
Efficient Consistency Proofs
on a Committed Database

Rafail Ostrovsky∗ Charles Rackoff† Adam Smith‡

February 27, 2003

Abstract
A consistent queryprotocol allows a database owner to publish a very short stringc which

commitsher to a particular databaseD with special consistency property (i.e., givenc, every
allowable query has unique and well-defined answer with respect toD.) Moreover, when a
user makes a query, any server hosting the database can answer the query, and provide a very
short proof π that the answer is well-defined, unique, and consistent withc (and hence with
D). One potential application of consistent query protocols is for guaranteeing the consistency
of many replicated copies ofD—the owner can publishc, and users can verify the consistency
of a query to some copy ofD by making sureπ is consistent withc. This strong guarantee
holds even for owners who try to cheat, while creatingc.

The task of consistent query protocols was originally proposed formembershipqueries by
Micali and Rabin[18], and subsequently and independently, by Kilian [16]. In this setting a
server can prove to a client whether or not a given key is present or not in a database, based
only on a short public commitmentc.

We strengthen their results in several ways. For membership queries, we improve the
communication complexity; more importantly, we provide protocols for more general types of
queries and more general relational databases. For example, we consider databases in which
entries have several keys and where we allowrangequeries (e.g. we allow a client to ask for
all entries within a certain age rangeanda certain salary range).

Towards this goal, we introduce query algorithms with certain inherent robustness properties—
calleddata-robust algorithms—and show how this robustness can be achieved. In particular,
we illustrate our general technique by constructing an efficient data-robust algorithm for prov-
ing consistency of orthogonal range queries (a particular case of a “join”query). The server’s
proof convinces the client not only that all the matching entries provided are inD, but also
thatno others are present. Our guarantees hold even if the answer is the empty set. In the case
of one-dimensional range queries we also show a new data-hiding technique—calledexplicit
hashing—which allows us to a execute consistent query protocolπ and at the same time pro-
tect the privacy of all other information in the databaseefficiently. In particular, we avoid the
NP reductions required in a generic zero-knowledge proof.

∗Telcordia Technologies, Morristown, NJ, USA.
†University of Toronto, Toronto, Ontario, Canada
‡MIT LCS, 200 Technology Square, NE43-446, Cambridge, MA 01239, USA.

1 Introduction

MERKLE TREES. Merkle [19] proposed the following protocol for committing to a list ofn values
a1, ..., aN : Pick a collision-resistant hash-function1H, pair up inputs(a1, a2), (a3, a4), . . . , (an1 , aN)
and applyH to each pair. Now, pair up the resulting hash values and repeat this process, construct-
ing a binary tree of hash values, until you get to a single root of lengthk. If the root of the tree
is published, the entire collection of values is now committed (though not necessarily hidden).
To reveal any particular valueai, one can reveal a path from the root toai together with all the
siblings along the path. Very often, one must actually reveal a subset of the committed values
ai. The advantage of Merkle trees is that as long as the number of leaves revealed is small, the
totalcommunication complexityof revealing is proportional to the number of leaves revealed times
k logN , which in many settings is considerably smaller thanN . Indeed, this idea is used through-
out modern cryptography, including efficient signature schemes [19, 8], efficient zero-knowledge
arguments [15], computationally-sound proofs [17], and many other applications.

CONSISTENT QUERY PROTOCOLS. One significant application of Merkle trees (with additional
machinery to enforce consistency) is to proving “consistency of queries’ to a committed database.
(The topic of commitment protocols (especially efficient ones, has received a lot of attention in the
literature, and we build upon that previous work [20, 22, 23, 15, 21, 8, 17, 18, 27, 14, 16, 6, 10, 7]).
Especially relevant to our work is the notion of “consistent query commitment” protocol, originally
proposed by Micali and Rabin [18], and, subsequently, by Kilian [16] formembershipqueries on a
single (key, value) pairs database: suppose there is a server who hosts a very large database which
is a collection of(key, value) pairs. The server produces a small commitment to that database
which is then made public2. Any time a client asks the database amembership query(i.e. “do you
have an entry with keyx?”), the server returns the answer to the query along with a short proof of
consistency with the public commitment. For each key, there should be a unique answer for which
the server can provide a proof. An answer could either be “Yes, and the corresponding value isy.”
or “No, there is no entry with keyx”. We call a scheme for this task aconsistent query protocol
for membership queries. Both [18] and [16] give efficient solutions assuming only the existence
of a collision-free hash function. Not surprisingly, the main constructions of [18, 16] are based on
Merkle trees.

MAIN PROBLEM CONSIDERED. In this paper, we consider consistent query protocols for
databases in which entries have several incomparable keys (for example, “age”, “salary”, “rank”,
etc). The class of queries we consider are joins (i.e. intersections) of range queries on several
coordinates. For example, we allow a client to ask whether there is an entry in the database within
a certain age range and a certain salary range. The main result of the paper is a novel and efficient
commitment scheme that allows such efficient join queries (often calledorthogonal range queries).
The scheme guarantees that the server always answers consistently with a single database. He can
proveboth that all the hits he provides are in the database,and that no others are present. We
also provide a general framework for constructing consistent query protocols based on query algo-
rithms which are robust against corrupted data. (We remark that our technique is very general and

1Recall that a hash function familyHk(·) is calledcollision-resistantif no poly-time algorithm can find a pair of
inputs that map to the same output, fork sufficiently large (see Section 2).

2This might be done by having the commitment signed by a certification authority, by publishing the commitment
along with the server’s public key, or by notarizing and time-stamping the commitment.

1

is applicaible to more general relational databases as well.)

AN APPLICATION. One interesting use of consistent query protocols is in replication of databases.
A database owner may publish the short commitment using some reliable but expensive means. A
server hosting a copy of the database could then prove the correctness of an answer to a query. Note
that the scheme protects even against a malicious database owner—these protocols, in particular,
prevent database owners from providing different users with different answers to the same query.

PRIVACY . A natural additional requirement is the server’s privacy: informally, a query protocol
is private if the proof of consistency reveals nothing to the client about the database, beyond what
he learns from the answers to his query (and possibly an upper bound on the size of the database).
Protecting the contents of the database could be crucial in settings where its contents are sensitive,
or where clients are charged for access on a per-query basis.

Both the protocols of Micali-Rabin and Kilian [18, 16] can ensure privacy using standard zero-
knowledge techniques. They can be made even more efficient by tailoring the cryptography to the
specifics of membership queries.

EFFICIENCY CONSIDERATIONS. In the setting of committed databases, there are essentially two
important measures of efficiency: On one hand, the total communication should be low: both the
commitment and the proof of consistency should be small compared to the size of the database.
On the other hand, the server’s and verifier’s computations should be efficient: ideally, they should
be on roughly the same order as the communication of the protocol. There exists a general —
but very inefficient in terms of the server’s computation — way to construct consistent query
protocols: simply have the server commit to the whole database. When a client sends a query,
the server provides the answer along with a zero-knowledge argument of knowledge (ZKAK) that
the answer is consistent with the commitment. AZKAK (interactively) convinces the recipient of
a statement’s truth without revealing any other information. While this scheme has theoretically
very good communication complexity (i.e.poly(logN) ·poly(k), whereN is the database size and
k is the security parameter), these proofs require enormous (i.e. super-linear inN) computations
on the part of the server, as it must construct a so-calledprobabilistically checkable proof[1, 2]
for the language of valid consistency proofs (in which the witnesses have size at leastN , requiring
poly(N)-time computations). To achieve practical schemes, we consider more efficient solutions,
tailored for this problem.

1.1 Our contributions

CONSISTENT QUERY PROTOCOLS. We show a novel consistent query protocol scheme that
allows efficient orthogonal range queries to a database with one, two or more keys associated to
each database entry. The size of the commitment and the communication complexity of any join
query is much smaller than the size of the database, and for any such query the database can
answer (with a correct proof) in only one way. In particular, the server cannot omit any hits from
the answers without being detected. The challenging part is to be able to prove thatnopoints other
than those in the answer actually appear in the database. gneralizing the work of [18, 16] we show
how to do this efficiently (in particular, without having to decommit the entire database or resort
to PCP proofs on the entire database).

Our consistency proofs have sizeO(k(m + 1) log2 N), whereN is the database size,k is

2

the security parameter, andm is the number of keys in the database satisfying the query. The
computation required of the server is low: in preprocessing, the server must makeO(N log2 N)
evaluations of a collision-resistant hash function. For each query, the server’s computation is on
the same order as the communication with the client:O(k(m+ 1) log2 N + `), where` is the size
of the answer to the query. For the case ofrangequeries on a single key, our construction reduces
essentially to that of [18, 16]. It produces query answers of sizeO(k(m + 1 + logN)). However,
in general ford-dimensional queries, we obtain consistency proof of sizeO(k(m+ 1) logdN + `).

A GENERAL PARADIGM FOR CONSISTENT QUERY PROTOCOLS. In order to construct our proto-
col, we introduce the notion ofdata-robust algorithms(DRA). These are search algorithms which
are robust against corruptions of the data by amaliciousadversary: for any static data structure—
even adversarially corrupted—the algorithm will answer all queries consistently with one (valid)
database. Although this is trivial for data structures which incorporate no redundancy, it becomes
more challenging for more complex structures, since in general we do not want the algorithm to
have to scan the entire data structure each time it is run—ideally, we want sublinear running time.
Note thatthe error model here is adversarial: although much work in the algorithms and math-
ematics communities has focused on protecting data against randomly placed errors (or settings
where the total number of errors introduced is bounded), the task of protecting against arbitrary
malicious inputs is much more cryptographic in flavor.

The notion of a DRA has a significant application: assuming collision-resistant hash functions,
any such algorithm can be transformed into a consistent query protocol whose (non-interactive)
consistency proofs have complexity at most proportional to the complexity of the algorithm times
the security parameter.

The consistent query protocol we give for range queries is obtained by first constructing a DRA
based on range trees, a classic data structure due to Bentley [3]. Existing algorithms do not suffice,
as inconsistencies in the data structure can lead to inconsistent query answers. Instead, we show
how local consistency checks can be used to ensure that overall, queries are answered consistently
with a single database. For two dimensional queries, the query time on correctly formed inputs is
O((m + 1) log2 N), wherem is the number of hits for the query andN is the number of keys in
the database.

ACHIEVING PRIVACY EFFICIENTLY. Consistent query protocols will, in general, leak information
about the database beyond the the answer to the query. As mentioned above, this problem can be
solved by using generic constructions of zero-knowledge proofs, but one can get even greater
efficiency by tailoring the protocol to the probem at hand. Given a consistent query protocol,
one can transform it to be private by replacing the proof of consistencyπ with a zero-knowledge
proof of knowledge ofπ. This adds interaction, but reduces the communication cost. For the
protocols we consider, the cost is as low asO(k, poly(log logN)) (sinceN is polynomial ink, this
is esentiallyO(k)). For very large databases and values of the security parameter, this yields very
low communication complexity (see the end of Section 4 for details).

