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Abstract filters (e.g., tenp > 25° C AND nodeid = 7 AND
This paper presents an algorithm for handling mames of filters in hour _of _day BETWEEN 10 am and 6 pm”).
sensor networks that cannot be expressed usingnplesipredicate. TinyDiffusion [9] is similarly limited to just a few
et where an enire tabie of Sensor-dasaeslimupaire are noeded o Predicates. - Unfortunately, many  condition-based
resolve the filter. We describe and evaluate thakrithms that can monitoring and com_p_llance appllcatlons may have tens to
perform these filters that take advantage of dambdistributed join thousands of conditions that need to be detected and
techniques. Our join-based algorithms are capableuoning in very reported; for example, we have been talking with Intel
'r:fc‘)‘c'it:g Z’:g“:rt;‘ ?&ZQnM{t%agr%'sgézufat;hkifsto;fgﬁg eg‘;er gg;stigf engineers deploying wireless sensornets for condition
thus s’uitable for a wide range of event-detectigplieations that based maintenance in Intel's Chlp fabrication plants who
traditional sensor network database and data tizlteeystems cannot be report that th_ey have tho_usands of sensors s_pread across
used to implement. hundreds of pieces of equipment that are each involved in a

1. Introduction number of different manufacturing processes that are
A widely cited application of sensor networks ésent- characterized by different modes of behavior [10,11].

detection where a large network of nodes is used tt this paper, we present REED, a system for Robust and
identify regions or resources that are experiencing sorfdficient Event Detection in sensor networks that aedses
phenomenon of particular concern to the user. Exampléss limitation, enabling the deployment of sensomoeks
include condition-based maintenande industrial plants for the types of applications described above. REED is
[11], where engineers are concerned with identifyingased on TinyDB, but allows users to express queries that
machines or processes that are in need of repair iBglude complex, time and location varying predicates over
adjustment. Another example Bocess compliancén any number of conditions. The key idea of REED is to
food and drug manufacturing [22], where strict regulatorgtore filter conditions as predicates in tables, thed use a
requirements require companies to certify that thefault tolerant protocol to distribute those tables tigtwout
products did not exceed certain environmental parametd&f€ network. Once these tables have been disseminated,
during processing. A third class of applications is cedter@ach node applies the predicates to its readings by
around homeland security, where shippers are concerr@tecking each tuple of readings it produces against all of
with verifying that their packages and crates were n#de predicates, outputting a list of predicates that the tupl
tampered with in some unsavory manner. satisfies.  This list of satisfying predicates is nthe

A natural approach implementing such systems is to usetéﬂns.mmed out of the network to_lnforr_n t_he user of
existing query-based data collection system for sens%?nd't'ons of interest. By perforn_ung this filtration-
networks. Through queries, a user can ask for the data work,_ REED can dramatically reduce the
or she is interested in without concern for the technicgommunications burden  on _the ”etWOTk _topology,
details of how that data will be retrieved or procdssé especially when there are relatively few satisfyioples,

number of research projects, including Cougar [28 S ig_typically the case when identifying failure_s in
’ ondition-based monitoring and process compliance

) . applications. Reducing communication in this way is
Table 1: Example of a table of predicates used in  yarticylarly important in many industrial monitoring
condition-based monitoring scenarios when relatively high data rate sampling.,(e.g
Condition_type | Time | Temp_thresh] Humid thresh | 100's of Hertz) is required to perform the requisite
1 0pm | >100C S 959 monitoring [7]. Table 1 shows an e>_<amp_le of _the kinds of
tables which we expect to transmit — in this case, the
2 10pm| >110C >90 % filtration predicates vary with time, and include coiudit
3 10pm| >115C >87% on both the temperature and humidity. Our discussions
with various commercial companies (e.g., Honeywet an
ABB) involved in process control suggest that these kinds

advocated a query-based interface to sensornets a?r{ predicates are representative of many sensor-based

several implementations of query systems have been bmf)mtormg deployments in the r(_aal world.
and deployed. The database-savvy reader will have observed that the

Unfortunately, these existing query systems do not provi cgeescrlptlon of table-based predicate matching given above

an efficient way to evaluate the complex predicatesethe éars a great deal of similarity to joins in a dasaba

event-detection applications require — for example, i eii:errig.e folrngSSIc:/}nst?(Ln(eeseo;réZieca?gsrg:éai?losr;isrefjh?); jvc\J/ien
TinyDB [16], queries are limited up to three ConJur]Ct'\/‘?echniques developed in the database community, though

Directed Diffusion [9], and TinyDB [16,17] have



the small memory footprint and lossy and low bandwidth « We describe the REED system and our sensor network
communication in  sensornets requires significant filtration algorithms, which are tailored to provide
alternations to traditional join techniques. Interegtin robustness in the face of network loss and to handle
both TinyDB [16] and Cougar [28] initially eschewed joins  very limited memory resources.

in their query languages as their authors believed joins,
were of limited utility — REED provides an excellent
counter-example to this point of view. In fact, werda
added support joins between external tables and sensor
readings to TinyDB; users can now write queries of the

We provide experimental results showing the
substantial performance advantages that can be
obtained by executing complex filters inside the
sensor network, through evaluation in both simulation
on a real, mote-based sensor network.

form: SELECT s. nodei d, a. condition_type * We discuss a number of variants and optimizations of
FROM sensors AS s, alert table AS a our approach, some of which are motivated by join
WHERE s.tenp > a.tenp_thresh optimizations in traditional databases and others
ﬁmg s th}lmed'_tg >t iaﬁgum d_thresh which we have developed to address the particular
SAVPLE PERI OD 1s properties of sensor networks.

Here, we use TinyDB syntax, whesensor s refers to Before describing the details of our approach, we Igrief
the live sensors readings (produced once per secornds in teview the syntax and semantics of sensor network queries
case.) In REED the exterrall ert _t abl e (similar, for and the capabilities of current generation sensornet
example, to Table 1) will be pushed into the network alorigardware.

with the query. The filter conditions will be evaledtby 1.2. Background: Sensor Networks and Motes

having each node mat_c_h thgensors tuples_ that it sensor networks typically consist of tens to hundrefds
produces with the conditions in the table, with matchebsma”, battery-powered, radio-equipped nodes.  These
producing  tuples of the form nodeid, podes usually have a small, embedded microprocessor,
condi tion_type> which are then transmitted out torynning at a few Mhz, with a small quantity of RAM and a
the user. larger Flash memory. Table 2 summarizes hardware
Because storage on sensor network devices is typidally echaracteristics of the Berkeley mica2 Mote, a popular
premium (e.g., Berkeley motes have just a few kilobytes sensor network hardware platform designed by UC
RAM and half a megabyte of Flash), REED allows thedderkeley and sold commercially by Crossbow Corporation.
predicate tables to be partitioned and stored acrossabev@torage: The limited quantities of memory are of
sensors. It also can transmit just a fragment of thesrticular concern for query processing, as they severel
predicate table into the network, forcing readings which dgmit the sizes of join and other intermediate resaifles.

not have entries in the table to be transmitted ouhef Although future generations of devices will certainlyda
network and filtered externally. ~REED attempts t@&omewhat more RAM, large quantities of RAM are
determine which predicates are most important to send iffroblematic because of their high power consumption.
the network based on historical observations of pregicatNon-volatile flash can make up for RAM shortages to
which commonly are not satisfied. some extent, but flash writes are quite slow (several
We end with a caveat: the purpose of this paper isonot milliseconds per page, with typical pages less than 1 KB)
describe sophisticated signal processing or statiséissd and consume large amounts of energy — almost as much as
algorithms for data filtration. Instead, we focus oe thtransmitting data off of the mote [25].

systems issues related to efficiently propagating Iargleabl e 2: Hardware Attributes of the Mica2 Mote
tables of predicates and evaluating join-like queries over '

them. We consider predicates that are individually ssmpl Attribute Value
consisting of Boolean operations over real numberse MWpProcessor 7Mhz Atmega 128
omit any discussion of more sophisticated predicates thR&dio 38.6 Kbps CC1020
are sometimes needed in the types of monitoring Range: ~100 ft
applications described above. We note, however, that|quaM 4 KB

approach is generalizable to more complex predicates, ffgsh 512 KB

that TinyDB is fully amenable to known techniques fD'Battery 2xAA (2400 mAH)
extending databases via user-defined functions BMdve Power Consumptioh ~15 mA
predicates [26] that have been shown to be viable leep Power Consumptior} ~10 pA

various time-series and signal-based analyses.

