difference between the FPGA appears at a much
smaller scale, and can be seen as a difference in texture between the two plots.

There is a clear dependency of the output on the challenge. Moreover, and quite pre-
dictably, there is a lot of structure in the challenge-dependence of the response. This struc-
ture is common to the two FPGAs and is due to large differences between paths in given
stages of the delay circuit. To actually see a difference between the two FPGAs, one must
look at the small scale differences between the two plots (we are looking for 1% variations on
a plot that covers 50% variations). These differences are present, and appear most clearly
as a difference in texture between the plots for the two chips.

The reason why such a simple circuit was chosen for this experiment is that we wanted
to quantify how well an adversary could simulate the circuit by choosing an additive delay
model. Indeed, suppose that the adversary wanted to create a model for the demultiplexer
circuit of Figure 3-18. He reasons that the delay of the circuit under each challenge is the
delay of the actuated path for that challenge. He can assume an additive delay model, where
the delay of a path is the sum of the delays of the components and wires on that path. By
measuring the delay of a set of paths that cover all the components and wires in the circuit,
he can set up a linear system of equations that relate the unknown device and wire delays
to known path delays. He can then solve for the device and wire delays, thereby obtaining
a model of the circuit, which he can then simulate to guess at the response for an arbitrary
challenge. The question then is: “How accurate is the model created by the adversary?” If
the model is inaccurate, then the adversary can try to augment it by adding non-additive
delay behavior or additional variables, and continue. The effort involved in non-additive
model building is considerably higher, but difficult to quantify precisely. Here, we will
restrict ourselves to quantifying the complexity/error tradeoff of additive model building.

To quantify the accuracy of an additive model that the adversary can build, we measured
the delays of all 2n paths in a n = 12-stage demultiplexer circuit. Each of these paths
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corresponds to a different challenge. For a pair of paths P1 and P2 whose challenges differ
in exactly one bit, the paths coincide in all stages but one. The adversary may assume an
additive delay model which implies that the relationship between the path delays is

P1 − P2 = di − dj .

The di and dj pairs are marked on Figure 3-18.
Using all 2n measured delays, we determined a mean and standard deviation for each

of the di − dj quantities. This standard deviation is characteristic of the inaccuracy of the
additive model, and we shall call it σcalc. In our experiments, σcalc was between 5 ppm and
30 ppm, which is roughly the same as the environmental variations that we have to deal
with. Thus, the additive model might be a valid way of breaking simple circuits such as the
one in Figure 3-18.

Nevertheless, even if the additive delay model gives results that are within the tolerances
that the adversary has to meet, he may not be able to use it to efficiently simulate the circuit.
Indeed, when he uses the additive delay model, the adversary is essentially starting from a
challenge he knows a response to, and performing a certain number of modification steps to
the corresponding delay to account for differences between the known challenge and the one
he is trying to calculate the response for. The modeling error, σcalc, is present for each one
of the additions that the adversary performs. It is likely that the error that is committed
when the model is applied multiple times will be greater than the best-case error that we
have evaluated.

For example, if we assume that the errors that the adversary commits at each step
of his computation are Gaussian and independently distributed between steps, then for a
k step computation, the adversary in fact commits an error of

√
kσcalc. The number of

measurements that the adversary would have to make to be able to predict the response to
a randomly selected response in fewer than k steps is exponential in n

k
, so for big enough n,

the additive delay model attack will not be sufficient even for simple circuits.

3.4 Possibly Secure Delay Circuit

We now present a circuit that we believe to be breakable in the additive delay model, but
that might provide sufficient security on a real chip where the additive delay model is not
quite correct.

Tara Sainath and Ajay Sudan have used this circuit to implement the key card application
that was described in Section 2.2. In a few seconds, it is able to identify in a secure way any
one of the 24 FPGAs we have in the lab. Most of the identification time is spent loading
the circuit into the FPGA, so in a hard coded implementation we can expect much faster
operation.

3.4.1 Circuit Details

Because we do not have full control over the circuits that are implemented in an FPGA,
a few compromises have to be made relative to the theoretical design that required a high
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Delay Circuit

Figure 3-20: A self-oscillating circuit is built around the delay circuit. Measuring the fre-
quency of the self-oscillating loop is equivalent to measuring the delay of a path through the
delay circuit.

level of symmetry.

First, the unpredictability of the circuit described in Section 3.2.5 relies on having a circuit
with a high level of symmetry between paths. The general purpose routing infrastructure
of an FPGA makes it difficult to produce precisely matched paths. Therefore the FPGA
circuits that we worked with do not have the degree of symmetry that would be required
for a PUF to be secure. However, since the asymmetry is the same across all components,
it does not make any change to the difficulty in identifying components, which is what we
will be discussing in this section.

Figure 3-20 shows how a self-oscillating loop is built around the simple delay circuit from
Figure 3-8. Since both rising and falling transitions are going through the delay circuit, the
and gate that was used to combine the two paths of the delay circuit in Figure 3-11 has
been replaced by a more complicated circuit that switches when the slowest transition, be
it rising or falling, reaches it. The circuit is essentially a flip-flop that changes state when
both outputs from the delay circuit are at the same level.

The dotted box indicates a delicate part of the circuit that cannot be implemented exactly
as shown without running the risk of producing glitching in the output. In the FPGA it
is implemented by a lookup table. In an implementation with simple logic, it should be
implemented in normal disjunctive form. The representation that was used here was simply
chosen for ease of understanding.

3.4.2 Robustness to Environmental Variation

We shall now look at the impact of environmental perturbations that are large enough
to mask out the small manufacturing variations that we are trying to measure. These
perturbations must be taken into account if chips are to be identified. We shall look at the
perturbations that were observed on this particular PUF implementation.

Temperature and Voltage Compensation

Parameters such as temperature or supply voltage cause variations in delay that are orders
of magnitude greater than the manufacturing variations that we are trying to observe. For
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a 30 degree Celsius change in temperature, the delays vary on the order of 5%. This is to be
compared with inter-chip variations that are well below 1% on this size of circuit.

Two different self-oscillating loops were placed on the FPGA. We ran both self-oscillating
loops to get two frequencies, and took a ratio of the two frequencies as the PUF’s response.
Once compensation was applied, the variation with temperature was of the same order of
magnitude as the measurement error.

For very large temperature changes (at least greater than 30 degrees Celsius), we can
no longer expect to reliably recognize a PUF. The answer to this problem is to characterize
the PUF once when it is hot and once when it is cold (more steps are possible for large
temperature ranges). During use, one of these two cases will apply, so the PUF will be
correctly recognized.

Up to now, we have assumed that temperature is uniform across the integrated circuit.
If that is not the case, then temperature compensation is likely not to work well. With the
circuit presented here, we were careful to keep the paths heated in a uniform way by carefully
selecting the challenges that were applied. Without this precaution, we have observed non-
uniform heating which can cause unreliable measurement results. Therefore, we recommend
heating circuits in a uniform way during use. Non-uniform heating is likely to be a major
problem for CPUFs for which the control logic produces a lot of heat, poorly distributed
across the chip.

Interference With Other Sub-Systems

Once again, we looked at the interaction between a self-oscillating loop, and other circuitry on
the integrated circuit. Experiments in which we measure the frequency of a loop oscillating
alone, or at the same time as the other loop, show that the interference is very small as was
demonstrated in section 3.3.1.

There is however one case in which interference is non-negligible. It is the case when
the interference is at almost the same frequency as the self-oscillating loop. In that case,
the loop’s frequency tends to lock on the perturbating frequency. This situation sometimes
occurs when we are running two loops simultaneously to provide temperature compensation.
If the two frequencies happen to be very close, then the two loops interfere, and the two
frequencies become identical. When this happens the PUF’s response is exactly unity. The
consequences of this interference are more or less severe depending on the exact PUF circuitry
that is being considered. The compensated response distribution in Figure 3-21 clearly shows
the phenomenon.

In the circuits that we tested, if frequencies were close enough to cause locking on one
FPGA for a given challenge, then they were generally close enough to cause locking on most
FPGAs. This is due to the asymmetry of the delay circuit that we implemented. The result
is that when the response is unity, it is useless for identification purposes, as it will be unity
across most FPGAs. Therefore, we should not use challenges for which the response is unity.

For highly symmetrical circuits, it is possible that two identical loops would always
have frequencies that are close enough to cause locking. This clearly forces us to run the
loops separately. Alternatively, we could choose to use non-identical circuits, so that the
frequencies will never be close enough to cause locking. The drawback of this approach is
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Figure 3-21: Distribution of responses to randomly selected challenges. Each response is the
ratio of the frequencies of two simultaneously-running loops. As can be seen, when the loop
frequencies are too close, the loops lock and the response is unity.

that we have found temperature compensation to work better when the circuits that are
being used for compensation are more alike.

Overall, it would seem that it is safer to measure loop frequencies one at a time. Fortu-
nately, interference with other parts of the integrated circuit appears to be negligible so no
other precautions appear to be necessary.

Aging

Through prolonged use, the delays of an integrated circuit are known to shift. We have not
yet studied the effect that aging might have on a PUF. In particular, if the changes due to
aging are big enough, we might not be able to recognize a PUF after it has undergone much
use. Studying these aging effects is an important aspect that must be covered by future
work.

