
REED: Robust, Efficient Filtering and Event Detection in Sensor Networks
Daniel J. Abadi and Samuel R. Madden

MIT CSAIL
{dna,smadden}@csail.mit.edu

Abstract
This paper presents an algorithm for handling many types of filters in
sensor networks that cannot be expressed using a simple predicate.
Specifically, the action of the filter may be predicated on sensor produced
data where an entire table of sensor-data/result-value pairs are needed to
resolve the filter. We describe and evaluate three algorithms that can
perform these filters that take advantage of database distributed join
techniques. Our join-based algorithms are capable of running in very
limited amounts of RAM, can distribute the storage burden over groups of
nodes, and are tolerant to dropped packets and node failures. REED is
thus suitable for a wide range of event-detection applications that
traditional sensor network database and data collection systems cannot be
used to implement.

1. Introduction
A widely cited application of sensor networks is event-
detection where a large network of nodes is used to
identify regions or resources that are experiencing some
phenomenon of particular concern to the user. Examples
include condition-based maintenance in industrial plants
[11], where engineers are concerned with identifying
machines or processes that are in need of repair or
adjustment. Another example is process compliance in
food and drug manufacturing [22], where strict regulatory
requirements require companies to certify that their
products did not exceed certain environmental parameters
during processing. A third class of applications is centered
around homeland security, where shippers are concerned
with verifying that their packages and crates were not
tampered with in some unsavory manner.

A natural approach implementing such systems is to use an
existing query-based data collection system for sensor
networks. Through queries, a user can ask for the data he
or she is interested in without concern for the technical
details of how that data will be retrieved or processed. A
number of research projects, including Cougar [28],

Directed Diffusion [9], and TinyDB [16,17] have
advocated a query-based interface to sensornets, and
several implementations of query systems have been built
and deployed.

Unfortunately, these existing query systems do not provide
an efficient way to evaluate the complex predicates these
event-detection applications require – for example, in
TinyDB [16], queries are limited up to three conjunctive

filters (e.g., “temp > 25° C AND nodeid = 7 AND
hour_of_day BETWEEN 10 am and 6 pm”).
TinyDiffusion [9] is similarly limited to just a few
predicates. Unfortunately, many condition-based
monitoring and compliance applications may have tens to
thousands of conditions that need to be detected and
reported; for example, we have been talking with Intel
engineers deploying wireless sensornets for condition
based maintenance in Intel’s chip fabrication plants who
report that they have thousands of sensors spread across
hundreds of pieces of equipment that are each involved in a
number of different manufacturing processes that are
characterized by different modes of behavior [10,11].

In this paper, we present REED, a system for Robust and
Efficient Event Detection in sensor networks that addresses
this limitation, enabling the deployment of sensor networks
for the types of applications described above. REED is
based on TinyDB, but allows users to express queries that
include complex, time and location varying predicates over
any number of conditions. The key idea of REED is to
store filter conditions as predicates in tables, and then use a
fault tolerant protocol to distribute those tables throughout
the network. Once these tables have been disseminated,
each node applies the predicates to its readings by
checking each tuple of readings it produces against all of
the predicates, outputting a list of predicates that the tuple
satisfies. This list of satisfying predicates is then
transmitted out of the network to inform the user of
conditions of interest. By performing this filtration in-
network, REED can dramatically reduce the
communications burden on the network topology,
especially when there are relatively few satisfying tuples,
as is typically the case when identifying failures in
condition-based monitoring and process compliance
applications. Reducing communication in this way is
particularly important in many industrial monitoring
scenarios when relatively high data rate sampling (e.g.,
100’s of Hertz) is required to perform the requisite
monitoring [7]. Table 1 shows an example of the kinds of
tables which we expect to transmit – in this case, the
filtration predicates vary with time, and include conditions
on both the temperature and humidity. Our discussions
with various commercial companies (e.g., Honeywell and
ABB) involved in process control suggest that these kinds
of predicates are representative of many sensor-based
monitoring deployments in the real world.

The database-savvy reader will have observed that the
description of table-based predicate matching given above
bears a great deal of similarity to joins in a database
system. Indeed, some of the optimizations that we
describe for applying these predicates are inspired by join
techniques developed in the database community, though

Table 1: Example of a table of predicates used in
condition-based monitoring

Condition_type Time Temp_thresh Humid_thresh

1 10 pm > 100° C > 95 %

2 10 pm > 110° C > 90 %

3 10 pm > 115° C > 87 %

… … … …

the small memory footprint and lossy and low bandwidth
communication in sensornets requires significant
alternations to traditional join techniques. Interestingly,
both TinyDB [16] and Cougar [28] initially eschewed joins
in their query languages as their authors believed joins
were of limited utility – REED provides an excellent
counter-example to this point of view. In fact, we have
added support joins between external tables and sensor
readings to TinyDB; users can now write queries of the
form:
 SELECT s.nodeid, a.condition_type
 FROM sensors AS s, alert_table AS a
 WHERE s.temp > a.temp_thresh
 AND s.humidity > a.humid_thresh
 AND s.time = a. time
 SAMPLE PERIOD 1s

Here, we use TinyDB syntax, where sensors refers to
the live sensors readings (produced once per second, in this
case.) In REED the external alert_table (similar, for
example, to Table 1) will be pushed into the network along
with the query. The filter conditions will be evaluated by
having each node match the sensors tuples that it
produces with the conditions in the table, with matches
producing tuples of the form <nodeid,
condition_type> which are then transmitted out to
the user.

Because storage on sensor network devices is typically at a
premium (e.g., Berkeley motes have just a few kilobytes of
RAM and half a megabyte of Flash), REED allows these
predicate tables to be partitioned and stored across several
sensors. It also can transmit just a fragment of the
predicate table into the network, forcing readings which do
not have entries in the table to be transmitted out of the
network and filtered externally. REED attempts to
determine which predicates are most important to send into
the network based on historical observations of predicates
which commonly are not satisfied.

We end with a caveat: the purpose of this paper is not to
describe sophisticated signal processing or statistics-based
algorithms for data filtration. Instead, we focus on the
systems issues related to efficiently propagating large
tables of predicates and evaluating join-like queries over
them. We consider predicates that are individually simple,
consisting of Boolean operations over real numbers. We
omit any discussion of more sophisticated predicates that
are sometimes needed in the types of monitoring
applications described above. We note, however, that our
approach is generalizable to more complex predicates, in
that TinyDB is fully amenable to known techniques for
extending databases via user-defined functions and
predicates [26] that have been shown to be viable for
various time-series and signal-based analyses.

1.1. Contributions
In summary, the major contributions of this work are:

• We show how complex filters can be expressed as
tables of conditions, and show that those conditions
can be evaluated using relational join-like operations.

• We describe the REED system and our sensor network
filtration algorithms, which are tailored to provide
robustness in the face of network loss and to handle
very limited memory resources.

• We provide experimental results showing the
substantial performance advantages that can be
obtained by executing complex filters inside the
sensor network, through evaluation in both simulation
on a real, mote-based sensor network.

• We discuss a number of variants and optimizations of
our approach, some of which are motivated by join
optimizations in traditional databases and others
which we have developed to address the particular
properties of sensor networks.

Before describing the details of our approach, we briefly
review the syntax and semantics of sensor network queries
and the capabilities of current generation sensornet
hardware.

1.2. Background: Sensor Networks and Motes
Sensor networks typically consist of tens to hundreds of
small, battery-powered, radio-equipped nodes. These
nodes usually have a small, embedded microprocessor,
running at a few Mhz, with a small quantity of RAM and a
larger Flash memory. Table 2 summarizes hardware
characteristics of the Berkeley mica2 Mote, a popular
sensor network hardware platform designed by UC
Berkeley and sold commercially by Crossbow Corporation.

Storage: The limited quantities of memory are of
particular concern for query processing, as they severely
limit the sizes of join and other intermediate result tables.
Although future generations of devices will certainly have
somewhat more RAM, large quantities of RAM are
problematic because of their high power consumption.
Non-volatile flash can make up for RAM shortages to
some extent, but flash writes are quite slow (several
milliseconds per page, with typical pages less than 1 KB)
and consume large amounts of energy – almost as much as
transmitting data off of the mote [25].

