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Abstract

In this paper, we present algorithms and lower bounds for the Longest Increasing Subse-
quence (LIS) and Longest Common Subsequence (LCS) problems in the data streaming model.

For the problem of deciding whether the LIS of a given stream of integers drawn from
{1, . . . ,m} has length at least k, we discuss a one-pass streaming algorithm using O(k log m)
space, with update time either O(log k) or O(log log m). For the problem of returning the actual
longest increasing subsequence itself, we give a dlog(1 + 1/ε)e-pass streaming algorithm with
update time O(log k) or O(log log m) that uses space O(k1+ε log m), for any ε > 0. We also
prove a lower bound of Ω(k) on the space required for any streaming algorithm for LIS, even
when the input stream is a permutation of {1, . . . ,m}.

We discuss a simple LIS-based algorithm for LCS, and we also give several lower bounds
on this problem, of which the strongest is the following: when the elements of two n-element
streams are presented in an adversarial order, we need space Ω(n/ρ2) to approximate the length
of their LCS to within a factor of ρ, even when the two streams are permutations of each other.

1 Introduction

Longest increasing and common subsequences. Let S = x1, x2, . . . , xn be a sequence of
n integers. A subsequence of S is a sequence xi1 , xi2 , . . . , xik with i1 < i2 < · · · < ik. Such a
subsequence is said to be increasing if xi1 ≤ xi2 ≤ · · · ≤ xik . In this paper, we consider two
fundamental problems related to subsequences:

• Longest Increasing Subsequence (LIS). Given a sequence S, find a maximum-length
increasing subsequence of S (or find the length of such a subsequence).

• Longest Common Subsequence (LCS). Given two sequences S and T , find a maximum-
length sequence x which is a subsequence of both S and T (or find the length of x).

Both LIS and LCS are fundamental combinatorial questions which have been well-studied in the
computer science community [4, 6, 11, 16, 17, 22, among many others].
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Among a large number of important applications of both of these problems, we highlight a few
that arise in computational biology. The BLAST (Basic Local Alignment Search Tool) [3] database
supports queries of the following form: for a sequence σ of amino acids, for example, what segments
of known proteins have high local similarity to σ? Zhang [25] has proposed filtering the results
of a BLAST query with an approach that uses an LIS algorithm as a black box to assemble the
BLAST information about local similarity into a coherent picture of global similarity. An LIS step
is also part of the MUMmer system for aligning entire genomes [8], and a straightforward LCS
computation gives the value of the optimal alignment of two sequences of DNA [21].

The data streaming model. In the past few years, as we have witnessed the proliferation of
truly massive data sets as diverse as fully sequenced genomes and the World Wide Web, traditional
notions of efficiency have begun to appear inadequate. A polynomial-time algorithm—what is
normally seen as the theoretical holy grail for a problem—may simply not be fast enough when run
on an input like the multi-billion base pairs of the human genome.

The theoretical computer science community has thus begun to explore new models of compu-
tation, with new notions of efficiency, that more realistically capture when an algorithm is “fast
enough.” The data streaming model [15] is one such well-studied model. In this model, an algo-
rithm must make a small number of passes over the input data, processing each input element as
it passes. Once the algorithm has seen an element, it is gone forever; thus we must compute and
store a small amount of useful information about the previously read input. We are interested in
algorithms that use a sublinear amount of additional space. (With a linear amount of space, a
streaming algorithm can simply store the entire input and then run a traditional algorithm.) We
typically aim for a polylogarithmic amount of space and a polylogarithmic amount of processing
time for each element of the input. Ideal data streaming algorithms make only a single pass over
the data, but we are also interested in multipass streaming algorithms, in which the algorithm can
make a small number (typically constant) of passes over the input data.

Our results: LIS and LCS in the data streaming model. In this paper, we study the
difficulty of finding longest increasing subsequences and longest common subsequences in the data
streaming model. We are motivated in our exploration by the fact that LIS and LCS are both
fundamental combinatorial questions; we believe that a solid characterization of the tractability of
basic questions like LIS and LCS will lead to a greater understanding of the power and limitations
of the data streaming model.

One notable obstacle that we face in the LIS problem is that, unlike many problems that have
been previously considered in the streaming model, the LIS of a stream is an essentially global
order-based property. Many of the problems that have been considered in the streaming model—
for example, finding the most frequently occurring items in a stream [7, 9], clustering streaming
data [14], or finding order statistics for a given stream [2, 19]—are entirely independent of the order
of the elements presented in S; permuting the order of the items in the stream does not affect the
correct answers to these questions. The problem of counting inversions in a stream [1]—i.e., the
number of pairs of indices 〈i, j〉 such that i < j but xi > xj—is an inherently order-based problem,
but much more local than that of LIS in the sense that an inversion is a relation between exactly
two items in the stream, whereas an increasing subsequence of length ` is a relation among ` items.

In this sense, the LIS problem is more closely aligned to estimating the histogram of the
stream [12, 13]. However, the solution to the LIS may be incredibly sensitive to small changes
in the data. For instance, consider an LIS that consists primarily of the same repeated value. If
we change the data stream so that many occurences of this value are slightly smaller, it radically
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changes the LIS. Similar notions apply to LCS as well. While this does not preclude efficient
streaming algorithms for LIS or LCS, it does suggest some of the difficulties.