1.1. Contributions Sensors:Mica2 motes include a 51-pin expansion slot that
In summary, the major contributions of this work are:  accommodates a number of sensor boards. Commonly
« We show how complex filters can be expressed @yailable sensors can measure light, temperaturediym
tables of conditions, and show that those conditior&ir-pressure, vibration, acceleration, and positioma (v
can be evaluated using relational join-like operations GPS).



Communication: Radio communication tends to be quitetime from the start of each sample interval to ttaet of
lossy — without retransmission, motes drop significarthe next is known as apoch Consider the query:
numbers of packets. At very short ranges, loss rates SELECT nodeid, light, tenp

be as low as 5%; at longer ranges, these rates camtdim FROM sensors

50% or more [27]. Though retransmission can mitigate SAVPLE PERICD 1s FOR 10s

these losses somewhat, nodes can still fail, mowayaor
be subject to radio interference that makes the
temporarily unable to communicate with some or all
their neighbors. Thus, any algorithm that runs inside o

This query specifies that each sensor should report its ow
, light, and temperature readings once per seconetfor t
econds. Thus, each epoch is one second long. Thal virtu
table sensors contains one column for every attribute
sensor n_etw_ork must tolerate and adapt to some degreea\g ilable in the system and one row for every péssib
communication failure. instant in time. The termirtual means that these rows and
TinyOS: Motes run a basic operating system calledolumns are not physically materialized -- only the
TinyOS [9], which provides a suite of software librarfer  attributes and rows referenced in active queries analact

sending and receiving messages, organizing motes into geénerated.
hoc, multihop routing trees, storing data to and fréashf 1.4. Data Collection in TinyDB

and acquiring data from sensors. L . ' _ .
uery processing in the original TinyDB implementation
Power: Because sensors are battery powered, pow,

e = . orks as follows. The query is input on the user’s PC, or
consumption is of utmost concern to application designeis, castation This query is optimized to improve execution

POW‘?r is consumed _by a numb_er of factors; typically, currently, TinyDB only considers the order of selatti
Sensing and communicating domma_lte this cost [16.’2.1]: edicates during optimization (as the existing version does
this paper, we focus on algorithms that minimize, . ynnort joins). Once optimized, the query is tragglat
communication, as any join algorithm that includes a to a sensor-network specific format and injected thto
nodes in a network will pay the same cost for runningey oy via a gateway node. The query is sent to aiésio
sensors. We note that, if careful power managemerutis in the network using a simple broadcast flood (TinyDB

used, the cost of listening to the radio will actuall;(Lle : ; . . :
N s . so implements a form of epidentcery sharingwhich
dominate the cost of transmitting, as sending a rngessg, o qo n%t discuss.) P

takes only a few milliseconds, but the receiver maadrte . .
be on continuously, waiting for a message to arrivé'S the query is propagated, nodes learn about their

TinyDB and TinyOS address this issue by using 3€ighbors and assemble intaauting tree in TinyDB,
technique calledow-power listening20], where receivers tiS_iS implemented using a standard TinyOS service
sample 1 out of everybits on the radio to see if someoneSMilar to what is described in the work by Wetcal [27].

is sending a message; if they detect a messagewtiey Each node in the network picks one node apa_ltentthat

up and begin receiving at full speed; otherwise, thepslel ONe network hop closer to the root than it is. odels

for the remainingc-1 bit times. Senders ensure that ever{gVe! is simply the number of radio hops required for a
message is preceded bykait preamble. In this way, Message it sends to reach the basestation.

receivers never miss a message, but (by sdttiog large As a node produces query answers, it sends them to its
value, e.g., 100) it is possible reduce the cost of listeniparent; in turn, parents forward data to their parentd, unt
by approximately X, while increasing transmission costanswers eventually reach the root. For some queaias (
by onlyk bits'. With appropriately aggressive low-powerin our join implementation), parents will combinedieays
listening, the total number of messages transmitted en tfiom children with local data to partially process der
radio channel dominates power consumption. within the network. The basestation assembles partia
1.3.Background: TinyDB Data Model and Semantics ~ '€Sults from nodes in the network, completes query

._processing, and displays results to the user.
REED adopts the same data model and query semantlcgas g piay

TinyDB. Queries in TinyDB, as in SQL, consist of a

SELECT- FROM WHERE clause supporting selection,2. Applications and Query Classification

projection, and aggregation. REED extends this list @ijven this basic introduction to sensors and TinyDB, we
operators with joins. TinyDB treats data as a singlitet now describe some applications of REED. We use these
(sensor s) with one column per sensor type. Results, oipplications to derive a classification of filter typkeat we

tuples are appended to this table periodically, at welkyill use to motivate the different algorithms we presant
defined intervals that are a parameter of the quergection 3.

specified in theSAMPLE PERI OD clause. The period of 2.1.Query Types

REED extends the query language of TinyDB by allowing
Yin practice, receivers may not be able to switctand off in a single bit tables of filter prEdicateS to appear in the FROM clalmse.
time. In suéh cases, if the switching time of thdio isb bits, we can this section, we show the syntax of several exampleeqnerl

make the preamble*k bits and still obtain a factor df reduction in and describe their basic behavior.
listening costs.




Industrial Process Control. Chemical and industrial some threshold probabiliy or less frequently. Then, we
manufacturing processes often require temperaturein a query which detects these unusual values. For
humidity, and other environmental parameters to renmain éxample, the following query detects outlier temperatures:
a small, fixed range that varies over time [8]. Should the S| ECT s. nodei d, s.tenp

temperature fall outside this range, manufacturers riskFROM sensors AS s, outlier_tenp AS o

costly failures that must be avoided. Thus, they currently WHERE s. t enp

employ a range of wired sensing to avoid such problemsa\p s?'r:_g\é\ﬁﬁg‘ 2‘ Ia?\;vatozremrrg AND o. hi _tenp

[22,10]. Interestingly, companies in this area (e.g., Ghhis query reports all of the readings that are within an
Honeywell, Rockwell, ABB, and others) are aggressivelyytlier range in a given room number. Note that the
pursuing _the use of _mote-llke devices to provide wirelegg;; | er_tenp table may be quite large in this case, but
colnnectlwty, which |§ cheaper and safer than powergfat the selectivity of this query is also low.

solutions as motes don't require expensive wires to . . .

installed and avoid the risks associated with running hig ower S_chedullng. AS a third examhple, consider a set Otf
voltage wires through volatile areas. Of course, foponoorS In aremote environment where power consetvatio
wireless solutions to be cost-effective ' they mustviplé Is of critical importance. To minimize power consumption
many months of battery life as well as equivaleneleof in such scenarios, it is desirable to balance worksacao

information as existing solutions. Thus, the power ang ouP of sensors where each sensor only transmiigfits |

N . : . reading some small fraction of the time. We can de thi
communications eff|C|ency of a system like REED IS ith an external table as well; for example:
potentially of great interest.