Table 2: Hardware Attributes of the Mica2 Mote

Attribute Value
Processor 7Mhz Atmega 128
Radio 38.6 Kbps CC1020

Range: ~100 ft
RAM 4 KB
Flash 512 KB
Battery 2xAA (2400 mAH)
Active Power Consumption ~15 mA
Sleep Power Consumption ~10 µA

Sensors: Mica2 motes include a 51-pin expansion slot that
accommodates a number of sensor boards. Commonly
available sensors can measure light, temperature, humidity,
air-pressure, vibration, acceleration, and position (via
GPS).

Communication: Radio communication tends to be quite
lossy – without retransmission, motes drop significant
numbers of packets. At very short ranges, loss rates may
be as low as 5%; at longer ranges, these rates can climb to
50% or more [27]. Though retransmission can mitigate
these losses somewhat, nodes can still fail, move away, or
be subject to radio interference that makes them
temporarily unable to communicate with some or all of
their neighbors. Thus, any algorithm that runs inside of a
sensor network must tolerate and adapt to some degree of
communication failure.

TinyOS: Motes run a basic operating system called
TinyOS [9], which provides a suite of software libraries for
sending and receiving messages, organizing motes into ad-
hoc, multihop routing trees, storing data to and from flash
and acquiring data from sensors.

Power: Because sensors are battery powered, power
consumption is of utmost concern to application designers.
Power is consumed by a number of factors; typically,
sensing and communicating dominate this cost [16,21]. In
this paper, we focus on algorithms that minimize
communication, as any join algorithm that includes all
nodes in a network will pay the same cost for running
sensors. We note that, if careful power management is not
used, the cost of listening to the radio will actually
dominate the cost of transmitting, as sending a message
takes only a few milliseconds, but the receiver may need to
be on continuously, waiting for a message to arrive.
TinyDB and TinyOS address this issue by using a
technique called low-power listening [20], where receivers
sample 1 out of every k bits on the radio to see if someone
is sending a message; if they detect a message, they wake
up and begin receiving at full speed; otherwise, they sleep
for the remaining k-1 bit times. Senders ensure that every
message is preceded by a k-bit preamble. In this way,
receivers never miss a message, but (by setting k to a large
value, e.g., 100) it is possible reduce the cost of listening
by approximately 1/k, while increasing transmission cost
by only k bits1. With appropriately aggressive low-power
listening, the total number of messages transmitted on the
radio channel dominates power consumption.

1.3. Background: TinyDB Data Model and Semantics
REED adopts the same data model and query semantics as
TinyDB. Queries in TinyDB, as in SQL, consist of a
SELECT-FROM-WHERE clause supporting selection,
projection, and aggregation. REED extends this list of
operators with joins. TinyDB treats data as a single table
(sensors) with one column per sensor type. Results, or
tuples, are appended to this table periodically, at well-
defined intervals that are a parameter of the query,
specified in the SAMPLE PERIOD clause. The period of

1 In practice, receivers may not be able to switch on and off in a single bit
time. In such cases, if the switching time of the radio is b bits, we can
make the preamble b*k bits and still obtain a factor of k reduction in
listening costs.

time from the start of each sample interval to the start of
the next is known as an epoch. Consider the query:
SELECT nodeid, light, temp
FROM sensors
SAMPLE PERIOD 1s FOR 10s

This query specifies that each sensor should report its own
id, light, and temperature readings once per second for ten
seconds. Thus, each epoch is one second long. The virtual
table sensors contains one column for every attribute
available in the system and one row for every possible
instant in time. The term virtual means that these rows and
columns are not physically materialized -- only the
attributes and rows referenced in active queries are actually
generated.

1.4. Data Collection in TinyDB
Query processing in the original TinyDB implementation
works as follows. The query is input on the user’s PC, or
basestation. This query is optimized to improve execution
– currently, TinyDB only considers the order of selection
predicates during optimization (as the existing version does
not support joins). Once optimized, the query is translated
into a sensor-network specific format and injected into the
network via a gateway node. The query is sent to all nodes
in the network using a simple broadcast flood (TinyDB
also implements a form of epidemic query sharing which
we do not discuss.)

As the query is propagated, nodes learn about their
neighbors and assemble into a routing tree; in TinyDB,
this is implemented using a standard TinyOS service
similar to what is described in the work by Woo et al. [27].
Each node in the network picks one node as its parent that
is one network hop closer to the root than it is. A node’s
level is simply the number of radio hops required for a
message it sends to reach the basestation.

As a node produces query answers, it sends them to its
parent; in turn, parents forward data to their parents, until
answers eventually reach the root. For some queries (and
in our join implementation), parents will combine readings
from children with local data to partially process queries
within the network. The basestation assembles partial
results from nodes in the network, completes query
processing, and displays results to the user.

2. Applications and Query Classification
Given this basic introduction to sensors and TinyDB, we
now describe some applications of REED. We use these
applications to derive a classification of filter types that we
will use to motivate the different algorithms we present in
Section 3.

2.1. Query Types
REED extends the query language of TinyDB by allowing
tables of filter predicates to appear in the FROM clause. In
this section, we show the syntax of several example queries
and describe their basic behavior.

Industrial Process Control. Chemical and industrial
manufacturing processes often require temperature,
humidity, and other environmental parameters to remain in
a small, fixed range that varies over time [8]. Should the
temperature fall outside this range, manufacturers risk
costly failures that must be avoided. Thus, they currently
employ a range of wired sensing to avoid such problems
[22,10]. Interestingly, companies in this area (e.g., GE,
Honeywell, Rockwell, ABB, and others) are aggressively
pursuing the use of mote-like devices to provide wireless
connectivity, which is cheaper and safer than powered
solutions as motes don’t require expensive wires to be
installed and avoid the risks associated with running high-
voltage wires through volatile areas. Of course, for
wireless solutions to be cost-effective, they must provide
many months of battery life as well as equivalent levels of
information as existing solutions. Thus, the power and
communications efficiency of a system like REED is
potentially of great interest.

It is easy to write a REED query that filters readings from
sensors located at various positions with a time-indexed
table of predicates that encodes, for example, allowable
temperature ranges in a process control setting. Should the
temperature ever fall outside the required range, users can
be alerted and appropriate action can be taken. Such a
query might look like:
(1) SELECT a.atemp

FROM schedule_table AS s,
 sensors AS a
WHERE s.ts > t.tsmin AND
 s.ts < t.tsmax AND
 a.atemp > t.tempmin AND
 a.atemp < t.tempmax AND
 a.nodeid = t.nodeid

Here, results are produced only when an exceptional
condition is reached (the temperature is outside the desired
range), and thus relatively few tuples will match. We note
that this is a low selectivity query, indicating that it outputs
(selects) a small percentage of the original sensor tuples.

Failure and Outlier Detection. One of the difficulties of
maintaining a large network of battery-powered, wireless
nodes is that failures are frequent. Sometimes these
failures are fail-fast: for example, a node’s battery dies
and it stops reporting readings. At other times, however,
these failures are more insidious: a node’s readings slowly
drift away from those of sensors around it, until they are
meaningless or useless. Of course, there are times when
such de-correlated readings actually represent an
interesting, highly localized event (i.e., an outlier). In
either case, however, the user will typically want to be
informed about the readings. We have implemented a
basic application that performs both these tasks in REED.
It works as follows: we build a list of the values that each
node commonly produces during particular times of day
from historical data and periodically update this list over
time. We then use this list to derive a set of low-
probability value ranges that never occur or that occur with

some threshold probability ε or less frequently. Then, we
run a query which detects these unusual values. For
example, the following query detects outlier temperatures:
SELECT s.nodeid, s.temp
FROM sensors AS s, outlier_temp AS o
WHERE s.temp

BETWEEN o.low_temp AND o.hi_temp
AND s.roomno = a.roomno

This query reports all of the readings that are within an
outlier range in a given room number. Note that the
outlier_temp table may be quite large in this case, but
that the selectivity of this query is also low.

