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Abstract

Many centralized two-sided markets form a matching between par-
ticipants by running a stable marriage algorithm. It is a well-known
fact that no matching mechanism based on a stable marriage algo-
rithm can guarantee truthfulness as a dominant strategy for partic-
ipants. However, as we will show in this paper, in a probabilistic
setting where the preference lists of one side of the market are com-
posed of only a constant (independent of the the size of the market)
number of entries, each drawn from anarbitrary distribution, the
number of participants that have more than one stable partner is van-
ishingly small. This proves (and generalizes) a conjecture of Roth
and Peranson [23]. As a corollary of this result, we show that, with
high probability, the truthful strategy is the best response for a given
player when the other players are truthful. We also analyze equilib-
ria of the deferred acceptance stable marriage game. We show that
the game with complete information has an equilibrium in which a
(1−o(1)) fraction of the strategies are truthful in expectation. In the
more realistic setting of a game of incomplete information, we will
show that the set of truthful strategies form a(1+o(1))-approximate
Bayesian-Nash equilibrium. Our results have implications in many
practical settings and were inspired by the work of Roth and Peran-
son [23] on the National Residency Matching Program.

1 Introduction
Suppose all the eligible bachelors and bachelorettes in a town
confide in the town’s matchmaker their ideal spouses. Each
man submits an ordered preference list of the women he
would like to marry. Similarly, each woman submits an
ordered preference list of the men she would like to marry.
The matchmaker must arrange marriages such that no one is
tempted to ask for a divorce. In particular, the matchmaker
must be sure that there is no pair of young lovers who prefer
each other to their assigned spouses. Such a set of marriages
is calledstable, and finding a set of stable marriages is known
as thestable marriage problem. Gale and Shapley [6] showed
that the stable marriage problem always has a solution and
developed an algorithm to find it. Since the seminal work
of Gale and Shapley, there has been a significant amount of
work on the mathematical structure of stable marriages and
related algorithmic questions. See, for example, the book by
Knuth [10], the book by Gusfield and Irving [8], or the book
by Roth and Sotomayoror [24].

The stable marriage problem has many promising appli-
cations in two-sided markets such as job markets [19], college
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admissions [19], sorority and fraternity rush [14], and assign-
ment of graduating rabbis to their first congregation [3]. Since
most applications of the stable marriage algorithm involve the
participation of independent agents, it is natural to investigate
how we should expect these agents to behave. In particular,
we would like to know whether agents can benefit by being
dishonest about their preference lists. Ideally, in economic
settings such as job markets, we would like to design mech-
anisms in which truth-telling is adominant strategy, i.e., it is
in the best interest of each individual agent to tell the truth,
no matter what other agents do. We call such a mechanism a
truthful mechanism. Truthful mechanisms have received sig-
nificant attention in the computer science community (see, for
example, [1, 5, 15]). Unfortunately, as shown by Roth [20],
there is no mechanism for the stable marriage problem in
which truth-telling is a dominant strategy for both men and
women. See the book by Roth and Sotomayor [24] for a dis-
cussion about this problem and other problems related to the
economic aspects of the stable marriage problem.

Nonetheless, stable matching algorithms have had spec-
tacular success in practical applications. One particular job
market — the medical residency market — has been using a
centralized stable marriage market system called the National
Residency Matching Program (NRMP) since the 1950s [21].
To this day, most medical residences are formed through an
updated version of this centralized market system redesigned
in 1998 by Roth [22]. It seems surprising that an algorithm
like the one used by the NRMP which provably admits strate-
gic behavior can be so successful. Roth and Peranson [23]
noted that, in practice, very few students and hospitals could
have benefited by submitting false preferences. For exam-
ple, in 1996, out of 24,749 applicants, just 21 could have
affected their match by submitting false preferences (assum-
ing, of course, that no one lied in 1996). Roth and Peran-
son [23] conjectured that the main reason for this peculiarity
is the sheer size of the job market. In a small town, every
man knows every woman, but in the medical market, a stu-
dent can not possibly interview at every hospital. In practice,
the length of applicant preference lists is quite small, about
15, while the number of positions is large, about 20,000. Ex-
perimentally, Roth and Peranson [23] showed that in a model
where random preference lists of limited length are generated
for participants, the number of participants who have more
than one stable partner (and therefore the number of those
who can benefit by lying) is small. They conjectured that in
this probabilistic setting, the fraction of such people tends to



zero as the size of the market tends to infinity.
In this paper, we prove a statement that proves and

generalizes this conjecture. More precisely, we prove the
following: Assume there aren men andn women in the
town, and each woman has anarbitrary ordering of all men as
her preference list. Each man independently picks a random
preference list of a constant (i.e., independent ofn) number of
women, each according to anarbitrary distributionD . These
are the true preference lists. We show that in this setting the
expected number of people with more than one stable spouse
is vanishingly small. This result has a number of interesting
economic implications. We can interpret the preference lists
together with a stable marriage algorithm as a gameG, in
which everybody submits a preference list (not necessarily
their true preference list) to the algorithm and receives a
spouse. The goal for each player is to receive the best spouse
possible according to their true preference list. First, we show
that, with probability1 − o(1) (as n approaches infinity),
in any stable marriage mechanism, the truthful strategy is
the best response for a given player when the other players
are truthful. We also show that when a deferred acceptance
mechanism is used, there is an equilibrium of this game in
which a majority of the players are truthful. Finally, we prove
that in the more realistic setting of a game of incomplete
information (where each player only knows the distribution
of the preference lists), the set of truthful strategies in the
game induced by the women-proposing mechanism form a
(1 + o(1))-approximate Bayesian-Nash equilibrium. It is
important to note that our results hold forany distribution
D of women. For the special case of uniform distributions
(which includes the conjecture of Roth and Peranson), the
o(1) in the above bounds is roughlyek/n, and thus the bounds
converge quite quickly.

We use the following technique for our proof: First,
we design an algorithm, based on an algorithm of Knuth et
al. [11, 12], that for a given woman checks whether she has
more than one stable husband inonerun of proposals. Using
this algorithm, we prove a relationship between the probabil-
ity that a given woman has more than one stable husband and
the number of single women who are more popular than she.
This relationship, essential to our main result, seems difficult
to derive directly, without going through the algorithm. Given
this relationship, we are able to derive our result by comput-
ing bounds on the expectation and variance of the number of
single popular women.

