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Abstract

This research proposes and evaluates techniques for se-
lecting predicates for conditional program properties — that
is, implications such asp ⇒ q whose consequent must be
true whenever the predicate is true. Conditional properties
are prevalent in recursive data structures, which behave dif-
ferently in their base and recursive cases, in programs that
contain branches, in programs that fail only on some inputs,
and in many other situations. The experimental context of
the research is dynamic detection of likely program invari-
ants, but the ideas are applicable to other domains.

Trying every possible predicate for conditional proper-
ties is computationally infeasible and yields too many un-
desirable properties. This paper compares four policies for
selecting predicates: procedure return analysis, code con-
ditionals, clustering, and random selection. It also shows
how to improve predicates via iterated analysis. An experi-
mental evaluation demonstrates that the techniques improve
performance on two tasks: statically proving the absence of
run-time errors with a theorem-prover, and separating faulty
from correct executions of erroneous programs.

1 Introduction

The goal of program analysis is to determine facts about
a program. The facts are presented to a user, depended on
by a transformation, or used to aid another analysis. The
properties frequently take the form of logical formulae that
are true at a particular program point or points.

The usefulness of a program analysis depends on what
properties it can report. A major challenge is increasing the
grammar of a program analysis without making the analy-
sis unreasonably more expensive and without degrading the
quality of the output, when measured by human or machine
users of the output.

This paper investigates techniques for expanding the out-
put grammar of a program analysis to include implications
of the forma ⇒ b. Disjunctions such asa ∨ b are a spe-
cial case of implications, since(a ⇒ b) ≡ (¬a ∨ b). Our

implementation and experimental evaluation are for a spe-
cific dynamic program analysis that, given program execu-
tions, produces likely invariants as output. The base analy-
sis reports properties such as preconditions, postconditions,
and object invariants that are unconditionally true over a test
suite. (Section 2.3 describes the technique.)

A conditional property is one whose consequent is
not universally true, but is true when the predicate is
true. (Equivalently, the consequent is false only when
the predicate is false.) For instance, the local invariant
over a noden of a sorted binary tree,(n.left .value ≤
n.value) ∧ (n.right .value ≥ n.value), is true unless one
of n, n.left, or n.right is null. Conditional properties are
particularly important in recursive data structures, where
different properties typically hold in the base case and the
recursive case. The predicates are also useful in other do-
mains. For instance, it can be challenging to select predi-
cates for predicate abstraction [BMMR01]. A related con-
text is determining whether to discard information at join
points in an abstract interpretation such as a dataflow anal-
ysis.

Extending an analysis to check implications is trivial.
However, it is infeasible for a dynamic analysis to check
a ⇒ b for all propertiesa andb that the base analysis can
produce. One reason is runtime cost: the change squares
the number of potential properties that must be checked. A
more serious objection concerns output accuracy. Checking
(say) 100 times as many properties is likely to increase the
number of false positives by a factor of 100. This is accept-
able only if the number of true positives is also increased
by a factor of 100, which is unlikely. False positives in-
clude properties that are true over the inputs but are not true
in general. In the context of interaction with humans, false
positives also include true properties that are not useful for
the user’s current task.

Since it is infeasible to checka ⇒ b for everya and
b, the program analysis must restrict the implications that
it checks. We propose to do so by restricting what proper-
ties are used for the predicatea, while permittingb to range
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over all properties reportable by the analysis. We usesplit-
ting conditionsto partition the data under analysis, and then
combine separate analysis results to create implications or
conditional properties. Splitting conditions limit the predi-
cates that are considered, but predicates that are not splitting
conditions may still appear. We also present a technique that
leverages the base analysis to refine imprecise predicates via
an iterated analysis.

This paper presents four policies (detailed in Section 3)
for selecting predicates for implications: procedure return
analysis; code conditionals; clustering; and random selec-
tion. The last two, which performed best in our experimen-
tal evaluation, are dynamic analyses that examine program
executions rather than program text; the second one is static;
and the first is a hybrid. Dynamic analyses can produce in-
formation (predicates) about program behavior that is not
apparent from the program text — for instance, general alias
analysis remains beyond the state of the art, but runtime be-
havior is easy to observe. Also, the internal structure of the
source code does not effect the dynamic policies. It also
enables them to work on programs for which source code
is not available, so long as the underlying program analysis
does not require source code.

We evaluated the four policies in two different ways.
First, we compared the accuracy of the produced proper-
ties, where accuracy is measured by a program verification
task (Section 4.1); the policies produced implications that
reduced human effort by 40%. Second, we determined how
well each of the policy choices exposes errors (Section 4.2);
12% of the implications directly reflected differences due to
faulty behavior, even without foreknowledge of the faults.

The remainder of this paper is organized as follows. Sec-
tion 2 proposes mechanisms for detecting and refining im-
plications. Section 3 describes the four policies that deter-
mine which implications will be computed, and Section 4
evaluates them. Section 5 discusses related work, and Sec-
tion 6 recaps our contributions.

2 Detecting implications

Figure 1 shows the mechanism for creation of implica-
tions. Rather than directly testing specifica ⇒ b invariants,
the analysis splits the input data into two mutually exhaus-
tive parts based on a client-supplied predicate, which we
call a splitting condition. The splitting conditions are not
necessarily the same as the implication predicates (see Sec-
tion 2.1). This paper focuses on automating the selection of
splitting conditions, which are analogous to the predicates
of predicate abstraction.

After the data is split into two parts, the base program
analysis is performed to detect (non-implication) properties
in each subset of the data. Finally, implications are gener-
ated from the separately-computed properties, if possible.