Power Scheduling. As a third example, consider a set of
sensors in a remote environment where power conservation
is of critical importance. To minimize power consumption
in such scenarios, it is desirable to balance work across a
group of sensors where each sensor only transmits its light
reading some small fraction of the time. We can do this
with an external table as well; for example:
SELECT sensors.nodeid, sensors.light
FROM sensors, roundrobin
WHERE sensors.nodeid = roundrobin.nodeid
 AND sensors.ts % |nodes| = roundrobin.ts

For this query, the roundrobin table is small (≤ |nodes|
entries), and can likely fit on one node. This filter also has
a low selectivity, as only one or two nodes satisfy the
predicate per time step.

2.2. Query Classification and Optimization Tradeoffs
These queries allow us to make several observations about
how and where we should execute filters. In general, it is
advantageous to perform filters with low selectivity in the
sensor network. This is because there will be many fewer
results than original data and thus a smaller number of
transmissions needed to get data to the basestation.

There are situations, however, when we might prefer not to
push a filter into the network; for example, if the filter has
a relatively high selectivity, and the size of the join table is
very large, the cost of sending the filter into the network
may exceed the benefit of applying the filter inside the
network. We may also be unable to push a filter into the
network if the size of the predicate table exceeds the
storage of a single node or a group of nodes across which
the table may be partitioned.

Thus, in REED, we differentiate between the following
types of filters:

- Small filter tables that fit in the memory of a single
node.

- Intermediate filter tables that exceed the memory of a
single node, but can fit in the aggregate memory of a
small group of nodes.

- Large filter tables that exceed the aggregate memory
of a group of nodes.

We have developed filtration algorithms (all based on
joins) that are suitable for all three classes of tables; we
describe these algorithms in Sections 3 and 4 below.

For small filter tables, REED always chooses to push them
into the network if their selectivity is smaller than one. For
intermediate tables, the REED query optimizer makes a
decision as to whether to push the filter into the network
based on the estimated selectivity of the predicate (which
may be learned from past performance or gathered
statistics, or estimated using basic query optimization
techniques [25]) and the average depth of sensor nodes in
the network. It uses a novel algorithm to store several
copies of the filter table at different groups of neighboring
nodes in the network, sending each sensor tuple to one of
the groups for in-network filtration.

For large filters, as well as intermediate filters that REED
chooses not to place in-network, REED can employ a third
set of algorithms that send a subset of the filter table into
the network. REED tags this subset with a logical
predicate that defines which sensor readings it can filter.
For example, for Query (1) above, a filter subset might be
tagged with a predicate indicating it is valid for nodes 1-5
at times between 5 am and 5 pm. For readings from these
nodes in this time period, filters can be applied in-network;
other readings will have to be transmitted out of the
network and filtered externally. We describe algorithms
for this kind of partial filtering in Section 4. If REED
chooses not to apply partial filtering, all nodes transmit
their readings out of the network where they are filtered
externally.

In the following section, we present two algorithms: the
first is a single-node algorithm for small filter tables. The
second shows how to generalize this single-node technique
to a group of nodes that work together to collectively store
the filter table. We show that these algorithms are robust
to failures and changes in topology as well as efficient in
terms of communication and processing costs.

3. Join-Based Filter Algorithms
Once the query optimizer has decided to push a REED
query into the network, we need an algorithm for applying
our filters efficiently; in this section, we describe our
approach for performing this computation. We focus on
distributing and executing our filters throughout the
network in a power-efficient manner that is robust in the
face of dropped packets and failed nodes. Logically, our
algorithms for filtration can be thought of as a nested-loops
join between current sensor readings and a table of static
predicates. Thus, for the remainder of this paper, we
describe our filter algorithms in terms of joins, as what we
have implemented in REED is actually a general purpose
join processor.

Nested-loops joins are straightforward to implement in a
sensornet, as shown by the following algorithm:
Join(Predicate q)
for each tuple tr in sensors do
for each tuple ts in predicates do
if q(tr, ts) is satisfied

add tr ∪ ts to result set r
end

end
return r

There are two things to note about this algorithm. First,
low selectivity filters might cause there to be fewer than
one result (on average) per element of the outer loop,
though it is in general possible for each tuple to match with
more than one predicate. In such a scenario, it is
advantageous to apply our filters as close as possible to the
data source in a sensor network since this would reduce the
total number of data transmissions in the network. Second,
elements of predicates are independent of each other.
Thus, predicates can be horizontally partitioned into a
number of non-overlapping sub-tables, each of which can
be placed on separate nodes. As long as the table partitions
are disjoint, the union of the results of the filter on the
independent nodes storing partitions of the table is equal to
the results of the filter if the entire static table was stored at
one location.

These two observations motivate our algorithms. The join-
based filter is applied as close as possible to the data
source. For the case where the static table fits on one
sensor node, the static table is sent to every sensor node
(using the TinyDB query flood mechanism) and the filter is
performed on a sensor node as soon as the data is
produced. For the case where the static table does not fit on
one node, the predicates table (s) is horizontally partitioned
into n disjoint segments s1, s2, …, sn (s=s1∪s2∪…∪sn).
Each si is sent to a member of a group of sensor nodes in
close proximity to each other formed specially to apply the
filter. Each group is sent a copy of the predicates table.
When a sensor data tuple is generated, it is sent to each
node in exactly one of these groups to join with every
partition (si) of the predicate table.

In Section 3.1 we describe in more detail the case where
the predicates table fits on one node. In Section 3.2 extend
this basic algorithm with a distributed algorithm for the
case where the table is too big to fit on one node.

3.1. Single Node Join
Our join algorithm leverages the existing routing tree to
send control messages and tuples between the nodes and
the root. When a query involving a join is received at the
basestation, a message announcing the query is flooded
down to all the nodes. This announcement (actually
implemented as a set of messages) is an extended version
of the TinyDB “new query” messages, and includes the
schema of the sensor data tuples, the name, size, and
schema of the join table, the schema of the result tuples,
and a set of expressions that form the join predicate. Upon
receiving the complete set of these messages, every node in
the sensor network knows whether it is participating in the
query (by verifying that it contains the sensors that produce
the fields in the schema) and how many tuples of the join
table can be locally stored (by comparing the size of each
join table tuple with the storage capacity the node is
willing to allocate to the query).

If the node’s storage capacity is sufficient to store the filter
predicates table, the node simply sends a message to the
root, requesting the table and indicating that it intends to
store the entire table locally. The root assumes that there
will likely be other nodes who can also store the entire
table, so it floods each tuple of the table throughout the
sensornet. Once the entire table is received, the node can
begin to perform the join locally, transmitting the join
results rather than the original data. Before then, nodes run
a naïve join algorithm, where also sensor tuples are sent to
the root of the network to be joined externally.

A simple optimization that can be performed is that if the
result of the join consists of more than one tuple, the node
can simply send the original sensor tuple. The join for this
tuple can then be performed at the basestation; this
technique is equivalent to semi-joins, a well known
technique for join evaluation in database systems [1].

Figure 1: REED routing and join tree with group

overlays
3.2. Distributed Join
In this section, we describe our in-network join algorithm
in detail. Our algorithm consists of three distinct phases:
group formation, table distribution, and query processing.
We begin with a brief overview, and then describe each
phase in turn.

3.2.1. Algorithm Overview
When the predicates table does not fit on one node, joins
can no longer be performed strictly locally. Instead, the
table must be horizontally partitioned. A tuple can only
immediately join with the local partition at the node and
must be shipped to other nodes to complete the join. Once
the original tuple has reached every node that contains a
partition of the table, it can be dropped and results can be
forwarded to the root. Within each group, the members are
within broadcast range of each other. Our group formation
algorithm is described in detail in the next section.