3.4.3 Identification Abilities

To test our ability to distinguish between FPGAs, we generated a number of profiles for
many different FPGAs in different conditions. A profile is made up of 128 CRPs. All the
profiles were established using the same challenges.

Two profiles can be compared in the following way: For each challenge look at the
difference between the responses. You can then look at the distribution of these differences.
If most of them are near zero, then the profiles are close. If they are far from zero then the
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Figure 3-22: Comparing the FPGA called Abe at room temperature with itself in various
conditions, or with other FPGAs. The vertical axis indicates the probability that for a given
challenge, the difference in response will be lower than the difference in response that is
indicated on the horizontal axis. These plots illustrate the typical behavior we encountered
in our experiments with many FPGAs.

profiles are distant. During our experiments, the distribution of differences was typically
Gaussian, which allows us to characterize the difference between two profiles by a standard
deviation.

Figure 3-22 shows the differences between the profile for an FPGA called Abe on Blaise’s
test board at room temperature, and a number of other profiles (σ is the standard deviation):

• Another profile of Abe on Blaise’s test board at room temperature (σ ≈ 1·10−5). (This
reflects environmental variations with time at a card reader.)

• A profile of Abe on Tara’s test board at room temperature (σ ≈ 2.5 · 10−5). (This
reflects power supply variations across card readers.)

• Profiles of Abe on Blaise’s test board at 10, 20 and 30 degrees Celsius above room
temperature (σ ≈ 5 · 10−5 to 1.5 · 10−4).

• Profiles of FPGAs Hal and Walt on Blaise’s test board at room temperature (σ ≈
4 · 10−4).
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The above standard deviations were typical across different FPGAs and comparisons of
different pairs of FPGAs.

Clearly, it is possible to tell FPGAs apart. Though our ability to tell them apart depends
on how much environmental variation we need to be robust to. Even with 30 degree Celsius
variations, each challenge is capable of providing 0.7 bits of information about the identity
of the FPGA. This goes up to 1.5 bits if only 10 degree Celsius variations are allowed.

If we want to distinguish between 1 billion different components we need a sufficient
number of bits to identify 1018 ≈ 260 components (this is because of the birthday paradox).
Getting those 60 bits of information requires from 40 to 90 challenges depending on the
temperature variations that we are willing to tolerate.

The numbers that are given here are very dependent on the PUF circuit that is considered.
In particular, for the circuits in Section 3.3, we had a better signal to noise ratio than for
the current circuit. We believe that by paying more attention to how our circuit is laid out,
we will be able to build PUFs for which more bits can be extracted from each challenge.
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Chapter 4

Strengthening a CPUF

The weak PUFs that we have been considering so far extract identification information from
a physical system, in a way that is somewhat hard for an adversary to predict. They can
also be coupled with some control logic, but so far nothing has been said about what the
control logic should be. We shall now see that that logic can be combined with a weak PUF
to make a much stronger and more reliable PUF.

In each case, we have a PUF f that we are trying to improve in some way. Control allows
us to improve f by constructing a new PUF g, that is based on f . The control only allows
f to be evaluated as part of an evaluation of g, and only allows the result of the evaluation
of f to be used in the evaluation of g.

The block diagram in Figure 4-1 shows most of the improvements that are discussed in
this section. For the improvements to be robust to physical attack, the control logic must
be intertwined with the PUF so that an adversary can’t bypass the logic through physical
probing or tampering. In particular he must be prevented from reading the PUF’s response
directly before it goes through the output random function, and from bypassing the input
random function by driving the PUF’s challenge directly.

4.1 Preventing Chosen Challenge Attacks

Unless one ventures into quantum effects,1 the number of physical parameters that define a
PUF is proportional to the size of the system that defines it. Therefore, in principle, if an
attacker is able to determine a number of primitive parameters that is proportional to the
size of the physical system, he can use them to simulate the system and thus clone the PUF.

To try to determine primitive parameters, the attacker can get a number of CRPs, and
use them to build a system of equations that he can try to solve. By definition, for a PUF,
these equations should be impossible to solve in reasonable time. However, there can be
physical systems for which most CRPs lead to unsolvable equations, while a small subset
of CRPs give equations that are able to break the PUF (which consequently is not really a
PUF). Such a system is not secure because an adversary can use the CRPs that lead to simple

1For quantum effects to make a difference, a long term coherence of the relevant quantum state would be
necessary for it to belong to the identity of a device. Long term coherence is something that is certainly out
of reach in the near future.
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Figure 4-1: This diagram shows how control can be used to improve a PUF. Random func-
tions are used at the input and output of the PUF, an Error Correcting Code is used to
make the PUF reliable, vectorization is used to extract sufficient identification information
for each challenge, and a personality selector allows the owner of the PUF to maintain his
privacy.

equations to get a solvable system of equations, calculate the primitive parameters, and clone
the PUF by building a simulator. Such a challenge would be called a chosen-challenge attack.

With control, building a secure system out of one of a PUF with this weakness is possible.
For example, the control layer can simply refuse to give responses to challenges that lead
to simple equations. Unfortunately, doing so requires us to know all the strategies that the
attacker might use to get a simple set of equations from a chosen set of CRPs.

We can do better if we pre-compose the broken PUF with a random function:2 instead
of using f directly, we use

g(x) = f(h(x)),

where h is a random function. With this method, it is impossible for the adversary to choose
the challenges h(x) that are being presented to the underlying PUF, so even if he finds a set
of challenges that would break the PUF, he is unable to present those challenges. In this
manner, a PUF can be protected from any chosen-challenge attack, without any knowledge
of the details of any particular attack.

A variant to using a random function is to use a distance d encoder. Such an encoder
implements a mapping such that images of different elements always differ on at least d
bits, which means that at least d bits of the input to the PUF wouldn’t be up to the
attacker. There are many implementations of distance d encoders, while unkeyed pseudo-
random functions are only an approximation of a random function, so distance d encoders
are a theoretically more satisfying approach.

Moreover, for some encoder implementations, the output values of the encoder can be
correlated. This correlation might be sufficient to break some statistical modeling attacks
that Marten van Dijk has been considering.3 A combination of a random function followed

2In an actual implementation, all the random functions that we talk about would be implemented with
pseudo-random functions such as SHA1 [20] or MD5 [22].

3An example of a statistical modeling attack on delay-based PUFs is to query a random set of CRPs,
and then compute expected values of the delays with constraints on a few of the challenge bits. Comparing
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by an distance d encoder is also a possibility, which would combine the advantages of both
methods.

4.2 Vectorizing

As we have seen in sections 3.3 and 3.4 only a few bits of identification information are
actually extracted from each call to the weak PUF. That means that an adversary with
access to another PUF of the same type only has a few bits to guess to get the output of
the PUF. In practice, we would like the adversary to have to guess at least 64 to 128 bits
before he can get the actual output. Therefore, to make a strong PUF, each query to the
strong PUF must query the weak PUF multiple times so that sufficiently many identification
bits can be extracted from the PUF to prevent brute force attacks. We call this technique
vectorization.

Implementation is relatively easy, we simply choose the input random function so that
it provides a very wide output. This output is split into many different challenges for the
weak PUF. The challenges are fed through the weak PUF one at a time, and the responses
are concatenated into a single response that contains enough identification information.

4.3 Post-Composition with a Random Function

The output of a PUF is, by definition, supposed to resemble the output of a random function.
However, the output of the weak PUF we have considered is likely to contain many patterns,
as was illustrated by Figure 3-19. Moreover, as we discussed in Section 4.1, CRPs reveal
information about the physical system that generates the PUF, and so can be used in a
modeling attack to get systems of equations over the PUF’s underlying physical parameters.

Both of these problems can be eliminated by doing another simple transformation on the
PUF. If f is the PUF that we are trying to improve, and h is a random function, then

g(x) = h(x, f(x))

is a stronger PUF. Indeed, g is a random function, and as long as f(x) contains enough
identifying bits to prevent brute force attacks (the adversary computes g(x) assuming each
possible value for f(x)), the fact that g is public doesn’t help the adversary. Moreover,
knowing g(x), the adversary can check if a value for f(x) that he has hypothesized is correct,
but cannot get any information to help him find f(x). Thus, the physical meaning of the
response that model-building attackers want to use has been stripped away in g(x).

Post-composing the PUF with a random function is a very important step because it
makes the system provably resistant to non-physical attacks, as long as enough information is
extracted from the physical system before running it through the output random function to
prevent brute force attacks. Thanks to vectorization, that minimum amount of information
can easily be reached.

expected values for different constraints can provide a lot of information about individual component delays.
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4.4 Giving a PUF Multiple Personalities

A possible concern with the use of PUFs is in the area of privacy. Indeed, past experience
shows that users feel uncomfortable with processors that have unique identifiers, because
they are afraid that the identifier will be used to track them. Users could have the same
type of concern with the use of PUFs, given that PUFs are a form of unique identifier.

This problem can be solved by providing a PUF with multiple personalities. The owner
of the PUF has a parameter that she can control that allows her to show different facets of
her PUF to different applications. To do this, we hash the challenge with a user-selected
personality number, and use that hash as the input to the rest of the PUF.

