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Abstract

This thesis presents the design, implementation, and evaluation of an extension to the Java lan-
guage, ConstJava, that is capable of expressing immutability constraints and verifying them at
compile time. The specific constraint expressed in ConstJava is that the transitive state of the
object to which a given reference refers cannot be modified using that reference.

In addition to the ability to specify and enforce this basic constraint, ConstJava includes several
other features, such as mutable fields, immutable classes, templates, and the const cast operator,
that make ConstJava a more useful language.

The thesis evaluates the utility of ConstJava via experiments involving writing ConstJava code
and converting Java code to ConstJava code. The evaluation of ConstJava shows that the language
provides tangible benefits in early detection and correction of bugs that would otherwise be difficult
to catch. There are also costs associated with the use of ConstJava. These are minimized by
ConstJava’s backward compatibility with Java, and by the high degree of inter-operability of the
two languages, which allows for a less painful transition from Java to ConstJava.

This technical report is a revision of the author’s Master’s thesis, which was advised by Prof. Michael
D. Ernst.



Chapter 1

Introduction

An important goal in language design is making it easier for the programmer to specify constraints
on code. Such constraints can ease or accelerate the detection of errors and hence reduce the time
spent debugging. An example of such a constraint is static type-checking, which is now found in
most languages. Another such constraint is the ability to specify that an object is immutable, or
another version of such constraint, that it cannot be changed through a given reference.

The Java language [GJSB00] lacks the ability to specify immutability constraints. This paper
describes ConstJava, an extension to the Java language that permits the specification and compile-
time verification of immutability constraints. ConstJava specifies immutability constraints using
the keyword const, which is modeled after C++. The language is backwards compatible with Java.
In addition, ConstJava code is inter-operable with Java code, and runs on an unmodified Java
Virtual Machine.

ConstJava permits the specification of the following constraint: the transitive state of the
object to which a given reference refers cannot be modified using that reference. ConstJava does
not place any guarantee on object immutability. However, if only constant references to a given
object exist (a constant reference is one through which an object cannot be mutated), then the
object is immutable. In particular, if at instantiation an object is assigned to a constant reference,
the object is immutable.

Unlike other proposals for immutability specification, ConstJava provides useful guarantees even
about code that manipulates mutable objects. For example, a method that receives a constant
reference as a parameter will not modify that parameter, unless the parameter is aliased in a global
variable or another parameter. This allows one to specify compiler-verified constraints on behavior
of methods, and eases reasoning about and optimization of programs.

I obtained experience with ConstJava by writing code in it, as well as by annotating Java code
with const to convert it to ConstJava. This experience helped me to design language features for
ConstJava to make it more useful and easier to use. In addition, the experience helped clarify the
costs and benefits of using ConstJava.

This technical report is organized as follows. Chapter 2 further motivates immutability con-
straints. Chapter 3 describes the design goals used during the design and implementation of Const-
Java. Chapter 4 describes the ConstJava language, chapter 5 discusses the design of ConstJava,
and chapter 6 gives its type-checking rules. Then chapter 7 describes the experiments that were
performed in order to evaluate ConstJava, while chapter 8 discusses the results of those experi-
ments and evaluates ConstJava in view of both the experiments and the design goals mentioned
in chapter 3. Finally, chapter 9 considers related work, chapter 10 discusses possible future re-
search directions, and chapter 11 concludes. Appendix A provides the full language definition for
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ConstJava.
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Chapter 2

Motivation

Compiler-enforced immutability constraints offer many benefits. As one example, they permit opti-
mizations that can reduce run time by permitting caching of values in registers that would otherwise
need to be reloaded from memory. The task of alias analysis is also simplified by immutability con-
straints.

This technical report focuses on the software engineering benefits of compiler-enforced im-
mutability constraints. The constraints provide an explicit, machine-checked way to express in-
tended abstractions, which eases understanding and reasoning about code by both humans and
machines. They also indicate errors that would otherwise be very difficult to track down. This
chapter uses a class representing a set of integers (figure 2.1, p. 4) to explain three examples of
such benefits, showing enforcement of interface contracts, prevention of representation exposure,
and granting clients read-only access to internal data. In addition, this chapter discusses some of
the potential costs of using a language extension such as ConstJava.

2.1 Enforcement of contracts

Method specifications describe both what a method must do and what it must not do. For instance,
a method contract may state that the method will not modify some of its arguments, as is the case
with IntSet.intersect(). Compiler enforcement of this contract guarantees that implementers
do not inadvertently violate the contract and permits clients to depend on this property with
confidence. ConstJava allows the designer of IntSet to write

public void intersect(const IntSet set) {

and the compiler ensures that the method’s specification about not modifying set is followed.

2.2 Representation exposure

Users of a well-designed module should not be affected by, nor be able to affect, the details of its
implementation. Representation exposure occurs when implementation details are accessible to the
outside world. Java’s access control mechanisms, for example, the private keyword, partly address
this problem. However, due to aliasing, representation exposures can still happen even if all of the
implementation fields are made private.

In the IntSet example, the content of the private data member ints is externally accessible
through the reference passed to the constructor IntSet(int[]). The outside code can directly
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/** This class represents a set of integers. **/

public class IntSet {

private int[] ints; // the integers in the set with no duplications

/**

* This method removes all elements from this that

* are not in set, without modifying set.

**/

public void intersect(IntSet set) {

. . . .

}

/**

* Make an IntSet initialized from an int[].

* Throws a BadArgumentException if there are duplicate

* elements in the argument ints.

**/

public IntSet(int[] ints) {

if (hasDuplicates(ints))

throw new BadArgumentException();

this.ints = ints;

}

public int size() {

return ints.length;

}

public int[] toArray() {

return this.ints;

}

}

Figure 2.1: A partial implementation of a set of integers.

change the state of IntSet objects, which is undesirable. Even worse, outside code can violate the
representation invariant and put an IntSet object into an inconsistent state, which would cause
methods of this object to behave incorrectly. For example, the outside code could put a duplicate
integer into the array ints, which would cause the method IntSet.size() to return an incorrect
value.

Representation exposure is a well known problem and there is no good solution in Java to this.
The programmer has to do a deep copy of the data passed to the constructor, and if he forgets to
do this, subtle and unexpected errors often arise.

In ConstJava, this case of representation exposure would be caught at compile-time. Since the
constructor of IntSet is not intended to change the argument ints, a programmer using ConstJava
would write

public IntSet(const int[] ints) {

and the compiler would issue an error at the attempt to assign ints to this.ints, forcing the
programmer to do an array copy.

4



2.3 Read-only access to internal data

Accessors often return some data that already exists as part of the representation of the module.
For example, consider the toArray method of the IntSet class. It is simple and efficient, but it
exposes the representation, just as was the case for the constructor. A Java solution would be to
copy the array ints to a temporary array and return that. In ConstJava, there is a better solution:

public const int[] toArray() {

The const keyword ensures that the caller of IntSet.toArray() is unable to modify the returned
array, thus permitting the simple and efficient implementation of the method to remain in place
without exposing the representation.

2.4 Costs of using ConstJava

Despite the usefulness of the proposed extension, there are some costs associated with using it. As
with any type-checking system, ConstJava’s type-checking rules (see chapter 6, p. 17) will likely
reject some programs that the programmer knows to be safe, but the ConstJava compiler cannot
prove safe and hence must reject. This gives a tradeoff between the ability to detect more errors and
the flexibility of the programmer’s code. In addition, the amount of type information that needs
to be carried in the code increases, which is a disadvantage as the code becomes more cluttered.
This parallels the usual tradeoff between benefits of static type-checking and the additional clutter
resulting from the necessary type declaration or casts.

Another potential problem is interfacing with existing Java code. While Java code is easy to
call from ConstJava code, in general it may not be possible for Java code to call ConstJava code.
This may be a problem if some part of a given program is automatically generated by a tool such
as JavaCC (a Java parser generator, see [VS]) because such automatically generated code will not
interface well with the rest of the program, written in ConstJava. This will be a problem for
ConstJava users at least until automated tools that generate ConstJava are comparable to those
available for Java.

5



Chapter 3

Design goals

The goal of this project is to design, implement, and evaluate an extension to the Java language for
specifying immutability constraints. This extension should be able to resolve the issues discussed
in chapter 2. In addition, there were several major design goals for the design and implementation
of ConstJava. These are described here; section 8.1 (p. 32) evaluates the ConstJava design based
on these goals.

1. The syntax and semantics of ConstJava should be backward compatible with Java, so that every Java
program that does not use a ConstJava keyword as an identifier works in ConstJava.

2. The new syntax should fit naturally within the Java language framework. It would also help if the
new syntax were similar to that of a syntax of some other existing language (such as C++) that
already has immutability constraints, since this familiarity would make it easier for programmers to
use ConstJava.

3. The semantics of ConstJava should be a simple extension of those of Java. There should not be
many special cases to remember, and the semantics should be easy to understand without needing to
read the formal descriptions of the type-checking rules. This requirement should also simplify use of
ConstJava.

4. The system should detect as many violations of the immutability constraints as possible at compile
time, preferably all of them.

5. The ConstJava compiler should be usable by programmers. It should give reasonable error messages
on inputs that violate the ConstJava type-checking rules. Otherwise, there will be no advantage to
finding bugs using this system over usual debugging techniques.

6. The above list of design goals omits mention of compile-time efficiency. I decided that efficiency issues
are not as important as the main goal of creating a prototype of ConstJava useful for error detection
and development of good programming techniques. Making the system efficient before it is even known
whether it is useful to achieving these goals is counterproductive.
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Chapter 4

The ConstJava Language

The ConstJava language extends Java with explicit mechanisms for specifying immutability con-
straints and compile-time type-checking to guarantee those constraints. The syntax of the exten-
sions is based on that of C++ (see section 9.1, p. 34 for a detailed comparison).

ConstJava adds four new keywords to Java: const1, mutable, template, and const cast. The
first of these is the keyword used to specify immutability constraints. The other three are additional
language features that, while not essential, make ConstJava a more useful language. The keywords
are used as follows:

• const is used in three different ways:

1. As a type modifier: For every Java reference type T, const T is a valid type in ConstJava, and
a variable of such a type is known as a constant reference. Constant references cannot be used
to change the state of the object or array to which they refer. A constant reference type can
be used in a declaration of any variable, field, parameter, or method return type. A constant
reference type can also appear in a type-cast. See section 4.1.

2. As a method/constructor modifier: const can be used after the parameter list of a non-static
method declaration, to declare that method as a constant method. Constant methods cannot
change the state of the object on which they are called. Only constant methods may be called
through a constant reference. const can also be used immediately after the parameter list of a
constructor of an inner class. Such a constructor is called a constant constructor. Non-constant
constructors cannot be invoked when the enclosing instance is given by a constant reference; for
constant constructors no such restriction exists. See section 4.2.

3. As a class modifier: const can be used as a modifier in a class or an interface declaration.
It specifies that instances of that class or interface are immutable. A class or interface whose
declaration contains the const modifier is referred to as an immutable class or interface. See
section 4.3.

• mutable is used in a non-static field declaration to specify that the fields declared by this declaration
are not part of the abstract state of the object. Such fields are called mutable fields. Mutable fields can
be modified by constant methods and through constant references, while non-mutable fields cannot.
See section 4.4.

• template can be used in a declaration of a method, constructor, class, or interface, to parameterize
the declaration based on constness of some type. This can shorten code and remove error-prone
duplication. See section 4.5.

• const cast can be used in an expression to convert a constant reference to a non-constant reference.
Such casts permit constant references to be used in non-constant contexts that do not actually modify

1const is already a Java keyword, but is not presently used by Java.
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the object. The const cast operator introduces a loophole into the type system; however, as explained
in section 10.1, constness of the reference can be enforced at run time, closing this loophole. See section
4.6.

ConstJava is backward compatible with Java: any Java program that uses none of ConstJava’s
keywords is a valid ConstJava program. Also, ConstJava is inter-operable with Java. As described
in section 5.1, any Java code can be called from ConstJava code. ConstJava comes with stan-
dard Java APIs, but with field types and method and constructor signatures modified to include
information about whether reference types are constant. See section 5.1 (p. 13) for details.

In addition, a special comment syntax allows every ConstJava program to remain a valid Java
program. Any comment that begins with “/*=” is considered as part of the code by ConstJava.
This feature allows the programmer to annotate an existing Java program with ConstJava syntax
without losing the ability to use standard Java development tools.