Figure 1 shows the setup of such a distributed join query.
The figure shows a multi-hop routing tree where tuples are
passed to their parents on their path to the root basestation.
For example, a tuple produced by node 7 is sent to node 5
which then sends the tuple to node 2 which sends the tuple
to the basestation. Our join algorithm works by overlaying
groups (shown as large circles in Figure 1) on top of this

routing tree. The numbers in parentheses in the figure
represent the set of nodes in broadcast range for that
particular node. A tuple that needs to be joined is
broadcast from a node to the other members of its group.
Each member sends any joined results up the original
routing tree. For example, if node 7 produces a tuple to be
joined, it broadcasts it to nodes 5 and 6. If node 5 contains
a tuple in the table that successfully joins with 7’s tuple, it
sends the result up to node 2 which forwards it to the root.

Note that when node 7 produces a tuple, three
transmissions results – this is the same as if the original
data was sent up the routing tree in the naïve or single-
node case. In the worst case, there would have been two
extra tuples: if node 5 produced a tuple which joined with a
tuple on node 7 a total of 4 transmissions would have been
performed. In general, no more than 2 + depth
transmissions will be required, as any pair of nodes in the
same group differ by no more than one level (by
definition). For joins with predicates of low selectivity
there will be many cases where no element of the table
joins with the original data. When this occurs, performing
the join in the group rather than sending the tuple back to
the root can provide savings proportional to the depth of
that group (instead of the n hops to get the original data to
the root, only one transmission of the original data is
made).

We now describe the algorithm that each node performs
when it receives a join query with a predicates table whose
size is too large to fit on that node. We discuss how groups

are formed, how the table is distributed, and then the group
join operation.

3.2.2. Group Formation

Figure 2: Join Algorithm Finite State Machine. The
“TO” transitions represent timeouts, which are used
to prevent deadlocks in the event of lost data or failed
nodes.

If a node calculates that it does not have enough storage
capacity for the table, it initiates the group formation
algorithm. To minimize the number of times an original
tuple must be transmitted to make it to every member of a
group, we require that all nodes in the group are within
broadcast range of each other. A second required property
of a group is that it must have enough cumulative storage
capacity to accommodate the table of predicates. Group
formation is a background task that happens continuously
throughout the lifetime of the join query as nodes come
and go and network connectivity changes. Every group can
be uniquely identified by its groupid and the queryid to
which the group belongs. To simplify group formation and
table distribution, we only allow a node to belong to one
group for a given query. A node may belong to different
groups for different simultaneously running queries.

Every node maintains a global, periodically refreshed list
of neighbors that are within broadcast range. For each
neighbor, an estimate of incoming link quality is computed
by snooping on messages sent by surrounding nodes. Each
REED message contains a counter, and upon overhearing a
message, a node can calculate how many messages it
missed since the previous message by subtracting the
previous message’s counter from the current counter. The
receive rate can then be calculated by dividing the number
of messages received by the total number of messages sent.
Note that links may be asymmetric. For this reason, we
assume that the neighbor list only contains information
about incoming link quality from each node. Outgoing link
quality is accounted for elsewhere. A neighbor node is
placed on the neighbor list if the receive percentage is
above some threshold (defaulting to 75%). This algorithm
is similar to the algorithm used for measuring link quality
in the TinyOS multihop radio stack [27], and we have been
able to use the standard TinyOS implementation of this
table in our REED implementation.

Once a node receives notification of a new query, it enters
into a group formation finite state machine (FSM – see
Figure 2). Each join query has its own FSM which, barring
resource conflicts, operates independently. Every node is
initialized to the Need Group state with a randomly set
timeout value. Nodes transition between states in this
diagram once per epoch. Groups are formed when a node
(which will become known as the master node) in the Need
Group state reaches a timeout and broadcasts a request to
form a group to neighboring nodes (while transitioning to
the Listen Group state). All nodes which hear this request
and are also in the Need Group state (implying that they
are not currently in groups and do not have offers pending
to other potential masters) respond with offers to be
members if the master node is in their neighbor list. These
offer messages include the neighbor list of the sender and
the number of join table tuples which the sender can
locally store. Responding nodes move into the Possible
Member state which prohibits them from offering
themselves to other masters until a response is received or
a timeout occurs. In order to minimize the probability that

the master does not receive the reply and the node has to
wait until it times out to be available again, a node in the
Possible Member state retransmits its reply every fixed
time period (one epoch) until it hears a response from the
desired master.

The master node collects responses from available nodes
for a fixed duration (occasionally retransmitting the group
formation request in case previous requests were lost). At
the end of this duration, the master chooses the group
members. The algorithm to choose the group members
attempts to make a group that involves the maximum
number of nodes such that every node is in radio range of
every other. This is done using the neighbor lists that each
neighbor sent to the master and the master’s own neighbor
list. The master also must ensure that the group has
enough combined storage capacity to store the entire
predicates table. Ideally, a node would use the neighbor list
of every node to create the optimal group. However, since
memory is severely limited (and we want to save as much
memory as possible for the storage of the table) the master
node does not store the neighbor list of every reply it
receives, but instead keeps a running intersection of current
candidate group members’ neighbor lists. Upon receiving a
reply, the master takes the intersection of its current list
with the neighbor list received in the reply. The master also
keeps a running aggregate of the total storage available on
all of the nodes. If the resulting intersection is sufficiently
large (and the nodes previously accepted are still in the
intersection), the master includes the node into the group
and keeps the intersection. Otherwise, it rejects the node
and rolls back to the previous intersection. Pseudo code for
this greedy algorithm is shown in Figure 3.

Note that this algorithm takes into account the possibility
of asymmetric links. To be in the same group, every group
member must appear on the neighbor list of every other
member. Thus, (for the example of two nodes, a and b)
node b must appear on node a’s neighbor list and node a
must appear on node b’s neighbor list.

At the end of the time out period, the master examines the
current group’s aggregate storage space. If it is larger than

t = some threshold parameter
N = current neighborlist
G = my.id //G will hold current group
 // member list which is initialized
 // to just contain the master
space = my.space
for every reply from node i do
 id = i.id
 M = i.neighborlist
 P = intersect(N, M)
 if (|P| > t) and (P ∩∩∩∩ G = G) do
 N = P;
 G = union(G, id)
 space = space + i.space
 end
end

Figure 3: Group Formation Algorithm

the size of the predicates table, it can go ahead and inform
the group of its successful creation. Otherwise, it must
announce that it failed to create a group. If it succeeded in
creating a group a message is broadcast containing the list
of accepted members and the master transitions to the Wait
Data state. Nodes that receive this broadcast check to see if
they are on the accepted members list. If so, they also
transition to the Wait Data state. Otherwise, they revert
back to the Need Group state. As stated above, nodes in the
Possible Member state periodically retransmit a group
reply. Thus, if the group announcement broadcast is lost,
these nodes will continue to send replies that will cause the
master to retransmit the group announcement. Eventually,
word will get to all possible members whether or not they
are accepted. The group id of the resultant group is the
node id of the master node.

Although now officially a query group, nodes in the group
cannot start processing tuples as a group until the join table
has been distributed. It is the responsibility of the
basestation to keep track of which parts of the join table
have been issued to which members of a group. This
information is kept in a table indexed by group id and
query id. Upon entering into a group and transitioning into
the Wait Data state (either as a master node which just
successfully formed a group or as a potential group
member node which received the group accept broadcast),
a node sends a join table request message to the root
(which is periodically resent if no response from the root
occurs before a timeout). This message includes the
groupid, queryid, and the number of filter predicates that
can be accepted. This number is computed from the space
available at the node and the schema of the join table.

The basestation receives the join table requests and, based
on the queryid, groupid and tuple capacity, decides which
portion of the join table should be sent back to the node.

Upon receiving a set of join tuples from the root, a node
transitions to the Wait Others Data state and broadcasts to
its group the number of tuples it received (this message is
also periodically rebroadcast while a node remains in the
Wait Others Data state). Each node keeps track of which
nodes have received how many tuples, and independently
determines when the entire join table has been distributed
to the group (since the join table size was distributed with
the original query request). When any member of the group
decides that the entire group has received the join table, it
transitions to the In Group stage and broadcasts a group
ready message. Nodes that hear the group ready message
also transition to the In Group state. Nodes that do not hear
the message will transition to the In Group state as soon as
it overhears a message from one of the nodes who know
that the group is ready (and is in the In Group state) that
contains a broadcast a tuple for the group to join.