Although the asymptotics of this last scheme are good, the use of generic NP reductions
and probabilistically checkable proofs means that the advantages only appear for extremely large
datasets. We also construct tailored protocols for Merkle trees, which are simpler and more direct.

EXPLICIT-HASH MERKLE TREES. The Merkle tree commitment scheme sketched above may
actually leak information about the committed values, since a collision-resistant function cannot

3

hide all information about its input. At first glance, this seems easy to resolve: one can either
replace the valuesai at the leaves of the tree with hiding commitmentsC(ai), or one can build the
hiding property into the hash function itself by randomizing the hash (see, for example, the elegant
commitment scheme of Halevi-Micali [14]).

However, there is often some additional structure to the valuesa1, ..., aN . For example, they
might be stored in sorted order3. Revealing the path to a particular value would then reveal the
rank of a given value in the data set. The problem gets even more complex when we want to reveal
a subset of the values, as we have to hide not only whether paths go left or right at each branching
in the tree, but whether or not different paths overlap.

One näıve solution to this problem is to provide a hiding commitment to the description of
each node on the path, and then use a generic zero-knowledge proof (as above) that the committed
string is consistent with the public hash value (the root of the hash tree). The main bottleneck of
that approach is that it requires proving in zero-knowledge thaty = H(x), given commitments
C(x) andC(y). It is not known how to do that without going through either general NP reductions
or oblivious circuit evaluation protocols, both of which are extremely inefficient, especially when
applied to a circuit as complex as a hash function. Indeed, at a first glance, this seems to be a
fundamental problem with privacy of Merkle-tree commitments: revealing the hash values reveals
structural information about the tree, and not revealing them and instead proving consistency using
generic ZK techniques kills efficiency.

Thus, the main challenge is to provide zero-knowledge proofs that a seta′1, ..., a
′
t is a subset

of the committed values, while leaving the hash function evaluations explicit, i.e. without going
through oblivious evaluation of such complicated circuits. In this paper, we show that this is not a
problem, and show a modification of Merkle trees where one reveals all hash-function input-output
pairs explicitly, yet retains privacy. We call our construction anExplicit-Hash Merkle Tree.

Theorem 1.1. Assuming the existence of collision-free hash families and homomorphic perfectly-
hiding commitment schemes,explicit-hash Merkle treesallow proving the consistency oft paths (of
lengthd = logN) usingO(d ·t2 ·k2) bits of communication, wherek is the security parameter. The
protocol can be made zero-knowledge with 5 rounds of interaction, witness-hiding with 3 rounds
of interaction, and completely non-interactive if one assumes the availability of a random oracle.

PRIVACY FOR RANGE QUERIES. As an application of explicit hash Merkle trees, we show to
how to achieve privacy more efficiently for one-dimensional range queries (thus speeding up the
protocols of Micali and Rabin [18] and Kilian [16]).

Theorem 1.2. There exists an efficientprivateconsistent query protocol for 1-D range queries.
For the t-th query to the server, we obtain proofs of sizeO((t + m) · s · k2 · logN), wheres is
the maximum length of the keys used for the data, andm is the total number of points returned on
range queries made so far. The protocol is provably hiding with 3 rounds of interaction, and can
also be made non-interactive in the random oracle model.

More generally, we can make our higher-dimensional protocols privateprivate at the cost of
a polynomial blowup of the communication complexity, assuming the existence of trapdoor per-
mutations and the availability of public randomness. Thus we obtain proofs of lengthpoly(k(m+

3Jumping ahead, we will show one application where this property is crucial.

4

1) logN), which is still far smaller thanN , the size of the database. One can gain even greater effi-
ciency and security if we allowinteractiveconsistency proofs. In that case, we can use the efficient
proofs of [15] to get a private protocol with communication complexityk·(poly(log(km) + log logN)),
which can be a substantial improvement in settings where the database is very large compared to
the security parameter.

2 Definitions

We see say that a functionf(k) is negligible in a parameterk if for all integersc > 0, we have
f(k) ∈ O(1

kc
). Given a algorithmA, we write y ← A(x) to denote assigning the (possibly

randomized) output ofA on inputx to variabley.

COLLISION-RESISTANT HASH FUNCTIONS. In our construction as as in those of [18, 16], the
main cryptographic tool is collision-resistant hash functions (CRHF). This is a family of input-
shrinking functions such that given a randomly chosen functionh from the family, it is computa-
tionally infeasible to find a collision, i.e. two inputsx, y such thath(x) = h(y). Such functions
can be constructed assuming the hardness of the discrete logarithm or factoring. Formally, a family
of (efficiently computable) functions{hs,k : {0, 1}∗ → {0, 1}k} is a CRHF if the functionshs,k
can be evaluated in time polynomial ink, and there is a probabilistic polynomial time (PPT) key
generatorΣ such that for all PPT algorithms4 A, we have thatPr[s ← Σ(1k); (x, y) ← A(1k, s) :
hs,k(x) = hs,k(y)] is negligible ink.

For our constructions (as for those of [18, 16]), we will assume the availability of a public
collision-resistant hash function. Formally, this means we assume that some trusted third party has
chosen a hash functionhs,k at random from the family (for some publicly agreed parameterk) and
published the description of the hash function. In practice, one sometimes also uses a fixed hash
function, such as SHA or MD5.

2.1 Consistent query protocols

To formalize the notion of consistent query protocols, we first define a query structure: this is
a triple (D,Q, Q) whereD is a set ofvalid databases,Q is a set of possible queries, andQ is
a rule which associates an answeraq,D = Q(q,D) with every query/database pairq ∈ Q, D ∈
D. For example, in the case of simple membership queries, a valid databaseD is a set of pairs
{(key1, value1), . . . , (keyn, valuen)} where no key appears twice. The set of possible queries is just
the set of possible keys, and the ruleQ(key, D) returnsvaluei if key = keyi and a distinguished
value⊥ otherwise.

In a basic consistent query protocol, there is a server who, given a database, produces a com-
mitment which is made public. Clients then send queries to the server, who provides the query
answer along with a proof of consistency of the commitment. One can gain extra power if there is
some public randomness which is provided by a trusted third party. While we formulate our defi-
nitions in the context of such a trusted third party,we stress that in some settings our constructions

4For simplicity we state our security definitions in the uniform model, but all the definitions can be stated equally
well with respect to non-uniform adversaries

5

do not require the public randomness; we include it in this formulation, because in settings where
such public randomness is available, one can achieve even stronger security properties.

Definition 1. A (non-interactive)query protocolconsists of three PPT algorithms: a server setup
algorithmSs, an answering algorithm for the serverSa, and a clientC. In some settings, there may
also be an efficient algorithmΣ for sampling any required public randomness.

• The setup algorithmSs takes as input a valid databaseD, a value1k describing the security
parameter, as well the public informationσ ← Σ(1k). It produces a commitmentc (which
is made public), as well as some internal state informationstate. Subsequently,Sa may be
invoked with a queryq ∈ Q and the setup informationstateas input. The corresponding
output is an answer/proof pair(a, π), wherea = Q(q,D).

• The clientC receives as input the unary security parameter1k, the public stringσ, the commit-
mentc, a queryq and an answer/proof pair(a, π). C outputs “accept” if it accepts the proof
π and “reject” otherwise.

Definition 2. A query protocol isconsistentif it is complete and sound:

• Completeness:For every valid databaseD ∈ D and queryq ∈ Q, if σ ← Σ(1k) and(c, state)←
Ss(σ,D) thenC will accept (a, π) output bySa(q, state) with overwhelming probability.
Moreover,a = Q(q,D) with probability 1. Formally, for allq ∈ Q and for allD ∈ D we
have:

Pr[σ ← Σ(1k); (c, state)← Ss(σ,D); (a, π)← Sa(q, state) :

C(σ, c, q, a, π) = “accept”] ≥ 1− negl(k)

Pr[σ ← Σ(1k); (c, state)← Ss(σ,D); (a, π)← Sa(q, state) : a = Q(q,D)] = 1

• (Computational) Soundness:For every PPT adversary5 S̃, run S̃ on inputs1k andσ ← Σ(1k),
and allow it to output a commitmentc along with a (polynomially-long ink) list of triples
(qi, ai, πi). We sayS̃ acts consistentlyif there existsD ∈ D such thatai = Q(qi, D) for
all i. The protocol issoundif all PPT adversaries̃S act consistently with overwhelming
probability whenever theC accepts all the proofsπi. Formally, we require:

Pr[σ ← Σ(1k);
(
c, (q1, a1, π1), . . . , (qt, at, πt)

)
; bi ← C(σ, c, qi, ai, πi) :

bi = 1 for all i andS̃ acts consistently] ≤ negl(k)

Although the previous definitions are stated in terms ofnon-interactiveconsistency proofs,
they generalize naturally to interactive proofs.

5One could imagine protecting againstall adversaries and thus obtaining perfect soundness. We consider compu-
tational soundness since much greater efficiency is then possible.

6

Remark 1 (Maintaining state). In general, a malicious server may maintain some state between
various invocations of the query protocol. We stress, however, that our constructions do notrequire
such state; the honest server is essentially stateless (remembering only its initial setup with the
variablestate). Furthermore, as long as the consistency proofs are non-interactive, we can even
allow multiple concurrent invocations of the server while still maintaining security.

Remark 2 (Public information). As mentioned above, the trusted third party is only used in some
of our constructions. In particular, it is really necessary only when we want to use non-interactive
zero-knowledge proofs to achieve privacy (see below). In many of our settings, the only initial
shared information information we will require is a public CRHF. As we shall see,this function
can be chosen by a representative of the clients; it needn’t be someone trusted by both parties.
Moreover, if a certain fixed function (e.g. SHA) is “collision-resistant enough” for a given appli-
cation, then we can dispense with initial shared information entirely.

Remark 3 (Hash functions are needed).In order to construct good consistent query protocols, a
CRHF is not just helpful—it is necessary. If the size of the commitment to the database is smaller
than the database itself, it is an easy exercise to prove that the computational soundness of the
protocol implies the existence of collision-free hash functions.

2.1.1 Keyed databases

In practice, databases are often simply sets of(key, value) pairs, where the clients are restricted
to asking for all pairs whose keys fall within some subset of the key-space. (In the example of
membership queries, the subsets are just the singletons{key}.) We call such databaseskeyed
databases.

2.1.2 Privacy

Another property which may be useful (e.g. in settings in which query answers are sold individ-
ually, or in which the database contains personal data) isprivacy. Namely, the answer to a query
should reveal little or no information about possible answers to other queries. Thus the server is
not giving any information away along with his proof of consistency. In this section we define two
levels of privacy: one which hides all information about the database, and the other, specific to
keyed databases, which hides only thevaluesstored in the database, and not the associated keys.
Our definitions of privacy follow those given by Kilian [16] in the context of membership queries.