4.1 Constant references

A constant reference is a reference that cannot be used to modify the object to which it refers.
A constant reference to an object of type T has type const T. For example, suppose a variable
cvar is declared as const StringBuffer cvar. Then cvar is a constant reference to a StringBuffer

object; it can be used only to perform actions on the StringBuffer object that do not modify it.
For example, cvar.charAt(0) is valid, but cvar.reverse() causes a compile-time error, because it
attempts to modify the StringBuffer object.

When a return type of a method is a constant reference, the code that calls the method cannot
use the return value to modify the object to which that value refers.

Note that final and const are orthogonal notions in a variable declaration: final makes the
variable not assignable, but the object it references is mutable, while const makes the referenced ob-
ject immutable (through that reference), but the variable remains assignable. Using both keywords
gives variables whose transitive state cannot be changed except through a non-constant aliasing
reference.

The following are the rules for usage of constant references (see chapter 6 (p. 17) for further
detail). These rules ensure that any code which only has access to constant references to a given
object cannot modify that object.

• A constant reference cannot be copied, either through assignment or by parameter passing, to a non-
constant reference. In the above example, a statement such as StringBuffer var = cvar; would
cause a compile-time error.

• If a is a constant reference, and b is a field of an object referred to by a, then a.b cannot be assigned
to and is a constant reference.

• Only constant methods (section 4.2) can be called on constant references.

ConstJava also allows declarations of arrays of constant references. For example, (const

StringBuffer)[] means an array of constant references to StringBuffer objects. For such an array,
assignments into the array are allowed, while modifications of objects stored in the array are not.
This is in contrast to const StringBuffer[], which specifies a constant reference to an array of
StringBuffers, and means that neither array element assignment nor modification of objects stored
in the array are allowed through a reference of this type.

A non-constant reference is implicitly converted to a constant one during assignments, includ-
ing implicit assignment to parameters during method or constructor invocations. A non-constant

8



reference can also be explicitly cast to a constant one by using a type-cast with a type of the form
(const T). Here is an example:

const StringBuffer cvar = new StringBuffer();

StringBuffer var = new StringBuffer();

cvar = var; // OK; implicit cast to const

cvar = (const StringBuffer) var; // OK; explicit cast to const

var = cvar; // compile-time error

var = (StringBuffer) cvar; // compile-time error

4.2 Constant methods and constructors

Constant methods are methods that can be called through constant references. They are declared
with the keyword const immediately following the parameter list of the method. It is a compile-time
error for a constant method to change the state of the object on which it is called. For example,
an appropriate declaration for the StringBuffer.charAt() method in ConstJava is:

public char charAt(int index) const

Constant constructors are constructors that can be called with enclosing instance given through
a constant reference. They are declared with the keyword const immediately following the param-
eter list of the constructor. It is a compile-time error for a constant constructor to change the state
of the enclosing instance.

Methods and constructors can be overloaded based on whether they are constant. The following
two methods are distinct:

public void foo() {

}

public void foo() const {

}

Similarly, methods and constructors can be overloaded based on whether a parameter is declared
as constant. Overloading resolution works much like it does in Java (see [GJSB00]), except that
the ConstJava type hierarchy is used in determining method applicability and specificity instead
of the Java type hierarchy, and that constant methods or constructors are considered less specific
then non-constant ones. For full detail, see the language definition in appendix A.

4.3 Immutable classes

A class or an interface can be declared to be immutable. This means that all of its non-mutable
non-static fields are implicitly constant and final, and all of its non-static methods are implicitly
constant. In addition, if the class is an inner class, all of its constructors are also implicitly constant.
To declare a class or an interface as immutable, const is used as a modifier in its declaration.

For an immutable class or interface T, constant and non-constant references to objects of type
T are equivalent, and in particular constant references can be copied to non-constant references,
something that is normally disallowed (see end of section 4.1). Subclasses or sub-interfaces of
immutable classes and interfaces must be declared immutable.
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4.4 Mutable fields

Mutable fields are fields that are not considered to be part of the abstract state of an object by
ConstJava. A mutable field of an object O can be changed through a constant reference to O. The
programmer declares a given field as mutable by putting the modifier mutable in the declaration of
the field.

The primary use of mutable fields is to cache results of some computations by constant methods.
For example, this situation arises in the ConstJava compiler, where a name resolution method
resolve() needs to cache the result of its computation. The solution looks somewhat like the
following

class ASTName {

...

private mutable Resolution res = null;

public Resolution resolve() const {

if (res == null)

res = doResolve(); // OK only because res is mutable

return res;

}

}

Without mutable fields, constant methods are unable to cache the results of their work, and
consequently ConstJava would force the programmer to either not label their methods as constant,
or to take a significant efficiency penalty.

4.5 Templates

ConstJava allows method definitions to be parametrized over the constness of the parameters or
of the method itself. This allows the programmer to avoid code duplication. For example, the
following two definitions:

public static Object identity(Object obj) {

return obj;

}

public static const Object identity(const Object obj) {

return obj;

}

can be collapsed into one definition using templates (the syntax is defined later in this section):

template<o> public static const?o Object identity(const?o Object obj) {

return obj;

}

In addition to defining polymorphic methods, templates are used in class and interface decla-
rations to create parametrized types. A basic example of this is the container class libraries in
java.util. ConstJava needs two types of container classes, those that contain Objects, and those
that contain const Objects. This is because a Vector of Objects cannot contain a const Object,
since its add method has the signature

public void add(int index, Object obj)
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and so cannot be called on a const Object. On the other hand, a Vector of const Objects, while
capable of containing both constant and non-constant Objects, will not permit modification of any
Objects extracted from the vector. Its get method has the signature

public const Object get(int index) const

Instead of a single Vector class, therefore, ConstJava has two classes, and it is much easier
to define them using templates. ConstJava’s libraries define classes Vector<> and Vector<const>,
to contain non-constant references and constant references respectively, and similarly for other
container classes.2 Templates allow the programmer to write only one version of the Vector class,
parameterized as follows:

template<o>

public class Vector extends AbstractList<const?o>

implements Cloneable, Serializable {

....

}

and then use both Vector<> and Vector<const> in his code.
Because any code that uses templates can be rewritten without templates, templates are a

convenience rather than a necessity in ConstJava.
The syntax and semantics of templates are as follows. The keyword template is followed by a

comma-separated list of distinct variables, called polymorphic variables, enclosed in angle brackets.
This is followed by a method, constructor, class, or interface declaration. Within such declaration,
anywhere where const may normally appear, const?a can be used for any polymorphic variable
a. When a template declaration is expanded, a separate declaration is created for each boolean
assignment to polymorphic variables. If the declaration declares a class or interface, the name of
the class or interface has <const?v1,const?v2...> appended to it, where v1, v2, etc. are respectively
the first, second, etc. of the polymorphic variables in the template declaration. Finally, within each
generated declaration any occurrence const?a, where a is a polymorphic variable, is replaced by
const if a is assigned true and by empty token sequence if a is assigned false.

4.6 Casting away of const

The keyword const cast permits casting away const from a type. Its introduction into ConstJava
is motivated by the fact that sometimes safe ConstJava code gets rejected by the type-checking
rules. For example, it is possible that a method is logically constant (i.e., it does not change the
state of this), yet the compiler cannot prove this fact, and hence the method cannot be declared
as constant. For an example of this, see section 7.3.2 (p. 25).

Rather than force the programmer to rewrite such code, ConstJava includes const cast. It
allows the programmer to override type-checking rules in any given instance, and so it should be
used sparingly.

Formally, the syntax for const cast is

const_cast<EXPRESSION>

2The syntax used in ConstJava may need to be changed for compatibility with GJ [BOSW98] when Java 1.5 comes
out.
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const cast has no run-time effect, and at compile time it simply converts the type of EXPRESSION
from const T to T.

The ConstJava compiler ordinarily guarantees that no mutation can occur through a const

reference. The presence of const cast enables code to violate that restriction. Section 10.1 (p. 37)
anticipates future research in retaining soundness even in the presence of const cast, by inserting
run-time checking code to guarantee that even after a const cast operation, the resulting (non-
constant) reference is never used to modify the object.
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Chapter 5

Language design

This chapter describes three immutability checking issues that have not been handled by previous
research, along with how ConstJava addresses them.

5.1 Inter-operability with Java

A major goal during the design of ConstJava was ensuring that ConstJava is inter-operable with
Java. The language treats any Java method as a ConstJava method with no const in the parameters,
return type, or on the method, and similarly with constructors and fields. In other words, since
ConstJava compiler does not know what a Java method can modify, it assumes that the method
may modify anything.

This approach allows ConstJava to call any Java code safely, without any immutability guar-
antees being violated. However, in many cases this analysis is over-conservative. For example,
Object.toString() can safely be assumed to be a constant method. Therefore the ConstJava com-
piler permits the user to specify alternative signatures for methods and constructors, and alterna-
tive types for fields in Java libraries. Ideally, ConstJava would come with all Java APIs annotated
with their correct ConstJava signatures. At this time, however, only the following libraries an-
notated: java.lang, java.io, java.util, java.util.zip, java.awt and sub-packages, java.applet,
and javax.swing and sub-packages. Library annotation is a time-consuming process, and for that
reason future research in automation of this process is anticipated, as described in section 10.2
(p. 38).

The ConstJava compiler reads a special signature file containing these alternative signatures
and types. For example, this file contains

public String java.lang.Object.toString() const;

telling the compiler that the toString method is constant. The compiler trusts these annotations
without checking them.

Note that as described in section 4.5, container classes in java.util are a special case, since
they require not just a simple change of signatures, but the creation of a separate container class
hierarchy for containing Objects versus const Objects. This special case is resolved by providing
ConstJava source code for container classes, instead of just signature annotations. These container
classes are contained in a package named constjava.java.util, which should be imported, instead
of java.util, by every program that wishes to use container classes.

Another special case of a Java API is the class java.lang.ref.WeakReference. This class has
constructors WeakReference(Object) and WeakReference(Object, ReferenceQueue). In ConstJava,
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however, weak references can be instantiated either from constant or non-constant references, re-
sulting in constant or non-constant weak references respectively. Since constructor invocation can-
not result in a constant reference, ConstJava provides the following methods in a special package
constjava.java.lang.ref.

public class ReferenceFactory {
template<o>
public static const?o WeakReference weakReference(const?o Object o) {
...

}
template<o> public static const?o WeakReference
weakReference(const?o Object o, ReferenceQueue q) {
...

}
}

which permits the programmer to construct either constant or non-constant weak references.
While Java methods can be called from ConstJava, Java code can only call ConstJava methods

that do not contain const in their signatures.
A final inter-operability feature, meant to ease the process of converting Java code to ConstJava

code, is the “/*=” comment syntax described in chapter 4. This feature lets the programmer convert
Java code to ConstJava without losing the ability to compile is as Java code, simply by placing all
ConstJava syntax within these special comments.

5.2 Inner classes

The type-checking rules guarantee that constant methods do not change any non-static non-mutable
fields of this. The inner class feature of Java adds complexity to this guarantee. One must ensure
that no code inside an inner class can violate an immutability constraint. There are three places
in an inner class where immutability violations could occur: in a constructor, in a field or instance
initializer, or in a method. The ConstJava type-checking rules (chapter 6, p. 17) prevent any such
violation. This section explains the rules by way of an example.

class A {

int i = 1;

public void foo() const { // should be unable to change i

class Local() {

Local() {

i = 2; // changes i

j = 3;

}

int j = ( i = 4 ); // changes i

void bar() {

i = 5; // changes i

}

}

new Local().bar();

}

}

The type-checking rules that deal with inner classes need to deal with the three possibilities
shown above:
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1. Change in the constructor: Constant constructors (see section 4.2, p. 9) prevent this change. There are
two possibilities for a change of i in a constructor of Local. This change could happen inside a constant
constructor, or inside a non-constant one. In ConstJava, a field of the class being constructed accessed
by simple name is assignable and non-constant, but otherwise constant constructor bodies type check
like constant method bodies. Therefore the first possibility cannot happen. If the constructor of Local
is labeled as constant, the assignment i = 2 will not type check, but the assignment to j will. The
second possibility cannot happen either, since our rules allow only constant constructors to be invoked
through a constant enclosing instance. In the example above, if the constructor of Local() is not
labeled as constant, it cannot be invoked, since the enclosing instance is implicitly this, a constant
reference inside foo().

