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Abstract admissions [19], sorority and fraternity rush [14], and assign-

Many centralized two-sided markets form a matching between pateNt of graduating rabbis to their first congregation [3]. Since
ticipants by running a stable marriage algorithm. It is a well-knowROSt applications of the stable marriage algorithm involve the
fact that no matching mechanism based on a stable marriage a[bzy_ticipation of independent agents, it is natural to investigate
rithm can guarantee truthfulness as a dominant strategy for pafieW We should expect these agents to behave. In particular,
ipants. However, as we will show in this paper, in a probabilistie Would like to know whether agents can benefit by being
setting where the preference lists of one side of the market are célighonest about their preference lists. Ideally, in economic
posed of only a constant (independent of the the size of the mar&itings such as job markets, we would like to design mech-
number of entries, each drawn from arbitrary distribution, the anisms in which truth-telling is dominant strategyi.e., it is
number of participants that have more than one stable partner is JArthe best interest of each individual agent to tell the truth,
ishingly small. This proves (and generalizes) a conjecture of R&R Matter what other agents do. We call such a mechanism a
and Peranson [23]. As a corollary of this result, we show that, wii¥thful mechanismTruthful mechanisms have received sig-
high probability, the truthful strategy is the best response for a givaificant attention in the computer science community (see, for
player when the other players are truthful. We also analyze equif@mple, [1, 5, 15]). Unfortunately, as shown by Roth [20],
fia of the deferred acceptance stable marriage game. We show {Rgf€ is no mechanism for the stable marriage problem in
the game with complete information has an equilibrium in which'§hich truth-telling is a dominant strategy for both men and
(1—o(1)) fraction of the strategies are truthful in expectation. In tH¥0mMen. See the book by Roth and Sotomayor [24] for a dis-
more realistic setting of a game of incomplete information, we wission about this problem and other problems related to the
show that the set of truthful strategies forrfila- o(1))-approximate €conomic aspects of the stable marriage problem.
Bayesian-Nash equilibrium. Our results have implications in many Nonetheless, stable matching algorithms have had spec-
practical settings and were inspired by the work of Roth and Perf@cular success in practical applications. One particular job

son [23] on the National Residency Matching Program. market — the medical residency market — has been using a
centralized stable marriage market system called the National
1 Introduction Residency Matching Program (NRMP) since the 1950s [21].

Suppose all the eligible bachelors and bachelorettes in a tolfnthis day, most medical residences are formed through an
confide in the town’s matchmaker their ideal spouses. E4#pdated version of this centralized market system redesigned
man submits an ordered preference list of the women IRel998 by Roth [22]. It seems surprising that an algorithm
would like to marry. Similarly, each woman submits ahke the one used by the NRMP which provably admits strate-
ordered preference list of the men she would like to mar8j¢ behavior can be so successful. Roth and Peranson [23]
The matchmaker must arrange marriages such that no orf@0i&d that, in practice, very few students and hospitals could
tempted to ask for a divorce. In particular, the matchmaKgive benefited by submitting false preferences. For exam-
must be sure that there is no pair of young lovers who prefdg, in 1996, out of 24,749 applicants, just 21 could have
each other to their assigned spouses. Such a set of marri&ffé§ted their match by submitting false preferences (assum-
is calledstable and finding a set of stable marriages is knowR9: Of course, that no one lied in 1996). Roth and Peran-
as thestable marriage problerGale and Shapley [6] showed®©n [23] conje_ctured that_ the main reason for this peculiarity
that the stable marriage problem always has a solution &hdhe sheer size of the job market. In a small town, every
developed an algorithm to find it. Since the seminal woPR@n knows every woman, but in the medical market, a stu-
of Gale and Shapley, there has been a significant amoun@@Rt can not possibly interview at every hospital. In practice,
work on the mathematical structure of stable marriages 48 !ength of applicant preference lists is quite small, about
related algorithmic questions. See, for example, the bookjc)'§/'_Wr"Ie the number of positions is large, about 20,000. Ex-
Knuth [10], the book by Gusfield and Irving [8], or the booR€rimentally, Roth and Peranson [23] showed that in a model
by Roth and Sotomayoror [24]. where random preference lists of limited length are generated
The stable marriage problem has many promising apﬁﬁ’-r participants, the number of participants who have more
cations in two-sided markets such as job markets [19], colld§@n one stable partner (and therefore the number of those
who can benefit by lying) is small. They conjectured that in
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zero as the size of the market tends to infinity. considerable amount of work on this area, mostly assuming
In this paper, we prove a statement that proves acmimpletepreference lists for participants, and none motivated
generalizes this conjecture. More precisely, we prove thg the economic aspects of the problem. See, for example,
following: Assume there ar@e men andn women in the [11, 12, 18, 17]. We will use some of the techniques devel-
town, and each woman has arbitrary ordering of all men as oped in these papers in our analysis.
her preference list. Each man independently picks a random Mechanisms that are truthful in a randomized sense (i.e.,
preference list of a constant (i.e., independent)afumber of in expectation, or with high probability) have been a subject
women, each according to anbitrary distributionZ. These of research in theoretical computer science [1, 2]. These
are the true preference lists. We show that in this setting thechanisms seeks to encourage truthfulness by introducing
expected number of people with more than one stable spors®lomization into the mechanism. Our results are of a
is vanishingly small. This result has a number of interestinifferent flavor. We show that one can conclude statements
economic implications. We can interpret the preference lisegarding truthfulness by introducing randomization into the
together with a stable marriage algorithm as a gamen players utility functions. To the best of our knowledge, our
which everybody submits a preference list (not necessarndgult is the first result of this type.
their true preference list) to the algorithm and receives a Structure of the paper. The rest of the paper is orga-
spouse. The goal for each player is to receive the best spauiged as follows. In Section 2, we define the stable marriage
possible according to their true preference list. First, we shpwoblem and discuss the relevant known results from the lit-
that, with probabilityl — o(1) (asn approaches infinity), erature. In Section 3, we formalize our probabilistic setting
in any stable marriage mechanism, the truthful strategyaisd summarize our results. In Section 4, we prove our main
the best response for a given player when the other playechnical result, the experimental conjecture of Roth and Per-
are truthful. We also show that when a deferred acceptamaceson [23]. In Section 6, we strengthen our technical result
mechanism is used, there is an equilibrium of this gamefor the special case of uniformly distributed preference lists.
which a majority of the players are truthful. Finally, we provEinally, in Section 7, we conclude with interesting open ques-
that in the more realistic setting of a game of incomplet®ns concerning stable marriage algorithms and two-sided
information (where each player only knows the distributiamarkets.
of the preference lists), the set of truthful strategies in the
game induced by the women-proposing mechanism forn2 a Stable marriage preliminaries
(1 + o(1))-approximate Bayesian-Nash equilibrium. It i€onsider a community consisting of a tof n women and
important to note that our results hold fany distribution a set.# of n men. Each person in this community has a
2 of women. For the special case of uniform distributionmeference listwhich is a strictly ordered list of a subset of
(which includes the conjecture of Roth and Peranson), tie members of the opposite sexrfatchingis a mapping:
o(1) in the above bounds is rought§ /n, and thus the boundsfrom .# U # to.# U# in such a way that for every € .#,
converge quite quickly. wu(x) € # U{x} and for everye € #, p(x) € A4 U {z},
We use the following technique for our proof: Firstand also for every,y € .# U %', x = p(y) if and only if
we design an algorithm, based on an algorithm of Knuthsgt= u(x). If for somem € .# andw € ¥, p(m) = w,
al. [11, 12], that for a given woman checks whether she has say thatw is the wife of m andm is the husband ofv
more than one stable husbandimerun of proposals. Usingin y; or, if for somexz € .# U %, u(xz) = z, we say that
this algorithm, we prove a relationship between the probabilremains single in.. A pairm € .4, w € # is called a
ity that a given woman has more than one stable husband blutking pairfor a matchingu, if m prefersw to u(m), and
the number of single women who are more popular than sheprefersm to u(w). A matching with no blocking pair is
This relationship, essential to our main result, seems difficodilled astable matching If a manm and a womanw are a
to derive directly, without going through the algorithm. Givenouple insomestable matching:, we say thatn is astable
this relationship, we are able to derive our result by compuitaisbandof w, andw is astable wifeof m. Naturally, each
ing bounds on the expectation and variance of the numbepefson might have more than one stable partner. In the stable
single popular women. marriage problem, the objective is to find a stable matching
Related work. This paper is motivated by experimengiven the preference lists of all men and women.
tal results and a conjecture in the paper by Roth and Per- The stable marriage problem was first introduced and
anson [23]. Sethuraman et al. [25, 26] have studied thieidied by Gale and Shapley [6] in 1962. They proved that a
stable matching game when participants @guiredto an- stable matching always exists, and a simple algorithm called
nounce complete preference lists, and have given an optith@deferred acceptance procedwran find such a matching.
cheating algorithm and several experimental results regaftlis procedure iteratively selects an unmarried maand
ing the chances that an agent can benefit by lying in tltieates a proposal from him to the next woman on his list.
game. One can also view our results as an analysis of $tahis woman prefersn to her current assignment, then she
ble matching with random preferences. There has beeteatatively acceptsn’s proposal, and rejects the man she