Related work. This paper is motivated by experimen-
tal results and a conjecture in the paper by Roth and Per-
anson [23]. Sethuraman et al. [25, 26] have studied the
stable matching game when participants arerequired to an-
nounce complete preference lists, and have given an optimal
cheating algorithm and several experimental results regard-
ing the chances that an agent can benefit by lying in this
game. One can also view our results as an analysis of sta-
ble matching with random preferences. There has been a

considerable amount of work on this area, mostly assuming
completepreference lists for participants, and none motivated
by the economic aspects of the problem. See, for example,
[11, 12, 18, 17]. We will use some of the techniques devel-
oped in these papers in our analysis.

Mechanisms that are truthful in a randomized sense (i.e.,
in expectation, or with high probability) have been a subject
of research in theoretical computer science [1, 2]. These
mechanisms seeks to encourage truthfulness by introducing
randomization into the mechanism. Our results are of a
different flavor. We show that one can conclude statements
regarding truthfulness by introducing randomization into the
players utility functions. To the best of our knowledge, our
result is the first result of this type.

Structure of the paper. The rest of the paper is orga-
nized as follows. In Section 2, we define the stable marriage
problem and discuss the relevant known results from the lit-
erature. In Section 3, we formalize our probabilistic setting
and summarize our results. In Section 4, we prove our main
technical result, the experimental conjecture of Roth and Per-
anson [23]. In Section 6, we strengthen our technical result
for the special case of uniformly distributed preference lists.
Finally, in Section 7, we conclude with interesting open ques-
tions concerning stable marriage algorithms and two-sided
markets.

2 Stable marriage preliminaries
Consider a community consisting of a setW of n women and
a setM of n men. Each person in this community has a
preference list, which is a strictly ordered list of a subset of
the members of the opposite sex. Amatchingis a mappingµ
from M ∪W to M ∪W in such a way that for everyx ∈ M ,
µ(x) ∈ W ∪ {x} and for everyx ∈ W , µ(x) ∈ M ∪ {x},
and also for everyx, y ∈ M ∪ W , x = µ(y) if and only if
y = µ(x). If for somem ∈ M andw ∈ W , µ(m) = w,
we say thatw is the wife ofm andm is the husband ofw
in µ; or, if for somex ∈ M ∪ W , µ(x) = x, we say that
x remains single inµ. A pair m ∈ M , w ∈ W is called a
blocking pairfor a matchingµ, if m prefersw to µ(m), and
w prefersm to µ(w). A matching with no blocking pair is
called astable matching. If a manm and a womanw are a
couple insomestable matchingµ, we say thatm is astable
husbandof w, andw is a stable wifeof m. Naturally, each
person might have more than one stable partner. In the stable
marriage problem, the objective is to find a stable matching
given the preference lists of all men and women.

The stable marriage problem was first introduced and
studied by Gale and Shapley [6] in 1962. They proved that a
stable matching always exists, and a simple algorithm called
thedeferred acceptance procedurecan find such a matching.
This procedure iteratively selects an unmarried manm and
creates a proposal from him to the next woman on his list.
If this woman prefersm to her current assignment, then she
tentatively acceptsm’s proposal, and rejects the man she



was previously matched to (if any); otherwise, she rejects
the proposal ofm. The algorithm ends when every man
either finds a wife that accepts him, or gets rejected by all
the women on his list, in which case he remains single. This
algorithm is sometimes called themen-proposing algorithm.
Similarly, one can define thewomen-proposing algorithm.
Gale and Shapley [6] proved the following.

THEOREM A. The men-proposing algorithm always finds a
stable matchingµ. Furthermore, this stable matching ismen-
optimal, i.e., for every manm and every stable wifew of m
other thanµ(m), m prefersµ(m) to w. At the same time,µ
is the worst possible stable matching for women, i.e., for any
womanw and any stable husbandm of w other thanµ(w),
w prefersm to µ(w).

The men-optimal stable matching is unique, and so the
above theorem implies that the order of proposals does not
affect the output of the men-proposing algorithm.

THEOREM B. The men-proposing algorithm always finds the
same stable matching, independent of the order in which the
proposals are made.

We will also need the following theorem of Roth [21]
and McVitie and Wilson [13], which says that the choice of
the stable matching algorithm does not affect the number of
people who remain unmarried at the end of the algorithm.

THEOREM C. In all stable matchings, the set of people who
remain single is the same.

A stable matching mechanism is an algorithm that elicits
a preference list from each participant, and outputs a match-
ing that is stable with respect to the announced preferences.
We say that truthfulness is adominant strategyfor a partic-
ipant a if, no matter what strategy other participants use,a
cannot benefit (i.e., improve his or her match according to
his or her true preferences) by submitting a list other than
his or her true preference list. Ideally, we would like to de-
sign mechanisms in which truthfulness is a dominant strategy
for all participants. However, Roth [20] proved that there is
no such mechanism for the stable marriage problem. On the
positive side, the following theorem (due to Roth [20] and
Dubins and Freedman [4]) shows that in deferred acceptance
mechanisms, truthfulness is a dominant strategy for half the
population.

THEOREM D. In the men-optimal stable marriage mecha-
nism, truth-telling is a dominant strategy for men. Similarly,
in the women-optimal mechanism, truth-telling is a dominant
strategy for women.

3 Our results
Consider a situation where there aren men andn women.
Assume the preference list of each man is chosen indepen-
dently and uniformly at random from the set of all ordered

lists of k women, and the preference list of each woman is
picked independently and uniformly at random from the set
of all orderings of all men. We are concerned about bounding
the expected number of people who might be tempted to lie to
the mechanism about their preferences when the other play-
ers are truthful. As we will show, only people who have more
than one stable partner might be able to influence their final
match by altering their preference lists. Therefore, we focus
on bounding the expected number of women with more than
one stable husband in this model. Notice that this number
is equal to the expected number of men with more than one
stable wife, since the number of single and uniquely matched
men must equal the number of single and uniquely matched
women. Roth and Peranson [23] conjectured the following.

CONJECTURE1. Let ck(n) denote the expected number of
women who have more than one stable husband in the above
model. Then for all fixedk,

lim
n→∞

ck(n)
n

= 0.

We prove this conjecture in this paper. In fact, we will prove
the following stronger result. LetD be anarbitrary fixed
distribution over the set of women such that the probability
of each woman inD is nonzero.1 Intuitively, having a
high probability in D indicates that a woman is popular.
The preference lists are constructed by picking each entry
of the list according toD , and removing the repetitions.
More precisely, we construct a random list(l1, . . . , lk) of k
women as follows. At stepi, repeatedly select womenw
independently according toD until w 6∈ {l1, . . . , li−1} and
then setli = w. Let Dk be the distribution over lists of size
k produced by this process.2 Notice that ifD is the uniform
distribution,Dk is nothing but the uniform distribution over
the set of all lists of sizek of women. Therefore, the model
of Roth and Peranson [23] is a special case of our model. We
also generalize their result in another respect: we assume that
women havearbitrary complete preference lists, as opposed
to the assumption in [23] that they have random complete
preference lists. Our main result is the following theorem.