In this paper, we first present positive results on (1) computing the length of the LIS of a
given input stream, and (2) outputting a maximum-length increasing sequence. We give a one-pass
streaming algorithm that uses O(k log m) space to compute the length of the longest increasing
subsequence for a given input stream, where m ≥ max xi is an upper bound on the largest element
in the stream, and k is the length of the LIS. (This algorithm was also discovered independently
by Fredman [11] and again by Bespamyatnikh and Segal [6], though not in the context of the
data streaming model.) Our algorithm maintains values A[1 . . . k′], where A[i] ∈ {1, . . . , m} is the
smallest possible last element of all increasing subsequences of length i in the part of the stream
that has already been read, and k′ is the length of the LIS for the stream so far. As we read each
element, we can update the array A in time O(log k). This algorithm can also be implemented using
van Emde Boas queues or y-fast trees to achieve an update time of O(log log m) [23, 24]. For the
problem of returning the length-k LIS of a given stream, we give a one-pass streaming algorithm
that uses O(k2 log m) space. In the context of multipass streaming algorithms, we reduce the space
requirement to O(k1+ε log m) by using dlog(1 + 1/ε)e passes over the data. This is nearly optimal,
since simply storing the LIS itself requires Ω(k) space.

We also present lower bounds on the LIS problem in the streaming model. In the comparison
model, Fredman [11] has proven that n log n − n log log n + Θ(n) comparisons are necessary and
sufficient to compute the LIS of an n-integer sequence, via a reduction from sorting. To the best
of our knowledge, however, no lower bounds on LIS in the streaming model have been shown
previously. As with many lower bounds on problems in the streaming model, our results are
based upon the well-observed connection between the space required by a streaming algorithm and
communication complexity. Specifically, a space-efficient streaming algorithm A to solve a problem
gives rise to a solution to the corresponding two-party problem with low communication complexity;
one party runs A on the first part of the input, transmits the small state of the algorithm to the
other party, who then continues to run A on the remainder of the input. We prove a lower bound
of Ω(k) for computing the LIS of a stream whenever n = Ω(k2), by giving a reduction from the
Set-Disjointness problem, which is known to have high communication complexity.

For the LCS problem, we discuss a simple LIS-based algorithm requiring O(n log m) space to
compute the LCS of two n-element sequences presented as streams. If we want to compute the LCS
of one n-element reference sequence against any number of test sequences, we can achieve the same
space bound, independent of the number of test sequences. Our main results on LCS, however, are
lower bounds. We prove that, if the two streams are general sequences, then we need Ω(n) space to
ρ-approximate the LCS of two streams of length Ω(n) to within any factor ρ. If the given streams
are n-element permutations, we prove that we need Ω(n/ρ2) space to ρ-approximate the LCS.

2 Algorithms for Longest Increasing Subsequence

We begin by presenting positive results on the LIS problem, both for computing the length of an
LIS, and for actually producing an LIS itself. We use a dynamic-programming style algorithm,
maintaining the last element of the “best” increasing subsequence of length i seen so far, for each
i less than or equal to the length of the LIS seen so far.

The algorithm presented here to calculate the length of the LIS was also discovered indepen-
dently by Fredman [11] and by Bespamyatnikh and Segal [6] in a context other than the data
streaming model; we include the algorithm here because our multipass algorithm to produce the
LIS is an extension of it.
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compute-LIS(X)
1 A[0] := −1
2 A[1] := ∞
3 k′ := 0
4 WHILE there are elements left in the stream X
5 Read in the next element xi from X
6 Find ` such that A[`] ≤ xi < A[` + 1].
7 Set A[` + 1] := xi

8 IF ` + 1 > k′

9 Set k′ := k′ + 1
10 Set A[k′ + 1] := ∞
11 Output k′

Figure 1: Pseudocode to compute the length of the LIS in a given stream X.

2.1 Computing the Length of an LIS

Let S = x1, x2, . . . , xi, . . . be a stream of data, and consider a length-` increasing subsequence
σ = xi1 , xi2 , . . . , xi` of S. Write last(σ) := xi` . Let σi denotes the ith element in a subsequence
σ. For instance, last(σ) := σ|σ|. We say that σ is 〈`, j〉-minimal if last(σ) is minimized over all
length-` increasing subsequences of the substream x1, x2, . . . , xj . We will say that such a σ is an
〈`, j〉-minimal increasing sequence, or simply an 〈`, j〉-MIS.

Our algorithm for computing the length of the LIS is based on maintaining 〈`, j〉-minimal
subsequences for all ` ∈ {1, . . . , k′} as we scan the stream, where k′ is the length of the longest
subsequence in the stream so far. Specifically, the streaming algorithm works as follows: we main-
tain an array A[1 . . . k′], where, after we have scanned the first j elements of the stream, A[`] will
store last(σ) for an 〈`, j〉-MIS σ. The algorithm updates each A[`] as new elements from the stream
arrive, and increases k′ as appropriate. See Figure 1 for the pseudocode.

Lemma 2.1 After i iterations of the while loop in compute-LIS(), we have

A[`] =

{
last(ρ) for ρ an 〈`, i〉-MIS if ` ≤ LIS(x1, . . . , xi).
∞ or uninitialized otherwise

Proof. We proceed by induction on i, after strengthening the stated property by adding the following
to the induction hypothesis:

(∗) A[j] ≤ A[j ′] for all j < j′ such that A[j], A[j ′] are initialized.