In this way, the owner effectively has many different PUFs at her disposal, so third parties
to which she has shown different personalities cannot determine if they interacted with the
same PUF.

We go into the details of protocols that use multiple personalities in Section 5.1.2.

4.5 Error Correction

In many cases, the PUF is being calculated using an analog physical system. It is inevitable
that slight variations from one run to the next will cause slight changes in the digitized output
of the PUF. This means that the chip only produces an approximation of the response that
is expected of it. In most applications, the chip and the challenger cannot directly compare
the real response with the desired response as this would require sending one of the responses
in the clear, thus compromising the shared secret. Therefore, something must be done to
make the PUF’s output identical each time a challenge is reused.

A suitably selected error correcting code is the typical answer to this type of problem.
When a challenge-response pair is created, some redundant information is also produced that
should allow slight variations in the measured parameters to be corrected for. On subsequent
uses of the challenge-response pair, the redundant information is provided to the PUF along
with the challenge. It is used to correct the response from the physical system. It is of
course critical that the redundancy information not give away all the bits of the response. In
addition to the redundancy information, the attacker is assumed to know the distribution of
measurements across PUFs, as this information can be derived from the PUF’s specification.

Naturally, the error correction must take place directly on the measured physical parame-
ters. In particular, if the PUF is post-composed with a random function, the correction must
take place first. If multiple measurements are being combined into one response, the error
correction should operate on all the measurements. Unfortunately, since the redundancy
information originates before the output random function, it will reveal information about
the underlying physical system. We have not yet found ways of avoiding that problem.

Selecting the best error correcting code for a problem is not an easy task. We shall present
a fairly simple code to prove that it is possible. This code is designed with the circuit from
Section 3.4 in mind.
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4.5.1 Discretizing

To simplify our task, we will attempt to extract a single bit b of information from each
compensated measurement, which we will then do error correction on. We will essentially
do this extraction by quantizing the measured value with a step size of δ, and taking the
resulting value modulo 2.

Let d be the compensated measurement that is computed when the redundancy informa-
tion is created, and m the compensated measurement that is computed when the redundancy
information is used. From what has been said, b would be given by b = bm

δ
cmod 2. Unfor-

tunately, when d
δ

is nearly integer, a little noise is enough to make the bit derived form m
different from the bit derived from d, thus accounting for a large proportion of the overall
bit error rate.

To avoid this problem, we slightly change the definition of b to b = bm−ε
δ

cmod 2 where
ε = δ − bδc − 1

2
. That way, d is right in the middle of the quantization interval, and our

chances of m being quantized the same way as d are maximized. However, we now have to
send ε as part of the redundancy information, so we are giving all the low order bits of d to
a potential adversary. Unfortunately, there doesn’t yet seem to be a good way around this
problem.

We shall assume here that the bits of ε don’t give an adversary any information about
the bit b that is extracted from d. The assumption is in fact wrong when δ grows to be
near the standard deviation of d across chips. The right choice for δ will be discussed in
Section 4.5.3.

4.5.2 Correcting

Now that we have converted the compensated measurements into bits, we will try to correct
the bits to get rid of all errors. We will do that using a product of a modified Hamming
code [13] and a Parity check.

Modified Hamming Codes

We use a variant of Hamming codes. The variation we use is possible because, in our
application, there are no errors in the redundancy bits. To compute the modified Hamming
code of a 2k − 1 bit message represented by a column vector over the order two finite field,
we multiply it by a k row matrix whose ith column is the binary representation of i. For
example, the redundancy information for 1011001 is computed by:
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The redundancy information for 1011001 is therefore 001.
This code can correct a single error on non-redundancy bits. To correct an error, com-

pute the redundancy information for the erroneous message, and exclusive-or it with the
redundancy information for the correct message. The result is the binary encoding of the
offset of the erroneous bit in the message, unless it is zero, in which case there is no error.
For example,







0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

































1
0
0
1
0
0
1



























=







0
1
0







and 010⊕ 001= 011. It is indeed the third bit that had been changed. Of course, if more
than two errors are present, the modified Hamming code fails.

By adding a parity bit, it is possible to detect but not correct a second error. The second
error is apparent because when two bits are erroneous, the parity bit is correct, but the
modified Hamming code indicates an error.

The modified Hamming code can be applied to messages whose length cannot be ex-
pressed as 2k − 1 simply by padding the message with zeroes.

The Product Code

The modified Hamming code does not provide sufficient correction for our purposes. We will
therefore augment it by creating a product code.

We arrange w · h bits into a w-column, h-row array. We use a modified Hamming code
and a parity bit on each row, and a parity bit on each column.

As long as there is only one error per row, the modified Hamming codes are able to
correct all the errors. However, if one row contains two errors, the Hamming code fails. In
that case, the parity bit on the row tells us that the row contains two errors. If only one
row contains two errors, the parity bits on the columns allow us to determine which bits of
the faulty row are incorrect. If more than one row contains two errors, or one row contains
more than two errors, the code fails.4

An Optimization

The product code can still be slightly optimized. Indeed, the row parity bits are redundant
most of the time because we can directly calculate them from a corrected row of bits. The
only case where we cannot calculate them all, but we can still correct all the errors, is when
one row contains two errors, and the other rows contain at most one error. In that case, if
we calculate the row-parities from the row data, exactly one of the parities will be wrong.
That means that instead of storing the parities, we can use a modified Hamming code on

4There are in fact a number of other rare cases where correction can still take place. We shall disregard
them in our calculations.
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the row-parities, and only store the redundancy information on what the row-parities should
be. In this way we save a few extra bits.

Constraints

Not any choice of w and h will suit our purposes. We would like to present the output hash
with at least B identification bits that the adversary doesn’t have. A current typical value
of B that avoids brute force attacks is around 80. Moreover, we would like the probability
of successfully correcting all the errors, and getting the correct response to be high.

It will turn out that with the current error correction method, and the experimental
data we have, the constraint on the number of identification bits cannot be met without
lowering the probability of getting the correct response below about 50%. This implies that
we will have to adapt CPUF protocols so that they try a few different challenges until the
PUF gives the right response to one of them. Trying the same challenge multiple times
isn’t good enough because the error is predominantly due to slowly changing environmental
parameters, rather than noise that changes each time a measurement is made. The quantity
we will try to minimize in choosing w and h is Bexp, the expected number of measurements
to perform on the PUF.

To compute the number of identification bits, we assume an error rate p for the adversary.
That error rate tells us the adversary’s maximum channel capacity C = 1+ p · log

2
(p)+ (1−

p) · log2(1 − p). We consider that the adversary has Ba = C · w · h + R bits of information,
where R = w+h·blog2(w)+1c+blog2(h)+1c is the number of redundancy bits. The number
of identification bits we have extracted from the PUF is therefore the difference between the
number of bits in the block, and the number of bits the adversary has: w ·h−Ba. In general,
many blocks of w by h bits must be sent before B bits of identification information are
available. We will call Btot the number of bits that are needed to get B information bits.

Computing the probability of correctly correcting all the bits that are needed to gather B
information bits, knowing the error rate q for the PUF measurements, is a relatively simple
application of Bernoulli distributions, and is left to the reader. Essentially, the reader must
compute the probability of correcting a given row and the probability of detecting two errors
in a given row. With these probabilities, he can compute the probability of detecting two
errors in more than one row and the probability of having more than two errors in any
row. These easily give him a lower bound on the probability of correcting a whole block.
Knowing how many blocks must be read, one can deduce the probability Psucc of getting all
the blocks right. From there the expected number of physical measurements to perform can
be deduced.

4.5.3 Orders of Magnitude

The data from Figure 3-22 can be used to find values of p and q, given δ. The value of δ
2

corresponds to a vertical line on the graph. For values above about 60%, p and q can be
read directly off that line of the graph. For p one should take the value of the highest plot
that corresponds to two different FPGAs. For q one should take the value of the lowest plot
that corresponds to the same FPGAs, in environmental conditions in which we want to be
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Case δ/2 (ppm) p q h w Psucc Btot Bexp

1 ≈ 250 55 % 70 % 10 3 4.7 · 10−29 % 870 1.9 · 1033

2 ≈ 500 68 % 90 % 30 3 20 % 540 2681
3 ≈ 1500 95 % 99 % 31 30 58 % 930 1617

Figure 4-2: Some parameters for the ECC. Note that in case 1, the value of p is an approx-
imation as the value is too low to be read directly off the graph. In case 3, the value of p
is too high for the assumption that the low order bits of the measurement reveal nothing
about the bit we extract to be true.

able to recognize it. Some examples are given in Figure 4-2, along with the optimum error
correction solution using our code, for those parameters.

The optimum error correction solution is computed by a simple C program that calculates
the expected number of physical measurements as a function of w and h. It considers
that a whole number of w by h blocks must be used. The program involves a few small
approximations, so the numbers presented here are slightly conservative.

Figure 4-2 reveals that it is easier to find a good tradeoff when there are few measurement
errors, so δ should be chosen accordingly. Cases 2 and 3 show that as long as the measurement
errors are limited, adequate solutions can be found for a wide range of values of δ. Of course,
if δ is too large, both p and q are so close to one that error correction is impossible once
again.