2. Assignment in the initializer of j: If at least one constant constructor exists in a given class or if an
anonymous class is being constructed with constant enclosing instance, the ConstJava compiler treats
instance initializers and instance field initializers as if they were in a body of a constant constructor.
The second case is necessary because anonymous constructors have an implicit constructor, which is
considered a constant constructor if the enclosing instance in constant. This rule prevents modifications
to the state of a constant enclosing instance from initializers of inner classes.

3. Change in bar(): The rule that new Local() must have type const Local if the enclosing instance
is constant prevents modification of the enclosing instance. If bar() is declared as constant, the
assignment to i inside it will fail to type-check. If bar() is not declared as constant, then the call to
bar() in the example above does not type check, because new Local() has type const Local.

5.3 Exceptions

An exception thrown with a throw statement whose argument is a constant reference should only
be catchable by a catch statement whose parameter is declared as const, because otherwise the
catch statement would be able to change the exception’s state.

In ConstJava, constant exceptions cannot be thrown. Therefore the type-checking system has
no hole, but it rejects many safe uses of constant references to exceptions. This restriction has so
far caused no difficulty in practice. Two other possibilities for dealing with constant exceptions —
wrapping and wrapping with catch duplication — lead to holes in the type system; this section
briefly discusses them.

The wrapping approach wraps some exceptions at run-time in special wrapper objects, so that
non-const catch statements do not catch constant exceptions.

Since ConstJava runs on an unmodified Java Virtual Machine, each wrapper classes should be
a subtype of Throwable. Since the ConstJava catch clause catch(const Throwable t) should catch
any throwable object, either constant or non-constant, const Throwable should be represented as
Throwable in the underlying Java. Therefore, a natural approach is, for an exception class E, to
represent const E in ConstJava as E in underlying Java, and E in ConstJava as a wrapper class in
Java, say wE.

Since E is a subtype of const E in ConstJava, it would be nice to have wE a subtype of E in Java.
However, since Java does not support multiple inheritance, wE cannot be a subtype of E, since it
has to be subtype of wP (where P is the parent class of E).

The duplication approach simulates E’s being a subtype of const E by representing a catch

clause of the form catch(const E) by two Java catch clause, catch(E) and catch(wE). However,
several problems with checked exceptions arise within this framework. Consider the ConstJava
statement:

throw new RuntimeException();
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For this statement to correspond to legal underlying Java code, either wRuntimeException must be
an unchecked exception class, or it must appear in the throws clause of the method that contains
that statement. The second possibility does not work, since method overriding does not allow
adding checked exceptions. Since Object.toString() in Java does not throw any checked exception,
ConstJava would be unable to override this method with a method that contains the statement
throw new RuntimeException();.

The first of these possibilities could work, but it presents several new problems. If wRuntimeException
and hence, similarly, wError, are not subtypes of wThrowable in this framework, the ConstJava clause
catch(Throwable t) now needs to correspond to at least three underlying Java catch clauses, to
catch wThrowable, wError and wRuntimeException. Another problem is that catch(const E e) cor-
responds in this framework to two clauses, catch(wE e) and catch(E e), in the underlying Java
code. There is no guarantee that the corresponding try clause actually throws both wE and E, so if
E is a checked exception, the two catch clauses are not legal Java code.

The only solution to these problems is to do a full analysis of exception throwing during Const-
Java type checking. Due to time constraints, and because I do not believe that a less restrictive
treatment of constant exceptions would be an important feature in the ConstJava language, I
adopted a more straightforward approach of disallowing throws of constant exceptions.
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Chapter 6

Type-checking rules

ConstJava has the same runtime behavior as Java1. However, at compile time, checks are done
to ensure that modification of objects through constant references, or similar violations of the
language, do not occur. Section 6.1 introduces some definitions. Section 6.2 then presents the
type-checking rules.

6.1 Definitions

6.1.1 ConstJava’s types

ConstJava’s type hierarchy extends that of Java by including, for every Java reference type T, a
new type const T. References of type const T are just like those of type T, but cannot be used to
modify the object to which they refer.

Formally, the types in ConstJava are the following:

1. The null type null.

2. The Java primitive types.

3. Instance references. If O is any class or interface, then O is a type representing a references to an
instance O.

4. Arrays. For any non-null type T, T[] is a type, representing an array of elements of type T.

5. Constant types. For any non-null non-constant type T, const T is a type.

For convenience in the usage later, we define the depth and the base of a given type. Informally,
the depth is just the nesting depth of an array type, while the base of an array type is the type
with all array dimensions removed. Formally, for a type T, we define:

Depth:

- if T is null, primitive, or instance reference, depth(T) = 0.

- if depth(T) = n, then depth(T[]) = n + 1.

- if depth(T) = n, then depth(const T) = n.

Base:

- if T is null, primitive, or instance reference, base(T) = T.

- if base(T) = S, then base(T[]) = S.

1Except for possible checks of const cast described in section 4.6.
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Figure 6.1: ConstJava type hierarchy, including constant and non-constant version of each Java
reference type. Arrows connect subtypes to supertypes.

- if base(T) = S, for a constant type S, then base(const T) = S.

- if base(T) = S, for a non-constant type S, then base(const T) = const S.

6.1.2 Type equality and sub-typing

The equality relation is defined on the types as follows:

1. For primitive types, the null type and references to instances of classes and interfaces, two types are
equal iff they are the same Java type.

2. const T and const S are equal iff depth(T) = depth(S) and base(const T) = base(const S).

3. T[] and S[] are equal iff T, S are.

4. For a non-constant type T, T and const S are equal iff T and S are equal, and T is either primitive or
is a reference to an instance of an immutable class or interface.

Note that item 2 implies, for example, that const int[][] and const (const int[])[] are
equivalent. In other words, a constant array of array of int is the same as a constant array of
constant int arrays. Item 4 captures the notion that T and const T are equivalent for immutable
types T.

Equal types are considered to be the same type. They are interchangeable in any ConstJava
program.

A sub-typing relationship (T subtype of S, written as T < S) is also defined on types. It is the
transitive reflexive closure of the following:

1. byte < char, byte < short, char < int, short < int, int < long, long < float, float < double.

2. null < T for any type T which is not a primitive type.

3. If T and S are classes such that T extends S or interfaces such that T extends S, or S is an interface
and T is a class implementing S, then T < S.

4. For any non-null types T and S, if T < S then T[] < S[].

5. For any non-constant non-null type T, T < const T.

6. For any non-constant non-null types T and S, if T < S then const T < const S.

7. For any non-null type T, T[] < java.io.Serializable, T[] < Cloneable, and T[] < Object.

8. For any non-constant non-null type T, (const T)[] < const T[].

An example of the hierarchy relationship is shown in figure 6.1.
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6.1.3 Definitions relating to method invocations

These definitions are the same as those in Java, except for the presence of the third clause in the
definition of specificity.

Compatibility: Given a method or constructor M and a list of arguments A1, A2, . . . An, we say
that the arguments are compatible with M if M is declared to take n parameters, and for each i
from 1 to n, the type of Ai is a subtype of the declared type of the ith parameter of M .

Specificity: Given two methods of the same name or two constructors of the same class, M1

and M2, we say that M1 is more specific than M2 if the following three conditions hold:

1. M1 and M2 take the same number of parameters, say with types P1, P2 . . . Pn for M1, and Q1, Q2 . . . Qn

for M2, and for each i from 1 to n, Pi is a subtype of Qi.

2. The class/interface in which M1 is declared is a subclass/subinterface of the one where M2 is declared,
or M1 and M2 are declared in the same class/interface.

3. Either M1 is not constant or M2 is constant (or both).

6.2 Type-checking rules

6.2.1 Programs

A program type checks if every top-level class/interface declaration in the program type checks.

6.2.2 Class/Interface declarations

A class or interface declaration type checks if all of the following hold:

1. (a) The class/interface is immutable and each of the methods declared in any of its superclasses
or superinterfaces is private, static, or constant, and each of the fields declared in any of its
superclasses is private, static, mutable, or both final and of a constant type, or

(b) the class or interface is not immutable, and neither is its direct superclass or any of its direct
superinterfaces.

2. No two fields of the same name are declared within the body of the class/interface.

3. No two methods of the same name and signature or two constructors of the same signature are
declared within the body of the class/interface. Signature includes the number and the declared types
of parameters, as well as whether the method is constant.

4. Every declared field, method, member type, instance initializer, and static initializer of the class or
interface type checks.

6.2.3 Variable declarations

For a field or local variable declaration of type T:

• If it does not have an initializer, it type checks.

• If it has an initializer of the form “ = E” for an expression E, it type checks iff the assignment of the
expression E to a left hand side with type T would type check.

• If it has an initializer of the form “ = { I1, . . . Ik } ”, where Ik are initializers, it type checks iff T =
S[] or T = const S[] for some type S, and the declaration S v = Ik or const S v = Ik respectively
would type check for every k between 1 and n.
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6.2.4 Method declarations

A method, constructor, instance initializer, or static initializer type checks if every expression, local
variable declaration, and local type declaration in the body of the method, constructor, instance
initializer, or static initializer type checks.

6.2.5 Expressions

Each expression has a type and a boolean property called assignability associated with it. An ex-
pression is type checked recursively, with all subexpressions type checked first. If the subexpressions
type check, then their types and assignabilities are used to deduce whether it type checks, and if
so, to deduce its type and assignability. Otherwise, the given expression does not type check.

The rules for type checking an expression given types and assignabilities of subexpressions are
given below. For brevity this section gives only the rules that are substantially different from
those in Java; for a full set of type checking rules, refer to the ConstJava language definition in
Appendix A.

• The rules for type checking assignments are the same as in Java, except if an expression that is
determined to be not assignable according to the rules below appears as the lvalue of an assignment,
the assignment expression does not type check.
The type of any assignment expression that type checks is the same as the type of the lvalue, and the
expression is not assignable.

• (T)A: in addition to the Java rules, a type cast must not cast from a constant type to a non-constant
type in order to type check. The type of a cast exception is T and the expression is not assignable.

• const cast<A>: always type checks. If the type of A is non-constant, this expression is of the same
type. If the type of A is const S[] for some S, then the type of this expression is (const S)[]. If
the type of A is const S where depth(S) = 0, the type of this expression is S.

• this does not type check in a static context; in a non-static context this has type C if C is a class and
this appears inside a non-constant method or a non-constant constructor of C; this has type const
C inside a constant method or a constant constructor of C. this is not assignable.

• NAME.this type checks if it occurs in a non-static context in a method or constructor of a class I, and
NAME names a class C for which I is an inner class. The type of the expression is C unless it appears
inside a constant method or a constant constructor of I, in which case the type is const C. This
expression is not assignable.

• Class instance creation expression:

– If the enclosing reference is constant, only constant constructors are eligible, otherwise, all con-
structors are eligible.

– The expression type checks if there is a most specific accessible eligible constructor compatible
with the arguments to the class instance creation expression.

– If the class being instantiated is T, the type of the expression is const T if the enclosing reference
is a constant reference, and T otherwise.

A class instance creation expression is never assignable.

• A[E] type checks if E is of integral type and A is of type T[] or const T[] for some type T; the type
of the expression is respectively T or const T. The expression is assignable in the first case, and not
assignable in the second.

• Field access expression: Let T be the declared type of the field. Then:
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– If T is a constant type, or the field is accessed through a non-constant reference, or the field is a
mutable or static field, the type of the expression is T.

– Otherwise the type of the expression is const T.

– The expression is assignable if the field is mutable or static, or if it is not accessed through a
constant reference.

• Method invocation expression:

– If the invoking reference is constant, only constant methods are eligible.

– If there is no invoking reference, only static methods are eligible.

– Otherwise, all methods are eligible.

– The expression type checks if there is a most specific accessible eligible method compatible with
the arguments to the method invocation. The type of the expression is the declared return type
of such method.

A method invocation expression is never assignable.
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Chapter 7

Experiments

In order to evaluate ConstJava, I wrote code in ConstJava and also annotated existing Java code
with const. Writing code in ConstJava provides experience with the language the way many people
would use it. In addition, it permits greater flexibility in working around type-checking errors than
working with existing code does, and it can be more beneficial than annotation of existing code,
since it provides earlier indication of errors. On the other hand, annotation of existing code gives
a more quantifiable experience, since it is possible to track the amount of time spent annotating,
the number of problems with original code found, etc. Also, it permits evaluation of ConstJava on
code written by other people. Finally, it permits evaluation of how ConstJava fits with the existing
practice of code written by programmers who did not have const in mind while coding.

