
Secure Program Execution via Dynamic
Information Flow Tracking

G. Edward Suh, Jae W. Lee, David Zhang, Srinivas Devadas
Computer Science and Artificial Intelligence Laboratory (CSAIL)

Massachusetts Institute of Technology
Cambridge, MA 02139

{suh,leejw,dxzhang,devadas}@mit.edu

ABSTRACT
We present a simple architectural mechanism called dynamic
information flow tracking that can significantly improve the
security of computing systems with negligible performance
overhead. Dynamic information flow tracking protects pro-
grams against malicious software attacks by identifying spu-
rious information flows from untrusted I/O and restricting
the usage of the spurious information.

Every security attack to take control of a program needs
to transfer the program’s control to malevolent code. In
our approach, the operating system identifies a set of input
channels as spurious, and the processor tracks all informa-
tion flows from those inputs. A broad range of attacks are
effectively defeated by checking the use of the spurious val-
ues as instructions and pointers.

Our protection is transparent to users or application pro-
grammers; the executables can be used without any modifi-
cation. Also, our scheme only incurs, on average, a memory
overhead of 1.4% and a performance overhead of 1.1%.

Categories and Subject Descriptors
C.1 [Processor Architectures]: Miscellaneous;
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security, Design, Performance

Keywords
Buffer overflow, format string, hardware tagging

1. INTRODUCTION
Malicious attacks often exploit program bugs to obtain

unauthorized accesses to a system. We propose an architec-
tural mechanism called dynamic information flow tracking,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASPLOS’04, October 7–13, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-804-0/04/0010 ...$5.00.

which provides a powerful tool to protect a computer sys-
tem from malicious software attacks. With this mechanism,
higher level software such as an operating system can make
strong security guarantees even for vulnerable programs.

The most frequently-exploited program vulnerabilities are
buffer overflows and format strings, which allow an attacker
to overwrite memory locations in the vulnerable program’s
memory space with malicious code and program pointers.
Exploiting the vulnerability, a malicious entity can gain con-
trol of a program and perform any operation that the com-
promised program has permissions for. While hijacking a
single privileged program gives attackers full access to the
system, attacks to hijack any program that has access to
sensitive information represent a serious security risk.

Unfortunately, it is very difficult to protect programs by
stopping the first step of an attack, namely, exploiting pro-
gram vulnerabilities to overwrite memory locations. There
can be as many, if not more, types of exploits as there are
program bugs. Moreover, malicious overwrites cannot be
easily identified since vulnerable programs themselves per-
form the writes. Conventional access controls do not work in
this case. As a result, protection schemes which target de-
tection of malicious overwrites have only had limited success
– they block only the specific types of exploits they are de-
signed for or they are too restrictive and cannot handle some
legitimate programs such as dynamically generated code.

To thwart a broad range of security exploits, we can pre-
vent the final step, namely, the unintended use of I/O inputs.
For example, in order to obtain full control of the victim
process, every attack has to change the program’s control
flow to execute malicious code. Unlike memory overwrites
through vulnerabilities, there are only a few ways to change
a program’s control flow. Attacks may change a code pointer
for indirect jumps, or inject malicious code at a place that
will be executed without requiring malevolent control trans-
fer. Thus, control transfers are much easier to protect for a
broad range of exploits.

We propose architectural support, called dynamic infor-
mation flow tracking to track I/O inputs and monitor their
use. In our approach, a software module in the operating
system marks inputs from potentially malicious channels,
i.e., channels from which malicious attacks may originate,
as spurious. During an execution, the processor tracks the
spurious information flows. On every operation, a processor
determines whether the result is spurious or not based on
the inputs and the type of the operation. With the tracked
information flows, the processor can easily detect dangerous

uses of spurious values and trap to a software handler to
check the use. For example, checking if an instruction or
a branch target is spurious prevents changes of control flow
by potentially malicious inputs and dynamic data generated
from them.

Experimental results demonstrate our protection scheme
is very effective and efficient. A broad range of security at-
tacks exploiting notorious buffer overflows and format strings
are detected and stopped. Our restrictions do not cause any
false alarms for Debian Linux or applications in the SPEC
CPU2000 suite. Moreover, our scheme only requires, on
average, a memory overhead of 1.44% and a performance
degradation of 1.1%. At the same time, our approach is
transparent to users and application programmers.

We first describe our security model and general approach
for protection in Section 2. Section 3 presents our protection
scheme including architectural mechanisms to track spurious
information flow at run-time. Practical considerations in
making our scheme efficient are discussed in Section 4. We
evaluate our approach in Section 5 and Section 6. We discuss
the advantages of our scheme compared to related work in
Section 7. Finally, we discuss possible extensions to our
scheme and conclude the paper in Section 8.

2. ATTACK AND PROTECTION MODELS
This section describes our security attack model and the

approach to stop the attacks. We first explain the general
attack and protection models, and discuss specific types of
attacks that we are focusing on in this paper. We also pro-
vide two examples to illustrate our approach.

I/O, other processes

Program

Vulnerability

Unintended Uses

Step 1. Operating systems

tag potentially malicious

data: spurious

Operating System

Step 2. Processors track

the flow of potentially

malicious inputs

Step 3. Detect attacks

- Check and restrict the

use of spurious values

Figure 1: Attack and protection model.

Figure 1 illustrates security attacks and our protection
approach in general. A program has legitimate I/O channels
that are either managed by the operating system as in most
I/O or set up by the operating system as in inter-process
communication. An attacker can control an input to one
of these channels, and inject a malicious input that exploits
a vulnerability in the program. Note that we assume that
the programs can be buggy and contain vulnerabilities, but
they are not malicious. Thus, we do not consider the case
when a back door is implemented as a part of the original
program functionality.

The vulnerability in the program allows the malicious

inputs to cause unexpected changes in memory locations
which are not supposed to be affected by the inputs. Be-
cause the vulnerability is due to programming errors that
are not detected by a weak type system, these unexpected
values can be used not only as regular data but as any data
type including code pointers such as function pointers and
return addresses, data pointers, and even dynamic instruc-
tions that are not protected as being read-only. Once in-
jected, the unexpected values can propagate into other lo-
cations even without a bug, generating more unexpected
values.

Two frequently exploited vulnerabilities are buffer over-
flows [16] and format strings [15]. We give examples of how
these vulnerabilities propagate malicious inputs in Sections
2.1 and 2.2.

Finally, the malicious instructions, pointers, and data are
used by the victim process altering the process’ behavior or
results. The attacker can achieve various goals depending
on how the unexpected malicious values are used:

• Gaining total control: The attackers obtain total
control of the victim process if they can get to a shell
with the victim’s privilege. The victim process needs
to execute the shell code, also called payload code,
for this to happen. There are three possible ways to
achieve this goal.

First, attackers may inject instructions for the shell
code, and make the victim process execute them. If ex-
isting instructions are overwritten, corrupting instruc-
tions may itself be enough to gain total control of the
victim. Otherwise, this attack also requires corrupting
a code pointer as described below.