TOTAL PRIVACY. Intuitively, a protocol is private if it reveals no information about queries other
than those already asked by a client.

A simple way to formulate this is: suppose we have two databasesD1, D2 and a set of queries
{q1, . . . , qm} such thatQ(qi, D1) = Q(qi, D2) for all i ∈ {1, . . . ,m}. Then the distributions on
the tuple(c,S(q1), . . . ,S(qm)), given that either (a) the server was initialized with databaseD1

or (b) the server was initialized with databaseD2, should becomputationally indistinguishable
(a more proper formalization of security allows the adversaryadaptiveaccess toS as an oracle).
Unfortunately, achieving such a strong notion of privacy is problematic, because it is difficult not
to reveal any information about thesizeof the database. What is meant by size can vary depending

7

on the context: in general, it is simply the amount of space required to store the database. Thuswe
require that the indistinguishability condition above hold only for databases of the same size.

Formally, consider an adversarỹC who interacts with a server hosting either one of two databases
D1, D2 ∈ D. We sayC̃ is (D1, D2)-limited if C̃ only asks queriesq such thatQ(q,D1) = Q(q,D2).
We denote bỹCSa(σ,·,state)(σ, c) the result of the interaction betweeñC and the server with setup
informationstate.

Definition 3 (Computational privacy). We say that a consistent query protocol(Σ,Ss,Sa, C) for
(D,Q, Q) is private if for every two databasesD1, D2 ∈ D of the same size, and for all PPT
adversaries̃C which are(D1, D2)-limited, we have:∣∣∣Pr

[
σ ← Σ(1k); (c, state)← Ss(σ,D1) : C̃Sa(σ,·,state)(σ, c) = 1

]
− Pr

[
σ ← Σ(1k); (c, state)← Ss(σ,D2) : C̃Sa(σ,·,state)(σ, c) = 1

]∣∣∣ ≤ negl(k)

The foregoing definition is stated in terms ofcomputationalprivacy. By removing the re-
striction thatC̃ be polynomial time, we obtain statistical security; by further requiring that the
probabilities of producing 1 onD1 orD2 be equal, we obtain a definition of perfect privacy.

Note that for keyed databases, a natural definition of “size” is the number of keys present in
the database. The protocols we present in Section 5 can be made private with respect to this latter
notion of size: for any two databases with the same number of keys, queries which return the same
answer give no information on which of the two databases is actually being hosted by the server.

VALUE PRIVACY. In the context of keyed databases, some applications may not require the
secrecy of the keys contained in the database, but only of the values associated to various keys.
Specifically, a consistent query protocol isvalue-private6 if the proofs associated to queries whose
answers don’t contain the keykeyi reveal no information about the corresponding datavaluei. What
is meant by “no information” depends on whether we want computational, statistical or perfect
secrecy: the distributions on conversations corresponding to different values ofvaluei should be
perfectly (resp. statistically or computationally) indistinguishable, so long as the pair(keyi, valuei)
never appears as answer to a query.

One can formalize this as in Definition 3 above by restrictingD1 andD2 to be databases with
the same keys present, that is we allowD1 andD2 to differ only in the stored values which are not
requested by the client.

As is pointed out in [18, 16], it is easy to se that value-privacy is easy to attain. If the values
in the database are replaced bynon-interactive commitmentsto those values, then any consistent
query protocol easily becomes value-private: run the usual protocol, and when a key appears in
the answer to a query, simply accompany the query answer with the appropriate de-commitment
string. The resulting protocol is private because until he makes a query which returnskeyi, the
client will only ever see the commitment tovaluei. The strength of privacy obtained depends
on the type of commitment used. However, statistical value-privacy is easy to obtain, and very
efficient: assuming the availability of a public collision-resistant hash function with output length
k, one can construct a statistically-hiding, non-interactive commitment scheme (Halevi and Micali,

6This is calledD[t] privacy in [16].

8

[14]) with commitment lengthk and decommitments of length̀+ 7k, where` is the length of the
message being revealed.

INTERACTIVE PROOFS. One can extend the definition of consistency to a model where the proof
may be interactive, and this will be very useful when we want to achieve privacy without trusting
a third party to provide public random strings.

3 Data-robust algorithms and consistent query protocols

In this section, we describe a general framework for obtaining secure consistent query proto-
cols, based on designing efficient algorithms which are “data-robust”. That is for any static data
structure—even adversarially corrupted—the algorithm will answer all queries consistently with
one (valid) database7. This task is most interesting for structures which replicate information in
order to allow more efficient queries.

Assuming the availability of a collision-resistant hash function, we show in Section 3.2 that any
such algorithm which accesses its input by “following” pointers can be transformed into a consis-
tent query protocol whose (non-interactive) consistency proofs have complexity at most propor-
tional to the complexity of the algorithm (in fact, the transformation works for arbitrary algorithms
at an additional multiplicative cost oflogN , whereN is the size of the database).

We observe that several of the protocols of [18, 16] can be viewed in this light. We further il-
lustrate the paradigm by constructing a consistent query protocol forlow-dimensional orthogonal
range queries. In this model the keys in the database consist of several components (x1, . . . , xd).
The goal is to find all entries whose keys simultaneously satisfy a range constraint on each com-
ponent, i.e. queries are rectangles of the form[a1, b1] × · · · × [an, bn]. We first modify a classic
data structure due to Bentley [3] to make it data-robust. We then use it to get a consistent query
protocol with commitment sizek and proof sizeO(k(m+ 1) logdN).8

In the next section, we formally define consistent query protocols and data-robust algorithms.
We then describe a generic method for constructing consistent query protocols from DRA’s. Fi-
nally, we describe the specific construction for range queries.

3.1 Data-robust algorithms

When considering consistency of queries, a natural problem is that of designingdata-robust al-
gorithms. Consider the setting where a programmer records a database on disk in some kind of
static data structure which allows efficient queries. Such data structures are often augmented with
redundant information, for example to allow searching on two different fields. If the data structure
later becomes corrupted, then it could be that subsequent queries to the structure would be mutu-
ally inconsistent: for example, if entries are sorted on two fields, some entry might appear in one
of the two structures but not the other.

To formalize the notion of data-robust algorithms, we first define a query structure: this is a
triple (D,Q, Q) whereD is a set ofvalid databases,Q is a set of possible queries, andQ is a rule

7Note that despite the algorithmic flavor of the question, the error model is indeed cryptographic (i.e. adversarial).
8Note that the most efficient normal algorithm for range queries has complexityO((m + 1) logd−1N) [13]. We

do not know how to make it data-robust, however, without increasing the complexity by a factor oflogN .

9

which associates an answeraq,D = Q(q,D) with every query/database pairq ∈ Q, D ∈ D. 9

Suppose we have a query structure(D,Q, Q). A data-robust algorithm (DRA) for these con-
sists of two polynomial-time10 algorithms(T,A): First, a setup transformationT : D → {0, 1}∗
which takes a databaseD and makes it into a static data structure (i.e. a bit string)S = T (D)
which is maintained in memory. Second, a query algorithmA which takes a queryq ∈ Q and an
arbitrary “structure”S̃ ∈ {0, 1}∗ and returns an answer. Note that the structureS̃ needn’t be the
output ofT for any valid databaseD.

Definition 4. The algorithms(T,A) form adata-robust algorithmfor (D,Q, Q) if:

• Termination A terminates in polynomial time onall input pairs(q, S̃), even whenS̃ is not an
output fromT .

• SoundnessThere exists a functionT ∗ : {0, 1}∗ → D such that for all (adversarially chosen)
structures̃S, the databaseD = T ∗(S̃) satisfiesA(q, S̃) = Q(q,D) for all queriesq.

(Note that there is no need to give an algorithm forT ∗; we only need it to be well-defined.)

• CompletenessFor allD ∈ D, we haveT ∗(T (D)) = D.

(That is, on inputq andS = T (D), the algorithmA returns the correct answerQ(q,D).)

Note that we only allowA read access to the data structure (although the algorithm may use
separate space of it’s own). Moreover,A is stateless: it shouldn’t have to remember any informa-
tion between invocations.

THE RUNNING TIME OF A. Note that there is a naive solution to the problem of designing a
DRA: A could simply scan the corrupted structureS̃ in its entirety, decide which databaseD this
corresponds to, and answer queries with respect toD. The problem, of course, is that this requires
at least linear timeon every query(recall thatA is stateless). Hence the task of designing robust
algorithms is most interesting when there are natural algorithms which querysub-linearamounts
of memory; the goal is then to maintain that efficiency while also achieving robustness. Note that in
this setting, efficiency means the running-time of the algorithmA oncorrect inputs11. On incorrect
inputs, an adversarially-chosen structure could, in general, makeA waste time proportional to
the size of the structurẽS; the termination condition above restricts the adversary from doing
significantly worse (such as setting up an infinite loop, etc).

ERROR MODEL. Although the design of DRA’s seems to be an algorithmic question, the error
model—that ofadversariallyplaced errors—is a cryptographic one. Much work has been done
on constructing codes and data-structures which do well againstrandomlyplaced errors, or errors
which are limited in rate (witness the entire fields of error-correcting codes, fault-tolerant com-
putation and fault-tolerant data structures). However, in this setting, there are no such limitations
on how the adversary can corrupt the data structure. We only require that the algorithm answer
consistently for any given input structure.

9For example, in the case of simple membership queries, a valid databaseD is a set of pairs
{(key1, value1), . . . , (keyn, valuen)} where no key appears twice. The set of possible queries is just the set of possible
keys, and the ruleQ(key, D) returnsvaluei if key = keyi and a distinguished value⊥ otherwise.

10We assume for simplicity that the algorithms are deterministic, though this is not strictly necessary.
11We assume either a RAM or a pointer-based memory model here; sublinear time is not very powerful when access

to memory is sequential.

10

3.2 Constructing consistent query protocols from DRA’s

Given a DRA which works in a pointer-based memory model, we can obtain a cryptographically
secure consistent query protocol of similar efficiency. Informally, a DRA is pointer-based if it
operates by following pointer in a directed acyclic graph. Most common search algorithms fit into
this model. Essentially, we obtain a consistent query protocol by creating a Merkle tree (or graph)
which mimics the structure of the DRA’s data structure.

Proposition 3.1. Let (T,A) be a DRA for query structure(D,Q, Q) which fits into the pointer-
based framework described above. Suppose that on inputsq and T (D) (correctly formed), the
algorithmA examinesb(q,D) memory blocks and a total ofs(q,D) bits of memory, usingt(q,D)
time steps. Assuming the availability of a public collision-resistant hash function, there exists a
consistent query protocol for(D,Q, Q) which has proof lengths(q,D)+kb(q,D) on queryq. The
server’s computation on each query isO(s(q,D) + t(q,D) + kb(q,D)).

The details of this statement and its proof form the remainder of this section.