For i = 0, the property is vacuously true. For the inductive case, assume the desired properties
were maintained after we read in the element xi−1 from the stream. Now consider the moment at
which we read the next element xi from the stream. Let ` be such that A[`] ≤ xi < A[` + 1], as
in the algorithm. It is clear that only subsequences of length ` + 1 or higher might have a new
smallest last element. That is, xi is only going to affect values in A with indices ` + 1 or higher.

On the other hand, note that xi can only extend a previous increasing subsequence σ if σ ends
with some element σ|σ| ≤ xi. For all such subsequences, σ|σ| ≤ xi < A[` + 1]. Hence by the
induction hypothesis, σ is of length ` or shorter. This implies that the sequence σ ′ = σ, xi is of
length at most ` + 1. Thus xi can only affect values in A with indices ` + 1 or lower.
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Indeed, we now have a new subsequence σ′ of length ` + 1 with xi as the last element. (We can
extend the subsequence of length ` with last element A[`]). So it is necessary and sufficient that
we update A[` + 1]. It is also clear that the new A[j]’s respect the ordering constraint. 2

Theorem 2.2 We can decide whether the LIS of a given stream of integers from {1, . . . , m} has
length at least a given number k, or compute the length k of the LIS of the given stream, with a one-
pass streaming algorithm that uses O(k log m) space and has update time O(log k) or O(log log m).

Proof. By Lemma 2.1, the length is correctly computed by LIS. Clearly, the decision problem can
also be solved with a minor change to the output of this algorithm.

For the space bound, observe that we keep k values in the range {1, . . . , m}, i.e., O(log m) bits
each. The only non-constant step in the update operation is to find the ` such that A[`] ≤ xi <
A[`+1]. This can be done in O(log k) time by binary search; alternatively, we can use a van Emde
Boas queue [23] or y-fast trees [24] to support updates in O(log log m) time. 2

2.2 Finding an LIS

The algorithm described in the previous section only computes the length of the LIS, but does
not find such a sequence. We now present a multipass streaming algorithm that actually finds a
longest increasing subsequence. Specifically, our algorithm finds the length-k LIS of a stream using
O(k1+ε log m) space in dlog(1 + 1/ε)e passes over the data. We first explain the one-pass version
of the algorithm, and then subsequently generalize it to multiple passes.

A one-pass algorithm. Consider an iteration in the decision algorithm in which we update,
say, A[` + 1] to xi. In other words, we have A[`] < xi < A[` + 1]. Then at this point, there
is an increasing subsequence σ of length ` + 1 whose last two elements are A[`] and xi, since xi

appears later in the stream than A[j]. Unfortunately, at some future time the value A[j] may also
be updated, and thus the old value is lost. (Thus, since the new A[j] is later in the stream than xi

was, we can no longer reconstruct the last two elements of σ.)
The straightforward fix for this difficulty is, for each `, to store the subsequence σ` of length

` that ends with A[`]. Thus, the algorithm maintains k sequences σ1, . . . , σk, taking a total of
O(k2 log m) space. When we update A[` + 1] := xi, we reset σ`+1 = σ`, xi. This adds only
a constant amount of extra running time per update, so the update time per element remains
O(log k) or O(log log m), and the space requirement is O(k2 log m).

A two-pass algorithm. We now describe a two-pass algorithm that requires less space. The key
modification is that during the first pass over the data, the algorithm only remembers part of each
σ`, specifically every qth element (for a value of q to be specified below). For each `, we maintain

σ̃` = σ`
1, σ

`
q+1, σ

`
2q+1, . . . , σ

`
b `−2

q
cq+1

, σ`
`

where σ`
` = A[`], as before. The update rule for the first pass of the algorithm is then

σ̃`+1 :=

{
σ̃`, xi if ` ≡ 1 (mod q)
all-but-last(σ̃`), xi otherwise,

where all-but-last(σ̃`) denotes the sequence σ̃` with the last element of the sequence, A[`] = σ`
`,

omitted. Note that the space required for this entire pass is O(k2 log m/q) when the length of the
LIS is k.
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After the first pass is complete, we discard the subsequences σ̃1, . . . , σ̃k−1, freeing a large amount
of space. Thus the only information we retain is the subsequence

σ̃k = σk
1 , σk

q+1, σ
k
2q+1, . . . , σ

k
b k−2

q
cq+1

, σk
k

where σk is a length-k LIS of the input. Write σ̃k = z[1], z[2], . . . , z[b(k − 2)/qc], σk
k .

In the second pass, we want to “fill in the blanks” of the subsequence σ̃k to produce σk.
Specifically, we want to find an increasing subsequence τ ` that starts with z[`] and ends with z[`+1]
for each `. Notice that we can do this sequentially (for one ` at a time), since two consecutive τ
subsequences do not overlap except at the endpoints. Thus each desired subsequence has length
exactly q + 1, and the total space required for the entire second pass is O(q2 log m + k log m).

Overall, the total space required by our algorithm is O(max(k2 log m/q, q2 log m) + k log m).
This is minimized at q = k2/3, giving us a space bound of O(k1+1/3 log m) for two passes.