SELECT sensors. nodeid, sensors.|ight

It is easy to write a REED query that filters readifrgm FROM sensors, roundrobin
sensors located at various positions with a time-indexedWHERE sensors. nodei d = roundr obi n. nodei d
table of predicates that encodes, for example, allowable AND sensors.ts %|nodes| = roundrobin.ts

temperature ranges in a process control setting. Shoeild
temperature ever fall outside the required range, users
be alerted and appropriate action can be taken. 3ucr5
query might look like:

(1) SELECT a. at enp

Eor this query, theoundr obi n table is small< | nodes|
ries), and can likely fit on one node. This fikdso has
Fow selectivity, as only one or two nodes satisfg t

predicate per time step.

FROM schedul e table AS s, 2.2.Query Classification and Optimization Tradeoffs
sensors AS a i i
WERE s.1s > t temin AND These queries allow us to make seve_ral observations a_lb(_)ut
s ts < t.tsmax AND how and where we should execute filters. In general, it is
a.atenp > t.tenpnmin AND advantageous to perform filters with low selectivitytlire
a.atenp < t.tenpmax AND sensor network. This is because there will be mangifew
a.nodeid = t.nodeid

results than original data and thus a smaller number of
transmissions needed to get data to the basestation.

Here, results are produced only when an exceptiomphere are situations, however, when we might prefetao
condition is reached (the temperature is outside theedesi push a filter into the network; for example, if the filteas
range), and thus relatively few tuples will match. Weenotg relatively high selectivity, and the size of thimjtable is

that this is dow selectivityquery, indicating that it outputs very large, the cost of sending the filter into the mekw
(selecty a small percentage of the original sensor tuples. may exceed the benefit of applying the filter inside the
Failure and Outlier Detection. One of the difficulties of network. We may also be unable to push a filter inéo th
maintaining a large network of battery-powered, wirelessetwork if the size of the predicate table exceeds the
nodes is that failures are frequent. Sometimes thesi@rage of a single node or a group of nodes across which
failures arefail-fast for example, a node’s battery diesthe table may be partitioned.

and it stops reporting readings. At other times, howeverhus, in REED, we differentiate between the following
these failures are more insidious: a node’s readiogsys types of filters:

drift away from those of sensors around it, until they a

. . mall filter I hat fit in the memory of a single
meaningless or useless.  Of course, there are tifmess w Smallfilter tables that fit in the memory o 9

. node.
such de-correlated readings actually represent an ode o
interesting, highly localized event (i.e., an outlier)n - Intermediatéfilter tables that exceed the memory of a
either case, however, the user will typically wantbw® single node, but can fit in the aggregate memory of a

informed about the readings. We have implemented a Small group of nodes.

basic application that performs both these tasks in REED. Large filter tables that exceed the aggregate memory
It works as follows: we build a list of the values tbath of a group of nodes.

node commonly produces during particular times of daye have developed filtration algorithms (all based on
from historical data and periodically update this liserov joins) that are suitable for all three classes of tabhee

time. We then use this list to derive a set of lowgescribe these algorithms in Sections 3 and 4 below.
probability value ranges that never occur or that occtr wi



For small filter tables, REED always chooses to phsimt end
into the network if their selectivity is smaller thane. For return r

intermediate tables, the REED query optimizer makestPere are two things to note about this algorithm.tFirs

decision as to whether to push the filter into the nstw low selectivity filters might cause there to be fewean
e result (on average) per element of the outer loop,

based on the estimated selectivity of the predicate whig" . X
may be learned from past pgrformancrz)e or ga?éverg?iough it is in general possible for each tuple to maiti w

statistics, or estimated using basic query 0}c>timizatid?i‘0re tthan or:e preldlcatef._lt In SUCT a scenar:gi‘eltt IS
techniques [25]) and the average depth of sensor node@ﬂi’an ageous to apply our TIters as close as poss 0
the network. It uses a novel algorithm to store sever fta source in a sensor network since this would redece th

; : ; igiTp otal number of data transmissions in the networko6e,
copies of the filter table at different groups of nei elements ofpredicatesare independent of each other.

nodes in the network, sending each sensor tuple t@bne ; ; o X
. S Thus, predicatescan behorizontally partitionedinto a
the groups for in-network filtration. ; :
) ) . . number of non-overlapping sub-tables, each of which can
For large filters, as well as intermediate filtersttREED e placed on separate nodes. As long as the tablequestiti
chooses not to place in-network, REED can employ d thigre gisjoint, the union of the results of the filter e
set of algorithms that send a subset of the filter tatt® ,jependent nodes storing partitions of the table is equal

the network. ~REED tags this subset with a logicahe results of the filter if the entire static taiias stored at
predicate that defines which sensor readings it can filt€§e |ocation.

For example, for Query (1) above, a filter subset might
tagged with a predicate indicating it is valid for notl€s

at times between 5 am and 5 pm. For readings from th
nodes in this time period, filters can be applied in-ndtyo
other readings will have to be transmitted out of th
network and filtered externally. We describe algorithm
for this kind of partial filtering in Section 4. If REED

chooses not to apply partial filtering, all nodes trabhsm
their readings out of the network where they are éter

externally. C _
. . . ] Eachs is sent to a member of a group of sensor nodes in
In the following section, we present two algorithms® thjose proximity to each other formed specially to appéy t
first is a single-node algorithm for small filter tahleThe g1tor Each group is sent a copy of the predicatetetab
second shows how to generalize this single-node techni en a sensor data tuple is generated, it is serado e

to a group of nodes that work together to collectivebyest 4o in exactl . ;
: X y one of these groups to join with every
the filter table. We show that these algorithmsrabeist partition &) of the predicate table.

to failures and changes in topology as well as efficien _ L .

terms of communication and processing costs. In Section 3.1 we de_scrlbe in more detalil th_e case where
the predicates table fits on one node. In Section 3ghdxt
this basic algorithm with a distributed algorithm for the

3. Join-Based Filter Algorithms case where the table is too big to fit on one node.

Once the query optimizer has decided to push a REEDL. Single Node Join
query into the network, we need an algorithm for applying, isin algorithm leverages the existing routing tree to

our filters efficiently; in this section, we descril®ir  sonq control messages and tuples between the nodes and

approach for performing this computation. We focus ofo o0t When a query involving a join is receivedhet
distributing and executing our filters throughout th

. o ; - N asestation, a message announcing the query is flooded
network in a power-efficient manner that is robust ia thdown to all the nodes. This announcement (actually

face of dropped packets and failed nodes. Logically, Ojfsiemented as a set of messages) is an extended version
algorithms for filtration can be thought of asested-loops ¢ e TinyDB “new query’ messages, and includes the
join between current sensor readings and a table of stallt,ema of the sensor data tuples the name, size, and
predicates. Thus, for the remainder of this paper, Wanema of the join table, the schema of the resples,
describe our filter algorithms in terms of joins, a8WWe 5 5 set of expressions that form the join predicgienU
have implemented in REED is actually a general purpog$geeiying the complete set of these messages, everymode

ese two observations motivate our algorithms. The join
&aésed filter is applied as close as possible to the data
source. For the case where the static table fitsorom
ensor node, the static table is sent to every serste

sing the TinyDB query flood mechanism) and the filter is
performed on a sensor node as soon as the data is
produced. For the case where the static table doe# nnt f
one node, the predicates tal8gi¢ horizontally partitioned
into n disjoint segments;, s, ..., & (Ss0s0...0%).