Figure 7.1 (p. 23) displays statistics about the experiments. Section 7.1 describes the exper-
iments in writing container classes in ConstJava from scratch. The rest of the sections describe
annotation experiments, with section 7.2 describing the annotation process and the programs that
were annotated, section 7.3 describing the results of the annotation, including the classification of
the errors detected by the annotation, and section 7.4 describing in detail the more important of
these errors.

7.1 Container classes written from scratch

As explained in section 4.5 (p. 10), the container classes in java.util cannot be used with Const-
Java, and a parameterized version of the container classes must be written. Because of this, and also
to gain experience with ConstJava, I wrote many of the container classes in the java.util package
from scratch in ConstJava, namely the classes Collection, AbstractCollection, Set, AbstractSet,
AbstractList, AbstractSequentialList, Iterator, List, ListIterator, ArrayList, Vector, LinkedList,
HashSet, Map, AbstractMap, and HashMap.

7.2 Annotation of Java code

The methodology for annotating Java programs proceeded in three stages. During the first stage
of the annotation (“Signature” near the bottom of figure 7.1), I read the documentation and the
signatures of all public and protected methods in the program, and marked the parameters, return
types, and methods themselves with const. For example, if the documentation for a given method
specified that the method does not modify its parameters, every parameter would be marked
with const, and if the documentation stated that a given parameter may be modified, then that
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New code Annotated Java code

Program java.util GizmoBall Daikon ConstJava java.util
Code size

classes 52 172 1593 466 38
methods 359 633 4455 1007 163
lines 2687 15476 100967 15633 4795
NCNB lines 1828 9222 68889 9394 2134

Annotations
const 837 657 5869 2794 611
mutable 27 45 103 64 6
template 94 13 777 79 65
const cast 2 6 97 7 14

Code errors N/A N/A N/A
Documentation 2 1
Implementation 1 19
Bad Style 3 3

ConstJava problems
Inflexibility 3 24
Incompleteness 1 2

Annotation errors
Signature 11 124
Implementation 31 486
Library 3 18

Time (hh:mm) N/A N/A N/A
Signature 2:40 5:30
Implementation 4:30 7:35
Type check, fix errors 6:10 55:05

Figure 7.1: Programs written in ConstJava or converted from Java to ConstJava. The number of classes includes

both classes and interfaces. “NCNB lines” is the number of non-comment, non-blank lines. Section 7.3 explains the

error categories. The beginning of section 7.2 explains the time categories. Errors and time were recorded for only

two of the programs.

parameter would not be marked with const.
The second stage of the annotation (“Implementation” in figure 7.1) was to annotate the private

signatures and the implementations of all methods. Finally, the third stage (“Type check, fix
errors”) involved running the compiler on the resulting program, and considering and correcting
any type checking failures.

7.2.1 GizmoBall annotation

The GizmoBall project is the final project in a software development class at MIT (6.170 Laboratory
in Software Engineering). It was written in one month by me and three other people, with about a
third of the code written by me. The program uses Java to implement an extensible pinball game.

During the third stage of the annotation experiment, the invocation of the compiler on the
annotated project found 55 different type-checking errors that are tabulated in figure 7.1. Section
7.3 describes the categories and gives examples of errors in each category. Section 7.4 gives a
detailed explanation of each of the errors in the more important categories.
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7.2.2 Daikon annotation

Daikon is a tool for dynamic detection of invariants in programs [Ern00, ECGN01]. I had no
previous experience with Daikon (not even as a user).

The Daikon project contains approximately 100,000 lines of code. Again, the time spent on this
experiment and the results of this annotation appear in figure 7.1.

7.2.3 The annotation of the compiler

Chronologically, the first major annotation experience was annotating the ConstJava compiler itself,
which is about 15,000 lines is size. No log of this experience was kept, and as the annotation was
intermixed with changes in the language and bug fixes in the compiler, this experience could not
provide much information about the ease of use of ConstJava or about its utility.

7.2.4 Container classes annotated from Sun source code

In addition to writing some parameterized container classes from scratch (see section 7.1), I anno-
tated the Sun JDK 1.4.1 reference implementation of classes Arrays, SortedSet, SortedMap, TreeSet,
TreeMap, and Stack. This code was about 4800 lines long, but I did not keep a log of time spent
or of the type-checking failures encountered. No bugs in java.util were discovered during the
annotation process, but one instance of bad code style was discovered (see section 7.4).

7.3 Error classifications

This section describes what kind of errors were put into each of the categories used in figure 7.1,
together with some examples of such errors.

7.3.1 Code errors

These errors are problems with the original Java program that were discovered during the anno-
tation and type checking process. Deciding to which one of the three sub-categories a given error
belong is inherently subjective, involving a judgment call on the part of the annotator. The three
sub-categories are:

Documentation: This category represents errors in the documentation of a class or a public or
protected method, causing an incorrect annotation. An example is when the documentation of a
method states that the method does not modify a given parameter, when the method does modify
the parameter.

Implementation: This category represents bugs in the original code found during the type
checking of the annotated code. In the GizmoBall project, the bug was a representation exposure
caused by a method returning a reference to private data of a given class. It was fixed by adding
a const on the return type of the misbehaving method. An example of a bug found in the Daikon
project was a method that sorted its input array before computing some statistics about the array.
This bug was fixed by rewriting the method to do an array copy first.
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Bad Style: This category represents errors caused by bad style of coding in the original project.
While the code that causes these errors does not, to my knowledge, contain actual bugs, it could
have easily been written in a better style that would not only allow the code to type check, but
also made the program easier to maintain and debug. An example of such code is recalculating
the size of gizmos that are displayed during the GizmoBall screen during each paint() call. A
better alternative, one which would also type check under ConstJava’s rules, would be to do these
recalculations only when the window size changes.

7.3.2 ConstJava Problems

These errors are caused by weaknesses either in the ConstJava language or in the ConstJava com-
piler.

Inflexibility of the Language: This category represents safe code rejected by the compiler’s
conservative analysis. An example of such inflexibility is given in the following code snippet:

public class BuildDriver implements ActionListener, MouseListener {

private JFrame jf;

....

private void askForLoad() const {

final JDialog jd = new JDialog(jf, true);

// get the name of file to load using dialog box jd

}

...

}

The call to the JDialog constructor does not type check, since that call cannot take a constant
reference to a JFrame. A call to jd.getOwner might later return a reference that would alias jf,
allowing the frame referenced by jf to be modified. This never happens in the askForLoad() method,
and jd does not escape that method, but those facts are beyond the compiler’s static analysis, and
so the compiler rejects this safe code.

Incompleteness of the compiler: This category represents instances where reflection was used
in the original program. Since reflection is not yet supported by the compiler, such code does not
type check. I corrected these errors by using const cast (see section 4.6).

7.3.3 Annotation Errors

This category represents errors caused by mistakes committed by me during the annotation process.
Often, these were due to unfamiliarity with the code or to poor documentation. The Signature
Misannotation category represents errors due to an incorrect annotation of a signature of a public
or protected method during the first stage of the annotation. The Implementation Misannotation
category represents the errors caused by an incorrect annotation of the type of a private field, the
signature of a private method, the type of a local variable, or a type used in a cast expression. The
Library Misannotation category represents the errors caused by an incorrect annotation of a library
method, for example an AWT method. (Use of ConstJava requires annotation of Java libraries such
as AWT and Swing; these libraries are now provided with ConstJava. The library annotation time
is not included in figure 7.1, but some errors in the library annotations were discovered while
annotating client code.)
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7.4 Errors

In order to give a feel for the use of ConstJava compiler, this section describes each of the more
important errors encountered during the experiments, together with how they were resolved.

7.4.1 Documentation

I found two documentation errors in the GizmoBall project.

1. In the documentation of the class gb.gizmos.GSquare. This class was incorrectly documented as
immutable. For example, the location of a GSquare can be changed through its APIs. This was fixed
by updating the documentation appropriately.

2. The documentation for the method gb.drivers.BuildDriver.init() states it does not modify pa-
rameter GizmoTranslator gt. However, the method aliases gt into the state of the BuildDriver that
is being initialized, and therefore gt cannot be declared constant. This was also fixed by updating the
documentation appropriately.

There was one documentation error found during the annotation of Daikon:

1. The documentation of daikon.FileIO.process sample() method did not document the counterin-
tuitive fact that the second parameter, ValueTuple vt, is mutated by a side effect in this method.
To fix this bug, the documentation was updated to indicate this fact.

7.4.2 Implementation

There was one implementation bug discovered in the GizmoBall project:

1. The method gb.gizmos.GAbsorber.releaseVelocity() was written simply as

public GBall.Velocity releaseVel() {

return releaseVelocity;

} // releaseVelocity

which permits the caller to directly modify the state of GBall.Velocity object that is returned. This
error was fixed by annotating the code in ConstJava as

public const GBall.Velocity releaseVel() const {

return releaseVelocity;

} // releaseVelocity

thus ensuring that outside code cannot modify the returned object.

In the Daikon project, I discovered 19 implementation bugs during the annotation experiment:

1. The method

utilMDE.MathMDE.missing_numbers()

takes an array and computes some information about it. It should not modify the input array, and its
documentation never states that it does. Nevertheless this method sorts its input array before doing
any computations. This bug was fixed by rewriting the method to clone the array first, before sorting
it and doing other computations.

2. The method

utilMDE.MathMDE.nonmodulus_strict()

similarly computes some information about its input array, and it also changes its input array while
doing so. This was fixed in a similar way using cloning.
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3. The inner class MathMDE.MissingNumberIterator has a representation exposure in one of its con-
structors, where the input array is assigned directly to a private field. This was fixed by cloning the
array before doing the assignment.

4. The method daikon.VarInfo.getDerivedParam() returns a cached VarInfo, that may then get mod-
ified by outside code. This is a representation exposure. This was fixed by marking the return type
of the method with const.

5. The method

daikonv.inv.FeatureExtractor.printC5DataOutput()

takes as input some vectors in order to print out their content, modifies one of the vectors. The bug
was reported to the authors of Daikon. The correct way to fix it would be to rewrite the code.

6. The constructors for class daikon.ValueTuple do not clone their input arrays before assigning them
to internal state. The representation exposure was reported to the authors of Daikon. The correct
way to fix it would be to rewrite the code.

7-8. The method

PrintInvariants.print_invariants(const PptTopLevel ppt,

PrintWriter out,

const PptMap ppt_map)

modifies its argument, ppt, by calling ppt.simplify variable names(). This is incorrect, since the
purpose print invariants is to print out data, and the side effects are nowhere specified by the
method’s documentation. A similar bug exists in

daikon.tools.ExtractConsequent.extract_consequent_maybe()

These bugs were reported to the authors of Daikon. The correct way to fix them would be to rewrite
the code.

9-11. The documentation for concat() methods in utilMDE.ArraysMDE states that these methods always
return a new array. This is not the case. The concat method concatenates two arrays. If one of the
arrays is null, then the method would return the other array. There are three concat() methods in
ArraysMDE class, and therefore there were three such bugs. These bugs were fixed by rewriting the
methods to always return a new array.

12-19. The method daikon.Invariant.isObviousStatically SomeInEquality() returns an array that is
part of its state. This is a representation exposure, and was fixed by cloning the array before return-
ing it. An analogous bug was found and fixed within the method daikon.Invariant.isObvious-
Dynamically SomeInEquality(), and in the methods corresponding to the above two methods in
some subclasses of Invariant. A total of eight such bugs were found and fixed.

7.4.3 Bad Style

There were three errors caused by bad coding style in the GizmoBall project:

1. The method JGizmoBoard.paintComponent(Graphics g) const resizes all gizmos in the gizmo board
according to the current size of the board. A better alternative, one which would also type check under
ConstJava’s rules, would be to do these recalculations only when the window size changes. This prob-
lem was fixed by using a const cast (see section 4.6). Note that once dynamic const cast described
in section 10.1 (p. 37) is implemented, this code will have to be rewritten, since this particular use of
const cast is not run-time safe. The paintComponent() method here does change the component’s
state, which is illegal.