Second, attackers can corrupt code pointers such as
function pointers and return addresses, which allows
an arbitrary control transfer. Due to standard libraries,
suitable payload code such as execve() often exists in
the victim process’ memory space even though the pro-
cess does not use them. Thus, making a program jump
to the existing payload code is often enough to obtain
total control.

Finally, for very special cases where the shell code is
already used by the victim process, corrupting a data
pointer and overwriting the appropriate data that de-
termines whether the victim process executes the shell
code or not may be used to gain total control.

• Selecting a control path: Corrupting data that is
used to generate a branch condition can result in a
malicious control transfer within the victim’s original
control flow graph. Note that unlike corrupting code
pointers this attack can only change the path the vic-
tim process takes, and cannot make the victim execute
arbitrary code.

In order for this type of attack to cause damage, the
attacker needs to be able to change arbitrary branch
conditions. Therefore, this attack also needs to corrupt
data pointers.

• Corrupting sensitive data: Attackers can corrupt
sensitive data without changing the control flow. By
changing data pointers, the attacker can corrupt arbi-
trary data in the victim’s memory space and change
the result computed from the data.

• Crashing the process: If denial of service is the
goal, corrupting pointers to a random value can also
be useful. The victim process will crash by accessing
invalid memory addresses if either a code pointer or a
data pointer is corrupted.

Note that all of these attacks require the victim process
to unexpectedly use the value that depends on the malicious
I/O inputs. Therefore, we can protect vulnerable programs
by identifying malicious I/O inputs, tracking the values gen-
erated from the inputs, and checking their uses.

First, all values from potentially malicious I/O channels
are tagged as spurious indicating the data is controlled by
untrustworthy inputs. On the other hand, other instruc-
tions and data including the original program are marked
as authentic.

During an execution, the processor tracks how the spuri-
ous values are used. If a new value is generated from the
spurious ones, the processor marks the propagation by tag-
ging the new value as spurious as well. We call this technique
dynamic information flow tracking.

Finally, if the processor detects the suspicious use of spuri-
ous values, it generates a trap, which is handled by the soft-
ware module in the operating system. For example, spurious
instructions and pointers can cause a trap. Once the secu-
rity trap occurs, the software module determines whether
the use of the spurious value is legitimate or not. If the us-
age violates the system’s or program’s security policy, the
victimized process is terminated by the operating system.

This general approach can be used to detect all types of
attacks described above. In this paper, however, we focus
on the attacks that try to take total control of the victim
process as a primary example. Gaining total control of a
vulnerable program is by far the most common and the most
serious security threat.

As discussed above, there are only three possible ways for
the attacker to obtain total control of a process. In most
cases, preventing spurious instructions and spurious code
pointers is enough to stop the attack. In special cases when
the victim process itself uses the shell code, spurious data
pointers for stores should be also prevented to stop attackers
from overwriting critical data that determines whether to
execute the shell code or not.

2.1 Example 1: Stack Smashing
A simple example of the stack smashing attack is pre-

sented to demonstrate how our protection scheme works.
The example is constructed from vulnerable code reported
for Tripbit Secure Code Analizer at SecurityFocusTM in June
2003.

int single_source(char *fname)
{

char buf[256];
FILE *src;

src = fopen(fname, "rt");

while(fgets(buf, 1044, src)) {
...

}

return 0;
}

The above function reads source code line-by-line from a
file to analyze it. The program stack at the beginning of the

Other variables

buf

(256 Bytes)

Return Address

Top of Stack

Attack

(a)

Other variables

Malicious

Input data

from

fget()

Top of Stack

Used for
return

Tagged
“spurious”

(b)

Figure 2: The states of the program stack before
and after a stack smashing attack.

function is shown in Figure 2 (a). The return address pointer
is saved by the calling convention and the local variable buf

is allocated in the stack. If an attacker provides a source file
with a line longer than 256 characters, buf overflows and the
stack next to the buffer is overwritten as in Figure 2 (b). An
attacker can modify the return address pointer arbitrarily,
and change the control flow when the function returns.

Now let us consider how this attack is detected in our
scheme. When a function uses fgets to read a line from the
source file, it invokes a system call to access the file. Since
an operating system knows the data is from the file I/O, it
tags the I/O inputs as spurious. In fgets, the input string
is copied and put into the buffer. Dynamic information flow
tracking tags these processed values as spurious (cf. copy
dependency in Section 3.3). As a result, the values written
to the stack by fgets are tagged spurious. Finally, when the
function returns, it uses the ret instruction. Since the in-
struction is a register-based jump, the processor checks the
security tag of the return address, and generates an excep-
tion since the pointer is spurious.

2.2 Example 2: Format String Attacks
We also show how our protection scheme detects a format

string attack with %n to modify program pointers in memory.
The following example is constructed based on Newsham’s
document on format string attacks [15].

int main(int argc, char **argv)
{

char buf[100];

if (argc != 2) exit(1);

snprintf(buf, 100, argv[1]);
buf[sizeof buf - 1] = 0;
printf(‘‘buffer: %s\n’’, buf);

return 0;
}

The general purpose of this example is quite simple: print
out a value passed on the command line. Note that the code
is written carefully to avoid buffer overflows. However, the
snprintf statement causes the format string vulnerability
because argv[1] is directly given to the function without a
format string.

For example, an attacker may provide ’’aaaa%n’’ to over-
write the address 0x61616161 with 4. First, the snprintf

copies the first four bytes aaaa of the input into buf in the
stack. Then, it encounters %n, which is interpreted as a for-
mat string to store the number of characters written so far to
the memory location indicated by an argument. The num-
ber of characters written at this point is four. Without an
argument specified, the next value in the stack is used as the
argument, which happens to be the first four bytes of buf.
This value is 0x61616161, which corresponds to the copied
aaaa. Therefore, the program writes 4 into 0x61616161. Us-
ing the same trick, an attacker can simply modify a return
address pointer to take control of the program.

The detection of the format string attack is similar to the
buffer overflow case. First, knowing that argv[1] is from a
spurious I/O channel, the operating system tags it as spu-
rious. This value is passed to snprintf and copied into
buf. Finally, for the %n conversion specification, snprintf
uses a part of this value as an address to store the num-
ber of characters written at that point (4 in the example).
All these spurious flows are tracked by our information flow
tracking mechanism (cf. copy dependency and store-address
dependency in Section 3.3). As a result, the value written
by snprintf is tagged spurious. The processor detects an
attack and generates an exception when this spurious value
is used as a jump target address.

3. PROTECTION SCHEME
This section explains the details and the implementation

of our protection approach presented in the previous section.
We first describe how the protection functions are parti-
tioned between the software layer (in the operating system)
and the processor. Then, we discuss the security policy that
controls the mechanism to efficiently detect malicious attack
without generating false alarms.

3.1 Overview
Our protection scheme consists of three major parts: the

execution monitor, the tagging units (flow tracker and tag
checker) in the processor, and the security policy. Figure 3
illustrates the overview of our protection scheme.

Information

flow

tracker

Operating System

Processor

Checks

on ops

Flows

to track

Security Policy

Execution Monitor

I/O

I/O interface Trap handler

Tag

checker

TrapsI/O

I/O to tag

Figure 3: The overview of our protection scheme.