THEOREM 3.1. Consider a situation where each woman has
an arbitrary complete preference list, and each man has a
preference list chosen independently at random according to
Dk. Then, for all fixedk,

lim
n→∞

ck(n)
n

= 0.

Even though we state and prove our results assuming that
all preference lists are of size exactlyk, it is straightforward
to see that our proof carries over to the case where preference
lists are of size at mostk. For uniform distributions, we can
prove a strong result on the rate of convergence of this limit.

1This assumption is needed to make sure that the problem is well-defined.
2See the conclusion for a discussion of why this is the most general setting

in which we can hope to get a positive result.
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THEOREM 3.2. Consider a situation where each woman has
an arbitrary complete preference list, and each man has a
preference list ofk women chosen uniformly and indepen-
dently. Then, the expected number of women who have more
than one stable husband is bounded byek+1 + k2, a constant
that only depends onk (and not onn).

There are a number of interesting economic implications
of this theorem. Our first result states that, with high proba-
bility, a given player’s best strategy is truth-telling when the
other players are truthful. Thus, a dishonest player who be-
lieves in the honesty of the other players has an economic
incentive to be honest. This is similar (but not identical) to
the notion of ex post Nash equilibria.

COROLLARY 3.1. Fix any stable matching mechanism, and
consider an instance withn women with arbitrary complete
preference lists andn men with preference lists drawn from
Dk (as in Theorem 3.1). Then, for any given personx, the
probability (over the men’s preference lists) that forx, the
truthful strategy is not the best response in a situation where
the other players are truthful iso(1) (at mostO(ek/n) for
uniform distributions).

The previous corollary states that a player can benefit
by lying only with a vanishingly small probability when the
other players are truthful. Now we turn to the situation
in which the other players are not necessarily truthful, but
are playing an equilibrium strategy of the game induced by
the stable matching mechanism. There are two ways to
interpret our stable marriage setting as a game. One way
is to consider it as a game of complete information: Let
Pm andPw denote the preference lists of men and women.
Knowing these preferences, each player chooses a strategy
from the strategy space of all possible preference lists. The
corresponding preference lists are submitted to a fixed stable
marriage algorithm and a matching is returned. A player’s
goal is to choose the strategy that gets him/her a spouse
as high on his/her preference list as possible. LetGPm,Pw

denote this game. Anequilibrium of a game is a set of
strategies, one for each player, such that no single player
can improve his/her situation by deviating from his or her
equilibrium strategy [16].

COROLLARY 3.2. Assume the preference listsPw of women
are arbitrary, and the preference listsPm of men are drawn
from Dk (as in Theorem 3.1). The gameGPm,Pw

induced
by these preferences and the men-proposing (or women-
proposing) mechanism has an equilibrium in which, in ex-
pectation, a(1− o(1)) fraction of strategies are truthful.

In the above setting, we assume that each player knows
the preference lists of the other players when he/she is select-
ing a strategy, i.e., we have a game of complete information.
A more realistic assumption is that each player only knows
the distribution of preference lists of the other players. Each

player’s goal is to alter his/her preference list and announce it
to the mechanism in a way that theexpectedrank of his/her
assigned spouse is as high as possible. A strategy for a player
is a function that outputs an announced preference list for any
input preference list. Hence the truthful strategy is the identity
function. We wish to analyze the Bayesian-Nash equilibria in
this incomplete information game. A(1 + ε)-approximate
Bayesian-Nash equilibrium for this game is a collection of
strategies, one for each player, such that no single player can
improve his/her situation by more than a multiplicative factor
of 1 + ε by deviating from his/her equilibrium strategy.

COROLLARY 3.3. Consider the game described above with
the women-optimal mechanism. Then for everyε > 0, if n
is large enough, the above game has a(1 + ε)-approximate
Nash equilibrium in which everybody is truthful.

The proofs of these corollaries are presented in Section 5.

4 Proof of Theorem 3.1
In this section, we will prove our main technical result,
Theorem 3.1. The proof consists of three main components.
First, we present an algorithm that, given the preference lists,
counts the number of stable husbands of a given woman
(Section 4.1). We would like to analyze the probability
that the output of this algorithm is more than one, over
a distribution of inputs. In Section 4.2, we bound this
probability assuming a lemma concerning the number of
singles in a stable marriage. This lemma is proved in
Section 4.3 by bounding the expectation of the number of
singles and proving that it is concentrated around its expected
value using the Chebyschev inequality.

4.1 Counting the number of stable husbandsThe sim-
plest way to check whether a womang has more than one
stable husband or not is to compute the men-optimal and the
women-optimal stable matchings using the algorithm of Gale
and Shapley (See Theorem A) and then check ifg has the
same husband in both these matchings. However, analyzing
the probability thatg has more than one stable husband us-
ing this algorithm is not easy, since we will not be able to
use the principle of deferred decisions (as described later in
Section 4.2). In this section we present a different algorithm
that outputs all stable husbands of a given woman in an ar-
bitrary stable marriage problem in one run of a men-propose
algorithm. This algorithm is a generalization of the algorithm
of Knuth et al. [11, 12] to the case of incomplete preference
lists.

Suppose we want the stable husbands of womang.
Initially all the people are unmarried (the matching is empty).
The algorithm closely follows the man-proposing algorithm
for finding a stable matching. However,g’s objective is
to explore all her options, therefore, every time the men-
proposing algorithm finds a stable marriage,g divorces her
husband and lets the algorithm continue.



ALGORITHM 4.1.

1. Initialization: Run the man-proposing algorithm to find
the men-optimal stable matching. Ifg is unmarried,
output∅.

2. Selection of the suitor: Output the husbandm of g as one
of her stable husbands. Remove the pair(m, g) from the
matching (womang and manm are now unmarried) and
setb = m. (the variableb is the current proposing man.)

3. Selection of the courted: Ifb has already proposed to all
the women on his preference list, terminate. Otherwise,
let w be his favorite woman among those he hasn’t
proposed to yet.

4. The courtship:

(a) If w has received a proposal from a man she
likes better thanb, she rejectsb and the algorithm
continues at the third step.

(b) If not, w acceptsb. If w = g, the algorithm
continues at the second step. Otherwise, ifw was
previously married, her previous husband becomes
the suitorb and the algorithm continues at the third
step. Ifw was previously unmarried, terminate the
algorithm.

Notice that in step 4(a) of the algorithm,w comparesb
to the best man who has proposed to her so far, and not to the
man she is currently matched to. Therefore, afterg divorces
one of her stable husbands, she has a higher standard, and will
not accept any man worse than the man she has divorced. For
w 6= g, step 4(a) is equivalent to comparingb to the manw is
matched to at the moment.