was previously matched to (if any); otherwise, she rejedists of £ women, and the preference list of each woman is
the proposal ofm. The algorithm ends when every mamicked independently and uniformly at random from the set
either finds a wife that accepts him, or gets rejected by aflall orderings of all men. We are concerned about bounding
the women on his list, in which case he remains single. Thige expected number of people who might be tempted to lie to
algorithm is sometimes called tmen-proposing algorithm the mechanism about their preferences when the other play-
Similarly, one can define thezomen-proposing algorithm ers are truthful. As we will show, only people who have more
Gale and Shapley [6] proved the following. than one stable partner might be able to influence their final

) _ ) match by altering their preference lists. Therefore, we focus
THEOREMA. The men-proposing algorithm always finds g, pounding the expected number of women with more than

stable matching.. Furthermore, this stable matchingnsen- e stable husband in this model. Notice that this number
optimal i.e., for every mamn and every stable wife) of g equal to the expected number of men with more than one
other thanu(m), m prefersp(m) to w. Atthe same timey  giaple wife, since the number of single and uniquely matched
is the worst possible stable matching for women, i.e., for agen must equal the number of single and uniquely matched

womanw and any stable husband of w other thanu(w), \yomen. Roth and Peranson [23] conjectured the following.
w prefersm to p(w).

CONJECTUREL. Let ¢ix(n) denote the expected number of
The men-optimal stable matching is unique, and so th@men who have more than one stable husband in the above
above theorem implies that the order of proposals does naidel. Then for all fixed,

affect the output of the men-proposing algorithm.
lim o (n)

THEOREM B. The men-proposing algorithm always finds the n—oo  m
same stable matching, independent of the order in which #ve prove this conjecture in this paper. In fact, we will prove
proposals are made. the following stronger result. Le® be anarbitrary fixed

] ] distribution over the set of women such that the probability
We will also need the following theorem of Roth [21}¢ a5ch woman inZ is nonzerd: Intuitively, having a

and McVitie and Wilson [13], which says that the choice qii}?h probability in 2 indicates that a woman is popular.

the stable matching algorithm does not affect the number@fe preference lists are constructed by picking each entry
people who remain unmarried at the end of the algorithm. ¢ the Jist according toZ, and removing the repetitions.

hQ{Iore precisely, we construct a random ligt, ..., [;) of k
women as follows. At step, repeatedly select womein
independently according t@ until w ¢ {l4,...,l;—1} and

A stable matching mechanism is an algorithm that elicitsen set; = w. Let 2" be the distribution over lists of size

a preference list from each participant, and outputs a matéhproduced by this proce$sNotice that if 7 is the uniform
ing that is stable with respect to the announced preferendglistribution, 2" is nothing but the uniform distribution over

We say that truthfulness isdominant strategyor a partic- the set of all lists of sizé of women. Therefore, the model
ipanta if, no matter what strategy other participants use,of Roth and Peranson [23] is a special case of our model. We

cannot benefit (i.e., improve his or her match according a0 generalize their result in another respect: we assume that

his or her true preferences) by submitting a list other tha®men havearbitrary complete preference lists, as opposed
his or her true preference list. Ideally, we would like to déo the assumption in [23] that they have random complete
sign mechanisms in which truthfulness is a dominant stratggjgference lists. Our main result is the following theorem.

for all participants. However, Roth [20] proved that there i§,,c e\ 3.1, Consider a situation where each woman has
no such mechanism for the stable marriage problem. On e, yitrary complete preference list, and each man has a

positive side, the following theorem (due to Roth [20] anGheerence list chosen independently at random according to
Dubins and Freedman [4]) shows that in deferred accepta ' Then. for all fixed:

mechanisms, truthfulness is a dominant strategy for half the
population.