The execution monitor is a software module that orches-
trates our protection scheme and enforces the security pol-
icy. First, the module configures the protection mechanisms

in the processor so that they track proper information flows
and trap on certain uses of spurious values. Second, the
I/O interface in the module marks inputs from untrusted
I/O channels as spurious. Finally, if the processor gener-
ates a trap, the handler checks if the trapped operation is
allowed in the security policy. If so, the handler returns to
the application. Otherwise, the violation is logged and the
application is terminated. This module can be either in the
operating system, or in a layer between the application and
the operating system.

There are two mechanisms added to the processor core;
dynamic information tracking and security tag checking. On
each instruction, the information tracker determines whether
the result should be spurious or not based on the authentic-
ity of input operands and the security policy. In this way,
the mechanism tracks spurious information flow. Section 3.3
describes flow tracking in detail.

At the same time, the tag checker monitors the tags of
input operands for every instruction that the processor exe-
cutes. If spurious values are used for the operations specified
in the security policy, the checker generates a security trap
so that the operation can be checked by the execution mon-
itor.

The execution monitor and the two hardware mechanisms
provide a framework to check and restrict the use of spuri-
ous I/O inputs. The security policy determines how this
framework is used by specifying the untrusted I/O channels,
information flows to be tracked, and the restrictions on spu-
rious value usage. One can have a general security policy
that prevents most common attacks, or one can fine-tune
the policy for each system or even for each application based
on its security requirements and behaviors. Section 3.5 dis-
cusses the issues in writing a security policy and describes
our policy to prevent attacks from gaining total control of
the victim process.

3.2 Security Tags
We use a one-bit tag to indicate whether the correspond-

ing data block is authentic or spurious. It is straightforward
to extend our scheme to multiple-bit tags if it is desirable to
further distinguish the values; for example, it may be help-
ful to distinguish the I/O inputs from the values generated
from them. In the following discussion, tags with zero in-
dicate authentic data and tags with one indicate spurious
data.

In the processor, each register needs to be tagged. In
the memory, data blocks with the smallest granularity that
can be accessed by the processor are tagged separately. We
assume that there is a tag per byte since many architec-
tures support byte granularity memory accesses and I/O.
Section 4 shows how the per-byte tags can be efficiently
managed with minimal space overhead.

The tags for registers are initialized to be zero at program
start-up. Similarly, all memory blocks are initially tagged
with zero. The execution monitor tags the data with one
only if they are from a potentially malicious input channel.

The security tags are a part of program state, and should
be managed by the operating system accordingly. On a con-
text switch, the tags for registers are saved and restored with
the register values. The operating system manages a sepa-
rate tag space for each process, just as it manages a separate
virtual memory space per process.

Operation Control Examples Meaning Tag Propagation
Pointer PCR[1:0] ADD R1, R2, R3 R1←<R2>+<R3> Temp1←(T[R2]|T[R3])&PCR[0]
addition Temp2←(T[R2]&[R3])&PCR[1]
(reg+reg) T[R1]←Temp1|Temp2
Other ALU PCR[1] MUL R1, R2, R3 R1←<R2>*<R3> T[R1]←(T[R2]|T[R3])&PCR[1]
operations MULI R1, R2, #Imm R1←<R2>*Imm T[R1]←T[R2]&PCR[1]
Load PCR[2] LW R1, Imm(R2) R1←Mem[<R2>+Imm] Temp←T[Mem[<R2>+Imm]];

T[R1]←Temp|(T[R2]&PCR[2])
Store PCR[3] SW Imm(R1), R2 Mem[<R1>+Imm]←<R2> Temp←(T[R2])|(T[R1]&PCR[3]);

T[Mem[<R1>+Imm]]←Temp
Jump & link - JALR R1 R31←<PC>+4; PC←<R1> T[R31]←0

Explicit tag manipulation
Set a tag - SETT R1, Imm - T[R1]←Imm
Move a tag - MOVT R1, R2 - T[R1]←T[R2]

Exceptional operations (architecture specific)

Clear a reg - xor eax, eax (x86) eax←0 T[eax]←0

Table 1: Tag computations for different types of operations. <Ri> represents the value in a general purpose
register Ri. Mem[] represents the value stored in the specified address. T[] represents the security tag for a
register or a memory location specified. R0 is a constant zero register, and R31 is a link register.

3.3 Tracking Information Flows
In our context, a spurious value is the one that may have

unexpectedly changed by I/O inputs due to bugs in the
program. Once injected, spurious values can again cause
unexpected changes to other values through many differ-
ent dependencies. We categorize the possible dependencies
for spurious information flows into five types: copy depen-
dency, computation dependency, load-address dependency,
store-address dependency, and control dependency.

• Copy dependency: If a spurious value is copied into a
different location, the value of the new location is also
spurious.

• Computation dependency: A spurious value may be
used as an input operand of a computation. In this
case, the result of the computation directly depends
on the input value. For example, when two spurious
values are added, the result depends on those inputs.

• Load-address (LDA) dependency: If a spurious value is
used to specify the address to access, the loaded value
depends on the spurious value. Unless the bound of the
spurious value is explicitly checked by the program, the
result could be any value.

• Store-address (STA) dependency: If stores use spurious
data pointers, the stored value may become spurious
because the program would not expect the value in the
location to be changed when it loads from that address
in the future.

• Control dependency: If a spurious value determines the
execution path, either as a code pointer or as a branch
condition, all program states are effectively dependent
on that spurious value.

Processors dynamically track spurious information flows
by tagging the result of an operation as spurious if it has a
dependency on spurious data. To be able to enforce various
security policies, the dependencies to be tracked are con-
trolled by a bit vector in the Propagation Control Register
(PCR). The PCR is set to the proper value by the execution
monitor based on the security policy.

Table 1 summarizes how a new security tag is computed
for different operations. First, the ALU operations can prop-
agate the spurious values through computation dependency.
Therefore, for most ALU instructions, the result is spurious
if any of the inputs are spurious and PCR[1] is set indicating
the computation dependency should be tracked.

Additions that can be used for pointer arithmetic oper-
ations are treated separately unless PCR[0] is set because
they can often be used to legitimately combine authentic
base pointers with spurious offsets. For special instructions
used for pointer arithmetic (such as s4addq in Alpha), we
only propagate the security tag of the base pointer, not the
tag of the offset. If it is not possible to distinguish the base
pointer and the offset, the result is spurious only if both in-
puts are spurious. If PCR[0] is set, the pointer additions are
treated the same as other computations.

For load and store instructions, the security tag of the
source propagates to the destination since the value is di-
rectly copied. In addition, the result may also become spuri-
ous if the accessed address is spurious and the corresponding
PCR bits are set to track the load-address or store-address
dependencies.

We introduce two new instructions so that software mod-
ules, either the execution monitor or the application itself
can explicitly manage the security tags. The SETT instruc-
tion sets the security tag of the destination register to an
immediate value. The MOVT instruction copies the security
tag from the source to destination.

Finally, there can be instructions that require special tag
propagations. In the x86 architecture, XOR’ing the same
register is the default way to clear the register. Therefore,
the result should be tagged as authentic in this case. Com-
mon RISC ISAs do not require this special propagation be-
cause they have a constant zero register.