Join processor. the sensor network knows whether it is participatinthe
Nested-loops joins are straightforward to implement in guery (by verifying that it contains the sensors that preduc
sensornet, as shown by the following algorithm: the fields in the schema) and how many tuples of the join
Join(Predicate q) table can be locally stored (by comparing the size di eac
for each tuple t. in sensors do join table tuple with the storage capacity the node is

for each tuple ts in predicates do
if g(ty, ts) is satisfied
add t, O ts to result set r

willing to allocate to the query).

end



If the node’s storage capacity is sufficient to stoeefilter routing tree. The numbers in parentheses in the figure
predicates table, the node simply sends a message toréq@esent the set of nodes in broadcast range for that
root, requesting the table and indicating that it intends frarticular node. A tuple that needs to be joined is
store the entire table locally. The root assumestiiere broadcast from a node to the other members of its group.
will likely be other nodes who can also store therenti Each member sends any joined results up the original
table, so it floods each tuple of the table throughbet t routing tree. For example, if node 7 produces a tuple to be
sensornet. Once the entire table is received, the cade joined, it broadcasts it to nodes 5 and 6. If node 5 cantain
begin to perform the join locally, transmitting theinjo a tuple in the table that successfully joins with 7’deujt
results rather than the original data. Before then,swogle  sends the result up to node 2 which forwards it to the root

a naive join algorithm, where also sensor tuples@met® Note that when node 7 produces a tuple, three

the root of the network to be joined externally. transmissions results — this is the same as if thgnat

A simple optimization that can be performed is thahé t data was sent up the routing tree in the naive oresingl
result of the join consists of more than one tuplenibde node case. In the worst case, there would have been t
can simply send the original sensor tuple. The join fizr thextra tuples: if node 5 produced a tuple which joined with a
tuple can then be performed at the basestation; thigle on node 7 a total of 4 transmissions would have been
technique is equivalent tsemi-joins a well known performed. In general, no more than 2 depth
technique for join evaluation in database systems [1].  transmissions will be required, as any pair of noddben
same group differ by no more than one level (by
definition). For joins with predicates of low seleity
there will be many cases where no element of thketa
joins with the original data. When this occurs, perifiorg

the join in the group rather than sending the tuple back
the root can provide savings proportional to the depth of
that group (instead of thehops to get the original data to
the root, only one transmission of the original data i
made).

We now describe the algorithm that each node performs
when it receives a join query with a predicates taliiess
size is too large to fit on that node. We discuss howpgo
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Figure 1: REED routing and join tree with group Do Nerhing Sl R 2 -
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3.2. Distributed Join

In this section, we describe our in-network join algorithm
in detail. Our algorithm consists of three distinct jgisas

Listen
Group

. . . . . TO, can't
group formation, table distribution, and query processing. form group _
. . . . . Receive Grp-ready,
We begin with a brief overview, and then describe each Receive Offer

Receive

or Join Tuple
»
Group Accept

phase in turn.
3.2.1. Algorithm Overview

When the predicates table does not fit on one nodes jo
can no longer be performed strictly locally. Instedu t
table must be horizontally partitioned. A tuple canyonl
immediately join with the local partition at the nodedan
must be shipped to other nodes to complete the join. Once
the original tuple has reached every node that contains a
partition of the table, it can be dropped and results can " -
forwarded to the root. Within each group, the memaees Figure 2: Join Algorithm Finite State Machine. The
within broadcast range of each other. Our group formati‘TO” transitions represent timeouts, which are used
algorithm is described in detail in the next section. to prevent deadlocks in the event of lost data or faite
Figure 1 shows the setup of such a distributed join que@(?g?grmed, how the table is distributed, and then tthepy
The figure shows a multi-hop routing tree where tuples af&n operation

passed to their parents on their path to the root tzdises '

For example, a tuple produced by node 7 is sent to node 5

which then sends the tuple to node 2 which sends the tugl@.2. Group Formation

to the basestation. Our join algorithm works by overlaying

groups (shown as large circles in Figure 1) on top of this

Possible
Member

TO, Dissolve
Group

Longer TO,

dissolve group



If a node calculates that it does not have enough storabe master does not receive the reply and the node has to
capacity for the table, it initiates the group formatiomwait until it times out to be available again, a nodehmm t
algorithm. To minimize the number of times an originaPossible Membeistate retransmits its reply every fixed
tuple must be transmitted to make it to every member ofteme period (one epoch) until it hears a response ftan t
group, we require that all nodes in the group are withitlesired master.

broadcast range of each other. A second required propefiye master node collects responses from availablesnode
of a group is that it must have enough cumulative storagg 3 fixed duration (occasionally retransmitting threup
capacity to accommodate the table of predicates. Grogmation request in case previous requests were ist).
formation is a background task that happens continuouslye end of this duration, the master chooses the group
throughout the lifetime of the join query as nodes com@embers. The algorithm to choose the group members
and go and network connectivity changes. Every group Caftempts to make a group that involves the maximum
be uniquely identified by its groupid and the queryid @, mber of nodes such that every node is in radio range of
which the group belongs. To simplify group formation andyery other. This is done using the neighbor lists ¢hah
table distribution, we only allow a node to belong t@ ONpeighbor sent to the master and the master’s owrhbeig
group for a given query. A node may belong to differenfsi~ The master also must ensure that the group has
groups for different simultaneously running queries. enough combined storage capacity to store the entire
Every node maintains a global, periodically refreshed lipredicates table. Ideally, a node would use the neigigtor |
of neighbors that are within broadcast range. For eaofievery node to create the optimal group. However, since
neighbor, an estimate of incoming link quality is computethemory is severely limited (and we want to save as much
by snooping on messages sent by surrounding nodes. Ea@mory as possible for the storage of the table) thgten
REED message contains a counter, and upon overhearingode does not store the neighbor list of every reply i
message, a node can calculate how many messagesedeives, but instead keeps a running intersection ofrdurre
missed since the previous message by subtracting ttendidate group members’ neighbor lists. Upon receiaing
previous message’s counter from the current counter. Treply, the master takes the intersection of its ctirlish
receive rate can then be calculated by dividing the numbsith the neighbor list received in the reply. The teaalso

of messages received by the total number of messages ske¢ps a running aggregate of the total storage available o
Note that links may be asymmetric. For this reason, wadl of the nodes. If the resulting intersection is sidfitly
assume that the neighbor list only contains inforomati large (and the nodes previously accepted are still in the
about incoming link quality from each node. Outgoing linkntersection), the master includes the node into toepg
quality is accounted for elsewhere. A neighbor node a&nd keeps the intersection. Otherwise, it rejects tle no
placed on the neighbor list if the receive percentage and rolls back to the previous intersection. Pseudo avde f
above some threshold (defaulting to 75%). This algoriththis greedy algorithm is shown in Figure 3.