We must prove that this algorithm outputs all stable
husbands ofg. In fact, we will prove something slightly
stronger.

THEOREM 4.1. Algorithm 4.1 outputs all stable husbands of
g in order of her preference from her worst stable husband to
her best stable husband.

Proof. We prove the theorem by induction. As the man-
proposing algorithm returns the worst possible matching for
the women (by Theorem A), the first output isg’s worst stable
husband. Now suppose thei’th output isg’s i’th worst stable
husbandmi. Consider running the man-proposing algorithm
with g’s preference list truncated just before manmi. As the
order of proposals do not affect the outcome (Theorem B), let
the order of proposals be the same as Algorithm 4.1. Then,
up until Algorithm 4.1 outputs thei + 1’st outputmi+1, its
tentative matching during thej’th proposal is the same as the
tentative matching of the man-proposing algorithm during the
j’th proposal (except, possibly, womang is matched in Al-
gorithm 4.1 and unmatched in the man-proposing algorithm).
Now sincemi+1 was accepted, the fourth step guarantees that

g preferredmi+1 tomi. Thusmi+1 is ong’s truncated prefer-
ence list, and so the tentative matchings of the two algorithms
are the same. Furthermore,mi+1 is the first proposalg has ac-
cepted in the man-proposing algorithm. All other women who
get married in the set of stable matchings already have hus-
bands since they have husbands in Algorithm 4.1, and so the
man-proposing algorithm terminates with the current match-
ing. Thus,mi+1 is the worst possible stable husband forg
which is better thanmi.

4.2 Analyzing the expectationWe are interested in the ex-
pected number of women with more than one stable husband,
or, equivalently, the probability that a fixed womang has more
than one stable husband. We can compute this probability by
analyzing the output of Algorithm 4.1 on male preference lists
drawn from the distributionDk. We simulate this experiment
using theprinciple of deferred decisions: a man only needs
to determine hisi’th favorite woman when he makes hisi’th
proposal. If we make these deferred decisions independently
according toD , then the distribution of the output of this new
algorithm over its coin flips will be exactly the same as the
distribution of the output of the old algorithm over its input.
This motivates the definition of the following algorithm. At
any point in this algorithm, the variableAi denotes the set of
women that mani has proposed to so far. Men and women
are indexed by numbers between 1 andn.

ALGORITHM 4.2.

1. Initialization: Let l = 1, ∀ 1 ≤ i ≤ n, Ai = ∅,
xg = 0. (The matching is empty and no men have made
any proposals).

2. Selection of the suitor:

(a) If l ≤ n, let b be thel’th man and increasel by one.

(b) Otherwise, we have found a stable matching. If
g is single in this stable matching, then terminate.
Otherwise, incrementxg, remove the pair(m, g)
from the matching (manm and womang who
were previously married to each other are now
unmarried) and setb = m.

3. Selection of the courted:

(a) If |Ab| ≥ k, then do the following:

– If xg ≥ 1, then terminate. Otherwise, return
to step two.

(b) Repeatedly selectw randomly according to distri-
butionD from the set of all women untilw 6∈ Ab.
Add w to Ab.

4. The courtship:

(a) If w has received a proposal from a man she
likes better thanb, she rejectsb and the algorithm
continues at step 3.
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(b) If not, w acceptsb. If w was previously married,
her previous husband becomes the suitorb and
the algorithm continues at the third step. Ifw
was previously single andxg = 0, the algorithm
continues at the second step. Ifw was previously
single andxg ≥ 1, the algorithm continues at the
second step ifw = g and terminates ifw 6= g.

Before giving a proof of Theorem 3.1, we introduce a few
notations. For every womani, let pi denote the probability of
i in the distributionD . We say that a womani is more popular
than another womanj, if pi ≥ pj . Assume, without loss of
generality, that women are ordered in the decreasing order of
popularity, i.e.,p1 ≥ p2 ≥ · · · ≥ pn.

Proof of Theorem 3.1. Recall that ck(n) is the ex-
pected number of women with more than one stable hus-
band. We show that for everyε > 0, if n is large
enough, thenck(n)/n ≤ ε. By linearity of expectation,
ck(n) =

∑
g∈W Pr[g has more than one stable husband].

Fix a womang ∈ W . We want to bound the probability that
g has more than one stable husband. By Theorem 4.1 and the
principle of deferred decisions, this is the same as bounding
the probability that the random variablexg in Algorithm 4.2
is more than one.

We divide the execution of Algorithm 4.2 into two
phases: the first phase is from the beginning of the algorithm
until it finds the first stable matching, and the second phase is
from that point until the algorithm terminates. Assume at the
end of the first phase, Algorithm 4.2 has found the first stable
matchingµ. We bound the probability thatxg > 1 condi-
tioned on the event thatµ is the matching found at the end of
the first phase (we denote this byPr[xg > 1 | µ]), and then
take the expectation of this bound overµ.

Let the setSµ(g) denote the set of women more popular
than g that remain single in the stable matchingµ and
Xµ(g) = |Sµ(g)|. If g is single in µ, then xg = 0
and thereforePr[xg > 1 | µ] = 0. Otherwise,xg >
1 if only if woman g accepts another proposal before the
algorithm terminates. We bound this by the probability that
g receives another proposal before the end of the algorithm.
The algorithm may terminate in several ways, but we will
concentrate on the termination condition in step 4(b), i.e.,
that some man proposes to a previously single woman. Thus,
we are interested in the probability that in the second phase
of Algorithm 4.2 some man proposes to a previously single
woman before any man proposes tog.

Note that at the end of the first phase of the algorithm,
all Ai’s are disjoint fromSµ(g), since women have complete
preference lists. Thus whenever the random oracle in step
3(b) outputs a woman from setSµ(g), the algorithm will
advance to step 4(b) and terminate. Thus, the probability
Pr[xg > 1 | µ] is less than or equal to the probability that
in a sequence whose elements are independently picked from
the distributionD , g appears before any woman inSµ(g).
By the definition ofSµ(g), for everyw ∈ Sµ(g), every time

we pick a woman randomly according toD , the probability
that w is picked is at least as large as the probability thatg
is picked. Therefore, the probability thatg appears before all
elements ofSµ(g) in a sequence whose elements are picked
according toD is at most the probability theg appears first in
a random permutation on the elements of{g}∪Sµ(g), which
is 1/(Xµ(g) + 1). Thus, for everyµ,

Pr[xg > 1 | µ] ≤ 1
Xµ(g) + 1

(4.1)

Thus,
Pr[xg > 1] = Eµ

[
Pr[xg > 1 | µ]

]
≤ Eµ

[
1

Xµ(g) + 1

]
.(4.2)

We complete the proof assuming the following lemma,
whose proof is given in Section 4.3.