27



2-3. GameArea.delGizmo() is a method that deletes a gizmo from the game area. In this method, a
special case arises when the gizmo that is deleted is an absorber. Absorbers are gizmos that can
contain captured balls in them; the method checks for any such balls and releases them before deleting
the absorber. This makes the delGizmo() method fail to type check, since releasing balls modifies
both the absorber and the balls being released. delGizmo() is not a very clean method; it would be
better to write the delGizmo() method without the special case, and have a separate, non-constant
operation of releasing the balls from the absorber. This would prevent the innocuous operation of
gizmo deletion from being able to affect change on other gizmos in the game, which is a surprising
side effect of the delGizmo() method, especially since its documentation never lists this side effect.
The method GameArea.addGizmo() adds a gizmo to the game area. Similarly to delGizmo(), this
method has the special case side effect of capturing any balls that overlap with the gizmo if the gizmo
is an absorber. Both of the above errors were dealt with by simply updating the documentation and
changing the signatures of the respective methods to reflect that they have potential side-effects.

I found three cases of bad style of coding in Daikon during the annotation:

1. In class utilMDE.UtilMDE, the method

public static boolean canCreateAndWrite(const File file)

tests whether file can be created by calling file.createNewFile() and file.delete(). These
calls fail to type-check, since they modify the file. A cleaner way of doing this is to test whether the
directory containing the file is writable. This code was rewritten to do just that.

2. The class PptSlice has a public field po lower meant for read-only access, and a private field
private po lower meant for read and write use by the implementation of the class. Unfortunately, the
method daikon.PptSlice.flow and remove falsified() uses po lower in place of private po lower,
and modifies its state. This is clearly in bad style. To fix this problem, private po lower was used
in this method instead.

3. The method

public boolean include(const Invariant invariant) const

changes a state of an object, does some tests on it, then changes the state back. While the method
leaves the object unmodified, this is in bad style, and is forbidden by ConstJava compiler. For this
problem, const cast was used to force type checking to succeed. Note that once dynamic const cast
described in section 10.1 (p. 37) is implemented, this code will have to be rewritten, since this particular
use of const cast is not safe at run-time.

I also discovered a bad style error in java.util.TreeMap’s code. This class has a method that
takes an Iterator parameter; this Iterator iterates either over keys or over entries in the map,
depending on the value of a different parameter. It would be preferable to have two separate
methods that returned the two different iterators. In ConstJava there is no correct typing of the
Iterator parameter. The Iterator over entries is typed as Iterator<>, while Iterator over keys is
typed as Iterator<const?k>, where k is the polymorphic variable for the constness of keys in the
TreeMap.

7.4.4 Inflexibility

In the GizmoBall project, there were three inflexibility errors.

1-2. The first inflexibility was presented as an example in section 7.3.2 (p. 25) and is repeated below:
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public class BuildDriver implements ActionListener, MouseListener {

private JFrame jf;

....

private void askForSave() const {

final JDialog jd = new JDialog(jf, true); // ERROR

...

}

}

The JDialog constructor takes a reference to enclosing frame, which is not permitted to be constant,
because of possibility of call to jd.getParent() to extract the enclosing frame and subsequently
modify it. However, in this particular case, the askForSave() method never calls jd.getParent(),
and as the reference jd does not exist outside of askForSave(). Therefore askForSave() is a constant
method, but the ConstJava compiler cannot prove that fact. This error was fixed by using const cast
to force type checking:

final JDialog jd = new JDialog(const_cast<jf>, true);

The method BuildDriver.askForLoad() had a similar problem, which was also fixed using const cast.

3. The field GameOpts.FONT is declared as:

public static final Font FONT =

new Font("Times New Romans", Font.PLAIN, 10);

During the annotation, FONT was declared as const. Unfortunately, a large number of Swing compo-
nents in the GizmoBall project have their font set to FONT, and the compiler cannot guarantee that no
piece of code exists that retrieves this font from one of them and modifies it. Therefore, annotation
of this field as const could not type check. This problem was fixed by simply dropping the const
annotation on this field.

There were 24 inflexibility errors in Daikon:

1. The Ast.getParameters() method constructs temporary objects whose constructors need to take that
need to take non-constant references as parameters, but getParameter() passes constant references
to these parameters. Just as in the inflexibility error involving JDialog constructor in the GizmoBall
project, the temporary objects, if they were ever accessible from the outside, could be used to modify
the objects referred to by these references, but the temporary objects cannot be accessed from the
outside, so getParameter() method is safe. This is similar to the JDialog constructor problem in
GizmoBall’s askForSave() method that was described above. Just as there, the temporary objects
could potentially be used to modify the objects referred to by the references passed to their constructor,
but since these temporary objects cannot be accessed from the outside, the getParameter() method
is safe. This error was fixed using const cast.

2. The method PptTopLevel.addViews() has a const parameter. It creates an object, assigns it to
that parameter, and then does modifications on it. Of course, this is safe, since the object originally
referred to by the parameter is unmodified. Unfortunately, the ConstJava compiler cannot accept
this. To fix this, the method was rewritten to use a local variable instead of the parameter to hold
the newly created object.

3. The method write serialized pptmap in class daikon.FileIO takes a constant PptMap and serializes
it. However, before serializing it, it must put the PptMap into a SerialFormat object, whose construc-
tor takes a non-constant PptMap. This is safe, since the SerialFormat object is not used in any way
other than getting serialized. To satisfy the ConstJava compiler, this was fixed using const cast.

4. The class daikon.VarInfoName is immutable, and also contains readResolve() method that needs
to fix up some of the fields upon de-serialization. Unfortunately, fields of an immutable class are
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read-only from anywhere except inside a constructor, so this does not type check. In order to force
type checking, const cast was used. Note that once dynamic const cast described in section 10.1
(p. 37) is implemented, this code will have to be rewritten, since this particular use of const cast is
not safe at run-time.

5. In daikon.VarInfoName, a nested class IOAQuantification was declared as immutable. This caused
its constructor to fail type checking, since the constructor code looked similar to this:

public const static class IOAQuantification {

private VarInfoName[] setNames;

public IOAQuantification(const VarInfo[] sets) {

....

setNames = new VarInfoName[sets.length];

for(int i = 0; i < sets.length; i++)

setNames[i] = sets[i].name; // ERROR

...

}

}

Unfortunately, the array setNames is implicitly final and constant, since IOAQuantification is im-
mutable. Therefore it cannot be assigned into as above. This is inflexibility in the language, of course,
since the constructor should be able to initialize the setNames field. In order to work around this prob-
lem correctly, a temporary array needs to be created and initialized, and then assigned to setNames,
as follows:

public IOAQuantification(const VarInfo[] sets) {

....

(const VarInfoName)[] _setNames = new VarInfoName[sets.length];

for(int i = 0; i < sets.length; i++)

_setNames[i] = sets[i].name; // FINE

setNames = _setNames;

....

}

6-7. In class daikon.inv.unary.sequence.OneOfScalar, the abstract state of the object consists of a set
of numbers. These are stored in an array elts. The min elt() and max elt() methods perform
constant operations on the class OneOfScalar. Unfortunately, they sort elts, which modifies the
representation, though not the abstract state, of OneOfScalar. The ConstJava compiler rejects this.
The elts field cannot be declared as mutable, because it is part of the state of OneOfScalar objects,
even though sorting it does not change that state. There does not seem to be a good way to fix
this problem without a lot of code rewriting. During the annotation, I forced type checking of this
code using const cast. Note that once dynamic const cast described in section 10.1 (p. 37) is
implemented, this code will have to be rewritten, since this particular use of const cast is not safe
at run-time.

8-11. The class daikon.derive.Derivation contains a method getVarInfo(), whose simplified version is
shown below:

public const VarInfo getVarInfo() const {

if (this_var_info == null) {

this_var_info = makeVarInfo();

// const_cast is OK, since this_var_info is returned as const

this_var_info.derived = const_cast<this>;

....

}
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return this_var_info;

}

Here this var info is a cache field to save the VarInfo that is computed by this method. The line
containing const cast above aliases the state of this into the state of the cached VarInfo. This is
safe in this case, since the outside code will only have access to a constant reference to this VarInfo,
and so cannot modify the reference to this aliased inside its state. However, the ConstJava compiler
cannot prove this fact, and so rejects the above code unless the const cast is used. Analogous
inflexibility errors occurred in getVarInfo() methods of BinaryDerivation, TernaryDerivation
and UnaryDerivation. As shown in the snippet above, these errors were fixed by using const cast.

12-24. In various places in Daikon, code snippets similar to the below occurred:

const A a = new A();

foo(new A[] { a }); // ERROR

which fails type checking according to ConstJava rules, since the array created by new A[] is typed
as A[], so cannot contain a const A. There were 13 cases of this in Daikon, and they had to be fixed
by rewriting the code similarly to the following:

const A a = new A();

const A[] as = { a }; // OK

foo(as);

which is legal. One should note that use of const cast, as in:

const A a = new A();

foo(new A[] { const_cast<a> });

would also work, and that under dynamic const cast checking described in section 10.1 (p. 37), this
code would work fine unless foo() actually does some modification to the object referenced by a.
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Chapter 8

Discussion

This chapter first discusses the design and implementation of ConstJava and its compiler in view
of the goals listed in chapter 3. Then it discusses the utility of ConstJava based on the experiments
described in chapter 7.

8.1 Achievement of design goals

This section reviews the design and implementation of ConstJava compiler in view of the goals
listed in chapter 3.

1. The syntax and semantics of the new language are backward compatible with existing Java. Every
Java program that does not use a keyword of the extended language as an identifier works in the
extended language. Java code is directly callable from ConstJava. However, Java libraries usually
need to be annotated before they can be useful in ConstJava programs. This annotation process is
lengthy, but only needs to be done once. Further research needs to be done in automating it, thus
making ConstJava even easier to use with old Java code. See section 10.2 (p. 38) for discussion of
future research directions in this area.

2. The ConstJava syntax fits in well with Java syntax, and all of the extension syntax is taken from
C++, making ConstJava easy to learn.

3. The semantics of ConstJava are the same as that of Java in almost every case. A ConstJava program
that type checks according to ConstJava rules has the same behavior as the corresponding Java
program with all extension syntax removed. The only exception is in method overloading; ConstJava
permits overloading of methods based on whether the method or a parameter of the method is constant.
This means that potentially many ConstJava methods correspond to the same Java method.

4. The system does detect all violations of the immutability constraints at compile time, except for unsafe
usage of const cast. Unsafe usage of const cast is presently not detected, and detecting it at run
time is future work (section 10.1, p. 37).

5. The ConstJava compiler is reasonably usable by programmers. It gives sensible error messages on
inputs that violate the rules of ConstJava. The error behavior may not yet be as good as that of a
commercial Java compiler, but it is sufficient for me to have worked successfully with the ConstJava
compiler for several months.

6. Since compile-time efficiency was not considered a priority, the ConstJava compiler is rather slow
and takes a lot of memory. Type checking of Daikon, for example, requires 200MB of memory. As
described in chapter 3, this is primarily an engineering, rather than scientific, issue.
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8.2 Evaluation results

The most interesting type checking errors are implementation errors, documentation errors, bad
style errors, and inflexibility errors. The first three of these categories are the errors/problems in
the original program that ConstJava helps to solve, while the fourth category is the cost that is
incurred by using ConstJava.

The experiments demonstrate that ConstJava catches certain errors. In the GizmoBall experi-
ment, one real bug (that had survived extensive testing) and three instances of bad style of coding
were caught. Even more bugs might have been caught at compile time if ConstJava had been
used from the beginning of the project. The instances of bad style of coding that were caught
in the process are also a benefit of ConstJava language. Forcing programmers to write code that
is less convoluted would make code maintenance and debugging easier. Catching three errors in
documentation is also certainly a benefit. Finally, another benefit was an efficiency improvement
of GizmoBall’s code. In addition to one instance of a representation exposure being caught by the
ConstJava compiler, several other methods which correctly dealt with the representation exposure
problem through data copying were made more efficient by eliminating the copying and simply
declaring the return type of the method to be a constant reference.

These benefits are reinforced by the Daikon experiment, where the annotation process discovered
one documentation error, 20 bugs, and three instances of bad style coding, and by the annotation
of a portion of java.util, where one instance of bad style of coding was discovered with the help
of ConstJava.

The costs of ConstJava are two-fold. Firstly, extra time must be devoted in order to use its
features. This time cost should be smaller if a software project is written in ConstJava from
scratch, but time would still need to be devoted to thinking about whether a given reference is
constant or not, or whether a given class is immutable or not, etc., thus increasing development
time. Since programmers must make such decisions regardless, the cost of adding annotations
should be slight. Secondly, any conservative compile-time analysis (particularly a flow-insensitive
type analysis) rejects certain safe code. There were 27 instances of this problem in 116,000 lines of
annotated Java code.