=0.

THEOREMC. In all stable matchings, the set of people w
remain single is the same.

lim ck(n)
n—oo n
THEOREMD. In the men-optimal stable marriage mecha-  gyen though we state and prove our results assuming that
nism, truth-telling is a dominant strategy for men. Similarly| hreference lists are of size exactlyit is straightforward
in the women-optimal mechanism, truth-telling is a dominagy see that our proof carries over to the case where preference

strategy for women. lists are of size at most. For uniform distributions, we can
prove a strong result on the rate of convergence of this limit.

=0.

3 Our results
Consider a situation Whe,re there aremen -andn Women' TThis assumption is needed to make sure that the problem is well-defined.
Assume the preference list of each man is chosen indeperesee the conclusion for a discussion of why this is the most general setting

dently and uniformly at random from the set of all orderafwhich we can hope to get a positive result.
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THEOREM 3.2. Consider a situation where each woman hgslayer’s goal is to alter his/her preference list and announce it
an arbitrary complete preference list, and each man hasta the mechanism in a way that tke&pectedank of his/her
preference list ofc women chosen uniformly and indeperassigned spouse is as high as possible. A strategy for a player
dently. Then, the expected number of women who have ni@eefunction that outputs an announced preference list for any
than one stable husband is boundedby' + k2, a constant input preference list. Hence the truthful strategy is the identity
that only depends oh (and not onn). function. We wish to analyze the Bayesian-Nash equilibria in
this incomplete information game. Al + ¢)-approximate
There are a number of interesting economic implicatiopgyesian-Nash equilibrium for this game is a collection of
of this theorem. Our first result states that, with hlgh prObgfrategieS, one for each p|ayer, such that no Sing|e p|ayer can
bility, a given player’s best strategy is truth-telling when thenprove his/her situation by more than a multiplicative factor
other players are truthful. Thus, a dishonest player who kg- 1 - by deviating from his/her equilibrium strategy.
lieves in the honesty of the other players has an economic
incentive to be honest. This is similar (but not identical) t@oroLLARY 3.3. Consider the game described above with
the notion of ex post Nash equilibria. the women-optimal mechanism. Then for every 0, if n

) ) ) is large enough, the above game halat ¢)-approximate
COROLLARY 3.1. Fix any stable matching mechanism, anéash equilibrium in which everybody is truthful.
consider an instance with women with arbitrary complete

preference lists ana. men with preference lists drawn from
2% (as in Theorem 3.1). Then, for any given persgrthe
probability (over the men’s preference lists) that forthe , Proof of Theorem 3.1
truthful strategy is not the best response in a situation wh
the other players are truthful is(1) (at mostO(e* /n) for
uniform distributions).

The proofs of these corollaries are presented in Section 5.

8IF this section, we will prove our main technical result,
Theorem 3.1. The proof consists of three main components.
First, we present an algorithm that, given the preference lists,

The previous corollary states that a player can ben&éﬁunts the number of stable husbands of a given woman

by lying only with a vanishingly small probability when the( ection 4.1). We WOUId I|k_e to _analyze the probability
other players are truthful. Now we turn to the situatiowat_ thg output O.f this -algorithm IS more than one, over
in which the other players are not necessarily truthful, bﬁtd|str|_put|on of INputs. In Section 42 we bound this
are playing an equilibrium strategy of the game induced B! bability assuming a lemma concerning the number of

the stable matching mechanism. There are two waysS Bg[es in a stable marriage. This 'Iemma is proved in
interpret our stable marriage setting as a game. One tion 4.3 by bounding the expectation of the number of

is to consider it as a game of complete information: L&} gles and proving that it is concentrated around its expected

P,, and P,, denote the preference lists of men and WomeYﬁlue using the Chebyschev inequality.
Knowing these preferences, each player chooses a strate

from the strategy space of all possible preference lists. ¢ to check wheth " h
corresponding preference lists are submitted to a fixed st St way 10 check whether a womagrnas more than one
jel le husband or not is to compute the men-optimal and the

marriage algorithm and a matching is returned. A pIayeF : . : .
goal is to choose the strategy that gets him/her a spowsoénen—optlmal stable matchings using the algorithm of Gale

as high on his/her preference list as possible. &g}, p, and Shapley (S.ee Theorem A) and_ then check ffas the i
i fsame husband in both these matchings. However, analyzing

denote this game. Arquilibrium of a game is a set o bability thai h th table husband
strategies, one for each player, such that no single plaj & probabiiity a has more 'an one stable husband us-
since we will not be able to

) his/her situation by deviating f hi hdhg this algorithm is not easy,
gzﬂiIlilg]rpi)l:(r)r:itre:fegf/r[lsé]ua 'on by deviating rom his or use the principle of deferred decisions (as described later in

Section 4.2). In this section we present a different algorithm

COROLLARY 3.2. Assume the preference lighs, of women that outputs all stable husbands of a given woman in an ar-
are arbitrary, and the preference list8,, of men are drawn bitrary stable marriage problem in one run of a men-propose
from 2% (as in Theorem 3.1). The gan@p,, p, induced algorithm. This algorithm is a generalization of the algorithm

by these preferences and the men-proposing (or wom@hKnuth et al. [11, 12] to the case of incomplete preference
proposing) mechanism has an equilibrium in which, in elists.

pectation, a1 — o(1)) fraction of strategies are truthful. Suppose we want the stable husbands of woman
Initially all the people are unmarried (the matching is empty).