LEMMA 4.1. For everyg > 4k,

E[1/(Xµ(g) + 1)] ≤ 12e8nk/g

g
.

Thus, using Equation (4.2) and Lemma 4.1 forg ≥ 16nk
ln(n) ,

andPr[xg > 1] ≤ 1 for smallerg’s, we obtain

ck(n) ≤ 16nk

ln(n)
+

n∑
g= 16nk

ln(n)

12e8nk/g

g

≤ 16nk

ln(n)
+

n∑
g= 16nk

ln(n)

3 ln(n)eln(n)/2

4nk

≤ 16nk

ln(n)
+ 3

√
n ln(n)/(4k) = o(n),

and so for every constantk, the fraction of women with more
than one stable husband,ck(n)/n, goes to zero asn tends to
infinity. �

For the case of uniform distributions, it is possible to
modify the above proof to get a much tighter bound ofO(e8k)
on the expected number of women with more than one stable
husband. We derive an even tighter bound in this case, as
stated in Theorem 3.2, using a slightly different technique.
This bound is proved in Section 6.

4.3 Number of singlesIn this section we prove
Lemma 4.1. This completes the proof of Theorem 3.1.
We start with the following simple fact: the probability that
a womanw remains single is greater than or equal to the
probability thatw does not appear on the preference list
of any man. More precisely, letEw denote the event that
the womanw does not appear on the preference list of any
man when these preferences are drawn fromDk. Let Yg

denote the number of womenw ≤ g for which the eventEw

happens. Then we have the following lemma.



LEMMA 4.2. For everyg, we always haveXµ(g) ≥ Yg.3

Proof. Every womanw < g for which Ew happens is a
woman who is at least as popular asg and will remain
unmarried in any stable matching. �

We now bound the expectation of1/(Yg + 1) in a
sequence of two lemmas. In Lemma 4.3 we bound the
expectation ofYg. Then, in Lemma 4.4 we show the variance
of Yg is small and therefore it does not deviate far from its
mean.

LEMMA 4.3. For g > 4k, the expected numberE[Xµ(g)]
of single women more popular than womang is at least
g
2e−8nk/g.

Proof. Let Q =
∑k

j=1 pj denote the total probability of the
first k women underD . The probability that a manm does
not list a womanw as hisi’th preference given that he picks
w1, . . . , wi−1 as his firsti− 1 women, is equal to

1− pw

1−
∑i−1

j=1 pwj

≥ 1− pw

1−Q
.

Thus the probability thatm does not listw at all is at least
(1− pw

1−Q )k, and so the probability that womanw is not listed

by any man is at least(1 − pw

1−Q )nk. If w > k, there are at
leastw − k women who are at least as popular asw, but not
among thek most popular women. Therefore,pw ≤ 1−Q

w−k .
By these two inequalities, for everyw > 2k we have

Pr[Ew] ≥ (1− 1
w − k

)nk ≥ e−2nk/(w−k) ≥ e−4nk/w

Therefore, for everyg > 4k, the expectation ofYg is at least

E[Yg] =
g∑

w=1

Pr[Ew] ≥
g∑

j=2k

e−4nk/j

≥
g∑

j=g/2

e−8nk/g =
g

2
e−8nk/g.

�

LEMMA 4.4. The varianceσ2(Yg) of the random variable
Yg is at most its expectationE[Yg].

Proof. We show the eventsEi are negatively correlated, i.e.,
for everyi andj, Pr[Ei ∧ Ej ] ≤ Pr[Ei].Pr[Ej ]. Let Fi be
the event that a given man does not include womani on his
preference list. By the independence and symmetry of the
preference lists of men, we havePr[Ei] = (Pr[Fi])n, and
Pr[Ei ∧ Ej ] = (Pr[Fi ∧ Fj ])n. Therefore, it is enough to
show that for everyi andj, Pr[Fi|Fj ] ≤ Pr[Fi].

3In more mathematical terms, this means thatXµ(g) stochastically
dominatesYg .

Let M be an arbitrarily large constant. The following
process is one way to simulate the selection of one prefer-
ence listL = (l1, . . . , lk): Consider the multisetΣ consisting
of bpiMc copies of the name of womani. Pick a random
permutationπ of Σ. Let li be thei’th distinct name inπ.
It is not hard to see that asM → ∞, the probability of a
given list L in this process converges to its probability un-
der distributionDk. Therefore,Pr[Fi] is equal to the limit as
M → ∞ of the probability thatk distinct names occur be-
fore i in π. Similarly, if Σ′ denotes the multiset obtained by
removing all copies of womanj from Σ, thenPr[Fi|Fj ] is
equal to the limit asM →∞ of the probability thatk distinct
names occur beforei in a random permutation ofΣ′. How-
ever, this is precisely equal to the probability thatk distinct
names other thanj occur beforei in a random permutationπ
of Σ. But that certainly implies thatk distinct names (includ-
ing j) occur beforei in π, and so for everyπ whereFi|Fj hap-
pens,Fi also happens. Therefore,Pr[Fi|Fj ] ≤ Pr[Fi]. Thus,
Pr[Ei ∧ Ej ] ≤ Pr[Ei].Pr[Ej ], and so the varianceσ2(Yg) is

σ2(Yg) = E[Y 2
g ]− E[Yg]2

=
g∑

i=1

Pr[Ei] + 2
∑

1≤i<j≤g

Pr[Ei ∧ Ej ]

−
g∑

i=1

Pr[Ei]2 − 2
∑

1≤i<j≤g

Pr[Ei].Pr[Ej ]

≤
g∑

i=1

Pr[Ei] = E[Yg]

�

Proof of Lemma 4.1. Let q be the probability thatYg <
E[Yg]/2. By the Chebyshev inequality and Lemma 4.4,

q ≤ Pr
[∣∣Yg − E[Yg]

∣∣> E[Yg]/2
]

≤ σ2(Yg)
(E[Yg]/2)2

≤ 4
E[Yg]

.

Therefore, by Lemma 4.2 and the fact that1/(Yg + 1) is
always at most one, we have

E
[

1
Xµ(g) + 1

]
≤ E

[
1

Yg + 1

]
≤ (1− q)

1
E[Yg]/2 + 1

+ q

≤ 6
E[Yg]

,

which together with Lemma 4.3 completes the proof. �

5 Proofs of economic implications
In this section, we prove the corollaries stated in Section 3.
The first of these results argues that a dishonest player has

7



economic incentives to be honest when other players are
honest.