3.2.3. Operation
Sensor data tuples that need to be processed by a node are
generated either by the sensors on the node itself or
received from children in the REED routing tree. Nodes

are responsible for forwarding child sensor data tuples at
all times during the query, whether or not they are in an
active join group. Until transitioning to the In Group state,
all data tuples are forwarded up to the parent node in the
REED tree. If all nodes along the way to the root
basestation are not members of active groups, then the
network behaves like the naive join with all the original
sensor data tuples being forwarded to the root where the
join is performed.

However, if a node along the way is in the In Group state,
then instead of forwarding the data message to its parent, it
broadcasts the tuple to its group. Each group member then
joins that data tuple with the locally stored portion of the
join table and forwards the resulting joined tuples up the
original REED tree; these result tuples need no more
joining and can be output once they reach the root.

Nodes in the In Group state eventually time out and
attempt to dissolve the group. They also might choose to
dissolve the group if it senses that a node has ceased to
respond or if the message loss percentage from a node in
the group rises above the desired threshold. A node
dissolves a group by broadcasting a group dissolve
message and transitioning to the Need Group state. Nodes
that receive this message also transition to the Need Group
state. Nodes that do not will continue to try to send data
tuples to the group which will cause the node that
dissolved the group to retransmit the dissolve message and
forward these data tuples back up the original REED
routing tree.

3.3. Robustness Under Message Loss and Node Failure
It is critical that the distributed join algorithm just
described works properly in the face of message loss and
node failure. If the table fails to distribute properly, or if
nodes in a group incorrectly make assumptions regarding
the data storage of other members of the group, data loss is
compounded due to repeated errors in data processing
within the group. For example, if node y times out (or fails
or moves out of broadcast range) at any point in the group
formation process and other nodes continue to process
tuples as if that node were a group member, then all tuples
processed by that group that joined node y’s partition will
be lost. Since these errors are so important to avoid, we
briefly discuss the robustness properties of this algorithm.

The key attribute of this algorithm that allows it to avoid
problematic scenarios is that each state is “soft” in the
sense that if enough time elapses with a node stuck an any
particular state, it gives up and returns to the Need Group
state. Message loss and node failure are the primary
reasons that a node might get stuck in a particular state. For
example, a node that has sent out a response to a group
offer might get stuck in the Possible Member state if the
node it responded to either fails or further communication
between the nodes is lost. For every state except the Wait
Others Data and In Group states, reverting back to the
Need Group state can happen for free, without causing any
loss. This is because every node is transmitting data back

to the basestation using the naïve algorithm until a group is
formed, so until a node has announced that it owns a
partition of the table, it has not made any promises to other
nodes that it cannot easily renege. By timing out during the
group formation process, a node might delay induction into
a group for both itself and other nodes that it may have
indicated interest in joining, but no data is lost.

For the case where a node times out (or fails) while in the
Wait Other Data or In Group states, we allow a bounded
amount of data to be lost. Our initial implementation of
REED used a reliable round-robin ACKing protocol
between nodes. In this protocol, a node in a group stored
the last k tuples that it transmitted to its group. Every group
member then sent an ACK at least once in every k epochs.
If any group member failed to perform this ACK, the
remaining group members assumed that none of their last k
transmissions made it to this node and transmitted their
stored block of k tuples via the naïve algorithm to the
basestation. This aggressive reliability protocol turned out
to be overkill since REED applications expected some
amount of loss in the sensor network anyway, and the
highly reliable communication within a REED group did
not match the low reliability of transmissions once the data
left the group. For this reason, REED reacts with a delay to
node failure inside a group. We use the active neighbor list
in the TinyOS multi-hop routing layer to detect failures.
When a group member disappears from a node’s neighbor
table, that node immediately commences the group
dissolving process described above.

4. Optimizations
In this section, we extend the basic join algorithm
described in the previous section with several
optimizations that decrease the overall communication
requirements of our algorithms and that allow us to apply
in-network filters for large tables that exceed the storage of
a group of nodes.

4.1. Bloom Filters
To allow nodes to avoid transmitting sensor data tuples
that will not join with any entries in the join table, we can
disseminate to every node in the network a k-bit Bloom
filter [2], f, over the set of values, J, appearing in the join
column(s) of the filter table. We also program nodes with
a hash function, H, which maps values of the join attribute
a into the range 1…k. Bits in f are set as follows:

otherwise 0

 i.f.f. 1
))((

 ofdomain in the values

Jv
vHf

av

∈
=

∀

Thus, if bit i of f is unset, then no value which H maps to i
is in J. However, just because bit i is set does not mean
that every value which hashes to i is included in J. We
apply Bloom filters as in R*[15]: when a node produces a
tuple, t, with value v in the join column, it computes H(v)
and checks to see if the corresponding entry is set in f. If it

is not, it knows that this tuple will definitely not join.
Otherwise, it must forward this tuple, as it may join.
Assuming simple, uniform hashing, choosing a larger
value of k will reduce the probability of a false positive
where a sensor tuple is forwarded that ultimately does not
join, but will also increase the cost of disseminating the
Bloom filter. We can apply bloom filters with the group
protocol, to avoid even one transmission of data to group
members, or in isolation as a locally-filtered version of the
naïve (external) filtration algorithm.

4.2. Partial Filtering
For situations in which there are a very large number of
tuples in the join table, we can just disseminate information
that allows sensors to identify tuples that definitely do not
join with any filters. Suppose we know that there are no
filters on attribute a in the range a1 … a2. If we transmit
this range in the network, then a sensor tuple, t, with value
t.a outside a1 … a2 is guaranteed to not join with any filters
and need not be transmitted; if t does intersect with the
range, we must transmit it to the root to check and see if
this tuple joins with any filters. Of course, for a
multidimensional join query, there will be many such
ranges with empty values, and we will want to send as
many of them into the network as the nodes can store.

Thus, the challenge in applying this scheme is to pick the
appropriate values of a1 and a2 in each range we send into
the network so as to maximize the benefit of this approach.
If few tuples that are produced by the sensors are outside
of this range, we can substantially decrease the number of
tuples that nodes must transmit. Of course, the range of
values which commonly join may change over time,
suggesting that we may want to change the subset of the
table stored in the network adaptively, based on the values
of sensor tuples we observe being sent out of the network.
We discuss one such adaptive algorithm in the next
section.

4.2.1. Cache Diffusion
The key idea of our approach is to observe the data that
sensor nodes are currently producing. We assume that each
node contains two cache tables. The first, the local value
cache, contains the last k tuples that a node n produced.
The second table (which is organized as a priority queue)
holds empty range descriptions (ERDs) of the join. An
ERD is a range of values over all join attributes such that
no combination of tuple values within the range joins with
the filter table; e.g., an ERD for a query filtering by
nodeid and temperature might consist of the range
[20-25] on temperature and the range [5-7] on
nodeid; a different ERD might consist of the range [23-
30] on temperature and [1-3] on nodeid. Tuples that
are within the range described by an ERD will not join.
We define the size of an ERD to be the product of the
width of the ranges in the ERD. We define a maximal
ERD for a non-joining tuple to be the ERD of the largest
size that the tuple overlaps. We currently compute the
maximal ERD via exhaustive search at the basestation.

2 feet

5 feet

basestation

Figure 4: Mote
Topology

The cache diffusion algorithm then works as follows.
Every time the root basestation receives a tuple that does
not join, it sends the maximal ERD which that tuple
intersects one hop in the direction that the tuple came from.
This node then checks its local value cache for tuples that
are contained within this ERD. If one is found, this value
and any other values that overlap with the ERD are
removed from the local value cache, and the ERD is added
to the ERD cache table with priority 1. If no match is
found, then the ERD is also placed in the ERD cache table,
but we mark it with priority 0. Priorities are used to
determine which ERDs to evict first, as described below.