In the above setting, we assume that each player knolirse algorithm closely follows the man-proposing algorithm
the preference lists of the other players when he/she is selémt-finding a stable matching. Howevess objective is
ing a strategy, i.e., we have a game of complete informatido.explore all her options, therefore, every time the men-
A more realistic assumption is that each player only knowsoposing algorithm finds a stable marriagegivorces her
the distribution of preference lists of the other players. Eabhsband and lets the algorithm continue.

gy Counting the number of stable husbandsThe sim-



ALGORITHM 4.1. g preferredm; 1 tom;. Thusm,;, is ong’s truncated prefer-
o ) ) . ence list, and so the tentative matchings of the two algorithms
1. In|t|aI|zat|on:_ Run the man-proposing glgorlthm t.o flngre the same. Furthermore, ., is the first proposaj has ac-
the men-optimal stable matching. 4fis unmarried, conteq in the man-proposing algorithm. All other women who
output(). get married in the set of stable matchings already have hus-

2. Selection of the suitor: Output the husbandf g as one bands since_they haye husban_ds in Algorithm 4.1, and so the
of her stable husbands. Remove the gair g) from the man-proposing a]gonthm termlnatgs with the current match-
matching (womam and manm are now unmarried) andN9- T_hus,ml-ﬂ is the worst possible stable husband for
seth = m. (the variable is the current proposing man.)Vhich is better tham;.

3. Selection of the courted: ¥fhas already proposed to ali4.2  Analyzing the expectationWe are interested in the ex-
the women on his preference list, terminate. Otherwigsscted number of women with more than one stable husband,
let w be his favorite woman among those he hasrt, equivalently, the probability that a fixed woma@has more
proposed to yet. than one stable husband. We can compute this probability by

analyzing the output of Algorithm 4.1 on male preference lists

drawn from the distributior#?*. We simulate this experiment

(@) If w has received a proposal from a man sising theprinciple of deferred decisionsa man only needs

likes better tharb, she rejectd and the algorithm o determine hig'th favorite woman when he makes hith

continues at the third step. proposal. If we make these deferred decisions independently
according taz, then the distribution of the output of this new
algorithm over its coin flips will be exactly the same as the

. . . distribution of the output of the old algorithm over its input.

preV|o_ust martied, her previous f_lusband beco_ Ris motivates the definition of the following algorithm. At

the suitorb and the .algonthm con.tlnues at'the thir ny point in this algorithm, the variablé¢; denotes the set of
step._lfw was previously unmarried, terminate th't:‘i‘\/omen that man has proposed to so far. Men and women
algorithm. are indexed by numbers between 1 and

4. The courtship:

(b) If not, w acceptsh. If w = g, the algorithm
continues at the second step. Otherwisey ifvas

Notice that in step 4(a) of the algorithm, compares ALGORITHM 4.2.
to the best man who has proposed to her so far, and not to the
man she is currently matched to. Therefore, afteivorces 1. Initialization: Letl = 1, V1 < i < n, 4; = 0,
one of her stable husbands, she has a higher standard, and willz, = 0. (The matching is empty and no men have made
not accept any man worse than the man she has divorced. For any proposals).
w # g, step 4(a) is equivalent to comparibgp the manw is
matched to at the moment.

We must prove that this algorithm outputs all stable  (q) If; < n, letd be thel'th man and increaskby one.
husbands ofy. In fact, we will prove something slightly
stronger.

2. Selection of the suitor:

(b) Otherwise, we have found a stable matching. If
g is single in this stable matching, then terminate.

THEOREM4.1. Algorithm 4.1 outputs all stable husbands of Otherwise, increment,, remove the paifm, g)

g in order of her preference from her worst stable husband to from the matching (mann and womang who
her best stable husband. were previously married to each other are now

unmarried) and sét= m.
Proof. We prove the theorem by induction. As the man-
proposing algorithm returns the worst possible matching fo
the women (by Theorem A), the first outpuyis worst stable (a) If |A,| > k, then do the following:
husband. Now suppose tlitéh output isg’s i'th worst stable
husbandn;. Consider running the man-proposing algorithm
with g's preference list truncated just before man As the ) o
order of proposals do not affect the outcome (Theorem B), let  (P) Repeatedly seleat randomly according to distri-
the order of proposals be the same as Algorithm 4.1. Then, bution 7 from the set of all women untib ¢ A,.
up until Algorithm 4.1 outputs the + 1'st outputim, 1, its Add w to Ap.
tentative matching during thgth proposal is the same as the , |1 4 courtship:
tentative matching of the man-proposing algorithm during the

?’- Selection of the courted:

— If 4 > 1, then terminate. Otherwise, return
to step two.

4'th proposal (except, possibly, womanis matched in Al- (@) If w has received a proposal from a man she
gorithm 4.1 and unmatched in the man-proposing algorithm). likes better tharb, she reject$ and the algorithm
Now sincem,;; was accepted, the fourth step guarantees that continues at step 3.
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(b) If not, w acceptsh. If w was previously married, we pick a woman randomly according 0, the probability
her previous husband becomes the suitaand thatw is picked is at least as large as the probability #hat
the algorithm continues at the third step. «f is picked. Therefore, the probability thatappears before all
was previously single and, = 0, the algorithm elements ofS,,(¢) in a sequence whose elements are picked
continues at the second step.ulfwas previously according taZ is at most the probability the appears firstin
single andz, > 1, the algorithm continues at thea random permutation on the element§@f U .S, (g), which

second step ifv = g and terminates ifv # g. is1/(X.(g) +1). Thus, for everyu,
Before giving a proof of Theorem 3.1, we introduce a feyy ¢ Prlz, > 1|4 <
notations. For every womainlet p; denote the probability of I T Xu(g)+1

i in the distribution. We say that a womaiis more popular

than another womay, if p; > p;. Assume, without loss of Thus,
generality, that women are ordered in the decreasing order of Prlz, > 1] = E, {Pr[fﬂg > 1| M”
opularity, i.e.p; > py > - > p,. 1
pop Y, l.e.p1 > py > - 2>p - 4.2) < Eu[ }
Proof of Theorem 3.1. Recall thatc(n) is the ex- Xu(g9) +1
pected number of women with more than one stable hus- ] ]
band. We show that for every > 0, if n is large We complete the proof assuming the following lemma,
enough, therey,(n)/n < e. By linearity of expectation, Whose proofis given in Section 4.3.
cr(n) = ey Prlg has more than one stable husbiand