Assuming a 100 MHz clock, and 2 × 10000 cycles per measurement, on the order of
3 CPUF evaluations can be carried out per second. Clearly there is a need for further
improvement.

4.5.4 Optimizations

The main optimization that we can try to make to our error correction strategy, is to extract
two or three bits from each compensated measurement by reducing modulo four or eight.
Each bit from a measurement corresponds to its own value of δ, and therefore, to its own
values of p and q. It is therefore desirable to correct the three levels of bits independently
of each other. Each one will have its own settings for w and h, and a global optimization of
block sizes should be done. By extracting more information in this way, it should be possible
to get away with fewer measurements.

When using multiple bits per measurement, errors will often be correlated. In particular,
if a high order bit is found to be wrong, we can expect the lower order bits to be random.
Therefore we can consider them as erasures, and try to take the erasure information into
account to correct more errors on the low order bits.

4.6 Multiple Rounds

To add even more complexity to the attacker’s problem, it would be possible to use the
PUF circuit multiple times to produce one response. The corrected response from one round
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would be fed back into the PUF circuit as a challenge. After a few rounds have been done,
all their outputs could get merged together along with the initial challenge, the personality
and the chip’s identifier and passed through a random hash function to produce the global
response.
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Chapter 5

CRP Infrastructures

In this chapter, we describe an infrastructure that allows arbitrary remote users to get
CRPs for a CPUF equipped device. This infrastructure addresses the PUF equivalent of
the key distribution problem. First we will present the architecture, then the corresponding
protocols, and finally a few applications.

5.1 Architecture

5.1.1 Main Objective

Figure 5-1 illustrates the basic model we will be working in.

• The user is in the possession a list of CRPs for a CPUF device that she knows to be
conforming to its specification. Only the user and the device know the responses to
the CRPs on the list. However, we assume that the challenges are public.

• The user and the CPUF device are connected to one another by an untrusted commu-
nication channel that is neither private nor authenticated.

• The user wants to share a secret with the CPUF device to engage in some cryptographic
protocol with it.

• The adversary would like to know the shared secret so that he can abuse the crypto-
graphic protocol.

untrusted
communication

channel
CPUF chipUser

Figure 5-1: Model for Applications
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The next section will give an overview of how the user gets her CRPs. To get her CRPs,
she will have to share a secret with the PUF. Securing communication between the user and
the PUF is easy once they have a shared secret. The last problem, establishing a shared
secret, seems to be the central problem that has to be solved.

It turns out that without control, it is impossible to establish a shared secret with the
PUF. In fact, having a list of CRPs where the challenges are public but the responses are
only known to the user is also impossible without control. In Section 5.2, we shall see some
very general control primitives that restrict access to the PUF just enough to make secret
sharing with the PUF possible.

5.1.2 CRP Management Primitives

In our models for CRP management, the user does not have CRPs for the CPUF yet, and
would like to establish her own private list of CRPs. The following three new principals will
participate in establishing that list:

• Manufacturer : the manufacturer is the principal that made the CPUF device. Just
after making it, the manufacturer had secure access to the device, through direct
physical contact. The manufacturer is trusted by everybody because he has the power
to embedded a back door in the device.1

• Owner : the owner is the principal who has the device in his possession, and who can
give access to the device to other principals. The owner is assumed to have a private
list of CRPs for the device. By extension, it will sometimes be possible for principals
other than the legal owner to participate in protocols as the owner. This would happen
if the legal owner gives access to his device to Alice, and Alice were then to give Bob
access to the device through her connection to it. Alice would be the owner in the
second part of the process.

• Certifier : the certifier has its own private list of CRPs for the device, is trusted by the
user, and wants to help the user get some CRPs of her own.

The principals mentioned above are by no means absolute. Except for the manufac-
turer, these principals can be interchanged many times during the lifetime of a PUF.

We have 5 scenarios that allow us to set up an CRP management infrastructure: boot-
strapping, renewal, introduction, private renewal and anonymous introduction.

Bootstrapping

Figure 5-2 illustrates bootstrapping. When a CPUF has just been produced, the manu-
facturer generates a set of CRPs for it. The manufacturer knows that these CRPs refer
to a correct PUF device, because he has just built (and tested) the device. Since he is in
physical contact with the device in a secure location, there is a secure channel between the
manufacturer and the device.

1Trust in the manufacturer could be reduced by reverse-engineering a random sample of devices to check
that they match their specification.
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Manufacturer CPUF chip

Figure 5-2: Model for Bootstrapping

Renewal

Figure 5-3 illustrates renewal. A user has a private list of CRPs for a CPUF device, and
would like to get more CRPs. The user uses a CRP to open a secure channel to the device,
and then gets the device to generate a new CRP and return the result. Since the channel is
secure, only the user knows the corresponding response. We will see in Section 5.2 why we
can assume that that CRP isn’t known to somebody else yet.

untrusted
communication

channel
CPUF chipUser

Figure 5-3: Model for Renewal

Introduction

Figure 5-4 illustrates introduction. A user wants to get a CRP for a CPUF device. The
certifier has a private list of CRPs for the device. The user trusts the certifier, and has a
classical way of opening a secure channel with him.

Certifier User

Figure 5-4: Model for Introduction

In introduction, the certifier simply gives a CRP to the user over a secure channel, and
removes the CRP from his own list of private CRPs and forgets it.

Private Renewal

The certifier initially knows the CRP that the user is given during introduction. If he
doesn’t forget that CRP as he should then the user doesn’t actually have a private CRP for
the device. The result is that the manufacturer can read all the traffic between the user and
the device. Private renewal allows the user to distance herself from the certifier.
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Figure 5-3 also applies for private renewal. The user is assumed to already have a CRP
but she isn’t the only person to have that CRP. She would like to have a CRP that she
shares with nobody else.

If the certifier is willing to do an active attack, then there is nothing the user can do.
That is acceptable, as there must be some trust between the user and the certifier if the
user is to believe that the CRP she was given actually corresponds to a real device. Private
renewal protects the user from passive attacks from the certifier.

Essentially, the user’s CRP is used to open a secure channel with the device (that the
certifier can eavesdrop on). The user sends the device her public key. The device then
generates a new CRP and sends it back to the user encrypted with her public key. At that
point the user has a CRP of her very own. We will see in Section 5.2 why the certifier can’t
simply ask the device for the response to the user’s new challenge.

Anonymous Introduction

Figure 5-5 illustrates anonymous introduction. The user wants to get a CRP of her own for
a CPUF device. A certifier, which the user trusts to give her a valid CRP, has a list of CRPs
for a whole collection of devices, including the one the user wants a CRP for. The owner of
the device also wants the user to get a CRP for his device from the certifier, but he doesn’t
want anybody (including the certifier) but the user to know who is getting the CRP. The
user doesn’t trust the owner to give her a valid CRP.

The aim is to keep secret, for privacy reasons, all information about who the owner is
letting his CPUF device interact with. The difficulty is that the user wants the certifier to
vouch for the CRPs that he is getting. This scenario will seem clearer when it is studied
in detail in Section 5.2. Anonymous Introduction is only possible if the certifier has a huge
load of certification to do, thus preventing traffic analysis attacks.

certifier owner

untrusted
communication

channel

CPUF chipuser

Figure 5-5: Model for Anonymous Introduction

5.1.3 Putting it all Together

Just to clarify how these scenarios fit together, we shall look at a simple example.
One day, a SPUF equipped device called Robo is made at a plant owned by Intal. As

the device comes off the production line, bootstrapping is used to collect a list of CRPs from
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it. Later that day, Intal participates in introduction protocols with a number of certification
agencies, including Verasign, who add Robo to their databases.

A few weeks later, Alice buys Robo, and wants to make sure that it is a genuine product.
She contacts Verasign and provides Robo’s serial number. Verasign realizes that it has never
done private renewal with Robo. So it does private renewal to get a CRP for Robo that it
shares with nobody, and finally renewal to increase the list of CRPs that it has. Finally,
it provides one of these CRPs to Alice via introduction. Alice can use her CRP to check
that Robo hasn’t been tampered with since it was manufactured. She need not do private
renewal as she is in physical contact with Robo and therefore has a secure link to it.

Once the novelty of Robo has worn off, Alice decides that she would like to rent access
to it to remote users. Bob is interested, he does introduction with Verasign to get a CRP
for Robo, followed by private renewal so that he has a CRP of his very own. He then uses
renewal to generate more CRPs. Finally he uses some of those CRPs to establish a shared
secret with Robo, and gets to work.

Bob soon realizes that he has rented too much of Robo’s time, so he would like to sub-rent
part of his quota. Charlie is interested in sub-renting, but unfortunately, Bob has agreed
with Alice not to do any sub-renting and is afraid of being caught if he disobeys. Fortunately,
he can participate in anonymous introduction, with himself as the owner, Charlie as the user,
and Verasign as the certifier. Charlie uses renewal to generate more CRPs from the CRP
that he was given, and starts using Robo.

One day, Bob meets Charlie in person, and realizes that he is in fact Alice. Fortunately,
the anonymity protocol did its job, and Alice never even realized that Bob had rented some
of Robo’s time back to her.