3.2.1 Pointer-based algorithms

Given a DRA which works in a pointer-based memory model (to be specified below), we show
how to transform it into a cryptographically secure consistent query protocol. In section Section 4,
we show how to extend this protocol to gain greater efficiency, as well as privacy.

Specifically, we say a pair of algorithms(T,A) is pointer-basedif

1. A expects its input data structureS = T (D) to be arooteddirected graph of memory blocks.
That is, the output of the setup algorithmT is always the binary representation of a directed
graph. Each node in the graph has a list of outgoing edges as well as some associated data.

2. A accesses its inputS and uses node names in a limited way:

• A can get the contents of a nodeu in the graph by issuing the instructionget(u). This
returns the associated datadatau as well as a list of outgoing edgesv1,u, v2,u, . . . , vnu,u.

• A always starts out by getting the contents of the root of the graph by issuing the
instructiongetroot().

• The only operationsA performs on node names are (a) getting the contents of a node,
and (b) comparing two node names for equality.

• The only node names whichA uses are those obtained from the outgoing edge lists
returned by calls togetroot() andget(·).

For example,S could be a sequence of blocks separated by a distinguished character,S =
b1# . . .#bn. Each blockbi would consist of some data (an arbitrary string) and “pointers”, each
of which is the index (in the stringS) of the start of another blockbj. The root of the graph could
simply be the first block by convention.12

Finally, we need some simple robustness properties of this graph representation (which can be
satisfied by the example representation above). We assume:

12It should be stressed that many common search algorithms can be cast in this pointer-based framework. For
example, the algorithm for searching in a binary tree takes as input a tree, which it explores from the root by following

11

3. The binary representation of the graph is such that whenA is fed an improperly formed input
S̃ (i.e. one which is not an output ofT), then the behaviour ofget(·) andgetroot is not “too
bad”:

• Whenget(u) or getroot() is called, if the corresponding part of the input string is not
well-formed (i.e. is not a tuple of the form(datau, v1,u, v2,u, . . . , vnu,u)), then the call
will return a distinguished value⊥.

• Both get(·) andgetroot() always terminate in time linear in the length of the corrupted
structureS̃.

3.2.2 A general construction

Let (T,A) be a DRA for query structure(D,Q, Q) which fits into the pointer-based framework
described above. Moreover, suppose that a correctly formed structure (i.e. an output ofT) never
contains a pointer cycle (that is, the resulting graph is acyclic)13.

Proposition 3.2 (same as Proposition 3.1).Suppose that on inputsq andT (D) (correctly formed),
the algorithmA examinesb(q,D) memory blocks and a total ofs(q,D) bits of memory, using
t(q,D) time steps. Assuming the availability of a public collision-resistant hash function, there ex-
ists a consistent query protocol for(D,Q, Q) which has proof lengths(q,D) + kb(q,D) on query
q. The server’s computation on each query isO(s(q,D) + t(q,D) + kb(q,D)).

Proof. The idea is to construct a “hash graph” which mimicks the data structureT (D), replacing pointers
with hash values from the CRHF. LetH be a publicly available, randomly chosen member of a CRHF
with security parameterk. Depending on the setting, we can either assume thatH is common knowledge
(in which case there is no need for public randomness), or ask explicitly that a trusted third party output a
description ofH (in which case the distributionΣ(1k) is simply the key generator for the CRHF).

SETUP ALGORITHM. The server setup algorithmSs is as follows: on inputD, runT to getS = T (D).
View S as a directed graph, with memory blocks as nodes and pointers as edges. This graph can be topo-
logically sorted (by assumption: no pointer cycles). There is a single source, the query algorithm’s starting
memory block (i.e. the root of the graph)14. Now proceed from sinks to the source by adding a hash value
(calledhu) at each nodeu: For a sink, simply attach the hash of its binary representation; this is basically
hu = H(datau). Whenu is an internal node, replace each of its pointersvi,u by the hash values of the
nodes they point to and then sethu to be the hash of the binary representation of the transformed block
hu = H(datau, hv1,u , . . . , hvnu,u). At the end, one obtains a hashhroot for the source. The server publishes
the commitmentc = hroot, and storesS and the associated hash values as the internal variablestate.

QUERY ALGORITHM. Given a queryq and the setup informationstate, the serverSa runs the robust
algorithmA on the data structureS, and keeps track of all the memory blocks (i.e. nodes) which are

pointers to right and left children of successive nodes. Indeed, almost all search algorithms for basic dynamic data
types can be viewed in this way. Moreover, any algorithm designed for a RAM machine can also be cast in this
framework at an additional logarithmic cost: if the total memory space isN , simply build a balanced tree of pointers
of heightlogN , where thei-th leaf contains the data stored at locationi in memory.

13This restriction is not necessary. One can handle general graphs at an additional logarithmic cost by superimposing
a tree on the memory structure

14There could in principle be other sources, but by assumption on howA operates it will never access them, soS
can safely ignore them.

12

accessed by the algorithm (by looking at calls to theget(·) instruction). Denote the set of accessed nodes by
Sq. The answera is the output ofA; the proof of consistencyπ is the concatenation of the “transformed”
binary representations(datau, hv1,u , . . . , hvnu,u) of all the nodesu ∈ Sq,as well as a description ofSq and
where to find each node in the stringπ.

CONSISTENCY CHECK. On inputsc, q, a, π (whereπ consists of a the description of a set of nodesSq as
well as their transformed representations), the clientC will verify the answer by runningA, using the proof
π to construct the necessary parts ofS.

The first step is to reconstruct the subgraph of memory blocks corresponding to the set of accessed nodes
Sq. The clientC checks that :

• π is indeed a sequence of correctly formed “transformed” binary representations of memory blocks
and along with associated hash values.

• Sq forms a subgraph entirely reachable from the root (sinceA starts from the root and follows point-
ers, this will be the case when the server is honest).

• the hash values present are consistent: for each nodeu, and for each neighborvi,u of u which is in
Sq, check that the valuehvi,u attached tou is the hash of the transformed representation ofvi,u.

• the valuehroot constructed from the inputπ is indeed equal to the public commitmentc.

Next,C runsA on this reconstructedSq. It checks that all the nodes requested byA are inSq and thatA
returns the correct valuea.

Since the hash function is collision-resistant, there is only one such subgraphSq which can be revealed
by the server. More precisely, there is one overall graph—the committed data structure—such that the
server can reveal (reachable) parts of the graph15. Thus the server is committed to a data structureS̃ which
is bounded in size by the server’s memory. By the properties of the data-robust algorithm, an honest server
will always be able to answer a query and provide a valid proof of correctness, whereas a malicious server
can (at most) answer queries with respect to the databaseT ∗(S̃).

4 Achieving privacy for the general construction

For a formal definition of privacy for consistent query protocols, see Section 2.1.2. Informally, we
are interested in two kinds of privacy:total privacy, in which the client cannot distinguish between
commitments to two different datbases without asking a question which distinguishes the two, and
value privacy, in which we only wish that the data associated to the keys in the database remain
secure. This latter notion is in fact quite easy to obtain, as we describe at the end of this section.

We can also extend the consistent query protocols of the previous section to providetotal
privacy, i.e. to protect against any extra information about the database leaking out through the
proof of consistency. Instead of sending the consistency proofπ, the server provides a witness-
hiding proof of knowledge ofπ: this convinces the client both that such aπ existsand that the
server knows it. Interestingly, a simple proof of membership of the existence ofπ doesn’t suffice:
because the protocols in question are only computationally sound, it may be that consistency proofs

15The proof of this is standard: suppose that the server can produce two graphs consistent with the hash of the root
c = hroot. By induction on the distance from the root at which the two graphs differ, one can find a pair of strings
which hash to the same value

13

existfor all sorts of invalid query answers; we can only rely on the assumption that for all but one
answer, those proofs are (computationally) difficult to find.

Note that this solution is avastimprovement over the generic solution (described in the intro-
duction). Whereas in the generic case the server must prove statements whose length is at least
that of thewholedatabase, here it must only prove a statement roughly as long as (the verification
circuit for) the consistency proofπ. In the case of the protocols of Section 5, this is a quasi-
exponential improvement in efficiency, since the resulting proofs are poly-logarithmic in the size
of the database.

Let (Σdb,Ss,Sa, C) be a consistent query protocol for some query structure(D,Q, Q), such
that the client (i.e. verification algorithm)C is deterministic. We assume that the commitment
to the database is shorter than the database itself, and thus that a collision-free hash function is
available, either as common knowledge to all parties or explicitly as part of the public information
output byΣdb.

Let Ccom be the commitment function for the protocol of Halevi and Micali [14], i.e.Ccom
takes a message to commit and outputs the commitment along with the random coins used for
commitment. If the message has length`, the scheme uses7` random bits. Note that this protocol
requires a publicly available hash function. However, in all constructions of consistent query
protocols where the commitment is smaller than the database, a CRHF must already exist, so there
is no need here to provide it explicitly. Also note that the decommitment information from this
protocol is simply the committed message and the random coins used to commit; the verification
consists of ensuring that running the commitment algorithm on the given coins and message does
indeed yield the commitment.

LetP(·, ·) be the (deterministic) polynomial-time relation given by

P
(
(σdb, c

′, q, a), (π, c, ω)
)

= 1 iff c′ = Ccom(c, ω) andC((σdb, c, q, a, π) = “accept”

The corresponding languageLP is the set of tuples for which there exists a proof of consistency:

LP =
{

(σdb, c, q, a) : ∃π : P
(
(σdb, c, q, a), π

)
= 1
}

Let (Σzk, P, V) be anadaptive, multiple-theorem, non-interactive, witness-indistinguishable
proof of knowledge system(NIZKPK) for the relationP. See [9] for a definition of this primitive.
Note that in our setting, we don’t require that the public randomness used by the NIZKPK be
uniform on all strings of a given length. Thus, such a system can be constructed based on the
existence of any trapdoor permutation family. Of course, having the public randomness be simple
coins is handy, and such proof systems exist as long as there exists adense cryptosystem[9].

Consider a modified consistent query protocol(Σ′,S ′s,S ′a, C ′) which uses the NIZKPK to pre-
vent partial leakage of information:

• The public coin generation algorithmΣ′(1k) returns(Σdb(1
k),Σzk(1

k)).

• The setup algorithmS ′s(σdb, σzk, D) computes(c, state)← Ss(σdb, D), and(c′, ω) = Ccom(c).
The setup returnsc′ as the public commitment andstate′ = (c, c′, ω, state).

• The server’s query algorithmS ′a(σdb, σzk, q, state′) first computes(a, π)← Sa(σdb, q, state).

14

Next, it runs the NIZKPK prover16 P : Π ← P
(
σzk, (σdb, c

′, q, a), (π, c, ω)
)
. It sends to the

client the pair(a,Π).

• The clientC ′(σdb, σzk, c′, q, a,Π) simply verifies the NIZKPK:C ′ accepts iffV (σzk, (σdb, c
′, q, a),Π)

accepts.