Comparing the costs to the benefits, however, we can come to the conclusion that the costs are
outweighed by the benefits. The extra time necessary for annotation was small by comparison with
the original development time. Based on my experience with writing ConstJava code, this extra
effort would have been even smaller if ConstJava had been used in the project from the start. While
there are cases when safe code is rejected by the ConstJava compiler, they are fewer in number
than the bugs, documentation errors, and badly written code detected thanks to ConstJava. This
is true for an already completed project; for a project under development, the number of bugs
caught through type checking instead of usual run-time testing would probably be significantly
larger, saving the programmer a lot of debugging time. Also, the const cast feature of ConstJava
allows the programmer to force the ConstJava compiler to accept these instances of safe code that
would otherwise be rejected by the compiler.
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Chapter 9

Related work

ConstJava shares similarities with some other languages that enable the specification and checking
of immutability constraints. Also, some previous research considers introduction of immutability
constraints into the Java language.

9.1 C++

C [KR88] and C++ [Str00] provide const keywords for specifying immutability. The most notable
example is C++. When const was added to C++, it was added for the same reason as one of the
main reasons for development of ConstJava — in order to be able to specify immutability in APIs:

The proposal focused on specifying interfaces rather than on providing symbolic con-
stants for C. Clearly, a readonly value is a symbolic constant, but the scope of the
proposal is far greater. [Str00]

ConstJava uses the same syntax for immutability specification (const, mutable, template, const cast)
to make its use easier for C++ programmers, much as Java adopts C++’s syntax for other language
constructs.

Because of numerous loopholes, the const notation in C++ provides no guarantee of immutabil-
ity even for accesses through the const reference. First, it is possible to use an ordinary cast to
remove const from a variable. Second, C++’s const cast may also be applied arbitrarily and is
not dynamically checked; while the ConstJava const cast is not yet dynamically checked, future
work on the language forsees development of dynamically checked const cast. The const cast op-
erator was added to C++ to discourage use of C-style casts, accidental use of which may convert a
constant pointer or reference to a non-constant one. Third, because C++ is not a safe language, it
is possible to (mis)use unions, varargs (unchecked variable-length procedure arguments), and other
type system weaknesses to convert a const reference into a non-const one. For example:

void changeThroughConstPointer(const int* cpi) {

union u {

int *pi;

const int* cpi;

} a;

a.cpi = cpi;

a->pi = 3;

}
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In the above code, the function changeThroughConstPointer succeeds in changing the value of the
integer that cpi points to, even though cpi was declared as const int*.

C++ permits the contents of a constant pointer to be modified (constant methods protect only
the local state of the enclosing object). To guarantee transitive non-mutability, an object must be
held directly in a variable rather than in a pointer. However, this precludes sharing, which is a
serious disadvantage. Additionally, whereas C++ permits specification of const at each level of
pointer dereference, it does not permit doing so at each level of a multi-dimensional array.

By contrast to C++, ConstJava requires use of const cast rather than ordinary cast to cast
away const; const cast can be dynamically checked; since Java is a safe language, unions and the
like cannot be used to subvert the type system. Java does not distinguish references from objects
themselves, and ConstJava permits mutability of each level of an array to be individually specified
and checked. ConstJava also supports aspects of Java that do not appear in C++, such as nested
classes.

9.2 Proposals for Java

Many other researchers have noticed that Java lacks the const operator that is so useful in C and
C++ (despite its shortcomings).

Similarly to ConstJava, JAC [KT01] has a readonly keyword indicating transitive immutability,
an implicit type readonly T for every class and interface T defined in the program, and a mutable

keyword. (JAC actually provides a hierarchy (readnothing < readimmutable < readonly < write-
able.) The implicit type readonly T has as methods all methods of T that are declared with the
keyword readonly following the parameter list. However, the return type of any such method is
readonly. For example, if class Person has a method public Address getAddress() readonly, then
readonly Person has method public readonly Address getAddress() readonly. By contrast, in
ConstJava the return type of a method does not depend on whether it is called through a constant
reference or a non-constant one. JAC does not appear to permit arrays of readonly objects, nor
does the paper explain how inner classes are treated. Finally, no experience is reported with an
implementation.

Skoglund and Wrigstad [SW01] take a different attitude toward immutability than other work:
“In our point of [view], a read-only method should only protect its enclosing object’s transitive
state when invoked on a read reference but not necessarily when invoked on a write reference.”
A read (constant) method may behave as a write (non-constant) method when invoked via a
write reference; a caseModeOf construct permits run-time checking of reference writeability, and
arbitrary code may appear on the two branches. This suggests that while it can be proved that
read references are never modified, it is not possible to prove whether a method may modify its
argument. In addition to read and write references, the system provides context and any references
that behave differently depending on whether a method is invoked on a read or write context.

The functional methods of Universes [MPH01] are pure methods that are not allowed to modify
anything (as opposed to merely not being allowed to modify the receiver object).

Pechtchanski and Sarkar [PS02] provide a framework for immutability specification along three
dimensions: lifetime, reachability, and context. The lifetime is always the full scope of a reference,
but that might be the complete dynamic lifetime of an object or just the duration of a method
call, when a parameter is annotated. The reachability is either shallow or deep. The context
is whether immutability applies in just one method or in all methods. The authors provide five
instantiations of the framework, and they show that immutability constraints enable optimizations
that can speed up some benchmarks up by 5–10%. ConstJava permits both of the lifetimes and
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supplies deep reachability (Java’s final gives shallow reachability).
Capabilities for sharing [BNR01] are intended to generalize various other proposals for im-

mutability and uniqueness. When a new object is allocated, the initial pointer has seven access
rights: read, write, identity (permitting address comparisons), exclusive read, exclusive write, ex-
clusive identity, and ownership (giving the capability to assert rights). Each (pointer) variable has
some subset of the rights. These capabilities give an approximation and simplification of many
other annotation-based approaches.

Porat et al [PBKM00] provide a type inference that determines (deep) immutability of fields
and classes. A field is defined to be immutable if its value never changes after initialization and the
object it refers to, if any, is immutable. An object is defined to be immutable if all of its fields are
immutable. A class is immutable if all its instances are. The analysis is context-insensitive in that
if a type is mutable, then all the objects that contain elements of that type are mutable. Libraries
are neither annotated nor analyzed: every virtual method invocation (even equals) is assumed to
be able to modify any field. The paper discusses only class (static) variables, not member variables.
The technique does not apply to method parameters or local variables. An experiment indicted
that 60% of static fields in the Java 2 JDK runtime library are immutable. This is the only other
implemented tool related to immutability in Java besides mine, but I was not able to obtain the
tool.
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Chapter 10

Future Work

This chapter briefly describes two directions for future research: dynamic const cast checking and
const inference.

10.1 const cast checking

At present, const cast is a loophole in the ConstJava type checking system. Use of const cast

allows a programmer to effectively override the type checking rules at will. This is undesirable,
since no guarantees about the code can be enforced when the programmer can override the type
checking system. On the other hand, not including const cast makes the conversion of existing
Java projects to ConstJava much more difficult. As the experience with ConstJava shows, existing
Java projects often contain code that is safe, but that is nevertheless rejected by the ConstJava
compiler’s conservative analysis. Without const cast, such code would need to be rewritten, which
takes programmer’s time and effort, and has potential for introducing new bugs into an existing
project.

A way of dealing with the above problem is by dynamically enforcing the rule that constant ref-
erences cannot be used to modify the state of the referred object, even in the presence of const cast.
A possible approach to achieving this would be to have a boolean field check for every reference.
check would be set to true on any constant reference when const cast is applied to it. Whenever
an expression of the form a1.a2.a3 . . . an is assigned to, if check of any of a1, . . . an is true, the
assignment would cause an exception at runtime. Similarly, whenever a reference expression of the
form a1.a2.a3 . . . an is copied to a non-constant reference, its check field would also be copied.

The above rules, modulo some details dealing with mutable and static fields, would enforce the
guarantees of the ConstJava type-checking system while still allowing const cast to be used by the
programmer in the cases when the static analysis is over-conservative. From section 7.4.4 (p. 28)
we see that, out of the total of 27 inflexibility errors, 21 were either fixed with a dynamically safe
const cast, or could have been fixed in this way; the other six would require rewriting. This shows
that having a dynamically safe const cast is useful, as it allows programmers to avoid most of code
rewriting during the annotation of Java code, while at the same time preserving the guarantees of
ConstJava.

Therefore, an important future research direction would be to implement an algorithm described
above for const cast checking, or a different one achieving the same goal, and include this algorithm
into the ConstJava compiler to ensure that const cast can only be used in a legitimate way.

In the present prototype implementation, the run-time checking code is inserted by another
tool rather than the ConstJava compiler. Slowdowns range from 10% to 700%, but research is in
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progress on a number of optimizations that should greatly reduce the upper bound; access to the
JVM could reduce the cost even more.

10.2 const inference

The goal of const inference is to have an automated tool that would annotate Java source code
with const by analyzing the code and determining as many references as possible that are constant.

Such a tool would be especially useful if it could annotate references in parameters and return
types of methods, as well as determine whether the methods themselves are constant. Annotating
local variables is far less useful. A big time investment in using ConstJava comes from having to
annotate Java libraries with const before being able to use them. If such a tool were created, this
task would be automated, and hence using ConstJava would be easier.

As noted in chapter 9, there is previous work done by Porat et al [PBKM00] that does const

inference, but only on classes and fields. The most useful const inference would be on method and
constructor signatures, and therefore further research needs to be done in finding good ways for
doing this.
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Chapter 11

Conclusion

This technical report presented the development and evaluation of ConstJava, an extension to
the Java language that is capable of expression and compile-time verification of immutability con-
straints. The specific constraint expressed in ConstJava is that the transitive state of the object to
which a given reference refers cannot be modified using that reference. Compile-time verification
of such constraints has numerous software engineering benefits.

During this project, ConstJava was designed, and a compiler for it was implemented. This
compiler and its documentation can be downloaded at http://pag.lcs.mit.edu/constjava/.

In addition, numerous experiments were done to evaluate the usefulness of ConstJava in soft-
ware engineering. These experiments showed that ConstJava is capable of automatically catching
implementation and documentation errors as well as instances of bad coding style even in mature,
well-debugged projects. ConstJava compiler found a total of 19 implementation, one documenta-
tion, and three bad-style errors in the Daikon project, a 100,000 line project that is still under
development, but the majority of which is rather stable and well-tested. The compiler also discov-
ered one implementation, two documentation and three bad-style errors in the relatively mature
GizmoBall project, a 15,000 line program that had been previously well-tested and well-debugged
by its authors. ConstJava compiler even found bad coding style in Sun’s java.util implemen-
tation (see section 7.4.3), which is rather impressive considering the maturity of that code. All
of this suggests that ConstJava is a very useful tool, as it can automatically catch bugs that are
exceedingly difficult to track down, and remain in even stable, mature, and well-tested software
project. It can be expected that ConstJava would be even more useful if used in projects from
their inception, allowing many more bugs to be caught automatically rather than through the usual
time-consuming debugging techniques.

The benefits above did not come without some costs. However, the costs of using ConstJava are
minor compared to the benefits. While users of ConstJava need to spend extra time typing method
signatures and expressions correctly with const, and while some safe code instances are rejected
by ConstJava compiler, the benefits of catching errors at compile-time that would otherwise be
exceedingly difficult to detect strongly suggest that using ConstJava is worthwhile.
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Appendix A

The ConstJava Language Definition

A.1 Introduction

The purpose of this document is to define the language extensions for the Java language that enable
the programmer to specify immutability constraints about references.

It is assumed that the reader already knows the Java language. The specification in this docu-
ment is for the language extensions only, and not for the syntax and semantics already present in
the Java language. The Java language with the extensions described in this document is hereinafter
referred to as ConstJava.

A.2 Keywords

mutable, template and const cast are new keywords introduced into the language, and can no
longer be used as identifiers. const was a keyword in the Java language, but was not used in any
of its syntax; it is a keyword that is used in ConstJava.

A.3 Types

A.3.1 ConstJava’s types

ConstJava’s type hierarchy extends that of Java by including, for every Java reference type T, a
new type const T. References of type const T are just like those of type T, but cannot be used to
modify the object to which they refer.