!s simile_lr to the algorithm l_Jsed for measuring link qualityote that this algorithm takes into account the possibil

in the TinyOS multihop radio stack [27], and we havenbeeyf gsymmetric links. To be in the same group, every group
able to use the standard TinyOS implementation of thigember must appear on the neighbor list of every other
table in our REED implementation. member. Thus, (for the example of two nodesnd b)
Once a node receives notification of a new query, #rent nodeb must appear on nodes neighbor list and node

into a group formation finite state machine (FSM — semust appear on nodes neighbor list.

Figure 2). Each join query has its own FSM which, barri
resource conflicts, operates independently. Every node| t
initialized to theNeed Groupstate with a randomly set| N

sone threshol d paraneter
current neighborli st
nmy.id //Gwll hold current group

timeout value. Nodes transition between states in tf ©
diagram once per epoch. Groups are formed when a n
(which will become known as the master node) inNked
Group state reaches a timeout and broadcasts a requeg
form a group to neighboring nodes (while transitioning t
the Listen Groupstate). All nodes which hear this reques
and are also in thBleed Groupstate (implying that they
are not currently in groups and do not have offers pgndi
to other potential masters) respond with offers to K
members if the master node is in their neighbor Tikkese
offer messages include the neighbor list of the sermi#r g

the number of join table tuples which the sender cé«

/1 member list which is initialized
/1 to just contain the master

space = ny.space
for every reply fromnode i do
id=1i.id
M = i . nei ghborli st
P = intersect(N, M
if (|Pl >t) and (P n G=GQ do
N =P
G = union(G id)
space = space + i.space
end
end

locally store. Responding nodes move into Bassible
Member state which prohibits them from offering
themselves to other masters until a response isvegter

Figure 3: Group Formation Algorithm

At the end of the time out period, the master examimes t
a timeout occurs. In order to minimize the probabilitgtt CUTeNt group’s aggregate storage space. If it is larger tha




the size of the predicates table, it can go aheadndorin  are responsible for forwarding child sensor data tuples a
the group of its successful creation. Otherwise, it muatl times during the query, whether or not they arenn a
announce that it failed to create a group. If it suceded active join group. Until transitioning to tHe Group state,
creating a group a message is broadcast containing the 4 data tuples are forwarded up to the parent node in the
of accepted members and the master transitions Wéite REED tree. If all nodes along the way to the root
Data state. Nodes that receive this broadcast check ib sebasestation are not members of active groups, then the
they are on the accepted members list. If so, theg alnetwork behaves like the naive join with all the origina
transition to theWait Data state. Otherwise, they revertsensor data tuples being forwarded to the root where the
back to theNeed Grouystate. As stated above, nodes in th@in is performed.

Possible Memberstate periodically retransmit a groupyowever, if a node along the wagyin theln Group state,
reply. Thus, if the group announcement broadcast is l0gien instead of forwarding the data message to its parent
these nodes will continue to send replies that will €dlie  proadcasts the tuple to its group. Each group member then
master to retransmit the group announcement. Eventuallins that data tuple with the locally stored portiontras
word will get to all possible members whether or @yt join table and forwards the resulting joined tuples up the
are accepted. The group id of the resultant group is f3gginal REED tree; these result tuples need no more
node id of the master node. joining and can be output once they reach the root.

Although now officially a query group, nodes in the grougyodes in the In Group state eventually time out and
cannot start processing tuples as a group until thegble  attempt to dissolve the group. They also might choose to
has been distributed. It is the responsibility of thgissolve the group if it senses that a node has ceased to
basestation to keep track of which parts of the Jometabr_espond or if the message loss percentage from a node in
have been issued to which members of a group. Thise' group rises above the desired threshold. A node
information is kept in a table indexed by group id angissolves a group by broadcasting a group dissolve
query id. Upon entering into a group and transitioning intessage and transitioning to tNeed Groupstate. Nodes

the Wait Data state (either as a master node which jughat receive this message also transition td\tbed Group
successfully formed a group or as a potential groufate. Nodes that do not will continue to try to senc dat
member node which received the group accept broadcagihles to the group which will cause the node that
a node sends @in table requestmessage to the root gissolved the group to retransmit the dissolve message and

(which is periodicall_y resent if no response fr_om thet  forward these data tuples back up the original REED
occurs before a timeout). This message includes thgyting tree.

groupid, queryid, and the number of filter predicates that .
can be accepted. This number is computed from the spgcg_' RObP?t”eSS Under Me_ss:_ﬂge LOS? gnd NOd? Fallgre
available at the node and the schema of the joie tabl It is critical that the distributed join algorithm just

The basestation receives the join table requestshaised described works properly in the face of message loss and

on the queryid, groupid and tuple capacity, decides Whiﬂﬁgzsf?gu;e' rlél;[heintabrlfz f%ilsnt]ofistributri p;irorp])elt:)y, i rdlin
portion of the join table should be sent back to thaéeno group Incorrectly maxe assumptions regarding
the data storage of other members of the group, datésloss

Upon receiving a set of join tuples from the root,a8lé compounded due to repeated errors in data processing
transitions to th&Vait Others Datestate and broadcasts toyithin the group. For example, if nogigimes out (or fails

its group the number of tuples it received (this messagegs moves out of broadcast range) at any point in the group
also periodically rebroadcast while a node remain$ién tformation process and other nodes continue to process
Wait Others Datastate). Each node keeps track of whichyples as if that node were a group member, then allsuple
nodes have received how many tuples, and independerifscessed by that group that joined ngtiepartition will
determines when the entire join table has been loliséd e |ost. Since these errors are so important todawee

to the group (since the join table size was distributiéd w briefly discuss the robustness properties of this dhyuori

the original query request). When any member of the groyp . . . . )
. ; . ST e key attribute of this algorithm that allows it toowy
decides that the entire group has received the join Mbleprobler%/atic Scenarios is tﬁat each state is “softthia

transitions to thén Group stage and broadcastsgeoup se that if enough time elapses with a node stuckyan an
ready message. Nodes that hear the group ready messgggticular state, it gives up and returns to ezd Group

also transition to thin Group state. Nodes that do not hearg,[ate Message loss and node failur re th fimar
the message will transition to the Group state as soon as séns that agn de miaht to te kainu € artie I reg& ary
it overhears a message from one of the nodes who kn&%f: ode might get stuck in a particuial e

: o example, a node that has sent out a response to a group
::Zittgi]:sgg?)lrjgaldsc;?iyu(g?g f(')‘c; ,;E eﬂg?SJSlig fgfﬁe) that offer might get stuck in th®ossible Membestate if the

) node it responded to either fails or further communioatio
3.2.3. Operation between the nodes is lost. For every state excepiViie
Sensor data tuples that need to be processed by a nodeCdhers Dataand In Group states, reverting back to the
generated either by the sensors on the node itself eed Groupstate can happen for free, without causing any
received from children in the REED routing tree. Nodelss. This is because every node is transmitting dat& b



to the basestation using the naive algorithm until ai® is not, it knows that this tuple will definitely notifo
formed, so until a node has announced that it ownsGtherwise, it must forward this tuple, as nitay join.
partition of the table, it has not made any promiesestiier Assuming simple, uniform hashing, choosing a larger
nodes that it cannot easily renege. By timing out durieg ttvalue ofk will reduce the probability of a false positive
group formation process, a node might delay induction intehere a sensor tuple is forwarded that ultimately da¢s n
a group for both itself and other nodes that it may hayein, but will also increase the cost of disseminating t
indicated interest in joining, but no data is lost. Bloom filter. We can apply bloom filters with theomp

For the case where a node times out (or fails) whitae Protocol, to avoid even one transmission of data tamgro
Wait Other Dataor In Group states, we allow a bounded Members, or in isolation as a locally-filtered vensof the
amount of data to be lost. Our initial implementatidn ohaive (external) filtration algorithm.

REED used a reliable round-robin ACKing protocol.2.Partial Filtering

between nodes. In this protocol, a node in a groudtorFqr situations in which there are a very large nundfer
the lastk tuples that it transmitted to its group. Every grougyples in the join table, we can just disseminate inédion
member then sent an ACK at least once in ekayochs. that allows sensors to identify tuples that definitidynot

If any group member failed to perform this ACK, theoin with any filters. Suppose we know that there rame
remaining group members assumed that none of thek lasfiters on attributea in the ranges; ... a. If we transmit
transmissions made it to this node and transmitted thehig range in the network, then a sensor tuplejth value
stored block of k tuples via the naive algorithm to theg gytsidea; ... ais guaranteed to not join with any filters
basestation. This aggressive reliability protocol tdrogt  5nd need not be transmitted; titloes intersect with the
to be overkill since REED applications expected sOom@nge, we must transmit it to the root to check andifsee
amount of loss in the sensor network anyway, and thgis tuple joins with any filters. Of course, for a
highly reliable communication within a REED group didnyitidimensional join query, there will be many such
not match the low reliability of transmissions ortice data ranges with empty values, and we will want to send as
left the group. For this reason, REED reacts with ayd®l  many of them into the network as the nodes can store.

node failure inside a group. We use the active neighstor |i.|_ . . . . .

. : : : : hus, the challenge in applying this scheme is to piek th
in the TinyOS multi-hop routing layer to detect’ failures, propriate valueg @t an%pgingeach range we seng o
When a group member disappears from a node's nelghiﬁ% network so as to maximize the benefit of this aggro
ta_lble, _that node |mm_ed|ately commences  the gro few tuples that are produced by the sensors are outside
dissolving process described above.

of this range, we can substantially decrease the nunfiber o
tuples that nodes must transmit. Of course, the range of
4. Optimizations values which commonly join may change over time,
In this section, we extend the basic join algorithn§uggesting that we may want to change the subset of the
described in the previous section with severdfble stored in the network adaptively, based on dheeg
optimizations that decrease the overall communicatid Sensor tuples we observe being sent out of the network.
requirements of our algorithms and that allow us to apply/¢ discuss one such adaptive algorithm in the next
in-network filters for large tables that exceed theagjerof ~Section.

a group of nodes. 4.2.1. Cache Diffusion

4.1.Bloom Filters The key idea of our approach is to observe the data that

To allow nodes to avoid transmitting sensor data tupl€§nsSor nodes are currently producing. We assume that each
that will not join with any entries in the join tabwe can node contains two cache tables. The first, Itval value
disseminate to every node in the network-ait Bloom Cache contains the lask tuples that a node produced.

filter [2], f, over the set of values, appearing in the join The second table (which is organized as a priority queue
column(s) of the filter table. We also program nogigs  holds empty range descriptions (ERDs) of the join. An

a hash functionH, which maps values of the join attributeERD is a range of values over all join attributes sinett t
ainto the range 1.k Bits inf are set as follows: no combination of tuple values within the range joindiwit

the filter table; e.g., an ERD for a query filtering by
nodei d andt enper at ur e might consist of the range
liff.vOJd [20-25] on tenperature and the range [5-7] on
Ootherwise nodei d; a different ERD might consist of the range [23-
30] ont enper at ur e and [1-3] omnodei d. Tuples that
are within the range described by an ERD will not join.
We define thesize of an ERD to be the product of the
width of the ranges in the ERD. We definenaximal
ERD for a non-joining tuple to be the ERD of the largest
size that the tuple overlaps. We currently compute the
maximal ERD via exhaustive search at the basestation

Ovaluesy in thedomainof a
f(H(V) =

Thus, if biti of f is unset, then no value whithmaps ta
is in J. However, just because liis set does not mean
that every value which hashesités included inJ. We
apply Bloom filters as in R*[15]: when a node produces
tuple, t, with valuev in the join columnit computesH(v)
and checks to see if the corresponding entry is detlfrit



The cache diffusion algorithm then works as followsin the TinyOS TOSSIM [13] simulator. We use the same
Every time the root basestation receives a tupledbaes code base for both TOSSIM and the motes, simply
not join, it sends the maximal ERD which that tupleompiling the code for a different target. Most of the
intersects one hop in the direction that the tupleeckiom. experimental results in this section are reported from the
This node then checks its local value cache for tuples TinyOS TOSSIM simulator, which allows us to contitoé t

are contained within this ERD. If one is found, thituea size and shape of the network topology and measure
and any other values that overlap with the ERD argcaling of our algorithms beyond the small number of
removed from the local value cache, and the ERD is addelysical nodes we have available. We demonstrate that
to the ERD cache table with priority 1. If no match our simulation results closely match real world
found, then the ERD is also placed in the ERD cadble,ta performance by comparing them to numbers from a simple
but we mark it with priority 0. Priorities are used tdive-mote topology.

determine which ERDs to evict first, as described below. \ye are running TOSSIM with the packet level radio model
Upon receiving a tuple from a child for forwarding, a nodéhat is currently available in theet a/ TOSSI M packet

first checks the ERD cache to see if the tuple faithin  directory of the TinyOS CVS repository. This simulaior
any of its stored ERDs. If so, the node filters thedwgnid much faster (approximately 1000x) than the standard
sends the matching ERD to the child. Further, if nede TOSSIM radio model but still simulates collisions,
overhears nodg sending a tuple to nodgwhere nodeis acknowledgments, and link asymmetry.  The primary
not the basestation), it also checks its ERD table fdifference between this simulator and the standard
matching ERDs and, if, it finds one, forwards it to ngde TOSSIM radio model is that the standard model simulates

The ERD cache is managed using the modulation of every bit of every packet over the radio,
an LRU policy, except that low- 300 modeling collisions by ANDing together the bits written
priority ERDs are evicted first, P2sestat by different senders. The packet simulator writes a evhol
Here “last-use” indicates the last packet at a time, delivering packets to receivers after an
time an ERD successfully filtered O appropriate transmission delay (as long as other senders
atuple. 5 feet within radio range do not collide by writing packets during
Thus, for a node of depthd, it ©) this delay period). For the measurements reported here,
takesd tuples that fall within an . our algorithms perform similarly (albeit much more
ERD to be produced before the . slowly) when using the standard bit-level simulator.