Lemma 4.1. The query protocol(Σ′,S ′s,S ′a, C ′) from the construction above is a consistent query
protocol (Definition 2) which is private (definition Definition 3). The resulting protocol has com-
munication complexity polynomial in the complexity of the original protocol.

Proof. For brevity, we omit the details, as the properties of the protocol follow in a fairly straightforward
manner from the properties of the NIZKPK system. There are some subtleties worth noting: (a) proofs of
knowledge truly are necessary, since the statistically binding protcol of Halevi-Micali makes the language
LP basically trivial; (b) an adaptive mutliple-theorem NIZKPK is needed since an adversarial client may
tailor his queries to the consistency proofs he has received in the past; (c) we need that the length of the
proofsπ from the original protocol reveal nothing beyond the length of the database. For protocols with an
easy-to-calculate upper bound on the proof length over all databases of a given size, this can be accomplished
by padding the proofπ out to the appropriate length. The protocols constructed in this paper satisfy this
property.

The protocols of the previous section do indeed have deterministic verifiers, and so we can
apply the construction above. Let(T,A) be a DRA for query structure(D,Q, Q) which fits into
the pointer-based framework of Section 3.2.1. Moreover, suppose that a correctly formed structure
(i.e. an output ofT) never contains a pointer cycle.

Proposition 4.2. Suppose that on inputsq andT (D) (correctly formed), the algorithmA examines
b(q,D) memory blocks and a total ofs(q,D) bits of memory, usingt(q,D) time steps. Assuming
the availability of a public collision-resistant hash function, and the existence of trapdoor permu-
tations, there exists a non-interactive,privateconsistent query protocol for(D,Q, Q) which has
proof lengthpoly(s(q,D) + kb(q,D)) on queryq. The server’s computation on each query is
poly(s(q,D) + t(q,D) + kb(q,D)).

Note that when the original protocol yields proofs polylogarithmic in the size of the database,
then so does the modified, private protocol.

EFFICIENT INTERACTIVE PROOFS. More generally, using the efficientZKPK’s of [15], one can
prove statements of lengthn with communicationO(k logc n), for some constantc, assuming the
availability of a collision-resistant hash function. The server-side computation is polynomial in
n. Thus our consistent query protocol can be made private, and the resulting communication is
O (k logc (s(q,D) + kb(q,D))). The drawback to this approach is that the proof of consistency
becomes interactive.

VALUE PRIVACY. As mentioned in Section 2.1.2, achieving the more limitedvalue privacy(in
the case of keyed databases) is potentially more efficient: using the commitment scheme of Halevi
and Micali [14], we can get statistical value-privacy at an additional cost of only7k bits pervalue

16In fact, the proofπ must be padded out so that all consistency proofs have the same length—this way no informa-
tion is revealed beyond the size of the database.

15

which must be revealed. Thus the total communication is bounded above bys(q,D) + 8kb(q,D).
Using the Halevi-Micali scheme in this context has several advantages: it requires no additional
information or infrastructure, since the hash function is required for the basic protocol. Moreover,
the resulting protocol is also computation-efficient: the computation required for the commitment
is two evalutions of the hash function. To decommit, one simply needs to reveal the message the
random coins used in the commitment.

5 Orthogonal Range Queries

In the case of join queries, a databaseD is a set of key/value pairs (entries) where each key is a
point inRd, and each query is a rectangle[a1, b1] × · · · × [ad, bd]. Note that these are also often
called(orthogonal) range queries, and we shall adopt this terminology here for consistency with
the computational geometry literature. For concreteness, we consider the two-dimensional case;
our construction naturally extends to higher dimensions (Section 5.2). In two dimensions, each
queryq is a rectangle[a1, b1] × [a2, b2]. The query answerQ(q,D) is a list of all the entries inD
whose key(xkey, ykey) lies in q.

In this section we give a simple, efficient DRA for range queries and show how to modify it to
make an efficient consistent query protocol.

5.1 A data-robust algorithm for range queries

Various data structures for efficient orthogonal range queries exist (see [13] for a survey). The most
efficient (non-robust) solutions have query timeO((m + 1) logd−1 N) for d-dimensional queries.
In this section we recall the construction ofmulti-dimensional range trees(due to Bentley [3]),
and show how they can be queried robustly. The query time of the robust algorithm isO((m +
1) logdN). It is an interesting open question to find a robust algorithm which does as well as the
best non-robust algorithms.

5.1.1 One-dimensional range trees

Multidimensional range trees are built recursively from one-dimensional range trees (denoted1-
DRT), which were (essentially) one of the structures used by [18, 16] for membership queries. In
a 1-DRT, (key, value) pairs are stored in sorted order as the leaves of a (minimum-height) binary
tree. An internal noden stores the minimum (denotedan) and maximum (denotedbn) keys which
appear in the subtree rooted atn. For a leafl, we takeal = bl to be the value of thekeyl key stored
at l. Additionally, leaves store the valuevaluel associated tokeyl.

SETUP. Given a databaseD = {(key1, value1), . . . , (keyN , valueN)}, the setup transformation
T1DRT constructs a minimum-height tree based on the sorted keys. All the intervals[an, bn] can be
computed using a single post-order traversal.

ROBUST QUERIES. It is an easy exercise to show that a1-DRT allows efficient range queries
when it is correctly formed17. However, in our setting we must also ensure that the queries return

17Given the rootn of a tree and a target interval[a, b], descend recursively to those children whose intervals overlap
with [a, b].

16

Algorithm 1. A1DRT([a, b], n,)
Input: a target range[a, b], a noden in a (possibly misformed)1-DRT.
Output: a set of(key, value) pairs.

1. if n is not properly formed (i.e. does not contain the correct number of fields)
then return∅

2. if n is a leaf:

• if an = bn = keyn andkeyn ∈ [a, b], then return{(keyn, valuen)}
• elsereturn∅

3. if n is an internal node:

• l← leftn, r ← rightn

• if an = al ≤ bl < ar ≤ br = bn then returnA1DRT ([a, b], l) ∪ A1DRT ([a, b], r)

• elsereturn∅

Figure 1: Data-robust algorithmA1DRT for querying one-dimensional range trees

consistent answers even when the data structure is corrupted. The data structure we will use is
exactly the one above. To ensure robustness we will modify the querying algorithm to check for
inconsistencies.

Assume that we are given arootedgraph where all nodesn have an associated interval[an, bn],
and all nodes have outdegree either 0 or 2. Aleaf l is any node with outdegree 0. A leaf is
additionally assumed to have to extra fieldskeyl andvaluel. Consider the following definitions:

Definition 5. A noden is consistentif its interval agrees with those of its children. That is, if the
children arel andr respectively, then the node is consistent ifan = al ≤ bl < ar ≤ br = bn.
Moreover, we should havean = bn for a node if and only if it is a leaf.

A path from the root to a node isconsistentif n is consistent and all nodes on the path to the
root are also consistent.

Definition 6. A leaf l in a1-DRT is valid if there is a consistent path from the root tol.

In order to query a (possibly misformed)1-DRT in a robust manner, we will ensure that the
query algorithmA returnsexactlythe set of valid leaves whose keys lie in the target range. In
a “normal” (i.e. correctly formed)1-DRT, every leaf is valid, and so the algorithm will return
the correct answer. In a corrupted structure, the algorithm will always answer consistently with
the database consisting of the set of points appearing at valid leaves. Thus for any stringS̃, the
databaseT ∗(S̃) consists of the data at all the valid leaves one finds whenS̃ is considered as the
binary encoding of a graph.

17

The algorithmA1DRT (Algorithm 1, Figure 1) will query a1-DRT robustly. When it is first
called, the argumentn will be the root of the graph. Essentially,A1DRT runs the ordinary (non-
robust) search algorithm, checking all nodes it passes to ensure that they are consistent (Defini-
tion 5). It also checks that it never visits the same node twice (in such a case, there must be that
the graph the algorithm receives as input is not a tree).

Note that in fact, the algorithmA1DRT operates in the “pointer-based” model of Section 3.2.1.
Thus the first node on which the algorithm is called is obtained through a call togetroot(). The
neighbours of an internal noden are its two childrenleftn andrightn. For clarity of the algorithm,
we have not explicitly included calls toget(·) in the description of the algorithm.

The following lemma essentially proves that one-dimensional range trees, along with the algo-
rithmA1DRT, form a DRA for range queries.

Lemma 5.1. The algorithmA1DRT will return exactly the set of valid leaves whose keys are in the
target range. In the worst case, the adversary can force the queries to take timeO(s) wheres is
the total size of the data structure. Conversely, given a collection ofN entries there is a tree such
that the running time of the algorithm isO((m+ 1) logN), wherem is the number of points in the
target range. This tree can be computed in timeO(N logN) and takesO(N) space to store.

Proof. On one hand, the algorithm is complete, since in a correctly formed tree every node will pass the
consistency checks, and so the algorithm will return exactly the set of leaves whose keys are in the target
range.

Before proving robustness, it is important to note that there are some kinds of misformed data we don’t
have to worry about. First, we can assume that all nodes are correctly formed (i.e. have the correct number
of fields and the correct types of data) since incorrectly formed nodes will be ignored by the algorithm.
Thus we can assume that the algorithm is indeed given some kind of graph with as input, although it isn’t
necessarily a tree. Moreover, we can assume all nodes in the graph have outdegree either 2 or 0.

The proof of robustness follows from the properties of consistent nodes, which in turn follow from the
definitions. For any noden which is on a consistent path from the root:

1. The consistent path from the root is unique.

2. No valid leavesin n’s subtree have keysoutsiden’s interval.

3. If another noden′ is on a consistent path from the root, and[an′ , bn′] ∩ [an, bn] 6= ∅, thenn′ is either
an ancestor or a descendant ofn (thus one of the two intervals includes the other).

A corollary of these properties is thatno node will be visited twice by the algorithm. This is because the
algorithm expects intervals to shrink at each recurisve step, and so it will never follow a link which leads to
a node earlier on in the current recursion stack. Moreover, there can never be two distinct paths by which the
algorithm arrives at a noden: because the algorithm is always checking for consistency, the two ancestors
n′ andn′′ of n would have to be consistent nodes with overlapping intervals, contradicting the properties
above.

Hence, the algorithm will visit valid leaves at most once, and never visit invalid leaves. Moreover, it will
visit all the valid leaves in the target interval (by inspection). Thus runningA1DRT on a stringS̃ procudes
answers consistent withT ∗1DRT(S̃), the set of data points stored at valid leaves in the graph represented by
S̃.

18

Algorithm 2. A2DRT([a(x), b(x)]× [a(y), b(y)], n)
Input: a target range[a(x), b(x)]× [a(y), b(y)], a noden in a2-DRT.
Output: a set of(xkey, ykey, value) triples.

1. if n is not properly formed (i.e. does not contain the correct number of fields),
then return∅.