The story ends here, but many other twists could have been added. For example, Bob
could have acted as a certifier on a day when the connection to Verasign was down; or Alice
could have rented Robo to Bob’s friend Dave without Bob and Dave realizing that they were
both using the same device.

5.2 Protocols

We will now describe the protocols that are necessary in order to use PUFs. These protocols
must be designed to make it impossible to get the response to a chosen challenge. Indeed, if
that were possible, then we would be vulnerable to a man-in-the-middle attack that breaks
nearly all applications. The strategy that we describe is designed to be deterministic and
state-free to make it as widely applicable as possible. Slightly simpler protocols are possible
if these constraints are relaxed.

5.2.1 Man-in-the-Middle Attack

Before looking at the protocols, let us have a closer look at the man-in-the-middle attack
that we must defend against. The ability to prevent this man-in-the-middle attack is the
fundamental difference between controlled and uncontrolled PUFs.

The scenario is the following. Alice wants to use a CRP that she has, to engage in a
cryptographic protocol with a CPUF (we are assuming that the CRP is the only thing that
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Alice and the CPUF have in common). Oscar, the adversary, has access to the PUF, and
has a method that allows him to extract from it the response to a challenge of his choosing.
He wants to impersonate the CPUF that Alice wants to interact with.

At some point, in her interaction with the CPUF, Alice will have to give the CPUF the
challenge for her CRP so that the CPUF can calculate the response that it is to share with
her. Oscar can read this challenge because up to this point in the protocol Alice and the
CPUF do not share any secret. Oscar can now get the response to Alice’s challenge from the
CPUF, since he has a method of doing so. Once Oscar has the response, he can impersonate
the CPUF because he knows everything Alice knows about the PUF. This is not at all what
Alice intended.

We should take note that in the above scenario, there is one thing that Oscar has proven
to Alice. He has proven that he has access to the CPUF. In some applications, such as the
key cards in Section 2.2, proving that someone has access to the CPUF is probably good
enough. However, for more powerful examples such as certified execution that we will cover
in Section 5.3.2, where we are trying to protect Alice from the very owner of the CPUF, free
access to the PUF is no longer a sufficient guarantee.

More subtle forms of the man-in-the-middle attack exist. Suppose that Alice wants to
use the CPUF to do what we will refer to in Section 5.3.2 as certified execution. Essentially,
Alice is sending the CPUF a program to execute. This program executes on the CPUF, and
uses the shared secret that the CPUF calculates to interact with Alice in a secure way. Here,
Oscar can replace Alice’s program by a program of his own choosing, and get his program
to execute on the CPUF. Oscar’s program then uses the shared secret to produce messages
that look like the messages that Alice is expecting, but that are in fact forgeries.

Fortunately, all these attacks can be defeated. We shall now see how access to the PUF
can be restricted by control to thwart the man-in-the-middle attack.

5.2.2 Defeating the Man-in-the-Middle Attack

Basic CPUF Access Primitives

In the rest of this section, we will assume that the CPUF is able to execute some form of
program in a private (nobody can see what the program is doing) and authentic (nobody
can modify what the program is doing) way.2 In some CPUF implementations where we do
not need the ability to execute arbitrary algorithms, the program’s actions might in fact be
implemented in dedicated hardware or by some other means — the exact implementation
details make no difference to the following discussion.

In this paper we will write programs in pseudo-code in which a few basic functions are
used:

• Output(arg1, ...) is used to send results out of the CPUF. Anything that is sent out
of the CPUF is potentially visible to the whole world, except during bootstrapping,
where the manufacturer is in physical possession of the CPUF.

2In fact the privacy requirement can be substantially reduced. Only the key material that is being
manipulated needs to remain hidden for these protocols to work.
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Figure 5-6: This diagram shows the different ways of moving between Pre-Challenges, Chal-
lenges, Responses and Shared-Secrets. The dotted arrow indicates what the PUF does, but
since the PUF is controlled, nobody can go along the dotted arrow directly. GRP and GSP
are the programs that call GetResponse and GetSecret, respectively. The challenge and the
response depend on the GRP that created them, and the shared secret depends on the GSP.

• EncryptAndMAC(message, key) is used to encrypt and MAC message with key.

• PublicEncrypt(message, key) is used to encrypt message with the public key key.

• MAC(message, key) MACs message with key.

The CPUF’s control is designed so that the PUF can only be accessed by programs, and
only by using two primitive functions: GetResponse and GetSecret.3 If f is the PUF, and
h is a publicly available random hash function (or in practice some pseudo-random hash
function) then the primitives are defined as:

GetResponse(PreChallenge) = f (h (h (Program) , P reChallenge))

GetSecret(Challenge) = h (h (Program) , f (Challenge))

In these primitives, Program is the program that is being run. Just before starting the
program, the CPUF calculates h(Program), and later uses this value when GetResponse
and GetSecret are invoked. We shall show in the next section that these two primitives are
sufficient to implement the CRP management scenarios that were detailed in Section 5.1.2.
We shall also see that GetResponse is used for CRP generation while GetSecret is used by
applications that want to produce a shared secret from a CRP. Therefore, in a PUF that uses
error correction, GetResponse would produce the redundancy information that is needed for
error correction, while GetSecret would use it (see Section 4.5).

Figure 5-6 summarizes the possible ways of going between pre-challenges, challenges,
responses and shared secrets. In this diagram, moving down is easy. You just have to

3If a strong random number generator is assumed, then GetResponse can actually be replaced by a
GetCRP function that takes no arguments, and returns a random CRP. The GetCRP function would be
used everywhere the GetResponse function is used. It is not clear what advantage this interface would have,
the main difference being that a strong random-number generator is now needed. We have mentioned it
mainly for completeness.
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calculate a few hashes. Moving up is hard because it would involve inverting hashes that
are one-way. Going from left to right is easy for the program whose hash is used in the
GetResponse or GetSecret primitives, and hard for all other programs. Going from right to
left is hard if we assume that the PUF can’t invert a one-way function. We will not use this
fact as the adversary’s task wouldn’t be easier if it was easy.

Using a CRP to Get a Shared Secret

To show that the man-in-the-middle attack has been defeated, we shall show that a user
who has a CRP can use it to establish a shared secret with the PUF (previously, the man-
in-the-middle could determine the value of what should have been a shared secret).

The user sends a program like the one below to the CPUF, where Challenge is the
challenge from the CRP that the user already knows.

begin program

Secret = GetSecret(Challenge);

/* Program that uses Secret as a shared secret with the user. */

end program

Note that h (program) includes everything that is contained between begin program

and end program. That includes the actual value of Challenge. The same code with a
different value for Challenge would have a different program hash.

The user can determine Secret because he knows the response to Challenge, and so
he can calculate h (h (program) , response). Now we must show that a man-in-the-middle
cannot determine Secret.

By looking at the program that is being sent to the CPUF, the adversary can determine
the challenge from the CRP that is being used. This is the only starting point he has to
try to find the shared secret. Unfortunately for him, the adversary cannot get anything
useful from the challenge. Because the challenge is deduced from the pre-challenge via a
random function, the adversary cannot get the pre-challenge directly. Getting the Response
directly is impossible because the only way to get a response out of the CPUF is starting
with a pre-challenge. Therefore, the adversary must get the shared secret directly from the
challenge.

However, only a program that hashes to the same value as the user’s program can get
from the challenge to the secret directly by using GetSecret (any other program would get a
different secret that can’t be used to find out the response or the sought after secret because
it is the output of a random function). Since the hash function that we are using is collision
resistant, the only program that the attacker can use to get the shared secret is the user’s
program. If the user program is written in such a way that it does not leak the secret to the
adversary, then the man-in-the middle attack fails. Of course, it is perfectly possible that
the user’s program could leak the shared secret if it is badly written. But this is a problem
with any secure program, and is not specific to PUFs. Our goal isn’t to prevent a program
from giving away its secret but to make it possible for a well written program to produce a
shared secret.
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5.2.3 Challenge Response Pair Management Protocols

Now we shall see how GetResponse and GetSecret can be used to implement the key man-
agement primitives that were described in Section 5.1.2.4 It is worth noting that the CPUF
need not preserve any state between program executions.

Bootstrapping

The manufacturer makes the CPUF run the following program, where PreChall is set to
some arbitrary value.

begin program

Response = GetResponse(PreChall);

Output(Response);

end program

The user gets the challenge for his newly created CRP by calculating h(h(program),
PreChall), the response is the output of the program.

Renewal

The user sends the following program to the CPUF, where PreChall is set to some arbitrary
value, and OldChall is the challenge from the CRP that the user already knows.

begin program

NewResponse = GetResponse(PreChall);

Output(EncryptAndMAC(NewResponse, GetSecret(OldChall)));

end program

Only the user and the CPUF have the initial CRP needed to compute GetSecret(OldChall).
It is their shared secret. The user can be sure that only he can get NewResponse, because it
is encrypted with the shared secret. An adversary can change OldChall to a challenge that
he knows the response to, but since OldChall is part of the program, the newly created CRP
would be different from the one that the adversary is trying to hijack (because GetResponse
combines the pre-challenge with a random hash of the program that is being run). The MAC
proves that the NewResponse that the user is getting originated from the CPUF. The user
gets the challenge for his newly created CRP by calculating h(h(program), PreChall).