Generalizing to a p-pass algorithm. We can generalize this idea to a larger number of passes
by computing the τ ` subsequences recursively. As before, in the first pass the algorithm remembers
only every qth element in the subsequence, and discards all stored subsequences except σ̃k. Then
the algorithm uses p − 1 passes to find the roughly k/q subsequences τ 1, τ2, . . . , τ b(k−2)/qc, where
each τ ` has length q.

Let S(k, p) denote the space required by a p-pass algorithm to find a subsequence of length
k. We then have the following recurrence: S(k, p) = max(O(k2 log m/q), S(q, p − 1)) + O(k log m).
Solving the recurrence, we find that the space requirements are optimized at q = k1−1/(2p−1), and
where S(k, p) = O(k1+1/(2p−1) log m).

Theorem 2.3 Fix any ε > 0. For a given k, we can find a length-k increasing subsequence of
a given stream of integers from {1, . . . , m} with a dlog(1 + 1/ε)e-pass streaming algorithm that
uses O(k1+ε log m) space and has update time O(log k) or O(log log m). We can find the longest
increasing subsequence of a stream even when its length k is not known in advance, using the same
number of passes, the same update time, and space O( 1

εk1+ε log m).

Proof. Given ε > 0, we choose p = dlog(1 + 1/ε)e. Then the p-pass algorithm described above uses
space O(k1+ε log m) to compute the LIS of the given stream.

If k is unknown, then we modify the algorithm described above slightly. Define a recursive
sequence by q0 = 1 and qi+1 = qi + q1−ε

i for all i ≥ 0. Then for the first pass only, change the
update rule to the following:

σ̃`+1 :=

{
σ̃`, xi if ` = qi for some i
all-but-last(σ̃`), xi otherwise.

So after the first pass, we have retained the sequence

σ̃k = σk
q0

, σk
q1

, σk
q2

, . . . , σk
qt

, σk
k

where t is the largest index such that qt < k.
By the recursion, the gap between adjacent indices i, i + 1 ≤ t for elements of σk we have

retained is qi+1 − qi = q1−ε
i ≤ k1−ε. In the standard algorithm where k is known in advance, we

also have a gap of k1−ε. So we can resume the standard algorithm from the second pass on, using
the same time and space requirements.
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Now, for the first pass of the algorithm, the update time is identical to the standard algo-
rithm. However, the space used is O(kt log m). We now bound t. To this end, define Iφ =
{ i : 2φ ≤ qi < 2φ+1 }. Let iφ be the smallest index in Iφ. Then for all j ≥ 0, we see qiφ+j ≥
qiφ + jq1−ε

iφ
≥ qiφ + j2φ(1−ε). Hence, |Iφ| ≤ (2φ+1 − 2φ)/2φ(1−ε) ≤ 2φε.

Let I = {i : qi < k}. By definition, t ≤ |I|. From the above, we have

|I| ≤
lg k∑

φ=0

|Iφ| ≤
lg k∑

φ=0

2φε =
kε2ε − 1

2ε − 1
≤ kε2ε

ε ln 2

where the last inequality follows since ex ≥ 1 + x for all x. So the total space used in the first pass
is O(1

εk1+ε log m), as we wanted. 2

3 Lower Bounds for LIS

We now turn our attention to a lower bound on the space required for streaming algorithms solving
the longest increasing subsequence problem. In this section, we prove that Ω(k) bits of storage are
required to decide if the LIS of a stream of N elements has length at least k, for any N = Ω(k2).
Our proof is based on a reduction from the set disjointness problem, which is known to have high
communication complexity:

Definition 3.1 (Set Disjointness) In the Set-Disjointness problem, there are two parties A
and B who wish to solve the following problem. Party A holds an n-bit string sA, and Party B
holds another n-bit string sB. They must decide whether there is at least one ‘1’ in the bitwise-and
sA & sB of sA and sB (i.e., decide if sA and sB both have a ‘1’ in at least one position) while
minimizing the number of bits communicated between the parties.

We will say that sA and sB intersect for a “yes” instance of Set-Disjointness.
Lower bounds for the set disjointness problem are of fundamental importance, and have been

studied extensively (e.g., [5, 18, 20]). The most recent results show that even in the randomized
setting, Set-Disjointness requires a large number of bits of communication:

Proposition 3.2 ([5]) Let δ ∈ (0, 1/4). Any randomized protocol solving the Set-Disjointness

problem with probability at least 1−δ requires at least n
4 (1−2

√
δ) bits of communication, even when

sA and sB both contain exactly n/4 ones. 2

We now reduce Set-Disjointness to the problem of determining if an increasing subsequence
of length

√
N exists in a stream of N elements. This reduction shows that—even if we allow

randomization and some chance of error—deciding whether there is an increasing subsequence of
length k requires Ω(k) space in the streaming model.