2. Check for consistency (if check fails, return∅):

• if n is a leafthen checkan = bn = keyn

• if n is an internal node,then checkan = aleftn ≤ bleftn < arightn ≤ brightn = bn

3. (a) if [an, bn] ∩ [a(x), b(x)] = ∅ then return∅
(b) if [an, bn] ⊆ [a(x), b(x)] then

• B ← A1DRT([a(y), b(y)], treen)

• Remove elements ofB for which xkey 6∈ [an, bn]

• if n is an internal node:
For each pointp in B, check thatp is 2-valid in eitherleftn or rightn.
If the check fails, removep fromB.

• ReturnB

(c) Otherwise

•
B ← A2DRT

(
([a(x), b(x)] ∩ [aleftn , bleftn])× [a(y), b(y)], leftn

)
∪ A2DRT

(
([a(x), b(x)] ∩ [arightn , brightn])× [a(y), b(y)], rightn

)
• Remove elements ofB which are not valid leaves oftreen.

• ReturnB

Figure 2: Data-robust algorithmA2DRT for querying two-dimensional range trees

19

5.1.2 Two-dimensional range trees

SETUP. Here, the database is a collection of triples(xkey, ykey, value), where the pairs(xkey, ykey)
are all distinct (they need not differ in both components). The data structure, a two-dimensional
range tree (denoted2-DRT), is an augmented version of the one above. The skeleton is a1-DRT
(called theprimary tree), which is constructed using thexkey’s of the data as its key values. Each
node in the primary tree has an attached1-DRT called itssecondarytree:

• Each leafl of the primary tree (which corresponds to a singlexkey valueal = bl) stores all
entries with thatxkey value. They are stored in the1-DRT treel which is constructed using
ykey’s as its key values.

• Each internal noden (which corresponds to an interval[an, bn] of xkey’s) stores a1-DRT
treen containing all entries withxkey’s in [an, bn]. Again, this “secondary” tree is organized
by ykey’s. Note that it neednot store thevalue associated to an(xkey, ykey) pair.

The setup algorithmT2DRT creates a2-DRT given a database by first sorting the data on the key
xkey, creating aprimary tree for those keys, and creating a secondary tree based on theykey for
each of nodes in the primary tree. In a2-DRT, each point is storedd times, whered is its depth in
the primary tree. Hence, the total storage can be madeO(N logN) by choosing minimum-height
trees.

SEARCHING IN A 2-DRT. The natural recursive algorithm for range queries in this structure takes
timeO(log2 N) [13]: Given a target range[a(x), b(x)]× [a(y), b(y)] and an internal noden, there are
three cases: if[a(x), b(x)] ∩ [an, bn] = ∅, then there is nothing to do; if[a(x), b(x)] ⊇ [an, bn], then
perform a search on the second-level tree attached ton using the target range[a(y), b(y)]; otherwise,
recursively exploren’s two children.

Based on the natural query algorithm, we can construct a DRAA2DRT by adding the following
checks:

• All queries made to the 1-D trees (both primary and secondary) are made robustly following
algorithm 1 (A1DRT), i.e. checking consistency of each explored node.

• Additionally, for every point which is retrieved in the query, make sure it is present and valid
in all the secondary 1-D trees which are on the path to the root (in the primary tree).

The following definition captures the notion of valiity which is enforced by these checks:

Definition 7. A point p = (xkey, ykey, value) in a (possibly corrupted)2-DRT is 2-valid if

1. p appears at a valid leaf in the secondary1-DRT treel belonging to aleaf l of the primary
tree with key valuexkey = al = bl.

2. For every (primary) noden on the path tol from the root of the primary tree,n is consistent
andp is a valid leaf in the (one-dimensional) treetreen.

20

Now given a (possibly corrupted)2-DRT and a pointp = (xkey, ykey, value), it is easy to
check whether or notp is 2-valid: one first searches for a leafl with key xkey in the primary tree,
exploring only consistent nodes. Then, for each noden on the path froml to the root (includingl
and the root), one checks to ensure thatp appears as a valid leaf in thetreen.

For robust range queries, the algorithmA2DRT we obtain is described in Figure 2. As before,
the idea is to return only those points which are 2-valid. Thus, for an arbitrary stringS̃, the
induced databaseT ∗2DRT(S̃) is the collection of all 2-valid points in the graph represented byS̃.
The following lemma shows that the algorithms(T2DRT, A2DRT) form a DRA for two-dimensional
range queries with query complexityO((m + 1) log2 N) (wherem is the number of points in the
target range).

Lemma 5.2. Algorithm 2 (A2DRT) will return exactly the set of 2-valid points which are in the
target range. On arbitrary inputs,A2DRT terminates in worst-case timeO(L), whereL is the total
size of the data structure.

Conversely, given a collection ofN entries there is a tree such that the running time of the
algorithmA2DRT isO((m + 1) log2 N), wherem is the number of points in the target range. This
tree can be computed in timeO(N log2 N) and takesO(N logN) space to store.

Proof. (sketch) As in the one-dimensional case, the algorithm will never explore the same node twice, and
so we may think of the corrupted input to the algorithm as a tree. Moreover, since the algorithm is checking
for proper formatiing of nodes, we can assume that this graph consists of a number of “primary” nodes with
secondary trees dangling off them. Finding the running time of the algorithm on well-constructed inputs is
a straightforward exercise.

On one hand, one can see by inspection that any 2-valid point in the target range will be output by the
algorithm, since all the checks will be passed. Moreover, no valid point outside the target range will be
output.

On the other hand, consider any point that is output by the algorithm. It must have appeared in the set
B at stage 3(b) of the algorithm for some noden. Thus it is a valid leaf intreen. Moreover, it must be valid
in either leftn or rightn, because of the checks made at step 3(b). This means there is a leafl which is a
descendant ofn such thatp is a valid point intreel and in all the trees of the nodes on the path fromn to l.
Finally, as the recursion exits (in step 3(c)), the algorithm will verify thatp appears at a valid leaf in all the
nodes on the path from the root. ton. Thusp must be a 2-valid point.

Remark 4. As mentioned above, more efficient data structures and algorithms for planar orthog-
onal queries exist [13], but it is not clear how to make them robust without raising the query time
back toO((m+ 1) log2 N). This is an interesting open question.

HIGHER DIMENSIONS. One can use similar ideas to make robust range queries ond-dimensional
keys, whered ≥ 2. The structure is built recursively, just as in the 2-D case. Although the
algorithm is polylogarithmic for any fixed dimension, the exponent increases:

Lemma 5.3. There exists a DRA ford dimensional range queries such that queries run in time
O((m+1) logdN), and the data structure requiresO(N logdN) preprocessing andO(N logd−1 N)
storage.

21

5.2 Efficient query protocol

Given this algorithm, the (non-private) query protocol can be constructed as in Section 3.2: the
server creates a tree as in the previous section. For each key/value pair, he computes a hash value
hkey. He now works his way up through the various levels of the tree, computing the hash values
of nodes as the hash of the tuple (min, max, left child’s hash value, right child’s hash value). Note
that a given key will appear roughlylogN times in the tree; the same valuehkey should be used
each time.

To answer a range query, the server runs the algorithm of the previous section. Note that
he need only send the hash values and intervals of nodes on the “boundary” of the subgraph (in
memory) which was explored, i.e. the leaves and the siblings of the nodes on their paths to the
root (the information corresponding to the interior nodes can be reconstructed from the boundary
nodes). This yields the following:

Theorem 5.4 (Two dimensions).Assuming the existence of collision-resistant hash functions, there
is a consistent query protocol for two-dimensional range queries with commitment sizek and non-
interactive consistency proofs of length at mostO(k(m + 1) log2 N), wherem is the number of
keys in the query range, andk is the security parameter (output size of the hash function).

The protocol can be made statistically value-private by at an increased cost of7km bits of
communication. The protocol can be made perfectly private. If non-interactive proofs are desired,
then we obtain proofs of lengthpoly(k(m+1) logN), at the cost of requiring public randomness. If
we allow interactive proofs, then the resulting communication isO(k logc(k(m+1))+k logc logN)
for some constantc.

For higher dimensions, our construction yields proofs of lengthO(k(m+ 1) logdN).

6 Explicit-hash Merkle trees

As mentioned above, Merkle trees allow one to commit to a large number of values via a short
commitment, and to reveal some subseta′1, ..., a

′
t of those values very efficienty, by showing a path

from the root to that particular value. The goal is to modify that scheme to hide the remaining
committed values, while leaving the hash function evaluations explicit, i.e. without going through
oblivious evaluation of such complicated circuits. In this section we describe the construction of
explicit-hash, private Merkle trees.

Server storage Let C(·) be a non-interactive commitment scheme to messages of arbitrary
length. It will be convenient to assume thatC(·) is homomorphic, that is given commitments
tom1 andm2 it is possible to produce a commitment tom1 + m2 (18). Such schemes exist based
on a number of assumptions, such as the hardness of discrete logarithm extraction (e.g. Pedersen’s
scheme [25]). LetH be selected from a collision-resistant hash function family.

We will build a hash tree based on commitments to nodes, that is the server will actually commit
to commitments of the nodes in the tree. Moreover, rather than store explicit hash values in the

18In fact, we only need to be able to prove the equality of two committed strings without revealing them.

22

tree we will store commitments to those values. Specifically, for each noden in the tree, we will
define three values:

• The basic string representation:xn is the information stored at the noden.

• A hash pre-image forn: cn is a particular commitment to the valuexn via the commitment
shcemeC(·).

• The corresponding hash value:yn = H(cn) is the hash value forn which we will store at
the parent ofn.

For a leafl, we havexl = al, andcl is a commitmentC(al). For an internal noden, we
havexn = (H(cleftn), H(crightn)), andcn is a component-wise commitment toxl usingC(·), i.e.
cl ← (C(H(cleftn)), C(H(crightn))).

The public commitment is the valueyroot = H(x′root).

Definition 8. For two stringsx andy, we sayy � x if y is the hash of some valid commitment to
x, i.e. if there are random coinsω such thaty = H(C(x;ω).

Protocol outline Suppose the server now wants to revealt values from the tree. Letd = logN be
the depth of the tree. For each leafl to be revealed, the server finds the corresponding pathn1, ..., nd
wheren1 is the root andnd is l. He sends to the client the dataal, plus fresh commitments to the
valuesxni andyni. He then proves that these form a consistent path in two stages.

1. For each of thet paths, Server sendsu1 = C(xn1), ..., ud = C(xnd) andv1 = C(yn1), ..., vd =
C(ynd).

2. The server proves that each of the pairsui, vi is a commitment to a pairxi, yi such thatyi�xi.

3. The server proves that the committed nodes actually form a path, that is for everyi > 1, the
server shows that one of theyi appears as one of the components ofxi−1.

4. The server proves that the first node is indeed the root by opening the commitmentv1 o
reveal the public commitment stringyroot.