Formally, the types in ConstJava are the following:

1. The null type null.

2. The Java primitive types.

3. Instance references. If O is any class or interface, then O is a type representing a references to an
instance O.

4. Arrays. For any non-null type T, T[] is a type, representing an array of elements of type T.

5. Constant types. For any non-null non-constant type T, const T is a type.

For convenience in the usage later, we define the concepts of an n-dimensional array of T, and
the depth and base of a given type. It is intuitively clear what an n-dimensional array of T is. The
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depth is just the nesting depth of an array type, while the base of an array type is the type with
all array dimensions removed. Formally, for a type T, we define:

Given an integer n, an n-dimensional array of T is:

- if n = 0, the n-dimensional array of T is T.

- if S is the (n− 1)-dimensional array of T, then S[] is the n-dimensional array of T.

Depth:

- if T is null, primitive, or instance reference, depth(T) = 0.

- if depth(T) = n, then depth(T[]) = n + 1.

- if depth(T) = n, then depth(const T) = n.

Base:

- if T is null, primitive or instance reference, base(T) = T.

- if base(T) = S, then base(T[]) = S.

- if base(T) = S, for a constant type S, then base(const T) = S.

- if base(T) = S, for a non-constant type S, then base(const T) = const S.

A.3.2 The syntax for types

Except for the null type, every type can be named in ConstJava, although not in a unique way.
The following syntax is used for naming the type (for clarity, non-terminals are enclosed in quotes).

Type ::= [ ’const’ ] BasicType ( ’[’ ’]’ )*

BasicType ::=

PrimitiveType

Name

’(’ Type ’)’

The type named by the a sequence of tokens, S, that parses according to the above grammar
is determined as follows. Let S′ be the subsequence of S matched by the BasicType non-terminal.
First the type named by S′ is determined. If BasicType matches according to the PrimitiveType

production, S′ names the primitive type matched there; if BasicType matched according to the
Name production, the name matched by that production must name an accessible class or interface,
and S′ names a reference to an instance of that class or interface. If BasicType matches by the
’(’ Type ’)’ production, then S′ names the same type as the subsequence matched by Type in
the production.

Once it is determined what S′ names, the type named by the S is determined as follows. Suppose
T is the type named by S′. If n is the number of ’[’ ’]’ pairs following BasicType, let U be the
n-dimensional array of T. Let V be const U or U, depending on whether the initial const in the
grammar above is present in the parsing. The type named by S is V.

A.3.3 Type equality and subtyping

The equality relation is defined on the types as follows:

1. For primitive types, the null type and references to instances of classes and interfaces, two types are
equal iff they are the same Java type.

2. const T and const S are equal iff depth(T) = depth(S) and base(const T) = base(const S).
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3. T[] and S[] are equal iff T, S are.

4. For a non-constant type T, T and const S are equal iff T and S are equal, and T is either primitive
or is a reference to an instance of an immutable class or interface (see section A.4.4 for description of
immutable classes/interfaces).

Note that item 2 implies, for example, that const int[][] and const (const int[])[] are
equivalent. In other words, a constant array of array of int is the same as a constant array of
constant int arrays. Item 4 captures the notion that T and const T are equivalent for immutable
types T.

Equal types are considered to be the same type. They are interchangeable in any ConstJava
program.

A subtyping relationship (T subtype of S, written as T < S) is also defined on types. It is the
transitive reflexive closure of the following:

1. byte < char, byte < short, char < int, short < int, int < long, long < float, float < double.

2. null < T for any type T which is not a primitive type.

3. If T, S are classes such that T extends S or interfaces such that T extends S, or S is an interface and T
is a class implementing S, then T < S.

4. For any non-null types T and S, if T < S, then T[] < S[].

5. For any non-constant non-null type T, T < const T.

6. For any non-constant non-null types T and S, if T < S, then const T < const S.

7. For any non-null type T, then T[] < java.io.Serializable, T[] < Cloneable, and T[] < Object.

8. For any type non-constant non-null type T, (const T)[] < const T[].

A.4 Other new syntax

In addition to the new type hierarchy, ConstJava has the following features: constant methods
and constructors, mutable fields and immutable classes and interfaces. These are described in the
subsections below.

A.4.1 Constant methods

A method declaration has the following grammar:

MethodDeclaration ::=

MethodModifiers (Type | ’void’) Identifier Arguments [’const’] [ThrowsClause]

(MethodBody | ’;’)

The only difference from the Java grammar for method declaration is the optional keyword
const immediately after the Arguments of the method. If the declaration contains this keyword
const, it is said to declare a constant method. Only instance (non-static) methods can be declared
as constant. There are no other restrictions on which methods can be declared as constant.

The semantics for constant methods are as follows. A constant method is an instance method
that can be invoked through a constant reference. Non-constant methods cannot be so invoked.
Additionally, this is of a constant type inside the body of a constant method, so that a constant
method cannot modify the state of the object on which it is invoked. For a formal description of
these rules, see the type checking rules described in section A.5.
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A.4.2 Constant constructors

A constructor declaration has the following grammar:

ConstructorDeclaration ::=

ConstructorModifiers Identifier Arguments [’const’] [ThrowsClause]

ConstructorBody

The only difference from the Java grammar for constructor declaration is the optional keyword
const immediately after the Arguments of the constructor. If the declaration contains this keyword
const, it is said to declare a constant constructor. If a constructor for a class that is not an inner
class is declared to be constant, a compile-time error occurs. There are no other restrictions on
which constructors can be declared as constant.

The semantics of constant constructors are as follows. A constant constructor is a constructor for
an inner class that can be invoked with a constant reference for the enclosing object. Non-constant
constructors for inner classes cannot be so invoked. Inside the body of a constant constructor, no
modifications to the enclosing instance are allowed. For a formal description of these rules, see the
type checking rules described in section A.5.

A.4.3 Mutable fields

A field declaration has the following grammar:

FieldDeclaration ::=

FieldModifiers Type Identifier [Initializer]

(’,’ Identifier [Initializer])* ’;’

FieldModifier ::=

(’mutable’ | ’private’ | ’public’ | ’protected’ | ’final’ |

’static’ | ’transient’)*

The only difference from the grammar for field declaration in Java is the possibility of mutable

appearing as a modifier. If a declaration contains mutable as a modifier, the fields declared in it
are said to be mutable. Only instance (non-static) fields can be declared as mutable. There are no
other restriction on which fields can be declared as mutable.

The semantics of mutable fields are as follows. A mutable field is not part of the state of the
object to which it belongs. Thus, the state of a mutable field of a given object can be changed
through constant reference to that object, or by constant methods invoked on that object, or by
constant constructors invoked with that object as the enclosing instance. For a formal description
of these rules, see the type checking rules described in section A.5.

A.4.4 Immutable classes and interfaces

Class and interface declarations have the following grammar:

ClassDeclaration ::=

TypeModifiers class Identifier [ExtendsClause] [ImplementsClause]

ClassBody

InterfaceDeclaration ::=

TypeModifiers interface Identifier

[InterfaceExtendsClause] ClassBody
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TypeModifiers ::=

(’const’ | ’private’ | ’protected’ | ’public’ | ’abstract’ |

’final’ | ’strictfp’ | ’static’ )*

The only difference from the grammar for class/interface declaration in Java is the possibility
of const appearing as a modifier. If a declaration contains const as a modifier, the class/interface
declared in it is said to be immutable.

The semantics of immutable classes and interfaces are as follows. An instance of such a class or
interface, once instantiated, cannot be modified. Therefore, in an immutable class/interface, every
instance method and every constructor is implicitly declared as constant, and any instance field
which is not explicitly declared as mutable is implicitly declared as final and if its type T is not a
constant type, it is implicitly changed to be const T.

It is a compile-time error for a non-immutable class or interface to extend or implement an
immutable one. It is a compile-time error for an immutable class or interface to inherit an instance
field which is neither mutable nor final with a constant type, or to inherit, override or implement
an instance method which which is not constant.

A.5 Type checking rules

ConstJava has the same runtime behaviour as Java. However, at compile time, checks are done
to ensure that modification of objects through constant references, or similar violations of the
language, do not occur. These rules are described in this section. Section A.5.1 introduces some
definitions. Section A.5.2 then presents the type checking rules.

A.5.1 Definitions

Definitions for types

• Primitive type: any Java primitive type, e.g., boolean or double

• Reference type: any non-primitive type.

• Numeric type: any primitive type other than boolean.

• Integral type: any numeric type other that float and double.

• Null type: null.

• Array type: Any type S such that S = T[] for some type T.

• Constant type: Any type S such that S = const T for some type T.

Definitions relating to method invocations

These definitions are the same as those in Java, except for the presence of the third clause in the
definition of specificity.

Compatibility: Given a method or constructor M and a list of arguments A1, A2, . . . An, we say
that the arguments are compatible with M if M is declared to take n paremeters, and for each i
from 1 to n, the type of Ai is a subtype of the declared type of the ith parameter of M .

Specificity: Given two methods of the same name or two constructors of the same class, M1,
M2, we say that M1 is more specific than M2 if the following three conditions hold:

1. M1 and M2 take the same number of parameters, say with types P1, P2 . . . Pn for M1, and Q1, Q2 . . . Qn

for M2, and for each i from 1 to n, Pi is a subtype of Qi.
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2. The class/interface in which M1 is declared is a subclass/subinterface of the one where M2 is declared,
or M1 and M2 are declared in the same class/interface.

3. Either M1 is not constant or M2 is constant (or both).

A.5.2 Type checking rules

Programs

A program type checks if every top-level class/interface declaration in the program type checks.

Class/Interface declarations

A class or interface declaration type checks if all of the following hold:

1. (a) The class/interface is immutable and each of the methods declared in any of its superclasses or
superinterfaces is either private, static or constant, and each of the fields declared in any of its
superclasses is either private, static, mutable or both final and of a constant type, or

(b) the class or interface is not immutable, and neither is its direct superclass or any of its direct
superinterfaces.

2. No two fields of the same name are declared within the body of the class/interface.

3. No two methods of the same name and signature or two constructors of the same signature are
declared within the body of the class/interface. Signature includes the number and the declared types
of parameters, as well as whether the method is constant.

4. Every declared field, method, member type, instance initializer and static initilizer of the class/interface
type checks.

Variable declarations

For a field or local variable declaration of type T:

• If it does not have an initializer, it type checks.

• If it has an initializer of the form = E for an expression E, it type checks iff the assignment of the
expression E to a left hand side with type T would type check.

• If it has an initializer of the form “ = { I1, . . . Ik } ”, where Ik are initializers, it type checks iff T =
S[] or T = const S[] for some type S, and the declaration S v = Ik or const S v = Ik respectively
would type check for every k between 1 and n.

Method declarations

A method, constructor, instance initializer, or static initializer type checks if every expression, local
variable declaration, and local type declaration in the body of the method, constructor, instance
initializer, or static initializer type checks.

Expressions

Each expression has a type and a boolean property called assignability associated with it. An ex-
pression is type checked recursively, with all subexpressions type checked first. If the subexpressions
type check, then their types and assignabilities are used to deduce whether it type checks, and if
so, to deduce its type and assignability. Otherwise, the given expression does not type check. The
rules for type-checking an expression given types and assignabilities of its subexpressions are given
below.
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Assignments

• A=B: type checks if the expression A is assignable, and one of the following holds:

- the type of A is supertype of that of B, or

- A is of type byte, short, or char, and B is of type byte, short, char, or int and is a compile-
time constant whose value is within the value range of the type of A.

• A+=B: type checks if the expression A is assignable, and one of the following holds:

- A and B are both of numeric types, or

- A is of type String.

• A-=B, A*=B, A/=B, A%=B: type checks whenever A is assignable and A and B are of numeric types.

• A<<=B, A>>=B, A>>>=B: type checks whenever A is assignable and A and B are of integral types.

• A||=B, A&&=B: type checks whenever A is assignable and both A and B are of type boolean.

• A&=B, A|=B, A^=B: type checks whenever A is assignable and either both A and B have integral
types or they are both of type boolean.

The type of any assignment expression that type checks is the same as the type of the left hand
side, and the expression is not assignable.

Other compound expressions

• A?B:C: In order for this expression to type check, A must be of type boolean. Also, if T1 and T2
denote the types of B and C, then one of the following must hold:

1. T1 < T2, T1 < const T2, T2 < T1, or T2 < const T1. In this case expression is of the least
supertype of T1 and T2.

2. T1 and T2 are, in some order, char and short; in this case expression is of type int.

3. One of B and C is of type T, where T is byte, short, or char, and the other is a constant
expression of type int whose value is representable in type T. In this case expression is of type
T.