Suppose we are given an instance 〈sA, sB〉 of the Set-Disjointness problem, where n := |sA| =
|sB|. We will construct a stream lis-stream(sA, sB) whose longest increasing subsequence has length
n + 1 if and only if 〈sA, sB〉 are non-disjoint. Further, the first half of lis-stream(sA, sB) depends
only on sA, while its second half depends only on sB. With each index i ∈ {1, . . . , n}, we associate
the sequence (n + 1) · (i− 1) + 1, . . . , (n + 1) · i, divided into two parts: the first i integers form the
sequence A-part(i) = (n+1) · (i−1)+1, (n+1) · (i−1)+2, . . . , (n+1) · (i−1)+ i and the remaining
n−i+1 integers form the sequence B-part(i) = (n+1)·(i−1)+i+1, (n+1)·(i−1)+i+2, . . . , (n+1)·i.
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Let lis-stream-A(sA) be the sequence consisting of A-part(i) for every i ∈ {i : sA(i) = 1},
in decreasing order of the index i. Similarly, let lis-stream-B(sB) be the sequence consisting of
B-part(i) for every i ∈ {i : sB(i) = 1}, also listed in decreasing order of the index i. Clearly,
lis-stream-A(sA) (and lis-stream-B(sB), respectively) only depends on sA (sB, respectively). Then
we define the stream lis-stream(sA, sB) to be lis-stream-A(sA) followed by lis-stream-B(sB).

As an example (which we will return to throughout the paper), consider the 9-bit vectors
exA = [0, 1, 0, 1, 1, 0, 0, 0, 0] and exB = [1, 0, 0, 1, 0, 0, 1, 0, 0]. Then n = 9 and

lis-stream(exA, exB) = 41, 42, 43, 44, 45, 31, 32, 33, 34, 11, 12,

68, 69, 70, 35, 36, 37, 38, 39, 40, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Observe the increasing subsequence 31, 32, . . . , 40 of length n + 1 = 10 in this stream.

Lemma 3.3 The vectors sA and sB intersect if and only if LIS(lis-stream(sA, sB)) has length n+1.

Proof. We prove the obvious direction first. If sA(i) = sB(i) = 1 for some particular i, then observe
that lis-stream(sA, sB) contains the increasing subsequence A-part(i) B-part(i) = (n + 1) · (i − 1) +
1, (n + 1) · (i − 1) + 2, . . . , (n + 1) · i which contains n + 1 increasing integers.

For the converse direction, we prove its contrapositive form. Suppose sA and sB do not intersect.
Observe that whenever i < j we have that (1) A-part(i) follows A-part(j) in lis-stream-A(sA), and
(2) the integers in A-part(i) are all smaller than those in A-part(j). Thus any increasing subsequence
within lis-stream-A(sA)—or lis-stream-B(sB), similarly—has length at most n, and can contain only
the integers from A-part(i) for only a single i. Thus the only potential increasing subsequences
of length n + 1 must be subsequences of A-part(i) B-part(j) for some indices i and j so that
sA(i) = sB(j) = 1. (By assumption, then, we must have i 6= j.) Furthermore, unless i < j,
all the integers in A-part(i) are larger than the integers in B-part(j). Thus the longest increasing
subsequence in lis-stream(sA, sB) is of length at most |A-part(i)|+ |B-part(j)| = i+n− j +1 ≤ n. 2

We can improve the construction so that the resulting stream LIS(lis-stream(sA, sB)) is a per-
mutation, i.e., a stream containing each of the numbers of {0, 1, . . . , `} exactly once. We will show
that a suitable ` = Θ(n2) suffices. Our construction is an extension of the above. We modify
lis-stream-A and lis-stream-B as follows: we include the integers from A-part(i) and B-part(i) even
when sA(i) = 0 or sB(i) = 0, but so that only two of these elements can be part of an LIS:

• Let UA = {x : x ∈ A-part(i) for some i such that sA(i) = 0}. Then we define pad-A(sA) to be
the sequence consisting of integers in UA listed in decreasing order, followed by 0. We define
lis-stream-perm-A(SA) to be pad-A(sA) followed by lis-stream-A(sA).

• Similarly, let UB = {x : x ∈ B-part(i) for some i such that sB(i) = 0}. Then we define
pad-B(sB) to be the sequence consisting of (n + 1) · n + 1, followed by the integers in UB

listed in decreasing order. We define lis-stream-perm-B(SB) to be lis-stream-B(sB) followed by
pad-B(sB).

Now define lis-stream-perm(sA, sB) := lis-stream-perm-A(sA) lis-stream-perm-B(sB). This stream
consists of the “missing” elements of sA in decreasing order, followed by 0, then followed by the
“present” elements; then the “present” elements of sB, followed by (n + 1) · n + 1, followed by the
“missing” elements of sB. In our previous example, then,

lis-stream-perm(exA, exB) = 89, · · · , 81, 78, · · · , 71, 67, · · · , 61, 56, · · · , 51, 23, · · · , 21, 1,0,

41, · · · , 45, 31, · · · , 34, 11, 12,

68, · · · , 70, 35, · · · , 40, 2, · · · , 10,
91, 90, 80, 79, 60, · · · , 57, 50, · · · , 46, 30, · · · , 24, 20, . . . , 13.
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One can easily verify that lis-stream-perm(sA, sB) is a permutation of the set {0, . . . , (n+1) ·n+1}.

Lemma 3.4 The vectors sA and sB intersect if and only LIS(lis-stream-perm(sA, sB)) has length
at least n + 3.

Proof. Observe that the prefix of lis-stream-perm(sA, sB) ending with the element 0 is a decreasing
sequence, as is the suffix starting with the element (n+1) ·n+1. Thus any increasing subsequence
of lis-stream-perm(sA, sB) can contain at most one element from each of these segments. Thus the
following sequence must be a longest increasing subsequence of lis-stream-perm(sA, sB): first 0, then
a longest increasing subsequence of lis-stream(sA, sB), then (n + 1) · n + 1. By Lemma 3.3, then,
the length of the longest increasing subsequence of lis-stream-perm(sA, sB) is n+3 if and only if sA

and sB intersect. 2

Theorem 3.5 For any length k and for any N ≥ k · (k − 1) + 2, any streaming algorithm which
decides whether LIS(S) ≥ k for a stream S which is a permutation of {1, . . . , N} with probability at
least 3/4 requires Ω(k) space.