The first proof is the trickiest, since we wish to use only explicit hash function evaluation (never
oblivious) but also not reveal any information on possible relations between the various paths.

The specification and analysis of the protocol, which essentially proves Theorem 1.1, is con-
tained in Appendix A.

6.1 Achieving Privacy More Efficiently

Given the efficient consistent query protocols for join queries described in Section 3 and Sec-
tion 5, privacy can be achieved by applying generic witness-hiding or zero-knowledge proofs of
knowledge, as described in Section 4. However, even for our efficient protocols these will be very
complex, as they will require as the least oblivious evaluation of the circuit for hash functionH.

23

Instead, we present efficient, private consistent query protocols for 1-D range queries, based on
the explicit-hash technique of Section 6. The main drawback is that our protocol is not memoryless:
the server must remember what queries have been made so far in order to ensure that no information
is leaked from a proof.

The main tool used in the construction is a sub-protocol which, given commitments to values
C(a) andC(b), allows the server to prove thata < b. The protocol is specified in Appendix B.

References

[1] S. Arora and M. Safra. Probabilistic Checking of Proofs: A New Characterization of NP.
Journal of ACM, 45(1):70–122, 1998.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Verification and Hardness
of Approximation Problems. Journal of ACM, 45(3):501-555, 1998.

[3] J. L. Bentley. Multidimensional divide-and-conquer.Comm. ACM, 23:214–229, 1980.

[4] R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revisited (prelim-
inary version). InProceedings of STOC 1998, pp. 209–218.

[5] R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure Against Cho-
sen Ciphertext Attack. CRYPTO ’98.

[6] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-Interactive and Non-Malleable Commitment.
STOC ’98.

[7] G. Di Crescenzo, J. Katz, R. Ostrovsky, A. Smith: Efficient and Non-interactive Non-malleable
Commitment. EUROCRYPT 2001: pp. 40-59

[8] I. B. Damg̊ard, T. P. Pedersen, and B. Pfitzmann. On the existence of statistically hiding
bit commitment schemes and fail-stop signatures. In D. R. Stinson, editor,Advances in
Cryptology—CRYPTO ’93, volume 773 ofLecture Notes in Computer Science, pages 250–
265. Springer-Verlag, 22–26 Aug. 1993.

[9] A. De Santis and G. Persiano Zero-Knowledge Proofs of Knowledge Without Interaction
(Extended Abstract). InProc. of FOCS 1992, pp. 427-436.

[10] M. Fischlin and R. Fischlin. Efficient Non-Malleable Commitment Schemes. CRYPTO 2000.

[11] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof-
Systems (Extended Abstract). InProc. of STOC 1985, pp. 291–304.

[12] O. Goldreich and S. Micali and A. Wigderson. Proofs that Yield Nothing But their Validity
or All Languages in NP Have Zero-Knowledge Proof Systems.JACM, 38 (1), pp. 691–729,
1991.

[13] J. Goodman and J. O’Rourke, editors.Handbook of Discrete and Computational Geometry.
CRC Press, 1997.

24

[14] S. Halevi and S. Micali. Practical and provably-secure commitment schemes from collision-
free hashing. In N. Koblitz, editor,Advances in Cryptology—CRYPTO ’96, volume 1109 of
Lecture Notes in Computer Science, pages 201–215. Springer-Verlag, 18–22 Aug. 1996.

[15] J. Kilian. A note on efficient zero-knowledge proofs and arguments. InProceedings of the
Twenty-Fourth Annual ACM Symposium on the Theory of Computing, pages 723–732, Victoria,
British Columbia, Canada, 4–6 May 1992.

[16] J. Kilian. Efficiently committing to databases. Technical report, NEC Research Institute,
February 1998.

[17] S. Micali. CS proofs (extended abstract). In35th Annual Symposium on Foundations of
Computer Science, pages 436–453, Santa Fe, New Mexico, 20–22 Nov. 1994. IEEE.

[18] S. Micali and M. Rabin. Accessing personal data while preserving privacy. Talk announce-
ment (1997), and personal communication with M. Rabin (1999).

[19] R. Merkle A digital signature based on a conventional encryption function. In C. Pomerance,
editor, Advances in Cryptology – CRYPTO ’87, volume 293 ofLecture Notes in Computer
Science, pages 369–378, 16–20 August 1987. Springer-Verlag, 1988.

[20] M. Naor. Bit commitment using pseudo-randomness (extended abstract). In G. Brassard,
editor, Advances in Cryptology—CRYPTO ’89, volume 435 ofLecture Notes in Computer
Science, pages 128–136. Springer-Verlag, 1990, 20–24 Aug. 1989.

[21] M. Naor, R. Ostrovsky, R. Venkatesan, M. Yung: Perfect Zero-Knowledge Arguments for
NP Can Be Based on General Complexity Assumptions (Extended Abstract). CRYPTO 1992:
196-214

[22] R. Ostrovsky, R. Venkatesan, and M. Yung. Fair games against an all-powerful adversary.
Sequences 91 workshop. (see alsoAMS DIMACS Series in Discrete Mathematics and Theoret-
ical Computer Science, Vol. 13 Distributed Computing and Cryptography, Jin-Yi Cai, editor,
pp. 155-169. AMS, 1993.)

[23] R. Ostrovsky, R. Venkatesan, and M. Yung. Secure Commitment Against Powerful Adver-
sary: A Security Primitive based on Averag e Intractability. In Proceedings of 9th Symposium
on Theoretical Aspects of Computer Science (STACS-92) (LNCS 577 Springer Verlag Ed. A.
Finkel and M. Jantzen) pp. 439-448 February 13-15 1992, Paris, France.

[24] R. Ostrovsky, R. Venkatesan, and M. Yung. Interactive hashing simplifies zero-knowledge
protocol design. InAdvances in Cryptology - EUROCRYPT ’93, Lecture Notes in Computer
Science. Springer-Verlag, 1993.

[25] T.P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing.
CRYPTO ’91.

[26] J. Rompel. One-Way Functions are Necessary and Sufficient for Secure Signatures. STOC
’90.

25

[27] A. Russell. Necessary and Sufficient Conditions for Collision-Free Hashing. J. Crypto. 8(2):
87–100, 1995.

Appendix

A The Explicit Hashing Protocol

This section fleshes out the outline from Section 6.

Proving that yi�xi There aret paths of lengthd for which this must simultaneousely be proven.
At the very least, the server will have to reveal the hash pre-images for all the nodes in those
t paths. However, depending on how the paths overlap, there may be far fewer thantd such
nodes (and hence hash pre-images), and any repetitions will be easy to detect. Thus, the server
will additionally send enough “dummy pre-images” so that the total number of committed nodes
claimed to be in the hash tree is exactlytd. The dummy values are just other hash pre-images
present in the hash tree. Formally:

1. (a) Let
{
n(1), ..., n(s)

}
be the union of the nodes on allt paths (s ≤ td). We pad this set

with td−s other nodesns+1, ..., ntd (arbitrary nodes will work) to get a set oftd nodes.

Let c(1), ..., c(s) be the corresponding pre-images, i.e.c(j) = cn(j) .

(b) Server sends
{
c(1), ..., c(td)

}
to the client in random order.

2. Repeat the following cut-and-choose protocolk times:

(a) Server chooses a permutationπ ← Std, and sends fresh commitmentsc′
n(j) = C(xn(j))

to all td nodesn(j), as well as commitmentsC(yn(j)) to the hash valuesyn(j) = H(c(j)).
These commitments are permuted according toπ before sending.

(b) Client answers with a challenge bitb← {0, 1}.
(c) If b = 0, the server:

i. Sendsπ proves that for each of thetd nodesn(j), c′
n(j) andc(j) are commitments

to the same value.
(This is easy since the commitment scheme is homomorphic.)

ii. opens all commitments toyn(j) (client verifiesyn(j) = H(c(j))).

If b = 1, the server:

i. Shows that each of the commitmentsui is equivalent to one of the commitments
c′
n(j) and that the commitmentvi is equivalent to the corresponding committed hash

valueC(yn(j)).

At the end of this proof, the client should be convinced that each of the commitment pairs
(ui, vi) corresponds to one of the valuesc(j), and that the underlying pairxi, yi satisfiesyi � xi.

26

Proving that the path is consistent We now have pairs of commitmentsui, vi which hide valid
pairsxni , yni, whereyni = H(C(xni)) for some valid commitment ofxni. We can easily prove
thatu1, v1 corresponds to the root by openingv1 and checking it is equal to the public commitment
yroot.

The server must now prove that for eachi < d, either:

• ni+1 is the left child ofni, which means that(yni+1
= yleftni

), or:

• ni+1 is the right child ofni, which means that(yni+1
= yrightni

).

To prove this, one uses a classic cut-and-choose proof: the server commits to a permutation of
yleftni

andyrightni
. Depending on the client’s challenge, the server either proves that the two values

were a correct permutation of the real values (this requires only showing equality, which is easy
with homomorphic commitments), or proves that one of the values isyni+1

. Repeating thisk times
will lower the soundness error of the proof to2−k.

A.1 Complexity of the proofs

One can see by inspection that the communication complexity of this proof is dominated by the
proofs thatyi � xi. Each phase of the cut-and-choose protocol requires transmittingO(tdk) bits,
and so the overall communication complexity isO(t2dk2) bits.

ROUND COMPLEXITY. The protocol consists of a number ofk-round cut-and-choose proofs.
Because these proofs are not interdependent, we can run them all in parallel without losing zero-
knowledge19, so long as we use the same random coins for each of the proofs (i.e. at each round
the client sends only a single challenge bit, which is used in all the proofs). Thus, we easily obtain
ak-round protocol.

This can actually be improved substantially. First of all, in our setting we do not need the full
power of zero-knowledge, but require only that our proof leak nothing about the other data values
contained in the hash tree. Since our commitment schemes are information-theoretically hiding,
there exists a witness for every possible setting of the other values and thus, we need only that the
proofs have witness-hiding proofs. This in fact allows us to collapse the protocol to a 3 rounds,
witness-hiding proof of knowledge.

Finally, one can use standard folklore techniques to transform the 3-round witness-hiding proof
of knowledge into a ZK proof of knowledge is simulatability is truly desired. This increases the
complexity to 5 rounds, and requires the additional assumption of perfectly hiding trapdoor com-
mitment schemes (which exists based on the discrete log assumption and the hardness of factoring).
In the first round, the server sends the parameters for a perfectly-hiding trapdoor commitment
scheme. The client responds with a commitment to the challenges he will use in the protocol.
They then run the 3-round protocol, using the committed challenges. Along with his response to
the challenges, the server sends the trapdoor information for the commitment scheme.

Note that it isnot sufficient to transform our protocol to obtain a zero-knowledge proof of the
existence of a witness—since the commitments involved are only computationally sound, a proof
of knowledge is necessary. Note that if a random oracle is available, then we can in fact use the

19This is not true of ZK proofs in general, but it is true for our protocol.

27

Fiat-Shamir technique to remove interaction completely without losing zero-knowledge (since our
underlyingproofs are require only public coins). Formally:

Theorem A.1. The explicit-hash Merkle tree above allows proving the consistency oft paths of
lengthd usingO(d · t2 ·k2) bits of communication, wherek is the security parameter. The protocol
can be made provably zero-knowledge with 5 rounds of interaction, witness-hiding with 3 rounds
of interaction, and completely non-interactive if one assumes the availability of a random oracle.

B Achieving Privacy More Efficiently

Given the efficient consistent query protocols for join queries described in Section 3 and Sec-
tion 5, privacy can be achieved by applying generic witness-hiding or zero-knowledge proofs of
knowledge, as described in Section 4. However, even for our efficient protocols these will be very
complex, as they will require as the least oblivious evaluation of the circuit for hash functionH.

Instead, we present efficient, private consistent query protocols for 1-D range queries, based on
the explicit-hash technique of Section 6. The main drawback is that our protocol is not memoryless:
the server must remember what queries have been made so far in order to ensure that no information
is leaked from a proof.

The first step is to modify the range tree so thatall consistency proofs have length exactly
d = dlogNe. Subsequently, we show how to achieve privacy efficently for membership queries,
and finally for range querires.

MODIFIED RANGE TREE. We start from the basic consistent query protocol for membership and
range queries, based on range trees. First we modify the data structure slightly so that the length
of a proof of consistency can be calculated exactly from the number of data points returned on a
given query. Specifically, we ensure thatall consistency proofs have length exactlyd = dlogNe,
and that the ranges of the children of a noden form a partition of[an, bn] about the splitting point
splitn.

• Instead of storing at each internal noden the minimum and maximum keys which appear
in the subtree rooted at that node, we store an interval[an, bn] such that all keyskey in the
subtree satisfyan < key < bn.

At each branching we require that the children’s intervals partition that of their parent, and
the point at which they cut the parent’s interval is stored at the parent and denotedsplitn.
Thus, the consistency check of Algorithm 1 becomesal < bl = splitn = ar < br. If n is a
leaf, the consistency check becomesan < keyn < bn.

• For simplicity, we assume that keys are all integers in a known interval{1, ..., 2s − 2}. The
values0, 2s − 1 are set aside as special values, denoted−∞ and∞, respectively.

• In order to ensure that it is always possible to split intervals so thatan < keyn < bn at the
leaves, we can require that all keys be even numbers (this at most increases the size bounds
by 1).

• In every tree, we insert the values−∞ = 0 and∞− 1 = B − 2, so that the range stored at
the root is always in fact[−∞,∞].

28

• We assume that the number of leaves in the tree is a power of 2 so that all leaves are at the
same depth. This meansN = 2d− 2 for some integerd. This at most doubles the number of
points we must store in the database.

The consistency proof for a membership query in this new structure will always consist of
exactlyd nodes (whereN = 2d− 2), even for queries which return “key not present”. Consistency
proofs for range queries comprisem+2d nodes, wherem is the number of data points in the range.

Privacy for membership queries We first describe how to achieve privacy for membership
queries, and then explain how to generalize the technique for range queries.

The protocol outline is the same as for explicit hashing, except that additional range information
is stored at the internal nodes. However, in the case of range trees the proof that the path is
consistent is considerably more complex, since it involves proving statements of the forma < b.

SERVER STORAGE. This is the same as in the explicit hashing protocol, except that the stringxn
contains additional information: for internal nodes it containsan, bn andsplitn. For leaves, we add
the rangean, bn, plus the valueskeyn andvaluen (note that for efficiency,valuen can simply be the
hash of the value stored at the leaf).

Moreover, all the range bounds are committed tobit-by-bit instead of as a monolithic string.
This will be necessary to get fast consistency checks. If all keys are integers less than2s, then each
number will requiresk bits to be committed.

PROVING yi � xi. As before, the server commits to nodes and their hash values viad pairsui, vi.
The goal is to prove that these correspond to pairsxi, yi whereyi � xi. This is where the protocol
requires the server to have memory. As before, the server will send a set of possible hash pre-
images for the nodes in the path, and prove that each node in the path corresponds to at least one
of these hash pre-images. The problem lies in choosing that set of possible hash pre-images. If the
server reveals only those necessary for this path, then two different queries will reveal a lot about
how the two different paths overlap. Instead, the server will always send all of the pre-images sent
on the previous query, plusd new pre-images (regardless of how many new pre-images are really
necessary). Thus, on thet-th query, the server sendstd possible pre-images, and runs the same
cut-and-choose protocol to show that the coomitted pairs satisfyyi � xi.

PROVING THAT THE PATH IS CONSISTENT. We now have pairs of commitmentsui, vi which
hide valid pairsxni , yni. We can easily prove thatu1, v1 correspond to the root by openingv1 and
checking it is equal to the public commitmentyroot. The basic check which must be performed
are essentially the same as in Section 6, except that now we must add checks of the forma < b.
We will show how to prove such statemtents below. First, we give the outline of the consistency
checks.

Suppose that we have a subprotocol for proving thata < b or a ≤ b given two commitments
C(a) andC(b). Then the server can prove that the path consistent as follows:

• For eachi < d, we haveani < splitni < bni.

• For eachi < d, either:

– ni+1 is the left child ofni, which means that(ani+1
= ani) and(bni+1

= splitni) and
(yni+1

= yleftni
), or:

29

– ni+1 is the right child ofni, which means that(ani+1
= splitni) and(bni+1

= bni) and
(yni+1

= yrightni
).

This can done via a cut-and-choose protocol as in Section 6. To prove this, one uses a
classic cut-and-choose proof: the server commits to a permutation of(ani , splitni , yleftni

)
and(splitni , bni , yrightni

). Depending on the client’s challenge, the server either proves the
two triples were a correct permutation of the real values (this requires only showing equality,
which is easy with homomorphic commitments), or proves that one of the two triples is equal
to (ani+1

, bni+1
, yni+1

).

Repeating thisk times will lower the soundness error of the proof to2−k.

• For the leafl = nd, we haveal < keyl < bl.

• For the leafl = nd, the revealed query answer is correct. If the query was for valuekey, we
must check thatal < key < bl and eitherkey = keyl or key 6= keyl, depending on whether
the query answer was positive or negative.

Thus, we need only show how to prove thata < b, a ≤ b or a 6= b) for two committed values
C(a), C(b).

PROVING a < b, a ≤ b, a 6= b. Suppose we haveC(a), C(b) for two integersa, b ∈
{0, ..., B − 1}. The server wishes to prove to the client thata < b. A proof of the statement
a ≤ b would proceed similarly. The proof thata 6= b is in fact much easier and we leave it as an
easy exercise.

1. Let a1, ..., as be the binary representation ofa and b1, ..., bs be the binary representation
of b. Because we asked that the server commit bit-by-bit, we haveC(a1), ..., C(as) and
C(b1), ..., C(bs).

2. Let C ′() be a commitment scheme which allows one to commit to one of three values
{0, 1, ∗}. We only require that it be easy to prove that two commitments are equal.20

Suppose that the firstt most significant bits ofa andb are equal. Then the server sends fresh
commitments to the bits ofa andb, except that for the firstt bits of each he commits to∗
instead.

The problem of verifying thata < b can now be reduced to one of local pattern checking.
There are four sequences of committed bits. It must be that∗’s appear in the two last se-
quences only when the bits ofa, b are equal, and in all other positions the bits are copied
faithfully. Moreover, it must be that the first position where∗’s do not appear hasai = 0 and
bi = 1. This means we must check2s patterns, each on four positions.

However, pattern chekcing can be done with a cut-and-choose protocol: the server commits
to a permutation of all the possible patterns which apply to a given subset of bits (in our
setting, there are always less than 20 patterns). Then he either opens all the patterns, or
shows that one of them matches the positions he is checking. Repeatk times for soundness
error2−k.

20This can be implemented by having each commitment be a pair of bit commitments, where a commitment to0, β
represents the bitβ and a commitment to1, β always represents∗.

30

Achieving privacy for range queries In order to achieve privacy for range queries, we build on
the protocol above for membership queries. For each point in the range of the query, the server
gives a proof of membership as above. For the two endpoints, the server gives an almost-complete
proof of membership: he gives a path to the unique leaf which contains that endpoint, but does
not prove any relation between the endpoint and the key at that leaf. Instead, he proves that the
answers he has given cover the entire range:

1. The leaves in the range should be contiguous. This can be proven easily by provingbl = al′
for adjacent leavesl, l′.

2. The endpoints should be proven correct. Suppose the query interval is[a, b]. Let l be the leaf
corresponding to the left endpointa. Let l′ be the leaf corresponding to the leftmost point in
the range. The left endpoint is correct if either

• al = al′ andal < a ≤ keyl, or

• bl = al′ andkeyl < a ≤ bl

This can be proven by a cut-and-choose as before.

The proof of correctness of the right endpoint is similar.

Note that one can save some of the complexity of the membership proofs by running all the
proofs that the various paths are in the hash tree together (see below).

B.1 Complexity of the consistency proofs

The communication complexity of the proof of membership can be seen by inspection to beO(t ·
d · s · k2), wheret is the number of queries so far,d is the depth of the hash tree (= logN), s
is the bound on the length of the keys, andk is the security parameter. Note that in fact both
Micali-Rabin and Kilian [18, 16] gave protocols for private membership queries which were more
efficient. However, their technqiuesdo not generalize to range queries.

As for range queries, the complexity of the proofs can be madeO ((t+m) · d · s · k2), wheret
is the number of queries so far andm is the total number of points returned from all queries so far.

As for explicit-hash Merkle trees, because we are using perfectly-hiding commitments, we
only need witness-indistinguishability and so we can reduce the protocol to 3 rounds. As before,
we can obtain a truly zero-knowledge protocol by increasing to 5 rounds, and we can remove all
interactivity if we asusume a random oracle.

31

Contents

1 Introduction 1
1.1 Our contributions .2

2 Definitions 5
2.1 Consistent query protocols .5

2.1.1 Keyed databases .7
2.1.2 Privacy .7

3 Data-robust algorithms and consistent query protocols 9
3.1 Data-robust algorithms .9
3.2 Constructing consistent query protocols from DRA’s11

3.2.1 Pointer-based algorithms .11
3.2.2 A general construction .12

4 Achieving privacy for the general construction 13

5 Orthogonal Range Queries 16
5.1 A data-robust algorithm for range queries .16

5.1.1 One-dimensional range trees .16
5.1.2 Two-dimensional range trees .20

5.2 Efficient query protocol .22

6 Explicit-hash Merkle trees 22
6.1 Achieving Privacy More Efficiently .23

A The Explicit Hashing Protocol 26
A.1 Complexity of the proofs .27

B Achieving Privacy More Efficiently 28
B.1 Complexity of the consistency proofs .31

32