ERD reaches node. Note that - For the experiments below, we simulate a 20x2 grid of
thesed tuple productions do not motes where there are 5 feet between each of the 20 row
have to be consecutive as long as and 2 feet between the 2 columns. The top-left notieeis

the matching ERD that diffuses 2 feet basestation. This is shown in Figure 4. With these
to nodex does not get removed measurements, a data transmission can reach a node of
from the ERD cache of itsFigure 4: Mote distance 1 away (horizontally, vertically, or diagonatly
ancestor nodes on its wayTopology Figure 4) with more than 90% probability, of distance 2
Further, note that despite the fact away with more than 50% probability, and rarely atifert

that it takesd tuples before nodereceives the ERD, these distances. However the collision radius is much larger:
tuples get forwarded fewer and fewer times while the ERBodes transmitting data with distance <=5 away from a
gets closer and closer xoln total, d + (d-1) + (d-2) ... + 1 patrticular node can collide with that node’s transmission
additional transmissions are needed before an ERD reacker the distributed (group) join experiments, we set the
node x. The advantage of this approach over directlgroup quality threshold described above to 75%, which
transmitting the ERD to the node that produced the nowield groups almost always to consist of nodes all kess t
joining tuple is two fold: first, we do not have tol0 feet away from each other. We chose this topology
remember the path each tuple took through the netwottecause it allows us to easily experiment with large depth
second, we do not have to transmit every ERBops — so that nodes towards the leaves of the network cdn stil
only those which filter several tuples in a row. reliably send data to the basestation while not retgthe

Once an ERD (or set of ERDs) arrive at negiéhen as TinyOS_Iink layer to perform retransmissions duringadat
long as nodex produces data within the ERD, noforward_lng. We have also e_xperlmented Wl_th gru_j
transmissions are needed. Thus, for joins with lowpPologies (such as 5x5) to_conflrm that th_e algorithnh stil
selectivity on sensor attributes of high locality, expect Performs correctly under different topologies (as long as
this cache diffusion algorithm to perform well, even fofhe network is dense enough so that groups can form).
very large tables. Our first set of experiments will examine the distributed
(REED) join algorithm. We evaluate this algorithm along
5. Experiments and Results two metrics: power s_avings and result accuracy. We use
: number of transmissions as an approximation of power
We have completed an initial REED implementation fosavings as justified in Section 1.2. We compare those
TinyOS. Our code runs successfully on both real motés afesults to a naive algorithm that simply transmits all



readings to the basestation and performs the joindautsiand we expect that these set up costs will be totally
the network. We measure accuracy to determine whetlanortized over the duration of a query. For example, in
our protocols have a significant effect on loss rates an 500 epochs (the duration of our experiments below), we
out-of-network join. We also show how combining thislready accrue up to 160K transmissions - well above the
algorithm with a predication filter (such as Bloom) carl8K transmissions needed to disseminate the table.

further improve our metrics. In these experiments, W&yr second set of experiments analyzes and compares the
simulate a Bloom filter that accurately discards noni)®  Bjoom Filter and Cache Diffusion algorithms. Again we
tuples with a fixed probability. We analyze the dimensio yse the number of transmissions as the evaluationanetri
that contribute to this probability in later experiments  \we observe how the size of the join attribute domain and
For experiments of the distributed join, we use a join quetgcality of data are good ways to decide between which
like the industrial process control Query (1) described ialgorithm to use.

Section 2 above, except that we use the same schedulg atpjstributed Join Experiments

every node (so our query does not include a join on _ _ )

nodei d). Our schedule table has 62 entries, representif§e following two experiments examine how two
62 different times and temperature constraints. On olifdependent variables affect the metrics of power gavin
mica2 motes with 4K of RAM, each mote has sufficien@nd accuracy for each join algorithnoin predicate
storage for about 16 tuples — the remainder of the RAM §¢lectivityand average node depttFor all experiments,
consumed by TinyDB and forwarding buffers in thedata is collected once the system reaches_ steadyfatate
networking stack. We have also experimented with sevef}0 epochs. The table contains 62 predicates and each
other types of join queries and found similar result§iode has space for 16; resulting in groups of size 4 being
irrespective of the query, join-predicate selectivityd ancreated. Different numbers and combinations of groups
average node depth have the largest effect on quépspm in different trial runs, so each data point iseta by

execution cost for the distributed join algorithm. averaging three trial runs. Error bars on graphs display

0 4 .
For all graphs showing results for the distributed joir?S/oconﬁdence intervals.

algorithm,, we show power utilization and result accuracy-1-1.  Selectivity

at steady state, after groups have formed and nodes Boe this set of experiments, we varied the selectnfitthe
performing the join in-network. We do not include tablgoin predicate and observed how each join algorithm
distribution costs in the total transmission numb&k&e performed.

choose to do this for two reasons. We model the benefit of the Bloom filter optimization
First, efficient data dissemination in sensor netwiskan described in Section 4.1 by inserting a filter that didear
active, separate area of research [14,23]. Any of thesen-joining tuples with some probabilitp. We can
algorithms can be used to disseminate the predicates tatlitectly varyp for the test query via an oracle which can
to the network. We use the most naive of disseminatioletermine whether or not a tuple will join, which is
algorithms: flooding the table to the network. For gverconvenient for experimentation purposes. We will show
tuple sent into the network, each node will receivenite later how in practice, the value pitan be obtained.

and rebroadcast it once. Thus, if therenodes in the Figyre 5 shows that for highly selective predicates (low
network, and the table containksfilter predicates, then pregicate selectivity), both the REED algorithm and the
there will ben-k transmissions per table dlssemlnatlonB|oomjoin optimization provide large savings in the
However, since" multiple tables are disseminated (one Phount of data that must be transmitted in the network.
group), our naive dissemination algorithm requinés'g  The naive algorithm is unaffected by selectivity because i
transmissions wherg is the number of groups. A simple yyyst send back all of the original data to the basestati
optimization would be to wait until all groups had beempefore the data is analyzed and joined. The REED
formed and transmit the table just once; doing thi®is-  gigorithm does not have this same requirement: those
trivial as groups may break-up and reform over the courg@des that are in groups can determine whether a produced
of the algorithm. For the experiments we run, we foungpie will join with the predicates table without hayito

Fhat on average 300 transmissions are rr_1ade per predlq@%\,ard it all the way to the basestation. Thus, tengs

in the table for our 40 node network (sirges on average of the algorithm is linear in the predicate selectiviijie

7.7). For the 60 predicate table size we experimented Wi8loomjoin algorithm improves these results even more
this added 18K transmissions. since nodes no longer always have to broadcast a tuple to
Second, applications of our join algorithm tend to beylonits group (or to its parent if not in a group) to fina  a
running continuous queries. For this reason, we are mdrple will join. In these experiments we filter 50% bét
interested in how the algorithm performs in the longnter non-joining tuples in the Bloom filter.
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algorithm causes more loss in the network and messages
tend to get dropped before reaching the basestation (so
they do not have to be forwarded). To affirm that thisat

|
|

/;//% hatve the case, we measured the number of tuples that feach t
60 %4/ . REED T basestation at varying selectivities and compared each
40 1 ~ REED+ || algorithm. These results are shown in Figure 7. As ean b
20 H= Bloom (5) || seen, all algorithms perform similarly; however treéve
o ‘ ‘ ‘ ‘ algorithm has slightly less loss at high selectivitiasl the
0 0.2 0.4 0.6 0.8 1 REED algorithms have slightly less loss at low

selectivities. This can be explained as follows: group
: _— — processing of the join occasionally requires 1-2 extgsho
Figure 5: Total Transmissions vs. Selectivity This is the case when a nadéhat stores a partition of the

To better understand the performance of these algorithnR§€dicates table that will join with a particular tuple
we broke down the type of transmissions into fouProduced by nodg andx is located at the_ same depthyas
categories: (1) the transmission of the originally preduc ©F 1 node deeper. The former case requires 1 extra hop, the
tuple (to the node’s parent if not in a group; otherwise t@tter 2 extra hops. With each extra hop, there is extra
the group), (2) the first transmission of any joined tsipleProbability that a tuple can be lost. This explains wieye

(3) any further transmissions to forward either thgioal S more loss at high join predicate selectivitieswdver,
tuple or a joined result up to a parent in a group or tod low selectivities, this negative impact of REED s
basestation, and (4) transmissions needed as pareof @ytweighed by its reduction in the number of transmission
overhead for the group formation and maintenancd thus network contention. Since fewer messages are
algorithms.  Figure 6 displays this breakdown for thBeing sentin the network, there is an increased pildgab
REED algorithm over varying selectivity. In this figutee ~that each message will be transmitted successfully.