Note that we do not track any form of control dependency
in this work. We believe that tracking control dependency
is not useful for detecting malicious software attacks con-
sider herein. For control transfer that can compromise the
program, such as register-based jumps, the use of spurious
values should simply be checked and stopped. Tracking a
control dependency will only make the entire program state

Operation Example Trap condition
Instruction fetch - T[Inst]&TCR[0]
Loads LD R1, Imm(R2) T[R2]&TCR[1]
Stores ST Imm(R1), R2 T[R1]&TCR[2]
Register jumps JR R1 T[R1]&TCR[3]
Cond. branches BEQ R1, ofst T[R1]&TCR[4]

Table 2: Security tag checks by the processor.

become spurious, causing traps on every consequent opera-
tion. We also believe that it is difficult for attacks to exploit
control dependencies to bypass our protection scheme be-
cause programs do not use control dependencies to generate
pointers (See Section 5).

3.4 Checking the Tags
For each instruction, the processor checks the security tag

of the input operands and generates a trap if the spurious
value is used for certain operations.

Table 2 summarizes the tag checks performed by the pro-
cessor. The processor checks the five types of spurious val-
ues: instructions, load addresses, store addresses, jump tar-
gets, branch conditions. The Trap Control Register (TCR)
that is set by the execution monitor based on the security
policy determines whether a trap is generated.

In addition to the five checks that the processor performs,
we add one explicit tag check instruction, BRT R1, offset.
The instruction is a conditional branch based on the security
tag. The branch is taken if the security tag of the source reg-
ister is zero. Using this instruction, programs can explicitly
check that critical values are not corrupted.

3.5 Security Policies
The security policy defines legitimate uses of I/O values

by specifying the untrusted I/O channels, information flows
to be tracked (PCR), trap conditions (TCR), and software
checks on a trap. If the run-time behavior of a program
violates the security policy, the program is considered to
be attacked. Ideally, the security policy should only allow
legitimate operations of the protected program.

The policy can be based either on a general invariant that
should be followed by almost all programs or on the invari-
ants for a specific application. Also, the restrictions defining
the security policy can be based either on where spurious
values can be used or on general program behavior.

For example, we use a general security policy generated
from the following invariants based on the use of spurious
values in this paper: No instruction can be generated from
I/O inputs, and No I/O inputs and spurious values based
on propagated inputs can be used as pointers unless they are
bound-checked and added to an authentic pointer.

Our policy tags all I/O inputs except the initial program
from disk as spurious. All spurious flows are tracked ex-
cept that pointer additions are treated leniently (PCR[0] =

0) as discussed in Section 3.3. The processor traps if spuri-
ous values are used as instructions, store addresses, or jump
targets. In this case, the handler does not have to perform
any more checks since all traps indicate the violation of the
security policy.

This exception in the flow tracking described above is
made so as to not trap on legitimate uses of I/O inputs.
For example, the switch statement in C, jump tables, and
dynamic function pointer tables often use I/O inputs to com-

pute the addresses of case statements or table entries after
explicit bound checking.

ldl r2, 56(r0) # r2 MEM[r0+56)

cmpule r2, 20, r3 # r3 (r2 <= 20)

beq r3, default # branch if (r3 == 0)

ldah r28, 1(gp) # Load ptr to table

s4addq r2, r28, r28 # r28 r28 + 4*r2

ldl r28, offset(r28) # Load ptr

addq r28, gp, r28 # r28 r28 + gp

jmp (r28) # go to a case

case 0: …

case 1: …

…

default:

Bound checking

Figure 4: A switch statement with a jump table.

Figure 4 shows a code segment from a SPEC benchmark,
which implements a switch statement. A potentially spu-
rious value is loaded into r2, and checked to be smaller or
equal to 20 (bound check). If the value is within the range,
it is used to access an entry in a jump table; r28 is loaded
with the base address of a table, and r2 is added as an offset.
Finally, a pointer in the table is loaded into r28 and used as
a jump target.

This code fragment and other legitimate uses of spurious
data do not produce traps under our policy. In the instruc-
tion s4addq in Figure 4, the spurious bit on r2 is not prop-
agated to r28 because the original value of r28 is authentic.
Here we assume that adding non-constant offset to the base
pointer implies that the program performed a bound-check
before.

By restricting the use of spurious values as instructions,
code pointers, and data pointers for stores, our policy can
prevent attackers from injecting malicious code, arbitrary
control transfers and arbitrary data corruption. Therefore,
the attacks cannot obtain total control of the victim process.

While we crafted our policy so that a security trap in-
dicates a violation of the security policy, traps may only
indicate potential violations. For example, the policy can
strictly track all dependencies, causing traps even on some
legitimate uses. Then, the software handler can explicitly
check if a bound-check has been performed or enforce any
restrictions on the program behavior such as a) programs
can only jump to the original code loaded from disk, or b)
programs cannot modify a certain memory region based on
spurious I/O, etc. We do not use these complex security
policies to evaluate the security of our scheme because even
the simple policy detects all attacks tested. The perfor-
mance implication of tracking all dependencies is discussed
in Section 6.

If more specific knowledge about the application behavior
is available, stricter (and more secure) security policies can
be enforced. For example, if the protected application does
not use any jump tables, the security policy can strictly
track all dependencies and flag all uses of spurious pointers.
Also, if the application only copies the I/O inputs, but is not
supposed to use them to determine its actions, conditional
branches based on spurious values may be flagged.

4. EFFICIENT TAG MANAGEMENT
Managing a tag for each byte in memory can result in up

to 12.5% storage and bandwidth overhead if implemented

Type value Meaning

00 all 0 (per-page)
01 per-quadword tags
10 per-byte tags
11 all 1 (per-page)

Table 3: Example type values for security tags and
their meaning.

naively. This section discusses how security tags for memory
can be managed efficiently.

4.1 Multi-Granularity Security Tags
Even though a program can manipulate values in memory

with byte granularity, writing each byte separately is not the
common case. For example, programs often write a register’s
worth of data at a time, which is a word for 32-bit proces-
sors or a quadword for 64-bit processors. Moreover, a large
chunk of data may remain authentic for an entire program
execution. Therefore, allocating memory space and manag-
ing a security tag for every byte is likely to be a waste of
resources.

We propose to have security tags with different granular-
ities for each page depending on the type of writes to the
page. The operating system maintains two more bits for
each page to indicate the type of security tags that the page
has. One example for 64-bit machines, which has four dif-
ferent types, is shown in Table 3.

Just after an allocation, a new authentic page holds a per-
page tag, which is indicated by type value 00. There is no
reason to allocate separate memory space for security tags
since the authenticity is indicated by the tag type.

Upon the first store operation with a non-zero security tag
to the page, a processor generates an exception for tag allo-
cation. The operating system determines the new granular-
ity of security tags for the page, allocates memory space for
the tags, and initializes the tags to be all zero. If the gran-
ularity of the store operation is smaller than a quadword,
per-byte security tags are used. Otherwise, per-quadword
tags, which only have 1.6% overhead, are chosen.