Upon receiving a tuple from a child for forwarding, a node
first checks the ERD cache to see if the tuple falls within
any of its stored ERDs. If so, the node filters the tuple and
sends the matching ERD to the child. Further, if node x
overhears node y sending a tuple to node z (where node z is
not the basestation), it also checks its ERD table for
matching ERDs and, if, it finds one, forwards it to node y.
The ERD cache is managed using
an LRU policy, except that low-
priority ERDs are evicted first.
Here “last-use” indicates the last
time an ERD successfully filtered
a tuple.

Thus, for a node x of depth d, it
takes d tuples that fall within an
ERD to be produced before the
ERD reaches node x. Note that
these d tuple productions do not
have to be consecutive as long as
the matching ERD that diffuses
to node x does not get removed
from the ERD cache of its
ancestor nodes on its way.
Further, note that despite the fact
that it takes d tuples before node x receives the ERD, these
tuples get forwarded fewer and fewer times while the ERD
gets closer and closer to x. In total, d + (d-1) + (d-2) … + 1
additional transmissions are needed before an ERD reaches
node x. The advantage of this approach over directly
transmitting the ERD to the node that produced the non-
joining tuple is two fold: first, we do not have to
remember the path each tuple took through the network;
second, we do not have to transmit every ERD d hops –
only those which filter several tuples in a row.

Once an ERD (or set of ERDs) arrive at node x, then as
long as node x produces data within the ERD, no
transmissions are needed. Thus, for joins with low
selectivity on sensor attributes of high locality, we expect
this cache diffusion algorithm to perform well, even for
very large tables.

5. Experiments and Results
We have completed an initial REED implementation for
TinyOS. Our code runs successfully on both real motes and

in the TinyOS TOSSIM [13] simulator. We use the same
code base for both TOSSIM and the motes, simply
compiling the code for a different target. Most of the
experimental results in this section are reported from the
TinyOS TOSSIM simulator, which allows us to control the
size and shape of the network topology and measure
scaling of our algorithms beyond the small number of
physical nodes we have available. We demonstrate that
our simulation results closely match real world
performance by comparing them to numbers from a simple
five-mote topology.

We are running TOSSIM with the packet level radio model
that is currently available in the beta/TOSSIM-packet
directory of the TinyOS CVS repository. This simulator is
much faster (approximately 1000x) than the standard
TOSSIM radio model but still simulates collisions,
acknowledgments, and link asymmetry. The primary
difference between this simulator and the standard
TOSSIM radio model is that the standard model simulates
the modulation of every bit of every packet over the radio,
modeling collisions by ANDing together the bits written
by different senders. The packet simulator writes a whole
packet at a time, delivering packets to receivers after an
appropriate transmission delay (as long as other senders
within radio range do not collide by writing packets during
this delay period). For the measurements reported here,
our algorithms perform similarly (albeit much more
slowly) when using the standard bit-level simulator.

For the experiments below, we simulate a 20x2 grid of
motes where there are 5 feet between each of the 20 rows
and 2 feet between the 2 columns. The top-left node is the
basestation. This is shown in Figure 4. With these
measurements, a data transmission can reach a node of
distance 1 away (horizontally, vertically, or diagonally in
Figure 4) with more than 90% probability, of distance 2
away with more than 50% probability, and rarely at further
distances. However the collision radius is much larger:
nodes transmitting data with distance <=5 away from a
particular node can collide with that node’s transmission.
For the distributed (group) join experiments, we set the
group quality threshold described above to 75%, which
yield groups almost always to consist of nodes all less than
10 feet away from each other. We chose this topology
because it allows us to easily experiment with large depths
so that nodes towards the leaves of the network can still
reliably send data to the basestation while not requiring the
TinyOS link layer to perform retransmissions during data
forwarding. We have also experimented with grid
topologies (such as 5x5) to confirm that the algorithm still
performs correctly under different topologies (as long as
the network is dense enough so that groups can form).

Our first set of experiments will examine the distributed
(REED) join algorithm. We evaluate this algorithm along
two metrics: power savings and result accuracy. We use
number of transmissions as an approximation of power
savings as justified in Section 1.2. We compare those
results to a naïve algorithm that simply transmits all

readings to the basestation and performs the join outside
the network. We measure accuracy to determine whether
our protocols have a significant effect on loss rates over an
out-of-network join. We also show how combining this
algorithm with a predication filter (such as Bloom) can
further improve our metrics. In these experiments, we
simulate a Bloom filter that accurately discards non-joining
tuples with a fixed probability. We analyze the dimensions
that contribute to this probability in later experiments.

For experiments of the distributed join, we use a join query
like the industrial process control Query (1) described in
Section 2 above, except that we use the same schedule at
every node (so our query does not include a join on
nodeid). Our schedule table has 62 entries, representing
62 different times and temperature constraints. On our
mica2 motes with 4K of RAM, each mote has sufficient
storage for about 16 tuples – the remainder of the RAM is
consumed by TinyDB and forwarding buffers in the
networking stack. We have also experimented with several
other types of join queries and found similar results:
irrespective of the query, join-predicate selectivity and
average node depth have the largest effect on query
execution cost for the distributed join algorithm.

For all graphs showing results for the distributed join
algorithm,, we show power utilization and result accuracy
at steady state, after groups have formed and nodes are
performing the join in-network. We do not include table
distribution costs in the total transmission numbers. We
choose to do this for two reasons.

First, efficient data dissemination in sensor networks is an
active, separate area of research [14,23]. Any of these
algorithms can be used to disseminate the predicates table
to the network. We use the most naïve of dissemination
algorithms: flooding the table to the network. For every
tuple sent into the network, each node will receive it once
and rebroadcast it once. Thus, if there n nodes in the
network, and the table contains k filter predicates, then
there will be n·k transmissions per table dissemination.
However, since multiple tables are disseminated (one per
group), our naïve dissemination algorithm requires n·k·g
transmissions where g is the number of groups. A simple
optimization would be to wait until all groups had been
formed and transmit the table just once; doing this is non-
trivial as groups may break-up and reform over the course
of the algorithm. For the experiments we run, we found
that on average 300 transmissions are made per predicate
in the table for our 40 node network (since g is on average
7.7). For the 60 predicate table size we experimented with,
this added 18K transmissions.

Second, applications of our join algorithm tend to be long
running continuous queries. For this reason, we are more
interested in how the algorithm performs in the long term,

and we expect that these set up costs will be totally
amortized over the duration of a query. For example, in
500 epochs (the duration of our experiments below), we
already accrue up to 160K transmissions - well above the
18K transmissions needed to disseminate the table.

Our second set of experiments analyzes and compares the
Bloom Filter and Cache Diffusion algorithms. Again we
use the number of transmissions as the evaluation metric.
We observe how the size of the join attribute domain and
locality of data are good ways to decide between which
algorithm to use.

5.1. Distributed Join Experiments

The following two experiments examine how two
independent variables affect the metrics of power savings
and accuracy for each join algorithm: join predicate
selectivity and average node depth. For all experiments,
data is collected once the system reaches steady state for
500 epochs. The table contains 62 predicates and each
node has space for 16; resulting in groups of size 4 being
created. Different numbers and combinations of groups
form in different trial runs, so each data point is taken by
averaging three trial runs. Error bars on graphs display
95% confidence intervals.

5.1.1. Selectivity
For this set of experiments, we varied the selectivity of the
join predicate and observed how each join algorithm
performed.

We model the benefit of the Bloom filter optimization
described in Section 4.1 by inserting a filter that discards
non-joining tuples with some probability p. We can
directly vary p for the test query via an oracle which can
determine whether or not a tuple will join, which is
convenient for experimentation purposes. We will show
later how in practice, the value of p can be obtained.

Figure 5 shows that for highly selective predicates (low
predicate selectivity), both the REED algorithm and the
Bloomjoin optimization provide large savings in the
amount of data that must be transmitted in the network.
The naïve algorithm is unaffected by selectivity because it
must send back all of the original data to the basestation
before the data is analyzed and joined. The REED
algorithm does not have this same requirement: those
nodes that are in groups can determine whether a produced
tuple will join with the predicates table without having to
forward it all the way to the basestation. Thus, the savings
of the algorithm is linear in the predicate selectivity. The
Bloomjoin algorithm improves these results even more
since nodes no longer always have to broadcast a tuple to
its group (or to its parent if not in a group) to find out if a
tuple will join. In these experiments we filter 50% of the
non-joining tuples in the Bloom filter.

Figure 6: Breakdown of Transmission Types for
Distributed Join with Varying Selectivity

To better understand the performance of these algorithms,
we broke down the type of transmissions into four
categories: (1) the transmission of the originally produced
tuple (to the node’s parent if not in a group; otherwise to
the group), (2) the first transmission of any joined tuples,
(3) any further transmissions to forward either the original
tuple or a joined result up to a parent in a group or to a
basestation, and (4) transmissions needed as part of the
overhead for the group formation and maintenance
algorithms. Figure 6 displays this breakdown for the
REED algorithm over varying selectivity. In this figure, the
original tuple transmissions remain constant at
approximately 20K. This is because every tuple needs to be
transmitted at least once in the REED algorithm: if the
node is not in a group, the tuple is sent to the node’s
parent; otherwise it is sent to the group. Once a tuple is
sent to a group, no further transmissions are needed if the
tuple does not join with any predicate. For the 20-hop node

topology used in this experiment, the forwarded messages
dominate the cost. It is also worth noting that the figure
shows that the group management overhead (at steady
state) is negligible compared with any of the other types of
transmissions.

Since Figure 6 showed that the reason why the REED
reduces the number of transmissions is because it reduces
the number of forwarded messages that need to be sent,
once possible explanation for this could be that the

algorithm causes more loss in the network and messages
tend to get dropped before reaching the basestation (so
they do not have to be forwarded). To affirm that this is not
the case, we measured the number of tuples that reach the
basestation at varying selectivities and compared each
algorithm. These results are shown in Figure 7. As can be
seen, all algorithms perform similarly; however the naïve
algorithm has slightly less loss at high selectivities and the
REED algorithms have slightly less loss at low
selectivities. This can be explained as follows: group
processing of the join occasionally requires 1-2 extra hops.
This is the case when a node x that stores a partition of the
predicates table that will join with a particular tuple
produced by node y and x is located at the same depth as y
or 1 node deeper. The former case requires 1 extra hop, the
latter 2 extra hops. With each extra hop, there is extra
probability that a tuple can be lost. This explains why there
is more loss at high join predicate selectivities. However,
at low selectivities, this negative impact of REED is
outweighed by its reduction in the number of transmissions
and thus network contention. Since fewer messages are
being sent in the network, there is an increased probability
that each message will be transmitted successfully.

5.1.2. Average Node Depth

For this set of experiments, we fixed the join predicate
selectivity at 0.5 and 0.1 and varied the topology of the
sensor network (in particular varying average node depth)
and observed each how join algorithm performed. We
varied node depth by subtracting leaf nodes from the 20x2
topology described earlier. The baseline 20x2 topology has
a average depth of 10.26 (each node’s parent is fixed to be
the node above it in the network except for the top-right
node which has the basestation as its parent). We
eliminated the bottom 6 nodes to achieve an average depth
of 8.76, another 6 nodes to achieve an average depth of
7.26, etc. to achieve depths of 5.76, 4.26, and 2.78; and
then the bottom pairs for nodes to achieve average depths
of 2.29, 1.80, and 1.33. The number of transmissions for
each of the three join algorithms is given in Figure 8.

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1

Join Predicate Selectivity

T
o

ta
l T

ra
n

sm
is

si
o

n
s

(1
00

0s
)

Naïve

REED

REED +
Bloom (.5)

Figure 5: Total Transmissions vs. Selectivity

0

20

40

60

80

100

120

140

160

180

0 0.02 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Selectivity

N
um

be
r

of
 T

ra
n

sm
is

si
on

s
(1

00
0s

) Original Tuple
Transmissions
Group Management
Overhead
Forwarded Messages

Join Results

Total

0

5

10

15

20

25

30

35

40

45

0 0.5 1
Join Predicate Selectivity

T
u

p
le

s
R

ec
ei

ve
d

 P
er

 E
p

o
ch

Naïve

REED (s = .5)

REED+Bloom (p = .5,
s = .1)
No Loss

Figure 7: Received Tuples vs. Selectivity for
Distributed Join Algorithm

0
5000

10000
15000
20000
25000

0 50 100
Data Locality

T
ra

n
sm

is
si

o
n

s Bloomjoin

Cache Diffusion

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11

Average Node Depth

To
ta

l T
ra

ns
m

is
si

on
s

Naïve

REED (s = .5)

REED (s = .1)

REED+Bloom
(p = .5, s = .1)

0

1

2

3

4

5

6

7

8

9

1.2 1.4 1.6 1.8 2 2.2 2.4

z
x

Figure 8: Total Data Transmissions for Varying
Average Sensor Node Depths

0

500

1000

1500

2000

2500

0.4 0.5 0.6 0.7 0.8 0.9

Data Selectivity

T
o
ta

l T
ra

n
sm

is
si

o
n
s

Actual Results
from Motes

Simulated Results

Figure 9: Simulated vs. Real World Results

These results show that the average depth necessary for
REED (without using a Bloom filter) to perform better
than the naïve algorithm is 1.8. The reason why REED
performs worse than the naïve algorithm at low depths is
twofold. The less significant reason is the small group
formation and maintenance overhead incurred by REED.
The more significant reason is that, as explained above,
join processing occasionally requires 1-2 extra hops. At
large depths, these extra hops get made up for in the saved
forwarded transmissions, but for depths less than 2, this is
not the case. However, if a Bloom filter is used, REED
always outperforms the naïve algorithm.

5.2. Real World Results
Although we expected that TOSSIM would be an accurate
simulation for TinyOS code, we verified for ourselves that
our join algorithm worked on a simple five-node one hop
network. We tracked the number of transmissions by
passing this number with the result of each join result (for
simulations we could more easily track number of
transmissions using debug statements). A side effect of this
method, however, is that we can not test our algorithm at
low selectivities as we can not accurately calculate the
number of transmissions of each node at a particular point
in time. As a result, we ran our REED algorithm with the
Bloom filter optimization varying selectivities above .5.
We ran the same experiment in simulation and compared
the two results in Figure 9. Simulation and practice
perform similarly; however the non-simulated results have
slightly decreased number of transmissions due to a

slightly higher amount of loss than was modeled in
simulation.

5.3. Bloomjoin and Cache Diffusion
Although the Bloomjoin and Cache Diffusion (CD)
algorithms described above can help optimize the REED
distributed join algorithm, they also can be applied
independently where the predicate table is too large to fit
on even a group of nodes. Whether applied as an
optimization or independently, it is important to decide
which algorithm will perform best as usually there is not
enough free space on sensor nodes to perform both
(besides which each algorithm improves performance if
allocated more space). For these experiments, we allocated
90 bytes total space for the data structures needed by each
algorithm. For the Bloomjoin algorithm, this allowed a 720
bit Bloom filter to be distributed and for CD, this allowed
9 tuples or ERDs to be cached.

We found that the two most important dimensions that
distinguish these algorithms from each other are domain
size and data locality and thus we present our results using
these dimensions as independent variables. The query used
to run these experiments is the outlier detection query
presented in section 2.1 except that we add light along with
temperature as sensor produced data. In order to vary data
locality as an independent variable, we generated data for
each node using matlab where sensor readings are
produced using a normal distribution with small variance
and with a mean that is moved according to a cumulative
sum of another normal distribution. Increasing and
decreasing the variance of this second normal distribution,
causes the mean to move around with decreased or
increased jumps, affecting the locality of the data. We
define locality in these experiments to be 1/(variance) of
the second distribution. Figure 10 shows how total
transmissions for a 5 node network of average depth=2
running for 2500 epochs varies with data locality of the
Bloomjoin and CD algorithms.