1. Split the data into parts

x=-9, y=3
x= 2, y=4
x= 0, y=1
x=-1, y=.5
x=-7, y=8
x= 4, y=16

?

x even?´
´́

Q
QQ

Q
QQ

´
´́

?

yes

x=2, y=4
x=0, y=1
x=4, y=16

?

no

x=-9, y=3
x=-1, y=.5
x=-7, y=8

2. Compute properties
over each subset of data

x even
x ≥ 0
y = 2x

y > 0

x odd
x < 0
y > 0

3. Compare results,
produce implications

x even ⇔ x ≥ 0
x even ⇒ y = 2x

x ≥ 0 ⇒ y = 2x

Figure 1. Mechanism for creation of implications. In the figure,
the analysis is a dynamic one that operates over program traces.
Figure 2 gives the details of the third step.

// S1 andS2 are sets of properties resulting from
// analysis of partitions of the data.
procedure CREATE-IMPLICATIONS(S1, S2)

for all p1 ∈ S1 do
if ∃p2 ∈ S2 such thatp1 ⇒ ¬p2 andp2 ⇒ ¬p1 then

// p1 andp2 are mutually exclusive
for all p′ ∈ (S1 − S2 − {p1}) do

output “p1 ⇒ p′”

Figure 2. Pseudocode for creation of implications from properties
over partitions of the data. (In our experiments, the underlying
data is be partitioned into two sets of executions; other analyses
might partition paths or other code artifacts.) Figure 3 shows an
example of the procedure’s input and output.

If the splitting condition is poorly chosen, or if no implica-
tions hold over the data, then the same properties are com-
puted over each subset of the data, and no implications are
reported.

Figure 2 gives pseudocode for creation of implications
from properties over subsets of the data, which is the third
step of Figure 1. TheCREATE-IMPLICATIONS routine is
run twice, swapping the arguments, and then the results are
simplified according to the rules of Boolean logic. Figures 1
and 3 give concrete examples of the algorithm’s behavior.

Each mutually exclusive property implies everything
else true for its own subset of the data. (This is true only
because the two subsets are mutually exhaustive. For in-
stance, given a mechanism that generates three data sub-
sets inducing property sets{a, b}, {¬a,¬b}, {a,¬b}, it is
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Properties Implications Simplified

S1

a
b
c
d
e

S2

¬a
¬b
c
f

a ⇒ b
a ⇒ d
a ⇒ e
b ⇒ a
b ⇒ d
b ⇒ e

¬a ⇒ ¬b
¬a ⇒ f
¬b ⇒ ¬a
¬b ⇒ f

a ⇔ b
a ⇒ d
a ⇒ e
¬a ⇒ f

Figure 3. Creation of implications from properties over subsets of
the data. The left portion of the figure showsS1 andS2, sets of
properties over two subsets of the data; these subsets resulted from
some splitting condition, which is not shown. The middle portion
shows all implications that are output by two calls to theCREATE-
IMPLICATIONS routine of Figure 2;c appears unconditionally, so
does not appear in any implication. The right portion shows the
implications after logical simplification.

not valid to examine only the first two subsets of the data
and to conclude thata ⇒ b.) The algorithm does not re-
port self-implications or any universally true property as the
consequent of an implication, since the universal property
appears unconditionally. In other words, ifc is universally
true, there is no sense outputting “a ⇒ c” in addition to “c”.

2.1 Splitting conditions and predicates

The left-hand-sides of implications resulting from the
above procedure may differ from the splitting conditions
used to create the subsets of the data. Some splitting con-
ditions may not be left-hand-sides, and some non-splitting-
conditions may become left-hand-sides.

Any properties detected in the subsets of the data — not
just splitting conditions — may appear as implication pred-
icates; for example,x ≥ 0 ⇒ y = 2x in Figure 1. This is
advantageous when the splitting condition is not reported
(for instance, is not expressible in the underlying analysis);
it permits strengthening or refining the splitting condition
into a simpler or more exact predicate; and it enables re-
porting more implications than if predicates were limited to
pre-specified splitting conditions.

In practice, the splitting condition does appear as a left-
hand-side, because it is guaranteed to be true of one subset
of the data (and likewise for its negation). However, there
are three reasons that the splitting condition (or its negation)
might not be reported in a subset of the data.

1. The splitting condition may be inexpressible in the
analysis tool’s output grammar. For example, the
Daikon invariant detector (Section 2.3), which we
used in our experimental evaluation, allows as a
splitting condition any Java boolean expression, in-
cluding program-specific declarations and calls to li-
braries. The Daikon implementation permits inex-

Properties

Program

analysis


Input data

Splitting

policy


Augmented

input data


Initial

splits


Extract

rhs


Splitting

conditions


Figure 4. Producing splitting conditions via iterated analysis. The
final splitting conditions make no mention of augmentations, if
any, to the data traces. The final splitting conditions are used as
shown in Figure 6.

pressible splitting conditions to be passed through as
implication predicates. However, those inexpressible
invariants are usually beyond the capabilities of other
tools such as static checkers (see Section 4.1), so we
omit them in our experiments.

2. A stronger condition may be detected; the weaker, im-
plied property need not be reported.

3. The splitting condition may not be statistically justi-
fied. A dynamic or stochastic analysis may use statis-
tical tests to avoid overfitting based on too little input
data. This can occur, for example, if one of the subsets
is very small. Such statistical suppression is relatively
infrequent, prevents many false positives, and rarely
reduces the usefulness of the result [ECGN00].

2.2 Refining splitting conditions

A splitting policy may propose a good but imperfect par-
tition of the data that does not precisely match true differ-
ences of behavior. Or, a splitting policy may use a (possibly
costly) external analysis or other information that is not typ-
ically available in the program trace or is hard for people to
understand. We propose a two-pass process that performs
program analysis twice — the first time to produce a refined
set of splitting conditions, and the second time to output im-
plications — to correct both problems. The refined splitting
conditions are the right-hand-sides (consequents) of the im-
plications discovered in the first pass; see Figure 4. This
approach has two benefits.