Fix a womang € #/. We want to bound the probability thal-EMMA 4.1. For everyg > 4k,
E[1/(Xu(9) +1)] <

g has more than one stable husband. By Theorem 4.1 and the

principle of deferred decisions, this is the same as bounding

the probability that the random variablg in Algorithm 4.2

is more than one. Thus, using Equation (4.2) and Lemma 4.14o¥
We divide the execution of Algorithm 4.2 into twoandPr[x, > 1] < 1 for smallerg’s, we obtain

phases: the first phase is from the beginning of the algorithm

12¢8nk/9

16nk
Tn(n)’

until it finds the first stable matching, and the second phase is 16nk 12€8nk/g
from that point until the algorithm terminates. Assume at the cr(n) < n(n + Z
end of the first phase, Algorithm 4.2 has found the first stable 9=
matchingu. We bound the probability that, > 1 condi- _ 16nk N Z”: 31n(n)eh“(”)/2
tioned on the event that is the matching found at the end of = In(n) — Ank
the first phase (we denote this By[z, > 1 | ), and then 16nk I=Ta(n)
take the expectation of this bound oyer < + 3v/nln(n)/(4k) = o(n),
Let the setS,(g) denote the set of women more popular In(n)
than g that remain smgle_ n _the s_table matching and and so for every constaht the fraction of women with more
Xu(g) = 1Su(g)l. If gis single inp, thenz, = 0 a0 one stable husbangl,(n)/n, goes to zero as tends to
and thereforePrjz, > 1 | pu] = 0. Otherwise,z, >

infinit O
1 if only if woman g accepts another proposal before the Y

algorithm terminates. We bound this by the probability that For the case of uniform distributions, it is possible to

g receives another proposal before the end of the algorithmodify the above proof to get a much tighter boundxgé®*)

The algorithm may terminate in several ways, but we witih the expected number of women with more than one stable

concentrate on the termination condition in step 4(b), i.ysband. We derive an even tighter bound in this case, as

that some man proposes to a previously single woman. Thatated in Theorem 3.2, using a slightly different technique.

we are interested in the probability that in the second phadsss bound is proved in Section 6.

of Algorithm 4.2 some man proposes to a previously single

woman before any man proposesgjto 4.3 Number of singlesin this section we prove
Note that at the end of the first phase of the algorithingemma 4.1. This completes the proof of Theorem 3.1.

all A;’s are disjoint fromS),(g), since women have completéNVe start with the following simple fact: the probability that

preference lists. Thus whenever the random oracle in steegromanw remains single is greater than or equal to the

3(b) outputs a woman from seft,(g), the algorithm will probability thatw does not appear on the preference list

advance to step 4(b) and terminate. Thus, the probabilifyany man. More precisely, let,, denote the event that

Prjz, > 1| p is less than or equal to the probability thahe womanw does not appear on the preference list of any

in a sequence whose elements are independently picked froem when these preferences are drawn frgh Let Y,

the distribution?, g appears before any woman H),(¢g). denote the number of women < ¢ for which the event,,

By the definition ofS,,(g), for everyw € S,(g), every time happens. Then we have the following lemma.



LEMMA 4.2. For everyg, we always havel,(g) > Y,.2 Let M be an arbitrarily large constant. The following
process is one way to simulate the selection of one prefer-

Proof. Every womanw < g for which E,, happens is a ence listZ = (Iy,...,1;): Consider the multiseE consisting
woman who is at least as popular gsand will remain of |p;M/| copies of the name of woman Pick a random
unmarried in any stable matching. O permutationr of ©. Let!; be thei'th distinct name inr.

i i It is not hard to see that a&f — oo, the probability of a

We now bound the expectation dff/(Y, + 1) in & giyen list I in this process converges to its probability un-
sequence of two lemmas. In Lemma 4.3 we bound t§g; gistributionz*. ThereforePr[F;] is equal to the limit as
expectation ot Then, in Lemma 4.4 we show the variancg, _, ., of the probability that: distinct names occur be-
of Y, is small and therefore it does not deviate far from i§a ; in . Similarly, if & denotes the multiset obtained by
mean. removing all copies of womayi from ¥, thenPr[F;|F}] is
equal to the limit ag// — oo of the probability that distinct
names occur beforein a random permutation dt’. How-
ever, this is precisely equal to the probability thadlistinct
names other thapoccur before in a random permutation
- f 3. But that certainly implies thdt distinct names (includ-
Eroof. Let@ = Zj:lp ; denote thg FOtal probability of thei?1g 7 ogcur?)etlzgreain 7): anpd zz foiﬁe\(jesryr \?vhe?elsff*sj h(;l:fl
first £ women underZ. The probability that a mam does ens,F; also happens. Therefory[F;|Fj] < Pr[F,). Thus,

not list a womany as h|_5i’th preferenge given that he pick 1[E, A E;] < Pr[E,].Pr|E,], and so the varianc€®(Y,) is
wy, ..., w;—1 as his first — 1 women, is equal to

LEMMA 4.3. For g > 4k, the expected number[X,(g)]

of single women more popular than womanis at least
geo—8nk/g
g .

1- 7;0:11 >1- D . Uz(yg) = E[Yg2] - E[Yg]2
1- Zj:l Puw; 1-Q g
= Y Pr[E]+2 Y  PrE;AE)
Thus the probability thatr does not listw at all is at least i=1 1<i<j<g
(1- 1’3‘&3 )*¥, and so the probability that womanis not listed g
i pu_ynk = Pr[E)* — 2> Pr[E;].Pr[E}]
by any man is at leastl — £45)"". If w > k, there are at i i J
leastw — k& women who are at least as popular@sbut not i=1 Isi<j<g
among thek most popular women. Thereforg,, < iv;f?k. g
By these two inequalities, for evety > 2k we have < Z PrE;] = E[Y,]
=1
PI‘[EU,] > (1 _ 1 k)nk > e—an/(w—k) > e—4nk/w u
w—

Proof of Lemma 4.1. Let ¢ be the probability that, <

Therefore, f 4k, th tation oY, is at least i i
eretore, forevery = 2r, the expectation o, 1s atleas E[Y,]/2. By the Chebyshev inequality and Lemma 4.4,

E[Yg] =

<
IN

Pr[|Y, — ElY] | > ElY,]/2]

< UQ(Yg) < 4
— (B[Yy]/2)2 T E[Yy]

j=2k

>

Y

g

Pr[E,] > Z e 4nk/i
e

2

—8nk/g — ge—8nk/g
9 .

g/
U Therefore, by Lemma 4.2 and the fact tHat(Y, + 1) is

) . always at most one, we have
LEMMA 4.4. The variances?(Y,) of the random variable

Y, is at most its expectatioB[Y,]. . [ 1 } [ 1 }

Proof. We show the event®); are negatively correlated, i.e., Xulg)+1] — Yy+1 1

for everyi andj, Pr[E; A E;] < Pr[E;].Pr[E;]. Let F; be < (1-9 +4q
. J ; J . : E[Y,]/2+1

the event that a given man does not include worhan his -

preference list. By the independence and symmetry of the
preference lists of men, we ha®[FE;] = (Pr[F;])", and
Pr[E; A E;] = (Pr[F; A F}])". Therefore, it is enough towhich together with Lemma 4.3 completes the proof. [J
show that for every andj, Pr[F;|F;] < Pr[F}].

5 Proofs of economic implications
" 3In more mathematical terms, this means that(g) stochastically N this section, we prove the corollaries stated in Section 3.
dominatesyy. The first of these results argues that a dishonest player has
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economic incentives to be honest when other players #ren everybody being truthful is an approximate Bayesian
honest. Nash equilibrium.

Proof of Corollary 3.1.  Fix a person, say a man name@roof of Corollary 3.3.  Since the women-optimal mecha-
Adam and suppose all other players are truthful. Theorem 8idm is used, we know by Theorem D that truthfulness is a
implies that with probability at least — o(1), Adam has at dominant strategy for women. It is enough to show that if
most one stable wife, Eve, with respect to the true prefererdemen and women are truthful, then no man can improve
lists of the players. Suppose all other players are truthfbls match by more than@ + ¢) factor if he uses a dishonest
We claim Adam’s best response is truth-telling. Supposgategy. Fix a man, Charlie. With probability-o(1), prefer-

not. Allow Adam to play his best respongeand let;: be ences are such that Charlie does not have more than one stable
the matching that the stable matching mechanism outpuwiife. In this case, the argument used in the proof of the pre-
Now run the men-optimal algorithm with the same preferengm@us two corollaries shows that Charlie cannot gain by being
lists (i.e.,p for Adam, and true preference lists for othersjishonest about his preferences. With probability), Char-

and let up; be the resulting matching. By Theorem Alie has more than one stable wife, and in that case, he might
Adam must prefer his match ip,, to his match ing. be able to improve his match from someone ranked at most
However, by Theorem D, in the men-proposing algorithrin his list to someone ranked first. Howevgris a constant.
Adam’s dominant strategy is truth-telling and, by assumptiddsing this, it is easy to verify that on average, he can improve
matches him to Eve. Therefore, Adam must prefer Eve his match by at most a factor af+ k2 x o(1) = 1 + o(1).

his match inu,, and thus to his match ip. But Eve is the Thus, everyone being truthful is an approximate equilibrium
woman that Adam would have been matched to in the origimalthis game. O
mechanism if he had been truthful (since it was his unique

stable match), and so his altered stratggyas not his best . . . s
response. o 6 Tighter analysis for the uniform distribution

For the case of uniform distributions, it is possible to derive a

_ The second corollary shows that the ga6ig, ., d&- 1 ,ch tighter bound on the expected number of women with
fined in Section 3 has an equilibrium in which in expectatiQflo e than one stable husband

a(1 - o(1)) fraction of participants are truthful. Recall that in the proof of Theorem 3.1, we bounded the

Proof of Corollary 3.2.  Suppose we are using the merprobability that a fixed womanis single byE,, [1/(X.(g) +
proposing mechanism (the women-proposing situation 1i§, whereX,, (¢) is the number of women at least as popular
analogous). We prove that the following set of strategig§g that are single in matching. In the case of the uniform
forms an equilibrium in the gam@p,, p,: all men announce distribution, for every woman, X,,(g) is equal to the number
their true preferences; all women who have at most one sta@figingles inu.. Therefore, if we define the random variatile
husband (with respect t8,,, P,,) announce their true prefer-as the number of women who remain unmarried in the men-
ences; and all women who have more than one stable husbepiimal stable matching (recall that by Theorem C, the set of
truncate their preference lists just after their optimal staglemarried women is independent of the choice of the stable
husband. We denote the altered preference lists of wonfiearriage algorithm), then we have

by P/,. By Theorem D, men cannot improve their situation
by altering their strategy. Consider a woman, say Alice, and cx(n) < nE [L ]

assume Alice will be assigned to Bob if the players use the X+1

strategies i P, P,,). Itis easy to see that there is a unique Thus, the following lemma shows that if men have
stable matching with respect {@®,,, P,,). Therefore, if we random preference lists of size then the expected number
run the women-optimal mechanism 0R,,, P,,), we get the of women who have more than one stable partner is at most
same outcome as in the men-optimal mechanism. Howevér;! + k2. This completes the proof of Theorem 3.2.

by Theorem D we know that no woman can benefit from alter-

ing her preferences in a women-optimal mechanism. Thus.EMMA 6.1. Let X denote the random variable defined
Alice changes her strategy from the one dictated}yythen above. Then,

she gets a match, say Tom, that according’tais not better fit )

than Bob. However, by the definition &f,, this implies that E [ 1 <€ +k ]

Tom is not better than Bob according to the true preferences X+1-~ n

. ) . M
of Allce_._ T.h's shows that the set of strategi@s,,, ) is 'I(']he proof of the above lemma is based on a connection be-
an equilibrium. By Theorem 3.1, we know that all men an . .
. .~ - tween the stable marriage problem and the classical-
all but at most a(1) fraction of women are truthful in this .
equilibrium pancy problem In the occupancy problemy balls are dis-
q ' tributed amongst: bins. The distribution of the number of

Finally, we prove the third corollary, which says that iballs that end up in each bin has been studied extensively

we model the situation as a game of incomplete informatidrom the perspective of probability theory [9]. We denote the




occupancy problem witln balls andn bins by the(m, n)- Now, we show how the random variabl&s throughX5

occupancy problem. The following lemma establishes thee related. It is easy to see that for any set of men’s prefer-

connection between the number of singles in the stable mamee lists, the number of unmarried women in Experiment 1

riage game and the number of empty bins in the occupangt least the number of women who are not named in Ex-

problem. periment 2. ThereforeX; > X,. Also, it is clear from the
description of Experiments 2 and 3 thét = Xs.

LEMMA 6.2. LetY,, , denote the number of empty bins in  In order to relateX; and X,, we use theprinciple of

the (m,n)-occupancy problem and denote the random negligible perturbations Experiments 4 is essentially the

variable in Lemma 6.1. Then, same as Experiment 3, excepti, we only count women
1 1 k2 who are not named by any man as one of his first 1
E[——]<E[c— ]+~ :
X +1 Yikt1ynm + 1 n choices. LetE denote the event that no man names more

than k£ + 1 women in Experiment 3. We first show that
Pr[E] < k*/n. Fix a man, say Homer. We want to bound the
robability that Homer names at ledst+ 2 women before

he number of different women he has named rea¢hddy

Plé union bound, this probability is at most the sum, over
all pairs {i,5} < {1,...,k + 2} that bothi'th and j'th
eoroposal of Homer are redundant. It is easy to see that for
Ly such pair, this probability is at most{n?. Therefore,

Lemma 6.1: every man chooses a random list of at m bability that H K than 1 |

k different women as his preference list. Then, we r € {:)ro at 'k'fg a2 orr];gr rr;a _T_i mors th R propt?saz

the men-proposing stable marriage algorithm, and let tﬁ]eea prr]:)(l))?ilgilﬁy)(/)?thiz har/)geﬁs foursélt I)éas? (;J:elopnar?ﬂg Iéss
iableX; = X indi h f singl : T .

random variableX; indicates the number of sing egan k2/n. That is, Pr[E] < k2/n. Now, notice that

women he end of this experiment. Noti hat in th .
omen at the end of this experiment. Notice that té the definition of X5 and X4, the random variables(s

experiment, men do not have to select their entire pr nd X, are equal when conditioned on the occurrence of
erence list before running the algorithm. Instead, eve 4
g g Therefore,E [+<|E] = E[5|E] LetC =

time a man has to propose to the next woman on his list, X3+1 X441

he chooses a random woman among the women he }E#X_; |- Elx }‘ be the unconditioned difference of
not proposed to so far, and proposes to that woman.tHése expectations. Then,

is clear that this does not change the experiment. This is

called theprinciple of deferred decisions Cc = ‘qE [

Proof. We use the techniques amnesiatheprinciple of de-

ferred decisionsand theprinciple of negligible perturbations
used by Knuth [10] and Knuth, Motwani, and Pittel [11, 12
Assume every woman has an arbitrary ordering of all mei
We define the following five random experiments:

e Experiment 1 is the experiment defined befor

1 _

E qE E

pesn R o 1)
e In Experiment 2, each man name’s different women

1 ) _
at random. We lef, be the number of women that no —qE [X4 1 |E]—qE [X 1 |E}’

man names in this game. 1 - 14 -
et . = Al BBl 2]
e Experiment 3 is the same as experiment 2, except here ~ 3 4
the men aramnesiacsThat is, every time a man wants < q
to name a woman, he picks a woman at random from the < K
set ofall women. Therefore, there is a chance that he n

names a woman that he has already named. HOWEV\%ereq — Pr[E] andg = Pr[E]. Finally, we observe that

each man stops as soon as he naingifferent women. by the definition of Experiments 4 and 5, we ha¥g > X.
Let X5 be the number of women who are not named he above observations imply

this process.

1 1
¢ In Experiment 4, we restrict every man to name at most [X +1 ] = B [Xz +1 ]
k + 1 women. Therefore, each man stops as soon as = E| 1 ]
either he names different women, or when he names X3+1 )
k + 1 women in total (counting repetitions). Léf, < E[ 1 ]+ k-
denote the number of women who are not named in this o Xa+1 n )
experiment. < E 1 + ]L

. - [Y(Hl)n,n Tl
e In Experl_men_t 5 every man names exactly+ 1 (not This completes the proof of the lemma.
necessarily different) women. The number of women
who are not named in this experiment is denotedigy By the above lemma, the only thing we need to do
Clearly, X5 = Y(i41)n,n- is to analyze the expected value of(Y,,, + 1) in the
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occupancy problem. We do this by writing the expected vallibe value ofS can be bounded easily using a combinatorial
of 1/(Y;, »+1) as a summation and bounding this summati@mgument.

by comparing it term-by-term to another summation whose Consider th&m,n + 1)-occupancy problem. The prob-
value is known. ability that at least one bin is empty is the sum, over
..,n+1,of P.(m,n + 1). We denote this probability by

1,.
LEMMA 6.3. LetY,, , denote the number of empty bins i%’ By Equation (6.5) we have

the (m, n)-occupancy problem. Then,

1 em/n n+ln+l—r I+ 1 r +Z
< . S = ~1)" 1-— m<,
[Ym,n—i—l]_ n ;::1 = (=1 ) ( n+1) -

Proof. Let P.(m, n) be the probability that exactlybins are where the inequality follows from the fact thétis the prob-
empty in the(m, n)-occupancy problem. Thef,(m, n), the  apility of an event. The summation in Equation (6.6) and
probability of no empty bin, can be written as the following have the same number of terms, and the ratio of each

summation by the principle of inclusion-exclusibn. term in the summation in Equation (6.6) to the correspond-
. _ ing term in S is equal to(1 — ==Ly /(1 — LE)™ =
(6.3) Py(m,n) = Z(—l)i (ZL) = %)m (p=r=trlym /(nbr=tym — (1 + L)™. Therefore,
=0
1 1 1 em/m
The probability P, (m,n) of exactly r empty bins can be Ely = (I4+-)"S5 < :
. . . L man 1 n+1 n n
written in term of the probability of no empty bin in the '
(m,n — r)-occupancy problem: Lemma 6.1 immediately follows from Lemmas 6.2 and 6.3.
(6.4) P.(m,n)= (n> (1- f)mPo(m, n—r). 7 Conclusion
" n In this paper we studied the stable marriage game in a
By Equations (6.3) and (6.4), probabilistic setting and showed that dishonesty almost surely
does not benefit a player. This answers a question asked
g /n r4i by Roth and Peranson [23], and generalizes their model to
(6.5) Pr(m,n) = Z(_l)l (?", z) (- n )" one where women have arbitrary preferences and each man

independently picks a preference list fran¥, whereZ is an

Where(a”b) denotes the multinomial coefficient;, (nnilaib)!. arbitrary distribution. One might hope to further generalize