In order to vary
attribute domain
size we simply
mod these values
by the desired
domain size of
each attribute.
The size of the
domain of the

whole tuple is simply the multiplication of the domain
sizes of each component attribute. Due to lack of space, we
cannot show the graph for the Bloomjoin and CD
algorithms with varying selectivity. In short, we found that
domain size did not affect CD (however, this could be
query dependent), but that Bloomjoin was greatly affected
by it. If light was allowed to vary between only 64 values
and temperature between 32 (resulting in a domain size of
2048), Bloomjoin approached the naïve algorithm in terms
of number of transmissions. But for smaller domains,

Bloomjoin performed extremely well. Thus Bloomjoin is
preferred over CD when joining over only one attribute,
but CD is preferred over Bloomjoin when the domain is
larger than one attribute, as long sensor data is produced
with reasonable locality.

6. Related Work
Work on distributed query processing for relational
databases began as early as the late 1970s. For example,
Epstein et al. [6] introduced an algorithm for the retrieval
of data from a distributed relational database with
communication traffic as a cost criteria for which nodes
should perform joins. Bernstein et al. [1] introduced a
semi-join algorithm which reduces the communication
overhead of performing distributed joins by taking the
intersection of the schemas of the tables to be joined,
projecting the resulting schema on one of the tables,
sending this smaller version of the table to the node
containing the other table and joining at this node, and then
sending this result back to the node containing the original
table and joining again. This semi-join technique is an
interesting possible optimization, though our Bloom-filter
approach subsumes and likely outperforms it, for the same
reasons as described in R* [15].

Determining how to horizontally partition a join table
amongst a set of servers is classic problem in database
systems. The Gamma [5] and R* [11] systems both
studied this problem in detail, analyzing a range of
alternative techniques for allocating sets of tuples to
servers, though both sought to minimize total query
execution time rather than communication or energy
consumption.

TinyDB [16,17,18] and Cougar [28] both present a range
of distributed query processing techniques for the sensor
networks. However, these papers do not describe a
distributed join algorithm for sensor networks.

There are a large number non-relational query systems that
have been developed for sensor networks, many of which
include some notion of correlating readings from different
sensors. Such correlation operations resemble joins,
though their semantics are typically less well defined,
either because they do not impose a particular data model
[9], or because they are probabilistic in nature [4] and thus
fundamentally imprecise.

The work that comes closest to REED is the work from
Bonfils and Bonnet [3], which proposes a scheme for join-
operator placement within sensor networks. Their work,
however, focuses on joins pairs of sensors, rather than
joins between external tables and all sensors. They do not
address the join-partitioning problem that we focus on.

7. Conclusion
REED extends the TinyDB query processor with facilities
for efficiently executing complex, multi-predicate filtration
queries inside of a sensor network. Our join-based
algorithms are capable of running in very limited amounts
of RAM, can distribute the storage burden over groups of

nodes, and are tolerant to dropped packets and node
failures. REED is thus suitable for a wide range of event-
detection applications that traditional sensor network
database and data collection systems cannot be used to
implement. Moving forward, because REED incorporates a
general purpose join processor, we see it as the core piece
of an integrated query processing framework, in which
sensor networks are tightly integrated into more traditional
databases, and users are presented with a seamless query
interface. Beyond filtrations, power-efficient joins that
allow the combination of tables of values outside the
sensornet to be joined with streaming data generated by
sensors will be extremely valuable.

Bibliography
[1] Philip A. Bernstein, Dah-Ming W. Chiu, Using Semi-Joins to Solve Relational Queries.
Journal of the ACM, 28(1):25-40, 1981.

[2] Burton Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of
ACM, 13(7):422-426, 1970.

[3] Boris Jan Bonfils and Philippe Bonnet. Adaptive and Decentralized Operator Placement for In-
Network Query Processing. In IPSN, 2003.

[4] M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven sensor querying and routing
for ad hoc heterogeneous sensor networks. In International Journal of High Performance
Computing, 2002.

[5] D. J. Dewitt and S. Ghandeharizadeh and D. A. Schneider and A. Bricker and H. -I. Hsiao and
R. Rasmussen. The Gamma Database Machine Project. In IEEE TKDE, 2(1):44-62, 1990. answers.

[6] R. Epstein, M.R. Stonebraker, and E. Wong, Distributed Query Processing in a Relational
Database System. In Proceedings of ACM SIGMOD, 1978, pp 169-180.

[7] Mick Flanigan, Personal Communication. August, 2003.

[8] Hausman, Mary. Temperature Control Gets Smart.Chemical Processing Magazine, Aug., 2002.

[9] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffusion: A
scalable and robust communication paradigm for sensor networks. In Proceedings of MobiCOM,
Boston, MA, August 2000.

[10] Wes Iverson. Heading off Breakdowns. Automation World, October, 2003.
http://www.automationworld.com/articles/Features/280.htm

[11] Mark Lepedus. Intel Harnesses Wireless Sensors For Chip-Equipment Care. TechWeb,
October 29th, 2003. http://www.techweb.com/wire/26802594

[12] Philip Levis, Samuel Madden, David Gay, Joseph Polastre, Robert Szewczyk, Alec Woo, Eric
Brewer and David Culler. The Emergence of Networking Abstractions and Techniques in TinyOS.
In Proceedings of NSDI, San Francisco, CA.

[13] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: Accurate and Scalable
Simulation of Entire TinyOS Applications. In Proceedings of ACM SenSys, 2003.

[14] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: A Self-Regulating
Algorithm for Code Propagation and Maintenance in Wireless Sensor Networks. In Proceedings
of NSDI, 2004.

[15] Lothar F. Mackert and Guy M. Lohman. R* Optimizer Validation and Performance
Evaluation for Distributed Queries. In Proceedings of VLDB, 1986.

[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an acquisitional
query processor for sensor networks. In ACM SIGMOD, 2003.

[17] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG: A Tiny
AGgregation Service for Ad-Hoc Sensor Networks. In OSDI, 2002.

[18] Samuel Madden, Robert Szewczyk, Michael Franklin, and David Culler. Supporting
aggregate queries over ad-hoc wireless sensor networks. In Proceedings of WMCSA, 2002.

[19] David Maier, Jeffrey D. Ullman and Moshe Y. Vardi. On the foundations of the universal
relation model. In ACM Transactions on Database Systems (TODS), 9(2):283-308, 1984.

[20] Joseph Polastre. Design and implementation ofwireless sensor networks for habitat
monitoring. Master’s thesis, UC Berkeley, 2003.

[21] G. Pottie and W. Kaiser. Wireless integrated network sensors. Communications of the ACM,
43(5):51 – 58, May 2000.

[22]Rockwell Automation. Pharmaceutical Manufacturing Optimization. White Paper, 2002.
http://domino.automation.rockwell.com/applications/gs/region/gtswebst.nsf/files/pmo.pdf/$file/pm
o.pdf.

[23] Stanislav Rost, Hari Balakrishnan. Lobcast: Reliable Dissemination in Wireless Sensor
Networks. In submission, 2004.

[24] P. Selinger et al. Access Path Selection in a Relational Database Management System. In
Proeedings of ACM SIGMOD, 1979.

[25] Victor Shnayder, Mark Hempstead, Bor-rong Chen, Geoff Werner-Allen, and Matt Welsh.
Simulating the Power Consumption of Large-Scale Sensor Network Applications. To appear in
Proceedings of ACM SenSys, 2004.

[26] M. Stonebraker and G. Kemnitz. The POSTGRES Next Generation Database Management
System. Communications of the ACM, 34(10), 1991.

[27] Alec Woo, Terence Tong, and David Culler. Taming the underlying challenges of reliable
multihop routing in sensor networks. In Proceedings of ACM SenSys, 2003.

[28] Yong Yao and Johannes Gehrke. Query processing in sensor networks. In Proceedings of the
First Biennial Conference on Innovative Data Systems Research (CIDR), 2003.