Proof. Suppose that an algorithm A(S) decides with probability at least 3/4 whether stream S,
where |S| = N , contains an increasing subsequence of length k. We show how to solve an instance
〈sA, sB〉 of the Set-Disjointness problem with |sA| = k − 1 = |sB| with probability at least 3/4
by calling A. The stream we consider is

S := N − 1, N − 2, . . . , k · (k − 1) + 2︸ ︷︷ ︸
Extra Numbers

, lis-stream-perm(sA, sB).

Note that, as in the proof of Lemma 3.4, the longest increasing subsequence of S has exactly the
same length as the longest increasing subsequence of lis-stream-perm(sA, sB) since the prepended
elements of S are all larger than those in lis-stream-perm(sA, sB), and are presented in descending
order. Thus, by Lemma 3.4, the LIS of S has length k—and A(S) returns true with probability at
least 3/4—if and only if sA and sB do not intersect.

This immediately implies a lower bound on the space required by A by Proposition 3.2: to
solve the instance 〈sA, sB〉 of the Set-Disjointness problem, Party A simulates the algorithm A
on the stream Extra Numbers, lis-stream-perm-A(sA), then sends all stored information to Party B,
who continues simulating A on the remainder of the stream S. By Proposition 3.2, then, Party A
must transmit at least Ω(k) bits in this protocol, and thus A must use Ω(k) space. 2

4 Longest Common Subsequence

In this section, we turn to the LCS problem. Recall that for LCS we are given two streams S1 and
S2, consisting of n1 and n2 integers, respectively, drawn from the set {1, 2, . . . , m}. Throughout
this section, we consider the adversarial streaming model, in which elements from the two streams
can be presented in any order of interleaving. Specifically, in the lower bounds that we construct
in this section, the algorithm is given access to all of S1 before having access to any of S2.

First, as with all streaming problems, observe that there is a trivial streaming algorithm that
solves LCS using Θ(n1 log m + n2 log m) space: we simply store both streams in their entirety, and
then run a standard (non-streaming) LCS algorithm on the stored sequences. We can give another
algorithmic upper bound for a version of LCS, based upon a simple connection between LIS and
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LCS. Suppose that we are first given one reference sequence R and then given a large number of test
sequences S1,S2, . . . ,Sq; we want to compute the LCS of R and Si for all 1 ≤ i ≤ q. Our streaming
algorithm stores the permutation R as a lookup table, and then, for each Si, runs the LIS algorithm
from Section 2, where we interpret two elements x and y to be in ordered x < y if x appears before y
in R. If these are n-element sequences, then this algorithm requires space O(n log m) total space—
O(n log m) to store R, and O(k log m) = O(n log m) for the LIS computation. Note that this bound
is independent of q.

In the remainder of this section, we present some lower bounds for LCS, again using the Set-

Disjointness problem. We first show an easy lower bound when S1 and S2 are not necessarily
permutations, and then show a more involved bound for exact or approximate computation of the
LCS for permutations.

4.1 Lower Bound on Exact and Approximate LCS for General Sequences

It is straightforward to see that if we allow the streams S1 and S2 not to be permutations of each
other, then the lower bound is trivial, even for approximation:

Theorem 4.1 For any length N and any approximation ratio ρ, any streaming algorithm which ρ-
approximates the LCS of two streams S1,S2 (in adversarial order) each of length N with probability
at least 3/4 requires Ω(N) space, even when the algorithm is presented all of S1 followed by all of
S2.

Proof. Let S be a sequence consisting of sequence S1 followed by sequence S2, and suppose that an
algorithm A(S) decides with probability at least 3/4 whether streams S1 and S2 contain a common
subsequence of length 1. We show how to solve an instance 〈sA, sB〉 of Set-Disjointness with
|sA| = 4N = |sB|, where sA and sB both contain exactly N ones, with probability at least 3/4 by
using A.

Let stream S1 consist of all i such that sA(i) = 1, and let S2 consist of all i such that sB(i) =
1. Thus S1 and S2 have a common subsequence of length 1 if sA and sB have at least one
element in common and of length 0 otherwise. Thus, if A(S) outputs the correct answer within any
approximation ratio, it must distinguish between the 0 case and the length 1 case. This implies the
desired lower bound, since we can solve the Set-Disjointness using A. The first party simulates
A on stream S1, then passes its state to the second party. The second party finishes simulating A
on the rest of S, namely on S2. By Proposition 3.2, this state must therefore use Ω(N) space.

To show that we still require Ω(N) space when one or both of the streams has length strictly
larger than N , we simply add arbitrary new elements to each of the above streams. 2

Although the above construction is for multiplicative approximation, a simple variation also shows
that any data streaming algorithm solving this problem within additive α takes space at least
Ω(N/α); simply repeat each element in the streams 2α times.

4.2 Lower Bound on Exact LCS for Permutations

We now improve the construction to show a lower bound on the space required for an LCS algorithm
even when the two streams S1 and S2 are both permutations of the set {1, . . . , n}.

Given an instance 〈sA, sB〉 of the Set-Disjointness problem where there are exactly n/4 ones
in each sA and sB, we construct two streams as follows:

• lcs-perm-A(sA) consists of the sequence RA followed by the sequence RA, where RA contains
{i : sA(i) = 1} in increasing order of i and RA contains {i : sA(i) = 0} in decreasing order.
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• lcs-perm-B(sB) consists of the sequence RB followed by the sequence RB, where RB contains
{i : sB(i) = 1} in increasing order and RB contains {i : sB(i) = 0} in decreasing order.

Lemma 4.2 The vectors sA and sB intersect if and only if LCS(lcs-perm-A(sA), lcs-perm-B(sB))
has length at least n/2 + 2.

Proof. If sA and sB intersect, then we can construct a common subsequence of lcs-perm-A (sA) and
lcs-perm-B(sB) as follows. First choose the common element from RA and RB. Since sA and sB

intersect, the set {i : sA(i) = sB(i) = 0} must contain at least n/2 + 1 elements, since there are
exactly n/4 ones in each sA and sB. This implies a common subsequence of RA and RB of length
n/2 + 1, and thus an overall common subsequence with total length n/2 + 2.

On the other hand, if A and B have no common element, then none of the elements in RA can
be matched up with RB. Of course, some elements in RA might be matched with elements in RB

(or vice versa), but RA is in increasing order while RB is in decreasing order, so at most one such
element can be matched. Also RA and RB have exactly n/2 common elements, so RA can at best
be matched with at most n/2 elements in RB. Thus LCS(lcs-perm-A(sA), lcs-perm-B(sB)) can have
length at most n/2 + 1. 2

Theorem 4.3 For any length k and for any N ≥ 2k − 4, any streaming algorithm which decides
whether LCS(S1,S2) ≥ k for streams S1,S2 which are permutations of {1, . . . , N} with probability
at least 3/4 requires Ω(k) space.

Proof. The theorem follows analogously to Theorem 4.1 when N = 2k − 4: deciding whether
lcs-perm-A(sA) and lcs-perm-B(sB) have a common subsequence of length N/2 + 2 = k requires
Ω(k) = Ω(N) space, by Lemma 4.2.

For larger N , we pad the streams, as in Theorem 3.5. Add the decreasing sequence N, N −
1, N − 2, . . . , 2k − 4 + 1 to the beginning of lcs-perm-A(sA) and add the increasing sequence 2k −
4 + 1, 2k − 4 + 2, . . . , N to the end of lcs-perm-B(sB). Then any common subsequences of these
extended sequences are either (1) contained entirely in the unextended portions of lcs-perm-A(sA)
and lcs-perm-B(sB), or (2) have length at most one. Then, as before, the LCS has length k if and
only if sA and sB intersect, and thus we require Ω(k) space to compute the LCS. 2

4.3 Lower Bound on Approximating LCS for Permutations

We now present lower bounds for the space required for approximation algorithms for LCS on
permutations. Suppose that ρ is the desired approximation ratio. For each i, we will construct
sequences ρ-approx-A(i,sA) and ρ-approx-B(i,sB) so that the two sequences have a common subse-
quence of length ρ2 if sA(i) = sB(i) = 1, and so that the longest common subsequence has length
at most ρ otherwise. For each i ≤ n, both sequences are of length ρ2, and consist of integers from
{(i − 1) · ρ2 + 1, (i − 1) · ρ2 + 2, . . . , (i − 1) · ρ2 + ρ2}. We define them as follows:

• For sA(i) = 1, define ρ-approx-A(i,sA) to be the increasing sequence (i − 1) · ρ2 + 1, (i − 1) ·
ρ2 + 2, . . . , (i − 1) · ρ2 + ρ2. If sA(i) = 0, then define ρ-approx-A(i,sA) to be the decreasing
sequence (i − 1) · ρ2 + ρ2, (i − 1) · ρ2 + ρ2 − 1, . . . , (i − 1) · ρ2 + 1.

• For sB(i) = 1, define ρ-approx-B(i,sB) to be the increasing sequence (i − 1) · ρ2 + 1, (i − 1) ·
ρ2 + 2, . . . , (i − 1) · ρ2 + ρ2. When sB(i) = 0, we use a more complicated ordering of the ρ2

numbers. Specifically, we use what we call the median sequence σ of these ρ2 numbers so that
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the longest increasing subsequence and the longest decreasing subsequence of σ both have
length exactly ρ. In this case, we define ρ-approx-B(i,sB) to be the sequence

(i − 1) · ρ2 + ρ, (i − 1) · ρ2 + ρ − 1, . . . , (i − 1) · ρ2 + 1,

(i − 1) · ρ2 + 2ρ, (i − 1) · ρ2 + 2ρ − 1, . . . , (i − 1) · ρ2 + ρ + 1,

. . .

(i − 1) · ρ2 + ρ2, (i − 1) · ρ2 + ρ2 − 1, . . . , (i − 1) · ρ2 + (ρ − 1)ρ + 1.

Given an instance 〈sA, sB〉 of the Set-Disjointness problem where there are exactly n/4 ones
in each sA and sB, we construct two streams as follows:

lcs-ρ-approx-perm-A(sA) = ρ-approx-A(1,sA), ρ-approx-A(2,sA), . . . , ρ-approx-A(n,sA) and

lcs-ρ-approx-perm-B(sB) = ρ-approx-B(n,sB), ρ-approx-B(n − 1,sB), . . . , ρ-approx-B(1,sB).

Returning to our example from Section 3 where n = 9, we have

lcs-2-approx-perm-A(exA) = 4, 3, 2, 1, 5, 6, 7, 8, 12, 11, 10, 9, 13, 14, 15, 16, 17, 18, 19, 20,

24, 23, 22, 21, 28, 27, 26, 25, 32, 31, 30, 29, 36, 35, 34, 33.

lcs-2-approx-perm-B(exB) = 34, 33, 36, 35, 30, 29, 32, 31, 25, 26, 27, 28, 22, 21, 24, 23,

18, 17, 20, 19, 13, 14, 15, 16, 10, 9, 12, 11, 6, 5, 8, 7, 1, 2, 3, 4.

Lemma 4.4 If sA and sB intersect, then LCS(lcs-ρ-approx-perm-A(sA), lcs-ρ-approx-perm-B (sB))
has length at least ρ2. If sA and sB do not intersect, then the length of the LCS is at most ρ.

Proof. If sA and sB intersect, say with sA(i) = sB(i) = 1, then we see that ρ-approx-A(i,sA) =
ρ-approx-B(i,sB). Hence the sequence (i− 1) ·ρ2 +1, . . . , i ·ρ2 has length ρ2 and is a subsequence of
both lcs-ρ-approx-perm-A(sA) and lcs-ρ-approx-perm-B(sB). (In our example, 13, 14, 15, 16 is such a
subsequence.)

On the other hand, suppose sA and sB do not intersect. Recall that lcs-ρ-approx-perm-A (sA) lists
the ρ-approx-A(·,sA) in increasing order, while lcs-ρ-approx-perm-B(sB) lists the ρ-approx-B(·,sB) in
decreasing order. Thus any common subsequence can only have numbers that are a subsequence
corresponding to exactly one index i. Since sA and sB do no intersect, we know that for any index
i one of the three following cases holds:

1. sA(i) = 1, sB(i) = 0. Then ρ-approx-A(i,sA) and ρ-approx-B(i,sB) have a longest common
subsequence of length ρ, since one is an increasing sequence while the other is a median
sequence.

2. sA(i) = 0, sB(i) = 1. Then ρ-approx-A(i,sA) and ρ-approx-B(i,sB) have a longest common
subsequence of length 1, since one is a decreasing sequence while the other is an increasing
sequence.

3. sA(i) = 0, sB(i) = 0. Then ρ-approx-A(i,sA) and ρ-approx-B(i,sB) have a longest common
subsequence of length ρ, since one is a decreasing sequence and the other is a median sequence.

Thus the LCS has length at most ρ when sA and sB do not intersect. 2

Theorem 4.5 For any approximation ratio ρ, and for any N , any streaming algorithm which de-
cides whether (i) LCS(S1,S2) ≥ ρ2 or (ii) LCS(S1,S2) ≤ ρ for streams S1,S2 which are permutations
of {1, . . . , N} with probability at least 3/4 requires Ω(N/ρ2) space.
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Proof. As in our previous lower-bound theorems, we can solve an instance of the Set-Disjointness

problem with |sA| = N/ρ2 = |sB| as follows. By Lemma 4.4, deciding whether the constructed
streams lcs-ρ-approx-perm-A(sA) and lcs-ρ-approx-perm-B(sB) have an LCS of length (i) at least
ρ2 or (ii) at most ρ corresponds to deciding whether sA and sB intersect. So a data stream
algorithm A can be used to solve the Set-Disjointness problem. The first party simulates A on
lcs-ρ-approx-perm-A(sA), then passes the state of the algorithm to the second party. The second
party finishes the simulation of A on lcs-ρ-approx-perm-B(sB). Again, by Proposition 3.2, this
implies that we need Ω(N/ρ2) space for this LCS decision procedure. 2

Corollary 4.6 To ρ-approximate the LCS of N -element permutations, we need Ω(N/ρ2) space. 2

5 Conclusion and Future Work

A classic theorem of Erdös and Szekeres follows from an elegant application of the pigeonhole
principle: for any sequence S of n + 1 numbers, there is either an increasing subsequence of S of
length

√
n or a decreasing subsequence of S of length

√
n [10]. One of our original motivations for

looking at the LIS problem was to consider the difficulty of deciding, given a stream S, whether
(1) the length of the LIS of S is at least

√
|S|, (2) the length of the longest decreasing sequence is

at least
√
|S|, or (3) both. To do this, one needs an exact streaming algorithm for LIS; a minor

modification to the median sequence in Section 4 shows that one can have an LIS of length
√

n or
length

√
n − 1 with a longest decreasing subsequence of length

√
n or length

√
n + 1, respectively.

Of course, in the streaming model one is usually interested in approximate algorithms using,
say, polylogarithmic space. Our lower bounds for LCS show that one needs a large amount of
space for any reasonable approximation. However, our lower bounds for the LIS problem say that a
streaming algorithm that distinguishes between an LIS of length k and one of length k +1 requires
Ω(k) space. It is an interesting open question whether one can use a small amount of space to
approximate LIS in the streaming model.
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