• A||B, A&&B: the expression type checks if A and B are of type boolean and is of type boolean.

• A|B, A^B, A&B: the expression type checks if A and B are of type boolean, in which case it is of
type boolean; or if A and B are of integral type, in which case its type is their least supertype.

• A==B, A!=B: always type checks1, and is of type boolean.

• A instanceof T: always type checks, is of type boolean.

• A<B, A>B, A<=B, A>=B: type checks if A and B are of numeric type; it is of type boolean.

• A<<B, A>>B, A>>>B: type checks if A and B are of integral type; the expression is of the least
supertype of the type of A and of int.

• A+B: type checks if A and B are of numeric type, in which case the expression is of the least supertype
of int and the types of A and B; or if one of A and B is of type String, in which case the expression
is of type String.

• A-B, A*B, A/B, A%B: type checks if A and B are of numeric type, in which case the expression is
of the least supertype of int and the types of A and B.

1Of course, in this and other cases where the ConstJava rules are not stronger than the Java rules, any ConstJava
expression still has to type check according to the Java rules.

46



• +A, -A: type checks if A is of numeric type; the expression is the least supertype of int and the type
of A.

• ++A, --A, A++, A--: type checks if A is assignable and of numeric type; the expression is of same
type.

• ~A: type checks if A is of numeric type; the expression is of the least supertype of int and the type
of A.

• !A: type checks if A is of type boolean; the expression’s type is boolean.

• (T)A: fails to type check iff A is of of type const S for a non-immutable class or interface S, and T is
a non-constant type, or if it is of type S[] and T = T’[] for some types S and T’, and a cast from S
to T’ would have been illegal. The type of a cast exception is T.

• const cast<A>: always type checks. If the type of A is non-constant, this expression is of the same
type. If the type of A is const S[] for some S, then the type of this expression is (const S)[]. If
the type of A is const S where depth(S) = 0, the type of this expression is S.

Every expression in this section is not assignable.

Primary Expressions Everywhere within these rules for type-checking primary expressions,
when the location of an expression is considered, instance field initializers and instance initializers
are considered to be contained in every constructor of the corresponding class. Default constructors
for named inner classes are never constant. Default constructors for anonymous classes are constant
iff the enclosing instance of the anonymous class instantiation is given through a constant reference.

• A literal is of type boolean, of a numeric type, of type String, or of type null, depending on the
value of the literal. Literals are not assignable.

• this does not type check in a static context; in a non-static context:

– in a non-constant method or a non-constant constructor of a class C, this has type C

– in a constant method or a constant constructor of a class C, this has type const C

this is not assignable.

• NAME.this does not type checks in a static context. In a non-static context, suppose that NAME names
a class C, and let I be the innermost class in which NAME.this occurs. If I is not an inner class of C,
the expression does not type check. Otherwise, it does, and:

– in a non-constant method or a non-constant constructor of I, NAME.this has type C

– in a constant method or a constant constructor of I, NAME.this has type const C

NAME.this is not assignable.

• (A) always type checks and is of the same type as A, and is not assignable.

• T.class always type checks and is of type Class and is not assignable.

• A.new NAME(ARGS) where A is an expression: let the type of A be T, and let NAME name a class C.
The expression type checks if one of the following holds:

1. T is a subtype of O for some class O, C is an accessible direct inner class of O, and there exists a
most specific accessible constructor of C that can be called on ARGS. In this case the expression
is of type C.

2. T is a subtype of const O but not of O, for some class O, and C is an accessible direct inner class
of O, and there exists a most specific accessible constant constructor C that can be called on
ARGS. In this case the type of the expression is const C.
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In either case, the expression is not assignable.

• new NAME(ARGS): suppose NAME names a class C; then this expression type checks if either:

– C is a non-inner class, and there exists a most specific accessible constructor of C that is compatible
with ARGS, or

– C is a direct inner class of a class O, and O.this.new NAME(ARGS) type checks.

The expression has type C and is not assignable.

• Array instance creation expression: Let T be the array type whose instance is being created, and let
S be such that T = S[]. The expression type checks whenever all index expressions involved are of
integral types and the array initializer {E1, . . . , En}, if any, consists of initializers Ei such that E = Ei

would type check for an expression E of type S. The type of the array instance creation is T. An array
instance creation expression is not assignable.

• A[E]: type checks if E is of integral type, A is of type T[] or const T[] for some type T; the type
of the expression is respectively T or const T. The expression is assignable in the first case, and not
assignable in the second.

• A.IDENTIFIER, where A is an expression: let T be a non-constant reference type such that A’s type
is T or const T (if no such type exists, the expression does not type check). Then the expression type
checks if one of the following holds:

1. T is a non-array type, and IDENTIFIER is the name of an accessible field of the class or interface
named by T. Let S be the declared type of the field. Then the expression is of type const S if A is
of constant type and the field is not static nor mutable, and is not of a constant type. Otherwise
it is S. The expression is assignable iff the field is static or mutable, or A is of a non-constant
type.

2. T is an array type, and IDENTIFIER is length, in which case the expression is of type int and is
not assignable.

3. T is an array type, and IDENTIFIER is a field of the class Object, or of one of the interfaces
Cloneable or java.io.Serializable. Let S be the declared type of the field. Then the type
of the expression is const S if A is of constant type and the field is not static nor mutable, and
is not of a constant type. Otherwise it is S. The expression is assignable iff the field is static or
mutable, or A is of non-constant type.

• NAME.IDENTIFIER: If NAME resolves to a field, variable or parameter of type T, this expression type
checks iff the expression E.IDENTIFIER with E of type T typechecks; the type and assignability of
the two expressions are the same. Otherwise this expression type checks whenever NAME is the name
of an accessible class or interface C, and IDENTIFIER is the name of an accessible static field of C; the
declared type of the field is the type of the expression and the expression is assignable.

• IDENTIFIER: type checks if one of the following holds:

1. There is a visible local variable or parameter declaration with a name IDENTIFIER; the type of
the expression then is the declared type of that local variable or parameter, and the expression
is assignable.

2. 1 does not hold, the expression occurs in a static context and IDENTIFIER is the name of an
accessible static field of a class C within whose declaration the expression occurs; the type and
assignability of the expression is the same as that of C.IDENTIFIER for the innermost such class
C.

3. 1 does not hold, the expression occurs in a non-static context and there exist a class C within
whose declaration the expression occurs and which contains an accessible field with name IDENTIFIER,
and for the innermost such class C, C.this.IDENTIFIER or C.IDENTIFIER type checks; the type
and assignability of IDENTIFIER is the type of C.this.IDENTIFIER or C.IDENTIFIER respec-
tively. An exception is that if IDENTIFIER is within the body of a constant constructor of the
class C, it is assignable.
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• super.IDENTIFIER: does not type check in static context. In non-static context, let C be the innermost
enclosing class or interface. If C is an interface or the class Object, this expression does not type
check. Otherwise let P be the direct superclass of C. If IDENTIFIER names an accessible field of P, this
expression type checks. Let the declared type of that field be T. If the field is mutable or static, or if
T is a constant type, the type of IDENTIFIER is T. Otherwise, the type of IDENTIFIER is T or const
T, depending on whether the method or constructor in which it occurs is, respectively, non-constant
or constant.

• A.IDENTIFIER(ARGS), where A is an expression: let T be a non-constant reference type such that A’s
type is T or const T (if no such type exists, the expression does not type check). The expression type
checks if one of the following holds:

1. T is a non-array reference and there exists a most specific accessible method of name IDENTIFIER
of the class or interface named by T which is compatible with the arguments ARGS and is constant
or static if type of A is const T.

2. T is an array reference. Let S be the type of A, let n = depth(S), and let S’ be the n-
dimensional array of base(S). Then the expression type checks if there is a most specific ac-
cessible method of name IDENTIFIER in the class Object, or in one of the interfaces Cloneable
or java.io.Serializable that is compatible with the arguments ARGS and is constant or static
if T 6= S’.

The type of the expression in either case is the declared return type of that method.

• NAME.IDENTIFIER(ARGS): If NAME resolves to a field, variable or parameter of type T, this expression
type checks iff the expression E.IDENTIFIER(ARGS) with E of type T type checks; the two expressions
have the same type and assignability. Otherwise the expression type checks whenever NAME is the name
of an accessible class C, and there exists the most specific static method of name IDENTIFIER in C
compatible with the arguments ARGS. The type of the expression is the declared return type of the
method. This expression is never assignable.

• IDENTIFIER(ARGS): type checks if one of the following holds:

1. It occurs in a static context, and for some class or interface C inside whose declaration this
expression occurs, the expression C.IDENTIFIER(ARGS) type checks; the type of the expression
is the type of C.IDENTIFIER(ARGS) for the innermost such class or interface C. The expression
is not assignable.

2. It occurs in non-static context, and for some class or interface C inside whose declaration this
expression occurs, C.this.IDENTIFIER(ARGS) or C.IDENTIFIER(ARGS) type checks; the type of
the expression equals the type of C.this.IDENTIFIER(ARGS) or C.IDENTIFIER(ARGS) respec-
tively for the innermost such class C. The expression is not assignable.

• super.IDENTIFIER(ARGS): does not type check in static context. In non-static context, let C be the
innermost enclosing class or interface. If C is an interface or the class Object, this does not type
check. Otherwise let P be the direct superclass of C. If IDENTIFIER occurs inside a constant method or
constant constructor, this type checks if there is a most specific accessible constant or static method
of name IDENTIFIER compatible with ARGS. Otherwise, the expression type checks if there is a most
specific accessible method of name IDENTIFIER compatible with ARGS. The method’s return type is
the type of the expression. The expression is never assignable.

A.6 Templates

In addition to the features of ConstJava described above, a template feature is included in Const-
Java. This feature allows creation of polymorphic methods or types, with polymorphism over
constness only being available.
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A.6.1 Polymorphic methods and constructors

The syntax for polymorphic method/constructors is as follows

PolymorphicMethod ::=

’template’ ’<’ VariableList ’>’ MethodDeclaration

PolymorphicConstructor ::=

’template’ ’<’ VariableList ’>’ ConstructorDeclaration

VariableList ::=

Identifier

Identifier ’,’ VariableList

It is a compile-time error to repeat a variable in the variable list.
In order to expand a polymorphic method/constructor, first all templates of method, con-

structors, or types nested within it are expanded; the template declaration is replaced by a dis-
tinct method/constructor declaration for each possible assignment of booleans to variables in the
VariableList. Inside the template, anywhere that const can appear in the usual grammar for the
language, const ? Identifier may appear, where Identifier is the name of one of the variables
bound in the template. When the template is expanded, in the newly created declarations corre-
sponding to the binding of Identifier to true, const ? Identifier is replaced by const; in those
where the variable is bound to false, const ? Identifier is simply removed.

For example

template<a> const?a Object identity(const?a Object o) {

return o;

}

gets expanded as

Object identity(Object o) {

return o;

}

const Object identity(const Object o) {

return o;

}

A.6.2 Polymorphic types

To declare a polymorphic type, the following syntax must be used:

PolymorphicType ::=

’template’ ’<’ VariableList ’>’ TypeDeclaration

TypeDeclaration ::=

ClassDeclaration

InterfaceDeclaration

The template expansion happens the same way as it does for polymorphic methods and con-
structors. Namely, first all the templates nested within this one are expanded, then the template
declaration is replaced with a separate type declaration for each possible boolean assignment to

50



the variables in VariableList. const ? Identifier constructs are replaced within the body of
the template in the same way as for method and constructor templates.

The only difference between polymorphic types and polymorphic methods is that types created
from a template get distinct names. The name of a type created from the template is obtained by
taking the original name of the type specified in the template, then appending < VariableList >

(where VariableList is taken from the template declaration), and finally replacing each varible with
const or nothing, depending on whether the variable is assigned true or false during the creation
of this type declaration.

For example

template<a,b> class A ...

will produce four new classes, A<,>, A<const,>, A<,const> and A<const,const>.
In general, the syntax for name now changes to

Name ::=

SimpleName

Name ’.’ SimpleName

SimpleName ::=

Identifier

Identifier ’<’ ( ’const’ | ) (’,’ ( ’const’ | )* ) ’>’

Of course, the second production for SimpleName can be used only to name classes or interfaces
created during template expansion.

Note that the previous rule that const ? Identifier can appear anywhere where const can
legally appear applies to the syntax for SimpleName. For example, A<const?a,const?b> is a legal
name, which will refer to a different class depending on values of a and b.
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