If there is a store operation with a small granularity for
a page that currently has per-quadword security tags, the
operating system reallocates the space for per-byte tags and
initializes them properly. Although this operation may seem
expensive, our experiments indicate that it is very rare (hap-
pens in less than 1% of pages).

Finally, the type value of 11 indicates that the entire page
is spurious. This type is used for I/O buffers and shared
pages writable by other processes that the operating system
identifies as potentially malicious. Any value stored in these
pages is considered spurious even if the value was authentic
before.

4.2 On-Chip Structures
Figure 5 illustrates the implementation of the security tag

scheme in a processor. Dark (blue) boxes in the figure rep-
resent new structures required for the tags. Each register
has one additional bit for a security tag. For cache blocks,
we introduce separate tag caches (T$-L1 and T$-L2) rather
than tagging each cache block with additional bits.

Adding security tags to existing cache blocks will require
a translation table between the L2 cache and the memory in

Core

ITag
TLB

D$-L1

L2

I$-L1

D-TLB

I-TLB

T$-L2

T$-L1

DTag
TLB

Regs

Tag Types,
Pointers

Security
Tags

Memory Bus

Figure 5: On-chip structures to manage security
tags. Dark (blue) boxes represent additional struc-
tures.

order to find physical addresses of security tags from physical
addresses of L2 blocks. Moreover, this approach will require
per-byte tags for every cache block, which is wasteful in most
cases. Similarly, sharing the same caches between data and
security tags is also undesirable because it would prevent
parallel accesses to both data and tags unless the caches are
dual-ported.

Finally, the processor has additional TLBs for security
tags. For a memory access, the tag TLB returns two bits
for the tag type of a page. If the security tags are not per-
page granularity tags, the TLB also provides the physical
address of the tags. Based on this information, the processor
can issue an access to the tag cache.

Note that new structures for security tags are completely
decoupled from existing memory hierarchy for instructions
and data. Therefore, latencies for on-chip instruction/data
TLBs and caches are not affected. In Section 6 we discuss
the impact of security tags on performance in detail.

5. SECURITY EVALUATION
This section evaluates the effectiveness of our approach in

detecting malicious software attacks. There are two aspects
to effectiveness. First, the protection scheme should be able
to detect malicious attacks. On the other hand, the protec-
tion should not cause any false alarms without attacks.

We first evaluate our scheme through functional simula-
tions of various applications. The result shows that our
scheme with a simple security policy can effectively detect
all attacks tested without false alarms. Then, we discuss the
potential weaknesses of our scheme with the chosen security
policy.

5.1 Simulation Framework
We developed two functional simulators to evaluate our

scheme. For SPEC2000 benchmarks, sim-fast in the Sim-
pleScalar 3.0 tool set [2] is modified to incorporate tagging.

To evaluate the effectiveness of our approach for real appli-
cations on the Intel x86 architecture, we modified the Bochs
open-source x86 emulator [12]. We applied a 1-bit security

tag to every byte in memory and registers. Every byte on
the hard drive is also tagged to accommodate paging and
program load: on the first boot, all tags were authentic to
represent authentic programs. Keyboard and network I/O
was tagged as spurious to present standard sources of spuri-
ous data. At boot-time, all memory except for BIOS ROM
was tagged as spurious.

As described in the security policy, copy, load/store ad-
dress, and computation dependencies are tracked. In ad-
dition, several tag propagation rules specific to the x86 in-
struction set were added. First, for the instructions that
are commonly used to zero a register such as XOR R1, R1,
SUB R2, R2 and AND R3, 0, the result is always tagged as
authentic.

Also, if the immediate displacement is specified for mem-
ory addressing such as [4*R1+Disp] and larger than a 2-byte
signed integer, the address is considered authentic. In the
x86 architecture, the displacement can be 4-bytes and often
used as a base pointer to jump tables for switch statements.
For other addressing modes, the pointer addition rules de-
scribed in Table 1 apply.

5.2 Experimental Validation
To evaluate the security of our scheme, we tested the

testbed of 20 different buffer overflow attacks developed by
John Wilander [24], and format string attacks based on the
document from the TESO security group [20].

The buffer overflow testbed includes 20 different attacks
based on the technique to overwrite (direct overwrite or
pointer redirection), the locations of the buffer (stack or
heap/BSS/data), and the attack targets (return address,
base pointer, function pointer, and longjmp buffers). The
testbed covers all possible combinations in practice. The
original testbed simulated the input to the vulerable buffer
internally rather than getting them from I/O. We modified
the testbed so that the input is tagged as spurious.

The best protection tool tested in Wilander’s paper only
detected 50% of attacks. Our scheme detected and stopped
all 20 attacks. Because all attacks injected either a code
pointer or a data pointer, tracking copy and load/store ad-
dress dependencies was sufficient to detect the attacks.

We also tested the format string attacks used in the cases
of QPOP 2.53, bftpd, and wu-ftpd 2.6.0. QPOP 2.53 and
bftpd cases use a format string to cause buffer overflows,
while the wu-ftpd 2.6.0 case uses the technique described
in Section 2.2. In all cases, the attacks were detected and
stopped by copy and store-address dependencies.

The other concern for the effectiveness of a protection
scheme is whether it causes false alarms without any attack.
To verify that our scheme does not incur false alarms, we
ran various real-world application on Bochs as well as 20
SPEC CPU2000 benchmarks [8] on sim-fast.

Under our security policy, Debian Linux (3.0r0) success-
fully boots and all the system commands including ls, cp,
and vi can be run with no false alarms. We also successfully
ran network applications such as the OpenSSH server and
client, scp, and ping with no false alarms. Our scheme does
not cause any false alarm for the SPEC benchmarks, either.
Even though there are lots of data marked as spurious, those
values from I/O are never used directly as an instruction or
a pointer.

To test our protection scheme for dynamically generated
code, we ran a sample http server, called TinyHttpd2, on

SUN’s Java SDK 1.3 HotSpot virtual machine that has a
JIT (Just-In-Time) compiler. Our protection scheme did
not cause any false alarms even when the input class files
are marked as spurious. The generation of dynamic code
typically involves control dependency, which is not tracked
in our security policy.

5.3 Security Analysis
Our protection scheme detects all attacks that directly

inject malicious code or pointers through I/O because copies
are always tracked. All existing attacks that we know of fall
into this category. In order to bypass our protection, attacks
must find a way to make the victim process malicious inputs
through untracked dependencies before being used.

Fortunately, tracking control dependency is not essential
for detecting the type of attacks we consider. Attacks can-
not cause specific changes to specific locations solely through
control dependency. First, all attacks that inject a pointer to
overwrite a specific location can be detected without track-
ing control dependency. Programs, even with bugs, only
use additions and subtractions for manipulating pointers.
Therefore, all injected pointers and values accessed using
the pointers get marked as spurious if computation and
load/store-address dependencies are tracked. Even when
attacks do not need to inject pointers, control dependency
alone often does not provide enough freedom for attacks to
generate a specifc value that they need.

For example, let us consider the format string vulnerabil-
ity discussed in Section 2.2. The vulnerability counts the
number of characters to print before the %n directive, and
overwrites the location pointed to by a value in the stack.
If the attacker injects a data pointer in the stack, the over-
write is marked as spurious by store-address dependency. If
there is a suitable pointer already in the stack, the attacker
does not have to inject the malicious data pointer. How-
ever, even in this case, the malicious value will be marked
as spurious by computation dependency. To generate a large
enough value to be used as a pointer, the attacks need to
use format directives such as %256d to specify the number
of characters, which involves computation. Otherwise, the
value can only be as large as the length of an input buffer.

The lenient propagation rule for pointer additions may
leave some kinds of programs vulnerable. First, if I/O in-
puts are translated using a look-up table, the propagation is
not tracked. This does not mean that all look-up tables can
be exploited because the program normally will not over-
write sensitive information such as pointers with the result
of a table look-up. However, it is conceivable that the table
look-up combined with buffer overflow bugs can leave the
program vulnerable.

Second, if the I/O inputs are added to an authentic value
using the instructions for pointer additions, this spurious
flow will not be tracked. Again, to be exploitable, this un-
tracked propagation should be present with other bugs that
cause the untracked values to overwrite pointers.

In summary, control dependency is not essential in de-
tecting the type of attacks we are considering. On the other
hand, the lenient treatment of pointer additions may leave
some programs vulnerable. However, these vulnerabilities
must be combined with other bugs to be exploitable. One
way to enhance the security of our scheme is to identify
explicit bound checks rather than assume that all pointer
additions make I/O inputs safe.

6. PERFORMANCE EVALUATION
This section evaluates the memory space and performance

overheads of our protection scheme through detailed simu-
lations.

Architectural parameters Specifications

Clock frequency 1 GHz
L1 I-cache 64KB, 2-way, 32B line
L1 D-cache 64KB, 2-way, 32B line
L2 cache Unified, 4-way, 128B line

L1 T-cache 8KB, 2-way, 8B line
L2 T-cache 1/8 of L2, 4-way, 16B line
L1 latency 2 cycles
L2 latency Varies (from CACTI)

Memory latency (first chunk) 80 cycles
I/D TLBs 4-way, 128-entries

TLB miss latency 160 cycles
Memory bus 200 MHz, 8-B wide (1.6 GB/s)

Fetch/decode width 4 / 4 per cycle
issue/commit width 4 / 4 per cycle

Load/store queue size 64
Register update unit size 128

Table 4: Architectural parameters.

Our simulation framework is based on the SimpleScalar
3.0 tool set [2]. For the memory space overhead, sim-fast is
modified to incorporate our information flow tracking mech-
anism. For performance overhead study, sim-outorder is
used with a detailed memory bus model. The architectural
parameters used in the performance simulations are shown
in Table 4. SimpleScalar is configured to execute Alpha bi-
naries, and all benchmarks are compiled on EV6 (21264) for
peak performance.

For the experiments, we use the security policy described
in Section 3.5 as the default case. All input channels are
considered potentially malicious. During an execution, the
processor tracks copy, computation, load-address, and store-
address dependencies with the lenient propagation for pointer
additions (PCR[3:0] is set to 1110(2)). We also simulated
and reported the results for the most restrictive policy that
tracks all dependencies strictly (PCR[3:0] is set to 1111(2)).

6.1 Memory Space Overhead
Dynamic information flow tracking requires small modi-

fications to the processing core. The only noticeable space
overhead comes from storing security tags for memory.

We now evaluate our tag management scheme described
in Section 4 in terms of actual storage overhead for security
tags compared to regular data. Table 5 summarizes the
space overhead of security tags.

For our security policy, the amount of spurious data are
very limited. As a result, most pages have per-page tags, and
the space overhead of security tags is very small. Over 85%
of pages have per-page tags, and the space overhead is only
1.44% on average. Even for the tagging policy generating the
most spurious tags (PCR[3:0] = 1111(2)), the space overhead
on average is less than 3.7%. ammp is an exceptional case
where many pages have per-byte tags even though there are
very small amount of spurious bytes. In most pages, only
16–31 bytes out of 8 KB are spurious.

6.2 Performance Overhead
Finally, we evaluate the performance overhead of our pro-

tection scheme compared to the baseline case without any
protection mechanism. For each benchmark, the first 1 bil-
lion instructions are skipped, and the next 100 million in-

Spurious Tag Granularity (%) Over-
Benchmark data (%) Page QWord Byte head

ammp 0.33 9.68 0.12 90.20 11.28
applu 0.00 99.99 0.01 0.00 0.00
apsi 0.01 99.97 0.00 0.02 0.00
art 18.91 66.94 23.79 9.27 1.53

crafty 0.01 99.22 0.65 0.13 0.03
eon 0.00 99.94 0.05 0.01 0.00

equake 0.10 100.00 0.00 0.00 0.00
gap 0.03 99.72 0.06 0.22 0.03
gcc 0.18 81.88 0.43 17.69 2.22
gzip 33.30 70.04 29.87 0.09 0.48
mcf 0.00 99.99 0.00 0.01 0.00
mesa 0.08 99.85 0.00 0.15 0.02
mgrid 0.00 99.97 0.03 0.00 0.00
parser 8.76 41.99 6.37 51.65 6.56

sixtrack 0.24 99.03 0.69 0.28 0.05
swim 0.00 99.98 0.00 0.01 0.00
twolf 0.32 98.74 0.00 1.26 0.16
vpr 0.07 99.45 0.54 0.01 0.01

vortex 6.87 44.64 5.27 50.09 6.34
wupwise 0.01 99.96 0.01 0.03 0.00

avg 3.46 85.55 3.39 11.06 1.44

Table 5: Space overhead of security tags. The per-
centages of pages with per-page tags, per-quadword
tags, and per-byte tags are shown. Finally, Overhead
represents the space required for security tags com-
pared to regular data. All numbers are in percent-
ages. PCR[3:0] is set to 1110(2).

structions are simulated. Experimental results (IPCs) in fig-
ures are normalized to the IPC for the baseline case without
any security mechanisms.

Since our mechanism uses additional on-chip space for tag
caches, we increased the cache size of the baseline case by
the amount used by the tag caches in each configuration.
The access latency for a larger cache is estimated using the
CACTI tool [22]. For some benchmarks, increased cache la-
tency results in worse performance, even though the cache is
larger. In our experiments we report the worst-case perfor-
mance degradation by choosing the baseline performance to
be the maximum of the performances for the two different
cache sizes.

Our protection scheme can affect the performance in two
ways. First, accessing security tags consumes additional off-
chip bandwidth. Table 6 shows the six applications in which
the bus bandwidth is polluted by tag accesses the most
significantly. The rest of applications have only negligible
bandwidth consumption (less than 0.1%) by security tags.
Second, in the simulation framework, we assume that the
dispatch of an instruction waits until both data and secu-
rity tags are ready. Therefore, memory access latency seen
by a processor is effectively the maximum of the data latency
and the tag latency. This is a rather pessimistic assumption
since there is no dependency between the regular compu-
tation and the security tags; it is possible to have more
complicated logic for tag computations that allow regular
computations to continue while waiting for security tags.

Figure 6 shows the performance overhead of our scheme
for various L2 cache sizes when PCR[3:0] is set to 1110(2).
In this case, the tag caches are always one-eighth of the
corresponding caches for instruction and data. The figure
demonstrates that the overhead is modest for all benchmarks
for various cache sizes. There is only 1.1% degradation on
average while the worst case degradation is 23% for art.
The performance of art is very sensitive to the L2 cache
size, and having 12.5% additional cache space significantly

 ammp applu apsi art crafty eon equake gap gcc gzip mcf mesa mgrid parser sixtrack swim twolf vortex vpr wupwise
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05
N

or
m

al
iz

ed
 IP

C

512KB
1MB
2MB
4MB

Figure 6: Performance overhead for various L2 cache sizes (1/8 tag caches).

 ammp applu apsi art crafty eon equake gap gcc gzip mcf mesa mgrid parser sixtrack swim twolf vortex vpr wupwise
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

N
or

m
al

iz
ed

 IP
C

32KB
64KB
128KB

Figure 7: Performance degradation with small L2 tag caches (1-MB unified L2 cache).

Benchmark Bandwidth Pollution (%)

ammp 24.86
vortex 11.83
parser 2.90
gzip 1.11
eon 0.83
gcc 0.21

average 2.10

Table 6: Bandwidth pollution defined as the extra
bus bandwidth required for accessing security tags.
The average is for all 20 benchmarks.

improves the baseline performance. If we consider the same
size L2 caches for both baseline and our scheme, the perfor-
mance degradation is less than 0.1% in the worst case. The
performance degradation on average increases to 1.6% for
the most strict tagging policy (PCR[3:0] = 1111(2)).

Performance can also be affected by the size of tag caches.
In the worst case, we should have a tag cache whose size is
one-eighth of the corresponding data/instruction cache in
order to avoid the additional latency caused by tag cache
misses in case of data/instruction cache hits. However, given
that we have only 1.44% overhead for security tags, small
tag caches do not hurt the performance for most applications
as shown in Figure 7.

We can categorize the behavior of those applications with
variable L2 tag caches into three different classes: L2 data/
instruction cache-limited, L2 tag cache-limited, and insensi-
tive (to any L2 cache sizes). For the first class of applications
such as art, swim, and twolf, their performance is limited by
L2 data/instruction cache. For these applications, smaller
tag caches result in less performance degradation, because

the baseline case gets less additional data/instruction cache
space. The second class of applications such as ammp, parser,
and vortex, are sensitive to the size of L2 tag cache. We
can easily identify them as the three applications which go
through the largest amount of bandwidth pollution by tag
accesses as shown in Table 6. In this class, a larger L2 tag
cache leads to better overall performance, because the tag
cache is a performance bottleneck. The third class of ap-
plications such as crafty, eon, equake, and so on, are not
sensitive to either L2 data/instruction cache size or L2 tag
cache size, so that their performance does not fluctuate for
variable L2 cache sizes.

7. RELATED WORK
There have been a number of software and hardware ap-

proaches to provide automatic detection and prevention of
buffer overflow and format string attacks. We briefly sum-
marize some successful ones below, and compare them with
our approach. In summary, our proposal provides protection
against all known types of attacks without causing consid-
erable overheads or requiring re-compilation.

7.1 Safe Languages and Static Checks
Safe languages such as Java, and safe dialects of C such

as CCured [14] and Cyclone [9] can eliminate most soft-
ware vulnerabilities using strong type systems and run-time
checks. However, programs must be completely rewritten in
a safe language or ported to safe C in order to take advan-
tage of the safe languages. Moreover, the safe languages are
often less flexible and result in slower code compared to C.

Various static analysis techniques are proposed to detect
potential buffer overflows [7] or format string vulnerabili-
ties [21]. While these techniques can detect many errors

at compile time, they all suffer from two weaknesses; they
often cannot detect errors due to the lack of run-time infor-
mation, and they tend to generate considerable false errors
that need to be inspected by programmers. Run-time mech-
anisms are still required to protect undetected errors even
after the programs are inspected by static analysis tools.

7.2 Dynamic Checks in Software
Many compiler patches are developed to automatically

generate binaries with dynamic checks that can detect and
stop malicious attacks at run-time. Early compiler patches
such as StackGuard [5] and StackShield [23] checked a return
address before using it in order to prevent stack smashing
attacks. While these techniques are effective against stack
smashing with near-zero performance overhead, they only
prevent one specific attack.

PointGuard [4] is a more recent proposal to protect all
pointers by encrypting them in memory and decrypting them
when the pointers are read into registers. While PointGuard
can prevent a larger class of attacks, the performance over-
head can be high causing about 20% slowdown for openSSL.

Bound checking provides perfect protection against buffer
overflows in instrumented code because all out-of-bound ac-
cesses are detected. Unfortunately, the performance over-
head of this perfect protection while preserving code com-
patibility is prohibitively high; checking all buffers incurs 10-
30x slowdown in the Jones & Kelly scheme [10], and checking
only string buffer incurs up to 2.3x slowdown [18].

On top of considerable performance overhead, compiler
patches have the following weaknesses. First, they need re-
compilation which requires access to source code. Therefore,
they cannot protect libraries without source codes. Also,
some techniques such as PointGuard require users to anno-
tate the source program for function calls to uninstrumented
code.

Program shepherding [11] monitors control flow transfers
during program execution and enforces a security policy.
Our scheme also restricts control transfers based on their
target addresses at run-time. However, there are significant
differences between our approach and program shepherding.
First, program shepherding is implemented based on a dy-
namic optimization infrastructure, which is an additional
software layer between a processor and an application. As
a result, program shepherding can incur considerable over-
heads. The space overhead is reported to be 16.2% on av-
erage and 94.6% in the worst case. Shepherding can also
cause considerable performance slowdown: 10-30% on aver-
age, and 1.7x-7.6x in the worst cases.

The advantage of having a software layer rather than a
processor itself checking a security policy is that the poli-
cies can be more complex. However, a software layer with-
out architectural support cannot determine a source of data
since it requires intervention on every operation. As a re-
sult, the existing program shepherding schemes only allow
code that is originally loaded, which prevents legitimate use
of dynamic code. If a complex security policy is desired, our
dynamic information flow tracking mechanism can provide
sources of data that can be used by a software layer such as
program shepherding.

7.3 Library and OS Patches
Library patches such as FormatGuard [3] and Libsafe [1]

replaces vulnerable C library functions with safe implemen-

tations. They are only applicable to functions that use the
standard library functions directly. Also, FormatGuard re-
quires re-compilation.

Kernel patches enforcing non-executable stacks [6] and
data pages [17] have been proposed. AMD and Intel also
recently announced their plans to have architectural sup-
port for non-executable data pages. However, code such
as execve() is often already in victim program’s memory
space as a library function. Therefore, attacks may simply
bypass these protections by corrupting a program pointer to
point to existing code. Moreover, non-executable memory
sections can also prevent legitimate uses of dynamically gen-
erated code. Our approach detects the pointer corruption
no matter where the pointer points to.

7.4 Hardware Protection Schemes
Recent works have proposed hardware mechanisms to pre-

vent stack smashing attacks [26, 13]. In these approaches, a
processor stores a return address in a separate return address
stack (RAS) and checks the value in the stack on a return.
This approach only works for very specific types of stack
smashing attacks that modify return addresses whereas our
mechanism is a general way to prevent a broad range of
attacks.

Mondrian memory protection (MMP) [25] provides fine-
grained memory protection, which allows each word in mem-
ory to have its own permission. MMP can be used to im-
plement non-executable stacks and heaps. It can also detect
writes off the end of an array in the heap. However, MMP
implementations that place inaccessible words before and
after every malloc’ed region incur considerable space and
performance overheads. Even then, MMP cannot prevent
many forms of attacks such as stack buffer overflows and
format string attacks.

Our tagging mechanism is similar to the ones used for
hardware information flow control [19]. The goal of the in-
formation flow control is to protect private data by restrict-
ing where that private data can flow into. In our case, the
goal is to track a piece of information so as to restrict its use,
rather than restricting its flow as in [19]. Although the idea
of tagging and updating the tag on an operation is not new,
the actual dependencies we are concerned with are different,
and therefore our implementation is different.

8. CONCLUSION AND FUTURE WORK
The paper presented a hardware mechanism to track dy-

namic information flow and applied this mechanism to pre-
vent malicious software attacks. In our scheme, the operat-
ing system identifies spurious input channels, and a proces-
sor tracks the spurious information flow from those channels.
A security policy concerning the use of the spurious data
is enforced by the processor. Experimental results demon-
strate that this approach is effective in automatic detection
and protection of security attacks, and very efficient in terms
of space and performance overheads.

In this paper, we have only focused on attacks that try
to take total control of a vulnerable program. However, our
technique to identify spurious information flows can be used
to defeat other types of attacks as well, and there are many
other possible security policies to explore. For example, we
can disallow reading or writing a security-sensitive memory
segment based on spurious values, which provides additional
privacy and integrity.

Currently, our main weakness arises from the fact that
we use lenient tracking rule for pointer additions. Ideally,
automatically detecting a bound-check, rather than pointer
additions, and sanitizing the value after the bound-check will
provide the security without incurring unnecessary traps.
Either binary analysis or compiler extensions can identify
bound checking operations. To indicate bound checking,
the SETT instruction can be inserted to explicitly clear the
security tag, or instructions can be annotated with a control
bit that overrides the default tag propagation rules.

Our protection scheme is completely transparent to appli-
cations. However, exposing our mechanisms to the applica-
tion layer can enable even stronger security guarantee. Be-
cause compilers and application programmers know exactly
what the intended uses of I/O values are, they can provide
the best security policy. We plan to investigate the possible
use of a compiler technique with programmer annotation to
enhance the security of our scheme.

Dynamic information tracking also has interesting appli-
cations for debugging. For example, programs can use our
mechanisms to detect the illegal uses of uninitialized values
as pointer or branch conditions by using the tags to indi-
cate whether the value is initialized or not. In general, the
debuggers can monitor how certain values get used in the
program with very low overhead.

9. REFERENCES
[1] A. Baratloo, T. Tsai, and N. Singh. Transparent

run-time defense against stack smashing attacks. In
Proceedings of the USENIX Annual Technical
Conference, 2000.

[2] D. Burger and T. M. Austin. The SimpleScalar Tool
Set, Version 2.0. Technical report, University of
Wisconsin-Madison Computer Science Department,
1997.

[3] C. Cowan, M. Barringer, S. Beattie, and
G. Kroah-Hartman. FormatGuard: Automatic
protection from printf format string vulnerabilities,
2001. In 10th USENIX Security Symposium,
Washington, D.C., August 2001.

[4] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
PointGuard: Protecting pointers from buffer overflow
vulnerabilities. In Proceedings of the 12th USENIX
Security Symposium, 2003.

[5] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, Q. Zhang, and
H. Hinton. StackGuard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In Proc. 7th
USENIX Security Symposium, pages 63–78, San
Antonio, Texas, Jan. 1998.

[6] S. Designer. Non-executable user stack.
http://www.penwall.com/linux/.

[7] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and
D. Vitek. Buffer overrun detection using linear
programming and static analysis. In Proceedings of the
10th ACM Conference on Computer and
Communications Security, 2003.

[8] J. L. Henning. SPEC CPU2000: Measuring CPU
performance in the new millennium. IEEE Computer,
July 2000.

[9] T. Jim, G. Morrisett, D. Grossman, M. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe dialect of c.

In Proceedings of the USENIX Annual Technical
Conference, 2002.

[10] R. Jones and P. Kelly. Backwards-compatible bounds
checking for arrays and pointers in C programs. In
Proceedings of the 3rd International Workshop on
Automatic Debugging, 1997.

[11] V. Kiriansky, D. Bruening, and S. Amarasinghe.
Secure execution via program shepherding. In Proc.
11th USENIX Security Symposium, San Francisco,
California, Aug. 2002.

[12] K. Lawton, B. Denney, N. D. Guarneri, V. Ruppert,
and C. Bothamy. Bochs user manual.
http://bochs.sourceforge.net/.

[13] R. B. Lee, D. K. Karig, J. P. McGregor, and Z. Shi.
Enlisting hardware architecture to thwart malicious
code injection. In Proceedings of the 2003
International Conference on Security in Pervasive
Computing, 2003.

[14] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In Proceedings of
the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2002.

[15] T. Newsham. Format string attacks. Guardent, Inc.,
September 2000.
http://www.securityfocus.com/guest/3342.

[16] A. One. Smashing the stack for fun and profit. Phrack,
7(49), Nov. 1996.

[17] PaX Team. Non executable data pages.
http://pageexec.virtualave.net/verbpageexec.txt .

[18] O. Ruwase and M. S. Lam. A practical dynamic buffer
overflow detector. In Proceedings of the 11th Annual
Network and Distributed System Security Symposium,
2004.

[19] H. J. Saal and I. Gat. A hardware architecture for
controlling information flow. In Proceedings of the 5th
Annual Symposium on Computer Architecture, 1978.

[20] Scut. Exploiting format string vulnerabilities. TESO
Security Group, September 2001.
http://www.team-teso.net/articles/verbformatstring .

[21] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner.
Automated detection of format-string vulnerabilities
using type qualifiers. In Proceedings of the 10th

USENIX Security Symposium, 2001.

[22] P. Shivakumar and N. J. Jouppi. CACTI 3.0: An
integrated cache timing, power, and area model.
Technical report, WRL Research Report, Feb. 2001.

[23] Vendicator. Stackshield: A “stack smashing”
technique protection tool for linux.
http://www.angelfire.com/sk/stackshield/.

[24] J. Wilander and M. Kamkar. A comparison of publicly
available tools for dynamic buffer overflow prevention.
In Proceedings of the 10th Annual Network and
Distributed System Security Symposium, 2003.

[25] E. Witchel, J. Cates, and K. Asanovic. Mondrian
memory protection. In Proceedings of the 10th

International Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 304–316, 2002.

[26] J. Xu, Z. Kalbarczjk, S. Patel, and R. K. Iyer.
Architecture support for defending against buffer
overflow attacks. In Proceedings of the 2nd Workshop
on Evaluating and Architecting System dependability
(EASY), 2002.