Using Equation (6.5) and the definition of expected value S mc_)del to one where each_man p|c_ks a random list from
have, using the notatiofl = E[v——], ' = n + 1, and an arbitrary distribution over lists of size However, the

, 1 Ym,nt1 following example shows that Theorem 3.1 is not true in this
r=r ,

model: Assume women, ..., n/2 rank men in the order
n 1 1,2,...,n, and womenn/2 + 1,...,n rank them in the
6.6)E = > —P.(m,n) reverse order. Each man picks a random {1,...,n/2},
r=0 ' and with probabilityl /2 picks preference ligt, : +n/2) and
(1) n ri,, otherwise picks preference ligt+ n/2,14). It is not difficult
- Z 7,/ (,r Z) (1- T) to see that with these preferences, at ledst(&e) fraction of
r=01i=0 ’ women will have more than one stable husband.
DS (=) i There are many other interesting open questions sur-
= n (?“’,Z) (1 - n ) rounding the application of the stable matching algorithm in
’":lo ’/zo centralized markets. For example, in the NRMP market, the
L (1) rri—1, algorithm has to accommodateuplesamong students who
- Tl (T’ Z) 1- T) : want to live in the same city. Such couples can submit a joint

preference list opairs of hospitals, and the algorithm has to

It is probably impossible to simplify the above summation smatch them to one of the pairs in their list. With this extra

a closed-form formula. Therefore, we use the following trickwist, there are instances for which no stable matching ex-

we consider another summatidhwith the same number ofist. However, so far every year the NRMP algorithm has been

terms, and bound the ratio between the corresponding te@h¥ to find a stable matching. A theoretical justification for

in these two summations. This gives us a bound on s (in a reasonable probabilistic model), and a study of in-

ratio of the summation in Equation (6.6) to the summaion centive properties in mechanisms with couples are interesting
open directions for future research. Finally, it would be in-

~#This can also be derived by dividing a well-known formula for Stirlin§€resting to find other examples where one can prove thatin a

numbers of the second kind (see, for example, [7, 27} By probabilistic setting, truthfulness is probably the best strategy.
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LEMMA A.2. For everyk,n,my, andme, if m; < mo then Now, we prove inequality (1.7). We use a similar
pr(my,n) < pr(ma,n). argument: consider a situation where there bre] + 1

_ - men andn women, and fix a man, say Oscar. We prove
Proof. It is sufficient to prove that for every,n, andm, yhat the probability that Oscar remains single is at least
pr(m,n) < pp(m+ 1,n). Consider a fixed man, Bert, in the(c (1 —pk(fmﬂ,n)))k. To prove this, consider the men-

scenario where there ane+ 1 men. We want to compute the' 2 . :
JRroposing algorithm, and let everyone other than Oscar make

probability that after running the men-proposing algorith - .
Bert remains single. By Theorem B we know that the ordBrr()posaIS' After they finish proposing, Oscar enters and

of proposals does not affect the outcome of the aIgorithF‘hr.Oposes 0 the first woman in h_|s list. Laf denote the

set of married women at this point. The expected size of
Therefore, we can assume that one of ther- 1 men, say is the same as the expected number of married men
Ernie, starts proposing to women only after everyone e%i p '

is done with his or her proposals. Therefore, by definition chis(1 _pk([c_n]7n))kn1_py tgf%jeﬂmtmn O (m, n).
before Ernie starts proposing, the probability that Bert Therefore, there is a probability of (1 = pr([en],n)) >
1 — pr([en], n)) that Oscar proposes to a married woman.

single is preciselyy(m, n). If Bert is married at this point, ( k X X e
then there is a chance that after Emie starts proposing,’hgarried woman rejects a new proposal with probability
leastl/2. Thus, there is a probability of at lea§t1 —

becomes single, since his wife might leave him and he mid’rﬁt ' - : ;
not have anyone else in his list. However, if he is single befdtel[¢],7)) that Oscar's marriage proposal is rejected by

Ernie starts proposing, there is no chance that he gets marfigf favorite. woman. - Similarly, the same can happen for

as a result of Ernie’s proposal. Therefore, the probability X" Second favorite woman, and so on. Therefore, there is

Bert remains single is not less thap(m, n). a probability of at leas(§ (1 — px([cn],n)))" that Oscar
faces rejection immediately after each of his proposals, in

Proof of Lemma A.1. Letc < 1 be a constant that will be Which case, he ends up single.

fixed later. By Lemma A.2, we have,(n) = py(n,n) > Inequalities 1.7 and 1.8 imply the following
pe(Jen] + 1,n). Therefore, we only need to prove that c &
pr([en] 4+ 1,n) > -5 The proof of this fact is based on pr([en] +1,n) > (5(1 — ck)) .

the following two inequalities:
Choosinge = k~'/* in the above inequality completes
. the proof of the lemma. O

k
S (= pi(fen],n))

(1.8) pr([en],n) < c*

We start by proving inequality (1.8). Consider the
situation where there arfen] men andn women. Fix a
man, say Kermit. The probability that Kermit remains single
is pr([en], n). Now, consider the men-proposing algorithm.
Since the order of proposals does not change the outcome,
we can assume that Kermit will wait until everyone else stops
proposing, and then he will make his first proposal. At this
moment, there are at moftn] — 1 < ¢n women who are
married, and at leagt — ¢)n women who are still single. Let
S denote the set of single women at this point. Since Kermit's
list consists ok randomly chosen women, the probability that
none of them is inS is at mostc®. We claim that if at least
one of the women in Kermit’s list is ity then Kermit will
find a wife. The reason is that every time Kermit makes a
proposal, if he proposes to a single woman, the proposal will
be accepted and the algorithm ends. But if he proposes to a
married woman, he might start a chain of proposals that will
either end at a single woman, in which case Kermit ends up
married, or gets back to Kermit, in which case the set of single
women does not change and we can repeat the same argument
for the next proposal of Kermit until he reaches a woman in
her list that is inS. By this claim, the probability that Kermit
remains single is upper bounded by the probability that none
of the women in her list is 5, which is at most*.

@7 pilfen] +1,m) > (