First, the two-pass process produces a set of splitting
conditions in terms of program quantities. They are human-
readable, easing inspection and editing, and they can be
reused during other analysis steps.

Second, the first program analysis pass helps to refine the
initial splitting conditions. Statistical or inexact techniques
may not partition the data exactly as desired. However, as
long as at least one subset induces one of the desired proper-
ties, the first program analysis pass can leverage this into the
desired splitting condition. If the original splitting condition
produces the desired grouping, then the additional pass does
no harm.

As a simple example, consider Figure 5. Suppose that
the4 points have propertiesnumSides = 3 andx < 0, and
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Figure 5. Refinement of initial splits via an extra step of pro-
gram analysis. The initial subsets approximate, but do not ex-
actly match, the natural division in the data (between triangles and
squares, atx = 0). An extra program analysis step produces the
desired splitting condition.

the2 points have propertiesnumSides = 4 andx > 0. The
initial splitting condition (displayed as two subsets) nearly,
but not exactly, matches the true separation between behav-
iors. The first pass, using the subsets as the splitting con-
dition, would produce “subset = 1 ⇒ numSides = 3”
and “subset = 1 ⇒ x < 0”. The refined splitting condi-
tions arenumSides = 3 andx < 0. The second program
analysis pass yields the desired properties: “(x > 0) ⇒
(numSides = 4)” and “x < 0 ⇒ (numSides = 3)”.
The clustering policy (Section 3.3) uses this two-pass strat-
egy directly, and the random selection policy (Section 3.4)
relies on a similar refinement of an imperfect initial data
subsetting.

2.3 Background: Dynamic invariant detection

This section briefly describes dynamic detection of likely
program invariants [Ern00, ECGN01], which we use in our
experimental evaluation of predicate selection. The tech-
niques of this paper should be applicable to other static
and dynamic program analyses as well. The experiments
in this paper use the Daikon implementation, which reports
representation invariants and procedure preconditions and
postconditions. The techniques of this paper for producing
implications are publicly available in the Daikon distribu-
tion (http://pag.lcs.mit.edu/daikon ) and have
been successfully used for several years.

We only briefly explain dynamic detection of likely
invariants — enough to appreciate the experiments — but
full details may be found elsewhere [ECGN00, Ern00,
ECGN01].

Dynamic invariant detection discovers likely invariants
from program executions by instrumenting1 the target pro-

1The instrumentation may be over source code, over object code, or
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Original

program


Test suite


Run
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database
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Figure 6. Architecture of the Daikon tool for dynamic invariant
detection. The “splitting conditions” input is optional and enables
detection of implications of the form “a ⇒ b” (see Section 2).
This paper proposes and evaluates techniques for selecting split-
ting conditions.

gram to trace the variables of interest, running the instru-
mented program over a test suite, and inferring invariants
over the instrumented values (Figure 6).

The inference step creates many potential invariants (es-
sentially, all instantiations of a set of templates), then tests
each one against the variable values captured at the instru-
mentation points. A potential invariant is checked by ex-
amining each sample (i.e., tuple of values for the variables
being tested) in turn. As soon as a sample not satisfying the
invariant is encountered, that invariant is known not to hold
and is not checked for any subsequent samples. Because
false invariants tend to be falsified quickly, the cost of de-
tecting invariants tends to be proportional to the number of
invariants discovered. All the invariants are inexpensive to
test and do not require full-fledged theorem-proving.

The invariant templates include about three dozen prop-
erties over scalar variables (e.g.,x ≤ y, z = ax + by + c)
and collections (e.g.,mylist is sorted, x ∈ myset). Statisti-
cal and other techniques further improve the system’s per-
formance. As with other dynamic approaches such as test-
ing and profiling, the accuracy of the inferred invariants de-
pends in part on the quality and completeness of the test
cases.

3 Policies for selecting predicates

We have reduced the problem of detecting predicates to
that of selecting (approximate) splitting conditions. This
section describes four policies for detecting splitting con-
ditions that we experimentally evaluated: procedure return
analysis, code conditionals, clustering, and random selec-
tion.

3.1 Procedure return analysis

This section describes a simple splitting policy based on
two dynamic checks of procedure returns. The first check

performed by a run-time system. For example, of the six Java front ends
for Daikon of which we are aware, two fall into each category. The ex-
periments reported in this paper used source code instrumentation, and
required no modification or enhancement of the instrumenter.
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splits data based on the return site. If a procedure has mul-
tiple return statements, then it is likely that they exhibit
different behaviors: one may be a normal case and the other
may be an exceptional case, a fast-path computation, a base
case, or different in some other manner. The second check
splits data based on boolean return values, separating cases
for which a procedure returns true from those for which it
returns false.

3.2 Static analysis for code conditionals

The code conditional policy is a simple static analysis
that selects each boolean condition used in the program (as
the test of aif , while , or for statement, or as the body
of a pure boolean member function) as a splitting condition.

The rationale for this approach is that if the programmer
considered a condition worth testing, then it is likely to be
relevant to the problem domain. Furthermore, if a test can
affect the implementation, then that condition may also af-
fect the externally visible behavior.

The Daikon implementation permits splitting conditions
to be associated with a single program point (such as a pro-
cedure entry or exit) or to be used at all program points that
contain variables of the same name and type. Our experi-
ments use the latter option. For instance, a condition might
always be relevant to the program’s state, but might only be
statically checked in one routine. Other splitting policies
also benefit from such cross-fertilization of program points.

3.3 Clustering

Cluster analysis, or clustering [JMF99], is a multivariate
analysis technique that creates groups, or clusters, of self-
similar datapoints. Clustering aims to partition datapoints
into clusters that are internally homogeneous (members of
the same group are similar to one another) and externally
heterogeneous (members of different groups are different
from one another). Data splitting shares these same goals.

As described in Section 2.2 and illustrated in Figure 4,
the clustering policy uses a two-pass algorithm to refine its
inherently approximate results.

Clustering operates on points in ann-dimensional space.
Each point is a single program point execution (such as a
procedure entry), and each dimension represents a scalar
variable in scope at that program point. We applied cluster-
ing to each program point individually. Before performing
clustering, we normalized the data so that each dimension
has a mean of 0 and a standard deviation of 1. This ensures
that large differences in some attributes (such as hash codes
or floating-point values) do not swamp smaller differences
in other attributes (such as booleans).

The experiments reported in this paper use x-means clus-
tering [PM00], which automatically selects an appropriate
number of clusters. We repeated the experiments with k-
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Figure 7. The randomized algorithm for choosing splitting condi-
tions. The technique outputs each invariant that is detected over
a randomly-chosen subset of the data, but is not detected over the
whole data. The “detect invariants” steps are non-conditional in-
variant detection.
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Figure 8. Likelihood of finding an arbitrary split via random se-
lection. s is the size of each randomly-chosen subset, andr is the
number of such subsets.

means and hierarchical clustering techniques; the results
differed little [Dod02].

3.4 Random selection

Figure 7 shows a randomized analysis for selecting split-
ting conditions. First, selectr different subsets of the data,
each of sizes, and perform program analysis over each sub-
set. Then, use any property detected in one of the subsets,
but not detected in the full data, as a splitting condition.

As with the clustering technique, the randomly-selected
subsets of the data need not perfectly separate the data. Sup-
pose that some property holds in a fractionf < 1 of the
data. It will never be detected by non-conditional program
analysis. However, if one of the randomly-selected subsets
of the data happens to contain only datapoints where the
property holds, then the condition will be detected (and re-
detected when the splitting conditions are used in program
analysis).

Figure 8 shows how likely a property is to be detected by
this technique, for several values ofs andr. The property
holds in alls elements of some subset with probabilityp1 =
fs. Thus, the property is detected with probabilityp1 on
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each trial for a given subset of sizes. The negation holds
with probabilityp2 = (1−f)s. The property or its negation
holds on at least one of the subsets with probability1−(1−
p1)r + 1− (1− p2)r , which is graphed in Figure 8.

The random selection technique is most effective for un-
balanced data; whenf is near .5, it is likely that both an ex-
ample and a counterexample appears in each subset of size
s. We believe that many interesting properties of data are
at least moderately unbalanced. For example, the base case
appears infrequently for data structures such as linked lists;
unusual conditions or special-case code paths tend to be ex-
ecuted only occasionally; and the errors that are most diffi-
cult to identify, reproduce, and track down manifest them-
selves only rarely.

The likelihood of detecting a (conditional) property can
be improved by increasingr or by reducings. The danger
of increasingr is that work linearly increases withr. The
danger of reducings is that the smaller the subset, the more
likely that any resulting properties overfit the small sample.
(By contrast, increasings makes it less likely that a prop-
erty holds over an entire size-s subset.) We choses = 10
andr = 20 for our experiments; informal experimentation
and graphs such as Figure 8 had suggested that these values
were reasonable. We did not attempt to optimize them, so
other values may perform even better, or may be better in
specific domains.

An example illustrates the efficacy of this technique. Our
first experiment with random splitting applied it to the well-
known water jug problem. Given two water jugs, one hold-
ing (say) exactly 3 gallons and the other holding (say) ex-
actly 5 gallons, and neither of which has any calibrations,
how can you fill, empty, and pour water from one jug to the
other in order to leave exactly 4 gallons in one of the jugs?
We hoped to obtain properties about the insolubility of the
problem when the two jugs have sizes that are not relatively
prime. In addition, we learned that minimal-length solu-
tions have either one step (the goal size is the size of one of
the jugs) or an even number of steps (odd-numbered steps
fill or empty a jug, and even-numbered steps pour as much
of a jug as possible into the other jug). We were not aware
of this non-obvious property before using random splitting.

4 Evaluation
We evaluated Section 3’s four policies for selecting split-

ting conditions — and thus, for computing implications —
in two different ways. The first experimental evaluation
measured the accuracy of program analysis results for a pro-
gram verification task (Section 4.1). The second experimen-
tal evaluation measured how well the implications indicated
faulty behavior (Section 4.2).

Both tasks are instances of information retrieval [Sal68,
vR79], so we compute the standardprecision and recall
measures. Suppose that we have a goal set of results and

a reported set of results; then the matching set is the inter-
section of the goal and reported sets. Precision, a measure
of correctness, is defined as|matching|

|reported| . Recall, a measure

of completeness, is defined as|matching|
|goal| . Both measures are

always between 0 and 1, inclusive.
Implications that are not in the matching set are still cor-

rect statements about the program’s conditional behavior;
these properties simply do not relate to the goal set. Each
task induces a different goal set, to which different proper-
ties are relevant, so some imprecision is inevitable.

4.1 Static checking

The static checking experiment measures how much a
programmer’s task in verifying a program is eased by the
availability of conditional properties. Adding implications
reduced human effort by 40% on average, and in some cases
eliminated it entirely.

The programmer task is to change a given (automati-
cally generated) set of program properties so that it is self-
consistent and guarantees lack of null pointer dereferences,
array bounds overruns, and type cast errors. The amount of
change is a measure of human effort.

The experiment uses the ESC/Java static checker
[FLL+02] to verify lack of runtime errors. ESC/Java issues
warnings about potential run-time errors and about annota-
tions that cannot be verified. Like the Houdini annotation
assistant [FL01], Daikon can automatically insert its output
into programs in the form of ESC/Java annotations, which
are similar in flavor toassert statements.

Daikon’s output may not be completely verifiable by
ESC/Java. Verification may require removal of certain an-
notations that are not verifiable, either because they are not
universally true or because they are beyond the checker’s
capabilities. Verification may also require addition of miss-
ing annotations, when those missing annotations are neces-
sary for the correctness proof or for verification of other
necessary annotations. People find eliminating undesir-
able annotations easy but adding new ones hard (see Sec-
tion 4.1.1). Therefore, the complement of recall — the num-
ber of missing properties — is the best measure of how
much work a human would have to perform in order to ver-
ify the lack of run-time errors in the code.

We analyzed the Java programs listed in Figure 9.
DisjSets , StackAr , andQueueAr come from a data
structures textbook [Wei99];Vector is part of the Java
standard library; and the remaining programs are solutions
to assignments in a programming course at MIT. Each pro-
gram verification attempt included client code (not counted
in the size measures of Figure 9) to ensure that the verified
properties also satisfied their intended specification. For
each program and each set of initial annotations, we chose
a goal set by hand [NE02a]. There is no unique verifiable
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Program size No implications Return Static Cluster Random
Program LOC NCNB Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall
FixedSizeSet 76 28 1.00 0.86 1.00 0.86 1.00 0.86 1.00 0.86 1.00 0.86
DisjSets 75 29 0.82 1.00 1.00 0.97 1.00 1.00 1.00 0.94 0.80 0.98
StackAr 114 50 1.00 0.90 1.00 1.00 0.95 1.00 0.78 1.00 0.95 1.00
QueueAr 116 56 0.92 0.71 0.98 0.78 0.89 0.84 0.62 0.89 0.77 0.91
Graph 180 99 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00 0.80 1.00
GeoSegment 269 116 1.00 1.00 1.00 1.00 1.00 1.00 0.94 1.00 0.73 1.00
RatNum 276 139 0.93 1.00 0.91 1.00 1.00 1.00 0.72 1.00 0.50 1.00
StreetNumberSet 303 201 0.82 0.95 0.77 0.95 0.77 0.96 0.77 0.96 0.83 0.89
Vector 536 202 0.96 0.95 0.99 0.95 0.76 0.98 0.71 0.97 0.81 0.97
RatPoly 853 498 0.81 0.97 0.67 0.95 0.71 0.96 0.68 0.96 0.79 0.95
Total 4886 2451 0.91 0.93 0.91 0.95 0.89 0.96 0.80 0.96 0.80 0.96
Missing 0.09 0.07 0.09 0.05 0.11 0.04 0.20 0.04 0.20 0.04

Figure 9. Invariants detected by Daikon and verified by ESC/Java, using four policies for selecting splitting conditions (or using none).
“LOC” is the total lines of code. “NCNB” is the non-comment, non-blank lines of code. “Prec” is the precision of the reported invariants,
the ratio of verifiable to verifiable plus unverifiable invariants. “Recall” is the recall of the reported invariants, the ratio of verifiable to
verifiable plus missing. “Missing” indicates the overall missing precision or recall. The most important measure is the missing recall (in
bold): it is the most accurate measure of human effort, since it indicates how much humans must add to the reported set. By comparison,
removing elements from the set — measured by the complement of precision — is an easy task.

set of annotations, so we chose a verifiable set that we be-
lieved to be closest to the initial annotations (that is, the
analysis output). This gives (an upper bound on) the mini-
mum amount of work a programmer must do, and is a good
approximation of the actual work a programmer would do.

Figure 9 gives the experimental results. Return value
analysis produced the fewest implications, followed by code
conditionals, clustering, and random splitting.

As indicated in the “No implications” column of Fig-
ure 9, even when supplied with no splitting conditions, dy-
namic invariant detection performs well at this task. (All re-
sults were obtained without adding or removing invariants
or otherwise tuning Daikon to the particular set of programs
or to the ESC/Java checker; however, the results suggest
that Daikon is well-matched to ESC/Java’s strengths.) 91%
of the reported properties are verifiable; the other 9% are
true, but their verification either depends on missing prop-
erties or is beyond the capabilities of ESC/Java. Further-
more, 93% of all properties necessary for verification are
already present; for 4 of the programs, no properties at all
need to be added. Therefore, there is little room for im-
provement. Nonetheless, adding implications reduced the
fraction of missing properties by 40% on average (from .07
to .04), and by up to 100%.

As a specific example, consider theQueueAr pro-
gram [Wei99]. The data structure is an array-based Java
implementation of a queue. Its fields are:

Object[] theArray;
int front; // index of head element
int back; // index of tail element
int currentSize; // number of valid elements

After calling enough enqueue commands on aQueueAr

object, the back pointer wraps around to the front of the
array. The front pointer does the same after enough dequeue
commands.

In a user study [NE02b], no users succeeded in writing
correctQueueAr object invariants in one hour, despite be-
ing given a textbook’s description of the implementation,
complete with figures [Wei99]. The most troublesome an-
notations for users were implications, suggesting that ma-
chine help is appropriate for suggesting them.

As indicated in Figure 9, invariant detection without im-
plications found 71% of the necessary annotations. The
missing annotations included the following, among other
similar properties. (For brevity, letsize = currentSize
andlen = theArray.length.)

Properties when the queue is empty
For example,

((size = 0)∧ (front > back)) ⇒ (back = front−1))

(size = 0) ⇒ ∀i
0≤i<len

(theArray[i] = null)

The actual ESC/Java annotation inserted by Daikon in
the second case is as follows; for brevity, we will gen-
erally present logical formulae instead.

/*@ invariant
(currentSize == 0)
==> (\forall int i;

(0 <= i && i <= theArray.length-1)
==> (theArray[i] == null)); */

Properties when the concrete rep is wrapped
For example,

((size > 0) ∧ (front ≤ back))
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⇒ (size = back− front + 1)

((size > 0) ∧ (front > back)
⇒ (size = len + back− front + 1)

Properties over valid/invalid elements These refer to the
array locations logically between thefront and
back indices, or between theback and front in-
dices. For example,

((size > 0) ∧ (front ≤ back))

⇒ ∀i
0≤i<front

(theArray[i] = null)

((size > 0) ∧ (front ≤ back))

⇒ ∀i
back<i<len

(theArray[i] = null)

The random and clustering policies found properties
from all three categories. By contrast, the code conditionals
policy only found the properties in the first category. See
Section 4.3.

4.1.1 Recall vs. precision

Adding implications to the set of properties presented to the
static verifier ESC/Java improved the recall of the properties
(as measured against a verifiable set) but reduced precision.
The drop in precision is due to over-fitting: partitioning the
data leads to more false positives in each subset, particularly
since the test suites were quite small [NE02a].

There are two reasons that reduced precision is not a
problem in practice. First, recall is more important to peo-
ple performing the program verification task. Users can eas-
ily recognize and eliminate undesirable properties [NE02b],
but they have more trouble producing annotations from
scratch — particularly implications, which tend to be the
most difficult invariants for users to write. Therefore,
adding properties may be worthwhile even if precision de-
creases. Two of the implications that decreased the cluster-
ing technique’s precision on theQueueAr program are:

(size ≥ 2) ⇒ theArray[back− 1] 6= null

(front > back) ⇒ (size 6= back)

Humans with modest familiarity with theQueueAr imple-
mentation quickly skipped over these as candidates for aid-
ing the ESC/Java verification.

There is a second reason that lowered precision due to
implications is not a concern: a human can easily augment
the test suite to improve the precision. We augmented three
of the test suites, taking less than one hour for each (and less
than the verification time). The invariant detector and static

No implications Cluster Augmented
Program Prec. Recall Prec. Recall Prec. Recall
StackAr 1.00 0.90 0.78 1.00 1.00 1.00
QueueAr 0.92 0.71 0.62 0.89 0.91 0.93
RatNum 0.93 1.00 0.72 1.00 0.88 1.00
Total 0.95 0.87 0.71 0.96 0.93 0.98
Missing 0.05 0.13 0.29 0.04 0.07 0.02

Figure 10. Augmenting test suites to improve precision for static
verification. The table layout is as in Figure 9.

verifier output, which indicated which properties had been
induced from too little data (such as the ones immediately
above), made it obvious how to improve the test suites. Fig-
ure 10 shows the accuracy (with respect to the program ver-
ification task) of cluster-based splitting with both the origi-
nal and the augmented test suites. Augmentation increased
precision from .71 to .93 and, unexpectedly, increased recall
from .96 to .98. The final recall is a substantial reduction to
2% missing annotations, down from 13% missing annota-
tions when no implications were present: users need to add
less than one sixth as many annotations. Thus, results in
practice (with more reasonable test suites, or with modest
human effort to improve poor ones) may be even better than
indicated by Figure 9.

4.2 Error detection

Our experiment with error detection evaluates implica-
tions based on a methodology for helping to locate program
errors. Errors induce different program behaviors; that is, a
program behaves differently on erroneous runs than on cor-
rect runs. One such difference is that the erroneous run may
exhibit a fault (a deviation from desired behavior). Even if
no fault occurs, the error affects the program’s data struc-
tures or control flow. Our goal is to capture those differ-
ences and present them to a user. As also observed by
other authors [DDLE02, HL02, RKS02, GV03, PRKR03],
the differences may lead programmers to the underlying er-
rors. This is true even if users do no initially know which
of two behaviors is the correct one and which is erroneous:
that distinction is easy to make.

There are two different scenarios in which our tool might
help to locate an error [DDLE02].

Scenario 1. The user knows errors are present, has a
test suite, and knows which test cases are fault-revealing.
A dynamic program analysis can produce properties us-
ing, as a splitting condition, whether a test case is fault-
revealing. The resulting conditional properties capture the
differences between faulty and non-faulty runs and expli-
cate what data structures or variable values underly the
faulty behavior. The analysis’s generalization over multiple
faulty runs spares the user from being distracted by specifics
of any one test case and from personally examining many
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Figure 11. Evaluation of predicates for separating faulty and non-
faulty runs. The goal set is the properties that discriminate between
faulty and non-faulty runs. The reported set is the consequents of
conjectured implications. The intersection between the goal and
reported sets is the matching set.

test cases.
Scenario 2. The user knows errors exist but cannot re-

produce and/or detect faults (and perhaps does not even
know which test cases might yield faults). Alternately, the
user does not know whether errors exist but wishes to be
appraised of evidence of potential errors, for instance to fur-
ther investigate critical code or code that has been flagged
as suspicious by a human or another tool.

In scenario 2, we propose to present the user with a set
of automatically-generated implications that result from dif-
fering behaviors in the target program. We speculate that,
if there are errors in the program, then some of the impli-
cations will reveal the differing behavior, perhaps leading
the user to the error. (Other implications will be irrele-
vant to any errors, even if they are true and useful for other
tasks.) Anecdotal results support the speculation. In many
cases, after examining the invariants but before looking at
the code, we were able to correctly guess the errors. It might
be interesting to test the speculation via a user study. Such a
study is beyond the scope of this paper, and it is not germane
to this section’s main point of testing whether our technique
is able to identify noteworthy differences in behavior. There
are many potential uses for conditional properties other than
debugging.

Our evaluation focuses on scenario 2, because existing
solutions for it are less satisfactory than those for scenario 1.

Figure 11 diagrams our evaluation technique. The goal
set of properties is the ones that would have been created in
scenario 1, in which the data is partitioned based on whether
a test case is fault-revealing. We simulate this by detecting
properties individually on the fault-revealing and non-fault-
revealing tests. The goal set contains all properties detected
on one of those inputs but not on the other.

As a simple example, oneNFL program contained a re-
cursion error, causing faulty output whenever the input was
not in the base case. The goal properties for this program
distinguished between the base case and the recursive case
(and the faulty program also had fewer invariants overall
than correct ones did [ECGN01]). As a second example,
one replace program failed to warn about illegal uses
of the hyphen in regular expressions. On erroneous runs,
properties over the replacement routine were different, in-
cluding relationships between the pre- and post-values of
indices into the pattern.

The reported properties are those resulting from running
the program analysis, augmented by a set of splitting con-
ditions produced by one of the policies in Section 3. Given
the goal and reported sets, we compute precision and recall,
as described at the beginning of Section 4.

We evaluated our technique over eleven different sets
of programs totaling over 137,000 lines of code. Each
set of programs was written to the same specification.
The NFL, Contest , and Azot programs came from
the TopCoder programming competition website (www.
topcoder.com ). These programs were submitted by
contestants; the website published actual submissions and
test cases. The three programs determined how football
scores could be achieved, how elements could be distributed
into bins, and how lines could be drawn to pass through cer-
tain points. We selected 26 submissions at random that con-
tained real errors made by contestants. The TopCoder test
suites are relatively complete, because the contestants aug-
mented them in an effort to disqualify their rivals. About
half of the TopCoder programs contained one error, and
the others contained multiple errors within the same func-
tion. TheRatPoly andCompostiteRoute programs
were written by students in an undergraduate class at MIT
(6.170 Laboratory in Software Engineering). Students im-
plemented a datatype for polynomials with rational coef-
ficients and a set of algorithms for modeling geographi-
cal points and paths. We selected all student submissions
that compiled successfully and failed at least one staff test
case. These programs, too, contained real, naturally occur-
ring errors. The students had a week to complete their as-
signment, unlike the TopCoder competitors who were un-
der time pressure. Most of the student programs contained
multiple, distinct errors in unrelated sections of the code.
The remaining programs were supplied by researchers from
Siemens [HFGO94, RH98] and are commonly used in test-
ing research. Every faulty version of the Siemens programs
has exactly one distinct error. The errors were seeded by hu-
mans, who chose them to be realistic. Theprint tokens
andprint tokens2 programs (and their errors) are un-
related.

Figure 12 summarizes the results of the error detection
experiment. The results indicate that regardless of the split-

9



Program size Return Static Cluster Random
Program Source Ver. LOC NCNB Prec. Recall Prec. Recall Prec. Recall Prec. Recall
NFL TC 10 23 21 0.00 0.00 0.03 0.08 0.03 0.08 0.09 0.37
Contest TC 10 21 17 0.00 0.00 0.19 0.40 0.11 0.23 0.15 0.21
Azot TC 6 18 17 0.00 0.00 0.00 0.00 0.13 0.46 0.12 0.15
RatPoly MIT 32 853 498 0.03 0.00 0.03 0.01 0.07 0.03 0.14 0.09
CompostiteRoute MIT 67 883 319 0.22 0.09 0.22 0.09 0.21 0.47 0.21 0.45
print tokens S 7 703 452 0.00 0.00 0.03 0.13 0.04 0.22 0.04 0.34
print tokens2 S 10 549 379 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
replace S 32 506 456 0.24 0.31 0.14 0.28 0.10 0.42 0.15 0.37
schedule2 S 9 369 280 0.00 0.00 0.20 0.35 0.20 0.35 0.24 0.41
tcas S 41 178 136 0.17 0.24 0.19 0.31 0.12 0.23 0.13 0.40
tot info S 23 556 334 0.00 0.00 0.12 0.27 0.09 0.40 0.03 0.09
Total 247 137015 75115 0.06 0.06 0.10 0.18 0.10 0.26 0.12 0.26

Figure 12. Detection of conditional behavior induced by program errors, compared for four splitting policies. (When no splitting is in
effect, the precision and recall are always zero.) “Ver” is the number of versions of the program. “LOC” is the average total lines of code in
each version. “NCNB” is the average non-comment, non-blank lines of code. “Prec” is the precision of the reported invariants, the ratio of
matching to reported. “Recall” is the recall of the reported invariants, the ratio of matching to goal. In this experiment, precision (in bold)
is the most important measure: it indicates how many of the reported implications indicate erroneous behavior. In cases where precision is
0.00, the experiment did report some implications, but none of them contained consequents in the goal set.

ting policy, the technique is effective. For this experiment,
the precision measurements are the most important. (Low
recall measures are not a concern. Typically an error in-
duces many differences in behavior, and recognizing and
understanding just one of them is sufficient.)

The precision measurements show that on average 6–
12% of the reported properties indicate a difference in be-
havior between succeeding and failing runs. In other words,
a programmer using our methodology with random sam-
pling could expect to examine 8 reported implications be-
fore discovering one that indicates the difference between
correct and erroneous behavior. (The other 7 implications
may be useful for other tasks, but not for error detection.
The Siemens programs and some MIT student programs
contained only one or two faults in a program averaging
617 lines long, so there is a lot of conditional behavior in
the programs that has nothing to do with program faults. In
fact, it represents a significant success that precision is so
high.)

4.3 Comparing policies

Our experiments show that our technique for selecting
predicates for program analysis, along with the four poli-
cies for partitioning the data being analyzed, are success-
ful. The resulting implications substantially eased the task
of program verification and frequently pointed out behavior
induced by errors.

It is natural to ask which of the splitting policies is best:
which one should be used in preference to the others? Un-
fortunately, there is no clear winner: each approach is best
in certain contexts or on certain programs, and overall the
approaches are complementary. This is not surprising: pro-

gramming tasks, and programs themselves, differ enough
that no approach is a panacea. (In some cases, such as er-
ror detection inprint tokens2 , no policy worked well,
and future research is required.) We can draw some general
conclusions, however.

On average, the random selection policy has a slight
edge. This technique has no built-in biases regarding what
sort of behavioral differences may exist, so it can do well
regardless of whether those differences have some obvious
underlying structure. Thanks to eliminating statistically un-
justified properties (often resulting from data sets that are
too small), the technique does not produce an excessive
number of false positives. On the other hand, random se-
lection does not work well when there is a relatively equal
split between behaviors, and random selection cannot take
advantage of structure when it is present (e.g., from source
code).

Clustering is the second-best policy. It looks for struc-
ture in a vector space composed of values from the traces
being analyzed. Fairly often, the structure in that space cor-
responded to real differences in behavior, either for verifi-
able behavior or due to errors. Clustering is less effective
when the behavioral differences do not fall into such clus-
ters in that vector space, however, and there can be prob-
lems with recognizing the correct number of clusters. It is
interesting that the purely dynamic policies, which examine
run-time values but ignore the implementation details of the
source code, perform so well. This suggests that the struc-
ture of useful implications sometimes differs from the sur-
face structure of the program itself; this observation could
have implications for static and dynamic analysis.

The code conditional policy performs only marginally
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worse than the previous two. For the program verification
task, it dominated the other policies, except onQueueAr ,
where it did very poorly. We speculate that the code
conditional policy is well-matched to ESC/Java because
ESC/Java verifies the program source code, and it often
needs to prove conditions having to do with code paths
through conditionals. Furthermore, whereas errors can be
complicated and subtle, ESC/Java is (intentionally) limited
in its capabilities and in its grammar, and is matched to the
sort of code that (some) programmers write in practice. The
poor showing onQueueAr is due at least in part to the
fact that comparisons over variablesfront andback were
crucial to verification, but those variables never appeared in
the same procedure, much less in the same expression. In
other cases, the code conditionals policy was hampered by
the fact that ESC/Java does not permit method calls in an-
notations. Our code conditionals policy partially worked
around this by inlining the bodies of all one-line methods
(i.e., of the form “return expression”), with parameters
appropriately substituted, in each conditional expression.

The procedure return policy performed worse than we
anticipated. Like the code conditionals policy, it is highly
dependent on the particular implementation chosen by the
programmer. In some cases, this worked to its advantage;
for instance, it outperformed all other policies at error de-
tection for thereplace program.

5 Related work
Clustering [JMF99] aims to partition data so as to reflect

distinctions present in the underlying data. It is now widely
used in software engineering as well as in other fields. As
just one example of a use related to our clustering splitting
policy, Podgurski et al [PMM+99] use clustering on exe-
cution profiles (similar to our data traces) to differentiate
among operational executions. This can reduce the cost of
testing. In related work, Dickinson et al [DLP01] use clus-
tering to identify outliers; sampling outlier regions is effec-
tive at detecting failures.

Comparing behavior to look for differences has long
been applied by working programmers; however, both this
research and some related research has found new ways to
apply those ideas to the domain of error detection.

Raz et al [RKS02] used the Daikon implementation (al-
beit without most of the implication techniques discussed
in this paper) to detect anomalies in online data sources.
Hangal and Lam [HL02] used dynamic invariant detection
in conjunction with a checking engine and showed that the
techniques are effective at bug detection. Related ideas re-
garding comparison of properties, but applied in a static
context, were evaluated by Engler et al [ECH+01], who
detected numerous bugs in operating system code by ex-
ploiting the same underlying idea: when behavior is incon-
sistent, then a bug is present, because one of the behaviors

must be incorrect. An automated system can flag such in-
consistencies even in the absence of a specification or other
information that would indicate which of the behaviors is
erroneous.

Groce and Visser [GV03] use dynamic invariant detec-
tion to determine the essence of counterexamples: given a
set of counterexamples, they report the properties that are
true over all of them. These properties (or those that are true
over only succeeding runs) abstract away from the specific
details of individual counterexamples. (This is scenario 1
of Section 4.2.)

6 Conclusion

This paper proposes a technique for improving the qual-
ity of program analysis. The improvement usessplitting
conditionsto partition data under analysis and then to cre-
ate implications or conditional properties. It is computa-
tionally infeasible to consider every possible implication.
Splitting conditions limit the predicates that are considered,
but predicates that are not splitting conditions may still ap-
pear. Concretely, the experimental results show the benefits
for dynamic detection of likely program invariants.

The paper proposes four splitting (data partitioning) poli-
cies that can be used in conjunction with the implication
technique: return value analysis, simple static analysis to
obtain code conditionals, clustering, and random selection.
No policy dominates any other, but on average the latter two
perform best. We provided preliminary explanations of this
behavior.

The paper introduces a two-pass program analysis tech-
nique that refines inexact, statistical, or inexpressible split-
ting conditions into ones that can be applied to arbitrary
runs and understood by humans. This technique leverages
a base program analysis to produce more useful predicates
and implications.

Two separate experimental evaluations confirm the effi-
cacy of our techniques. First, they improve performance on
a program verification task: they reduce the number of miss-
ing properties, which must be devised by a human, by 40%.
Second, we proposed a methodology for detecting differ-
ences in behavior between faulty and non-faulty program
runs, even when the user has not identified which runs are
faulty and which runs are not. Most conditional behavior in
a program results from other aspects of program execution
than errors, but 12% of reported properties directly reflect
errors.
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