Proof of Corollary 3.1. Fix a person, say a man named
Adam and suppose all other players are truthful. Theorem 3.1
implies that with probability at least1 − o(1), Adam has at
most one stable wife, Eve, with respect to the true preference
lists of the players. Suppose all other players are truthful.
We claim Adam’s best response is truth-telling. Suppose
not. Allow Adam to play his best responsep and letµ be
the matching that the stable matching mechanism outputs.
Now run the men-optimal algorithm with the same preference
lists (i.e., p for Adam, and true preference lists for others)
and let µM be the resulting matching. By Theorem A,
Adam must prefer his match inµM to his match inµ.
However, by Theorem D, in the men-proposing algorithm,
Adam’s dominant strategy is truth-telling and, by assumption,
matches him to Eve. Therefore, Adam must prefer Eve to
his match inµM and thus to his match inµ. But Eve is the
woman that Adam would have been matched to in the original
mechanism if he had been truthful (since it was his unique
stable match), and so his altered strategyp was not his best
response. �

The second corollary shows that the gameGPm,Pw de-
fined in Section 3 has an equilibrium in which in expectation
a (1− o(1)) fraction of participants are truthful.

Proof of Corollary 3.2. Suppose we are using the men-
proposing mechanism (the women-proposing situation is
analogous). We prove that the following set of strategies
forms an equilibrium in the gameGPm,Pw

: all men announce
their true preferences; all women who have at most one stable
husband (with respect toPm, Pw) announce their true prefer-
ences; and all women who have more than one stable husband
truncate their preference lists just after their optimal stable
husband. We denote the altered preference lists of women
by P ′

w. By Theorem D, men cannot improve their situation
by altering their strategy. Consider a woman, say Alice, and
assume Alice will be assigned to Bob if the players use the
strategies in(Pm, P ′

w). It is easy to see that there is a unique
stable matching with respect to(Pm, P ′

w). Therefore, if we
run the women-optimal mechanism on(Pm, P ′

w), we get the
same outcome as in the men-optimal mechanism. However,
by Theorem D we know that no woman can benefit from alter-
ing her preferences in a women-optimal mechanism. Thus, if
Alice changes her strategy from the one dictated byP ′

w, then
she gets a match, say Tom, that according toP ′

w is not better
than Bob. However, by the definition ofP ′

w, this implies that
Tom is not better than Bob according to the true preferences
of Alice. This shows that the set of strategies(Pm, P ′

w) is
an equilibrium. By Theorem 3.1, we know that all men and
all but at most ao(1) fraction of women are truthful in this
equilibrium. �

Finally, we prove the third corollary, which says that if
we model the situation as a game of incomplete information,

then everybody being truthful is an approximate Bayesian
Nash equilibrium.

Proof of Corollary 3.3. Since the women-optimal mecha-
nism is used, we know by Theorem D that truthfulness is a
dominant strategy for women. It is enough to show that if
all men and women are truthful, then no man can improve
his match by more than a(1 + ε) factor if he uses a dishonest
strategy. Fix a man, Charlie. With probability1−o(1), prefer-
ences are such that Charlie does not have more than one stable
wife. In this case, the argument used in the proof of the pre-
vious two corollaries shows that Charlie cannot gain by being
dishonest about his preferences. With probabilityo(1), Char-
lie has more than one stable wife, and in that case, he might
be able to improve his match from someone ranked at mostk
in his list to someone ranked first. However,k is a constant.
Using this, it is easy to verify that on average, he can improve
his match by at most a factor of1 + k2 × o(1) = 1 + o(1).
Thus, everyone being truthful is an approximate equilibrium
in this game. �

6 Tighter analysis for the uniform distribution

For the case of uniform distributions, it is possible to derive a
much tighter bound on the expected number of women with
more than one stable husband.

Recall that in the proof of Theorem 3.1, we bounded the
probability that a fixed womang is single byEµ[1/(Xµ(g) +
1)], whereXµ(g) is the number of women at least as popular
asg that are single in matchingµ. In the case of the uniform
distribution, for every womang, Xµ(g) is equal to the number
of singles inµ. Therefore, if we define the random variableX
as the number of women who remain unmarried in the men-
optimal stable matching (recall that by Theorem C, the set of
unmarried women is independent of the choice of the stable
marriage algorithm), then we have

ck(n) ≤ nE
[ 1
X + 1

]
.

Thus, the following lemma shows that if men have
random preference lists of sizek, then the expected number
of women who have more than one stable partner is at most
ek+1 + k2. This completes the proof of Theorem 3.2.

LEMMA 6.1. Let X denote the random variable defined
above. Then,

E
[ 1
X + 1

]
≤ ek+1 + k2

n
.

The proof of the above lemma is based on a connection be-
tween the stable marriage problem and the classicaloccu-
pancy problem. In the occupancy problem,m balls are dis-
tributed amongstn bins. The distribution of the number of
balls that end up in each bin has been studied extensively
from the perspective of probability theory [9]. We denote the



occupancy problem withm balls andn bins by the(m,n)-
occupancy problem. The following lemma establishes the
connection between the number of singles in the stable mar-
riage game and the number of empty bins in the occupancy
problem.

LEMMA 6.2. Let Ym,n denote the number of empty bins in
the (m,n)-occupancy problem andX denote the random
variable in Lemma 6.1. Then,

E
[ 1
X + 1

]
≤ E

[ 1
Y(k+1)n,n + 1

]
+

k2

n
.

Proof. We use the techniques ofamnesia, theprinciple of de-
ferred decisions, and theprinciple of negligible perturbations
used by Knuth [10] and Knuth, Motwani, and Pittel [11, 12].
Assume every woman has an arbitrary ordering of all men.
We define the following five random experiments:

• Experiment 1 is the experiment defined before
Lemma 6.1: every man chooses a random list of at most
k different women as his preference list. Then, we run
the men-proposing stable marriage algorithm, and let the
random variableX1 = X indicates the number of single
women at the end of this experiment. Notice that in this
experiment, men do not have to select their entire pref-
erence list before running the algorithm. Instead, every
time a man has to propose to the next woman on his list,
he chooses a random woman among the women he has
not proposed to so far, and proposes to that woman. It
is clear that this does not change the experiment. This is
called theprinciple of deferred decisions.

• In Experiment 2, each man namesk different women
at random. We letX2 be the number of women that no
man names in this game.

• Experiment 3 is the same as experiment 2, except here
the men areamnesiacs. That is, every time a man wants
to name a woman, he picks a woman at random from the
set ofall women. Therefore, there is a chance that he
names a woman that he has already named. However,
each man stops as soon as he namesk different women.
Let X3 be the number of women who are not named in
this process.