4The implementations that are presented contain the minimum amount of encryption to ensure security.
A practical implementation would probably want to include nonces to ensure message freshness, and would
encrypt and MAC as much information as possible. In particular, it is not necessary in our model to encrypt
the pre-challenges that are used to produce CRPs. Nevertheless hiding the pre-challenge (and therefore the
challenge) would make it harder for an adversary to mount an attack in which he manages to forcibly extract
the response to a specific challenge from the CPUF.
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Introduction

Introduction is particularly easy. The certifier simply sends a CRP to the user over some
agreed upon secure channel. In many cases, the certifier will use renewal to generate a new
CRP, and then send that to the user. The user will then use private renewal to produce a
CRP that the certifier does not know.

Private Renewal

The user sends the following program to the CPUF, where PreChall is set to some arbitrary
value, OldChall is the challenge from the CRP that the user already knows, and PubKey is
the user’s public key.

begin program

NewResponse = GetResponse(PreChall);

Message = PublicEncrypt(NewResponse, PubKey);

Output(Message, MAC(Message, GetSecret(OldChall)));

end program

The user can be certain that only he can read the NewResponse, because it is encrypted
with his public key. If the adversary tries to replace PubKey by his own public key, he
will get the response to a different challenge because PubKey is part of the program, and
therefore indirectly changes the output of GetResponse. The MAC can only be forged by
the party that the user is sharing the old CRP with (probably a certifier that the user just
performed introduction with). If we assume that that party is not doing an active attack,
then we know that the MAC was produced by the CPUF, and therefore, the NewResponse

is indeed characteristic of the CPUF. The user gets the challenge for his newly created CRP
by calculating h(h(program), PreChall).

5.2.4 Anonymity Preserving Protocols

In Section 4.4, we showed how a CPUF could be made to take on many different personalities
in order to preserve the anonymity of its owner. People don’t want their CPUF to give
away the fact that the same person is gambling on gambling.com and doing anonymous
computation for SETI@home. In this section, we shall add a personality selector to the PUF
as in Figure 4-1. We shall call the personality selector PersonalitySel. The person who is
trying to hide his identity will be called the owner of the CPUF, but as we shall see at the
end of Section 5.2.4 the notion is more general than this. We shall assume that all sources
of information concerning the identity of the CPUF’s owner have been eliminated by other
protocol layers, and shall focus on preventing the CPUF from leaking his identity. We shall
also assume that there are enough people using anonymized introduction that traffic analysis
(correlating the arrival of a message at a node with the departure of a message a little while
later simply from timing considerations) is unusable.

Programs must not be given permission to freely write to PersonalitySel, or else they
could put the CPUF into a known personality and defeat the purpose of having a personality
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selector. We shall therefore describe how the value of PersonalitySel is controlled. First,
two new primitive functions are provided by the CPUF:

• ChangePersonality(Seed) sets the personality to h(PersonalitySel, Seed). Where
h is a random hash function.

• RunProg(Program) runs the argument without changing PersonalitySel.

Moreover, when a program is loaded into the CPUF from the outside world, and run (as
opposed to being run by RunProg), PersonalitySel is set to zero. We shall call this the
default personality.

The pseudo-code uses a few extra primitive functions:

• Decrypt(mesg, key) is used to decrypt mesg that was encrypted with key.

• HashWithProg(x) computes h(h(program), x). This function reads the area where
the CPUF is storing the hash of the program.

• Hash(...) is a random hash function.

• Blind(mesg,fact) is used to apply the blinding factor fact to mesg. See Section 5.2.4
for a brief description of blinding.

Choosing the Current Personality

When the CPUF’s owner wants to show a personality other than his CPUF’s default person-
ality, he intercepts all programs being sent to the CPUF and encapsulates them in a piece
of code of his own:

ESeed = /* the personality seed encrypted with Secret */

EProgram = /* the encapsulated program encrypted with Secret */

begin program

Secret = GetSecret(Challenge);

Seed = Decrypt(Eseed, Secret);

Program = Decrypt(EProgram,Secret);

ChangePersonality(Seed);

RunProg(Program);

end program

Note that the line that precedes begin program is a piece of data that accompanies
the program but that does not participate in the hash of the program. If EProgram were
included in the hash, then we would not be able to encrypt it because the encryption key
would depend on the encrypted program. Other values that appear are Seed, an arbitrarily
selected seed; and Challenge, the challenge of one of the owner’s CRPs.
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By encapsulating the program in this way, the owner is able to change the personality
that the CPUF is exhibiting when it runs the user’s program. There is no primitive to allow
the user’s program to see the personality that it is using, and the seed that is used with
ChangePersonality is encrypted so the user has no way of knowing which personality he is
using. The user’s program is encrypted, so even by monitoring the owner’s communication,
the user cannot determine if the program that is being sent to the CPUF is his own program.

Anonymous Introduction

The anonymous introduction protocol is much more complicated than the other protocols
we have seen so far. We will only sketch out the details of why it works. This protocol uses
blinding, a description of which can be found in [24].

The essential idea of blinding is this: Alice wants Bob to sign a message for her, but
she does not want Bob to know what he has signed. To do this Alice hides the message
by applying what is called a blinding factor. Bob receives the blinded message, signs it
and returns the signed blinded message to Alice. Alice can then remove the blinding factor
without damaging Bob’s signature. The resulting message is signed by Bob, but if Bob signs
many messages, he cannot tell which unblinded message he signed on which occasion.5

Here is the anonymous introduction protocol:

1. The owner collects a challenge from the certifier, and the user’s public key. He produces
the following program from Figure 5-7 that is sent to the CPUF.

2. The owner decrypts the output from the CPUF, checks the MAC, and passes Mesg5

on to the certifier, along with a copy of the program (only the part that participates
in the MAC) encrypted with the certifier’s public key.

3. The certifier decrypts the program, checks that it is the official anonymous introduction
program, then hashes it to calculate CertSecret. He can then verify that Mesg4 is
authentic with the MAC. He finally signs Mesg4, and sends the result to the owner.

4. The owner unblinds the message, and ends up with a signed version of Mesg3. He
can check the signature, and the MAC in Mesg3 to make sure that the certifier isn’t
communicating his identity to the user. He finally sends the unblinded message to the
user. This message is in fact a version of Mesg3 signed by the certifier.

5. The user checks the signature, and decrypts Mesg2 with his secret key to get a CRP.

Remarks:

• UserPubKey and CertChallenge must be encrypted, otherwise it is possible to correlate
the message that Alice sends to the CPUF with the certifier’s challenge or with the
user’s public key.

5In this protocol, to avoid over-complication, we have assumed that Alice does not need to know Bob’s
public key in order to sign a message. For real-world protocols such as the one that David Chaum describes
in [7] this is not true. Therefore, an actual implementation of our anonymous introduction protocol might
have to include the certifier’s public key in the program that is sent to the CPUF. In that case, it should be
encrypted to prevent correlation of messages going to the CPUF with a specific transaction with the certifier.
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/* Various values encrypted with OwnerSecret. */

ESeed = ...

EPreChallengeSeed = ...

EUserPubKey = ...

ECertChallenge = ...

begin program

OwnerSecret = GetSecret(OwnerChallenge);

Seed = Decrypt(ESeed, OwnerSecret);

PreChallengeSeed = Decrypt(EPreChallengeSeed, OwnerSecret);

UserPubKey = Decrypt(EUserPubKey, OwnerSecret);

CertChallenge = Decrypt(ECertChallenge, OwnerSecret);

CertSecret = GetSecret(CertChallenge);

PreChallenge = Hash(UserPubKey, PreChallengeSeed);

NewChallenge = HashWithProg(PreChallenge);

ChangePersonality(Seed);

NewResponse = GetResponse(PreChallenge);

Mesg1 = (NewChallenge, NewResponse);

Mesg2 = PublicEncrypt(Mesg1, UserPubKey);

Mesg3 = (Mesg2, MAC(Mesg2, OwnerSecret));

Mesg4 = Blind(Mesg3, OwnerSecret);

Mesg5 = (Mesg4, MAC(Mesg4, CertSecret));

Mesg6 = EncryptAndMAC(Mesg5, OwnerSecret);

Output(Mesg6);

end program

Figure 5-7: The anonymous introduction program.

• Seed must be encrypted to prevent the certifier or the user from knowing how to
voluntarily get into the personality that the user is being shown.

• PreChallengeSeed must be encrypted to prevent the certifier from finding out the
newly created challenge when he inspects the program in step 3.

• The encryption between Mesg5 and Mesg6 is needed to prevent correlation of the mes-
sage from the CPUF to the owner and the message from the owner to the certifier.

Interestingly, we are not limited to one layer of encapsulation. A principal who has
gained access to a personality of a CPUF through anonymous introduction can introduce
other parties to this PUF. In particular, he can send the signed CRP that he received back to
the certifier and get the certifier to act as a certifier for his personality when he anonymously
introduces the CPUF to other parties.
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5.2.5 Protocols in the Open-Once Model

In designing these protocols, we have assumed that the adversary is unable to read or tamper
with the digital logic contained in the device. In fact, it very easy to extend the protocols
to the slightly less restrictive open-once model from Section 2.3.3.