original tuple transmissions remain constant at

approximately 20K. This is because every tuple needs to

Join Predicate Selectivity

. ) . . 45
transmitted at least once in the REED algorithm: & th 40 || —+—Naie
node is not in a group, the tuple is sent to the node| - REED (s 5
parent; otherwise it is sent to the group. Once a tuple § = (5=.5)
sent to a group, no further transmissions are needbé if | 2 30 1 REED+Bloom (p = 5,
tuple does not join with any predicate. For the 20-hop no | & 25 R
B 90 | o Loss A~ |
>
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Z 160 u .
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£ o0 | P Figure 7: Received Tuples vs. Selectivity for
e w0 I Distributed Join Algorithm
NP 5.1.2. Average Node Depth
z '
L e e e B For this set of experiments, we fixed the join predicate
0 002 01 02 03 04 05 06 07 08 09 1 selectivity at 0.5 and 0.1 and varied the topology of the
Selectivity sensor network (in particular varying average node depth)

) __ and observed each how join algorithm performed. We
Figure 6: Breakdown of Transmission Types fol  varied node depth by subtracting leaf nodes from the 20x2
Distributed Join with Varying Selectivity topology described earlier. The baseline 20x2 topology has

topology used in this experiment, the forwarded messaqaﬁ average depth of 10.26 (each node’s parent is fixed to be

. X . ] ® node above it in the network except for the top-right
dominate the cost. It is also worth noting that therégu de which has the basestation as its parent). We

n
ShOWS. that '_[h_e group management overhead (at Steaeﬁ?%inated the bottom 6 nodes to achieve an average depth
state) is negligible compared with any of the other tyges of 8.76, another 6 nodes to achieve an average depth of

trgnsmis_sions. 7.26, etc. to achieve depths of 5.76, 4.26, and 2.78; and
Since Figure 6 showed that the reason why the REERen the bottom pairs for nodes to achieve average depths
reduces the number of transmissions is because it reduge® .29, 1.80, and 1.33. The number of transmissions for

the number of forwarded messages that need to be seffch of the three join algorithms is giverFigure 8.
once possible explanation for this could be that the



% — —e— Naive
’ " —=—REED (s = .5)
4 "//
2:% ] ——REED (s =.1) slightly higher amount of loss than was modeled in
0 REED+Bloom simulation.
B @=5s=.1) 5.3.Bloomjoin and Cache Diffusion
160 . Although the Bloomjoin and Cache Diffusion (CD)
o 140 algorithms described above can help optimize the REED
a 1(2)2 o distributed join algorithm, they also can be applied
5 e _~ independently where the predicate table is too_IargiI to f
E s " on even a group of nodes. Whether applied as an
3 a0 o optimization or independently, it is important to decide
g i which algorithm will perform best as usually there i$ no
olpopt——o— ‘ ‘ enough free space on sensor nodes to perform both
1 3 5 7 9 1 (besides which each algorithm improves performance if
Average Node Depth allocated more space). For these experiments, we atbcat
90 bytes total space for the data structures needed Iy eac

algorithm. For the Bloomjoin algorithm, this allowed a 720
bit Bloom filter to be distributed and for CD, this aled
9 tuples or ERDs to be cached.

Figure 8: Total Data Transmissions for Varying
Average Sensor Node Depths

2500 e We found that the two most important dimensions that
g 2000 — distinguish these algorithms from each other are domain
g 1500 T potalFesuts 1 size and data locality and thus we present our resuitg usi
g 1000 —=— Simulated Resuits || these dimensions as independent variables. The query used
T 500 to run these experiments is the outlier detection query
F presented in section 2.1 except that we add light along with
0.4 05 06 07 08 0.9 temperature as sensor produced data. In order to vary data
Data Selectivity locality as an independent variable, we generated data f

each node using matlab where sensor readings are
produced using a normal distribution with small variance
These results show that the average depth necessarydiod with a mean that is moved according to a cumulative
REED (without using a Bloom filter) to perform bettersum of another normal distribution. Increasing and
than the naive algorithm is 1.8. The reason why REE@ecreasing the variance of this second normal distrifutio
performs worse than the naive algorithm at low depths ¢auuses the mean to move around with decreased or
twofold. The less significant reason is the smallugro increased jumps, affecting the locality of the data. We
formation and maintenance overhead incurred by REEDefine locality in these experiments to be 1/(variarafe)
The more significant reason is that, as explained abowbe second distribution. Figure 10 shows how total
join processing occasionally requires 1-2 extra hops. A@ansmissions for a 5 node network of average depth=2
large depths, these extra hops get made up for in the saweaning for 2500 epochs varies with data locality of the
forwarded transmissions, but for depths less than 2jsthisBloomjoin and CD algorithms.

Figure 9: Simulated vs. Real World Results

not the case. However, if a Bloom filter is used, REE In order to vary
always outperforms the naive algorithm. ;gggg | | attribute domain
5.2.Real World Results 2 15000 | —+—Bloomjoin size we simply
Although we expected that TOSSIM would be an accurate3 1000 e canenitiusion| | MOd these values
simulation for TinyOS code, we verified for ourselves tha E 5000 A — by the desired
our join algorithm worked on a simple five-node one hop @ 0 domain size of
network. We tracked the number of transmissions by & ‘ each  attribute.
passing this number with the result of each join resoit ( O Detallcality 100 | The size of the
simulations we could more easily track number o domain of the

transmissions using debug statements). A side effectsof tNjn0le tuple is simply the multiplication of the domain
method, however, is that we can not test our algorithm ${geS Of each component attribute. Due to lack of speze,
low selectivities as we can not accurately calcuthwe Cannot show the graph for the Bloomjoin and CD
number of transmissions of each node at a particulat po@lgorithms with varying selectivity. In short, we foutizt

in time. As a result, we ran our REED algorithm wiie t domain size did not affect CD (however, this could be
Bloom filter optimization varying selectivities above .5.duery dependent), but that Bloomjoin was greatly affected
We ran the same experiment in simulation and comparBy it- If light was allowed to vary between only 64 value
the two results in Figure 9. Simulation and practic@"d temperature between 32 (resulting in a domain size of
perform similarly; however the non-simulated results havé048), Bloomjoin approached the naive algorithm in terms
slightly decreased number of transmissions due to 0§ number of transmissions. But for smaller domains,



Bloomjoin performed extremely well. Thus Bloomjoin isnodes, and are tolerant to dropped packets and node
preferred over CD when joining over only one attributdfailures. REED is thus suitable for a wide range @ingv

but CD is preferred over Bloomjoin when the domain idetection applications that traditional sensor network
larger than one attribute, as long sensor data is prdduaatabase and data collection systems cannot be used to
with reasonable locality. implement. Moving forward, because REED incorporates a
6. Related Work general purpose join processor, we see it as thepoece

f an integrated query processing framework, in which
nsor networks are tightly integrated into more ticid
?abases, and users are presented with a seamless query
nterface. Beyond filtrations, power-efficient joirtbat

llow the combination of tables of values outside the

gﬁgqurrdumg?%?& tfgiffn'g al??e?ngtoesi;tcg}em fiﬂrtr(\;\éhdgg dm;desensornet to be joined with streaming data generated by
P J ' ' sensors will be extremely valuable.

semi-join algorithm which reduces the communication
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