• In Experiment 4, we restrict every man to name at most
k + 1 women. Therefore, each man stops as soon as
either he namesk different women, or when he names
k + 1 women in total (counting repetitions). LetX4

denote the number of women who are not named in this
experiment.

• In Experiment 5 every man names exactlyk + 1 (not
necessarily different) women. The number of women
who are not named in this experiment is denoted byX5.
Clearly,X5 = Y(k+1)n,n.

Now, we show how the random variablesX1 throughX5

are related. It is easy to see that for any set of men’s prefer-
ence lists, the number of unmarried women in Experiment 1
is at least the number of women who are not named in Ex-
periment 2. Therefore,X1 ≥ X2. Also, it is clear from the
description of Experiments 2 and 3 thatX2 = X3.

In order to relateX3 and X4, we use theprinciple of
negligible perturbations. Experiments 4 is essentially the
same as Experiment 3, except inX4 we only count women
who are not named by any man as one of his firstk + 1
choices. LetE denote the event that no man names more
than k + 1 women in Experiment 3. We first show that
Pr[Ē] < k2/n. Fix a man, say Homer. We want to bound the
probability that Homer names at leastk + 2 women before
the number of different women he has named reachesk. By
the union bound, this probability is at most the sum, over
all pairs {i, j} ⊂ {1, . . . , k + 2} that both i’th and j’th
proposal of Homer are redundant. It is easy to see that for
any such pair, this probability is at most1/n2. Therefore,
the probability that Homer makes more thank + 1 proposals
is at most

(
k+2
2

)
/n2 < k2/n2. Thus, by the union bound,

the probability of this happens for at least one man is less
than k2/n. That is, Pr[Ē] < k2/n. Now, notice that
by the definition ofX3 and X4, the random variablesX3

and X4 are equal when conditioned on the occurrence of
E. Therefore,E

[
1

X3+1 |E
]

= E
[

1
X4+1 |E

]
. Let C =∣∣∣E [

1
X3+1

]
− E

[
1

X4+1

]∣∣∣ be the unconditioned difference of

these expectations. Then,

C =
∣∣∣∣qE [ 1

X3 + 1
|E

]
+ q̄E

[ 1
X3 + 1

|Ē
]

− qE
[ 1
X4 + 1

|E
]
− q̄E

[ 1
X4 + 1

|Ē
]∣∣∣∣

= q̄

∣∣∣∣E [ 1
X3 + 1

|Ē
]
− E

[ 1
X4 + 1

|Ē
]∣∣∣∣

≤ q̄

<
k2

n

whereq = Pr[E] and q̄ = Pr[Ē]. Finally, we observe that
by the definition of Experiments 4 and 5, we haveX4 ≥ X5.
The above observations imply

E
[ 1
X + 1

]
≤ E

[ 1
X2 + 1

]
= E

[ 1
X3 + 1

]
≤ E

[ 1
X4 + 1

]
+

k2

n

≤ E
[ 1
Y(k+1)n,n + 1

]
+

k2

n
.

This completes the proof of the lemma.

By the above lemma, the only thing we need to do
is to analyze the expected value of1/(Ym,n + 1) in the

9



occupancy problem. We do this by writing the expected value
of 1/(Ym,n+1) as a summation and bounding this summation
by comparing it term-by-term to another summation whose
value is known.

LEMMA 6.3. Let Ym,n denote the number of empty bins in
the(m,n)-occupancy problem. Then,

E
[ 1
Ym,n + 1

]
≤ em/n

n
.

Proof. Let Pr(m,n) be the probability that exactlyr bins are
empty in the(m,n)-occupancy problem. ThenP0(m,n), the
probability of no empty bin, can be written as the following
summation by the principle of inclusion-exclusion.4

P0(m,n) =
n∑

i=0

(−1)i

(
n

i

)
(1− i

n
)m(6.3)

The probabilityPr(m,n) of exactly r empty bins can be
written in term of the probability of no empty bin in the
(m,n− r)-occupancy problem:

Pr(m,n) =
(

n

r

)
(1− r

n
)mP0(m,n− r).(6.4)

By Equations (6.3) and (6.4),

Pr(m,n) =
n−r∑
i=0

(−1)i

(
n

r, i

)
(1− r + i

n
)m,(6.5)

where
(

n
a,b

)
denotes the multinomial coefficient n!

a! b! (n−a−b)! .
Using Equation (6.5) and the definition of expected value we
have, using the notationE = E[ 1

Ym,n+1 ], n′ = n + 1, and
r′ = r + 1,

E =
n∑

r=0

1
r′

Pr(m,n)(6.6)

=
n∑

r=0

n−r∑
i=0

(−1)i

r′

(
n

r, i

)
(1− r + i

n
)m

=
n∑

r=0

n−r∑
i=0

(−1)i

n′

(
n′

r′, i

)
(1− r + i

n
)m

=
n′∑

r=1

n′−r∑
i=0

(−1)i

n′

(
n′

r, i

)
(1− r + i− 1

n
)m.

It is probably impossible to simplify the above summation as
a closed-form formula. Therefore, we use the following trick:
we consider another summationS with the same number of
terms, and bound the ratio between the corresponding terms
in these two summations. This gives us a bound on the
ratio of the summation in Equation (6.6) to the summationS.

4This can also be derived by dividing a well-known formula for Stirling
numbers of the second kind (see, for example, [7, 27]) bynm.

The value ofS can be bounded easily using a combinatorial
argument.

Consider the(m,n + 1)-occupancy problem. The prob-
ability that at least one bin is empty is the sum, overr =
1, . . . , n + 1, of Pr(m,n + 1). We denote this probability by
S. By Equation (6.5) we have

S =
n+1∑
r=1

n+1−r∑
i=0

(−1)i

(
n + 1
r, i

)
(1− r + i

n + 1
)m ≤ 1,

where the inequality follows from the fact thatS is the prob-
ability of an event. The summation in Equation (6.6) and
S have the same number of terms, and the ratio of each
term in the summation in Equation (6.6) to the correspond-
ing term in S is equal to(1 − r+i−1

n )m/(1 − r+i
n+1 )m =

(n−r−i+1
n )m/(n+1−r−i

n+1 )m = (1 + 1
n )m. Therefore,

E[
1

Ym,n + 1
] =

1
n + 1

(1 +
1
n

)mS <
em/n

n
.

Lemma 6.1 immediately follows from Lemmas 6.2 and 6.3.