In the open-once model, the private and authentic execution environment no longer
stands, since an invasive adversary can choose to open the device at any time to read and
tamper at will. However, the next time the PUF is used, it will return an incorrect value. A
user who knows two CRPs can exploit this fact to check all his transactions just after they
have been performed:

1. He uses his first CRP to carry out the transaction he initially intended to do.

2. He uses his second CRP in a transaction in which the CPUF device simply proves that
it knows the response.

If the second transaction completes successfully, the user knows that the first one took
place in a private and authentic execution environment. Indeed, assume that the adversary
doesn’t initially know the CRPs. Then in order to tamper with the first transaction or
eavesdrop on it, he has to open the device while the transaction is taking place. In that
case, the second transaction must fail because the PUF is broken, and the adversary doesn’t
know the second CRP. So by contradiction, the first transaction was carried out in a private
and authentic way. The assumption that the adversary doesn’t know the initial CRPs can
be shown by induction on the sequence of transactions that provided the user with his two
CRPs in the first place, assuming that the proper protocols were followed as described in
Section 5.2.

5.3 Applications

We believe there are many applications for which CPUFs can be used, and we describe a few
here. Other applications can be imagined by studying the literature on secure coprocessors,
in particular [29]. We note that the general applications for which this technology can be
used include all the applications today in which there is a single symmetric key on the chip.

5.3.1 Smartcard Authentication

The easiest application to implement is authentication. One widespread application is smart-
cards. Current smartcards have hidden digital keys that can be extracted using various at-
tacks [4]. With a unique PUF on the smartcard that can be used to authenticate the chip, a
digital key is not required: the smartcard hardware is itself the secret key. This key cannot
be duplicated, so a person can lose control of a smartcard, retrieve it, and continue using it.
With a today’s cards, the card should be canceled and a new one made because somebody
might have cloned the card while it was out of its owner’s control.

The following basic protocol is an outline of a protocol that a bank could use to authen-
ticate messages from PUF smartcards. This protocol guarantees that the message the bank
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receives originated from the smartcard. It does not, however authenticate the bearer of the
smartcard. Some other means such as a PIN number or biometrics must be used by the
smartcard to determine if its bearer is allowed to use it.

1. The bank sends the following program to the smartcard, where R is a single use number
and Challenge is the bank’s challenge:

begin program

Secret = GetSecret(Challenge);

/* The smartcard somehow generates Message to send to the bank. */

Output(Message, MAC((Message, R), Secret));

end program

2. The bank checks the MAC to verify the authenticity and freshness of the message that
it gets back from the PUF.

The number R is useful in the case where the smartcard has state that is preserved
between executions. In that case, it is important to ensure the freshness of the message.

If the privacy of the smartcard’s message is a requirement, the bank can also encrypt the
message with the same key that is used for the MAC.

5.3.2 Certified execution

At present, computation power is a commodity that undergoes massive waste. Most com-
puter users only use a fraction of their computer’s processing power, though they use it in a
bursty way, which justifies the constant demand for higher performance. A number of orga-
nizations, such as SETI@home and distributed.net, are trying to tap that wasted computing
power to carry out large computations in a highly distributed way. This style of computation
is unreliable as the person requesting the computation has no way of knowing that it was
executed without any tampering.

With chip authentication, it would be possible for a certificate to be produced that proves
that a specific computation was carried out on a specific chip. The person requesting the
computation can then rely on the trustworthiness of the chip manufacturer who can vouch
that he produced the chip, instead of relying on the owner of the chip.

There are various ways in which the system could be used. The computation could be
done directly on the PUF equipped chip. In that case, the computing power is relatively
low, as is often the case for single chip applications. Alternatively, it can be done on a faster,
insecure chip that is being monitored in a highly interactive way by supervisory code on the
secure chip [29]. The best combination of performance and security can probably be reached
by using a PUF equipped processor that uses checked external RAM [10].

To illustrate this application, we present a simple example in which the computation is
done directly on the chip. A user, Alice, wants to run a computationally expensive program
over the weekend on Bob’s single-chip, single-task computer. The single chip on Bob’s
computer contains a CPUF, and Alice has already established CRPs with the PUF chip.
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1. Alice sends the following program to the CPUF, where Challenge is the challenge
from her CRP:

begin program

Secret = GetSecret(Challenge);

/* The certified computation is performed, the result is placed in Result. */

Output(Result, MAC(Result, Secret));

end program

2. The Alice checks the MAC to verify the authenticity of the message that it gets back
from the PUF.

Unlike the smartcard application, we did not include a single use random number in this
particular protocol. This is because we are assuming that we are doing pure computation
that cannot become stale (any day we run the same computation, it will give the same
result).

In this application, Alice is trusting that the chip in Bob’s computer performs the compu-
tation correctly. This is easier to ensure if all the resources used to perform the computation
(memory, CPU, etc.) are on the CPUF chip, and intertwined with the PUF. We are currently
researching and designing more sophisticated architectures in which the CPUF chip can se-
curely utilize off-chip resources using some ideas from [16] and a memory authentication
scheme that can be implemented in a hardware processor [11].

There is also the possibility of a central CPUF chip using the capabilities of other net-
worked CPUF chips and devices using certified executions. The central chip would have
CRPs for each of the computers it would be using, and perform computations using proto-
cols similar to the one described in this section.
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Chapter 6

Physically Obfuscated Keys

In trying to make a PUF, we have found ways of extracting information from complex
physical systems, in a way that is reliable, and that resists attackers trying to extract the
information through invasive means. In this chapter, we use the same techniques, but instead
of using them to make a PUF, from which we can extract a limitless supply of responses, we
choose to only extract one (or possibly a few responses).

6.1 Who Picks the Challenge?

The applications that we have been considering for now involve interaction between a PUF
equipped device and a remote party who provides a challenge. There are applications in
which that model isn’t adequate. For example, a company might want to produce a chip
that contains its latest video compression algorithm. They would like that chip to work
right out of the box: connect an uncompressed video source to the input, turn on the power,
and a stream of compressed video emerges from the output. However, they are concerned
about people opening the chip, generating masks from what they see [5], and cheaply mass
producing clones of the compressor.

PUFs as we have been using them so far are not suited to the problem at hand, as the
chip isn’t trying to engage in a cryptographic protocol with some remote party. However,
by looking at PUFs in a new way, it is possible to get some interesting results. Here is a
proposed solution to the company’s problem, assuming that the chip is a microcontroller
with the compression algorithm stored in ROM. It is illustrated in Figure 6-1.

First, the ROM is encrypted using a k-bit key K. To generate that key, A PUF is
intertwined with the other functions on the chip. The PUF is hard-wired to always get the
same challenge, and output a k-bit response. That response is combined with the contents
of some fuses1 via an exclusive-or operation to produce K. A decoder uses that K to decrypt
the ROM.

Since cost constraints require that the same ROM be present on each chip, the key K
must be the same for all chips. The response from the PUF is different for each chip, but

1A fuse is a memory element that can be set once. It is implemented by a fuse that can be burned out
or not depending on the bit to be stored, hence the name.
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Figure 6-1: Using a PUF to generate a key

by setting the fuse bits appropriately for each chip, the key that the decoder gets is the one
that is needed to decrypt the ROM. The fuse bits can be set while the chip is in testing, the
manufacturer tells the chip K, and the chip automatically sets the fuse bits. This way, the
response never has to leave the chip.

We have created exactly what we wanted. A chip that cannot be simply cloned. Indeed,
techniques to extract the chip’s layout [5] will be unable to deal with the PUF’s physical
system. So, even though the state of the fuses will be discovered, the value of K will remain
secret, and copies of the chip that are made will not work.

What we have made is what we call a Physically Obfuscated Key. It is used exactly
as a digital key would be, but it is more resistant to physical attack because it extracts its
information from a complex physical system.

6.2 PUFs vs. POKs

The relation between PUFs and POKs is an interesting one. In Section 2.4.2, we mentioned
POKs as a way of building PUFs. Now, we use PUF technology to produce a POK. From
the technological point of view, they are actually quite similar, which explains why either
one can be built from the other.

In this thesis, we have chosen to focus mainly on PUFs, but at first glance, POKs seem
more powerful. Indeed, POKs directly solve the problem we started off from, which was
to store a secret in a physical device. If we store a private key as a POK, nothing is to
prevent us from using a classical public key infrastructure instead of the more complicated
infrastructure that is described in Chapter 5. Moreover, POKs have many of the interesting
properties of PUFs, such as detecting tampering that takes place while they powered down,
without requiring any monitor circuitry to be permanently turned on.

Our reason for preferring PUFs is that we feel they are more secure. With POKs, all the
secret information is present on the chip at once in digital form. An attack that manages
to capture that information completely breaks the POK. To completely break a PUF device
requires complete cloning, as an attacker who has momentary access to the PUF doesn’t
know which CRPs he should capture. Likewise, an attacker who manages to capture the
secrets that are on the device at some time, only compromises the current transaction, and
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the transactions whose security is based on secrets that were on the device at the time of
the compromise. Unrelated transactions, for example ones that are carried out by a different
user won’t be compromised unless the adversary carries out an independent attack on them.
It is this greater compartmentalization of PUFs that makes us prefer them over POKs.

6.3 Elements of POK Security

One major problem with POKs is that they are vulnerable to some attacks that plague
digital keys. Indeed, the POK contains a lot of digital logic to process data coming from the
underlying physical system. Consequently, the response that gets combined with the fuse
bits has to be stored digitally, probably in some SRAM cells. After hours of use, always with
the same key stored in the SRAM, the key value will end up being burned into the SRAM
in a way that can be exploited by an invasive attacker [12]. In fact, a number of similar
attacks exist [2]. Therefore, the use of a POK does not remove the need for careful design
of the digital logic that uses the key.

As for PUFs, some simple techniques can be used to strengthen POKs so that they
remain effective in the open-once model. Indeed, as we have described them so far, POKs
are completely vulnerable to that type of attack. The idea, as for PUFs, is to use two secrets
instead of one (see Section 5.2.5). We place two POKs in the device, only one of which is
turned on at any given time. We split the task to be done into two parts, each of which
requires only one of the keys. The device then operates by turning one POK on, doing one
half of the work, turning that POK back off, and repeating the process with the other POK
and the other half of the work. An adversary who opens the device now only gets half of the
key.

Of course, if the adversary now opens another chip, he can hope to get the other half
of the key. Therefore, we find that the task must be split in two in a different way on each
instance of the device, except for applications which, unlike our video compressor, have a
different K on each device. Splitting a task in two parts differently on different devices is
not always easy. In the case of RSA it can be done by expressing the secret key as a product
of two partial secret keys. Decrypting for the secret key is then equivalent to decrypting
using one partial key, and then the other. An ample supply of such splits exist as almost
any exponent can be used as the first key.

The big problem that is left for our video compression application is performance. In
the single POK case, the decryption of ROM contents is likely to be the bottleneck of the
system. In the open-once case, where two keys are used in alternation, things are even worse,
as each decryption requires generating and then forgetting each half of the key, in addition
to the usual encryption tasks. Needless to say that given the complexity of generating a key,
getting data from the ROM will be very slow.

If the device is to have acceptable performance, some kind of caching is necessary to allow
the processing core to go faster than the decryption process. Unfortunately, the cache is an
ideal way to leak parts of the decrypted ROM contents to an invasive adversary. Moreover,
since the decrypted ROM contents are the same on each device, compromising multiple
devices allows an attacker to recover more and more of the information that we were trying
to protect.
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Clearly, the application we have presented here is not ideally suited to POK techniques,
because of the difficulty in reaching a good tradeoff between performance and security. Per-
haps other applications with less frequent demands on stored secrets would nevertheless be
able to benefit from POKs. For example an encrypted CD could be equipped with a POK
device that contains the decryption key. The key would only be made available to CD readers
conforming to a suitable Digital Rights Management system.
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Chapter 7

Conclusion

7.1 Future Work

This thesis has introduced the concept of Physical Random Functions, and has attempted
to convince the reader that it is an achievable and useful concept. Our strategy has been to
describe all the basic parts that are necessary to achieve a few simple applications. However,
the number of parts being large, we haven’t been able to explore each one of them in much
detail. Consequently, there is a lot of interesting work still to be done, and we will try to
point out some of the topics that we consider important.

• Improve on the rudimentary Error Correction Code algorithm that we have presented
(see Section 4.5).

• Try to better understand the effects of environmental parameters on the delay circuits,
to devise better compensation algorithms. Environmental variations are the dominant
type of noise we have to deal with, and any reduction in noise would make the error
correction easier, so this is an important topic for research.

• Test the intertwining methods that we have proposed. See how much the PUF actually
changes when a device is opened and when tampering or probing is attempted.

• Build an actual Silicon PUF candidate and challenge researchers in the field to try to
break it. The toughest test of a security device is to put it in the field where people will
try to attack it. This method has been successfully applied for encryption algorithms
and pseudo-random functions, and is probably the only way to get a real idea of how
hard something is to break.

• Study other ways of measuring delays. If possible, devise a direct delay measurement
method that, unlike the arbiter method, outputs the delay of the circuit.

• Consider other ways of making delay-based PUFs harder to model.

• Try to implement an optical CPUF.

83



7.2 Final Comments

To conclude this thesis, I would like to summarize the main ideas that it brings to light.
Initially, PUFs are identical, except in name, to Physical One-Way Functions [21]. Instead
of focusing on optical technology, we have focused on silicon technology, but the same basic
idea is present: there is no general way to copy complex physical systems, so let us try to
use them to identify a device.

The major new idea in our work is control. Without it, we could only identify physical
systems. With it, we can additionally bind computation to a specific physical system. Instead
of serving as an identifier for itself, the physical system identifies a processing element. The
range of applications explodes because of this simple difference.

It is amusing to look at the interaction between the logical and the physical part of a
CPUF. The physical part identifies the logical part, and protects it from invasive attackers
who would like to probe and tamper. In exchange, the logical part makes the physical
part less vulnerable to model building attacks, and corrects the errors that are inherent in
extracting information from a physical system. From a security point of view, the intertwined
combination of those two elements is much more than the sum of the parts.

Turning a problem into an advantage is always a satisfying achievement. In this case, we
have been able to put to use the manufacturing variations which, usually, only have negative
effects in the silicon industry. It seems to often be the case that the security community
takes people’s problems and uses them to enable new security ideas.

There is still a lot of work to do to gauge exactly how strong PUFs are compared to
classical primitives. What is certain is that as always in security, there is no absolutely
unbreakable system. Our only expectation is that PUFs can help us reach a greater level of
physical security than classical methods, at a lower cost.
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Glossary

Additive Delay Model: A model of a circuit that assumes that the delay of a path
through the circuit is the sum of the delays of the components and wires along that path.

Analog PUF: A PUF that is based on a complex physical system that doesn’t involve any
digital processing (we do not exclude digital components from analog PUFs, they are simply
used there in an unconventional way).

Arbiter: Component that decides which of its inputs changed state first. If both inputs
change state in too small a time interval, the output is arbitrary.

Birthday Paradox: When a set of cardinality n is sampled k times, the probability that
the same element will have been picked twice approaches 1

2
when k2 ≈ n. This phenomenon

is called the birthday paradox because it is typically applied with surprising results to the
probability of two people in a group having the same birthday.

Certified Execution: A certified execution protocol allows a protocol to run a program
on a device, and get a certificate at the end of execution that proves that his program ran
correctly on that device and produced the indicated results.

Characterize: The secret information in a PUF device is often determined by random
manufacturing variations. We call the process of getting to know the PUF, usually by getting
CRPs, characterization.

Classical Methods: Methods that store a secret in a device in digital form. Often barriers
surround the secret so that an invasive adversary who tries to get at the secret will destroy
it in his attempt.

Compensation: A technique to reduce dependence on environmental variation by per-
forming two measurements and dividing them by each other. See Section 3.2.3 for details.

CRP: Challenge-Response Pair. A pair made up of an input to a PUF (challenge) and the
corresponding output (response).

CPUF: Controlled Physical Random Function. See Section 2.1.2 for a detailed definition.

FPGA: Field Programmable Gate Array. A type of programmable logic device that con-
tains a matrix of logic elements, which can be configured into arbitrary logic circuits.

IC: Integrated Circuit, also commonly referred to as a chip.
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Intertwining: To protect the control logic of a CPUF from invasive attacks that attempt
to eavesdrop or tamper with it, we intertwine the control logic with the physical system that
defines the PUF. The rationale is that the adversary will change the PUF while tampering
with the control logic, rendering his attack useless.

Keycard Application: The simplest application of a PUF. A card containing a PUF is
used as a key. Section 2.2 details the application.

Manufacturer Resistance: A PUF that not even the manufacturer could make a clone
of is said to be manufacturer resistant. See Section 2.1.3 for a detailed definition.

Open-Once Model: An attack model in which a physical adversary can open the device
at a particular instant and get full access to the digital content (i.e., he can read all the bits
in the device, and tamper with the digital functionality at will). However, as of that instant,
the PUF ceases to function so all queries to the PUF will return bogus values. Details are
in Section 2.3.3.

Path Through a Circuit: A sequence of wires and components in a circuit through which
a signal can propagate from the circuit’s input to its output.

Pre-challenge: A seed that is used in combination with a hash of a program to generate
a challenge. See Section 5.2.2 for details.

POK: Physically Obfuscated Key. See Chapter 6.

PUF: Physical Random Function. See Section 2.1.1 for a detailed definition.

Smartcard: A card (often credit card sized) that contains a chip. Some typical applications
are pay-phone cards, credit cards, keycards, or the SIM card in a cellular phone (a smaller
card size is used in that case).

Vectorization: When making a strong PUF from a weak one, each query to the strong
PUF results in multiple queries to the weak PUF. We call this technique vectorization.
Section 4.2 covers this topic.

Weak PUF: A PUF that is somewhat predictable, and that suffers from output noise, but
that we can strengthen using the methods in Chapter 4.
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