7 Conclusion

In this paper we studied the stable marriage game in a
probabilistic setting and showed that dishonesty almost surely
does not benefit a player. This answers a question asked
by Roth and Peranson [23], and generalizes their model to
one where women have arbitrary preferences and each man
independently picks a preference list fromDk, whereD is an
arbitrary distribution. One might hope to further generalize
this model to one where each man picks a random list from
an arbitrary distribution over lists of sizek. However, the
following example shows that Theorem 3.1 is not true in this
model: Assume women1, . . . , n/2 rank men in the order
1, 2, . . . , n, and womenn/2 + 1, . . . , n rank them in the
reverse order. Each man picks a randomi ∈ {1, . . . , n/2},
and with probability1/2 picks preference list(i, i+n/2) and
otherwise picks preference list(i + n/2, i). It is not difficult
to see that with these preferences, at least a1/(8e) fraction of
women will have more than one stable husband.

There are many other interesting open questions sur-
rounding the application of the stable matching algorithm in
centralized markets. For example, in the NRMP market, the
algorithm has to accommodatecouplesamong students who
want to live in the same city. Such couples can submit a joint
preference list ofpairs of hospitals, and the algorithm has to
match them to one of the pairs in their list. With this extra
twist, there are instances for which no stable matching ex-
ist. However, so far every year the NRMP algorithm has been
able to find a stable matching. A theoretical justification for
this (in a reasonable probabilistic model), and a study of in-
centive properties in mechanisms with couples are interesting
open directions for future research. Finally, it would be in-
teresting to find other examples where one can prove that in a
probabilistic setting, truthfulness is probably the best strategy.
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A Number of singles revisited

In this paper, we presented an analysis of the expected
number of players that remain single in a stable marriage
mechanism, and used this lemma to prove the main result
of the paper. However, analyzing the expected number of
singles in a probabilistic setting is of independent interest.
In this appendix, we present a tighter analysis of the expected
number of singles when men have random preference lists of
sizek, and women have random complete preference lists. If,
in addition to the results of this appendix, one can prove that
the number of singles is concentrated around its expectation,
then the bound(ek + k2)/n proven in this paper would be
improved.

LEMMA A.1. Consider a collection ofn men andn women,
each man having a random ordering ofk random women, and
each woman having a random ordering of men. Letpk(n)
denote the probability that in a stable matching with respect
to these preference lists a fixed man remains single. Then
pk(n) ≥ 1

ek2k .

In order to prove the above lemma, we first generalize
the scenario defined in the lemma to a case where there
are m men andn women (m ≤ n). Let pk(m,n) denote
the probability that a fixed man remains unmarried in this
scenario. Therefore,pk(n) = pk(n, n). We start by proving
that if the population of women remains constant, an increase
in the number of men can only make it harder for a man to
find a stable wife.
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LEMMA A.2. For everyk, n,m1, andm2, if m1 ≤ m2 then
pk(m1, n) ≤ pk(m2, n).

Proof. It is sufficient to prove that for everyk, n, and m,
pk(m,n) ≤ pk(m + 1, n). Consider a fixed man, Bert, in the
scenario where there arem+1 men. We want to compute the
probability that after running the men-proposing algorithm,
Bert remains single. By Theorem B we know that the order
of proposals does not affect the outcome of the algorithm.
Therefore, we can assume that one of them + 1 men, say
Ernie, starts proposing to women only after everyone else
is done with his or her proposals. Therefore, by definition,
before Ernie starts proposing, the probability that Bert is
single is preciselypk(m,n). If Bert is married at this point,
then there is a chance that after Ernie starts proposing, he
becomes single, since his wife might leave him and he might
not have anyone else in his list. However, if he is single before
Ernie starts proposing, there is no chance that he gets married
as a result of Ernie’s proposal. Therefore, the probability that
Bert remains single is not less thanpk(m,n).

Proof of Lemma A.1. Let c < 1 be a constant that will be
fixed later. By Lemma A.2, we havepk(n) = pk(n, n) ≥
pk(dcne + 1, n). Therefore, we only need to prove that
pk(dcne + 1, n) ≥ 1

ek2k . The proof of this fact is based on
the following two inequalities:

pk(dcne+ 1, n) ≥
( c

2
(1− pk(dcne, n))

)k

(1.7)

pk(dcne, n) ≤ ck(1.8)

We start by proving inequality (1.8). Consider the
situation where there aredcne men andn women. Fix a
man, say Kermit. The probability that Kermit remains single
is pk(dcne, n). Now, consider the men-proposing algorithm.
Since the order of proposals does not change the outcome,
we can assume that Kermit will wait until everyone else stops
proposing, and then he will make his first proposal. At this
moment, there are at mostdcne − 1 < cn women who are
married, and at least(1− c)n women who are still single. Let
S denote the set of single women at this point. Since Kermit’s
list consists ofk randomly chosen women, the probability that
none of them is inS is at mostck. We claim that if at least
one of the women in Kermit’s list is inS then Kermit will
find a wife. The reason is that every time Kermit makes a
proposal, if he proposes to a single woman, the proposal will
be accepted and the algorithm ends. But if he proposes to a
married woman, he might start a chain of proposals that will
either end at a single woman, in which case Kermit ends up
married, or gets back to Kermit, in which case the set of single
women does not change and we can repeat the same argument
for the next proposal of Kermit until he reaches a woman in
her list that is inS. By this claim, the probability that Kermit
remains single is upper bounded by the probability that none
of the women in her list is inS, which is at mostck.

Now, we prove inequality (1.7). We use a similar
argument: consider a situation where there aredcne + 1
men andn women, and fix a man, say Oscar. We prove
that the probability that Oscar remains single is at least(

c
2 (1− pk(dcne, n))

)k
. To prove this, consider the men-

proposing algorithm, and let everyone other than Oscar make
proposals. After they finish proposing, Oscar enters and
proposes to the first woman in his list. LetM denote the
set of married women at this point. The expected size of
M , is the same as the expected number of married men,
which is(1−pk(dcne, n))dcne by the definition ofpk(m,n).
Therefore, there is a probability ofdcne

n (1 − pk(dcne, n)) ≥
c(1− pk(dcne, n)) that Oscar proposes to a married woman.
A married woman rejects a new proposal with probability
at least1/2. Thus, there is a probability of at leastc

2 (1 −
pk(dcne, n)) that Oscar’s marriage proposal is rejected by
her favorite woman. Similarly, the same can happen for
her second favorite woman, and so on. Therefore, there is
a probability of at least

(
c
2 (1− pk(dcne, n))

)k
that Oscar

faces rejection immediately after each of his proposals, in
which case, he ends up single.

Inequalities 1.7 and 1.8 imply the following

pk(dcne+ 1, n) ≥
( c

2
(1− ck)

)k

.

Choosingc = k−1/k in the above inequality completes
the proof of the lemma. �


